WO2022218298A1 - 信号的处理方法及装置、信号放大器及网络侧设备 - Google Patents

信号的处理方法及装置、信号放大器及网络侧设备 Download PDF

Info

Publication number
WO2022218298A1
WO2022218298A1 PCT/CN2022/086322 CN2022086322W WO2022218298A1 WO 2022218298 A1 WO2022218298 A1 WO 2022218298A1 CN 2022086322 W CN2022086322 W CN 2022086322W WO 2022218298 A1 WO2022218298 A1 WO 2022218298A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sending
configuration parameter
broadcast signal
network
Prior art date
Application number
PCT/CN2022/086322
Other languages
English (en)
French (fr)
Inventor
刘进华
王欢
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022218298A1 publication Critical patent/WO2022218298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/322Power control of broadcast channels

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a signal processing method and device, a signal amplifier and a network side device.
  • the signal amplifier is under the coverage of a certain beam of the Synchronization Signal Block (SSB) beam of the base station, and the intelligent signal amplifier detects the strongest SSB beam from the connected base station.
  • SSB Synchronization Signal Block
  • Embodiments of the present application provide a signal processing method and device, a signal amplifier, and a network-side device, which can solve the problem that the transmission coverage of broadcast signals in the prior art is small.
  • a first aspect provides a signal processing method, comprising: a signal amplifier receiving a first configuration parameter configured by a network-side device, wherein the first configuration parameter includes at least one of the following: a beam parameter for sending a broadcast signal, a sending Power control parameters of the broadcast signal, transmission parameters of the broadcast signal; the signal amplifier performs a first process on the broadcast signal based on the first configuration parameter; wherein the first process includes at least one of the following : Receive, zoom in, send.
  • a parameter configuration method including: the network-side device determining a first configuration parameter; the network-side device sending the first configuration parameter to the signal amplifier, wherein the first configuration parameter is
  • the configuration parameters include at least one of the following: beam parameters for transmitting broadcast signals, power control parameters for transmitting the broadcast signals, and transmission parameters for the broadcast signals.
  • a signal processing apparatus applied to a signal amplifier, including: a first receiving module configured to receive a first configuration parameter configured by a network-side device, wherein the first configuration parameter includes at least one of the following Items: beam parameters for sending broadcast signals, power control parameters for sending broadcast signals, and parameters for sending broadcast signals; a first processing module, configured to perform first processing on the broadcast signals based on the first configuration parameters ; wherein, the first processing includes at least one of the following: receiving, amplifying, and sending.
  • a parameter configuration apparatus applied to a network side device, comprising: a determining module for determining a first configuration parameter; a first sending module for sending the first configuration to the signal amplifier parameters, wherein the first configuration parameter includes at least one of the following: a beam parameter for sending a broadcast signal, a power control parameter for sending the broadcast signal, and a sending parameter for the broadcast signal.
  • a fifth aspect provides a signal amplifier comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor When executed, the steps of the method as described in the first aspect are implemented.
  • a signal amplifier including a processor and a communication interface, wherein the communication interface is configured to receive a first configuration parameter configured by a network-side device, wherein the first configuration parameter includes at least one of the following : a beam parameter for transmitting a broadcast signal, a power control parameter for transmitting the broadcast signal, and a transmission parameter for the broadcast signal; the processor is configured to perform a first process on the broadcast signal based on the first configuration parameter; wherein, The first processing includes at least one of the following: receiving, amplifying, and sending.
  • a network side device in a seventh aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the The processor implements the steps of the method as described in the second aspect when executed.
  • a network-side device including a processor and a communication interface, wherein the processor is configured to determine a first configuration parameter; the communication interface is configured to send the first configuration parameter to the signal amplifier , wherein the first configuration parameter includes at least one of the following: a beam parameter for sending a broadcast signal, a power control parameter for sending the broadcast signal, and a sending parameter for the broadcast signal.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • the steps of the method of the second aspect are implemented.
  • a tenth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect , or implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a non-volatile storage medium, the program/program product is executed by at least one processor to implement the first The method of the aspect, or implementing the method of the second aspect.
  • a twelfth aspect provides a communication device configured to perform the method of the first aspect, or to perform the method of the second aspect.
  • the signal amplifier after receiving the first configuration parameter configured by the network-side device, the signal amplifier can perform the first processing on the broadcast signal based on the first configuration parameter, and whether a wide beam or a narrow beam is used can improve the beam quality. Coverage, thereby solving the problem that the transmission coverage of broadcast signals in the prior art is small.
  • FIG. 1 is a schematic diagram of a signal amplifier amplifying a scanning beam in the prior art
  • FIG. 2 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied
  • FIG. 3 is a schematic structural diagram of a signal amplifier according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of NR-SSB beam scanning according to an embodiment of the present application.
  • FIG. 5 is one of the flow charts of the signal processing method according to the embodiment of the present application.
  • FIG. 6 is the second flow chart of the signal processing method according to the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a signal amplifier sending a wide beam SSB according to a power boost configuration according to an embodiment of the present application
  • FIG. 8 is a schematic diagram illustrating that the signal amplifier according to the embodiment of the present application adjusts the SSB transmit beam shape according to the SSB beam configuration
  • FIG. 9 is a schematic diagram of a signal amplifier according to an embodiment of the present application adjusting the SSB power density according to the SSB forwarding power configuration
  • FIG. 10 is a schematic diagram of scanning and sending of an amplifier broadcast signal according to an embodiment of the present application.
  • FIG. 11 is one of the schematic structural diagrams of the signal processing apparatus according to the embodiment of the present application.
  • FIG. 12 is a second schematic structural diagram of a signal processing apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a signal amplifier according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but the techniques are also applicable to applications other than NR system applications, such as 6th generation (6th generation ) Generation, 6G) communication system.
  • 6th generation 6th generation
  • 6G 6th generation
  • FIG. 2 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, headphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms.
  • the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the signal amplifier is used to expand the coverage of the cell, including receiving and amplifying the downlink signal from the base station to increase the signal strength reaching the UE, and amplifying the uplink signal from the UE to increase the strength of the uplink signal from the UE to the base station.
  • the intelligent signal amplification can receive control from the base station, that is, the base station can control the transmission parameters of the intelligent amplifier, such as the switch of the intelligent amplifier and the transmission beam, so as to improve the signal power of the amplifier and reduce the interference.
  • the network structure shown in FIG. 3 includes three network nodes, and the intermediate network node is an intelligent signal amplifier, which includes a signal amplifier module (Mobile Termination, MT) and a radio frequency module.
  • the MT is used to establish a connection with the base station, and the base station interacts with the intelligent signal amplifier through the MT, and the transmission parameters of the intelligent signal amplifier can be configured.
  • the signal to be amplified by the signal amplifier in the embodiment of the present application may include:
  • Cell discovery signal primary synchronization signal (Primary Synchronization Signal, PSS), (Secondary Synchronization Signal, SSS) and master information block (Master Information Block, MIB).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • MIB Master Information Block
  • a downlink control physical channel Physical Downlink Control Channel, PDCCH
  • a downlink shared physical channel Physical Downlink Shared Channel, PDSCH
  • PRACH Physical Random Access Channel
  • Uplink control physical channel Physical Uplink Control Channel, PUCCH
  • uplink data physical channel Physical Uplink Shared Channel, PUSCH
  • New Radio needs to support operation on carriers within FrequencyRange2 (>6GHz), rely on beamforming to generate narrow beams, and concentrate the radio wave energy in the target transmission direction to increase the propagation distance of the signal.
  • NR introduces the mechanism of using the Synchronization Signal Block (SSB) to scan and transmit with narrow beams, that is, the base station will generate the SSB signal in each need. It is sent once in the covered direction, and each SSB beam has a sequence number, which the user needs to identify for measurement reporting.
  • Figure 4 illustrates the gNB SSB signal in a beam scanning manner.
  • SSB Synchronization Signal Block
  • an embodiment of the present application provides a signal processing method, and the steps of the method include:
  • Step 502 the signal amplifier receives the first configuration parameter configured by the network-side device, wherein the first configuration parameter includes at least one of the following: beam parameters for sending broadcast signals, power control parameters for sending broadcast signals, and parameters for sending broadcast signals;
  • Step 504 the signal amplifier performs first processing on the broadcast signal based on the first configuration parameter
  • the first processing includes at least one of the following: receiving, amplifying, and sending.
  • the signal amplifier may perform the first processing on the broadcast signal based on the first configuration parameter, regardless of whether a wide beam or a narrow beam is used Both can improve the coverage of the beam, thereby solving the problem that the transmission coverage of the broadcast signal in the prior art is small.
  • the beam parameters in this embodiment of the present application may include at least one of the following: the number of beams, the beam width, the beam direction, and the beamforming vector.
  • the power control parameter in this embodiment of the present application includes at least one of the following: an amplification factor, a power spectral density, and a power offset of the broadcast signal relative to the transmitted user data.
  • the transmission parameters in this embodiment of the present application include at least one of the following: a transmission period and a time-frequency resource location.
  • the broadcast signal in the embodiment of the present application includes at least one of the following: a synchronization signal block SSB, a cell discovery signal, a channel state information reference signal (Channel State Information-Reference Signal, CSI-RS), a physical layer control information transmission
  • a synchronization signal block SSB a cell discovery signal
  • CSI-RS Channel State Information-Reference Signal
  • the method of the embodiment of the present application may further include:
  • Step 11 The signal amplifier sends a request message to the network side device, where the request message is used to request the first configuration parameter.
  • the network side device uses the system message to configure the beam parameters and power parameters sent by the signal amplifier broadcast signal, and then the signal amplifier can request this system message from the network side device.
  • the manner in which the signal amplifier involved in step 504 performs the first processing on the broadcast signal based on the first configuration parameter may further include:
  • Step 504-11 when the signal amplifier is within the coverage of multiple broadcast signal beams, the signal amplifier determines the target broadcast signal from the multiple broadcast signal beams, wherein the target broadcast signal is the one with the highest signal strength among the multiple broadcast signal beams. Broadcast signals sent by strong beams;
  • Step 504-12 the signal amplifier performs the first processing on the target broadcast signal.
  • the method of the embodiment of the present application may further include:
  • Step 21 the signal amplifier detects the broadcast signal sent by at least one beam of the network side device
  • Step 22 the signal amplifier reports the detection result to the network side device, wherein the detection result includes the detected signal strength of at least one beam.
  • the signal amplifier reports the detected beam and its intensity of the broadcast signal from the network side equipment to the base station, and the network side equipment configures the signal amplifier to amplify and transmit at least one of the broadcast signal beams, And configure at least one of the following beams corresponding to the broadcast signal: a power enhancement parameter and a beamforming parameter.
  • the network-side device can more accurately configure the first configuration parameter for the signal amplifier, so as to perform the first processing.
  • the method of the embodiment of the present application may further include:
  • Step 31 the signal amplifier receives the second configuration parameter sent by the network side device
  • Step 32 Based on the second configuration parameter, the signal amplifier divides the beam for transmitting the broadcast signal into a plurality of sub-beams, wherein each sub-beam corresponds to one transmitting antenna panel.
  • the network-side device may be configured with an intelligent signal amplifier to divide a received broadcast signal beam into multiple beams for amplification and transmission, wherein each divided beam uses a transmitting antenna panel.
  • the beam transmission efficiency can be improved by dividing the beam into a plurality of sub-beams or sub-beams.
  • the method of the embodiment of the present application may further include:
  • Step 41 the signal amplifier receives the third configuration parameter sent by the network-side device; wherein the third configuration parameter includes the time-frequency domain sending position of the broadcast signal sent by the signal amplifier.
  • Step 42 the signal amplifier receives the first signaling sent by the network side device; wherein, the first signaling is used to indicate the time-frequency resource location where the network side device sends the broadcast signal;
  • Step 43 Based on the first signaling, the signal amplifier performs second processing on the beam at the target position; wherein the second processing includes at least one of the following: receiving, amplifying, and scanning and sending.
  • the first signaling carries an identifier, where the identifier is used to indicate whether the broadcast signal beam transmission is repeated.
  • the signal amplifier can perform operations such as receiving, amplifying and beam scanning transmission at the same position of the beam (target position) to form the scanning coverage of the signal amplifier, and the signal amplifier can find the cell coverage and access accordingly. network.
  • an embodiment of the present application provides a parameter configuration method, and the steps of the method include:
  • Step 602 the network side device determines a first configuration parameter
  • Step 604 The network side device sends first configuration parameters to the signal amplifier, where the first configuration parameters include at least one of the following: beam parameters for sending broadcast signals, power control parameters for sending broadcast signals, and parameters for sending broadcast signals.
  • the network-side device can determine the first configuration parameter, and then send the first configuration parameter to the signal amplifier, so that the signal amplifier can improve the coverage of the beam according to the first configuration parameter.
  • the manner in which the network side device sends the first configuration parameter to the signal amplifier involved in step 604 may further be: the network side device sends the first configuration to the signal amplifier through a system message parameter.
  • the method of the embodiment of the present application may further include:
  • Step 606 the network-side device sends the second configuration parameter to the signal amplifier, where the second configuration parameter is used to configure the signal amplifier to divide the beam for transmitting the broadcast signal into multiple sub-beams, and each sub-beam corresponds to a transmitting antenna panel.
  • Step 608 the network-side device sends a third configuration parameter to the signal amplifier, where the third configuration parameter includes a time-frequency domain sending position of the broadcast signal.
  • the beam parameters include at least one of the following: beam width, beam direction, and beamforming vector.
  • the power control parameters include at least one of the following: amplification factor, power spectral density, and power offset of the broadcast signal relative to the transmitted user data; the transmission parameters of the broadcast signal include at least one of the following: a transmission period and a time-frequency resource location.
  • the signal amplifier can be notified to divide the beam and the time-domain transmission position of the broadcast signal, and the time-domain transmission position can be notified while improving beam utilization, so that subsequent signal amplifiers can receive and transmit signals. send.
  • the method of the embodiment of the present application may further include:
  • Step 610 the network-side device sends first signaling to the signal amplifier, where the first signaling is used to instruct the network-side device to send the time-frequency resource location of the broadcast signal.
  • the signal amplifier can perform operations such as receiving, amplifying and beam scanning transmission at the same position of the beam (target position) to form the scanning coverage of the signal amplifier, and the signal amplifier can find the cell coverage and access network accordingly.
  • the broadcast signal is taken as an SSB
  • the network side device is a base station
  • the signal amplifier is an intelligent signal amplifier as an example for description.
  • the base station determines the expected coverage area of the smart amplifier expected by the smart signal amplifier, configures the smart amplifier to transmit the power enhancement parameters and beamforming parameters of the discovered SSB from the base station, so that the SSB amplified and sent by the smart signal amplifier can reach the expected cover.
  • the power enhancement parameters include but are not limited to: the amplification factor of the SSB signal or the maximum power of the transmitted SSB signal, the power spectral density of the transmitted SSB signal;
  • the beam parameters include but are not limited to: the beam direction, the beam width or directly configure the beamforming Vector, when the base station configures the beam direction and beam width, the SSB beamforming vector is generated by the intelligent amplifier itself.
  • Figures 7 and 8 illustrate the SSB signal coverage before and after power configuration and before and after beam configuration of the smart amplifier with respect to SSB transmission, respectively.
  • Figure 9 shows an example of the SSB signal forwarding power density configuration.
  • the transmission beam and power parameters of the SSB are sent to the MT using the RRC message container (or MAC CE, PDCCH) of the MT, and the MT parses the transmission beam and power parameters of the SSB and sends it to the RF of the smart amplifier
  • the control unit, the RF control unit amplifies and transmits the SSB signal from the base station according to the received transmit beam parameters and power parameters of the SSB.
  • the Donor base station When the base station is a Donor base station and the signal amplifier is an amplifier (repeater), the Donor base station notifies the repeater of the configuration parameters sent by its SSB, including at least the time-frequency domain sending position configuration of the SSB.
  • the donor base station informs its SSB to transmit using the same beam in some transmission positions; for example, the SSB transmission in each frequency band uses the same beam for transmission; the SSB scenarios (SSB occasions) of a certain SSB period all use the same beam beams for transmission; specific SSB occassions within a certain SSB period use the same beam for transmission, etc.
  • the same beams all point to the repeater, and the content of the notification signaling may include a flag to indicate whether the beams are repeated. For example, repetition on is used to indicate that the beam direction is repeated, and repetition off is used to indicate beams. The directions are not repeated.
  • the Repeater performs operations such as receiving, amplifying, and beam scanning transmission at the same position of the Donor SSB beam, forming the SSB scanning coverage of the intelligent signal amplifier, and the UE discovers the cell coverage and accesses the network accordingly.
  • the above manner can also be applied to the scanning coverage where the broadcast signal is CSI-RS.
  • the Donor base station notifies the repeater of the configuration parameters of its CSI-RS transmission, including at least the time-frequency domain transmission location configuration of the CSI-RS.
  • the donor informs its CSI-RS that it is sent using the same beam at some transmission positions; for example, the CSI-RS in a certain CSI-RS resource set (CSI-RS resource set) is sent using the same beam.
  • the same beams are all directed towards the repeater.
  • the content of the notification signaling may include a flag to indicate whether the beam is repeated; for example, repetition on indicates that the beam direction is repeated, and repetition off indicates that the beam direction is not repeated.
  • the Donor informs the Repeater which beam to use for the above-mentioned CSI-RS transmission (for example, whether to use the same beam for transmission). Similarly, Donor can use another flag to instruct the repeater to forward the beam used by the CSI-RS (for example, repetition on indicates that the beam direction is repeated, and repetition off indicates that the beam direction may not be repeated).
  • the Repeater adjusts the transmission beam of the CSI-RS according to the instructions of the donor at the position where the CSI-RS is transmitted.
  • Donor can reuse the existing method to configure the CSI-RS for the UE to perform beam training.
  • the UE can be configured to perform the receive beam training (that is, to indicate the CSI-RS repetition off).
  • the UE can train the transmit beam of the transmitting end (ie, indicate the CSI-RS repetition on) and report it.
  • the base station notifies the signal amplifier of the time-frequency resources configured for the common search space (common search space), and the signal amplifier uses the same power or beam configuration as sending the SSB to send the common search space domain.
  • PDCCH or the base station configures a power spectral density (or power offset relative to user data transmission) or beam configuration for the signal in the common search space to be forwarded by the intelligent signal amplifier.
  • the execution body may be a signal processing apparatus, or a control module in the signal processing apparatus for executing the signal processing method.
  • the signal processing device provided by the embodiment of the present application is described by taking the signal processing device executing the signal processing method as an example.
  • an embodiment of the present application provides a signal processing apparatus, which is applied to a signal amplifier, and the apparatus includes:
  • the first receiving module 112 is configured to receive a first configuration parameter configured by a network-side device, where the first configuration parameter includes at least one of the following: beam parameters for sending broadcast signals, power control parameters for sending broadcast signals, and sending of broadcast signals parameter;
  • a first processing module 114 configured to perform first processing on the broadcast signal based on the first configuration parameter
  • the first processing includes at least one of the following: receiving, amplifying, and sending.
  • the first processing can be performed on the broadcast signal based on the first configuration parameter, and the coverage of the beam can be improved regardless of whether a wide beam or a narrow beam is used range, thereby solving the problem that the transmission coverage of broadcast signals in the prior art is small.
  • the apparatus in this embodiment of the present application may further include: a first sending module, configured to send a request message to the network-side device before receiving the first configuration parameter configured by the network-side device, where the request message is used to request the first configuration parameter configured by the network-side device.
  • a first sending module configured to send a request message to the network-side device before receiving the first configuration parameter configured by the network-side device, where the request message is used to request the first configuration parameter configured by the network-side device.
  • a configuration parameter A configuration parameter.
  • the first processing module in this embodiment of the present application may further include: a determining unit, configured to determine a target broadcast signal from multiple broadcast signal beams under the condition of being within the coverage of multiple broadcast signal beams, wherein , the target broadcast signal is a broadcast signal sent by the beam with the strongest signal strength among the multiple broadcast signal beams; the processing unit is configured to perform first processing on the target broadcast signal.
  • a determining unit configured to determine a target broadcast signal from multiple broadcast signal beams under the condition of being within the coverage of multiple broadcast signal beams, wherein , the target broadcast signal is a broadcast signal sent by the beam with the strongest signal strength among the multiple broadcast signal beams; the processing unit is configured to perform first processing on the target broadcast signal.
  • the apparatus in this embodiment of the present application may further include: a second sending module, configured to detect a broadcast signal sent by at least one beam of the network-side device; a reporting module, configured to report the detection result to the network-side device, wherein , the detection result includes the detected signal strength of at least one beam.
  • a second sending module configured to detect a broadcast signal sent by at least one beam of the network-side device
  • a reporting module configured to report the detection result to the network-side device, wherein , the detection result includes the detected signal strength of at least one beam.
  • the apparatus in this embodiment of the present application may further include: a second receiving module, configured to receive the second configuration parameter sent by the network-side device; and a dividing module, configured to divide the beam for sending the broadcast signal based on the second configuration parameter into a plurality of sub-beams, wherein each sub-beam corresponds to a transmit antenna panel.
  • a second receiving module configured to receive the second configuration parameter sent by the network-side device
  • a dividing module configured to divide the beam for sending the broadcast signal based on the second configuration parameter into a plurality of sub-beams, wherein each sub-beam corresponds to a transmit antenna panel.
  • the apparatus in this embodiment of the present application may further include: a third receiving module, configured to receive a third configuration parameter sent by the network-side device; wherein the third configuration parameter includes a time-frequency domain sending position where the signal amplifier sends the broadcast signal .
  • the apparatus in this embodiment of the present application may further include: a fourth receiving module, configured to receive the first signaling sent by the network-side device; wherein the first signaling is used to instruct the network-side device to send the time-frequency of the broadcast signal Resource location; a second processing module, configured to perform second processing on the beam at the target location based on the first signaling; wherein the second processing includes at least one of the following: receiving, amplifying, and scanning and sending.
  • a fourth receiving module configured to receive the first signaling sent by the network-side device; wherein the first signaling is used to instruct the network-side device to send the time-frequency of the broadcast signal Resource location
  • a second processing module configured to perform second processing on the beam at the target location based on the first signaling; wherein the second processing includes at least one of the following: receiving, amplifying, and scanning and sending.
  • the first signaling in the embodiment of the present application carries an identifier, where the identifier is used to indicate whether the broadcast signal beam transmission is repeated.
  • the beam parameters in this embodiment of the present application include at least one of the following: the number of beams, the beam width, the beam direction, and the beamforming vector;
  • the power control parameter includes at least one of the following: amplification factor, power spectral density, and power offset of the broadcast signal relative to the transmitted user data;
  • the sending parameters include at least one of the following: sending cycle, time-frequency resource location.
  • the broadcast signal in this embodiment of the present application includes at least one of the following: a synchronization signal block SSB, a cell discovery signal, a channel state information reference signal CSI-RS, a downlink control physical channel PDCCH used for sending physical layer control information, PDCCH for system message broadcasting, PDSCH for system message broadcasting, PDCCH for sending paging control information, and PDSCH channel for sending user paging information.
  • a synchronization signal block SSB a cell discovery signal
  • CSI-RS channel state information reference signal
  • PDCCH used for sending physical layer control information
  • PDCCH for system message broadcasting
  • PDSCH for system message broadcasting
  • PDCCH for sending paging control information
  • PDSCH channel for sending user paging information
  • the device in FIG. 11 is a device corresponding to the method in FIG. 5 .
  • an embodiment of the present application further provides a parameter configuration apparatus, which is applied to a network side device, and the apparatus includes:
  • a determining module 122 configured to determine a first configuration parameter
  • the first sending module 124 is configured to send first configuration parameters to the signal amplifier, where the first configuration parameters include at least one of the following: beam parameters for sending broadcast signals, power control parameters for sending broadcast signals, and parameters for sending broadcast signals.
  • the first sending module in this embodiment of the present application may further include: a sending unit, configured to send the first configuration parameter to the signal amplifier through a system message.
  • the apparatus in this embodiment of the present application further includes: a second sending module, configured to send a second configuration parameter to the signal amplifier, where the second configuration parameter is used to configure the signal amplifier to divide a beam for sending broadcast signals into multiple beams. sub-beams, each sub-beam corresponds to a transmit antenna panel.
  • the apparatus in this embodiment of the present application further includes: a third sending module, configured to send a third configuration parameter to the signal amplifier, where the third configuration parameter includes the time-frequency domain of the broadcast signal Send location.
  • a third sending module configured to send a third configuration parameter to the signal amplifier, where the third configuration parameter includes the time-frequency domain of the broadcast signal Send location.
  • the beam parameters in this embodiment of the present application include at least one of the following: a beam width, a beam direction, and a beamforming vector;
  • the power control parameter includes at least one of the following: amplification factor, power spectral density, and power offset of the broadcast signal relative to the transmitted user data;
  • the transmission parameters of the broadcast signal include at least one of the following: a transmission period and a time-frequency resource location.
  • the apparatus in the embodiment of the present application may further include: a fourth sending module, configured to send the first signaling to the signal amplifier; wherein the first signaling is used to instruct the network side device to send the time-frequency resource of the broadcast signal Location.
  • a fourth sending module configured to send the first signaling to the signal amplifier; wherein the first signaling is used to instruct the network side device to send the time-frequency resource of the broadcast signal Location.
  • the device in FIG. 12 is a device corresponding to the method in FIG. 6 .
  • the signal processing apparatus in the embodiment of the present application may be an apparatus, an apparatus having an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a signal amplifier.
  • the apparatus or electronic device may be a mobile signal amplifier or a non-mobile signal amplifier.
  • the mobile signal amplifier may include, but is not limited to, the types of signal amplifiers 11 listed above, and the non-mobile signal amplifier may be a server, a network attached storage (NAS), a personal computer (PC), A television (television, TV), a teller machine, or a self-service machine, etc., are not specifically limited in this embodiment of the present application.
  • the signal processing apparatus provided by the embodiments of the present application can implement the various processes implemented by the method embodiments in FIG. 5 to FIG. 6 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application further provides a communication device 1300, including a processor 1301, a memory 1302, a program or instruction stored in the memory 1302 and executable on the processor 1301,
  • a communication device 1300 including a processor 1301, a memory 1302, a program or instruction stored in the memory 1302 and executable on the processor 1301,
  • the communication device 1300 is a signal amplifier
  • the program or instruction is executed by the processor 1301
  • each process of the above signal processing method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a network-side device, when the program or instruction is executed by the processor 1301, each process of the above signal processing method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • An embodiment of the present application further provides a signal amplifier, including a processor and a communication interface, where the communication interface is configured to receive a first configuration parameter configured by a network-side device, where the first configuration parameter includes at least one of the following: sending a broadcast signal beam parameters, and power control parameters for transmitting the broadcast signal; the processor is configured to perform a first process on the broadcast signal based on the first configuration parameter.
  • a signal amplifier including a processor and a communication interface, where the communication interface is configured to receive a first configuration parameter configured by a network-side device, where the first configuration parameter includes at least one of the following: sending a broadcast signal beam parameters, and power control parameters for transmitting the broadcast signal; the processor is configured to perform a first process on the broadcast signal based on the first configuration parameter.
  • FIG. 14 is a schematic diagram of a hardware structure for implementing a signal amplifier according to an embodiment of the present application.
  • the signal amplifier 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, and a processor 110, etc. at least some of the components.
  • the signal amplifier 100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power management through the power management system. consumption management and other functions.
  • a power supply such as a battery
  • the structure of the signal amplifier shown in FIG. 14 does not constitute a limitation on the signal amplifier.
  • the signal amplifier may include more or less components than those shown in FIG. 14 , or combine some components, or arrange different components, which will not be described here. Repeat.
  • the input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which are not described herein again.
  • the radio frequency unit 101 receives the downlink data from the network side device, and then processes it to the processor 110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 109 may be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a storage program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 110 .
  • the radio frequency unit 101 is configured to receive a first configuration parameter configured by a network-side device, where the first configuration parameter includes at least one of the following: beam parameters for sending broadcast signals, power control parameters for sending broadcast signals, and sending of broadcast signals parameter;
  • a processor 110 configured to perform first processing on the broadcast signal based on the first configuration parameter
  • the radio frequency unit 101 is further configured to send a request message to the network side device, where the request message is used to request the first configuration parameter.
  • the processor 110 is further configured to determine a target broadcast signal from a plurality of broadcast signal beams under the condition of being within the coverage of multiple broadcast signal beams, where the target broadcast signal is a signal in a plurality of broadcast signal beams a broadcast signal transmitted by the beam with the strongest intensity; and performing a first process on the target broadcast signal.
  • the processor 110 is further configured to detect a broadcast signal sent by at least one beam of the network side device;
  • the radio frequency unit 101 is further configured to report a detection result to the network-side device, where the detection result includes the signal strength of the detected at least one beam.
  • the radio frequency unit 101 is further configured to receive the second configuration parameter sent by the network side device;
  • the processor 110 is further configured to, based on the second configuration parameter, divide the beam for transmitting the broadcast signal into a plurality of sub-beams, where each sub-beam corresponds to one transmitting antenna panel.
  • the radio frequency unit 101 is further configured to receive a third configuration parameter sent by the network-side device; wherein the third configuration parameter includes a time-frequency domain sending position where the signal amplifier sends the broadcast signal.
  • the radio frequency unit 101 is further configured to receive the first signaling sent by the network side device; wherein, the first signaling is used to indicate the time-frequency resource location where the network side device sends the broadcast signal;
  • the processor 110 is further configured to perform second processing on the beam at the target position based on the first signaling, wherein the second processing includes at least one of the following: receiving, amplifying, and scanning and sending.
  • An embodiment of the present application further provides a network-side device, including a processor and a communication interface, where the processor is configured to determine the coverage of the signal amplifier and configure a first configuration parameter based on the coverage, and the communication interface is configured to send the first configuration to the signal amplifier parameters, wherein the first configuration parameter includes at least one of the following: beam parameters for sending broadcast signals, and power control parameters for sending broadcast signals.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the network device 1500 includes: an antenna 151 , a radio frequency device 152 , and a baseband device 153 .
  • the antenna 151 is connected to the radio frequency device 152 .
  • the radio frequency device 152 receives information through the antenna 151, and sends the received information to the baseband device 153 for processing.
  • the baseband device 153 processes the information to be sent and sends it to the radio frequency device 152
  • the radio frequency device 152 processes the received information and sends it out through the antenna 151 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 153 , and the method performed by the network-side device in the above embodiments may be implemented in the baseband apparatus 153 .
  • the baseband apparatus 153 includes a processor 154 and a memory 155 .
  • the baseband device 153 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 15 , one of the chips is, for example, the processor 154 , which is connected to the memory 155 to call the program in the memory 155 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 153 may further include a network interface 156 for exchanging information with the radio frequency device 152, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: instructions or programs that are stored in the memory 155 and run on the processor 154, and the processor 154 calls the instructions or programs in the memory 155 to execute the modules shown in FIG. 12 .
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above signal processing method embodiment can be achieved, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the signal amplifier described in the above embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above signal processing method embodiments and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solutions of the present application can be embodied in the form of computer software products that are essentially or contribute to the prior art, and the computer software products are stored in a storage medium (such as ROM/RAM, magnetic disk , CD-ROM), including several instructions to make a signal amplifier (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the various embodiments of the present application.
  • a storage medium such as ROM/RAM, magnetic disk , CD-ROM
  • a signal amplifier which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号的处理方法及装置、信号放大器及网络侧设备,属于通信技术领域,本申请实施例的信号的处理方法包括:信号放大器接收网络侧设备配置的第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、广播信号的发送参数;所述信号放大器基于所述第一配置参数对所述广播信号执行第一处理;其中,所述第一处理包括以下至少一项:接收、放大、发送。

Description

信号的处理方法及装置、信号放大器及网络侧设备
相关申请的交叉引用
本申请主张在2021年4月16日在中国提交的中国专利申请No.202110413076.7的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号的处理方法及装置、信号放大器及网络侧设备。
背景技术
信号放大器在基站的同步信号块(Synchronization Signal Block,SSB)波束的某一波束的覆盖之下,智能信号放大器检测到来自相连基站的最强SSB波束。如图1所示,信号放大器将该SSB信号放大后,如果用窄波束发送,则只能覆盖一个很窄的区域;如果用宽波束发送,则只能覆盖智能放大器附近的区域。可见,现有技术中,无论是采用哪一种波束发送,其覆盖范围都比较小。
发明内容
本申请实施例提供一种信号的处理方法及装置、信号放大器及网络侧设备,能够解决现有技术中广播信号的发送覆盖范围较小的问题。
第一方面,提供了一种信号的处理方法,包括:信号放大器接收网络侧设备配置的第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数;所述信号放大器基于所述第一配置参数对所述广播信号执行第一处理;其中,所述第一处理包括以下至少一项:接收、放大、发送。
第二方面,提供了一种参数的配置方法,包括:所述网络侧设备确定第一配置参数;所述网络侧设备向所述信号放大器发送所述第一配置参数,其 中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数。
第三方面,提供了一种信号的处理装置,应用于信号放大器,包括:第一接收模块,用于接收网络侧设备配置的第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数;第一处理模块,用于基于所述第一配置参数对所述广播信号执行第一处理;其中,所述第一处理包括以下至少一项:接收、放大、发送。
第四方面,提供了一种参数的配置装置,应用于网络侧设备,包括:确定模块,用于确定第一配置参数;第一发送模块,用于向所述信号放大器发送所述第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数。
第五方面,提供了一种信号放大器,该信号放大器包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种信号放大器,包括处理器及通信接口,其中,所述通信接口用于接收网络侧设备配置的第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数;所述处理器用于基于所述第一配置参数对所述广播信号执行第一处理;其中,所述第一处理包括以下至少一项:接收、放大、发送。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所 述处理器用于确定第一配置参数;所述通信接口用于向所述信号放大器发送所述第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非易失的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种通信设备,被配置为执行如第一方面所述的方法,或执行如第二方面所述的方法。
在本申请实施例中,信号放大器在接收到网络侧设备配置的第一配置参数后,可以基于该第一配置参数对广播信号执行第一处理,无论使用宽波束或窄波束均能提高波束的覆盖范围,从而解决了现有技术中广播信号的发送覆盖范围较小的问题。
附图说明
图1是现有技术中信号放大器放大扫描波束示意图;
图2示出本申请实施例可应用的一种无线通信系统的框图;
图3是本申请实施例的信号放大器的结构示意图;
图4是本申请实施例的NR-SSB波束扫描示意图;
图5是本申请实施例的信号的处理方法流程图之一;
图6是本申请实施例的信号的处理方法流程图之二;
图7是本申请实施例的信号放大器根据功率增强配置发送宽波束SSB示意图;
图8是本申请实施例的信号放大器根据SSB波束配置调整SSB发送波束形状示意图;
图9是本申请实施例的信号放大器根据SSB转发功率配置调整SSB功率密度的示意图;
图10是本申请实施例的放大器广播信号的扫描发送示意图;
图11是本申请实施例的信号的处理装置的结构示意图之一;
图12是本申请实施例的信号的处理装置的结构示意图之二;
图13是本申请实施例的通信设备的结构示意图;
图14是本申请实施例的信号放大器的结构示意图;
图15是本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long  Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图2示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某 个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
首先,对本申请实施例中的相关术语进行解释。
一、信号放大器
信号放大器用于扩展小区的覆盖范围,包括接收和放大来自基站的下行信号、使得到达UE的信号强度增加,放大来自UE的上行信号、使得自UE到基站的上行信号的强度增加。智能信号放大可以接收来自基站的控制,即基站可以控制智能放大器的发送参数,例如智能放大器的开关和发送波束等,以提高放大器的信号功率和降低干扰。如图3所示网络结构中,包含3个网络节点,中间网络节点是智能信号放大器,其包含一个信号放大器模块(Mobile Termination,MT)和一个射频模块。其中MT用于与基站建立连接,基站通过MT与智能信号放大器交互,可以配置智能信号放大器的发送参数。
跟传统信号放大器相似,本申请实施例中的信号放大器需要放大的信号可以包括:
1)小区发现信号:主同步信号(Primary Synchronization Signal,PSS),(Secondary Synchronization Signal,SSS)和主信息块(Master Information Block,MIB)。
2)用于向用户信息发送的下行控制物理信道(Physical Downlink Control Channel,PDCCH)和下行共享物理信道(Physical Downlink Shared Channel,PDSCH)。
3)用于系统消息广播的PDCCH和PDSCH。
4)用于随机接入物理信道(Physical Random Access Channel,PRACH)。
5)用于上行用户信息发送的上行控制物理信道(Physical Uplink Control Channel,PUCCH)和上行数据物理信道(Physical Uplink Shared Channel,PUSCH)。
二、小区广播信号的波束扫描发送
新无线(New Radio,NR)需要支持在FrequencyRange2(>6GHz)内的载波上运行,依赖波束赋形产生窄波束,将电波能量集中在目标传输方向来增加信号的传播距离。对于小区发现信号,为了提供360°全方位覆盖和足够的覆盖范围,NR引入了同步信号块(Synchronization Signal Block,SSB)使用窄波束扫描发送的机制,即基站将产生的SSB信号在每个需要覆盖的方向发一次,每一个SSB波束有一个序号,用户需要识别该序号用于测量汇报。图4示例了gNB以波束扫描的方式SSB信号。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号的处理方法进行详细地说明。
如图5所示,本申请实施例提供了一种信号的处理方法,该方法的步骤包括:
步骤502,信号放大器接收网络侧设备配置的第一配置参数,其中,第一配置参数包括以下至少一项:发送广播信号的波束参数、发送广播信号的功率控制参数、广播信号的发送参数;
步骤504,信号放大器基于第一配置参数对广播信号执行第一处理;
其中,第一处理包括以下至少一项:接收、放大、发送。
通过本申请实施例的步骤502和步骤504,信号放大器在接收到网络侧设备配置的第一配置参数后,可以基于该第一配置参数对广播信号执行第一处理,无论使用宽波束或窄波束均能提高波束的覆盖范围,从而解决了现有技术中广播信号的发送覆盖范围较小的问题。
需要说明的是,本申请实施例中的波束参数可以包括以下至少一项:波束数量、波束宽度、波束方向、波束赋形矢量。
本申请实施例中的功率控制参数包括以下至少一项:放大倍数、功率谱密度、广播信号相对于发送用户数据的功率偏移量。
本申请实施例中的发送参数的包括以下至少一项:发送周期、时频资源 位置。
此外,本申请实施例中的广播信号包括以下至少一项:同步信号块SSB、小区发现信号、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、用于物理层控制信息发送的下行控制物理信道PDCCH、用于系统消息广播的PDCCH、用于系统消息广播的PDSCH、用于发送寻呼控制信息的PDCCH、用于发送用户寻呼信息的PDSCH信道。
在本申请实施例的可选实施方式中,在步骤502中涉及到的信号放大器接收网络侧设备配置的第一配置参数之前,本申请实施例的方法还可以包括:
步骤11,信号放大器向网络侧设备发送请求消息,其中,请求消息用于请求第一配置参数。
也就是说,在本申请实施例中,网络侧设备使用系统消息配置信号放大器广播信号发送的波束参数和功率参数,进而信号放大器可以向网络侧设备请求这一系统消息。
在本申请实施例的可选实施方式中,步骤504中涉及到的信号放大器基于第一配置参数对广播信号执行第一处理的方式,进一步可以包括:
步骤504-11,在信号放大器处于多个广播信号波束覆盖范围内的情况下,信号放大器从多个广播信号波束中确定目标广播信号,其中,目标广播信号为多个广播信号波束中信号强度最强的波束发送的广播信号;
步骤504-12,信号放大器对目标广播信号执行第一处理。
通过上述步骤504-11至步骤504-12可知,当信号放大器处于多个来自网络侧设备的广播信号的波束的覆盖范围时,信号放大器选取相连接的网络侧设备的最强波束进行放大和发送。
在本申请实施例的可选实施方式中,本申请实施例的方法还可以包括:
步骤21,信号放大器对网络侧设备的至少一个波束发送的广播信号进行检测;
步骤22,信号放大器向网络侧设备上报检测结果,其中,检测结果包括 检测到的至少一个波束的信号强度。
通过上述步骤21和步骤22可知,信号放大器将检测到的来自网络侧设备的广播信号的波束及其强度汇报给基站,由网络侧设备配置信号放大器放大和发送其中的至少一个广播信号的波束,并配置对应广播信号的波束的以下至少之一:功率增强参数、波束赋形参数。通过上报该检测结果,以便网络侧设备能够更加准确的为信号放大器配置第一配置参数,以便执行第一处理。
在本申请实施例的可选实施方式中,本申请实施例的方法还可以包括:
步骤31,信号放大器接收网络侧设备发送的第二配置参数;
步骤32,信号放大器基于第二配置参数,将发送广播信号的波束划分成多个子波束,其中,每一个子波束对应一个发送天线面板。
可见,在本申请实施例中,网络侧设备可以配置智能信号放大器将一个接收到的广播信号的波束分成多个波束放大和发送,其中每个分波束使用一个发送天线面板。通过将波束划分成多个分波束或子波束能够提升波束发送效率。
在本申请实施例的可选实施方式中,本申请实施例的方法还可以包括:
步骤41,信号放大器接收网络侧设备发送的第三配置参数;其中,第三配置参数包括信号放大器发送广播信号的时频域发送位置。
步骤42,信号放大器接收网络侧设备发送的第一信令;其中,第一信令用于指示网络侧设备发送广播信号的时频资源位置;
步骤43,信号放大器基于第一信令,在目标位置对波束执行第二处理;其中,第二处理包括以下至少一项:接收、放大、扫描发送。
其中,第一信令中携带有标识,其中,标识用于指示广播信号波束发送是否重复。
通过上述步骤41至步骤43可知,信号放大器可以在波束相同的位置(目标位置)进行接收、放大和波束扫描发送等操作,形成信号放大器的扫描覆 盖,信号放大器可以据此发现小区覆盖和接入网络。
上述是从信号放大器侧对本申请进行解释说明,下面将从网络侧对本申请进行解释说明。
如图6所示,本申请实施例提供了一种参数的配置方法,该方法的步骤包括:
步骤602,网络侧设备确定第一配置参数;
步骤604,网络侧设备向信号放大器发送第一配置参数,其中,第一配置参数包括以下至少一项:发送广播信号的波束参数、发送广播信号的功率控制参数、广播信号的发送参数。
通过上述步骤602和步骤604,网络侧设备可以根据确定第一配置参数,进而将该第一配置参数发送到信号放大器,以使信号放大器能够根据该第一配置参数提高波束的覆盖范围。
在本申请实施例的可选实施方式中,对于步骤604中涉及到的网络侧设备向信号放大器发送第一配置参数的方式,进一步可以是:网络侧设备通过系统消息向信号放大器发送第一配置参数。
在本申请实施例的可选实施方式中,本申请实施例的方法还可以包括:
步骤606,网络侧设备向信号放大器发送第二配置参数,其中,第二配置参数用于配置信号放大器将发送广播信号的波束划分成多个子波束,每一个子波束对应一个发送天线面板。
步骤608,网络侧设备向信号放大器发送第三配置参数,其中,第三配置参数,其中,第三配置参数包括广播信号的时频域发送位置。
其中,波束参数包括以下至少一项:波束宽度、波束方向、波束赋形矢量。功率控制参数包括以下至少一项:放大倍数、功率谱密度、广播信号相对于发送用户数据的功率偏移量;广播信号的发送参数包括以下至少一项:发送周期、时频资源位置。
通过上述步骤606和步骤608,能够通知信号放大器对波束进行划分, 以及广播信号的时域发送位置,在提高波束利用率的同时能够通过告知时域发送位置,以便后续信号放大器进行信号的接收和发送。
在本申请实施例的可选实施方式中,本申请实施例的方法还可以包括:
步骤610,网络侧设备向信号放大器发送第一信令;其中,第一信令用于指示网络侧设备发送广播信号的时频资源位置。
通过上述步骤610可知,信号放大器可以在波束相同的位置(目标位置)进行接收、放大和波束扫描发送等操作,形成信号放大器的扫描覆盖,信号放大器可以据此发现小区覆盖和接入网络。
下面结合本申请实施例的可选实施方式,对本申请进行举例说明。
在本可选实施方式中,以广播信号为SSB,网络侧设备为基站、信号放大器为智能信号放大器为例进行说明。
首先,基站确定智能信号放大器预期的智能放大器的预期覆盖范围,配置智能放大器用于发送发现的来自基站的SSB的功率增强参数和波束赋形参数,使得智能信号放大器放大和发送的SSB可以达到预期覆盖。
其中,功率增强参数包括但是不限于:对SSB信号的放大倍数或发送SSB信号的最大功率,发送SSB信号的功率谱密度;波束参数包括但不限于:波束方向,波束宽度或直接配置波束赋形矢量,当基站配置波束方向和波束宽度时,由智能放大器自己生成SSB波束赋形矢量。图7和图8分别示例了智能放大器关于SSB发送的功率配置前后和波束配置前后的SSB信号覆盖。图9显示了SSB信号转发功率密度配置示例。
在本可选实施方式中,SSB的发送波束和功率参数使用MT的RRC消息容器(或MAC CE,PDCCH)发送给MT,由MT解析出SSB的发送波束和功率参数后发送给智能放大器的RF控制单元,RF控制单元根据收到的SSB的发送波束参数和功率参数进行来自基站的SSB信号的放大和发送。
在基站为宿主基站(Donor base station),且信号放大器为放大器(repeater)的情况下,Donor base station通知repeater其SSB发送的配置参数,至少包 括SSB的时频域发送位置配置等。另外,宿主基站donor通知其SSB发送在一些发送位置采用同样的波束进行发送;例如,在个频带的SSB发送均采用同样的波束进行发送;某SSB周期的SSB场景(SSB occasions)均采用同样的波束进行发送;某SSB周期内的特定SSB occassions采用同样的波束进行发送等。
其中,同样的波束均指向repeater,通知信令内容可以包含一个标识(flag),用于指示波束是否重复,例如,用开启重复(repetition on)表示波束方向重复,关闭重复(repetition off)表示波束方向不重复。基于此,如图10所示,Repeater在Donor SSB波束相同的位置进行接收、放大和波束扫描发送等操作,形成智能信号放大器的SSB扫描覆盖,UE据此发现小区覆盖和接入网络。
上述方式也可以适用于广播信号为CSI-RS的扫描覆盖。Donor base station通知repeater其CSI-RS发送的配置参数,至少包括CSI-RS的时频域发送位置配置等。另外,donor通知其CSI-RS发送在一些发送位置采用同样的波束进行发送;例如,某CSI-RS资源集(CSI-RS resource set)中的CSI-RS采用同样的波束进行发送等。该同样的波束均指向repeater。通知信令内容可以包含一个flag,用于指示波束是否重复;例如,用repetition on表示波束方向重复,repetition off表示波束方向不重复。
另外,Donor通知Repeater采用何种波束进行上述CSI-RS发送(例如,是否采用同样的波束进行发送)。同样Donor可用另一个flag指示repeater转发CSI-RS采用的波束(例如,用repetition on表示波束方向重复,repetition off表示波束方向可以不重复)。Repeater在CSI-RS发送的位置按照donor的指示调整CSI-RS的发送波束。
Donor可复用现有方法配置UE进行波束训练的CSI-RS,在repeater用同样的波束转发CSI-RS时,可配置UE进行接收波束训练(即指示CSI-RS repetition off),在repeater用可变的波束转发CSI-RS时,UE可对发送端的发 送波束进行训练(即指示CSI-RS repetition on)并上报。
另外,在本申请可选实施方式中,基站将配置给共同搜索区域(common search space)的时频资源通知给信号放大器、信号放大器采用与发送SSB相同的功率或波束配置发送common search space域的PDCCH;或者基站给智能信号放大器转发common search space里的信号配置一个功率谱密度(或相对于用户数据发送的功率偏移量)或波束配置。
需要说明的是,本申请实施例提供的信号的处理方法,执行主体可以为信号的处理装置,或者,该信号的处理装置中的用于执行信号的处理方法的控制模块。本申请实施例中以信号的处理装置执行信号的处理方法为例,说明本申请实施例提供的信号的处理装置。
如图11所示,本申请实施例提供了一种信号的处理装置,应用于信号放大器,该装置包括:
第一接收模块112,用于接收网络侧设备配置的第一配置参数,其中,第一配置参数包括以下至少一项:发送广播信号的波束参数、发送广播信号的功率控制参数、广播信号的发送参数;
第一处理模块114,用于基于第一配置参数对广播信号执行第一处理;
其中,第一处理包括以下至少一项:接收、放大、发送。
通过本申请实施例的装置,在接收到网络侧设备配置的第一配置参数后,可以基于该第一配置参数对广播信号执行第一处理,无论使用宽波束或窄波束均能提高波束的覆盖范围,从而解决了现有技术中广播信号的发送覆盖范围较小的问题。
可选地,本申请实施例的装置还可以包括:第一发送模块,用于在接收网络侧设备配置的第一配置参数之前,向网络侧设备发送请求消息,其中,请求消息用于请求第一配置参数。
可选地,本申请实施例中的第一处理模块进一步可以包括:确定单元,用于在处于多个广播信号波束覆盖范围内的情况下,从多个广播信号波束中 确定目标广播信号,其中,目标广播信号为多个广播信号波束中信号强度最强的波束发送的广播信号;处理单元,用于对目标广播信号执行第一处理。
可选地,本申请实施例的装置还可以包括:第二发送模块,用于对网络侧设备的至少一个波束发送的广播信号进行检测;上报模块,用于向网络侧设备上报检测结果,其中,检测结果包括检测到的至少一个波束的信号强度。
可选地,本申请实施例的装置还可以包括:第二接收模块,用于接收网络侧设备发送的第二配置参数;划分模块,用于基于第二配置参数,将发送广播信号的波束划分成多个子波束,其中,每一个子波束对应一个发送天线面板。
可选地,本申请实施例的装置还可以包括:第三接收模块,用于接收网络侧设备发送的第三配置参数;其中,第三配置参数包括信号放大器发送广播信号的时频域发送位置。
可选地,本申请实施例的装置还可以包括:第四接收模块,用于接收网络侧设备发送的第一信令;其中,第一信令用于指示网络侧设备发送广播信号的时频资源位置;第二处理模块,用于基于第一信令,在目标位置对波束执行第二处理;其中,第二处理包括以下至少一项:接收、放大、扫描发送。
可选地,本申请实施例中的第一信令中携带有标识,其中,标识用于指示广播信号波束发送是否重复。
可选地,本申请实施例中的波束参数包括以下至少一项:波束数量、波束宽度、波束方向、波束赋形矢量;
功率控制参数包括以下至少一项:放大倍数、功率谱密度、广播信号相对于发送用户数据的功率偏移量;
发送参数的包括以下至少一项:发送周期、时频资源位置。
可选地,本申请实施例的广播信号包括以下至少一项:同步信号块SSB、小区发现信号、信道状态信息参考信号CSI-RS、用于物理层控制信息发送的下行控制物理信道PDCCH、用于系统消息广播的PDCCH、用于系统消息广 播的PDSCH、用于发送寻呼控制信息的PDCCH、用于发送用户寻呼信息的PDSCH信道。
需要说明的是,上述图11中的装置是与图5中的方法对应的装置。
如图12所示,本申请实施例还提供了一种参数的配置装置,应用于网络侧设备,该装置包括:
确定模块122,用于确定第一配置参数;
第一发送模块124,用于向信号放大器发送第一配置参数,其中,第一配置参数包括以下至少一项:发送广播信号的波束参数、发送广播信号的功率控制参数、广播信号的发送参数。
可选地,本申请实施例中的第一发送模块进一步可以包括:发送单元,用于通过系统消息向信号放大器发送第一配置参数。
可选地,本申请实施例中的装置还包括:第二发送模块,用于向信号放大器发送第二配置参数,其中,第二配置参数用于配置信号放大器将发送广播信号的波束划分成多个子波束,每一个子波束对应一个发送天线面板。
可选地,本申请实施例中的装置还包括:第三发送模块,用于向信号放大器发送第三配置参数,其中,第三配置参数,其中,第三配置参数包括广播信号的时频域发送位置。
可选地,本申请实施例中的波束参数包括以下至少一项:波束宽度、波束方向、波束赋形矢量;
功率控制参数包括以下至少一项:放大倍数、功率谱密度、广播信号相对于发送用户数据的功率偏移量;
广播信号的发送参数包括以下至少一项:发送周期、时频资源位置。
可选地,本申请实施例中的装置还可以包括:第四发送模块,用于向信号放大器发送第一信令;其中,第一信令用于指示网络侧设备发送广播信号的时频资源位置。
需要说明的是,上述图12中的装置是与图6中的方法对应的装置。
本申请实施例中的信号的处理装置可以是装置,具有操作系统的装置或电子设备,也可以是信号放大器中的部件、集成电路、或芯片。该装置或电子设备可以是移动信号放大器,也可以为非移动信号放大器。示例性的,移动信号放大器可以包括但不限于上述所列举的信号放大器11的类型,非移动信号放大器可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的信号的处理装置能够实现图5至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301,存储器1302,存储在存储器1302上并可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为信号放大器时,该程序或指令被处理器1301执行时实现上述信号的处理方法实施例的各个过程,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述信号的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种信号放大器,包括处理器和通信接口,通信接口用于接收网络侧设备配置的第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数;处理器用于基于所述第一配置参数对所述广播信号执行第一处理。
该信号放大器实施例是与上述信号放大器侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该信号放大器实施例中,且能达到相同的技术效果。具体地,图14为实现本申请实施例的一种信号放大器的硬件结构示意图。
该信号放大器100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、 接口单元108、存储器109、以及处理器110等中的至少部分部件。
本领域技术人员可以理解,信号放大器100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的信号放大器结构并不构成对信号放大器的限定,信号放大器可以包括比图14中更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101将来自网络侧设备的下行数据接收后,给处理器110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦 除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
其中,射频单元101,用于接收网络侧设备配置的第一配置参数,其中,第一配置参数包括以下至少一项:发送广播信号的波束参数、发送广播信号的功率控制参数、广播信号的发送参数;
处理器110,用于基于第一配置参数对广播信号执行第一处理;
可选地,射频单元101,还用于向网络侧设备发送请求消息,其中,请求消息用于请求第一配置参数。
可选地,处理器110,还用于在处于多个广播信号波束覆盖范围内的情况下,从多个广播信号波束中确定目标广播信号,其中,目标广播信号为多个广播信号波束中信号强度最强的波束发送的广播信号;以及对目标广播信号执行第一处理。
可选地,处理器110,还用于对网络侧设备的至少一个波束发送的广播信号进行检测;
射频单元101,还用于向网络侧设备上报检测结果,其中,检测结果包括检测到的至少一个波束的信号强度。
可选地,射频单元101,还用于接收网络侧设备发送的第二配置参数;
可选地,处理器110,还用于基于第二配置参数,将发送广播信号的波束划分成多个子波束,其中,每一个子波束对应一个发送天线面板。
可选地,射频单元101,还用于接收网络侧设备发送的第三配置参数;其中,第三配置参数包括信号放大器发送广播信号的时频域发送位置。
可选地,射频单元101,还用于接收网络侧设备发送的第一信令;其中,第一信令用于指示网络侧设备发送广播信号的时频资源位置;
处理器110,还用于基于第一信令,在目标位置对波束执行第二处理;其中,第二处理包括以下至少一项:接收、放大、扫描发送。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于确定信号放大器的覆盖范围,以及基于覆盖范围配置第一配置参数,通信接口用于向信号放大器发送第一配置参数,其中,第一配置参数包括以下至少一项:发送广播信号的波束参数、发送广播信号的功率控制参数。
该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图15所示,该网络设备1500包括:天线151、射频装置152、基带装置153。天线151与射频装置152连接。在上行方向上,射频装置152通过天线151接收信息,将接收的信息发送给基带装置153进行处理。在下行方向上,基带装置153对要发送的信息进行处理,并发送给射频装置152,射频装置152对收到的信息进行处理后经过天线151发送出去。
上述频带处理装置可以位于基带装置153中,以上实施例中网络侧设备执行的方法可以在基带装置153中实现,该基带装置153包括处理器154和存储器155。
基带装置153例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为处理器154,与存储器155连接,以调用存储器155中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置153还可以包括网络接口156,用于与射频装置152交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器155上并可在处理器154上运行的指令或程序,处理器154调用存储器155中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的信号放大器中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省 去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台信号放大器(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种信号的处理方法,包括:
    信号放大器接收网络侧设备配置的第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数;
    所述信号放大器基于所述第一配置参数对所述广播信号执行第一处理;
    其中,所述第一处理包括以下至少一项:接收、放大、发送。
  2. 根据权利要求1所述的方法,其中,在所述信号放大器接收网络侧设备配置的第一配置参数之前,所述方法还包括:
    所述信号放大器向所述网络侧设备发送请求消息,其中,所述请求消息用于请求所述第一配置参数。
  3. 根据权利要求1所述的方法,其中,所述信号放大器基于所述第一配置参数对广播信号执行第一处理,包括:
    在所述信号放大器处于多个广播信号波束覆盖范围内的情况下,所述信号放大器从所述多个广播信号波束中确定目标广播信号,其中,所述目标广播信号为所述多个广播信号波束中信号强度最强的波束发送的广播信号;
    所述信号放大器对所述目标广播信号执行所述第一处理。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述信号放大器对网络侧设备的至少一个波束发送的广播信号进行检测;
    所述信号放大器向所述网络侧设备上报检测结果,其中,所述检测结果包括检测到的所述至少一个波束的信号强度。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述信号放大器接收所述网络侧设备发送的第二配置参数;
    所述信号放大器基于所述第二配置参数,将发送所述广播信号的波束划分成多个子波束,其中,每一个子波束对应一个发送天线面板。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述信号放大器接收所述网络侧设备发送的第三配置参数;其中,所述第三配置参数包括所述信号放大器发送所述广播信号的时频域发送位置。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述信号放大器接收所述网络侧设备发送的第一信令;其中,所述第一信令用于指示所述网络侧设备发送所述广播信号的时频资源位置;
    所述信号放大器基于所述第一信令,在目标位置对波束执行第二处理;其中,所述第二处理包括以下至少一项:接收、放大、扫描发送。
  8. 根据权利要求7所述的方法,其中,所述第一信令中携带有标识,其中,所述标识用于指示所述广播信号波束发送是否重复。
  9. 根据权利要求1所述的方法,其中,
    所述波束参数包括以下至少一项:波束数量、波束宽度、波束方向、波束赋形矢量;
    所述功率控制参数包括以下至少一项:放大倍数、功率谱密度、所述广播信号相对于发送用户数据的功率偏移量;
    所述发送参数的包括以下至少一项:发送周期、时频资源位置。
  10. 根据权利要求1所述的方法,其中,所述广播信号包括以下至少一项:
    同步信号块SSB、小区发现信号、信道状态信息参考信号CSI-RS、用于物理层控制信息发送的下行控制物理信道PDCCH、用于系统消息广播的PDCCH、用于系统消息广播的PDSCH、用于发送寻呼控制信息的PDCCH、用于发送用户寻呼信息的PDSCH信道。
  11. 一种参数的配置方法,包括:
    网络侧设备确定第一配置参数;
    所述网络侧设备向信号放大器发送所述第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数。
  12. 根据权利要求11所述的方法,其中,所述网络侧设备向所述信号放大器发送所述第一配置参数,包括:
    所述网络侧设备通过系统消息向所述信号放大器发送所述第一配置参数。
  13. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述信号放大器发送第二配置参数,其中,所述第二配置参数用于配置所述信号放大器将发送所述广播信号的波束划分成多个子波束,每一个子波束对应一个发送天线面板。
  14. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述信号放大器发送第三配置参数,其中,所述第三配置参数,其中,所述第三配置参数包括所述广播信号的时频域发送位置。
  15. 根据权利要求11所述的方法,其中,
    所述波束参数包括以下至少一项:波束宽度、波束方向、波束赋形矢量;
    所述功率控制参数包括以下至少一项:放大倍数、功率谱密度、所述广播信号相对于发送用户数据的功率偏移量;
    所述发送参数包括以下至少一项:发送周期、时频资源位置。
  16. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述网络侧设备向所述信号放大器发送第一信令;其中,所述第一信令用于指示所述网络侧设备发送所述广播信号的时频资源位置。
  17. 一种信号的处理装置,应用于信号放大器,包括:
    第一接收模块,用于接收网络侧设备配置的第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数;
    第一处理模块,用于基于所述第一配置参数对所述广播信号执行第一处理;
    其中,所述第一处理包括以下至少一项:接收、放大、发送。
  18. 根据权利要求17所述的装置,其中,所述装置还包括:
    第一发送模块,用于在接收网络侧设备配置的第一配置参数之前,向所 述网络侧设备发送请求消息,其中,所述请求消息用于请求所述第一配置参数。
  19. 根据权利要求17所述的装置,其中,所述第一处理模块包括:
    确定单元,用于在处于多个广播信号波束覆盖范围内的情况下,从所述多个广播信号波束中确定目标广播信号,其中,所述目标广播信号为所述多个广播信号波束中信号强度最强的波束发送的广播信号;
    处理单元,用于对所述目标广播信号执行所述第一处理。
  20. 根据权利要求17所述的装置,其中,所述装置还包括:
    第二发送模块,用于对网络侧设备的至少一个波束发送的广播信号进行检测;
    上报模块,用于向所述网络侧设备上报检测结果,其中,所述检测结果包括检测到的所述至少一个波束的信号强度。
  21. 根据权利要求17所述的装置,其中,所述装置还包括:
    第二接收模块,用于接收所述网络侧设备发送的第二配置参数;
    划分模块,用于基于所述第二配置参数,将发送所述广播信号的波束划分成多个子波束,其中,每一个子波束对应一个发送天线面板。
  22. 根据权利要求17所述的装置,其中,所述装置还包括:
    第三接收模块,用于接收所述网络侧设备发送的第三配置参数;其中,所述第三配置参数包括所述信号放大器发送所述广播信号的时频域发送位置。
  23. 根据权利要求17所述的装置,其中,所述装置还包括:
    第四接收模块,用于接收所述网络侧设备发送的第一信令;其中,所述第一信令用于指示所述网络侧设备发送所述广播信号的时频资源位置;
    第二处理模块,用于基于所述第一信令,在目标位置对波束执行第二处理;其中,所述第二处理包括以下至少一项:接收、放大、扫描发送。
  24. 根据权利要求23所述的装置,其中,所述第一信令中携带有标识,其中,所述标识用于指示所述广播信号波束发送是否重复。
  25. 根据权利要求17所述的装置,其中,
    所述波束参数包括以下至少一项:波束数量、波束宽度、波束方向、波束赋形矢量;
    所述功率控制参数包括以下至少一项:放大倍数、功率谱密度、所述广播信号相对于发送用户数据的功率偏移量;
    所述发送参数的包括以下至少一项:发送周期、时频资源位置。
  26. 根据权利要求17所述的装置,其中,所述广播信号包括以下至少一项:
    同步信号块SSB、小区发现信号、信道状态信息参考信号CSI-RS、用于物理层控制信息发送的下行控制物理信道PDCCH、用于系统消息广播的PDCCH、用于系统消息广播的PDSCH、用于发送寻呼控制信息的PDCCH、用于发送用户寻呼信息的PDSCH信道。
  27. 一种参数的配置装置,应用于网络侧设备,包括:
    确定模块,用于确定第一配置参数;
    第一发送模块,用于向信号放大器发送所述第一配置参数,其中,所述第一配置参数包括以下至少一项:发送广播信号的波束参数、发送所述广播信号的功率控制参数、所述广播信号的发送参数。
  28. 根据权利要求27所述的装置,其中,所述第一发送模块包括:
    发送单元,用于通过系统消息向所述信号放大器发送所述第一配置参数。
  29. 根据权利要求27所述的装置,其中,所述装置还包括:
    第二发送模块,用于向所述信号放大器发送第二配置参数,其中,所述第二配置参数用于配置所述信号放大器将发送所述广播信号的波束划分成多个子波束,每一个子波束对应一个发送天线面板。
  30. 根据权利要求27所述的装置,其中,所述装置还包括:
    第三发送模块,用于向所述信号放大器发送第三配置参数,其中,所述第三配置参数,其中,所述第三配置参数包括所述广播信号的时频域发送位置。
  31. 根据权利要求27所述的装置,其中,
    所述波束参数包括以下至少一项:波束宽度、波束方向、波束赋形矢量;
    所述功率控制参数包括以下至少一项:放大倍数、功率谱密度、所述广播信号相对于发送用户数据的功率偏移量;
    所述发送参数包括以下至少一项:发送周期、时频资源位置。
  32. 根据权利要求27所述的装置,其中,所述装置还包括:
    第四发送模块,用于向所述信号放大器发送第一信令;其中,所述第一信令用于指示所述网络侧设备发送所述广播信号的时频资源位置。
  33. 一种信号放大器,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求1至10任一项所述的方法步骤。
  34. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求11至16任一项所述的方法步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至10任一项所述的方法步骤,或者实现如权利要求11至16任一项所述的方法步骤。
  36. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至10任一项所述的方法的步骤,或者实现如权利要求11至16任一项所述的方法的步骤。
  37. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至10任一项所述的方法,或者实现如权利要求11至16任一项所述的方法。
  38. 一种通信设备,其中,被配置为执行如权利要求1至10任一项所述的方法,或者执行如权利要求11至16任一项所述的方法。
PCT/CN2022/086322 2021-04-16 2022-04-12 信号的处理方法及装置、信号放大器及网络侧设备 WO2022218298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110413076.7 2021-04-16
CN202110413076.7A CN115226116A (zh) 2021-04-16 2021-04-16 信号的处理方法及装置、信号放大器及网络侧设备

Publications (1)

Publication Number Publication Date
WO2022218298A1 true WO2022218298A1 (zh) 2022-10-20

Family

ID=83604883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086322 WO2022218298A1 (zh) 2021-04-16 2022-04-12 信号的处理方法及装置、信号放大器及网络侧设备

Country Status (2)

Country Link
CN (1) CN115226116A (zh)
WO (1) WO2022218298A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021026561A1 (en) * 2019-08-05 2021-02-11 Qualcomm Incorporated Techniques for in-band repeater control
CN114208060A (zh) * 2019-08-01 2022-03-18 高通股份有限公司 具有缓冲能力的智能定向中继器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149711B (zh) * 2018-02-13 2022-09-16 成都华为技术有限公司 一种信号传输方法及装置
CN112584392B (zh) * 2019-09-30 2022-09-23 上海华为技术有限公司 一种无线广播波束覆盖增强方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114208060A (zh) * 2019-08-01 2022-03-18 高通股份有限公司 具有缓冲能力的智能定向中继器
WO2021026561A1 (en) * 2019-08-05 2021-02-11 Qualcomm Incorporated Techniques for in-band repeater control

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MODERATOR (QUALCOMM): "Summary of email discussions on NR Repeaters", 3GPP DRAFT; RP-202748, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20201207 - 20201211, 30 November 2020 (2020-11-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051963302 *
QUALCOMM: "New SID on Smart Repeaters for NR", 3GPP DRAFT; RP-201139, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20200629 - 20200703, 22 June 2020 (2020-06-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051903778 *
QUALCOMM: "NR Repeaters Motivation AI: 9.1.2", 3GPP DRAFT; RP-201831, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20200914 - 20200918, 7 September 2020 (2020-09-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051932517 *

Also Published As

Publication number Publication date
CN115226116A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2018121540A1 (zh) 一种下行波束调整的方法及装置
WO2022028455A1 (zh) 小区切换方法和终端
WO2022174777A1 (zh) 状态的切换方法及装置、信标信号的发送及装置
KR20230048115A (ko) 정보 보고 방법, 정보 수신 방법 및 관련 기기
WO2022117021A1 (zh) 随机接入方法、装置、终端及网络侧设备
WO2022022636A1 (zh) 初始接入方法及装置、终端及网络侧设备
WO2022148476A1 (zh) 传输方法、装置、设备及可读存储介质
WO2022068797A1 (zh) 网络接入方法、网络接入装置、终端和网络侧设备
WO2021227985A1 (zh) 同步信号块的处理方法及装置、通信设备和可读存储介质
EP3364675B1 (en) Method and device for processing discovery message
WO2023025017A1 (zh) 传输处理方法、装置及设备
WO2022213921A1 (zh) Ntn场景下的波束测量方法、配置方法及相关设备
WO2023072210A1 (zh) 感知方法、装置及通信设备
WO2022206740A1 (zh) 波束切换方法、装置及存储介质
WO2022068755A1 (zh) 信息传输方法、终端及网络侧设备
WO2022218298A1 (zh) 信号的处理方法及装置、信号放大器及网络侧设备
WO2022117023A1 (zh) 随机接入方法、装置、终端及网络侧设备
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022078311A1 (zh) 定位方法、终端及网络侧设备
WO2021218909A1 (zh) 频域偏移的确定方法及装置、通信设备和可读存储介质
WO2018053708A1 (zh) 寻呼装置、方法以及通信系统
WO2023040933A1 (zh) 波束信息的确定方法、终端及网络侧设备
WO2022247719A1 (zh) 切换方法、装置和网络侧设备
WO2022068752A1 (zh) 通信资源激活方法、终端及网络侧设备
WO2022022553A1 (zh) 干扰协调处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE