WO2022218388A1 - 通过x光影像定位的方法、装置、x光机及可读存储介质 - Google Patents

通过x光影像定位的方法、装置、x光机及可读存储介质 Download PDF

Info

Publication number
WO2022218388A1
WO2022218388A1 PCT/CN2022/086911 CN2022086911W WO2022218388A1 WO 2022218388 A1 WO2022218388 A1 WO 2022218388A1 CN 2022086911 W CN2022086911 W CN 2022086911W WO 2022218388 A1 WO2022218388 A1 WO 2022218388A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
ray
target
coordinate system
coordinates
Prior art date
Application number
PCT/CN2022/086911
Other languages
English (en)
French (fr)
Inventor
黄善灯
柳建飞
潘鲁锋
周高峰
Original Assignee
诺创智能医疗科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺创智能医疗科技(杭州)有限公司 filed Critical 诺创智能医疗科技(杭州)有限公司
Publication of WO2022218388A1 publication Critical patent/WO2022218388A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5294Devices using data or image processing specially adapted for radiation diagnosis involving using additional data, e.g. patient information, image labeling, acquisition parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image

Definitions

  • the embodiments of the present application relate to the technical fields of mechanical equipment and communications, and in particular, to a method, an apparatus, an X-ray machine, and a readable storage medium for positioning by using an X-ray image.
  • X-ray imaging system is a common way of intraoperative positioning.
  • the clarity of the real-time X-ray fluoroscopic images obtained is not high, and it can only determine the approximate position of the target, but cannot precisely locate the position of the target in space.
  • the embodiments of the present application provide a method, a device, an X-ray machine, and a readable storage medium for positioning by using an X-ray image, which can obtain the spatial coordinates of a target position by using an X-ray image positioning method, thereby improving the accuracy of positioning by using an X-ray image.
  • the embodiments of the present application provide a method for positioning through an X-ray image, including:
  • each X-ray image includes marking the relative position of the target in the X-ray image
  • the image information includes the relationship between the relative position and the motion parameter
  • the coordinates of the target in the platform coordinate system are converted into the position coordinates of the target in the mechanical coordinate system of the robot .
  • the embodiments of the present application also provide a device for positioning through X-ray images, including:
  • the shooting module is used for shooting the X-ray images of the target to be located at a plurality of different positions by the X-ray machine, wherein each X-ray image includes a marking of the target in the X-ray image. relative position;
  • an acquisition module configured to acquire the motion parameter relationship of the platform where the X-ray machine is located when each X-ray image is collected
  • a determination module configured to determine the coordinates of the target in the platform coordinate system based on image information corresponding to each X-ray image; wherein, the image information includes the relationship between the relative position and the motion parameter;
  • the conversion module is used to convert the coordinates of the target in the platform coordinate system into the mechanical coordinates of the target in the robot according to the preset conversion relationship between the platform coordinate system of the X-ray machine and the mechanical coordinate system of the robot Position coordinates under the system.
  • an electronic device including:
  • the memory stores an executable computer program
  • the processor coupled with the memory, invokes the executable computer program stored in the memory to execute the steps in the method for localization by an X-ray image as described above.
  • An aspect of the embodiments of the present application further provides an X-ray machine, including: a robotic arm, a transmitter platform connected to the robotic arm, an X-ray transmitter connected to the transmitter platform, and an X-ray transmitter connected to the X-ray transmitter An X-ray receiver arranged oppositely for receiving X-rays from the X-ray transmitter, and a receiving end platform connected to the X-ray receiver, wherein the X-ray transmitter and the X-ray receiver are capable of The axes are kept coincident under the driving of the robotic arm, the transmitting-end platform, and the receiving-end platform.
  • the embodiments of the present application further provide a readable storage medium on which a computer program is stored, and when the computer program is run by a processor, implements the method for positioning by X-ray image as provided in the above-mentioned embodiments.
  • the present application uses the X-ray machine to shoot X-ray images of the target to be located at a plurality of different positions, wherein each X-ray image includes marking the target in the X-ray image.
  • the relative position in the X-ray image is obtained, the motion parameter relationship of the platform where the X-ray machine is located when each X-ray image is collected, and the coordinates of the target in the platform coordinate system are determined based on the image information corresponding to each X-ray image;
  • the image information includes the relationship between the relative position and the motion parameter.
  • the coordinates of the target in the platform coordinate system are converted into the coordinate system.
  • the position coordinates of the target in the mechanical coordinate system of the robot so that the above method can obtain the real-time coordinates of the lesion in the mechanical coordinate system, which can improve the positioning accuracy.
  • FIG. 1 is a schematic diagram of the overall structure of an X-ray machine provided by an embodiment of the present application.
  • Fig. 2 is a partial enlarged view of the X-ray machine shown in Fig. 1, which shows the Stewart platform of the transmitting end;
  • Fig. 3 is another partial enlarged view of the X-ray machine shown in Fig. 1, which shows the Stewart platform of the receiving end;
  • Fig. 4 is the schematic diagram of the static platform coordinate system S tre -X stre Y stre Z stre and the moving platform coordinate system M re -X Mre Y Mre Z Mre of the Stewart platform of the receiving end;
  • FIG. 5 is a schematic diagram of the static platform coordinate system S ttr -X sttr Y sttr Z sttr and the moving platform coordinate system M tr -X Mtr Y Mtr Z Mtr of the Stewart platform of the transmitting end;
  • FIG. 6 is a schematic diagram of the shooting between the Stewart platform at the transmitting end and the Stewart platform at the receiving end;
  • Fig. 7 is the position change schematic diagram of the Stewart platform of the transmitting end and the Stewart platform of the receiving end;
  • FIG. 8 is a schematic diagram of the main operator controlling the Stewart parallel platform at the X-ray transmitting end and the Stewart parallel platform at the X-ray receiving end;
  • FIG. 9 is a flowchart for realizing a positioning method under an X-ray image provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a positioning device under an X-ray image provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of a hardware structure of an electronic device according to an embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , it can also be integrated; it can be a mechanical connection, an electrical connection, or a communication connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two components or two components. interactions, unless otherwise expressly defined.
  • the specific meanings of the above terms in this application can be understood according to specific situations.
  • the technical solutions of the present application will be described in detail below with specific examples. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments.
  • the X-ray machine provided in this application includes a transmitting-end platform, an X-ray transmitter, a receiving-end platform and an X-ray receiver.
  • the X-ray transmitter is installed on the transmitting-end platform
  • the X-ray receiver is installed on the receiving-end platform.
  • the X-ray machine provided in this application is specifically a dual Stewart platform opposite-beam X-ray machine, including: a transmitter Stewart platform manipulator (hereinafter referred to as a transmitter Stewart platform), an X-ray transmitter, an X-ray receiver, and a receiver Stewart Platform manipulator, position sensor and control processing device.
  • a transmitter Stewart platform manipulator hereinafter referred to as a transmitter Stewart platform
  • an X-ray transmitter an X-ray receiver
  • a receiver Stewart Platform manipulator position sensor and control processing device.
  • the X-ray machine has a transmitting-end platform, an X-ray transmitter and receiver, a receiving-end platform, a position sensor and a control processing device.
  • the X-ray transmitter is fixed at the end of a mechanical arm of a surgical robot with a multi-degree-of-freedom mechanical arm
  • the receiver is installed under the operating bed board
  • a receiving end Stewart platform machine is movably installed on the operating bed base or floor.
  • the receiver is installed on the receiving end Stewart platform manipulator, and the receiving end Stewart platform manipulator (hereinafter referred to as the receiving end Stewart platform) can be used to adjust the position and angle of the receiver.
  • the positions of the X-ray transmitter and the receiver can be interchanged.
  • the two Stewart platform machines at the transmitter and receiver are used to flexibly adjust the positions of the X-ray transmitter and receiver, to ensure that the transmitter and receiver are always on the same axis, and to obtain fluoroscopic images of patients in different directions according to the needs of the doctor.
  • the control processing device receives the signals of the transmitter and the position sensor on the receiver, and controls the transmitter to reach the expected fluoroscopy position according to the needs of the doctor. Specifically, according to the known position information of the transmitter, the receiving position that the receiver should reach is calculated, and the Stewart platform of the receiving end is driven to adjust the receiver to reach the receiving position, so as to always ensure that the transmitter and the receiver are on the same axis, That is, the plane of the receiver is parallel to the plane of the transmitter in real time, and the vertical lines of the Stewart platform of the transmitting end and the Stewart platform of the receiving end coincide in real time, so that the X-rays emitted by the transmitting end can be received by the receiving end in real time, which can ensure the accuracy of fluoroscopic imaging. Effect.
  • An embodiment of the present application provides an X-ray machine, which is characterized by comprising: a robotic arm, a transmitting end platform connected to the robotic arm, an X-ray emitter connected to the transmitting end platform, and an X-ray emitter opposite to the X-ray emitter.
  • An X-ray receiver arranged and used to receive X-rays from the X-ray transmitter, and a receiving end platform connected to the X-ray receiver, wherein the X-ray transmitter and the X-ray receiver can be mounted on the robotic arm, Driven by the transmitting end platform and the receiving end platform, the axes are kept coincident.
  • FIG. 1 is a schematic structural diagram of an X-ray machine provided by an embodiment of the application.
  • the X-ray transmitting end and the X-ray receiving end on both sides; wherein, the X-ray transmitting end includes the robotic arm 10, the transmitting end Stewart platform 20 connected with the robotic arm 10, and the X-ray transmitter connected with the transmitting end Stewart platform 20 30; the X-ray receiving end includes an X-ray receiver 40 for receiving X-rays emitted from the X-ray transmitter 30, and a receiving end Stewart platform 50 connected with the X-ray receiver 40, wherein the X-ray transmitter 30 is connected to the X-ray receiver 40.
  • the optical receiver 40 can keep the axes coincident under the driving of the robot arm 10 , the transmitting end Stewart platform 20 , and the receiving end Stewart platform 50 .
  • FIG. 2 is an enlarged schematic view of the Stewart platform 20 at the transmitting end of the X-ray machine shown in FIG. 1 .
  • the Stewart platform 20 at the transmitting end is a six-degree-of-freedom parallel mechanism, including a static platform 21 at the transmitting end, a moving platform 22 at the transmitting end, and a static platform 21 connected to the static platform 21 at the transmitting end and the moving platform at the transmitting end.
  • Six transmitting end telescopic elements 23 between the platforms 22 .
  • the static platform 21 at the transmitting end is connected to one end of the six telescopic elements 23 at the transmitting end by means of U-width hinge or spherical hinge.
  • the static platform 21 at the transmitting end can rotate in the X-axis and Y-axis directions, but the degree of freedom in the Z-axis direction is limited.
  • the telescopic element 23 at the transmitting end is composed of a motor and a lead screw, and the lead screw is driven by the motor to expand and contract freely, thereby changing the motion state of the moving platform 22 at the transmitting end.
  • the six telescopic elements 23 at the transmitting end are arranged according to a certain rule, so that the deflection angle of the telescopic elements 23 at the transmitting end is small.
  • the deflection angle between the telescopic element 23 at the transmitting end and the Z axis is within ⁇ 20°.
  • the diameter of the moving platform 22 at the transmitting end is smaller than the diameter of the static platform 21 at the transmitting end.
  • the motion state of the transmitting end moving platform 22 is controlled by the length changes of the six transmitting end telescopic elements 23, and can realize the rotation in three directions of the X axis, the Y axis and the Z axis.
  • the transmitting end static platform 21 of the transmitting end Stewart platform 20 is fixedly connected to the robotic arm 10
  • the transmitting end moving platform 22 of the transmitting end Stewart platform 20 is fixedly connected to the X-ray transmitter 30 .
  • the X-ray machine further includes a robot column 60 and a plurality of robotic arms 10 connected to the robot column 60 .
  • the X-ray transmitter 30 is located at the end of one of the robotic arms 10 of the plurality of robotic arms 10 .
  • the transmitting-end Stewart platform 20 is connected to the end of one of the robotic arms 10
  • the X-ray transmitter 30 is connected to the transmitting-end moving platform 22 of the transmitting-end Stewart platform 20 .
  • the robot arm 10 includes a rotation mechanism 11 , a first telescopic mechanism 12 , and a second telescopic mechanism 13 .
  • One end of the rotating mechanism 11 is rotatably connected to the robot column 60 , and the other end is connected to one end of the first telescopic mechanism 12 .
  • the other end of the first telescopic mechanism 12 is rotatably connected to one end of the second telescopic mechanism 13 .
  • the other end of the second telescopic mechanism 13 is connected to the transmitting end static platform 21 of the transmitting end Stewart platform 20 .
  • Figure 3 is a partial enlarged view of the receiving end Stewart platform 50 of the X-ray machine shown in Six receiving end telescopic elements 53 between the receiving end static platform 51 and the receiving end moving platform 52 .
  • the receiving end static platform 51 is connected to one end of the six receiving end telescopic elements 53 by means of U-width hinge or ball hinge.
  • the static platform 51 at the receiving end can rotate in the X-axis and Y-axis directions, but the degree of freedom in the Z-axis direction is limited.
  • the telescopic element 53 at the receiving end is composed of a motor and a lead screw, and the lead screw is driven by the motor to expand and contract freely, thereby changing the motion state of the moving platform 52 at the receiving end.
  • the six telescopic elements 53 at the receiving end are arranged according to a certain rule, so that the deflection angle of the telescopic elements 53 at the receiving end is small.
  • the deflection angle between the telescopic element 53 at the receiving end and the Z axis is within ⁇ 20°.
  • the diameter of the moving platform 52 at the receiving end is smaller than the diameter of the static platform 51 at the receiving end.
  • the movement state of the receiving end moving platform 52 is controlled by the length variation of the six receiving end telescopic elements 53, and can realize the rotation in three directions of the X axis, the Y axis and the Z axis.
  • the receiving end static platform 51 of the receiving end Stewart platform 50 is installed on the ground, specifically on a cross-shaped slide rail, and the receiving end moving platform 52 of the receiving end Stewart platform 50 is fixedly connected to the X-ray receiver 40 .
  • the X-ray machine further includes a transmitter position sensor, a receiver position sensor, and a control processor electrically connected with the transmitter position sensor and the receiver position sensor.
  • the transmitter position sensor is used to detect the position of the X-ray transmitter 30
  • the receiver position sensor is used to detect the position of the X-ray receiver 40 .
  • the control processor is used for receiving signals from the transmitter position sensor and the receiver position sensor, and controls the X-ray transmitter 30 and the X-ray receiver 40 to reach the expected position by controlling the transmitter Stewart platform 20 and the receiver Stewart platform 50 .
  • the doctor inputs the pre-planned position information based on the operating table 70 .
  • the processor is controlled by controlling the main hand, so that the processor controls the robotic arm 10 and the transmitter Stewart platform 20 to move to the planned pose.
  • the X-ray emitter 30 is positioned.
  • the control processor calculates the receiving position that the X-ray receiver 40 should reach according to the detected position information of the X-ray transmitter 30, and drives the Stewart platform 50 of the receiving end to adjust to the accurate receiving position accordingly, so as to ensure the X-ray receiver 40.
  • the light transmitter 30 and the X-ray receiver 40 are always on the same axis to complete transmission images in different directions and ensure the effect of fluoroscopic imaging.
  • the present application also provides an X-ray machine control method for controlling the X-ray machine, and the method specifically includes the following steps:
  • the static platform coordinate system S tre -X stre Y stre Z stre and the moving platform coordinate system M re -X Mre Y Mre Z Mre of the receiving end Stewart platform are established.
  • the static platform coordinate system Sttr -X sttr Y sttr Z sttr and the moving platform coordinate system M tr -X Mtr Y Mtr Z Mtr of the Stewart platform of the transmitting end are established.
  • the establishment rules of the above coordinate system include: the origin of the receiving end static platform is located at the center of the static platform, and the directions of the XYZ axes are respectively parallel to the XYZ axes of the mechanical coordinate system; the origin of the receiving end moving platform is located at the center of the moving platform, and in the initial state The directions of the XYZ axes are each parallel to the XYZ axes of the machine coordinate system.
  • the mechanical coordinate system refers to the coordinate system OX O Y O Z O of the dual Stewart platform opposite X-ray machine.
  • the origin O of the mechanical coordinate system is located in the center of the robot base, the Z axis is vertically upward, and the X axis is vertically pointing to the robot column. 60.
  • the Y-axis conforms to the right-hand rule, and the directions of the two crossed guide rails of the slide rail are parallel to the X-axis and the Y-axis of the mechanical coordinate system, respectively.
  • the transformation matrix between the receiving end static platform coordinate system and the mechanical coordinate system is obtained through calculation.
  • the following transformation matrix between the static platform coordinate system of the Stewart parallel platform at the X-ray receiving end and the mechanical coordinate system can be obtained through calculation:
  • x 0 , y 0 , z 0 are the coordinates of the origin of the coordinate system of the receiving end static platform at the initial position in the mechanical coordinate system; x re , y re are the movement of the receiving end static platform along the slide rail to the positive direction of the X axis, respectively The distance and the displacement of the receiving end static platform moving in the positive direction of the Y axis along the slide rail.
  • the transformation matrix between the known mechanical coordinate system and the static platform coordinate system of the transmitting end that is, the coordinate system calculated by the robotic arm Stewart
  • the transformation matrix between the coordinate system of the static platform of the receiving end, the coordinate system calculated by Stewart of the manipulator, and the coordinate system of the user are:
  • the transformation matrix between the coordinate systems of the moving and static platforms at the transmitting end can be known. and the transformation matrix between the coordinate system of the moving and static platform at the receiving end
  • the transformation matrix between the coordinate system of the transmitting end moving platform, the mechanical coordinate system and the user coordinate system can be obtained and And, the transformation matrix between the coordinate system of the moving platform at the receiving end, the mechanical coordinate system and the user coordinate system
  • the Stewart platform movement of the receiving end is controlled.
  • control algorithm of the X-ray receiving end is as follows:
  • the distance between the Stewart platform at the transmitting end and the Stewart platform at the receiving end has no effect on the detection of lesions, so the coordinates of the origin of the coordinate system of the moving platform at the receiving end in the Z-axis direction of the mechanical coordinate system are fixed.
  • the Stewart platform of the receiving end has a wide range of movement in the XY plane of the slide rail, so the movement of the X-ray receiving end in the XY plane is realized through the slide rail, and the attitude rotation of the receiving end is realized by the Stewart platform of the receiving end.
  • mapping rules are as follows: The translational movement of the main hand is scaled by the displacement proportional coefficient K, and the rotation angle is mapped to the moving platform of the Stewart platform of the transmitting end according to the original proportion. .
  • the specific implementation method is as follows:
  • the pose matrix of the transmitting end moving platform coordinate system under the user coordinate system can be calculated. and will Save as known value.
  • the pose matrix T Mt of the end point of the master hand in the user coordinate system at the time T is obtained according to the forward kinematics of the master hand.
  • T Mtij is used to represent the element of the i-th row and the j-th column in the T Mt matrix.
  • mapping matrix T Map the pose matrix of the transmitting end moving platform coordinate system in the user coordinate system can be obtained
  • the motion parameters of the joints of the Stewart platform at the receiving end can be calculated to realize the correspondence between the moving platform at the receiving end and the moving platform at the transmitting end.
  • the origin of the moving platform coordinate system of the receiving end is located on the Z axis of the moving platform coordinate system of the transmitting end, the position vector of the origin of the moving platform coordinate system of the receiving end under the coordinate system of the moving platform of the transmitting end can be obtained.
  • the transformation matrix of the mechanical coordinate system and the coordinate system of the transmitting end moving platform can be used Solve to get the position vector of the origin of the moving platform coordinate system of the receiving end in the mechanical coordinate system
  • the main operator controls the Stewart parallel platform at the X-ray transmitting end and the Stewart parallel platform at the X-ray receiving end
  • the Stewart platform at the transmitting end controls the change of the angle of the X-ray transmitter from the initial position to the collection position and the change of the coordinates. changes, as well as the changes in the angle and coordinates of the X-ray receiver controlled by the Stewart platform at the receiving end from the initial position to the acquisition position, as shown in Figures 8 and 9.
  • the robot When using a puncture robot for surgery, the robot cannot locate lesions in certain parts of the human body with a single medical image. Taking pulmonary nodules as an example, due to the presence of gas in the lungs, it is not possible to directly detect the lesions in vitro with an ultrasound instrument. The entire lung is a soft tissue, and it is impossible to locate the lesions by irradiating X-rays in vitro.
  • the present application considers to locate the lesion in real time by combining the above two methods, and obtain the coordinates of the lesion in the robot coordinate system. Specifically, firstly, the ultrasound instrument is entered into the human lungs through the navigation instrument to check the lesion site, and the position of the lesion based on the ultrasound probe is obtained, and then the ultrasound probe based on the marker installed on the ultrasound probe that can be identified by the in vitro X-ray device is obtained. The position of the extracorporeal X-ray equipment can be obtained to obtain the position of the lesion based on the X-ray equipment, that is, the position of the lesion in the robot coordinate system is obtained, and finally the precise registration of the target point and the human body is realized.
  • the working principle of a puncture robot with a surgical navigation system is as follows: First, the puncture robot or a third-party computer equipment 3D synthesizes the scanned two-dimensional images to form a three-dimensional image near the lesion. Then, the doctor judges the position of the target point and the appropriate needle entry path through the three-dimensional image and inputs it into the navigation system; after that, the navigation system calculates the current state and target point of the robot manipulator and plans a trajectory; finally, the operation The arm completes the puncture positioning according to the planned trajectory, and then the needle is inserted into the vicinity of the lesion through external needle puncture or through the interventional instrument, which avoids the error caused by pure manual operation.
  • the method includes:
  • the position coordinates of the ultrasonic detection surface in the robot coordinate system are obtained;
  • the position coordinates of the lesion in the ultrasonic detection surface are obtained
  • the target position of the lesion in the robot coordinate system is obtained, so as to navigate according to the target position.
  • the X-ray image acquisition device is integrated with the robot or installed on the robotic arm of the robot. Therefore, the coordinate system of the X-ray image acquisition device can be regarded as the robot coordinate system. Navigation is performed according to the target position of the lesion in the robot coordinate system, for example, the robot is guided to perform a puncture operation on the lesion according to the target position, or other operations such as an ablation operation.
  • step 1 a preset path planning method is used to plan the surgical path, and the end of the bronchoscope (ie, the endoscope) is guided to reach the bronchi near the lesion.
  • the end of the bronchoscope ie, the endoscope
  • step 2 the ultrasonic probe of the ultrasonic detection device is put into the cavity of the sheath tube (the sheath tube is rotatable), and is inserted together through the endoscope forceps channel hole until it appears in the bronchoscope field of view.
  • step 3 the ultrasonic catheter of the ultrasonic detection device is then rotated to obtain an ultrasonic image, and at the same time, the ultrasonic detection surface of the ultrasonic detection device is adjusted by advancing and retracting the sheath tube and adjusting the end of the sheath until a lesion is found.
  • the above path planning method is a known method, and there are many methods for path planning at present, which are not specifically limited in this application.
  • step 4 find a better section of the lesion, and after finding the section, the bending angle of the sheath tube and the depth of the ultrasound probe are locked, and the rotation of the ultrasound catheter is stopped.
  • X-rays can be taken of the ultrasound catheter from two different angles by using the X-ray imaging system installed on the interventional surgery robot, and 3 feature points A, B, and C on the metal marker can be selected in the X-ray image. , and calculate the coordinates of A, B, and C in the mechanical coordinate system.
  • step 5 the ultrasonic catheter is rotated again to acquire the ultrasonic detection surface with the current pointing of the metal marker as the starting line, and the position information of the target point relative to the starting line in the ultrasonic detection surface is acquired.
  • step 6 the coordinates of the ultrasonic detection surface in the robot coordinate system are calculated according to the X-ray image obtained in step 4, and the coordinates of the target point in the ultrasonic detection surface are calculated according to the ultrasonic image obtained in step 5, and Through the preset coordinate transformation relationship, the spatial coordinates of the target point in the robot coordinate system are calculated.
  • step 7 the target point calculated in step 6 is registered to the X-ray image obtained in step 4 through the coordinate transformation relationship, as a basis for confirming the accuracy of the puncture.
  • the lesion calculated in step 6 can be registered to the CT virtual image, and then the path is re-planned according to the new target in the CT three-dimensional model, and the puncture depth is calculated; After the flexible sheath is pulled out, the catheter is steered to point to the target according to the new navigation path; then, the puncture needle is inserted from the flexible sheath lumen to puncture the target; finally, when the puncture is in place, the Take X-rays again from the same two angles as in step 4, compare the position of the needle tip with the image with the virtual target obtained in step 4, and confirm that the puncture needle is in place.
  • step 4 after finding a better lesion section suitable for the doctor's observation, lock the bending angle of the sheath tube and the depth of the ultrasonic probe, and stop the rotation of the ultrasonic catheter.
  • step 4 using the dual Stewart platform X-ray machine installed on the robot shown in Fig. 1 to Fig. 3, the ultrasound catheter is taken X-rays from two different shooting angles to obtain X-ray images.
  • the X-ray image select three contour feature points A, B, and C that can be used to describe the contour of the ultrasound probe marker on the ultrasound probe marker, and calculate the mechanical coordinate system of the three points A, B, and C.
  • the coordinates below take the calculation of the coordinates of point A as an example, the method is as follows:
  • the doctor can use the main hand to control the robotic arm holding the X-ray emitting end to scan the human body.
  • the position of the lesion is found in the image, mark the position of the lesion relative to the center point in this image, which is recorded as ( x 1 , y 1 ).
  • control the X-ray emitting end to deflect to another position where point A can be seen mark the position of point A relative to the center point in this X-ray image, denoted as (x 2 , y 2 ), according to the main hand Motion, use the master-slave control algorithm to calculate the motion attitude of the X-ray emission Stewart platform at this time, that is, the transformation matrix from the moving platform to the static platform, which is recorded as
  • the transformation matrix can be calculated in advance and stored in the robot system as a preset known quantity. is the transformation matrix from the moving platform of the transmitter to the static platform, is the coordinate under the static platform of the emission end of the lesion.
  • the coordinates of point A in the mechanical coordinate system (x A , y A , z A ) can be obtained.
  • the coordinates of points B and C in the mechanical coordinate system (x B , y B , z A ) can be obtained.
  • the coordinates of the lesion in the mechanical coordinate system can be determined according to the coordinates of the contour feature points A, B, and C of the ultrasound probe marker in the mechanical coordinate system.
  • the coordinates of the lesion in the mechanical coordinate system can be converted to the Stewart calculation coordinate system of the other robotic arms through the joint information of other robotic arms:
  • the inverse kinematics of the Stewart parallel platform can be used to calculate the joint motion of the Stewart platform of the surgical execution manipulator, so that the end of the surgical execution manipulator is accurate. to reach the location of the lesion, so as to achieve precise localization of the lesion.
  • locating the lesions by the above method can also reduce the dependence on manual operation in the process of lesion positioning and registration, and improve the safety of the operation. As one of the clinical applications of surgical robots, there is no need to independently develop complex system, thus also reducing development costs.
  • the target when locating a target through an X-ray image, the target may specifically be a lesion, which is the same as the above-mentioned method for locating the position of point A.
  • the platform of the X-ray machine for capturing X-ray images takes the above-mentioned Stewart parallel platform as an example. Specifically, referring to FIG. 9, the method for positioning by X-ray image includes:
  • Step 901 shooting X-ray images of the target to be positioned at a plurality of different positions by the X-ray machine, wherein each X-ray image includes marking the relative position of the target in the X-ray image;
  • the relative position may be the position of the target relative to the center of the X-ray image, or may also be the position relative to other points in the X-ray image, such as the upper left corner point, the lower left corner point, and the like.
  • two X-ray images of the target are taken at two different first positions and second positions by the X-ray transmitter, and in the two X-ray images, the center points of the target relative to the X-ray images are marked respectively.
  • the plane coordinate system of the X-ray image is parallel to the xOy plane of the transmitting end platform, so the coordinates of the target in the transmitting end moving platform coordinate system can be determined based on the xy coordinates of the target in the X-ray image. That is, referring to the method of labeling point A above, labelled as (x1, y1) and (x2, y2).
  • Step 902 Obtain the motion parameter relationship of the platform where the X-ray machine is located when collecting each X-ray image
  • Step 903 Determine the coordinates of the target in the platform coordinate system based on the image information corresponding to each X-ray image;
  • the image information includes the relationship between the relative position and the motion parameter.
  • step 903 may include: for each X-ray image, based on the relative position of the target in the X-ray image, determining the xy coordinates of the target in the platform coordinate system; and based on each X-ray image The xy coordinates of the target in the platform coordinate system in the X-ray image and the motion parameter relationship when the X-ray image is collected determine the z coordinate of the target in the platform coordinate system.
  • the method for determining the xy coordinates may include: in the two X-ray images, the center point of the X-ray images may be used as the origin, and the xy coordinates of the position of the target relative to the center point of the X-ray images may be marked respectively, And take the xy coordinates as the coordinates of the target in the platform coordinate system of the transmitter.
  • the origin in the X-ray image can also be performed according to the translational relationship between the X-ray image and the origin of the coordinate system of the transmitting end platform.
  • the center point of the X-ray image can be used as the origin.
  • the plane coordinate system of the X-ray image is parallel to the xOy plane of the transmitting end platform, and the origin of the X-ray image is on the z-axis of the transmitting end platform.
  • the platform where the X-ray machine is located includes a moving platform and a static platform
  • the plane coordinate system of the X-ray image is parallel to the xOy plane of the transmitting end moving platform
  • the above xy coordinates are the target in the transmitting end moving platform coordinate system. coordinate of.
  • the above-mentioned method for determining the z-coordinate may include: based on the xy coordinates of the target in the moving platform coordinate system in each X-ray image, and the difference between the moving and static platform coordinate systems when collecting the X-ray image. The relationship between the motion parameters and the condition that the position of the target in the static platform coordinate system is unchanged, determine the z coordinate of the target in the moving platform coordinate system.
  • Step 904 according to the preset transformation relationship between the platform coordinate system of the X-ray machine and the mechanical coordinate system of the robot, convert the coordinates of the target in the platform coordinate system into the position coordinates of the target in the mechanical coordinate system of the robot .
  • the platform on which the X-ray machine is located includes a moving platform and a static platform, and the motion parameter relationship between the coordinate systems of the moving and static platforms when the X-ray image is collected, and the preset coordinate system of the static platform of the X-ray machine can be based on
  • the transformation relationship with the robot's mechanical coordinate system converts the coordinates of the target in the moving platform coordinate system into the position coordinates of the target in the robot's mechanical coordinate system.
  • the xy coordinates of the target in each X-ray image on the moving platform of the transmitting end are converted to the xy coordinates under the static platform of the transmitting end, and based on the correlation with each X-ray image
  • the xy coordinates under the static platform corresponding to the light images and the transformation matrix when collecting each X-ray image are used to determine the z coordinate of the target under the static platform at the transmitting end.
  • the conversion matrix includes a first conversion matrix and a second conversion matrix, wherein the first conversion matrix is the conversion matrix when the X-ray machine is collected at the first position, and the second conversion matrix is when the X-ray machine is collected at the second position. transformation matrix.
  • the preset master-slave control algorithm respectively calculate the first transformation matrix of the moving platform of the transmitting end and the static platform of the transmitting end when the X-ray machine is in the first position And, in the second position, the second conversion matrix of the transmitting end moving platform and the transmitting end static platform
  • the xyz coordinates of the marked target are respectively expressed as position vectors, where x and y are known quantities, and z is an unknown quantity, that is, and
  • the z coordinate of the target is obtained by solving. Specifically, according to the principle that the position of the target under the static platform of the transmitting end is fixed, the equation system of the first coordinate and the second coordinate is obtained, and the equation system is solved. Get the z coordinate of the target, the z coordinate of the target is the coordinate in the coordinate system of the static platform of the transmitting end
  • the robot includes a plurality of robotic arms, wherein one robotic arm controls the X-ray machine, and the platform coordinate system of the X-ray machine corresponds to the robotic arm.
  • the platform coordinate system of the X-ray machine may be the coordinate system of the moving platform on the robotic arm that controls the X-ray machine.
  • the coordinate system of the moving platform may include a moving platform coordinate system and/or a static platform coordinate system. Platform coordinates.
  • the position coordinates of the target in the mechanical coordinate system are obtained, according to the joint information of other mechanical arms, the position coordinates of the target in the mechanical coordinate system are converted to the platform calculation coordinate system of other mechanical arms, and the platform of other mechanical arms is obtained. Calculate the position coordinates in the coordinate system.
  • the other robotic arms are other robotic arms except for controlling the X-ray machine, for example, other robotic arms for performing surgery.
  • the position coordinates in the coordinate system are calculated according to the platforms of other robotic arms, and the inverse kinematics algorithm of the preset platform is used to calculate the joint motions of the platforms of other robotic arms, so that the ends of other robotic arms reach the target position.
  • the coordinates of the lesion in the mechanical coordinate system can be converted into the Stewart calculation coordinate system of the surgical execution robot arm through the joint information of the surgical execution robot arm. Knowing the coordinates of the target point under the coordinate system calculated by the surgical execution manipulator Stewart, the joint motion of the surgical execution manipulator Stewart platform can be calculated through the inverse kinematics of the Stewart parallel platform, so that the end of the surgical execution manipulator can be accurately reached. lesion location.
  • the X-ray machine is used to shoot X-ray images of the target to be positioned at a plurality of different positions, wherein each X-ray image includes marking the relative position of the target in the X-ray image, Obtain the motion parameter relationship of the platform where the X-ray machine is located when collecting each X-ray image, and determine the coordinates of the target in the platform coordinate system based on the image information corresponding to each X-ray image; wherein, the image information includes the The relationship between the relative position and the motion parameters, according to the preset conversion relationship between the platform coordinate system of the X-ray machine and the mechanical coordinate system of the robot, the coordinates of the target in the platform coordinate system are converted into the mechanical coordinates of the target in the robot Therefore, the above method can obtain the real-time coordinates of the lesion in the mechanical coordinate system, which can improve the positioning accuracy.
  • FIG. 10 a schematic structural diagram of an apparatus for positioning by X-ray image provided by an embodiment of the present application.
  • the device can be configured independently in a computer device with data processing function, or can also be integrated in an X-ray machine.
  • the device includes:
  • the photographing module 101 is used for photographing the X-ray images of the target to be positioned at a plurality of different positions by the X-ray machine, wherein each X-ray image includes marking the relative position of the target in the X-ray image;
  • the acquisition module 102 is used for acquiring the motion parameter relationship of the platform where the X-ray machine is located when each X-ray image is collected;
  • the determining module 103 is configured to determine the coordinates of the target in the platform coordinate system based on the image information corresponding to each X-ray image; wherein, the image information includes the relationship between the relative position and the motion parameter;
  • the conversion module 104 is used to convert the coordinates of the target in the platform coordinate system into the target in the robot's mechanical coordinate system according to the preset conversion relationship between the platform coordinate system of the X-ray machine and the robot's mechanical coordinate system location coordinates.
  • the determining module 103 is further configured to, for each X-ray image, determine the xy coordinates of the target in the platform coordinate system based on the relative position of the target in the X-ray image;
  • the z coordinate of the target in the platform coordinate system is determined.
  • the X-ray machine includes a transmitting end platform on which an X-ray transmitter is installed, and the transmitting end platform of the X-ray machine includes a transmitting end moving platform;
  • the photographing module 101 is further configured to photograph two X-ray images of the target at two different first positions and second positions through the X-ray transmitter;
  • the determination module 103 is further configured to respectively mark the xy coordinates of the position of the target relative to the center point of the X-ray images in the two X-ray images, and use the xy coordinates as the coordinate system of the moving platform at the transmitting end of the target the coordinates below.
  • the transmitting end platform of the X-ray machine also includes a transmitting end static platform
  • the determining module 103 is further configured to determine the transformation matrix of the transmitting end moving platform and the transmitting end static platform when collecting the X-ray image based on the motion parameter relationship when collecting the X-ray image;
  • the xy coordinates of the target in each X-ray image on the moving platform of the transmitting end are converted to the xy coordinates under the static platform of the transmitting end, and based on the correlation with each X-ray image
  • the xy coordinates under the static platform corresponding to the light images and the transformation matrix when collecting each X-ray image are used to determine the z coordinate of the target under the static platform at the transmitting end.
  • the X-ray machine collects two X-ray images of the target at the first position and the second position respectively; the conversion matrix includes a first conversion matrix and a second conversion matrix, wherein the first conversion matrix is the X-ray machine at the first position.
  • the conversion matrix when the position is collected, and the second conversion matrix is the conversion matrix when the X-ray machine is collected at the second position.
  • the conversion module 104 is further configured to represent the xyz coordinates of the target marked therein as a position vector for the X-ray images captured at the first position and the second position, where x and y are known quantities, and z is Unknown;
  • the z coordinate of the target is obtained by solving, and the z coordinate of the target is the coordinate in the coordinate system of the static platform of the transmitting end.
  • the transformation module 104 is also used to calculate the preset transformation matrix of the mechanical coordinate system and the static platform of the transmitting end, the first transformation matrix of the moving platform of the transmitting end to the static platform, and the target in the static platform coordinate system of the transmitting end.
  • the product of the coordinates is taken as the position coordinates of the target in the robot's mechanical coordinate system.
  • the robot includes a plurality of robotic arms, wherein one robotic arm controls the X-ray machine, and the platform coordinate system of the X-ray machine corresponds to the robotic arm;
  • the conversion module 104 is further configured to convert the position coordinates of the target in the mechanical coordinate system to the other mechanical arms according to the joint information of the other mechanical arms after obtaining the position coordinates of the target in the mechanical coordinate system In the platform calculation coordinate system of , obtain the position coordinates of the other manipulator arm in the platform calculation coordinate system; wherein, the other manipulator is other manipulator except for controlling the X-ray machine.
  • the device further includes: a calculation module (not marked in the figure) for obtaining the position coordinates under the platform calculation coordinate system of the other robotic arm, calculating the position coordinates under the coordinate system according to the platform of the other robotic arm, and pre- The inverse kinematics algorithm of the set platform is used to calculate the joint motion of the platform of the other manipulator, so that the end of the other manipulator device reaches the target position.
  • a calculation module (not marked in the figure) for obtaining the position coordinates under the platform calculation coordinate system of the other robotic arm, calculating the position coordinates under the coordinate system according to the platform of the other robotic arm, and pre-
  • the inverse kinematics algorithm of the set platform is used to calculate the joint motion of the platform of the other manipulator, so that the end of the other manipulator device reaches the target position.
  • the X-ray machine is used to capture X-ray images of the target to be positioned at a plurality of different positions, wherein each X-ray image includes marking the relative position of the target in the X-ray image , obtain the motion parameter relationship of the platform where the X-ray machine is located when collecting each X-ray image, and determine the coordinates of the target in the platform coordinate system based on the image information corresponding to each X-ray image; wherein, the image information includes According to the relationship between the relative position and the motion parameter, according to the preset transformation relationship between the platform coordinate system of the X-ray machine and the mechanical coordinate system of the robot, the coordinates of the target in the platform coordinate system are converted into the mechanical coordinates of the target in the robot.
  • the position coordinates in the coordinate system, the target can be a lesion, so the above device can obtain the real-time coordinates of the lesion in the robot coordinate system, which can improve the accuracy of positioning
  • FIG. 11 a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application is shown.
  • the electronic device includes: a memory 281 and a processor 282 .
  • the memory 281 stores an executable computer program 283 therein.
  • the processor 282 coupled with the memory 281 invokes the executable computer program 283 stored in the memory to execute the method for localization by X-ray image provided in the above embodiments.
  • the computer program 283 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 281 and executed by the processor 282 to accomplish the present invention.
  • the one or more modules/units may include various modules in the apparatus for positioning through X-ray images in the above embodiments, such as a shooting module 101 , an acquisition module 102 , a determination module 103 and a conversion module 104 .
  • the device also includes:
  • At least one input device and at least one output device are At least one input device and at least one output device.
  • processor 282 memory 281, input device, and output device may be connected through a bus.
  • the input device may specifically be a camera, a touch panel, a physical button, a mouse, or the like.
  • the output device may be a display screen.
  • the apparatus may further include more components than shown, or combine some components, or different components, such as network access equipment, sensors, and the like.
  • the processor 282 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), application specific integrated circuits (Application Specific Integrated Circuits, ASICs), field-available processors. Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 281 may be, for example, hard drive memory, non-volatile memory (such as flash memory or other electronically programmable limit erasure memory used to form solid state drives, etc.), volatile memory (such as static or dynamic random access memory, etc.) etc., the embodiments of the present application are not limited.
  • the memory 281 may be an internal storage unit of the electronic device, such as a hard disk or a memory of the electronic device.
  • the memory 281 can also be an external storage device of the electronic device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash card) equipped on the electronic device. Card), etc.
  • the memory 281 may also include both an internal storage unit of the electronic device and an external storage device.
  • the memory 281 is used to store computer programs and other programs and data required by the terminal.
  • the memory 281 may also be used to temporarily store data that has been output or will be output.
  • an embodiment of the present application further provides a computer-readable storage medium, which may be provided in the electronic device in the above-mentioned embodiments, and the computer-readable storage medium may be the one shown in FIG. 11 above. memory 281 in the illustrated embodiment.
  • a computer program is stored on the computer-readable storage medium, and when the program is executed by the processor, the method for positioning by an X-ray image described in the foregoing embodiments is implemented.
  • the computer-storable medium may also be a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a RAM, a magnetic disk, or an optical disk and other media that can store program codes.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a readable storage
  • the medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage medium includes: U disk, removable hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • a first feature "on” or “under” a second feature may be in direct contact with the first feature and the second feature, or the first feature and the second feature through an intermediate indirect contact with the media.
  • first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • a first feature “below”, “below” and “below” a second feature may mean that the first feature is directly or obliquely below the second feature, or simply means that the first feature is level below the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “example,” “specific example,” or “some examples”, etc. means specific features described in connection with the embodiment or example. , structure, material or feature is included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Gynecology & Obstetrics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种通过X光影像定位的方法、装置及可读存储介质,其中该方法包括:通过该X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张该X光影像中包括标记该目标在所述X光影像中的相对位置,获取该X光机所在平台在采集每张X光影像时的运动参数关系,基于各张X光影像分别对应的影像信息,确定该目标在平台坐标系下的坐标;其中,该影像信息包括该相对位置和该运动参数关系,根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将该目标在平台坐标系下的坐标,转换为该目标在该机器人的机械坐标系下的位置坐标。本申请通过利用X光影像获取目标在机械坐标系下的实时坐标,可提高定位的精准度。

Description

通过X光影像定位的方法、装置、X光机及可读存储介质 技术领域
本申请实施例涉及机械设备及通信技术领域,尤其涉及一种通过X光影像定位的方法、装置、X光机及可读存储介质。
背景技术
在医学检查、手术中,对检查和手术的目标的定位至关重要。X光影像系统是术中定位的常用方式。
目前的X光设备,获得的实时的X光透视影像清晰度不高,只能判断目标的大概位置,无法在空间中对目标的位置进行精确定位。
发明内容
本申请实施例提供一种通过X光影像定位的方法、装置、X光机及可读存储介质,可通过利用X光影像定位的方式获取目标位置的空间坐标,提高通过X光影像定位的精准度。
本申请实施例一方面提供了一种通过X光影像定位的方法,包括:
通过所述X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张所述X光影像中包括标记所述目标在所述X光影像中的相对位置;
获取所述X光机所在平台在采集每张X光影像时的运动参数关系;
基于各张X光影像分别对应的影像信息,确定所述目标在平台坐标系下的坐标;其中,所述影像信息包括所述相对位置和所述运动参数关系;
根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将所述目标在平台坐标系下的坐标,转换为所述目标在所述机器人的机械坐标系下的位置坐标。
本申请实施例一方面还提供了一种通过X光影像定位的装置,包括:
拍摄模块,用于通过所述X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张所述X光影像中包括标记所述目标在所述X光影像中的相对位置;
获取模块,用于获取所述X光机所在平台在采集每张X光影像时的运动参数关系;
确定模块,用于基于各张X光影像分别对应的影像信息,确定所述目标在平台坐标系下的坐标;其中,所述影像信息包括所述相对位置和所述运动参数关系;
转换模块,用于根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将所述目标在平台坐标系下的坐标,转换为所述目标在所述机器人的机械坐标系下的位置坐标。
本申请实施例一方面还提供了一种电子装置,包括:
存储器和处理器;
所述存储器存储有可执行计算机程序;
与所述存储器耦合的所述处理器,调用所述存储器中存储的所述可执行计算机程序,执行如上述通过X光影像定位的方法中的各步骤。
本申请实施例一方面还提供一种X光机,包括:机械臂、与所述机械臂连接的发射端平台、与所述发射端平台连接的X射线发射器、与所述X射线发射器相对布置并用于接收来自所述X射线发射器的X射线的X射线接收器、以及与所述X射线接收器连接的接收端平台,其中所述X射线发射器与所述X射线接收器能够在所述机械臂、所述发射端平台、以及所述接收端平台的驱动下保持轴线重合。
本申请实施例一方面还提供一种可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器运行时,实现如上述实施例提供的通过X光影像定位的方法。
从上述本申请各实施例可知,本申请通过通过该X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张该X光影像中包括标记该目标在所述X光影像中的相对位置,获取该X光机所在平台在采集每张X光影像时的运动参数关系,基于各张X光影像分别对应的影像信息,确定该目标在平台坐标系下的坐标;其中,该影像信息包括该相对位置和该运动参数关系,根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将该目标在平台坐标系下的坐标,转换为该目标在该机器人的机械坐标系下的位置坐标,从而上述方法可获取病灶在机械坐标系下的实时坐标,可提高定位的精准度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单的介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的X光机的整体结构示意;
图2为图1所示X光机的一局部放大图,其显示所述发射端Stewart平台;
图3为图1所示X光机的另一局部放大图,其显示所述接收端Stewart平台;
图4为接收端Stewart平台的静平台坐标系S tre-X streY streZ stre和动平台坐标系M re-X MreY MreZ Mre的示意图;
图5为发射端Stewart平台的静平台坐标系S ttr-X sttrY sttrZ sttr和动平台坐标系M tr-X MtrY MtrZ Mtr的示意图;
图6为发射端Stewart平台和接收端Stewart平台对射示意图;
图7为发射端Stewart平台和接收端Stewart平台的位置变化示意图;
图8为主操作手对X光发射端Stewart并联平台以及X光接收端Stewart并联平台的控制示意图;
图9为本申请一实施例提供的X光影像下的定位方法的实现流程图;
图10为本申请一实施例提供的X光影像下的定位装置的结构示意图;
图11为本申请一实施例提供的电子装置的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,也可以是成一体;可以是机械连接,也可以是电连接,也可以是通讯连接;可以是直接连接,也可以通过中间媒介的间接连接,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本申请提供的X光机包括发射端平台、X光发射器、接收端平台和X光接收器,X光发射器安装在发射端平台,X光接收器安装在接收端平台
本申请提供的X光机具体为双Stewart平台对射X光机,包括:发射端Stewart平台机械臂(以下简称发射端Stewart平台)、X光的发射器、X光的接收器、接收端Stewart平台机械臂、位置传感器和控制处理装置。
也即,X光机具有发射端平台、X光的发射器和接收器、接收端平台、位置传感器和控制处理装置。
其中,X光发射器固定在具有多自由度机械臂的手术机器人的一只机械臂的末端,接收器在手术床板下方安装,在手术床底座或者地板上可移动的安装一个接收端Stewart平台机械臂,接收器安装在接收端Stewart平台机械臂上,接收端Stewart平台机械臂(以下简称接收端Stewart平台)可用于调节接收器的位置和角度。该X光发射器和该接收器的位置可以互换。
利用发射端和接收端的两个Stewart平台机灵活调节X光的发射器和接收器的位置,保证发射器与接收器始终轴线重合,根据医生的需求获得病人不同方位的透视影像。
控制处理装置接收发射器和接收器上的位置传感器的信号,根据医生的需求,控制发射器到达预期的透视位置。具体地,根据已知的发射器的位置信息,计算接收器应到达的接收位置,并驱动接收端Stewart平台调整该接收器到达该接收位置,从而始终保证发射器和接收器在同一轴线上,即,接收器的平面实时与发射器的平面平行,且发射端Stewart平台和接收端Stewart平台的中垂线实时重合,这样发射端发出的X光线实时能被接收端接收,可保证透视成像的效果。
本申请实施例提供了一种X光机,其特征在于,包括:机械臂、与该机械臂连接的发射端平台、 与该发射端平台连接的X射线发射器、与该X射线发射器相对布置并用于接收来自该X射线发射器的X射线的X射线接收器、以及与该X射线接收器连接的接收端平台,其中该X射线发射器与该X射线接收器能够在该机械臂、该发射端平台、以及该接收端平台的驱动下保持轴线重合。
具体地,发射端平台和接收端平台均以Stewart平台为例,参见图1,图1为本申请一实施例提供的X光机的结构示意图,该X光机可分为分布在手术床上下两侧的X光发射端和X光接收端;其中,X光发射端包括机械臂10、与机械臂10连接的发射端Stewart平台20,以及,与发射端Stewart平台20连接的X光发射器30;X光接收端包括用于接收来自X光发射器30发射的X射线的X光接收器40、以及与X光接收器40连接的接收端Stewart平台50,其中X光发射器30与X光接收器40能够在机械臂10、发射端Stewart平台20、以及接收端Stewart平台50的驱动下保持轴线重合。
通过采用两个Stewart平台(即发射端Stewart平台20与接收端Stewart平台50),可实现灵活精确的术中透视位置与角度调整,使得X光发射器30与X射线发射器40能位于同一轴线,从而保证X射线透射成像效果,并解决了C型臂占用术中空间、与手术器械或者手术机器人发生干涉的问题。
图2为图1所示X光机的发射端Stewart平台20的放大示意图。如图2所示,在本实施例中,发射端Stewart平台20为一六自由度并联机构,包括发射端静平台21、发射端动平台22、以及连接于发射端静平台21和发射端动平台22之间的六个发射端伸缩元件23。
可选地,发射端静平台21与六个发射端伸缩元件23的一端采用U幅铰接或者球铰接的方法连接。本实施例中,发射端静平台21可以在X轴和Y轴方向转动,但是限制了Z轴方向的自由度。发射端伸缩元件23由电机和丝杠组成,通过电机驱动丝杠使其自由伸缩,从而改变发射端动平台22的运动状态。六个发射端伸缩元件23按照一定规律排列,使得发射端伸缩元件23的偏转角度较小。优选地,发射端伸缩元件23与Z轴的偏转角度范围在±20°之间。本实施例中,发射端动平台22的直径小于发射端静平台21的直径。发射端动平台22的运动状态由六个发射端伸缩元件23的长度变化控制,且可实现X轴、Y轴和Z轴三个方向的转动。
发射端Stewart平台20的发射端静平台21与机械臂10固定连接,发射端Stewart平台20的发射端动平台22与X光发射器30固定连接。
X光机还包括机器人立柱60、以及连接于机器人立柱60的多个机械臂10。X射线发射器30位于多个所述机械臂10的其中一个机械臂10的末端。具体地,发射端Stewart平台20连接于其中一个机械臂10的末端,X光发射器30连接于发射端Stewart平台20的发射端动平台22。
图1中,机械臂10包括旋转机构11、第一伸缩机构12、以及第二伸缩机构13。旋转机构11的一端与机器人立柱60可转动地连接,另一端与第一伸缩机构12的一端连接。第一伸缩机构12的另一端与第二伸缩机构13的一端可转动地连接。第二伸缩机构13的另一端与发射端Stewart平台20的发射端静平台21连接。
图3为图1所示X光机的接收端Stewart平台50的局部放大图,接收端Stewart平台50为一六自由度并联机构,包括接收端静平台51、接收端动平台52、以及连接于接收端静平台51和接收端动平台52之间的六个接收端伸缩元件53。
可选地,接收端静平台51与六个接收端伸缩元件53的一端采用U幅铰接或者球铰接的方法连接。本实施例中,接收端静平台51可以在X轴和Y轴方向转动,但是限制了Z轴方向的自由度。接收端伸缩元件53由电机和丝杠组成,通过电机驱动丝杠使其自由伸缩,从而改变接收端动平台52的运动状态。六个接收端伸缩元件53按照一定规律排列,使得接收端伸缩元件53的偏转角度较小。优选地,接收端伸缩元件53与Z轴的偏转角度范围在±20°之间。本实施例中,接收端动平台52的直径小于接收端静平台51的直径。接收端动平台52的运动状态由六个接收端伸缩元件53的长度变化控制,且可实现X轴、Y轴和Z轴三个方向的转动。
接收端Stewart平台50的接收端静平台51安装于地面,具体安装在一个十字型滑轨上,接收端Stewart平台50的接收端动平台52与X光接收器40固定连接。
X光机还包括发射端位置传感器、接收端位置传感器、以及与发射端位置传感器和接收端位置传感器电连接的控制处理器。发射端位置传感器用于检测X光发射器30的位置,接收端位置传感器用于检测X光接收器40的位置。控制处理器用于接收发射端位置传感器以及接收端位置传感器的信号,并通过控制发射端Stewart平台20和接收端Stewart平台50,来控制X光发射器30和X光接收器40到达预期位置。
手术中,医生输入预先规划好的基于手术床70的位置信息。若发射端位置传感器检测到X光发射器30没有位于目标透射位置,则通过控制主手来控制处理器,使得该处理器控制机械臂10和发射端Stewart平台20运动到规划好的位姿实现X光发射器30定位。接下来,控制处理器根据检测到的X光发射器30的位置信息,计算X光接收器40应到达的接收位置,并据此驱动接收端Stewart平台50调 整到准确的接收位置,从而保证X光发射器30与X光接收器40始终在同一轴线上,完成不同方位的透射影像,保证透视成像的效果。
进一步地,本申请还提供一种X光机控制方法,用于控制该X光机,该方法具体包括以下步骤:
建立接收端Stewart平台的静平台坐标系Stre-X streY streZ stre和动平台坐标系Mre-X MreY MreZ Mre
首先,如图5所示,建立接收端Stewart平台的静平台坐标系S tre-X streY streZ stre和动平台坐标系M re-X MreY MreZ Mre。对应地,如图6所示,建立发射端Stewart平台的静平台坐标系S ttr-X sttrY sttrZ sttr和动平台坐标系M tr-X MtrY MtrZ Mtr
上述坐标系的建立规则包括:接收端静平台的原点位于静平台中心,且XYZ轴的方向均各自与机械坐标系的XYZ轴平行;接收端动平台的原点位于动平台中心,且初始状态下XYZ轴的方向均各自与机械坐标系的XYZ轴平行。机械坐标系是指双Stewart平台对射X光机的坐标系O-X OY OZ O,机械坐标系的原点O位于机械人基座的中心,Z轴竖直向上,X轴垂直指向机器人的立柱60,Y轴符合右手法则,滑轨的两条十字交叉的导轨方向分别平行于机械坐标系的X轴和Y轴。
基于坐标系的建立规则,解算得到接收端静平台坐标系与机械坐标系之间的转换矩阵。
具体的,基于上述坐标系的建立规则,可解算得到X光接收端stewart并联平台静平台坐标系与机械坐标系之间的以下转换矩阵:
Figure PCTCN2022086911-appb-000001
其中,x 0,y 0,z 0分别为初始位置下接收端静平台坐标系原点在机械坐标系下的坐标;x re,y re分别为接收端静平台沿滑轨向X轴正方向移动的距离和接收端静平台沿滑轨向Y轴正方向移动的位移。
进一步地,在已知
Figure PCTCN2022086911-appb-000002
以及,已知机械坐标系与发射端静平台坐标系(即机械臂Stewart计算坐标系)以及用户坐标系之间的转换矩阵
Figure PCTCN2022086911-appb-000003
可知接收端静平台坐标系与机械臂Stewart计算坐标系以及用户坐标系之间的转换矩阵
Figure PCTCN2022086911-appb-000004
Figure PCTCN2022086911-appb-000005
分别为:
Figure PCTCN2022086911-appb-000006
Figure PCTCN2022086911-appb-000007
根据预设的Stewart平台正逆运动学算法,可知发射端动静平台坐标系之间的转换矩阵
Figure PCTCN2022086911-appb-000008
和接收端动静平台坐标系之间的转换矩阵
Figure PCTCN2022086911-appb-000009
可求得发射端动平台坐标系与机械坐标系以及用户坐标系之间的转换矩阵
Figure PCTCN2022086911-appb-000010
Figure PCTCN2022086911-appb-000011
以及,接收端动平台坐标系与机械坐标系以及用户坐标系之间的转换矩阵
Figure PCTCN2022086911-appb-000012
Figure PCTCN2022086911-appb-000013
Figure PCTCN2022086911-appb-000014
Figure PCTCN2022086911-appb-000015
Figure PCTCN2022086911-appb-000016
利用该转换矩阵和预设的X光接收端的控制算法,控制该接收端Stewart平台运动。
于本步骤中,该X光接收端的控制算法具体如下:
在X光发射器的平面与X光接收器的平面互相平行且中垂线重合时,可保证X发射器发出的X 光线实时能被X光接收器接收。
根据对射原理,发射端Stewart平台和接收端Stewart平台之间的距离对病灶检测没有影响,因此固定接收端动平台坐标系原点在机械坐标系Z轴方向的坐标。接收端Stewart平台在滑轨的XY平面内的移动范围较广,因此通过滑轨实现X光接收端在XY平面内的运动,由接收端Stewart平台实现接收端的姿态转动。
(一)首先将主手的运动映射到发射端Stewart平台上,映射规则如下:将主手的平移运动用位移比例系数K进行缩放,旋转角度按原比例映射至发射端Stewart平台的动平台上。具体实施方法如下:
1、在T0时刻,令主手末端点在用户坐标系下的位姿矩阵为四阶单位矩阵T M0
Figure PCTCN2022086911-appb-000017
2、在T0时刻,根据已知的被动臂的正逆运动学和Stewart平台逆运动学,可解算得发射端动平台坐标系在用户坐标系下的位姿矩阵
Figure PCTCN2022086911-appb-000018
并将
Figure PCTCN2022086911-appb-000019
保存为已知值。
3、经过一个单位周期T,根据主手正运动学解算得到T时刻主手末端点在用户坐标系下的位姿矩阵T Mt
4、将主手的平移运动用位移比例系数K进行缩放,旋转角度按原比例映射至发射端动平台,映射矩阵记为T Map
Figure PCTCN2022086911-appb-000020
其中,用T Mtij表示T Mt矩阵中第i行第j列的元素。
(二)根据上述映射关系解算接收端Stewart平台的运动,具体实施方法如下:
1、根据映射矩阵T Map可得发射端动平台坐标系在用户坐标系下的位姿矩阵
Figure PCTCN2022086911-appb-000021
Figure PCTCN2022086911-appb-000022
2、根据用户坐标系与机械坐标系的转换矩阵
Figure PCTCN2022086911-appb-000023
可得发射端动平台坐标系在机械坐标系下的位姿矩阵
Figure PCTCN2022086911-appb-000024
Figure PCTCN2022086911-appb-000025
3、根据接收端动平台坐标系与发射端动平台坐标系平行且反向,解算接收端动平台在机械坐标系下的姿态矩阵
Figure PCTCN2022086911-appb-000026
4、根据机械坐标系与接收端静平台坐标系的转换矩阵,解算接收端动平台坐标系在接收端静平台坐标系下的姿态矩阵
Figure PCTCN2022086911-appb-000027
5、根据
Figure PCTCN2022086911-appb-000028
和接收端动平台的逆运动学原理,可解算得到接收端Stewart平台各关节的运动参数,实现接收端动平台与发射端动平台姿态的对应。
(三)根据上述映射关系解算接收端Stewart平台在滑轨(或导轨)上的运动参数,具体实施方法如下:
1、将接收端Stewart平台的动平台原点在机械坐标系下的Z坐标记为 0Z, 0Z为恒定值;
2、通过机械坐标系与发射端动平台的转换矩阵
Figure PCTCN2022086911-appb-000029
解算得到接收端动平台坐标系原点在发 射端动平台坐标系下的Z轴坐标 MtrZ;
Figure PCTCN2022086911-appb-000030
由于接收端动平台坐标系原点位于发射端动平台坐标系Z轴上,可得接收端动平台坐标系原点在发射端动平台坐标系下的位置向量
Figure PCTCN2022086911-appb-000031
Figure PCTCN2022086911-appb-000032
3、可通过机械坐标系和发射端动平台坐标系的转换矩阵
Figure PCTCN2022086911-appb-000033
解算得到接收端动平台坐标系原点在机械坐标系下的位置向量
Figure PCTCN2022086911-appb-000034
Figure PCTCN2022086911-appb-000035
接收端动平台坐标系原点在机械坐标系XY方向的坐标,即接收端静平台坐标系原点在机械坐标系XY方向的坐标,从而可得接收端Stewart平台在十字型的滑轨上的运动x re和y re
Figure PCTCN2022086911-appb-000036
Figure PCTCN2022086911-appb-000037
在上述运动控制中,主操作手对X光发射端Stewart并联平台以及X光接收端Stewart并联平台的控制,发射端Stewart平台控制X光发射器从初始位置到采集位置的角度的变化和坐标的变化,以及接收端Stewart平台控制X光接收器从初始位置到采集位置的角度的变化和坐标的变化,如图8和图9所示。
通过利用上述方法控制X光接收端Stewart平台运动,获得实时X光影像,一方面由于只针对机器人的位置进行控制,因此具有较高的实时性,另一方面,通过将基于X对射平台主动端的运动映射到从动端的并联平台和滑轨上,增大了协作范围。
当使用穿刺机器人进行手术时,机器人对于人体某些部位的病变,无法用单一的医学影像进行定位。以肺结节为例,由于肺部存在气体,无法直接用超声仪器在体外探测病灶,整个肺部均为软组织,也无法通过体外照射X光射线定位病灶。
有鉴于此,本申请考虑通过将上述两种方式结合来实时定位病灶,获取病灶在机器人坐标系下的坐标。具体的,首先将超声仪器通过导航仪器进入人体肺部内查看病变部位,获得病灶基于超声探头的位置,然后再通过在超声探头上安装的可由体外X光设备识别的标记物,获得超声探头基于体外X光设备的位置,从而得到病灶基于X光设备的位置,即获得病灶在机器人坐标系下的位置,最终实现目标靶点与人体的精确配准。
结合以下方法中的各步骤,以穿刺机器人为例,具有手术导航系统的穿刺机器人工作原理如下:首先,由穿刺机器人或第三方计算机设备,将扫描的二维图像进行三维合成形成病灶附近的三维图像;然后,由医生通过三维图像判断靶点位置和合适的入针路径并输入导航系统;之后,再由导航系统计算出机器人操作臂的当前状态和目标点并规划出一条轨迹;最后,操作臂按照规划的轨迹完成穿刺定位,再通过体外进针穿刺或通过介入器械抵达病灶附近进针穿刺,避免了纯手动操作带来的误差。
具体的,该方法包括:
根据通过X光图像采集装置获得的影像,得到超声探测面在机器人坐标系下的位置坐标;
根据通过超声探测装置获得的影像,得到病灶在超声探测面中的位置坐标;
根据超声探测面在机器人坐标系下的位置坐标和病灶在超声探测面中的位置坐标,得到病灶在机器人坐标系下的目标位置,以根据该目标位置进行导航。
可以理解的,X光图像采集装置与机器人集成在一起,或安装在机器人的机械手臂上,因此,可将X光图像采集装置坐标系视为机器人坐标系。根据病灶在机器人坐标系下的目标位置进行导航,例如,根据该目标位置引导机器人对该病灶执行穿刺操作,或者,消融操作等其他操作。
具体的,上述各步骤具体可通过以下方式实现:
在步骤1,利用预设的路径规划方法规划手术路径,引导气管镜(即内窥镜)末端到达病灶附近的支气管。
在步骤2,将超声探测装置的超声探头放入鞘管(该鞘管可旋转)的空腔中,并一起从内镜钳道孔插入,直至出现在气管镜视野中。
在步骤3,接着旋转超声探测装置的超声导管并获取超声影像,同时,通过鞘管的推进、后撤和末端的调弯来调整超声探测装置的超声探测面,直至发现病灶。可以理解的,上述路径规划方法为已知方法,目前关于路径规划的方法有很多,本申请不做具体限定。
在步骤4,寻找病灶较优的切面,并在找到该切面后锁定鞘管的弯曲角度以及超声探头的深度,并停止超声导管的旋转。可选的,可通过利用介入手术机器人上安装的X光影像系统从两个不同的角度对超声导管拍摄X光,在X光图像中选取金属标记物上的3个特征点A、B、C,并计算A、B、C在机械坐标系下的坐标。
在步骤5,重新使超声导管旋转,获取以当前金属标记物的指向为起始线的超声探测面,并获取该超声探测面内目标靶点相对起始线的位置信息。
在步骤6,根据在步骤4中获取的X光影像计算得到超声探测面在机器人坐标系下的坐标,根据在步骤5中获取的超声影像计算得到目标靶点在超声探测面内的坐标,并通过预设的坐标转换关系,计算得到目标靶点在机器人坐标系下的空间坐标。
在步骤7,将在步骤6中计算得到的目标靶点通过坐标转换关系配准到在步骤4中获取的X光影像上,以作为穿刺准确性的确认依据。
进一步的,可将在步骤6中计算得到的病灶配准到CT虚拟影像中,然后在CT三维模型中根据新的靶点进行二次规划路径,并计算穿刺深度;之后,将超声探头从可调弯鞘管中抽出后,根据新的导航路径操纵导管指向目标靶点;然后,将穿刺针从可调弯鞘管腔内进入,对目标靶点进行穿刺;最后,当穿刺到位后,在与步骤4中相同的两个角度再次拍摄X光,将针尖位置与步骤4中获得的带虚拟靶点的图像作对比,确认穿刺针穿刺到位。
具体的,在步骤4中,在找到适合医生观测的较优的病灶切面后,锁定鞘管的弯曲角度以及超声探头的深度,并停止超声导管的旋转。然后,利用安装在机器人上的图1至图3所示的双Stewart平台对射X光机,分别从两个不同的拍摄角度对超声导管拍摄X光,以得到X光图像。之后,在该X光图像中选取超声探头标记物上可用于描述该超声探头标记物的轮廓的3个轮廓特征点A、B、C,并计算A、B、C三个点在机械坐标系下的坐标,以计算A点坐标为例,方法如下:
首先,将A点标记在X光图像中相对于该X光图像的中心点的位置,记为(x 1,y 1),根据主操作手(简称主手)的运动,用主从控制算法解算出此时X光发射Stewart平台的运动姿态,即动平台至静平台的转换矩阵,记为
Figure PCTCN2022086911-appb-000038
在实际应用中,可由医生用主手操控持有X光发射端的机械臂对人体进行扫描,当在影像中发现病灶位置时,标记在这一影像中病灶相对于中心点的位置,记为(x 1,y 1)。
其次,操控X光发射端偏转至另一个能看到A点的位置,标记在这一X光图像中A点相对于中心点的位置,记为(x 2,y 2),根据主手的运动,用主从控制算法解算出此时X光发射Stewart平台的运动姿态,即动平台至静平台的转换矩阵,记为
Figure PCTCN2022086911-appb-000039
再次,将第一个位置A点在动平台坐标系下的坐标(x 1,y 1,z 1)表示为位置向量,记为
Figure PCTCN2022086911-appb-000040
其中x 1,y 1是已知量,z 1是未知量,根据转换矩阵
Figure PCTCN2022086911-appb-000041
可得A点在静平台下的坐标:
Figure PCTCN2022086911-appb-000042
然后,将第二个位置A点在动平台坐标系下的坐标(x 2,y 2,z 2)表示为位置向量,记为
Figure PCTCN2022086911-appb-000043
其中x 2,y 2是已知量,z 2是未知量,根据转换矩阵
Figure PCTCN2022086911-appb-000044
可得A点在静平台下的坐标:
Figure PCTCN2022086911-appb-000045
之后,根据A点在静平台坐标系下的位置是不动的,可得到以下方程组:
Figure PCTCN2022086911-appb-000046
其中
Figure PCTCN2022086911-appb-000047
表示向量
Figure PCTCN2022086911-appb-000048
中的第j个元素。
然后,求解上述方程组得到z 1,z 2,通过坐标转换矩阵将A点(或,病灶)在动平台下的坐标转换至机械坐标系下的坐标:
Figure PCTCN2022086911-appb-000049
即,
Figure PCTCN2022086911-appb-000050
为机械坐标系的坐标,
Figure PCTCN2022086911-appb-000051
为机械坐标系和发射端静平台的转换矩阵,该转换矩阵可以预先计算出,作为预设的已知量存储在机器人系统中,
Figure PCTCN2022086911-appb-000052
为发射端的动平台至静平台的转换矩阵,
Figure PCTCN2022086911-appb-000053
为该病灶发射端静平台下的坐标。
基于上述方法,即可得到A点在机械坐标系下的坐标(x A,y A,z A),同理,可得B、C点在机械坐标系下的坐标(x B,y B,z B)和(x C,y C,z C)。
由于超声探头标记物的位置即为病灶位置,因此根据上述超声探头标记物的轮廓特征点A、B、C点在机械坐标系下的坐标可确定病灶在机械坐标系下的坐标,当得到病灶在机械坐标系下的坐标后,即可通过其他机械臂的关节信息将病灶在机械坐标系下的坐标,转换到其他手术执行机械臂的Stewart计算坐标系下:
Figure PCTCN2022086911-appb-000054
其中,
Figure PCTCN2022086911-appb-000055
为已知的机械坐标系和发射端与其他手术执行机械臂之间的转换矩阵。
然后,已知目标靶点在手术执行机械臂Stewart计算坐标系下的坐标,即可通过Stewart并联平台的逆运动学解算出手术执行机械臂Stewart平台的关节运动量,使手术执行机械臂器械末端精准的抵达病灶位置,从而实现对病灶的精准定位。此外,通过上述方法对病灶进行定位,还可减小病灶定位和配准的过程中对人为操作的依赖性,提高操作的安全行,且作为手术机器人的临床应用之一,不需要独立开发复杂的系统,因此还可降低开发成本。
同理,在通过X光影像定位一个目标时,该目标具体可以是一个病灶,与上述定位A点位置的方式相同。该拍摄X光影像的X光机的平台以上述Stewart并联平台为例。具体地,参见图9,通过X光影像定位的方法包括:
步骤901、通过X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张该X光影像中包括标记该目标在X光影像中的相对位置;
在一个实施例中,该相对位置可以为该目标相对于X光影像中心的位置,或者也可以是相对于X光影像中其他点的位置,例如左上角点、左下角点等。
具体地,通过X光发射器在两个不同的第一位置和第二位置,拍摄两张该目标的X光影像,在两张X光影像中,各自标记目标相对于X光影像的中心点的位置的xy坐标。在一个实施例中,X光影像的平面坐标系与发射端平台的xOy面平行,由此,可以基于目标在X光影像中的xy坐标确定该目标在发射端动平台坐标系下的坐标。即,参见上述标记A点的方法,标记为(x1,y1)和(x2,y2)。
步骤902、获取该X光机所在平台在采集每张X光影像时的运动参数关系;
步骤903、基于各张X光影像分别对应的影像信息,确定该目标在平台坐标系下的坐标;
其中,该影像信息包括该相对位置和该运动参数关系。
在一个实施例中,该步骤903可以包括:针对每张X光影像,基于所述目标在所述X光影像中的相对位置,确定该目标在平台坐标系下的xy坐标;并基于各张X光影像中所述目标在平台坐标系下的 xy坐标,以及采集所述X光影像时的运动参数关系,确定所述目标在平台坐标系下的z坐标。
具体地,确定xy坐标方法可以包括:在该两张X光影像中,可以将X光影像的中心点作为原点,并各自标记该目标相对于该X光影像的中心点的位置的xy坐标,并将该xy坐标作为该目标在发射端平台坐标系下的坐标。
可以理解的是,若在X光影像中,将其他位置作为原点,也可以按照X光影像与发射端平台坐标系原点之间的平移关系进行相应换算。为了便于计算,可以将可以将X光影像的中心点作为原点,同时,X光影像的平面坐标系与发射端平台的xOy面平行、并且X光影像原点在发射端平台的z轴上。
在一个实施例中,X光机所在平台包括动平台和静平台,则上述X光影像的平面坐标系与发射端动平台的xOy面平行,上述xy坐标为目标在发射端动平台坐标系下的坐标。基于该动平台和静平台,上述确定z坐标的方法可以包括:基于各张X光影像中该目标在动平台坐标系下的xy坐标,以及采集该X光影像时的动静平台坐标系间的运动参数关系,以及该目标在静平台坐标系下的位置不变的条件,确定该目标在动平台坐标系下的z坐标。
步骤904、根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将该目标在平台坐标系下的坐标,转换为该目标在该机器人的机械坐标系下的位置坐标。
在一个实施例中,X光机所在平台包括动平台和静平台,则可以根据采集该X光影像时的动静平台坐标系间的运动参数关系,以及预设的X光机的静平台坐标系与机器人的机械坐标系的转换关系,将该目标在动平台坐标系下的坐标,转换为该目标在该机器人的机械坐标系下的位置坐标。
具体地,基于该采集X光影像时的运动参数关系,确定采集该X光影像时该发射端动平台与发射端静平台的转换矩阵;
基于采集每张X光影像时的转换矩阵,将每张该X光影像中的该目标在该发射端动平台的xy坐标转换到该发射端静平台下的xy坐标,并基于与各张X光影像分别对应的静平台下的xy坐标以及采集每张X光影像时的转换矩阵,确定该目标在发射端静平台下的z坐标。
该转换矩阵包括第一转换矩阵和第二转换矩阵,其中第一转换矩阵为该X光机在第一位置采集时的转换矩阵,第二转换矩阵为该X光机在第二位置采集时的转换矩阵。
具体地,按照预设的主从控制算法,分别计算X光机的在第一位置时发射端动平台与发射端静平台的第一转换矩阵
Figure PCTCN2022086911-appb-000056
以及,在第二位置时发射端动平台与发射端静平台的第二转换矩阵
Figure PCTCN2022086911-appb-000057
针对将在第一位置和第二位置拍摄的X光影像,分别将其中标记的目标的xyz坐标表示为位置向量,其中x和y为已知量,z为未知量,即
Figure PCTCN2022086911-appb-000058
Figure PCTCN2022086911-appb-000059
根据第一转换矩阵得到该目标在发射端静平台下的第一坐标
Figure PCTCN2022086911-appb-000060
以及根据第二转换矩阵得到该目标在发射端静平台下的第二坐标
Figure PCTCN2022086911-appb-000061
基于该第一坐标和第二坐标,求解得到该目标的z坐标,具体是按照目标在发射端静平台下的位置不动的原则,得到第一坐标和第二坐标的方程组,求解方程组得到目标的z坐标,目标的z坐标为发射端静平台坐标系下的坐标
Figure PCTCN2022086911-appb-000062
以上计算各步骤的详细内容参见上述计算A点坐标的内容。
具体地,计算预设的机械坐标系和发射端静平台的转换矩阵、发射端的动平台至静平台的第一转换矩阵以及目标在发射端静平台坐标系下的坐标的乘积,作为目标在机器人的机械坐标系下的位置坐标,从而在机械坐标系下定位了该病灶的位置。
进一步地,机器人包括多个机械臂,其中一个机械臂控制X光机,所述X光机的平台坐标系与所述机械臂对应。具体来说,X光机的平台坐标系,可以为该控制X光机的机械臂上的运动平台的坐标系,可选的,该运动平台的坐标系可以包括动平台坐标系和/或静平台坐标。
当得到目标在机械坐标系下的位置坐标后,根据其他机械臂的关节信息,将目标在机械坐标系下 的位置坐标,转换到其他机械臂的平台计算坐标系下,得到其他机械臂的平台计算坐标系下的位置坐标。其他机械臂为除控制所述X光机以外的其他机械臂,例如可以是其他的手术执行机械臂。
进一步地,根据其他机械臂的平台计算坐标系下的位置坐标,以及预设的平台的逆运动学算法,解算出其他机械臂的平台的关节运动量,使得其他机械臂器械末端抵达目标位置。
也即,已知病灶在机械坐标系下的坐标,即可通过手术执行机械臂的关节信息将病灶在机械坐标系下的坐标,转换到手术执行机械臂的Stewart计算坐标系下,
Figure PCTCN2022086911-appb-000063
已知目标靶点在手术执行机械臂Stewart计算坐标系下的坐标,即可通过Stewart并联平台的逆运动学解算出手术执行机械臂Stewart平台的关节运动量,使手术执行机械臂器械末端精准的抵达病灶位置。
本申请实施例,通过该X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张该X光影像中包括标记该目标在所述X光影像中的相对位置,获取该X光机所在平台在采集每张X光影像时的运动参数关系,基于各张X光影像分别对应的影像信息,确定该目标在平台坐标系下的坐标;其中,该影像信息包括该相对位置和该运动参数关系,根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将该目标在平台坐标系下的坐标,转换为该目标在该机器人的机械坐标系下的位置坐标,从而上述方法可获取病灶在机械坐标系下的实时坐标,可提高定位的精准度。
参见图10,本申请一实施例提供的通过X光影像定位的装置的结构示意图。为了便于说明,仅示出了与本申请实施例相关的部分。该装置可单独配置在具有数据处理功能的计算机设备中,或者,也可以集成在或X光机中。该装置包括:
拍摄模块101,用于通过该X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张该X光影像中包括标记该目标在该X光影像中的相对位置;
获取模块102,用于获取该X光机所在平台在采集每张X光影像时的运动参数关系;
确定模块103,用于基于各张X光影像分别对应的影像信息,确定该目标在平台坐标系下的坐标;其中,该影像信息包括该相对位置和该运动参数关系;
转换模块104,用于根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将该目标在平台坐标系下的坐标,转换为该目标在该机器人的机械坐标系下的位置坐标。
进一步地,确定模块103,还用于针对每张X光影像,基于该目标在该X光影像中的相对位置,确定该目标在平台坐标系下的xy坐标;
基于各张X光影像中该目标在平台坐标系下的xy坐标,以及采集该X光影像时的运动参数关系,确定该目标在平台坐标系下的z坐标。
进一步地,该X光机包括发射端平台,该发射端平台上安装有X光发射器,该X光机的发射端平台包括发射端动平台;
拍摄模块101,还用于通过该X光发射器在两个不同的第一位置和第二位置,拍摄两张该目标的X光影像;
确定模块103,还用于在该两张X光影像中,各自标记该目标相对于该X光影像的中心点的位置的xy坐标,并将该xy坐标作为该目标在发射端动平台坐标系下的坐标。
进一步地,该X光机的发射端平台还包括发射端静平台,
确定模块103,还用于基于该采集X光影像时的运动参数关系,确定采集该X光影像时该发射端动平台与发射端静平台的转换矩阵;
基于采集每张X光影像时的转换矩阵,将每张该X光影像中的该目标在该发射端动平台的xy坐标转换到该发射端静平台下的xy坐标,并基于与各张X光影像分别对应的静平台下的xy坐标以及采集每张X光影像时的转换矩阵,确定该目标在发射端静平台下的z坐标。
该X光机在第一位置和第二位置分别采集两张该目标的X光影像;该转换矩阵包括第一转换矩阵和第二转换矩阵,其中第一转换矩阵为该X光机在第一位置采集时的转换矩阵,第二转换矩阵为该X光机在第二位置采集时的转换矩阵。
转换模块104,还用于针对在该第一位置和该第二位置拍摄的X光影像,分别将其中标记的该目标的xyz坐标表示为位置向量,其中x和y为已知量,z为未知量;
根据该第一转换矩阵得到该目标在该发射端静平台下的第一坐标,以及根据该第二转换矩阵得到该目标在该发射端静平台下的第二坐标;
基于该第一坐标和第二坐标,求解得到该目标的z坐标,该目标的z坐标为该发射端静平台坐标系下的坐标。
转换模块104,还用于计算预设的该机械坐标系和该发射端静平台的转换矩阵、该发射端的动平台 至静平台的第一转换矩阵以及该目标在该发射端静平台坐标系下的坐标的乘积,作为该目标在该机器人的机械坐标系下的位置坐标。
进一步地,该机器人包括多个机械臂,其中一个机械臂控制X光机,该X光机的平台坐标系与该机械臂对应;
转换模块104,还用于当得到该目标在该机械坐标系下的位置坐标后,根据该其他机械臂的关节信息,将该目标在该机械坐标系下的位置坐标,转换到该其他机械臂的平台计算坐标系下,得到该其他机械臂的平台计算坐标系下的位置坐标;其中,该其他机械臂为除控制该X光机以外的其他机械臂。
该装置还进一步包括:计算模块(图中未标示),用于得到该其他机械臂的平台计算坐标系下的位置坐标之后,根据该其他机械臂的平台计算坐标系下的位置坐标,以及预设的平台的逆运动学算法,解算出该其他机械臂的平台的关节运动量,使得该其他机械臂器械末端抵达该目标位置。
上述各模块实现各自功能的具体过程可参考上述各实施例中的相关内容,此处不再赘述。
本申请实施例中,通过该X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张该X光影像中包括标记该目标在所述X光影像中的相对位置,获取该X光机所在平台在采集每张X光影像时的运动参数关系,基于各张X光影像分别对应的影像信息,确定该目标在平台坐标系下的坐标;其中,该影像信息包括该相对位置和该运动参数关系,根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将该目标在平台坐标系下的坐标,转换为该目标在该机器人的机械坐标系下的位置坐标,该目标可以是病灶,从而上述装置可获取病灶在机器人坐标系下的实时坐标,可提高定位的精准度
参见图11,本申请一实施例提供的电子装置的硬件结构示意图。如图11所示,该电子装置包括:存储器281和处理器282。
其中,存储器281存储有可执行计算机程序283。与存储器281耦合的处理器282,调用存储器中存储的可执行计算机程序283,执行上述实施例提供的通过X光影像定位的方法。
示例性的,该计算机程序283可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在存储器281中,并由处理器282执行,以完成本发明。所述一个或多个模块/单元可以包括上述实施例中的通过X光影像定位装置中的各个模块,如:拍摄模块101、获取模块102、确定模块103以及转换模块104。
进一步地,该装置还包括:
至少一个输入设备以及至少一个输出设备。
上述处理器282、存储器281、输入设备和输出设备可通过总线连接。
其中,该输入设备具体可为摄像头、触控面板、物理按键或者鼠标等等。该输出设备具体可为显示屏。
进一步的,该装置还可包括比图示更多的部件,或者组合某些部件,或者不同的部件,例如网络接入设备、传感器等。
处理器282可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器281可以是例如硬盘驱动存储器,非易失性存储器(例如闪存或用于形成固态驱动器的其它电子可编程限制删除的存储器等),易失性存储器(例如静态或动态随机存取存储器等)等,本申请实施例不作限制。具体的,存储器281可以是该电子装置的内部存储单元,例如:该电子装置的硬盘或内存。存储器281也可以是该电子装置的外部存储设备,例如该电子装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器281还可以既包括该电子装置的内部存储单元也包括外部存储设备。存储器281用于存储计算机程序以及终端所需的其他程序和数据。存储器281还可以用于暂时地存储已经输出或者将要输出的数据。
进一步的,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以是设置于上述各实施例中的电子装置中,该计算机可读存储介质可以是前述图11所示实施例中的存储器281。该计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现前述各实施例中描述的通过X光影像定位的方法。进一步的,该计算机可存储介质还可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。 例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一特征和第二特征直接接触,或第一特征和第二特征通过中间媒介间接接触。
而且,第一特征在第二特征“之上”、“上方”和“上面”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度低于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述,意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任意一个或者多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
以上为对本申请所提供的通过X光影像定位的方法、装置、X光机及计算机可读存储介质的描述,对于本领域的技术人员,依据本申请实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (12)

  1. 一种通过X光影像定位的方法,其特征在于,包括:
    通过所述X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张所述X光影像中包括标记所述目标在所述X光影像中的相对位置;
    获取所述X光机所在平台在采集每张X光影像时的运动参数关系;
    基于各张X光影像分别对应的影像信息,确定所述目标在平台坐标系下的坐标;其中,所述影像信息包括所述相对位置和所述运动参数关系;
    根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将所述目标在平台坐标系下的坐标,转换为所述目标在所述机器人的机械坐标系下的位置坐标。
  2. 根据权利要求1所述的方法,其特征在于,所述基于各张X光影像分别对应的影像信息,确定所述目标在平台坐标系下的坐标,包括:
    针对每张X光影像,基于所述目标在所述X光影像中的相对位置,确定所述目标在平台坐标系下的xy坐标;
    基于各张X光影像中所述目标在平台坐标系下的xy坐标,以及采集所述X光影像时的运动参数关系,确定所述目标在平台坐标系下的z坐标。
  3. 根据权利要求2所述的方法,其特征在于,所述X光机包括发射端平台,所述发射端平台上安装有X光发射器,所述X光机的发射端平台包括发射端动平台;
    所述通过所述X光机在多个不同的位置拍摄待定位的目标的X光影像包括:
    通过所述X光发射器在两个不同的第一位置和第二位置,拍摄两张所述目标的X光影像;
    所述针对每张X光影像,基于所述目标在所述X光影像中的相对位置,确定所述目标在平台坐标系下的xy坐标,包括:
    在所述两张X光影像中,各自标记所述目标相对于所述X光影像的中心点的位置的xy坐标,并将所述xy坐标作为所述目标在发射端动平台坐标系下的坐标。
  4. 根据权利要求3所述的方法,其特征在于,所述X光机的发射端平台还包括发射端静平台,
    所述基于各张X光影像中所述目标在平台坐标系下的xy坐标,以及采集X光影像时的运动参数关系,确定所述目标在平台坐标系下的z坐标包括:
    基于所述采集X光影像时的运动参数关系,确定采集该X光影像时所述发射端动平台与发射端静平台的转换矩阵;
    基于采集每张X光影像时的转换矩阵,将每张所述X光影像中的所述目标在所述发射端动平台的xy坐标转换到所述发射端静平台下的xy坐标,并基于与各张X光影像分别对应的静平台下的xy坐标以及采集每张X光影像时的转换矩阵,确定所述目标在发射端静平台下的z坐标。
  5. 根据权利要求4所述的方法,其特征在于,所述X光机在第一位置和第二位置分别采集两张所述目标的X光影像;所述转换矩阵包括第一转换矩阵和第二转换矩阵,其中第一转换矩阵为所述X光机在第一位置采集时的转换矩阵,第二转换矩阵为所述X光机在第二位置采集时的转换矩阵;
    所述基于采集每张X光影像时的转换矩阵,将每张所述X光影像中的所述目标在所述发射端动平台的xy坐标转换到所述发射端静平台下的xy坐标;并基于与各张X光影像分别对应的静平台下的xy坐标、以及采集每张X光影像时的转换矩阵,确定所述目标在发射端静平台下的z坐标,包括:
    针对在所述第一位置和所述第二位置拍摄的X光影像,分别将其中标记的所述目标的xyz坐标表示为位置向量,其中x和y为已知量,z为未知量;
    根据所述第一转换矩阵得到所述目标在所述发射端静平台下的第一坐标,以及根据所述第二转换矩阵得到所述目标在所述发射端静平台下的第二坐标;
    基于所述第一坐标和第二坐标,求解得到所述目标的z坐标,所述目标的z坐标为所述发射端静平台坐标系下的坐标。
  6. 根据权利要求5所述的方法,其特征在于,所述根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将所述目标在平台坐标系下的坐标,转换为所述目标在所述机器人的机械坐标系下的位置坐标包括:
    计算预设的所述机械坐标系和所述发射端静平台的转换矩阵、所述发射端的动平台至静平台的第一转换矩阵以及所述目标在所述发射端静平台坐标系下的坐标的乘积,作为所述目标在所述机器人的机械坐标系下的位置坐标。
  7. 根据权利要求1所述的方法,其特征在于,所述机器人包括多个机械臂,其中一个机械臂控制X光机,所述X光机的平台坐标系与所述机械臂对应;所述方法还包括:
    当得到所述目标在所述机械坐标系下的位置坐标后,根据所述其他机械臂的关节信息,将所述目 标在所述机械坐标系下的位置坐标,转换到所述其他机械臂的平台计算坐标系下,得到所述其他机械臂的平台计算坐标系下的位置坐标;其中,所述其他机械臂为除控制所述X光机以外的其他机械臂。
  8. 根据权利要求7所述的方法,其特征在于,所述得到所述其他机械臂的平台计算坐标系下的位置坐标之后,所述方法包括:
    根据所述其他机械臂的平台计算坐标系下的位置坐标,以及预设的平台的逆运动学算法,解算出所述其他机械臂的平台的关节运动量,使得所述其他机械臂器械末端抵达所述目标位置。
  9. 一种通过X光影像定位的装置,其特征在于,包括:
    拍摄模块,用于通过所述X光机在多个不同的位置拍摄待定位的目标的X光影像,其中,每张所述X光影像中包括标记所述目标在所述X光影像中的相对位置;
    获取模块,用于获取所述X光机所在平台在采集每张X光影像时的运动参数关系;
    确定模块,用于基于各张X光影像分别对应的影像信息,确定所述目标在平台坐标系下的坐标;其中,所述影像信息包括所述相对位置和所述运动参数关系;
    转换模块,用于根据预设的X光机的平台坐标系与机器人的机械坐标系的转换关系,将所述目标在平台坐标系下的坐标,转换为所述目标在所述机器人的机械坐标系下的位置坐标。
  10. 一种电子装置,其特征在于,包括:
    存储器和处理器;
    所述存储器存储有可执行计算机程序;
    与所述存储器耦合的所述处理器,调用所述存储器中存储的所述可执行计算机程序,执行如权利要求1-8任一项所述的通过X光影像定位的方法。
  11. 一种X光机,其特征在于,所述X光机在多个不同的位置拍摄待定位的目标的X光影像,所述X光机包括:机械臂、与所述机械臂连接的发射端平台、与所述发射端平台连接的X射线发射器、与所述X射线发射器相对布置并用于接收来自所述X射线发射器的X射线的X射线接收器、以及与所述X射线接收器连接的接收端平台,其中所述X射线发射器与所述X射线接收器能够在所述机械臂、所述发射端平台、以及所述接收端平台的驱动下保持轴线重合。
  12. 一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1-8任一项所述的通过X光影像定位的方法。
PCT/CN2022/086911 2021-04-17 2022-04-14 通过x光影像定位的方法、装置、x光机及可读存储介质 WO2022218388A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110415111 2021-04-17
CN202110415111.9 2021-04-17
CN202111679833.1 2021-12-31
CN202111679833.1A CN115222801A (zh) 2021-04-17 2021-12-31 通过x光影像定位的方法、装置、x光机及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022218388A1 true WO2022218388A1 (zh) 2022-10-20

Family

ID=82828119

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/086911 WO2022218388A1 (zh) 2021-04-17 2022-04-14 通过x光影像定位的方法、装置、x光机及可读存储介质
PCT/CN2022/086910 WO2022218387A1 (zh) 2021-04-17 2022-04-14 X光机控制方法、装置、x光机及可读存储介质
PCT/CN2022/086912 WO2022218389A1 (zh) 2021-04-17 2022-04-14 超声与x光组合执行操作的方法、装置、系统及计算机可读存储介质

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/086910 WO2022218387A1 (zh) 2021-04-17 2022-04-14 X光机控制方法、装置、x光机及可读存储介质
PCT/CN2022/086912 WO2022218389A1 (zh) 2021-04-17 2022-04-14 超声与x光组合执行操作的方法、装置、系统及计算机可读存储介质

Country Status (2)

Country Link
CN (6) CN115222801A (zh)
WO (3) WO2022218388A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115890053B (zh) * 2023-03-02 2023-08-18 成都熊谷加世电器有限公司 内焊机对口方法、装置、内焊机及存储介质
CN115870678B (zh) * 2023-03-02 2023-08-18 成都熊谷加世电器有限公司 内焊机的姿态调节系统、方法、内焊机及存储介质
CN117140540A (zh) * 2023-08-04 2023-12-01 上海智元新创技术有限公司 紧固系统及紧固系统的拾取紧固方法
CN117058146B (zh) * 2023-10-12 2024-03-29 广州索诺星信息科技有限公司 一种基于人工智能的超声数据安全监管系统及方法
CN117147699B (zh) * 2023-10-31 2024-01-02 江苏蓝格卫生护理用品有限公司 一种医用无纺布的检测方法及系统
CN117481791B (zh) * 2023-12-19 2024-05-28 真健康(珠海)医疗科技有限公司 微波消融设备的导航定位方法及设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069672A1 (en) * 2007-09-11 2009-03-12 Marcus Pfister Device localization and guidance
CN104116517A (zh) * 2014-07-18 2014-10-29 北京航空航天大学 一种基于双机械臂协同的术中x光影像系统
CN104799933A (zh) * 2015-03-18 2015-07-29 清华大学 一种用于骨外科定位引导的手术机器人运动补偿方法
CN109009348A (zh) * 2018-08-03 2018-12-18 广州医科大学附属第医院 一种机器人穿刺系统
CN110090033A (zh) * 2018-01-30 2019-08-06 邦盛医疗装备(天津)股份有限公司 智能型射线摄影装置及控制方法
CN111345898A (zh) * 2020-03-18 2020-06-30 上海交通大学医学院附属第九人民医院 激光手术路径引导方法、及其计算机设备和系统
WO2020185048A2 (ko) * 2019-03-13 2020-09-17 큐렉소 주식회사 C-arm 기반의 의료영상 시스템 및 2d 이미지와 3d 공간의 정합방법
CN112022356A (zh) * 2020-10-09 2020-12-04 杭州三坛医疗科技有限公司 手术机器人及其末端手术器械、配准方法、系统及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883975B (zh) * 2012-12-28 2019-04-05 皇家飞利浦有限公司 将3d超声和2d x射线影像组合的实时场景建模
CN105496433A (zh) * 2015-12-17 2016-04-20 深圳圣诺医疗设备股份有限公司 三维乳腺x射线与三维彩超融合成像系统及方法
US11653897B2 (en) * 2016-07-07 2023-05-23 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus, scan support method, and medical image processing apparatus
CN107374727B (zh) * 2017-07-28 2019-10-22 重庆金山医疗器械有限公司 一种微创外科手术机器人简化运动学模型的建模方法
CN107909624B (zh) * 2017-12-05 2019-12-24 南京大学 一种从三维断层成像中提取及融合二维图像的方法
CN110090036A (zh) * 2018-01-30 2019-08-06 邦盛医疗装备(天津)股份有限公司 多功能射线摄影装置及控制方法
US10799206B2 (en) * 2018-09-28 2020-10-13 General Electric Company System and method for calibrating an imaging system
CN110279467A (zh) * 2019-06-19 2019-09-27 天津大学 光学定位下的超声图像与穿刺活检针的术中信息融合方法
CN210903064U (zh) * 2019-09-02 2020-07-03 中国医学科学院北京协和医院 血管造影机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090069672A1 (en) * 2007-09-11 2009-03-12 Marcus Pfister Device localization and guidance
CN104116517A (zh) * 2014-07-18 2014-10-29 北京航空航天大学 一种基于双机械臂协同的术中x光影像系统
CN104799933A (zh) * 2015-03-18 2015-07-29 清华大学 一种用于骨外科定位引导的手术机器人运动补偿方法
CN110090033A (zh) * 2018-01-30 2019-08-06 邦盛医疗装备(天津)股份有限公司 智能型射线摄影装置及控制方法
CN109009348A (zh) * 2018-08-03 2018-12-18 广州医科大学附属第医院 一种机器人穿刺系统
WO2020185048A2 (ko) * 2019-03-13 2020-09-17 큐렉소 주식회사 C-arm 기반의 의료영상 시스템 및 2d 이미지와 3d 공간의 정합방법
CN111345898A (zh) * 2020-03-18 2020-06-30 上海交通大学医学院附属第九人民医院 激光手术路径引导方法、及其计算机设备和系统
CN112022356A (zh) * 2020-10-09 2020-12-04 杭州三坛医疗科技有限公司 手术机器人及其末端手术器械、配准方法、系统及存储介质

Also Published As

Publication number Publication date
CN115211961A (zh) 2022-10-21
CN115211964A (zh) 2022-10-21
CN217723539U (zh) 2022-11-04
CN115211874A (zh) 2022-10-21
CN115222801A (zh) 2022-10-21
CN217219033U (zh) 2022-08-19
WO2022218389A1 (zh) 2022-10-20
WO2022218387A1 (zh) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2022218388A1 (zh) 通过x光影像定位的方法、装置、x光机及可读存储介质
US20220346886A1 (en) Systems and methods of pose estimation and calibration of perspective imaging system in image guided surgery
CN114041875B (zh) 一种一体式手术定位导航系统
US20210236207A1 (en) Methods And Systems For Controlling A Surgical Robot
CN114711969B (zh) 一种手术机器人系统及其使用方法
US10575755B2 (en) Computer-implemented technique for calculating a position of a surgical device
EP3254621A1 (en) 3d image special calibrator, surgical localizing system and method
CN112752534A (zh) 用于手动和机器人驱动医疗器械的装置、系统和方法
US20220378526A1 (en) Robotic positioning of a device
CN114007521A (zh) 用于机器人臂对准和对接的系统和方法
CN110944595A (zh) 用于将内窥镜图像投影到三维体积的系统和方法
US11806090B2 (en) System and method for image based registration and calibration
CN113316429A (zh) 用于在坐标系之间配准和导航的系统和方法
CN110868937B (zh) 与声学探头的机器人仪器引导件集成
WO2022141153A1 (zh) 超声定位穿刺系统和存储介质
KR20220058569A (ko) 위치 센서의 가중치-기반 정합을 위한 시스템 및 방법
US20230210604A1 (en) Positioning system registration using mechanical linkages
WO2018112424A1 (en) Systems and methods for teleoperated control of an imaging instrument
US11832898B2 (en) Robotically controllable field generators for aligning a guide with a target
CN111491567A (zh) 用于引导超声探头的系统和方法
WO2023233280A1 (en) Generating imaging pose recommendations
US11998282B2 (en) Systems and methods for teleoperated control of an imaging instrument
WO2023161848A1 (en) Three-dimensional reconstruction of an instrument and procedure site
CN116456925A (zh) 机器人式可控场发生器
CN117813631A (zh) 用于三维视图中基于深度的测量的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787610

Country of ref document: EP

Kind code of ref document: A1