WO2022218246A1 - 分布式四驱纯电动平台及其控制方法 - Google Patents
分布式四驱纯电动平台及其控制方法 Download PDFInfo
- Publication number
- WO2022218246A1 WO2022218246A1 PCT/CN2022/086051 CN2022086051W WO2022218246A1 WO 2022218246 A1 WO2022218246 A1 WO 2022218246A1 CN 2022086051 W CN2022086051 W CN 2022086051W WO 2022218246 A1 WO2022218246 A1 WO 2022218246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- control module
- distributed
- braking
- pure electric
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000033228 biological regulation Effects 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims description 15
- 230000001133 acceleration Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 10
- 238000011065 in-situ storage Methods 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 230000007812 deficiency Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims description 2
- 238000003860 storage Methods 0.000 description 9
- 238000009826 distribution Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K7/0007—Disposition of motor in, or adjacent to, traction wheel the motor being electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present application relates to the technical field of vehicle control, for example, to a distributed four-wheel drive pure electric platform and a control method thereof.
- the motor of the front-wheel drive vehicle is arranged at the front end of the vehicle, and the space in the cabin is limited.
- the motor of the rear-drive vehicle is arranged at the lower end of the floor, which requires a large space under the floor. , which is not conducive to the overall distribution of electric vehicles.
- Electric vehicles meet the high-voltage DC power supply requirements of components through power batteries and distribution boxes.
- the cost of distribution boxes is high, which makes the production cost of electric vehicles higher.
- the linear drive, steering and braking functions of electric vehicles can be controlled by Once the electric vehicle fails, the electric vehicle cannot be braked normally, which is not conducive to the safe operation of the electric vehicle.
- the present application provides a distributed four-wheel drive pure electric platform, which increases the interior space of the vehicle cabin, which is beneficial to the overall distribution of the distributed four-wheel drive pure electric platform.
- the vehicle control module, the brake control module and the steering control module respectively control the corresponding components to realize various functions of the distributed four-wheel drive pure electric platform. Even if the distributed four-wheel drive pure electric platform fails, the brake control module can still drive the system.
- the electric motor provides braking torque for the wheels, realizes the braking of the distributed four-wheel drive pure electric platform, and improves the safety of the distributed four-wheel drive pure electric platform.
- the present application provides a control method for a distributed four-wheel drive pure electric platform, which has rich operation modes and high safety performance.
- a distributed four-wheel drive pure electric platform is applied to an electric vehicle.
- the electric vehicle includes the distributed four-wheel drive pure electric platform, a vehicle body and wheels, and the distributed four-wheel drive pure electric platform includes: an electric energy system, including A battery control module, a power battery, a voltage regulation module, two sets of batteries and two sets of junction boxes, the battery control module is respectively electrically connected to the power battery and the voltage regulation module, and the voltage regulation module is connected to the power
- the batteries are connected through a high-voltage line, and are configured to convert high-voltage direct current into low-voltage direct current, two groups of the accumulators are respectively connected to the output ends of the voltage regulation module, and the two groups of the accumulators are respectively arranged on the front side and the rear side of the vehicle body,
- the two groups of the junction boxes are respectively connected to the power battery and are located on the front side and the rear side of the vehicle body, and the junction boxes are set to supply high-voltage direct current;
- the power system includes a vehicle control module, four groups
- the motor is connected to the motor, and each group of the brake motors is configured to change the braking torque of the corresponding wheel;
- the steering system includes a steering control module, four groups of steering machines connected to the power battery, and the steering control module is respectively connected with the four
- the steering gears of the four groups are connected to each other, and the four groups of the steering gears are respectively arranged in a one-to-one correspondence with the four groups of the wheels, and each group of the steering gears is configured to change the steering torque of the corresponding wheel.
- a control method for a distributed four-wheel drive pure electric platform as described in the above scheme comprising:
- the voltage regulation module, the battery control module, the vehicle control module, the brake control module and the steering control module are integrated into a domain control module.
- all The domain control module controls the high-voltage power-on of the in-wheel motor and the voltage regulation module;
- the domain control module controls the in-wheel motor and the brake motor respectively the braking torque provided to the wheel;
- the domain control module controls the in-wheel motor to reduce the driving torque, or controls the brake motor to output the braking torque, so as to reduce the vehicle speed of the wheel;
- the domain control module respectively controls the in-wheel motor and the brake motor to realize the in-situ steering or lateral parking of the distributed four-wheel drive pure electric platform;
- the brake control module controls the brake motor to brake the wheel.
- FIG. 1 is a schematic diagram of the principle of a distributed four-wheel drive pure electric platform provided by an embodiment of the present application
- FIG. 2 is a block diagram of the distributed four-wheel drive pure electric platform provided by the embodiment of the present application switching from one state to another state;
- FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- brake control module 32, brake motor; 33, brake caliper; 34, friction plate; 35, brake disc;
- the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
- installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of two components.
- the distributed four-wheel drive pure electric platform includes an electric energy system, a power system, a braking system and a steering system, and the electric energy system includes a battery control module 11,
- the power battery 12 is connected to the front side and the rear side of the vehicle body.
- the junction box 15 is set to supply high-voltage direct current.
- the power system includes a vehicle control module 21, four sets of in-wheel motors 22 connected to the power battery 12, and the vehicle control module. 21 are respectively connected with four groups of in-wheel motors 22, and the four groups of in-wheel motors 22 are respectively arranged in one-to-one correspondence with the four groups of wheels, each group of in-wheel motors 22 is configured to be able to change the driving torque of one group of wheels, and the braking system includes a brake control module 31.
- each group of brake motors 32 connected to the power battery 12 is respectively connected to the vehicle control module 21 and four groups of brake motors 32, each group of brake motors 32 is configured to be able to change a group of wheels
- the steering system includes a steering control module 41 and four groups of steering gears 42 connected to the power battery 12.
- the steering control module 41 is respectively connected with four groups of steering gears 42, and the four groups of steering gears 42 are respectively connected with four groups of wheels one by one.
- each set of steering gears 42 is configured to be able to vary the steering torque of a set of wheels.
- the in-wheel motor 22 of this embodiment is directly connected to the wheel, which reduces the steering restriction and realizes the functions of small steering radius and lateral driving compared with the connection method in which the two are connected by a transmission shaft in the related art.
- the battery control module 11 in this embodiment is configured to control the charging, discharging, etc. of the power battery 12.
- the vehicle control module 21 can control each group of in-wheel motors 22 respectively, so as to realize that each group of in-wheel motors 22 drives or brakes the corresponding wheels, and the whole vehicle
- the driving torque or braking torque allocated by the vehicle control module 21 to each group of in-wheel motors 22 is set according to the actual operation of the distributed four-wheel drive pure electric platform, so that the driving force or braking force received by each group of wheels is the same or different.
- the function of anti-slope is realized by rationally distributing the driving force of each in-wheel motor 22 to drive the wheels, so that the distributed four-wheel drive pure electric platform can run smoothly and safely. .
- the brake control module 31 of this embodiment can control each group of brake motors 32 respectively, so that each group of brake motors 32 can brake corresponding wheels, and the brake control module 31 allocates the braking torque to each group of brake motors 32 According to the actual operation of the distributed four-wheel drive pure electric platform, the braking force of each set of wheels is the same or different, so that the distributed four-wheel drive pure electric platform can run smoothly and safely.
- the steering control module 41 in this embodiment can control each group of steering gears 42 separately, so that each group of steering gears 42 drives the corresponding wheels to rotate, and the steering control module 41 drives each group to rotate to drive the rotation angle of the wheels according to the distributed four-wheel drive pure electric platform. According to the actual operation situation, it can be set so that the rotation angle of each group of wheels is the same or different.
- each group of wheels in this embodiment includes one wheel, and the four groups of wheels are respectively located at the front left, rear left, front right and rear right of the vehicle body.
- each group of in-wheel motors 22 includes one in-wheel motor 22
- each group of brake motors 32 includes a brake motor 32
- each group of steering gears 42 includes a steering gear 42
- four in-wheel motors 22 four brake motors 32 and four steering gears 42 are respectively associated with the four wheels. corresponding settings.
- the distributed four-wheel-drive pure electric platform of this embodiment can select front-wheel drive, rear-wheel drive, or four-wheel drive according to the actual operating conditions of the distributed four-wheel-drive pure electric platform, so that the distributed four-wheel drive pure electric platform can run smoothly. For example, when the distributed four-wheel-drive pure electric platform is driving on ice, snow, slippery or curved roads, the front-wheel drive or four-wheel drive sports mode can be selected. At this time, the gripping ability of the wheels is high, which increases the stability of the distributed four-wheel-drive pure electric platform. possibility of running. When the distributed four-wheel drive pure electric platform is driving on the track, rear-wheel drive can be selected, and the distributed four-wheel drive pure electric platform can turn by drifting.
- the in-wheel motor 22 and the brake motor 32 of the distributed four-wheel drive pure electric platform provided by this embodiment are respectively arranged corresponding to the wheels, which will not occupy the space in the vehicle cabin, which is beneficial to the overall distribution of the distributed four-wheel drive pure electric platform, and the electric energy system
- the voltage regulation module 13 can convert high-voltage direct current into low-voltage direct current, and then provide low-voltage direct current for the battery 14 and other components. Due to the complexity of the distribution of internal wires, the junction box 15 arranged on the front and rear sides of the vehicle body has a simpler structure and lower production cost than the distribution box in the related art.
- the adjustment module 13, the battery control module 11, the vehicle control module 21, the brake control module 31 and the steering control module 41 respectively control the corresponding components to realize the corresponding functions.
- the module 31 can still control the braking motor 32 to provide braking torque for the wheels, realize the braking of the distributed four-wheel drive pure electric platform, and improve the safety of the distributed four-wheel drive pure electric platform.
- the power system of this embodiment further includes a charging port 16 and a portable charger (not shown in the figure).
- the charging port 16 is connected to the power battery 12 and can be connected to a DC charging pile.
- the portable charger is detachable.
- the portable charger is configured to convert the alternating current of the alternating current charging pile into direct current.
- the DC charging pile can be directly connected to the charging port 16; when using the AC charging pile to charge the power battery 12, the AC charging pile is inserted into the charging port 16 through the portable charger. , to realize the charging of the power battery 12 .
- the power system includes a DC charging hole and an AC charging hole, and the AC charging hole and the power battery 12 are connected through corresponding conversion elements.
- the AC charging hole is omitted, and the same charging port 16 is used.
- the detachably connected portable charger replaces the conversion element in the related art, reduces the overall weight of the distributed four-wheel drive pure electric platform, and is beneficial to the miniaturization of the distributed four-wheel drive pure electric platform.
- the voltage regulation module 13 , the battery control module 11 , the vehicle control module 21 , the brake control module 31 and the steering control module 41 in this embodiment are arranged in the same area of the vehicle body. Compared with each area of the car body, the response time of data exchange between each module is reduced, and the control accuracy of the distributed four-wheel drive pure electric platform is improved.
- the voltage regulation module 13 , the battery control module 11 , the vehicle control module 21 , the brake control module 31 , and the steering control module 41 in this embodiment can transmit data through low-voltage signals transmitted by the wiring harness, and can also transmit data through wireless signals. transmission.
- the battery 14 on the front side of this embodiment can provide low-voltage DC power for the two sets of brake motors 32 on the front side and the two sets of steering gears 42 on the front side
- the battery 14 on the rear side can provide two sets of brake motors on the rear side.
- 32 and the two groups of steering gears 42 on the rear side provide low-voltage direct current, that is, both the brake motor 32 and the steering gear 42 are electrically connected to the battery 14 through low-voltage wires.
- the junction box 15 on the front side can provide high-voltage direct current for the two sets of in-wheel motors 22 on the front side
- the junction box 15 on the rear side can provide high-voltage direct current for the two sets of in-wheel motors 22 on the rear side, that is, the in-wheel motors 22 It is electrically connected to the junction box 15 through a high-voltage line.
- the braking system of this embodiment includes four sets of brake calipers 33 , four sets of friction plates 34 and four sets of brake discs 35 , each set of brake calipers 33 is connected to a set of brake motors 32 , Each set of friction discs 34 is connected to a set of brake calipers 33 , each set of brake discs 35 is arranged on a set of wheels, and each set of brake discs 35 is respectively arranged corresponding to a set of friction discs 34 .
- the brake module controls the brake motor 32 to apply pressure to the friction plate 34 through the brake caliper 33 to realize the braking of the friction plate 34 to the brake disc 35 and to brake the wheel.
- This embodiment also provides a method for controlling a distributed four-wheel drive pure electric platform as described in this embodiment, including:
- the voltage regulation module 13, the battery control module 11, the vehicle control module 21, the brake control module 31 and the steering control module 41 are integrated into a domain control module.
- the domain control module controls the in-wheel motors 22 and 41.
- the voltage regulation module 13 is powered on at high voltage, and the distributed four-wheel-drive pure electric platform only has the driving conditions after the high-voltage power-on of the distributed four-wheel drive pure electric platform;
- the domain control module can respectively control the braking torque provided by the hub motor 22 and the braking motor 32 to the wheels.
- the domain control module can control the in-wheel motor 22 to reduce the driving torque, or control the brake motor 32 to output the braking torque to reduce the speed of the wheel;
- the domain control module can respectively control the in-wheel motor 22 and the brake motor 32 to realize the in-situ steering or lateral parking of the distributed four-wheel drive pure electric platform;
- the brake control module 31 can control the brake motor 32 to brake the wheels.
- the domain control module of this embodiment has lower cost, and compared with the distributed control structure, the integrated domain control module has a shorter corresponding time and can control High precision.
- the voltage regulation module 13 , the battery control module 11 , the vehicle control module 21 , the brake control module 31 and the steering control module 41 can also obtain demand signals through the intelligent network control unit, so as to be combined with intelligent driving, Realize the automatic control of the distributed four-wheel drive pure electric platform.
- the domain control module in this embodiment is directly connected to the power battery 12 through a high-voltage line.
- the vehicle control of the domain control module controls the in-wheel motor 22 to reduce the driving torque, or the braking module controls the braking motor 32 to output braking torque.
- the control method of the distributed four-wheel drive pure electric platform provided by this embodiment has rich operation modes and high safety performance, and the domain control module can adjust the wheel hub motor 22 and the brake motor 32 in real time according to the operating conditions of the distributed four-wheel drive pure electric platform. And the steering gear 42 to realize the smooth operation of the distributed four-wheel drive pure electric platform.
- the in-wheel motor 22 when the vehicle body is in a decelerating state, first, the in-wheel motor 22 generates electricity and the vehicle control module 21 calculates the first braking torque. At this time, the electrical energy generated by the in-wheel motor 22 is stored in the power battery 12, and then the vehicle controls The module 21 distributes the second braking torque to the in-wheel motor 22, while the vehicle control module 21 distributes the third braking torque to the braking motor 32 through the braking control module 31, wherein the third braking torque and the second braking torque are The sum of the dynamic torques is equal to the first braking torque.
- the third braking torque is zero, that is, the braking motor 32 does not need to output braking torque; when the vehicle control module 21 calculates When the first braking torque cannot be realized only by the in-wheel motor 22, the third braking torque is greater than zero, but at this time, the sum of the third braking torque and the second braking torque is equal to the first braking torque, so as to ensure the in-wheel motor 22
- the total braking torque output by the braking motor 32 and the braking motor 32 is equal to the first braking torque calculated by the vehicle control module 21, which ensures that the distributed four-wheel drive pure electric platform operates according to the required working conditions.
- the distributed four-wheel drive pure electric platform When driving in a straight line, once the vehicle speed of the wheels does not change or the vehicle speed reaches the maximum speed limit, the distributed four-wheel drive pure electric platform enters the constant speed driving stage, and the total torque output by the vehicle control module 21 remains unchanged. Efficiency balances the driving force received by the front and rear wheels, ensuring that the distributed four-wheel drive pure electric platform runs at a uniform speed.
- the steering control module 41 controls the steering gear 42 to drive the wheels to rotate, while the vehicle control module 21 controls the hub generator to drive the wheels to move until the wheels move to a preset position, and the brake control module 31 controls the brakes.
- the motor 32 brakes the wheels.
- the vehicle control module 21 controls the in-wheel motor 22 to apply braking torque to the wheels, and the vehicle control module 21 controls the in-wheel motor 22 to apply braking torque to the wheels through the brake control module 31. dynamic torque.
- the vehicle control module 21 controls the braking torque provided by the in-wheel motor 22 to the wheels, and the braking control module 31 controls the braking motor 32 to be The braking torque provided by the wheel to gradually reduce the braking force of the wheel.
- the domain control module controls the in-wheel motor 22 and the voltage regulation module 13 to power on at high voltage
- the vehicle control module 21 , the braking control module 31 and the steering control module 41 of the distributed four-wheel drive pure electric platform Calculate the torque, rotational speed or displacement that the controlled object needs to achieve according to the input signal, and then send control commands to the controlled object's in-wheel motor 22, brake motor 32 and steering gear 42, and the controlled object is implemented according to the control instructions.
- the acceleration signal as a
- the deceleration signal as b
- the vehicle speed as v.
- the acceleration signal, deceleration signal and vehicle speed change as follows:
- the distributed four-wheel drive pure electric platform enters the acceleration state from a constant speed state, a>0, at this time ⁇ v>0;
- the distributed four-wheel drive pure electric platform changes from a constant speed state
- FIG. 3 it shows a schematic structural diagram of an electronic device (such as a terminal device or a server in Fig. 3) 600 suitable for implementing an embodiment of the present disclosure.
- Terminal devices in the embodiments of the present disclosure may include, but are not limited to, such as mobile phones, notebook computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablets), PMPs (portable multimedia players), vehicle-mounted terminals (eg, mobile terminals such as in-vehicle navigation terminals), etc., and stationary terminals such as digital TVs, desktop computers, and the like.
- the electronic device shown in FIG. 3 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present disclosure.
- electronic device 600 may include processing means (eg, central processing unit, graphics processor, etc.) 601 that may be loaded into random access according to a program stored in read only memory (ROM) 602 or from storage means 608
- processing means eg, central processing unit, graphics processor, etc.
- ROM read only memory
- RAM memory
- various programs and data required for the operation of the electronic device 600 are also stored.
- the processing device 601, the ROM 602, and the RAM 603 are connected to each other through a bus 604.
- An input/output (I/O) interface 605 is also connected to bus 604 .
- I/O interface 605 input devices 606 including, for example, a touch screen, touchpad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, a liquid crystal display (LCD), speakers, vibration An output device 607 of a computer, etc.; a storage device 608 including, for example, a magnetic tape, a hard disk, etc.; and a communication device 609.
- Communication means 609 may allow electronic device 600 to communicate wirelessly or by wire with other devices to exchange data.
- FIG. 3 shows electronic device 600 having various means, it should be understood that not all of the illustrated means are required to be implemented or provided. More or fewer devices may alternatively be implemented or provided.
- embodiments of the present disclosure include a computer program product comprising a computer program carried on a non-transitory computer readable medium, the computer program comprising program code arranged to perform the method illustrated in the flowchart.
- the above-mentioned computer-readable medium may be included in the electronic device; or may exist alone without being incorporated into the electronic device.
- the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed, the following steps are performed:
- the domain control module controls the in-wheel motor (22) and the voltage regulation module (13) to be powered on at high voltage;
- the domain control module controls the respective The in-wheel motor (22) and the brake motor (32) provide braking torque for the wheel;
- the domain control module controls the in-wheel motor (22) to reduce driving torque, or controls the brake motor (32) to output braking torque;
- the domain control module controls the in-wheel motor (22), the brake motor (32) and the steering gear (42) respectively, so as to realize in-situ steering or lateral parking of the distributed four-wheel drive pure electric platform car;
- the braking control module (31) controls the braking motor (32) to brake the wheels.
- the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
- the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
- a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
- a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
- a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
- Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, electrical wire, optical fiber cable, RF (radio frequency), etc., or any suitable combination of the foregoing.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
一种分布式四驱纯电动平台,包括:电能系统,包括电池控制模块(11)、动力电池(12)、电压调节模块(13)、两组蓄电池(14)及两组分线盒(15);动力系统,包括整车控制模块(21)、四组与所述动力电池(12)相连的轮毂电机(22);制动系统,包括制动控制模块(31)、四组与所述动力电池(12)相连的制动电机(32);转向系统,包括转向控制模块(41)、四组与所述动力电池(12)相连的转向机(42)。还提供了一种分布式四驱纯电动平台的控制方法。该分布式四驱纯电动平台实现分布式四驱纯电动平台的制动,提高了分布式四驱纯电动平台的安全性。
Description
本申请要求在2021年4月13日提交中国专利局、申请号为202110396838.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及车辆的控制技术领域,例如涉及一种分布式四驱纯电动平台及其控制方法。
相关技术中的电动车辆大多为前驱车辆或者后驱车辆,前驱车辆的电机布置在车辆的前端,车舱内空间有限,后驱车辆的电机布置在地板的下端,对地板下部的空间需求较大,不利于电动车辆的整体分布。电动车辆通过动力电池和配电盒满足元件对高电压直流电的供电需求,配电盒的成本较高,使得电动车辆的生产成本较高,电动车辆的直线驱动、转向及制动功能可通过控制器的控制实现,一旦电动车辆发生故障,无法正常制动电动车辆,不利于电动车辆的安全运行。
发明内容
本申请提供一种分布式四驱纯电动平台,增加了车舱的内部空间,利于分布式四驱纯电动平台的整体分布,分布式四驱纯电动平台的电压调节模块、电池控制模块、整车控制模块、制动控制模块及转向控制模块分别控制相应的元件,实现分布式四驱纯电动平台的各种功能,即使分布式四驱纯电动平台发生故障,制动控制模块仍能驱动制动电机为车轮提供制动力矩,实现分布式四驱纯电动平台的制动,提高了分布式四驱纯电动平台的安全性。
本申请提供一种分布式四驱纯电动平台的控制方法,操作方式丰富,安全性能高。
本申请采用以下技术方案:
一种分布式四驱纯电动平台,应用于电动汽车,所述电动汽车包括所述分布式四驱纯电动平台,车本体和车轮,所述分布式四驱纯电动平台包括:电能系统,包括电池控制模块、动力电池、电压调节模块、两组蓄电池及两组分线盒,所述电池控制模块分别与所述动力电池和所述电压调节模块电连接,所述电压调节模块与所述动力电池通过高压线相连,且设置为将高压直流电转换为低压直流电,两组所述蓄电池分别与所述电压调节模块的输出端相连,两组所述蓄电池分别设置在车本体的前侧和后侧,两组所述分线盒分别与所述动力电 池相连且位于所述车本体的前侧和后侧,所述分线盒设置为供给高压直流电;动力系统,包括整车控制模块、四组与所述动力电池相连的轮毂电机,所述整车控制模块分别与四组所述轮毂电机相连,四组所述轮毂电机分别与四组车轮一一对应设置,每组所述轮毂电机被配置为改变对应车轮的驱动力矩;制动系统,包括制动控制模块、四组与所述动力电池相连的制动电机,所述制动控制模块分别与所述整车控制模块和四组所述制动电机相连,每组所述制动电机被配置为改变对应车轮的制动力矩;转向系统,包括转向控制模块、四组与所述动力电池相连的转向机,所述转向控制模块分别与四组所述转向机相连,四组所述转向机分别与四组所述车轮一一对应设置,每组所述转向机被配置为改变对应车轮的转向扭矩。
一种如以上方案所述分布式四驱纯电动平台的控制方法,包括:
所述电压调节模块、所述电池控制模块、所述整车控制模块、所述制动控制模块及所述转向控制模块集成为域控制模块,启动所述分布式四驱纯电动平台时,所述域控制模块控制所述轮毂电机和所述电压调节模块高压上电;
当所述车本体减速、在转向过程中出现的侧向力不足或者在制动过程中出现所述车轮抱死的状态时,所述域控制模块分别控制所述轮毂电机和所述制动电机为所述车轮提供的制动力矩;
当所述车本体在加速过程中出现打滑时,所述域控制模块控制所述轮毂电机减小驱动力矩,或者控制所述制动电机输出制动力矩,以减小所述车轮的车速;
所述域控制模块分别控制所述轮毂电机和所述制动电机实现所述分布式四驱纯电动平台的原地转向时或者横向泊车;
当所述分布式四驱纯电动平台处于故障状态时,所述制动控制模块控制所述制动电机制动所述车轮。
图1是本申请实施例提供的分布式四驱纯电动平台的原理示意图;
图2是本申请实施例提供的分布式四驱纯电动平台由一种状态切换为另一种状态的框图;
图3是本申请实施例提供的一种电子设备的结构示意图。
图中:
11、电池控制模块;12、动力电池;13、电压调节模块;14、蓄电池;15、分线盒;16、充电口;
21、整车控制模块;22、轮毂电机;
31、制动控制模块;32、制动电机;33、制动钳;34、摩擦片;35、制动 盘;
41、转向控制模块;42、转向机。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本实施例提供一种分布式四驱纯电动平台,如图1所示,该分布式四驱纯电动平台包括电能系统、动力系统、制动系统及转向系统,电能系统包括电池控制模块11、动力电池12、电压调节模块13、两组蓄电池14及两组分线盒15,电池控制模块11分别与动力电池12和电压调节模块13电连接,电压调节模块13与动力电池12通过高压线相连,且设置为将高压直流电转换为低压直流电,两组蓄电池14均与电压调节模块13的输出端相连,两组蓄电池14分别设置在车本体的前侧和后侧,两组分线盒15均与动力电池12相连且位于车本体的前侧和后侧,分线盒15设置为供给高压直流电,动力系统包括整车控制模块21、四组与动力电池12相连的轮毂电机22,整车控制模块21分别与四组轮毂电机22相连,四组轮毂电机22分别与四组车轮一一对应设置,每组轮毂电机22被配置为能够改变一组车轮的驱动力矩,制动系统包括制动控制模块31、四组与动力电池12相连的制动电机32,制动控制模块31分别与整车控制模块21和四组制动电机32相连,每组制动电机32被配置为能够改变一组车轮的制动力矩,转向系统包括转向控制模块41、四组与动力电池12相连的转向机42,转向控制模块41分别与四组转向机42相连,四组转向机42分别与四组车轮一一对应设置,每组转向机42被配置为能够改变一组车轮的转向扭矩。
需要说明的是,本实施例的轮毂电机22直接与车轮相连,与相关技术中的两者通过传动轴相连的连接方式相比,减少了转向限制,实现了小转向半径和横向行驶的功能。本实施例的电池控制模块11设置为控制动力电池12的充电、放电等,整车控制模块21能够分别控制每组轮毂电机22,从而实现每组轮毂电 机22驱动或者制动相应的车轮,整车控制模块21分配给每组轮毂电机22的驱动力矩或者制动力矩根据分布式四驱纯电动平台的实际运行情况进行设定,使得每组车轮受到的驱动力或者制动力相同或者不同。当该分布式四驱纯电动平台在斜坡上行驶时,通过合理分配各个轮毂电机22驱动车轮的驱动力实现防溜坡的功能,最终使该分布式四驱纯电动平台能够平稳、安全的运行。
本实施例的制动控制模块31能够分别控制每组制动电机32,从而实现每组制动电机32制动相应的车轮,制动控制模块31分配给每组制动电机32的制动力矩根据分布式四驱纯电动平台的实际运行情况进行设定,使得每组车轮受到的制动力相同或者不同,最终使分布式四驱纯电动平台能够平稳、安全的运行。
本实施例的转向控制模块41能够分别控制每组转向机42,从而实现每组转向机42带动相应的车轮转动,转向控制模块41驱动每组转动带动车轮的转角根据分布式四驱纯电动平台的实际运行情况进行设定,使得每组车轮转动的角度相同或者不同。
例如,本实施例的每组车轮均包括一个车轮,四组车轮分别位于车本体的左前方、左后方、右前方及右后方,同样的,每组轮毂电机22均包括一个轮毂电机22,每组制动电机32均包括一个制动电机32,每组转向机42均包括一个转向机42,四个轮毂电机22、四个制动电机32及四个转向机42分别与四个车轮一一对应设置。
本实施例的分布式四驱纯电动平台能够根据分布式四驱纯电动平台的实际运行状况选择前驱、或者后驱、或者四驱,使得分布式四驱纯电动平台平稳运行。例如,当分布式四驱纯电动平台在冰雪、湿滑或者弯道上行驶时,可以选择前驱或者四驱运动模式,此时车轮的抓地能力较高,增加了分布式四驱纯电动平台平稳运行的可能性。当分布式四驱纯电动平台在赛道上行驶时,可以选择后驱,分布式四驱纯电动平台通过漂移进行转弯。
本实施例提供的分布式四驱纯电动平台的轮毂电机22和制动电机32分别与车轮对应设置,不会占用车舱内的空间,利于分布式四驱纯电动平台的整体分布,电能系统的电压调节模块13能够将高压直流电转换为低压直流电,进而为蓄电池14和其他元件提供低压直流电,两组蓄电池14分别布置在车本体的前侧和后侧,降低了分布式四驱纯电动平台内部的电线分布的复杂度,设置在车本体的前后两侧的分线盒15与相关技术中的配电盒相比,结构简单,生产成本更低,由于分布式四驱纯电动平台的电压调节模块13、电池控制模块11、整车控制模块21、制动控制模块31及转向控制模块41分别控制相应的元件,实现相应的功能,即使分布式四驱纯电动平台发生故障,制动控制模块31仍能控制制动电机32为车轮提供制动力矩,实现分布式四驱纯电动平台的制动,提高了分布式四驱纯电动平台的安全性。
如图1所示,本实施例的电能系统还包括充电口16和便携式充电机(图中未示出),充电口16与动力电池12相连,能够与直流充电桩相连,便携式充电机可拆卸地设置在充电口16,便携式充电机设置为将交流充电桩的交流电转换为直流电。当使用直流充电桩对动力电池12进行充电时,直流充电桩直接与充电口16连接即可;当使用交流充电桩对动力电池12进行充电时,交流充电桩通过便携式充电机插在充电口16,实现对动力电池12的充电。相关技术中,电能系统包括直流充电孔和交流充电孔,交流充电孔和动力电池12之间通过相应的转换元件进行连接,与相关技术相比,省去了交流充电孔,使用与充电口16可拆卸连接的便携式充电机替换了相关技术中的转换元件,降低了分布式四驱纯电动平台的整体重量,有利于分布式四驱纯电动平台的小型化设置。
如图1所示,本实施例的电压调节模块13、电池控制模块11、整车控制模块21、制动控制模块31及转向控制模块41设置于车本体的同一区域,这种分布方式与分布在车本体的各个区域相比,降低了各个模块之间的数据交换的响应时长,提高了分布式四驱纯电动平台的控制精度。本实施例的电压调节模块13、电池控制模块11、整车控制模块21、制动控制模块31及转向控制模块41之间可以通过线束传递的低压信号进行数据传输,还可以通过无线信号进行数据传输。
例如,本实施例的前侧的蓄电池14能够为前侧的两组制动电机32和前侧的两组转向机42提供低压直流电,后侧的蓄电池14能够为后侧的两组制动电机32和后侧的两组转向机42提供低压直流电,即制动电机32和转向机42均通过低压线与蓄电池14进行电连接。本实施例的前侧的分线盒15能够为前侧的两组轮毂电机22提供高压直流电,后侧的分线盒15能够为后侧的两组轮毂电机22提供高压直流电,即轮毂电机22通过高压线与分线盒15进行电连接。
如图1所示,本实施例的制动系统包括四组制动钳33、四组摩擦片34及四组制动盘35,每组制动钳33均与一组制动电机32相连,每组摩擦片34均与一组制动钳33相连,每组制动盘35均设置在一组车轮上,每组制动盘35分别与一组摩擦片34对应设置。制动时,制动模块控制制动电机32通过制动钳33对摩擦片34施加压力,实现摩擦片34对制动盘35的制动,实现对车轮制动。
本实施例还提供一种如本实施例所述的分布式四驱纯电动平台的控制方法,包括:
电压调节模块13、电池控制模块11、整车控制模块21、制动控制模块31及转向控制模块41集成为域控制模块,启动分布式四驱纯电动平台时,域控制模块控制轮毂电机22和电压调节模块13高压上电,分布式四驱纯电动平台高压上电后,该分布式四驱纯电动平台才具备行驶条件;
当车本体减速、在转向过程中出现的侧向力不足或者在制动过程中出现车 轮抱死的状态时,域控制模块能够分别控制轮毂电机22和制动电机32为车轮提供的制动力矩;
当车本体在加速过程中出现打滑时,域控制模块能够控制轮毂电机22减小驱动力矩,或者控制制动电机32输出制动力矩,以减小车轮的车速;
域控制模块能够分别控制轮毂电机22和制动电机32实现分布式四驱纯电动平台的原地转向时或者横向泊车;
当分布式四驱纯电动平台处于故障状态时,制动控制模块31能够控制制动电机32制动车轮。
本实施例的域控制模块与相关技术中的分布式四驱纯电动平台的控制结构相比,成本更低,且集成式的域控制模块与分散式的控制结构相比,相应时长短,控制精度高。在其他实施例中,电压调节模块13、电池控制模块11、整车控制模块21、制动控制模块31及转向控制模块41还可以通过智能网联控制单元获取需求信号,从而与智能驾驶结合,实现对分布式四驱纯电动平台的自动化控制。
需要说明的是,本实施例的域控制模块通过高压线直接与动力电池12相连。当车本体在加速过程中出现滑行状态时,需要降低车轮的车速,因此,域控制模块的整车控制控制轮毂电机22减小驱动力矩,或者制动模块控制制动电机32输出制动力矩。
本实施例提供的分布式四驱纯电动平台的控制方法,操作方式丰富,安全性能高,域控制模块能够根据分布式四驱纯电动平台的运行工况实时调整轮毂电机22、制动电机32及转向机42,实现分布式四驱纯电动平台的平稳运行。
例如,当车本体处于减速状态时,首先,轮毂电机22发电且整车控制模块21计算出第一制动力矩,此时轮毂电机22产生的电能存储在动力电池12中,接着,整车控制模块21将第二制动力矩分配给轮毂电机22,同时整车控制模块21将第三制动力矩通过制动控制模块31分配给制动电机32,其中,第三制动力矩和第二制动力矩之和等于第一制动力矩。
例如,当整车控制模块21计算的第一制动力矩能够通过轮毂电机22实现时,第三制动力矩为零,即制动电机32无需输出制动力矩;当整车控制模块21计算出第一制动力矩不能仅仅通过轮毂电机22实现时,第三制动力矩大于零,但此时第三制动力矩和第二制动力矩之和等于第一制动力矩,以保证轮毂电机22和制动电机32输出的总的制动力矩等于整车控制模块21计算的第一制动力矩,保证分布式四驱纯电动平台按需求的工况进行运行。
当直线行驶时,一旦车轮的车速不变或者车速达到最大限速,分布式四驱纯电动平台进入匀速行驶阶段,整车控制模块21输出的总扭矩不变,此时可以根据轮毂电机22的效率平衡前后车轮受到的驱动力,保证分布式四驱纯电动平 台匀速运行。
原地转向或者横向泊车时,转向控制模块41控制转向机42带动车轮转动,同时整车控制模块21控制轮毂发电机带动车轮移动,直至车轮移动至预设位置,制动控制模块31控制制动电机32制动车轮。
当车本体在转向过程中出现侧向力不足时,整车控制模块21控制轮毂电机22为车轮施加制动力矩,同时整车控制模块21通过制动控制模块31控制轮毂电机22为车轮施加制动力矩。
当分布式四驱纯电动平台在制动过程中出现车轮抱死的状态时,整车控制模块21控制轮毂电机22为车轮提供的制动力矩,同时制动控制模块31控制制动电机32为车轮提供的制动力矩,以逐渐减小车轮的制动力。
启动分布式四驱纯电动平台时,域控制模块控制轮毂电机22和电压调节模块13高压上电,分布式四驱纯电动平台的整车控制模块21、制动控制模块31及转向控制模块41根据输入信号计算被控对象需要实现的扭矩、转速或者位移,然后向被控对象轮毂电机22、制动电机32及转向机42发送控制指令,被控对象按控制指令实现。定义加速信号为a,减速信号为b,车速为v,当域控制器发出加速的信号时,a>0;当域控制器发出减速的信号时,b<0;当分布式四驱纯电动平台匀速行驶时,Δv=0;当分布式四驱纯电动平台的速度逐渐增加时,Δv>0;当分布式四驱纯电动平台的速度逐渐减小时,Δv<0。
例如,如图2所示,当分布式四驱纯电动平台刹车且处于停车状态时,a=0、b>0、v=0;当分布式四驱纯电动平台处于加速状态时,a>0、b=0、Δv>0;当分布式四驱纯电动平台处于匀速运动状态时,a>0、b=0、Δv=0;当分布式四驱纯电动平台处于滑行状态时,a=0、b=0、Δv<0;当分布式四驱纯电动平台处于减速状态时,a>0、b>0、Δv<0。
如图2所示,分布式四驱纯电动平台由一种状态切换为另一种状态时,加速信号、减速信号及车速的变化情况如下:当分布式四驱纯电动平台由停车状态进入加速状态时,a>0且b=0,此时Δv>0;当分布式四驱纯电动平台由加速状态进入匀速状态时,Δv=0;当分布式四驱纯电动平台由加速状态进入滑行状态时,a=0,此时Δv<0;当分布式四驱纯电动平台由匀速状态进入加速状态时,a>0,此时Δv>0;当分布式四驱纯电动平台由匀速状态进入滑行状态时,a=0,此时Δv<0;当分布式四驱纯电动平台由滑行状态进入匀速状态时,a>0,此时Δv=0;当分布式四驱纯电动平台由滑行状态进入加速状态时,a>0,此时Δv>0;当分布式四驱纯电动平台由滑行状态进入减速状态时,a=0且b>0,此时Δv<0;当分布式四驱纯电动平台由减速状态进入滑行状态时,b=0,此时Δv<0;当分布式四驱纯电动平台由减速状态进入停车状态时,v=0。
参考图3,其示出了适于用来实现本公开实施例的电子设备(例如图3中的 终端设备或服务器)600的结构示意图。本公开实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图3示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图3所示,电子设备600可以包括处理装置(例如中央处理器、图形处理器等)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储装置608加载到随机访问存储器(RAM)603中的程序而执行多种适当的动作和处理。在RAM 603中,还存储有电子设备600操作所需的多种程序和数据。处理装置601、ROM 602以及RAM 603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。
通常,以下装置可以连接至I/O接口605:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置606;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置607;包括例如磁带、硬盘等的存储装置608;以及通信装置609。通信装置609可以允许电子设备600与其他设备进行无线或有线通信以交换数据。虽然图3示出了具有多种装置的电子设备600,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
例如,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含设置为执行流程图所示的方法的程序代码。
上述计算机可读介质可以是电子设备中所包含的;也可以是单独存在,而未装配入电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被执行时,执行以下步骤:
响应于确定启动所述分布式四驱纯电动平台,所述域控制模块控制所述轮毂电机(22)和所述电压调节模块(13)高压上电;
响应于确定出现以下之一的情况:所述车本体减速,在转向过程中出现侧向力不足状态,以及在制动过程中出现所述车轮抱死的状态,所述域控制模块分别控制所述轮毂电机(22)和所述制动电机(32)为所述车轮提供制动力矩;
响应于确定所述车本体在加速过程中出现打滑状态,所述域控制模块控制所述轮毂电机(22)减小驱动力矩,或者控制所述制动电机(32)输出制动力矩;
所述域控制模块分别控制所述轮毂电机(22),所述制动电机(32)和所述 转向机(42),以实现所述分布式四驱纯电动平台的原地转向或者横向泊车;
响应于确定所述分布式四驱纯电动平台处于故障状态,所述制动控制模块(31)控制所述制动电机(32)制动所述车轮。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
Claims (10)
- 一种分布式四驱纯电动平台,应用于电动汽车,所述电动汽车包括所述分布式四驱纯电动平台,车本体和车轮,所述分布式四驱纯电动平台包括:电能系统,包括电池控制模块(11)、动力电池(12)、电压调节模块(13)、两组蓄电池(14)及两组分线盒(15),所述电池控制模块(11)分别与所述动力电池(12)和所述电压调节模块(13)电连接,所述电压调节模块(13)与所述动力电池(12)通过高压线相连,且设置为将高压直流电转换为低压直流电,两组所述蓄电池(14)分别与所述电压调节模块(13)的输出端相连,两组所述蓄电池(14)分别设置在所述车本体的前侧和后侧,两组所述分线盒(15)分别与所述动力电池(12)相连且位于所述车本体的前侧和后侧,所述分线盒(15)设置为供给高压直流电;动力系统,包括整车控制模块(21)、四组与所述动力电池(12)相连的轮毂电机(22),所述整车控制模块(21)分别与四组所述轮毂电机(22)相连,四组所述轮毂电机(22)分别与四组所述车轮一一对应设置,每组所述轮毂电机(22)被配置为改变对应车轮的驱动力矩;制动系统,包括制动控制模块(31)、四组与所述动力电池(12)相连的制动电机(32),所述制动控制模块(31)分别与所述整车控制模块(21)和四组所述制动电机(32)相连,每组所述制动电机(32)被配置为可改变对应车轮的制动力矩;转向系统,包括转向控制模块(41)、四组与所述动力电池(12)相连的转向机(42),所述转向控制模块(41)分别与四组所述转向机(42)相连,四组所述转向机(42)分别与四组所述车轮一一对应设置,每组所述转向机(42)被配置为可改变对应车轮的转向扭矩。
- 根据权利要求1所述的分布式四驱纯电动平台,其中,所述电能系统还包括:充电口(16),与所述动力电池(12)相连,设置为与直流充电桩相连;便携式充电机,可拆卸地设置在所述充电口(16),所述便携式充电机设置为将交流充电桩中的交流电转换为直流电。
- 根据权利要求1所述的分布式四驱纯电动平台,其中,前侧的所述蓄电池(14)为前侧的两组所述制动电机(32)和前侧的两组所述转向机(42)提供低压直流电,后侧的所述蓄电池(14)为后侧的两组所述制动电机(32)和后侧的两组所述转向机(42)提供低压直流电。
- 根据权利要求1所述的分布式四驱纯电动平台,其中,前侧的所述分线盒(15)为前侧的两组所述轮毂电机(22)提供高压直流电,后侧的所述分线盒(15)为后侧的两组所述轮毂电机(22)提供高压直流电。
- 根据权利要求1所述的分布式四驱纯电动平台,其中,所述制动系统还 包括:四组制动钳(33),四组所述制动钳(33)分别与四组所述制动电机(32)一一对应相连;四组摩擦片(34),四组所述摩擦片(34)分别与四组所述制动钳(33)一一对应相连;四组制动盘(35),四组所述制动盘(35)分别设置在四组所述车轮上,四组所述制动盘(35)分别与四组所述摩擦片(34)一一对应设置。
- 一种如权利要求1-5任一项所述的分布式四驱纯电动平台的控制方法,所述电压调节模块(13)、所述电池控制模块(11)、所述整车控制模块(21)、所述制动控制模块(31)及所述转向控制模块(41)集成为域控制模块,所述方法包括:响应于确定启动所述分布式四驱纯电动平台,所述域控制模块控制所述轮毂电机(22)和所述电压调节模块(13)高压上电;响应于确定出现以下之一的情况:所述车本体减速,在转向过程中出现侧向力不足状态,以及在制动过程中出现所述车轮抱死的状态,所述域控制模块分别控制所述轮毂电机(22)和所述制动电机(32)为所述车轮提供制动力矩;响应于确定所述车本体在加速过程中出现打滑状态,所述域控制模块控制所述轮毂电机(22)减小驱动力矩,或者控制所述制动电机(32)输出制动力矩;所述域控制模块分别控制所述轮毂电机(22),所述制动电机(32)和所述转向机(42),以实现所述分布式四驱纯电动平台的原地转向或者横向泊车;响应于确定所述分布式四驱纯电动平台处于故障状态,所述制动控制模块(31)控制所述制动电机(32)制动所述车轮。
- 根据权利要求6所述的方法,其中,响应于确定所述车本体处于减速状态,所述轮毂电机(22)发电且所述整车控制模块(21)计算出第一制动力矩,所述整车控制模块(21)将第二制动力矩分配给所述轮毂电机(22),所述整车控制模块(21)将第三制动力矩通过所述制动控制模块(31)分配给所述制动电机(32),其中,所述第三制动力矩和所述第二制动力矩之和等于所述第一制动力矩。
- 根据权利要求6所述的方法,其中,响应于确定所述车本体在转向过程中侧向力不足,所述整车控制模块(21)控制所述轮毂电机(22)为所述车轮施加制动力矩,所述制动控制模块(31)控制所述制动电机(32)为所述车轮施加制动力矩。
- 根据权利要求6所述的方法,其中,响应于确定所述分布式四驱纯电动平台在制动过程中出现所述车轮抱死的状态,所述整车控制模块(21)控制所 述轮毂电机(22)为所述车轮提供的制动力矩,所述制动控制模块(31)控制所述制动电机(32)为所述车轮提供的制动力矩。
- 根据权利要求6所述的方法,其中,所述域控制模块分别控制所述轮毂电机(22),所述制动电机(32)和所述转向机(42),以实现所述分布式四驱纯电动平台的原地转向或者横向泊车包括:所述转向控制模块(41)控制所述转向机(42)带动所述车轮转动,所述整车控制模块(21)控制所述轮毂电机(22)带动所述车轮移动,直至所述车轮移动至预设位置,所述制动控制模块(31)控制所述制动电机(32)制动所述车轮,以实现所述分布式四驱纯电动平台的原地转向或者横向泊车。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110396838.7 | 2021-04-13 | ||
CN202110396838.7A CN113060012A (zh) | 2021-04-13 | 2021-04-13 | 一种分布式四驱纯电动平台及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022218246A1 true WO2022218246A1 (zh) | 2022-10-20 |
Family
ID=76567225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/086051 WO2022218246A1 (zh) | 2021-04-13 | 2022-04-11 | 分布式四驱纯电动平台及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113060012A (zh) |
WO (1) | WO2022218246A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113060012A (zh) * | 2021-04-13 | 2021-07-02 | 中国第一汽车股份有限公司 | 一种分布式四驱纯电动平台及其控制方法 |
CN114347800B (zh) * | 2022-01-14 | 2023-10-03 | 中国第一汽车股份有限公司 | 一种分布式四驱纯增程系统及其控制方法 |
CN116749743B (zh) * | 2023-06-15 | 2024-08-13 | 中国第一汽车股份有限公司 | 四驱动力系统、车辆及车辆的控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070188125A1 (en) * | 2006-02-13 | 2007-08-16 | Component Systems Inc. | Inverted electric motor and method for using such to propel a vehicle |
CN205202749U (zh) * | 2015-11-27 | 2016-05-04 | 北汽福田汽车股份有限公司 | 电动汽车的动力系统和电动汽车 |
CN106671762A (zh) * | 2016-12-19 | 2017-05-17 | 北京理工大学 | 一种分布式驱动的纯电动汽车 |
CN110588366A (zh) * | 2019-09-10 | 2019-12-20 | 东风汽车集团有限公司 | 一种轮毂电机分布式分时四驱电动汽车底盘构型、四驱电动汽车和控制方法 |
US20210155224A1 (en) * | 2019-11-26 | 2021-05-27 | Hexagon Purus North America Holdings Inc. | Electric vehicle power distribution and drive control modules |
CN113060012A (zh) * | 2021-04-13 | 2021-07-02 | 中国第一汽车股份有限公司 | 一种分布式四驱纯电动平台及其控制方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009213227A (ja) * | 2008-03-03 | 2009-09-17 | Toyota Motor Corp | インホイールモータ制御装置 |
CN106347169A (zh) * | 2015-07-17 | 2017-01-25 | 北京理工大学 | 一种分布式四轮驱动的纯电动汽车电气系统 |
CN105015363B (zh) * | 2015-07-23 | 2017-03-29 | 江苏大学 | 一种基于分层协调的分布式驱动汽车控制系统及方法 |
CN107054260A (zh) * | 2017-04-24 | 2017-08-18 | 北京新能源汽车股份有限公司 | 一种蓄电池控制方法、系统及电动汽车 |
CN108036953B (zh) * | 2017-12-14 | 2019-08-23 | 燕山大学 | 轮毂电机驱动汽车集成设计与协同控制试验平台及实现方法 |
JP7022339B2 (ja) * | 2018-08-01 | 2022-02-18 | マツダ株式会社 | 車両の制御方法及び車両システム |
CN110525518B (zh) * | 2019-10-17 | 2024-08-09 | 吉林大学 | 一种分布式驱动车辆底盘 |
-
2021
- 2021-04-13 CN CN202110396838.7A patent/CN113060012A/zh active Pending
-
2022
- 2022-04-11 WO PCT/CN2022/086051 patent/WO2022218246A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070188125A1 (en) * | 2006-02-13 | 2007-08-16 | Component Systems Inc. | Inverted electric motor and method for using such to propel a vehicle |
CN205202749U (zh) * | 2015-11-27 | 2016-05-04 | 北汽福田汽车股份有限公司 | 电动汽车的动力系统和电动汽车 |
CN106671762A (zh) * | 2016-12-19 | 2017-05-17 | 北京理工大学 | 一种分布式驱动的纯电动汽车 |
CN110588366A (zh) * | 2019-09-10 | 2019-12-20 | 东风汽车集团有限公司 | 一种轮毂电机分布式分时四驱电动汽车底盘构型、四驱电动汽车和控制方法 |
US20210155224A1 (en) * | 2019-11-26 | 2021-05-27 | Hexagon Purus North America Holdings Inc. | Electric vehicle power distribution and drive control modules |
CN113060012A (zh) * | 2021-04-13 | 2021-07-02 | 中国第一汽车股份有限公司 | 一种分布式四驱纯电动平台及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113060012A (zh) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022218246A1 (zh) | 分布式四驱纯电动平台及其控制方法 | |
Wang et al. | Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors | |
US8073583B2 (en) | Apparatus and method for controlling energy feedback for electric vehicle | |
EP2394890B1 (en) | Vehicle trailer equipped with an additional traction system, vehicle with said trailer, and method for managing the additional traction system | |
CN109941245A (zh) | 一种电动汽车制动力分配方法 | |
JP5839045B2 (ja) | ハイブリッド車 | |
EP3150421A1 (en) | Parallel charging and power supply system for pure electric vehicle | |
JP2007253715A (ja) | 車両制御装置および車両制御方法 | |
CN102294963A (zh) | 一种双电机双能源复合驱动系统 | |
US11923718B2 (en) | Dual drive electric vehicle with unlimited range drive capabilities | |
JP5333683B1 (ja) | ハイブリッド車 | |
CN106696947A (zh) | 动力系和协调底盘与推进系统扭矩极限的方法 | |
EP2394889A1 (en) | Vehicle trailer equipped with an additional traction system, vehicle with said trailer, and method for managing the additional traction system | |
JP4919821B2 (ja) | ハイブリッド車両、ハイブリッド車両の制御方法およびハイブリッド車両の制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 | |
WO2013076806A1 (ja) | 車両駆動装置 | |
JP5114772B2 (ja) | 電動車両の駆動装置 | |
KR101237317B1 (ko) | 4륜구동 하이브리드 차량의 추진 장치 및 방법 | |
JP6365067B2 (ja) | 電動4輪駆動車両の制御装置 | |
CN111267596B (zh) | 一种电动汽车驱动装置、系统以及电动汽车 | |
CN108528201A (zh) | 一种分布式三轴驱动混合动力系统 | |
US8655528B2 (en) | Real-time allocation of actuator torque in a vehicle | |
JPH10313505A (ja) | ハイブリッド自動車 | |
US20240262216A1 (en) | Methods and system for balancing torque request during battery power control | |
KR20210052622A (ko) | 친환경 자동차 및 그를 위한 제동 제어 보정 방법 | |
US20240092185A1 (en) | Methods and systems for controlling electric motor torque in a battery electric vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22787472 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22787472 Country of ref document: EP Kind code of ref document: A1 |