WO2022218196A1 - 发射功率控制方法及相关设备 - Google Patents

发射功率控制方法及相关设备 Download PDF

Info

Publication number
WO2022218196A1
WO2022218196A1 PCT/CN2022/085411 CN2022085411W WO2022218196A1 WO 2022218196 A1 WO2022218196 A1 WO 2022218196A1 CN 2022085411 W CN2022085411 W CN 2022085411W WO 2022218196 A1 WO2022218196 A1 WO 2022218196A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
transmit power
user
antenna
application
Prior art date
Application number
PCT/CN2022/085411
Other languages
English (en)
French (fr)
Inventor
隋艺
周俭军
周宜盼
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022218196A1 publication Critical patent/WO2022218196A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/288TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account the usage mode, e.g. hands-free, data transmission, telephone

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a transmission power control method and related equipment.
  • the specific absorption rate (SAR) of electromagnetic energy is a standard quantity used to measure the absorption of electromagnetic energy generated by end products such as mobile phones by human tissue.
  • the unit of SAR is W/Kg (watts per kilogram). The larger the SAR, the greater the impact of electromagnetic radiation on the user; otherwise, the impact is less.
  • some regulatory agencies have established electromagnetic energy absorption specifications and set SAR limit values.
  • the SAR limit is the maximum amount of electromagnetic energy that can be absorbed per kilogram of human tissue in 6 minutes. For example, the SAR limit set by the US Federal Communication Commission (FCC) is 1.6W/Kg, and the SAR limit set by the European Telecommunications Standard Institute (ESTI) is 2.0W/Kg.
  • FCC US Federal Communication Commission
  • ESTI European Telecommunications Standard Institute
  • reducing the SAR value can reduce the impact of electromagnetic radiation on users, but when reducing the SAR value, it is necessary to reduce the transmission power of the electronic device during communication, which will reduce the user's sense of communication experience. So, how to meet the SAR specification while taking into account the communication performance and user experience is an urgent problem to be solved.
  • the present application provides a transmission power control method and related equipment.
  • the transmission power control method can determine the usage scenario of the electronic device according to the operation of the application, and the electronic device adjusts the transmission power of the antenna according to different usage scenarios. In this way, the problem that the electronic device adjusts the transmit power of the antenna through the normally-on sensor is avoided, the system power consumption is reduced, and the communication performance of the electronic device is improved while ensuring that the user is in a safe radiation range.
  • an embodiment of the present application provides a method for controlling transmission power.
  • the method is applied to an electronic device.
  • the electronic device includes an antenna and uses the antenna to transmit wireless signals.
  • the method includes: the electronic device runs a first application, and the antenna The transmission power of the antenna is the first transmission power; the electronic device runs the second application; after the electronic device runs the second application, the transmission power of the antenna is the second transmission power; wherein, the usage scenario corresponding to the first application and the second application When the usage scenarios corresponding to the applications are different, the first transmit power and the second transmit power are different.
  • the electronic device may determine usage scenarios according to the running applications, for example, shooting scenarios, live broadcasting scenarios, video calling scenarios, somatosensory game scenarios, video playing scenarios, and so on. Since different usage scenarios correspond to different positional relationships between the electronic device and the user, for example, the positional relationship between the electronic device and the user includes: the electronic device is far away from the user, and the electronic device is close to the user. The antenna transmit power when the electronic device is close to the user is smaller than the antenna transmit power when the electronic device is far away from the user. That is, the electronic device can adjust different antenna transmit powers according to different usage scenarios. In this way, the problem that the electronic device only uses the sensor to adjust the transmit power of the antenna is avoided, and the electronic device does not need to normally turn on the processor, thereby reducing the power consumption caused by driving the sensor.
  • the positional relationship between the electronic device and the user includes: the electronic device is far away from the user, and the electronic device is close to the user.
  • the antenna transmit power when the electronic device is close to the user is smaller than the antenna
  • the electronic device further includes a detection device, and the detection device is used to detect a change in the distance between the electronic device and the user; when the electronic device runs the first application program, the electronic device obtains the electronic device The distance between the user and the user changes.
  • the electronic device can determine the distance between the electronic device and the user according to the usage scene and the data of the detection device. Specifically, the following two situations exist:
  • the electronic device can determine the positional relationship between the electronic device and the user in combination with the usage scene and the detection device data. In this way, the electronic device can obtain a more accurate judgment result.
  • the electronic device After the electronic device determines the positional relationship between the electronic device and the user according to the usage scenario, the electronic device can calibrate or further confirm the positional relationship between the electronic device and the user according to the data collected by the detection device.
  • the electronic device determines according to the running application program that the transmission power needs to be increased, the electronic device further determines whether the electronic device needs to increase the transmission power in combination with the data of the detection device.
  • the transmit power of the antenna changes.
  • the distance between the electronic device and the user may change.
  • the electronic device can detect the distance between the electronic device and the user according to the detection device, so as to achieve the effect of adjusting the transmission power in real time and ensure that the user is in safe radiation. In the range, the size of the transmission power is further increased, and the user experience is improved.
  • the first transmit power when the distance between the electronic device and the user is less than the first value, the first transmit power is less than or equal to the maximum transmit power that complies with the electromagnetic energy absorption specification.
  • the transmission power is adjusted to meet the electromagnetic energy absorption specification.
  • the transmit power of the antenna when the distance between the electronic device and the user becomes larger, the transmit power of the antenna becomes greater; when the distance between the electronic device and the user becomes smaller, the transmit power of the antenna becomes smaller .
  • the detection device includes one or more of the following: a capacitive sensor, a time-of-flight sensor, a proximity light sensor, a biometric sensor, a hall sensor, a gyroscope sensor, an acceleration sensor, and an antenna one or more of the impedance detection circuits.
  • the user includes a plurality of body parts, and the plurality of body parts includes a first part; when the electronic device runs the first application program, the distance between the electronic device and the first part is the first distance; When the electronic device runs the second application program, the distance between the electronic device and the first part is the second distance, wherein the first distance and the second distance are different.
  • the body parts may include parts such as the head, torso, and limbs.
  • the electronic device can determine the different transmit power. In this way, under the condition that the SAR specification is met, the transmit power can be improved more precisely, and the communication performance can be improved as much as possible.
  • the multiple body parts further include a second part; when the electronic device runs the first application program, when the distance between the electronic device and the second part changes, the transmit power of the antenna changes; or, When the electronic device runs the second application program, when the distance between the electronic device and the second part changes, the transmit power of the antenna changes.
  • the electronic device may further determine the state index according to the distance from different body parts of the user, and when the index state is different, the transmit power is different.
  • the actual transmit power PA of the electronic device 100 should satisfy: P ⁇ P1 .
  • P1 MAX ⁇ P limb , P body ⁇
  • the index state indicates that the electronic device 100 is determined to be away from the torso, and not determined to be away from the limbs.
  • the actual transmit power P B of the electronic device 100 should satisfy: P B ⁇ P limb .
  • the actual transmit power PC of the electronic device 100 should satisfy: PC ⁇ P2 .
  • P C MIN ⁇ P limb ,P body ⁇ .
  • the transmit power under different state indexes may have multiple power levels. For example, when the electronic device 100 is far away from the user, when the electronic device 100 is separated from the user by a first distance and a second distance (the first distance>the second distance), the power level corresponding to the former may be greater than the power level corresponding to the latter .
  • first transmit power or second transmit power may refer to one transmit power in P A , P B , and PC, or a transmit power located within a certain level range of P A , P B , and PC. transmit power.
  • the transmit power of the antenna changes; or, the electronic device runs the second application During the program, when the electronic device runs different application operations under the second application program, the transmit power of the antenna changes.
  • the application operation includes an operation on a hardware device.
  • the application program may call the hardware interface of the electronic device in addition to calling the software interface of the electronic device.
  • the electronic device may also determine the usage scenario of the electronic device according to the calling situation of the hardware. For example, when the electronic device runs the phone application and calls the speaker, the electronic device can determine that the user is not close to the electronic device to make a call, and when the electronic device runs the phone application and calls the handset, the electronic device can determine that the user is close to the electronic device to make a call .
  • the hardware device includes a hardware device in an electronic device and a peripheral device of the electronic device.
  • the hardware devices in the electronic device may include multimedia devices, such as cameras, audio modules, buttons, USB ports, headphone jacks, etc.
  • the peripherals of the electronic device may include headphones, keyboards, mice, gamepads, VR devices, and the like.
  • the transmit power of the antenna is the third transmit power, and the third transmit power is less than or equal to the first transmit power, and The third transmit power is less than or equal to the second transmit power.
  • the electronic device before the electronic device runs the application program, the electronic device can transmit signals with a lower transmission power, and after the electronic device runs the application program, the electronic device increases the transmission power.
  • the third transmit power is less than or equal to the maximum transmit power that complies with the electromagnetic energy absorption specification.
  • the data is sent by default at the transmission power that meets the electromagnetic energy absorption specification to ensure the safety of the user.
  • an embodiment of the present application provides another transmit power control method, which is applied to an electronic device, where the electronic device includes an antenna, and the electronic device uses the antenna to transmit wireless signals, and the method includes: the electronic device runs a first application program; The device adjusts the transmit power of the antenna from the third transmit power to the first transmit power; wherein the first transmit power is greater than or equal to the third transmit power, and the third transmit power is less than or equal to the maximum transmission power that meets the electromagnetic energy absorption specification.
  • the electronic device can increase the transmit power after running the application program.
  • the signal is sent by default at the transmit power that conforms to the electromagnetic energy absorption specification, which effectively improves the communication performance, reduces interference, and enhances the user experience while taking into account the user's safety.
  • the electronic device when the electronic device runs the first application, when the electronic device runs different applications under the first application, the transmit power of the antenna changes; or, the electronic device runs the second application During the program, when the electronic device runs different application operations under the second application program, the transmit power of the antenna changes.
  • the application operation includes an operation on a hardware device
  • the hardware device includes a hardware device in the electronic device and a peripheral device of the electronic device.
  • the first transmit power when the distance between the electronic device and the user is less than the first value, the first transmit power is less than or equal to the maximum transmit power that complies with the electromagnetic energy absorption specification.
  • the electronic device further includes a detection device, and the detection device is used to detect a change in the distance between the electronic device and the user; when the electronic device runs the first application program, the electronic device obtains the electronic device and the user. As the distance between users changes, the transmit power of the antenna changes.
  • the electronic device can more accurately determine the distance between the electronic device and the user in combination with the data collected by the detection device, and further refine the antenna transmit power of the electronic device.
  • the transmit power of the antenna when the distance between the electronic device and the user becomes larger, the transmit power of the antenna becomes greater; when the distance between the electronic device and the user becomes smaller, the transmit power of the antenna becomes smaller .
  • the detection device includes one or more of the following: a capacitive sensor, a time-of-flight sensor, a proximity light sensor, a biometric sensor, a hall sensor, a gyroscope sensor, an acceleration sensor, and an antenna one or more of the impedance detection circuits.
  • the user includes multiple body parts, and the multiple body parts includes the first part; when the electronic device runs the first application program, the distance between the electronic device and the first part is the first distance; When the electronic device runs the second application program, the distance between the electronic device and the first part is the second distance, wherein the first distance and the second distance are different.
  • the multiple body parts further include a second part; when the electronic device runs the first application program, when the distance between the electronic device and the second part changes, the transmit power of the antenna changes; or, When the electronic device runs the second application program, when the distance between the electronic device and the second part changes, the transmit power of the antenna changes.
  • the transmit power of the antenna is the third transmit power, and the third transmit power is less than or equal to the first transmit power, and The third transmit power is less than or equal to the second transmit power.
  • the third transmit power is less than or equal to the maximum transmit power that meets the electromagnetic energy absorption specification.
  • an embodiment of the present application provides an electronic device, the electronic device comprising: one or more processors, a display screen, and one or more memories; wherein the display screen, the one or more memories and the one or more memories The one or more processors are coupled, and the one or more memories are used to store computer program code, the computer program code includes computer instructions that, when executed by the one or more processors, cause the electronic device to perform the first aspect or the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, characterized in that, when the instructions are executed on an electronic device, the electronic device is caused to perform the operations in the first aspect or the second aspect.
  • the electronic device when a user uses an electronic device, the electronic device can determine the antenna transmit power of the electronic device according to the running application program.
  • the application program corresponds to different scenarios, the antenna transmit power is different. In this way, it avoids the situation where the electronic device only determines the antenna transmit power of the electronic device based on the data of the sensor, reduces the power consumption caused by driving the sensor, and ensures that no matter whether the user is close to the electronic device, the problem of excessive radiation will not occur, and the safety of the user is guaranteed. , while improving the communication performance of electronic equipment.
  • FIG. 1 is a wireless communication system 10 provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for controlling transmit power
  • FIG. 3A is a schematic diagram of a hardware structure of an electronic device 100 according to an embodiment of the present application.
  • FIG. 3B is a user interface of the electronic device 100 provided by the embodiment of the present application.
  • FIG. 4 is a block diagram of the software structure of the electronic device 100 provided by the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a transmit power control method provided by an embodiment of the present application.
  • FIG. 6 is a sequence diagram of adjusting the transmit power of the electronic device 100 according to an embodiment of the present application.
  • FIG. 7 is a sequence diagram of another electronic device 100 for adjusting transmit power according to an embodiment of the present application.
  • FIG. 8A-FIG. 8F provide some exemplary scenarios in the embodiments of the present application.
  • FIG. 9 is a schematic diagram of a circuit framework provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as implying or implying relative importance or implying the number of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • FIG. 1 shows a wireless communication system 10 to which the present application relates.
  • the wireless communication system 10 may be a fifth generation mobile communication (the 5th Generation, 5G) system, a new radio (new radio, NR) system, or a long term evolution (Long Term Evolution, LTE) system, machine-to-machine communication (Machine to Machine, M2M) system, the sixth-generation communication system that will evolve in the future, etc.
  • the wireless communication system 10 may include: one or more network devices 101 , one or more terminals 103 , and a core network 115 . in:
  • the network device 101 can be a base station, and the base station can be used to communicate with one or more terminals, and can also be used to communicate with one or more base stations with partial terminal functions (for example, a macro base station and a micro base station, such as an access point, communication between).
  • the base station can be a base transceiver station (Base Transceiver Station, BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or an evolved base station (Evolutional Node B) in an LTE system. , eNB), and base stations in 5G systems and New Radio (NR) systems.
  • BTS Base Transceiver Station
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • eNB evolved base station
  • 5G systems and New Radio (NR) systems eNode B
  • the base station may also be an access point (Access Point, AP), a transmission node (Trans TRP), a central unit (Central Unit, CU) or other network entities, and
  • the terminals 103 may be distributed throughout the wireless communication system 10, and may be stationary or mobile.
  • the terminal 103 may be a user equipment UE, a mobile device, a mobile station, a mobile unit, an M2M terminal, a wireless unit, a remote unit, a user agent, a mobile client, etc. Wait.
  • the network device 101 may be configured to communicate with the terminal 103 through the wireless interface 105 under the control of a network device controller (not shown).
  • the network device controller may be part of the core network 115 or may be integrated into the network device 101 .
  • the network device 101 may be configured to transmit control information or user data to the core network 115 through a backhaul (blackhaul) interface 113 (eg, an S1 interface).
  • the network device 101 and the network device 101 may also communicate with each other directly or indirectly through a backhaul (blackhaul) interface 111 (eg, an X2 interface).
  • the wireless communication system 10 shown in FIG. 1 is for the purpose of illustrating the technical solutions of the present application more clearly, and does not constitute a limitation on the present application. Those skilled in the art know that with the evolution of the network architecture and new business scenarios appears, the technical solutions provided in this application are also applicable to similar technical problems.
  • the electromagnetic radiation generated by the terminal 103 will affect the human tissue close to the terminal 103 .
  • parameters such as electromagnetic energy absorption ratio (SAR), maximum allowable exposure (MPE) or electromagnetic field (Electromagnetic Field, EMF) can be used to measure the magnitude of electromagnetic radiation generated by the terminal to the human body.
  • SAR limit value which can limit the transmit power of the antenna of the terminal 103 when the terminal 103 transmits data to the network device 101, so as to ensure that the user is in a safe environment. Radiation range.
  • electromagnetic radiation may be generated when the terminal 103 sends radio signals, and the scenarios that need to control electromagnetic radiation are not limited to the radiation generated when the terminal 103 transmits data to the network device 101 mentioned above.
  • the terminal 103 uses Wireless communication technology sends signals to routers and other scenarios.
  • the transmit power may be further reduced when it is detected that the user is approaching the electronic device 100 .
  • This detection can be carried out by a sensor such as a proximity light sensor.
  • this type of sensor is always on, and reports the detection result to the application processor (AP) at any time, so that the AP instructs the power control circuit to adjust the transmit power according to the detection result.
  • the power control circuit can control the transmit power to comply with SAR specifications. As shown in Figure 2, the power control circuit can control the transmit power according to the following factors: the communication frequency band and the communication protocol, the power adjustment command issued by the network side (such as setting the maximum user equipment (UE) transmitter power), and the sensor data. Wherein, different communication protocols respectively impose constraints on the transmission power of each communication frequency band.
  • the transmit power of the electronic device 100 must be less than or equal to the maximum UE transmitter power delivered by the network side. If the sensor data indicates that the user is close to the electronic device, the transmit power is further controlled to meet the SAR specification under the constraints of satisfying the first two factors; otherwise, the transmit power may not be limited by the SAR specification.
  • this implementation requires the sensor to be always on so that the transmit power can be reduced in time to ensure compliance with the SAR specification when the user approaches, but this results in high sensor power consumption. Moreover, the driving of the sensor and related algorithms are executed on the application processor (AP), and the AP needs to be woken up to notify the power control circuit to adjust the transmit power, thereby further increasing the power consumption of the whole machine. Additionally, this implementation does not distinguish between limbs or torso proximity to the electronic device based on sensors.
  • an embodiment of the present application provides an electronic device 100 , and the electronic device 100 may be the terminal 103 in the wireless communication system 10 shown in FIG. 1 .
  • the electronic device 100 may communicate through wireless communication technology.
  • the electronic device 100 may include a mobile phone, a foldable electronic device, a tablet computer, a desktop computer, a laptop computer, a handheld computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a cellular Phone, personal digital assistant (PDA), augmented reality (AR) device, virtual reality (VR) device, artificial intelligence (AI) device, wearable device, in-vehicle device , at least one of smart home equipment, or smart city equipment.
  • the specific type of the electronic device 100 is not particularly limited in this embodiment of the present application.
  • the embodiment of the present application provides a transmission power control method.
  • the electronic device can determine the positional relationship between the electronic device and the user through a location recognition mechanism, and then according to This positional relationship adjusts the antenna transmit power of the electronic device. It can be seen that when the electronic device adjusts the transmit power of the antenna according to the usage scenario, it avoids the problem that the electronic device only uses the sensor to adjust the transmit power of the antenna, and the electronic device does not need a normally-on processor, which reduces the power consumption caused by driving the sensor. .
  • the positional relationship between the electronic device and the user may refer to whether the electronic device is far away from the user, and further, whether the electronic device is far away from the user can be subdivided into whether the electronic device is far away from the user's head, torso, limbs, one or more of the human body part.
  • the location identification mechanism includes but is not limited to the following two methods:
  • the usage scenario is related to the current operating state of the electronic device.
  • the running state of the electronic device may include, but is not limited to, a calling state, a photographing state, a video playing state, and the like.
  • the usage scenarios may include, but are not limited to, call scenarios, photographing scenarios, video playing scenarios, and the like.
  • the electronic device may determine the usage scenario according to the running situation of the application program and/or the calling situation of the hardware device, so as to adjust the transmit power according to the usage scenario.
  • Hardware devices may include, but are not limited to, multimedia devices, peripheral devices, and the like.
  • a multimedia device may refer to certain hardware components in an electronic device. For example, cameras, speakers, microphones, receivers, buttons, USB interfaces, etc.
  • Peripheral devices refer to external devices that can be connected to the host of the electronic device and interact with the electronic device. For example, headsets, gamepads, keyboards, mice, laptops, etc.
  • the electronic device may determine the positional relationship between the electronic device and the user according to the usage scenario. For example, when the usage scene is a photographing scene, the electronic device determines that it is far away from the user. When the usage scenario is a call scenario, the electronic device determines that it is close to the user.
  • Detection devices for detecting whether the user is far away include, but are not limited to: capacitive sensors, time-of-flight sensors, proximity light sensors, biometric sensors, Hall sensors, gyroscope sensors, acceleration sensors, and antenna impedance detection circuits.
  • capacitive sensors time-of-flight sensors
  • proximity light sensors biometric sensors
  • biometric sensors biometric sensors
  • Hall sensors Hall sensors
  • gyroscope sensors acceleration sensors
  • antenna impedance detection circuits for detecting whether the user is far away.
  • the electronic device can determine the positional relationship between the electronic device and the user in combination with the usage scene and the detection device data. In this way, the electronic device can obtain a more accurate judgment result.
  • the electronic device After the electronic device determines the positional relationship between the electronic device and the user according to the usage scenario, the electronic device can calibrate or further confirm the positional relationship between the electronic device and the user according to the data collected by the detection device.
  • the electronic device when the electronic device determines that there is a deviation according to the usage scenario, the electronic device can use the detection device data to correct the result, or when the electronic device cannot determine the positional relationship between the electronic device and the user according to the usage scenario, the electronic device can use the detection device.
  • the data can be used to determine the positional relationship between the electronic device and the user.
  • the electronic device can use the detection device data to further determine the accuracy of the judgment result of the electronic device.
  • the low power before the electronic device adjusts the transmit power of the antenna, the low power may be adopted by default, and the transmit power is increased when it is clearly far away from the human body or a part of the user's body. In this way, it can be ensured that no matter whether the user is close to the electronic device, there will be no problem of excessive radiation, and the safety of the user is guaranteed.
  • the low power used by the electronic device by default may refer to the lowest transmit power used by the electronic device that conforms to the SAR specification, or may refer to the transmit power corresponding to the level with a lower or lowest power value among multiple power levels.
  • the electronic device may determine different transmit powers when the electronic device is near or far from different body parts of the user. Since the radiation values that can be received by the user's head, torso, and limbs are different, this subdivision is conducive to improving the transmit power more precisely and improving the communication performance as much as possible while meeting the SAR specification. For example, when the electronic device is far away from the torso and limbs, the transmit power of the antenna can be adjusted to P A ; when the electronic device is close to the limbs and far away from the torso, the transmit power of the antenna can be adjusted to P B ; when the electronic device is close to the torso, the transmit power of the antenna can be adjusted to P B .
  • the transmit power can be adjusted to P C , where P A >P B >P C .
  • the transmit power of the antenna needs to be adjusted to P D , PC > P D , or PC and PD are substantially equal .
  • the transmit power control method can accurately determine whether the electronic device is far away from the user, effectively ensure that the user is in a safe radiation range when using the electronic device, and at the same time improve the communication performance of the electronic device, and the electronic
  • the device does not need a sensor that is always on. Only when the usage scenario is determined, the sensor will be called to further determine the positional relationship between the electronic device and the user, thereby reducing the power consumption of the electronic device, prolonging the standby time of the electronic device, and enhancing the electronic device. battery life.
  • FIG. 3A is a schematic diagram of a hardware structure of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 may include: an internal memory 121, a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management Module 141, Battery 142, Antenna 1, Antenna 2, Mobile Communication Module 150, Wireless Communication Module 160, Audio Module 170, Speaker 170A, Earpiece 170B, Microphone 170C, Headphone Interface 170D, Sensor Module 180, Camera 193, Display Screen 194, etc. .
  • USB universal serial bus
  • the sensor module 180 may include a gyroscope sensor 180A, an acceleration sensor 180B, a proximity light sensor 180C, a Hall sensor 180D, a capacitive proximity sensor 180E, a biometric sensor 180F, a Time-of-Flight (ToF) sensor 180G, etc. .
  • the gyro sensor 180A can detect the angular velocity of the electronic device 100 around three axes (x, y and z axes).
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenarios.
  • the acceleration sensor 180B can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes). The magnitude and direction of gravity can be detected when the electronic device 100 is stationary.
  • the proximity light sensor 180C can detect whether there is an object near the electronic device 100, for example, whether there is a user nearby, and the electronic device 100 can use the proximity light sensor 180C to detect whether the user's ear is close to the earpiece 170B during a call.
  • the hall sensor 180D can detect whether the electronic device 100 with the folding screen is in a folded state or an unfolded state.
  • the capacitive proximity sensor 180E can detect the distance between the detected object and the detection electrode. When the detected object is closer to the detection electrode, the induced charge on the detection electrode increases, and the capacitance on the detection electrode increases accordingly.
  • the biometric sensor 180F includes a fingerprint sensor for collecting fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, accessing application locks, taking pictures with fingerprints, answering incoming calls with fingerprints, and the like.
  • the time-of-flight sensor 180G can use a tiny laser to emit infrared light, where the light produced bounces off any object and returns to the sensor, measuring the distance between the object under test and that sensor based on the time difference between when the infrared light is emitted and when it returns to the sensor.
  • the device integrated at the "notch" position (area AA) of the electronic device 100 may be as shown in FIG. 3B , and the area AA may integrate a camera 193 , an earpiece 170B, a proximity light sensor 180C, a time-of-flight sensor 180G, and the like. There may be multiple cameras 193, for example, a front camera 193-1 and a front camera 193-2.
  • the "bangs" position may be at the top of the electronic device 100 .
  • FIG. 3B is a schematic structural diagram of the electronic device 100 .
  • One or more of the camera 193 , the proximity light sensor 180C and the time-of-flight sensor 180G may also be located below the display screen 194 or at other positions of the electronic device 100 .
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required for at least one function, and the like.
  • the storage data area may store data and the like created during the use of the electronic device 100 .
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the internal memory 121 may also be used to store communication protocols.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the processor 110 may be configured to determine a usage scenario, determine the positional relationship between the electronic device 100 and the user according to the usage scenario, and instruct the power control signal to adjust the transmit power when the electronic device 100 is determined to be far away from the user.
  • the processor 110 can also be used to control the driving of the sensor, and based on the data collected by the sensor, calibrate or further determine whether the electronic device 100 is far away from the user in combination with the usage scenario.
  • the processor 110 can also be used to determine whether the electronic device 100 is far away from one or more body parts of the user's head, torso, and limbs, for the electronic device 100 .
  • the electronic device determines whether it is far away from the user or a certain body part of the user please refer to the following content.
  • Processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit sound
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2S interface can be used for audio communication, and can be used to couple the processor 110 and the audio module 170 to realize the communication between the processor 110 and the audio module 170 .
  • the PCM interface can also be used for audio communication, and can be used for the audio module 170 to be coupled with the wireless communication module 160 .
  • the UART interface can be used for asynchronous communication, and is usually used to connect the processor 110 and the wireless communication module 160 .
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • the GPIO interface can be configured as a control signal or a data signal, and can be used to connect the processor 110 with the camera 193 , the display screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and the like.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices (eg, headphones, keyboards, gamepads, AR devices, etc.).
  • the above interface connection relationship is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100.
  • the electronic device 100 may also adopt different interface connection methods, or a combination of multiple interface connection methods.
  • the wireless communication function of the electronic device 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • the antenna 1 and the antenna 2 are used to transmit and detect electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • Antenna 1 and Antenna 2 can also be connected to an antenna impedance detection circuit, which can be used to detect whether there is an external object (such as a human body part such as a hand) near the antenna.
  • the mobile communication module 150 may provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can detect electromagnetic waves by the antenna 1, filter and amplify the detected electromagnetic waves, and transmit them to a modem for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor (modem), and then convert it into electromagnetic waves for radiation through the antenna 1 .
  • modem modem
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Solutions for wireless communication technologies such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 detects the electromagnetic wave via the antenna 2 , modulates and filters the electromagnetic wave signal, and sends the processed signal to the processor 110 .
  • the wireless communication module 160 can also detect the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the wireless communication module 160 may include a Bluetooth module, a Wi-Fi module, and the like.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with network devices such as base stations and other devices through wireless communication technology.
  • Wireless communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband code division Multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC, FM , and/or IR technology, etc.
  • GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi-zenith) satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • a power control circuit may be included in the modem processor (modem), and the power control circuit may adjust the signal transmission power.
  • the power control circuit can control the transmit power according to the following factors: the communication frequency band and the communication protocol, and the power adjustment command issued by the network side (such as setting the maximum user equipment (user equipment, UE) transmitter power).
  • the network side such as setting the maximum user equipment (user equipment, UE) transmitter power.
  • Different communication protocols impose constraints on the transmission power of each communication frequency band, and on this basis, the network side can also adjust the transmission power of the electronic device 100 through a power adjustment command.
  • the electronic device 100 may also determine the usage scenario according to the running situation of the application program and/or the calling situation of the hardware device, and determine whether to adjust the electronic device according to the usage scenario. 100 transmit power.
  • the electronic device 100 can also calibrate or further confirm whether to adjust the transmit power of the electronic device 100 according to the data collected by the sensor (for example, the proximity light sensor 180C), so as to control the transmit power to meet the SAR specification in this usage scenario, which will be discussed in subsequent embodiments. The detailed description will not be expanded here.
  • the sensor for example, the proximity light sensor 180C
  • the electronic device 100 may implement a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like. Display screen 194 includes a display panel.
  • the electronic device 100 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the electronic device 100 can implement audio functions, such as phone calls, music playback, recording, etc., through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the processor.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal.
  • the electronic device 100 may be the terminal 103 in the wireless communication system 10 shown in FIG. 1 , and may be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user proxies, mobile clients, and more.
  • Electronic device 100 may have more or fewer components than shown in the figures, may combine two or more components, or may have different component configurations.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the electronic device may be a portable terminal device equipped with iOS, Android, Microsoft or other operating systems, such as a mobile phone, a tablet computer, a wearable device, etc., or a laptop computer (Laptop) with a touch-sensitive surface or a touch panel, Non-portable end devices such as desktop computers with touch-sensitive surfaces or touch panels.
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiments of the present application take an Android system with a layered architecture as an example to exemplarily describe the software structure of the electronic device 100 .
  • FIG. 4 is a block diagram of the software structure of the electronic device 100 according to the embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Layers communicate with each other through software interfaces.
  • the Android system is divided into four layers, which are, from top to bottom, an application layer, an application framework layer, an Android runtime (Android runtime) and a system library, and a kernel layer.
  • the application layer can include a series of application packages.
  • the application package can include applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message and so on.
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • the application framework layer includes some predefined functions.
  • the application framework layer may include an application manager, a window manager, a content provider, a view system, a telephony manager, a resource manager, a notification manager, and the like.
  • the application manager is used to obtain the running status of the application running in the foreground of the electronic device 100, and the electronic device 100 can judge whether the electronic device 100 is far away from the user according to the running status of the application. For example, when the application manager detects that the application running in the foreground of the electronic device 100 is a calling application, the electronic device 100 determines that it is close to the user.
  • a window manager is used to manage window programs.
  • the window manager can get the size of the display screen, determine whether there is a status bar, lock the screen, take screenshots, etc.
  • Content providers are used to store and retrieve data and make these data accessible to applications.
  • the data may include video, images, audio, calls made and received, browsing history and bookmarks, phone book, etc.
  • the view system includes visual controls, such as controls for displaying text, controls for displaying pictures, and so on. View systems can be used to build applications.
  • a display interface can consist of one or more views.
  • the display interface including the short message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide the communication function of the electronic device 100 .
  • the management of call status including connecting, hanging up, etc.).
  • the resource manager provides various resources for the application, such as localization strings, icons, pictures, layout files, video files and so on.
  • the notification manager enables applications to display notification information in the status bar, which can be used to convey notification-type messages, and can disappear automatically after a brief pause without user interaction. For example, the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also display notifications in the status bar at the top of the system in the form of graphs or scroll bar text, such as notifications of applications running in the background, and notifications on the screen in the form of dialog windows. For example, text information is prompted in the status bar, a prompt sound is issued, the electronic device vibrates, and the indicator light flashes.
  • Android Runtime includes core libraries and a virtual machine. Android runtime is responsible for scheduling and management of the Android system.
  • the core library consists of two parts: one is the function functions that the java language needs to call, and the other is the core library of Android.
  • the application layer and the application framework layer run in virtual machines.
  • the virtual machine executes the java files of the application layer and the application framework layer as binary files.
  • the virtual machine is used to perform functions such as object lifecycle management, stack management, thread management, safety and exception management, and garbage collection.
  • a system library can include multiple functional modules. For example: surface manager (surface manager), media library (Media Libraries), 3D graphics processing library (eg: OpenGL ES), 2D graphics engine (eg: SGL), etc.
  • surface manager surface manager
  • media library Media Libraries
  • 3D graphics processing library eg: OpenGL ES
  • 2D graphics engine eg: SGL
  • the Surface Manager is used to manage the display subsystem and provides a fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as still image files.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, compositing, and layer processing.
  • 2D graphics engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display drivers, camera drivers, audio drivers, and sensor drivers.
  • the transmit power control method includes various implementations:
  • Solution 1 Determine the positional relationship between the electronic device 100 and the user according to the usage scenario of the electronic device 100
  • the usage scenario is related to the current operating state of the electronic device.
  • the running state of the electronic device may include, but is not limited to, a calling state, a photographing state, a video playing state, a navigation state, and the like.
  • the usage scenarios may include, but are not limited to, call scenarios, photographing scenarios, video playback scenarios, video recording scenarios, navigation scenarios, and the like.
  • the electronic device 100 may know the usage scenario according to the state of the device, and may know the positional relationship between the electronic device 100 and the user according to the usage scenario.
  • the positional relationship between the electronic device 100 and the user may include: the electronic device 100 is far away from the user and the electronic device 100 is not far away from the user.
  • the electronic device 100 is far away from the user means that the electronic device 100 does not contact any one or more human body parts such as the user's head, torso, limbs, etc., or is separated from any one or more human body parts such as the user's head, torso, limbs, etc. some distance away.
  • the distance between the electronic device 100 and any one or more body parts such as the user's head, torso, limbs, etc. is the first distance
  • the first transmission power is used to transmit the wireless signal, to transfer data.
  • the distance between the electronic device 100 and any one or more body parts such as the user's head, torso, limbs, etc. is the second distance
  • the second transmission power is used to transmit wireless signals to transmit data .
  • the first distance is greater than the second distance
  • the first transmit power is greater than the second transmit power.
  • the first distance is less than the second distance
  • the first transmit power is less than the second transmit power.
  • the electronic device 100 can obtain the status of the electronic device 100 according to one or more of the following methods, so as to obtain the usage scenario of the electronic device 100:
  • the electronic device 100 determines the usage scenario according to the operation of the application
  • the electronic device 100 may determine the running state of the electronic device 100 according to information such as the category, function, and name of the application.
  • the application program may refer to an application program running on the electronic device 100 , or an application program running in the foreground of the electronic device 100 .
  • An application running in the foreground can refer to an application that is running and can directly interact with the user.
  • the categories of applications may include, but are not limited to, games, entertainment, social networking, etc.
  • the functions of applications may include, but are not limited to, photography, video recording, recording, recording, calling, chatting, and the like.
  • commonly used applications may be calling applications, photographing applications, video playing applications, game applications, and the like.
  • the electronic device 100 can learn the running status of the application program to learn the positional relationship between the electronic device 100 and the user, so that the transmit power of the antenna in the electronic device 100 can be adjusted.
  • the transmit power of the antenna when the electronic device runs the first application, the transmit power of the antenna may be the first transmit power, and when the electronic device runs the second application, the transmit power of the antenna may be the second transmit power, wherein the first application corresponds to When the usage scenario of the application is different from the usage scenario corresponding to the second application, the first transmit power is different from the second transmit power.
  • the electronic device 100 runs a live broadcast application and determines that the usage scene is a live broadcast scene according to the live interface of the live broadcast application displayed by the electronic device, the electronic device 100 determines that it is far away from the user, at least away from the user's head.
  • the electronic device 100 determines that it is far away from the user, at least away from the user's head.
  • it is generally necessary to present the user's actions and expressions in the live broadcast screen.
  • the user should keep a certain distance from the electronic device 100 to enable the electronic device 100
  • the camera can capture the user's movements and expressions.
  • Table 1 exemplarily shows the correspondence between some applications running in the foreground, usage scenarios and whether the electronic device is far away from the user.
  • the electronic device 100 learns the usage scenario according to the situation in which the hardware device is called
  • Hardware devices include but are not limited to: multimedia devices and peripheral devices.
  • the multimedia device may include, but is not limited to, a camera, an audio module, a button, a USB interface, an earphone interface, and other hardware devices that come with the electronic device 100 itself.
  • the peripheral device may include a headset, a keyboard, a mouse, a gamepad, a VR device, etc.
  • the electronic device 100 can detect whether the peripheral device is connected to the electronic device 100 .
  • the electronic device 100 invokes the camera, and uses the recording function of the camera, it is determined that the usage scene is a recording scene. For example, if the electronic device 100 invokes the camera and the earphone interface, the earphone interface is used to connect the selfie stick, then the usage scene is determined to be a photographing scene, and it is determined that the electronic device 100 is far away from the user (at least away from the user's head), and the transmit power Adjust to the corresponding transmit power.
  • the user uses the selfie stick to take pictures, in order to place the electronic device at a certain distance from the user, so that the camera can capture a wider field of view, and use the button on the selfie stick to complete the picture, then, in this scenario, the user Without touching the electronic device 100, that is, the electronic device 100 is far away from the user (generally away from the user's head, torso, and limbs), the transmit power can be adjusted to a corresponding transmit power.
  • the electronic device 100 invokes a key or touches the display screen of the electronic device 100, it is determined that the usage scenario is that the electronic device 100 is close to the user, that is, the electronic device 100 is not far away from the user (usually away from the head, but close to the limbs),
  • the transmit power can be adjusted to the corresponding transmit power. Because when the key of the electronic device 100 is called, it means that the user has touched the electronic device 100 .
  • the application program may call the hardware interface of the electronic device in addition to calling the software interface of the electronic device.
  • the electronic device can adjust the transmit power according to the calling situation of the hardware device when running the application program.
  • the calling situation of the hardware device may also refer to an application operation.
  • the electronic device 100 determines the usage scenario according to the calling situation of the detection device
  • the detection device refers to a device that can convert external information (eg, pressure, temperature, humidity, image, distance, etc.) into data identifiable by the electronic device 100 , and the detection device can receive detection signals.
  • Detection devices may include, but are not limited to, capacitive sensors, time-of-flight sensors, proximity light sensors, radar sensors, biometric sensors, Hall sensors, gyroscope sensors, acceleration sensors, antenna impedance detection circuits, and the like.
  • the electronic device 100 determines that the usage scenario is the user unlocking scenario. Limbs.
  • the electronic device 100 determines the positional relationship with the user, there may be great uncertainty in some usage scenarios, and the electronic device 100 cannot determine the positional relationship between the user and the electronic device 100 according to the usage scenario, for example , when the usage scenario is a video call scenario, the electronic device 100 may be close to the user, for example, a scenario in which the user holds a mobile phone for a video call (in some embodiments, it can also be divided into: away from the head and close to the limbs); or, the electronic device 100 It may be away from the user, and the user places the mobile phone on the table to make a video call (in some embodiments, it can be further distinguished as: away from the head, torso and limbs).
  • the electronic device 100 may determine that the transmission power is the lowest among the multiple positional relationships, that is, not far from the user (in some embodiments, it may also be determined as: far away from the user). head, near the extremities). That is, when the electronic device 100 determines that it is not far from the user, it may also include two possibilities of whether the electronic device 100 is close to the user or not sure whether it is far from the user.
  • the electronic device 100 can judge the positional relationship between the electronic device 100 and the user according to the running status of the application program, the calling status of the hardware device and the detection device, so as to distinguish different situations of whether the electronic device 100 adjusts the transmit power.
  • Solution 2 Combine the detection device data to learn the positional relationship between the electronic device 100 and the user
  • the electronic device 100 may directly use the usage scenario in combination with the detection device data to determine whether the electronic device 100 is far away from the user, or the electronic device 100 may further determine whether the electronic device 100 is far away from the user according to the usage scenario, and then further determine the electronic device according to the detection device data. 100 is close to the user.
  • the electronic device 100 can adjust or calibrate the transmission power during the user's use of the electronic device 100 in combination with the data collected by the detection device, so as to avoid the problem of inaccurate transmission power when the positional relationship between the electronic device 100 and the user changes, Ensure the safety of users in a timely manner.
  • the detection device data is the pressure of the user acting on the screen of the electronic device 100 obtained by the electronic device 100 through the capacitive sensor.
  • the capacitive sensor can detect the pressure acting on the screen by detecting the pressure on the screen of the electronic device 100. to determine whether the user is close. For example, when the capacitive sensor detects that the user touches the electronic device, it means that the user is close to the electronic device (in some embodiments, it can be further divided into: away from the head and close to the limbs), and the transmit power can be adjusted accordingly.
  • the electronic device 100 detects that the pressure value increases from the first pressure value to the second pressure value, the electronic device 100 can reduce the transmit power, for example, reduce the first transmit power to the second transmit power.
  • the detection device data is the distance between the user and the electronic device 100 obtained by the electronic device 100 through the time-of-flight sensor, and the time-of-flight sensor can determine whether the user is close by detecting the distance between the user and the electronic device, For example, when the distance is smaller than a certain threshold, the electronic device 100 determines that it is close to the user.
  • the transmit power can be reduced, for example, the first transmit power is reduced to the second transmit power.
  • the proximity light sensor can detect whether there is an object near the electronic device 100 .
  • the transmit power can be adjusted accordingly.
  • the electronic device 100 detects the approach of the user according to the proximity light sensor, the electronic device 100 reduces the transmit power, for example, reduces the first transmit power to the second transmit power.
  • the electronic device 100 can determine that the electronic device 100 is close to the user according to the collected fingerprint.
  • the electronic device 100 detects the approach of the user according to the fingerprint sensor, the electronic device 100 reduces the transmit power, for example, reduces the first transmit power to the second transmit power.
  • the Hall sensor can detect whether the electronic device 100 with the folding screen is in a folded state or an unfolded state.
  • the electronic device 100 detects that the folding screen changes from the folded state to the unfolded state according to the Hall sensor, the electronic device 100 reduces the transmission power, for example, reduces the first transmission power to the second transmission power.
  • the detection device data is that the electronic device 100 determines the angular velocity around (ie, the x, y and z axes) of the electronic device 100 through the gyro sensor.
  • the detection device data is that the electronic device 100 determines the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes) through the acceleration sensor.
  • the electronic device 100 can determine whether the user contacts the electronic device 100 and has a certain action through the magnitude of the angular velocity or acceleration in different directions, so as to determine the positional relationship between the electronic device 100 and the user.
  • the electronic device 100 uses the acceleration sensor to detect that the user changes the electronic device 100 from the vertical screen to the horizontal screen state, it is determined that the user is approaching the electronic device 100 . Therefore, the electronic device 100 can reduce the transmit power, for example, reduce the first transmit power to the second transmit power.
  • the detection device data may refer to the impedance value of the antenna.
  • the antenna impedance detection circuit can be used to detect whether there is a foreign object (such as a human body part such as a hand) near the antenna. When the foreign object is closer to the antenna, the impedance value of the antenna is larger.
  • the electronic device 100 can reduce the transmit power, for example, reduce the first transmit power to the second transmit power.
  • the electronic device does not need a sensor that is always on. Only when the usage scenario is determined, the sensor will be called to further determine the positional relationship between the electronic device and the user, thereby reducing the power consumption of the electronic device and prolonging the battery life of the electronic device.
  • Solution 3 Whether the electronic device 100 is far away from the user is further subdivided into whether the electronic device is far away from one or more body parts of the user's head, torso, and limbs
  • Different body parts for example, one or more of the head, torso, and extremities
  • the maximum power that meets the electromagnetic energy absorption specification may also be different when the electronic equipment is adjacent to different body parts.
  • the electronic device 100 can determine different transmit powers when approaching or far from different body parts, so as to increase the transmit power as much as possible and enhance communication performance under the premise of ensuring user safety.
  • the electronic device can adjust the size of the transmit power.
  • the electronic device 100 may further determine a status index (Status Index, SI) when determining the positional relationship with the user.
  • SI Status Index
  • the state index SI indicates the device state.
  • the device state refers to the positional relationship between the electronic device 100 and various body parts of the user. Human body parts may include, but are not limited to: head, limbs, torso, and the like.
  • the device status can indicate whether the electronic device is far away from one or more of the above-mentioned body parts.
  • SI When the values of SI are different, different device states can be indicated. For example, when the SI values are 1, 2, and 3, the electronic device 100 may be instructed to keep away from the user's head, torso, and limbs, respectively.
  • the state index SI may include the following three situations:
  • the electronic device 100 may adjust the transmit power according to the state index SI.
  • SI state index
  • the adjusted transmit power that is, the actual transmit power P A of the electronic device 100 should satisfy: P A ⁇ P1.
  • P1 MAX ⁇ Plim,Pbody ⁇ .
  • the transmit power of the electronic device 100 may not be limited by the SAR specification, that is, the transmit power of the electronic device 100 may be greater than the transmit power corresponding to the user's highest SAR limit. Since the positional relationship between the electronic device 100 and the user's limbs and torso is taken as an example, the transmit power of the electronic device can be greater than or equal to the larger of the maximum transmit power that meets the electromagnetic energy absorption specification when the electronic device 100 is close to the limbs or torso. value.
  • the adjusted transmit power that is, the actual transmit power PC of the electronic device 100
  • P C MIN ⁇ P limb ,P body ⁇ .
  • the transmit power of the electronic device 100 may be limited by the SAR limits of the limbs and the torso. Since the positional relationship between the electronic device 100 and the user's limbs and torso is taken as an example, the transmit power of the electronic device 100 can be less than or equal to the higher of the maximum transmit power that meets the electromagnetic energy absorption specification when the electronic device 100 is close to the limbs or torso. small value.
  • the electronic device 100 when the electronic device 100 is not sure whether it is far away from a certain part, the electronic device 100 preferentially determines that it is close to the part. Furthermore, when the electronic device 100 cannot distinguish which part of the multiple parts the close or far away part is, the electronic device 100 preferentially determines to be close to the part requiring higher radiation restriction or to be far away from the part requiring lower radiation restriction.
  • the state index SI may also have other classification ways.
  • the embodiment of the present application does not limit the subdivision of each body part of the user and the classification manner of the state index SI.
  • the transmit power under different state indexes may have multiple power levels.
  • the power level corresponding to the former may be greater than the power level corresponding to the latter .
  • first transmit power or second transmit power may refer to one transmit power among P A , P B , and PC, or the transmit power within a certain level range of P A , P B , and PC. power.
  • the electronic device 100 can judge the above three situations by means of solution 1 and/or solution 2. Of course, the electronic device 100 can directly learn the positional relationship between the electronic device 100 and the user according to the detection device data. For example, the electronic device 100 can determine the usage scene as a somatosensory game scene according to the running motion sensing game application by means of solution 1, and the electronic device 100 can determine that it is far away from the user. The electronic device 100 is close to the user but not sure whether it is far from the torso and limbs, and the transmit power can be adjusted accordingly.
  • Option 4 Use the lowest transmit power P MIN that meets the SAR specification by default
  • the minimum transmit power P MIN refers to the lowest power value that satisfies the SAR specification for any part of the user's body, or may refer to the transmit power corresponding to the level with the lower or lowest power value among multiple power levels.
  • the minimum transmit power P MIN is less than or equal to the maximum power that complies with the electromagnetic energy absorption specification when the electronic device is close to the user.
  • P MIN may be less than or equal to PC .
  • the minimum transmit power P MIN may also refer to the third transmit power.
  • the lowest transmit power P MIN that satisfies the SAR specification is used by default to ensure that during the process of data transmission by the electronic device 100, no matter whether the user is close to the electronic device 100, the radiation exceeding the standard will not occur. , to ensure the safety of users.
  • the electronic device 100 may use the solution 3 and the solution 4 in combination, that is, the electronic device 100 further determines whether the electronic device 100 is far away from the user on the basis of using the P MIN of the lowest transmit power that meets the SAR specification by default, and is further subdivided into whether the electronic device is far away.
  • the electronic device 100 may use the lowest transmit power PMIN that satisfies the SAR specification by default before determining the usage scenario. After the usage scenario is determined, when the electronic device 100 is determined to be far away from the user, the transmit power is increased again.
  • the electronic device 100 transmits data with the most conservative minimum transmit power P MIN by default, or transmits data with a lower transmit power, so as to avoid the electronic device 100 when the user is close to the electronic device 100.
  • the device 100 transmits data with a transmit power exceeding the SAR specification to ensure user safety.
  • the transmit power is increased only when the electronic device 100 determines the usage scenario and it is clear that the electronic device 100 is far away from the user. In this way, the communication performance is effectively improved, the interference is reduced, and the user experience is improved under the premise of considering the user's safety.
  • the electronic device 100 can increase the transmit power to different values. scope.
  • the electronic device 100 can improve the transmit power more precisely under the condition that the SAR specification is satisfied, and improve the communication performance as much as possible.
  • the relevant content in the foregoing solution 3 which will not be repeated here.
  • the electronic device 100 initially sets the transmit power to be the lowest transmit power P MIN .
  • the electronic device 100 runs a photographing application
  • the electronic device 100 determines that the usage scene is a photographing scene, and detects that the user approaches the electronic device 100 in combination with the touch sensor.
  • embodiments of the present application may include the content of one or more of the foregoing solutions, and the foregoing solutions may be combined arbitrarily, which are not limited by the embodiments of the present application.
  • FIG. 5 exemplarily shows a schematic flowchart of a transmit power control method provided by an embodiment of the present application.
  • the method includes:
  • the electronic device 100 sends a signal with the lowest transmit power P MIN by default.
  • the minimum transmit power P MIN refers to the lowest power value that satisfies the SAR specification for any part of the user's body, or may refer to the transmit power corresponding to the level with the lower or lowest power value among multiple power levels.
  • the signal may refer to a signal sent by the electronic device 100 when the user makes a voice call, browses a web page, watches a video, or the like.
  • the receiver of the signal may refer to other electronic devices, base stations, routers, and other devices.
  • the electronic device 100 before the electronic device 100 transmits the signal with the lowest transmit power P MIN by default, the electronic device 100 further includes determining the transmit antenna. For different transmit antennas, the electronic device 100 may have different minimum transmit powers P MIN .
  • the electronic device 100 can send signals to other devices with the lowest transmit power P MIN by default.
  • the electronic device 100 determines a usage scenario
  • the timing when the electronic device 100 determines the usage scenario may include, but is not limited to, the following four situations:
  • the electronic device 100 continuously determines the usage scenario
  • the electronic device 100 can continuously determine and update the applicable scenarios of the device in time, so that the electronic device 100 can determine the accurate usage scenarios in time when sending data.
  • the electronic device 100 can determine the usage scenario only when data needs to be sent, thereby reducing the power consumption of the electronic device 100 and the occupation of system resources.
  • the transmit power of the electronic device 100 is controlled by the network-side device.
  • the network-side device can constrain the transmit power when the electronic device 100 sends data by sending a power adjustment command to the electronic device 100, so that the communication quality between the two parties is kept stable. Therefore, the electronic device 100 can determine the usage scenario after the network side issues the power adjustment command.
  • the electronic device 100 Since the electronic device 100 needs to determine the usage scenario according to the application processor, when the electronic device 100 determines the usage scenario after the application processor is turned on, the electronic device 100 does not need to wake up the application processor, which can reduce the power consumption of the electronic device 100 .
  • the usage scenario is related to the current operating state of the electronic device 100 .
  • the running state of the electronic device 100 is related to the application program run by the electronic device 100 and the invocation of the hardware device.
  • the electronic device 100 may determine the usage scenario according to one or more of the following methods:
  • the electronic device 100 determines the usage scenario according to the operation of the application
  • the electronic device 100 may determine the running state of the electronic device 100 according to information such as categories and functions of applications running in the foreground.
  • the categories of the applications may include but are not limited to games, entertainment, social networking, etc.
  • the functions of the applications may include, but are not limited to, photography, video recording, recording, recording, calling, and the like.
  • the electronic device 100 determines the usage scenario according to the situation in which the hardware device is called
  • Hardware devices include but are not limited to multimedia devices and peripheral devices.
  • the multimedia device may include, but is not limited to, a camera, an audio module, a key, a USB interface, an earphone interface, and the like.
  • Peripherals can include headsets, keyboards, mice, gamepads, VR devices, and more.
  • the electronic device 100 acquires the detection device data
  • Detection devices may include, but are not limited to: capacitive sensors, time-of-flight sensors, proximity light sensors, biometric sensors, Hall sensors, gyroscopes and acceleration sensors, and antenna impedance detection circuits.
  • capacitive sensors time-of-flight sensors
  • proximity light sensors biometric sensors
  • biometric sensors biometric sensors
  • Hall sensors Hall sensors
  • gyroscopes and acceleration sensors and antenna impedance detection circuits.
  • S103 is an optional step. That is, after the electronic device 100 determines the usage scenario, the electronic device 100 may acquire the detection device data, or may not acquire the detection device data.
  • the electronic device 100 determines the positional relationship between the electronic device 100 and the user
  • the positional relationship between the electronic device 100 and the user refers to whether the electronic device 100 is far away from the user, or whether the electronic device 100 is far away from one or more body parts such as the user's head, limbs, and torso.
  • the electronic device 100 may determine the positional relationship between the electronic device 100 and the user according to the usage scenario determined in S102, so as to adjust the transmit power of the electronic device 100.
  • the electronic device 100 may update and maintain a usage scenario comparison table, and the comparison table may indicate the positional relationship between the electronic device 100 and the user under different usage scenarios.
  • Table 1 above shows the correspondence between the usage scenario and whether the electronic device is far away from the user when the electronic device 100 determines the usage scenario according to the application program.
  • the electronic device 100 may determine the positional relationship between the electronic device 100 and the user according to the usage scenario determined in S102 and the sensor data acquired in S103, so as to adjust the transmit power of the electronic device 100.
  • the electronic device 100 may determine the positional relationship between the electronic device 100 and the user according to the following three ways:
  • the electronic device 100 determines the positional relationship between the electronic device 100 and the user according to the running situation of the application and the sensor data.
  • the electronic device 100 determines the positional relationship between the electronic device 100 and the user according to the calling situation of the hardware device and the sensor data.
  • the electronic device 100 determines the positional relationship between the electronic device 100 and the user according to the running situation of the application program, the calling situation of the hardware device and the detection device data.
  • the positional relationship between the electronic device 100 and the user is determined in combination with the usage scene and the detection device data, so that the electronic device 100 can avoid the situation of wrong judgment or inability to judge when the electronic device 100 only determines the positional relationship according to the applicable scene of the device, so that the electronic device 100 can Get a more accurate and precise positional relationship.
  • the electronic device 100 may further determine the positional relationship between the electronic device 100 and the user according to the detection device data after determining that the electronic device 100 is far from the user according to the usage scenario, so as to adjust the transmit power of the electronic device 100 .
  • the usage scenario indicating that the electronic device 100 is far away from the user may include the following two situations:
  • the application run by the electronic device 100 is a specific application
  • a specific application refers to an application that the electronic device 100 determines that it is generally not close to the user.
  • live broadcast applications e.g., live broadcast applications, somatosensory game applications, educational tutoring applications, etc.
  • the hardware device called by the electronic device 100 is a specific hardware device
  • a specific hardware device may refer to a multimedia device or a peripheral device that is called when the electronic device 100 determines that it is generally away from the user.
  • a multimedia device or a peripheral device that is called when the electronic device 100 determines that it is generally away from the user.
  • peripheral device For example, cameras, USB ports, keyboards, mice, gamepads, etc.
  • the electronic device 100 preliminarily determines whether the electronic device 100 is close to the user according to the application program or the hardware device, the sensor is invoked, and the electronic device 100 is judged again according to the sensor data whether the electronic device 100 is close to the user, so as to avoid the wrong judgment of the electronic device. Further, the electronic device 100 can only judge the accuracy of the situation when it is far away from the user, clarify the scenario in which the electronic device is far away from the user, ensure that the electronic device 100 only increases the safety of the transmit power when it is far away from the user, and speed up the determination of the electronic device 100. The speed of the positional relationship between the electronic device 100 and the user improves the efficiency of transmit power control.
  • the electronic device 100 adjusts the transmit power
  • the strategy for the electronic device 100 to adjust the transmit power means that the electronic device 100 determines, according to the SAR specification, that when each part of the user's body approaches or is far from the electronic device 100, the SAR value of each part conforms to the transmit power required by the specification.
  • the positional relationship between the electronic device 100 and the user may include: the electronic device 100 is far away from the user, and the electronic device 100 is not far away from the user.
  • the electronic device 100 increases the transmit power
  • the electronic device maintains the default minimum transmit power P MIN .
  • the minimum transmit power P MIN For details about the minimum transmit power P MIN , reference may be made to the foregoing content.
  • the electronic device 100 is not far from the user, including but not limited to the following two situations:
  • the electronic device 100 determines to be close to the user according to the usage scenario.
  • the electronic device 100 cannot determine whether it is close to the user according to the usage scenario.
  • the transmit power is increased only when the electronic device 100 is clearly far away from the user, otherwise, the electronic device 100 does not change the transmit power, which effectively guarantees the safety of the user.
  • FIG. 6 exemplarily shows a timing diagram of the electronic device 100 adjusting the transmit power.
  • the electronic device 100 uses the lowest transmit power P MIN by default.
  • P MIN the transmit power to P X (P X >P MIN )
  • P MIN the transmit power to P MIN .
  • the electronic device 100 is not far from the user can be further subdivided into: the electronic device 100 is far away from the torso, it is uncertain whether it is far away from the limbs; the electronic device 100 is uncertain whether it is far away from the torso and the limbs.
  • the adjusted transmit power P of the electronic device 100 satisfies: P ⁇ P limb
  • the adjusted transmit power P of the electronic device 100 Satisfy: P ⁇ P2.
  • P2 MIN ⁇ P limb ,P body ⁇
  • P limb is the maximum power that meets the electromagnetic energy absorption specification when the electronic device 100 is close to the limbs
  • P body is the maximum power that meets the electromagnetic energy absorption specification when the electronic device 100 is close to the trunk .
  • the electronic device 100 cannot determine whether it is far away from a certain body part of the user, the determination result is that the electronic device is close to the part by default. In this way, the problem that the electronic device 100 transmits a signal with a transmit power exceeding the radiation range that the user can bear can be avoided as much as possible.
  • FIG. 7 exemplarily shows a timing diagram of the electronic device 100 adjusting the transmit power.
  • the electronic device 100 uses the lowest transmit power P MIN by default.
  • P A P A ⁇ P limb
  • P A P A ⁇ P limb
  • the electronic device when the electronic device is close to the user, it can be further subdivided whether the electronic device is close to the torso or the limbs of the user. In this way, according to different situations, the electronic device can choose different transmission power, which can be larger under the premise of taking into account the user's safety. Maximize transmit power and improve communication performance.
  • the transmit power adjusted by the electronic device 100 may also be limited by the age level of the user. Since the SAR limit for adults is higher than the SAR limit for minors, the radiation limit requirements for minors are higher than those for adults. From the perspective of user safety, the transmit power for minors should be lower than the transmit power for adults. Specifically, the electronic device 100 can determine whether the current user is a minor according to different audience groups of the application. If the user is a minor, the electronic device 100 determines the positional relationship between the electronic device 100 and the user according to the above process to adjust the transmit power.
  • the electronic device 100 may also learn different operations under the same application, and adjust the corresponding transmit power according to the different operations. For example, under the calling function of a calling application or social software, when the user does not turn on the external speaker, it is generally considered that the electronic device 100 is close to the user (for example, at least close to the user's head), and the corresponding transmit power is used; During the playback operation, it is generally considered that the electronic device 100 is far away from the user (eg, at least away from the user's head). In response to the operation of turning on the external amplifier, the corresponding transmit power is used, for example, the transmit power can be increased.
  • the transmit power of the electronic device 100 is also constrained by the communication protocol, the communication frequency band, and the power adjustment command issued by the network-side device.
  • the electronic device 100 can further adjust the power to meet the transmit power requirements of the communication protocol, the communication frequency band and the power adjustment command.
  • the transmit power of the electronic device 100 must be smaller than the maximum UE transmit power indicated in the power adjustment command sent by the network side.
  • the transmit power control method provided by the embodiments of the present application is described below in combination with scenarios.
  • FIG. 8A exemplarily shows a scenario in which a user watches a video on a mobile phone.
  • the user is lying on the bed to watch the video played on the electronic device 100 and holds the electronic device 100 with his hands.
  • the electronic device 100 may determine the usage scenario as the video playback scenario according to the video playback application and/or the speaker running on the electronic device 100, but the electronic device 100 does not It cannot be accurately determined whether the electronic device 100 must be far away from the user. Because in general, when using a mobile phone to watch a video, the user can place the mobile phone on the table without touching the mobile phone, or hold the mobile phone with the hand.
  • a detection device such as a touch sensor, an acceleration sensor, a time-of-flight sensor, etc.
  • FIG. 8B exemplarily shows a scenario in which a user conducts a phone chat.
  • the user holds the electronic device 100 and is answering a call, and the electronic device 100 is not close to the user's torso at this time.
  • the electronic device 100 may determine the usage scenario as a call scenario according to the call application program running on the electronic device 100 and/or the invocation of a speaker and a microphone, because generally, in a call scenario, the electronic device 100 will be close to the user's head.
  • the electronic device 100 can obtain the distance between the user and the electronic device 100 as X through, for example, a proximity light sensor, determine that the electronic device 100 is far away from the torso, but is not sure whether it is far away from the limbs, and then adjust the transmit power to P CX , and then, the electronic device 100 The device 100 can also monitor whether the positional relationship between the electronic device 100 and the user changes according to, for example, a proximity light sensor.
  • FIG. 8C exemplarily shows a scene where a user experiences a large-screen somatosensory game.
  • the electronic device 100 is a large-screen device at this time, the user uses the electronic device 100 to experience a somatosensory game, and the user completes corresponding somatosensory actions, so that the electronic device 100 can analyze the user's movement through the somatosensory actions collected by the camera.
  • the user is separated from the electronic device 100 by a certain distance.
  • the electronic device 100 may determine that the usage scene is a somatosensory game scene according to the somatosensory game application program running on the electronic device 100 .
  • the electronic device 100 can determine that the user does not exert pressure on the screen of the electronic device 100 through, for example, a capacitive sensor, then determine that the electronic device 100 is far away from the user, and then adjust the transmit power to P A , and then the electronic device 100 can also use, for example, A capacitive sensor or a proximity light sensor detects whether the positional relationship between the electronic device 100 and the user has changed. If the positional relationship between the electronic device 100 and the user has been in a far away state, the electronic device 100 keeps the transmit power at P A , otherwise, The electronic device 100 reduces the transmit power to a corresponding level.
  • a capacitive sensor detects whether the positional relationship between the electronic device 100 and the user has changed. If the positional relationship between the electronic device 100 and the user has been in a far away state, the electronic device 100 keeps the transmit power at P A , otherwise, The electronic device 100 reduces the transmit power to a corresponding level.
  • the electronic device 100 detects that the user touches the electronic device 100 through, for example, a capacitive sensor, but cannot distinguish which part of the user's body is touching the electronic device 100.
  • FIG. 8D exemplarily shows a scene in which the user performs a live broadcast.
  • the user is using a live broadcasting application program to perform live broadcasting, and obtains the sound from the electronic device 100 or collects the user's voice through the left earphone 201 and the right earphone 202 , and the electronic device 100 can record the user's image through the camera.
  • the live broadcast screen the user is a certain distance away from the electronic device 100 at this time.
  • the electronic device 100 may determine that the usage scene is a live broadcast scene according to the live broadcast application program run by the electronic device 100 and/or the invocation of the camera and the headset.
  • the electronic device 100 may determine that the user does not exert pressure on the screen of the electronic device 100 through, for example, a capacitive sensor, then determine that the electronic device 100 is far away from the user, and then adjust the transmit power to a corresponding size.
  • FIG. 8E exemplarily shows a scenario in which a user conducts a video call.
  • the user uses a video calling application to chat, and the electronic device 100 is placed on the table, and the user does not touch the electronic device 100 .
  • the electronic device 100 determines that the electronic device 100 is far away from the user according to the proximity light sensor, and then adjusts the transmit power to a corresponding size.
  • the usage scenarios determined by the electronic device 100 are all usage scenarios when the electronic device 100 is far away from the user. After that, the electronic device 100 can further adjust the transmit power by using the data of the detection device. For the specific description of FIG. 8D and FIG. 8E, reference may be made to the related description of FIG. 8C.
  • FIG. 8F exemplarily shows another scenario where the user makes a video call.
  • the user holds the electronic device 100 and uses a video calling application to chat.
  • the electronic device 100 may acquire the magnitude of the acceleration that the user acts on the electronic device 100 in various directions through the acceleration sensor.
  • the proximity light sensor detects whether the distance between the electronic device 100 and the user changes.
  • the transmit power is adjusted according to the application of the electronic device 100 .
  • the electronic device 100 runs the first application program, and the transmit power of the antenna is the first transmit power.
  • the electronic device executes the second application.
  • the transmit power of the antenna is the second transmit power.
  • the first transmission power and the second transmission power are different, and both the first transmission power and the second transmission power are less than or equal to the maximum transmission power that complies with the electromagnetic energy absorption specification.
  • the electronic device 100 is running a video playback application, and at this time, the antenna uses corresponding transmit power to transmit.
  • the user is playing the video, there is a phone call.
  • the call function of the call application is turned on. At this time, the antenna uses the corresponding transmit power to transmit, such as reducing the transmit power.
  • the embodiments of the present application may also be applied to other scenarios, such as recording scenarios, reading scenarios, shopping scenarios, etc., which are not limited in the embodiments of the present application.
  • the circuit can realize that the electronic device 100 adjusts the transmission power according to the running state of the application program or the calling situation of the hardware device, and sensor data, and transmits data according to the transmission power.
  • the circuit includes: detection device 301 , multimedia device 302 , peripheral equipment 303 , application processor 304 , baseband processor 305 , transceiver 306 , detection circuit 307 , amplifier 308 , antenna switch, coupler 309 , and antenna 310 .
  • the detection device 301 can be used to convert external information (eg, pressure, temperature, humidity, image, etc.) into information identifiable by the electronic device.
  • external information eg, pressure, temperature, humidity, image, etc.
  • information identifiable by the electronic device e.g., temperature sensors, capacitive proximity sensors, etc.
  • Multimedia device 302 may refer to certain hardware components in electronic device 100 . For example, cameras, speakers, microphones, receivers, buttons, USB interfaces, etc.
  • the peripheral device 303 refers to an external device that can be connected to the host of the electronic device 100 and perform data interaction with the electronic device 100, for example, a headset, a gamepad, a keyboard, a mouse, a portable computer, and the like.
  • the application processor 304 can be used to instruct the power control circuit in the baseband processor to adjust the transmit power according to the data sent by the sensor, multimedia device, peripheral device and the operation of the application program.
  • the application processor can also be used to control the driving of the sensor and Execute the relevant algorithm.
  • Baseband processor 305 may be used to process and store data.
  • the baseband processor also contains power control circuitry that can be used to control transmit power to comply with SAR specifications.
  • Transceiver 306 may be used to convert electrical signals to optical signals.
  • the detection circuit 307 can be used to detect the transmit power
  • the antenna switch can be used to switch the antenna transmit and receive states
  • the coupler can be used to divide the signal into multiple signals.
  • the application processor 304 may acquire the data sent by the detection device 301, the multimedia device 302, the peripheral device 303, and the running data of the application program, and then judge whether the electronic device 100 is far away from the user or whether the subdivision is far away according to these data. which part of the user's body is, so as to adjust the transmit power of the electronic device 100 according to the positional relationship between the electronic device 100 and the user.
  • the application processor 304 may send a request to adjust the transmit power to the power control circuit in the baseband processor 305, where the request includes the size of the transmit power that the electronic device 100 needs to adjust. request, the power control circuit adjusts the transmit power, and after that, when the electronic device has data to be sent, the electronic device 100 can transmit the data through the antenna 310 according to the adjusted transmit power.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions when loaded and executed on a computer, result in whole or in part of the processes or functions described herein.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the process can be completed by instructing the relevant hardware by a computer program, and the program can be stored in a computer-readable storage medium.
  • the program When the program is executed , which may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random storage memory RAM, magnetic disk or optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Telephone Function (AREA)

Abstract

本申请公开了一种发射功率控制方法,该方法包括:电子设备根据应用程序的运行情况和/或外围设备的调用情况确定使用场景,并根据该使用场景确定电子设备与用户的位置关系,之后根据该位置关系调整发射功率,且当用户与电子设备的距离小于某一阈值时,发射功率小于或等于符合电磁能量吸收规范的最大传输功率。这样,电子设备可以根据不同的使用场景,例如通话场景,确定不同的发射功率,从而有效保障用户在使用电子设备的过程中处于安全的辐射范围,同时提高电子设备的通信性能。

Description

发射功率控制方法及相关设备
本申请要求于2021年04月16日提交中国专利局、申请号为202110414582.8、申请名称为“发射功率控制方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及发射功率控制方法及相关设备。
背景技术
电磁能量吸收比(specific absorption rate,SAR)是一个标准量,用来测量人体组织对手机等终端产品产生的电磁能量的吸收。SAR的单位是W/Kg(瓦/千克)。SAR越大,电磁辐射对用户的影响越大;反之则影响较小。目前,一些规范机构都设立了电磁能量吸收规范,设置了SAR限制值。SAR限制值是指6分钟内,每千克人体组织最多被允许吸收的电磁能量。例如,美国联邦传播委员会(federal communication commission,FCC)设立的SAR限制值为1.6W/Kg,欧盟电信标准组织(european telecommunications standard insitute,ESTI)设立的SAR限制值为2.0W/Kg。
也就是说,降低SAR值可以减少电磁辐射对用户的影响,但是降低SAR值时需要降低电子设备通信过程中的发射功率,这样会降低用户的通信体验感。那么,如何在符合SAR规范的同时,兼顾通信性能和用户体验感是目前亟待解决的问题。
发明内容
本申请提供了发射功率控制方法及相关设备,该发射功率控制方法可以根据应用程序的运行情况确定电子设备的使用场景,根据不同的使用场景,电子设备调整天线的发射功率的大小。这样,避免了电子设备通过常开传感器来调整天线的发射功率的问题,减少了系统功耗,并且,在保证用户处于安全的辐射范围的同时,提高了电子设备的通信性能。
第一方面,本申请实施例提供了一种发射功率控制方法,该方法运用于电子设备,该电子设备包括天线,并使用天线传输无线信号,该方法包括:电子设备运行第一应用程序,天线的发射功率为第一发射功率;电子设备运行第二应用程序;在电子设备运行第二应用程序后,天线的发射功率为第二发射功率;其中,第一应用程序对应的使用场景和第二应用程序对应的使用场景不同时,第一发射功率与第二发射功率不同。
也就是说,电子设备可以根据运行的应用程序来确定使用场景,例如,拍摄场景、直播场景、视频通话场景、体感游戏场景、视频播放场景等等。由于不同的使用场景对应着电子设备与用户不同的位置关系,例如,电子设备与用户的位置关系包括:电子设备远离用户,电子设备靠近用户。电子设备靠近用户时的天线发射功率小于电子设备远离用户时的天线发射功率。即,电子设备可以根据不同的使用场景调整不同的天线发射功率。这样,避免了电子设备仅使用传感器来调整天线的发射功率的问题,且电子设备无需常开处理器,减少了驱动传感器引起的功耗。
结合第一方面,在一种实施方式中,该电子设备还包括检测装置,检测装置用于检测电子设备和用户之间的距离变化;当电子设备运行第一应用程序时,电子设备获取电子设备和 用户之间的距离变化。
在本申请实施例中,电子设备可以根据使用场景和检测装置的数据来确定电子设备与用户之间的距离,具体存在以下两种情况:
1)、电子设备可以结合使用场景和检测装置数据来确定电子设备与用户的位置关系。这样,电子设备可以获得更加精准的判断结果。
2)、在电子设备根据使用场景确定电子设备与用户的位置关系后,电子设备可以根据检测装置采集的数据校准或进一步确认电子设备与用户的位置关系。
具体地,当电子设备根据运行的应用程序确定需增大发射功率时,电子设备在结合检测装置的数据进一步确定电子设备是否需增大发射功率。
结合第一方面,在一种实施方式中,当电子设备获取电子设备和用户之间的距离变化时,天线的发射功率变化。
在电子设备运行应用程序的过程中,电子设备与用户的距离可能会存在变化,电子设备可以根据检测装置来检测电子设备与用户的距离,达到实时调整发射功率的效果,保障用户处于安全的辐射范围下,进一步提高发射功率的大小,提升用户的体验感。
结合第一方面,在一种实施方式中,当电子设备和用户之间的距离小于第一值时,第一发射功率小于或等于符合电磁能量吸收规范的最大传输功率。
在电子设备与用户之间的距离较近时,为了保证用户处于安全的辐射范围,调整发射功率为符合电磁能量吸收规范的发射功率。
结合第一方面,在一种实施方式中,当电子设备和用户之间的距离变大时,天线的发射功率变大;当电子设备和用户之间的距离变小时,天线的发射功率变小。
结合第一方面,在一种实施方式中,检测装置包括以下一项或多项:电容式传感器、飞行时间传感器、接近光传感器、生物识别传感器、霍尔传感器、陀螺仪传感器、加速度传感器和天线阻抗检测电路中的一个或多个。
结合第一方面,在一种实施方式中,用户包括多个人体部位,多个人体部位包括第一部位;电子设备运行第一应用程序时,电子设备与第一部位的距离为第一距离;电子设备运行第二应用程序时,电子设备与第一部位的距离为第二距离,其中,第一距离和第二距离不同。
由于用户的头部、躯干、四肢可以接收的辐射值是不一样的,在本申请实施例中,人体部位可以包括头部、躯干、四肢等部位,当电子设备靠近或远离用户的不同人体部位时,电子设备可以确定不同的发射功率。这样,在满足SAR规范的条件下更精细的提升发射功率,能够尽可能多的提升通信性能。
结合第一方面,在一种实施方式中,多个人体部位还包括第二部位;电子设备运行第一应用程序时,电子设备与第二部位的距离变化时,天线的发射功率变化;或,电子设备运行第二应用程序时,电子设备与第二部位的距离变化时,天线的发射功率变化。
在本申请实施例中,电子设备可以根据与用户不同人体部位的距离情况,进一步确定状态索引,索引状态不同时,发射功率不同。
以电子设备100和用户的四肢、躯干的位置关系为例时,SAR规范中,将电子设备100靠近四肢时,符合电磁能量吸收规范的最大功率记为P limb,将电子设备100靠近躯干时,符合电磁能量吸收规范的最大功率记为P body
在一个具体的例子中,当索引状态指示电子设备100远离用户,包括远离四肢和躯干,电子设备100实际的发射功率P A应该满足:P≥P1。P1=MAX{P limb,P body},当索引状态指示电子设备100确定远离躯干,不确定是否远离四肢。电子设备100实际的发射功率P B应该满 足:P B≤P limb。当索引状态指示电子设备100不确定是否远离躯干和四肢。电子设备100实际的发射功率P C应该满足:P C≤P2。P C=MIN{P limb,P body}。
进一步地,根据电子设备100与用户各人体部位的距离,不同状态索引下的发射功率可以存在多个功率等级。例如,在电子设备100远离用户的情况下,当电子设备100分别距离用户第一距离和第二距离(第一距离>第二距离)时,前者对应的功率等级可以大于后者对应的功率等级。
可以理解的是,上述第一发射功率或第二发射功率均可以是指P A,P B,P C中的一个发射功率,或位于P A,P B,P C的某一等级范围内的发射功率。
结合第一方面,在一种实施方式中,电子设备运行第一应用程序时,当电子设备运行第一应用程序下的不同应用操作时,天线的发射功率变化;或,电子设备运行第二应用程序时,当电子设备运行第二应用程序下的不同应用操作时,天线的发射功率变化。
结合第一方面,在一种实施方式中,应用操作包括对硬件设备的操作。
在电子设备运行应用程序的过程中,应用程序除了调用电子设备的软件接口,还有可能调用电子设的硬件接口。电子设备还可以根据硬件的调用情况来确定电子设备的使用场景。例如,当电子设备运行电话应用程序时,调用扬声器,则电子设备可以确定用户不靠近电子设备进行通话,当电子设备运行电话应用程序时,调用听筒,则电子设备可以确定用户靠近电子设备进行通话。
结合第一方面,在一种实施方式中,硬件设备包括电子设备中的硬件设备和电子设备的外设。
电子设备中的硬件设备可以包括多媒体器件,例如,摄像头、音频模块、按键、USB接口、耳机接口等,电子设备的外设可以包括耳机、键盘、鼠标、游戏手柄、VR设备等等。
结合第一方面,在一种实施方式中,电子设备在运行第一应用程序或第二应用程序之前,天线的发射功率为第三发射功率,第三发射功率小于或等于第一发射功率,且第三发射功率小于或等于第二发射功率。
也就是说,在电子设备运行应用程序之前,电子设备可以以较小的发射功率发射信号,在电子设备运行应用程序之后,电子设备再提高发射功率。
结合第一方面,在一种实施方式中,第三发射功率小于或等于符合电磁能量吸收规范的最大传输功率。
也就是说,在电子设备运行应用程序之前,默认以符合电磁能量吸收规范的发射功率发送数据,保证用户的安全。
第二方面,本申请实施例提供了另一种发射功率控制方法,该方法运用于电子设备,电子设备包括天线,电子设备使用天线传输无线信号,方法包括:电子设备运行第一应用程序;电子设备将天线的发射功率由第三发射功率调整为第一发射功率;其中,第一发射功率大于或等于第三发射功率,第三发射功率小于或等于符合电磁能量吸收规范的最大传输功率。
也就是说,电子设备可以在运行应用程序后,再提升发射功率。并且,运行应用程序之前,默认以符合电磁能量吸收规范的发射功率发送信号,在兼顾用户安全的前提下,有效提高通信性能,减少干扰,提升用户体验感。
结合第二方面,在一种实施方式中,电子设备运行第一应用程序时,当电子设备运行第一应用程序下的不同应用操作时,天线的发射功率变化;或,电子设备运行第二应用程序时,当电子设备运行第二应用程序下的不同应用操作时,天线的发射功率变化。其中,该应用操作包括对硬件设备的操作,硬件设备包括电子设备中的硬件设备和电子设备的外设。
结合第二方面,在一种实施方式中,当电子设备和用户之间的距离小于第一值时,第一发射功率小于或等于符合电磁能量吸收规范的最大传输功率。
结合第二方面,在一种实施方式中,电子设备还包括检测装置,检测装置用于检测电子设备和用户之间的距离变化;当电子设备运行第一应用程序时,电子设备获取电子设备和用户之间的距离变化,则天线的发射功率变化。
也就是说,电子设备可以结合检测装置采集的数据更加精准地确定电子设备与用户的距离,进一步细化电子设备的天线发射功率大小。
结合第二方面,在一种实施方式中,当电子设备和用户之间的距离变大时,天线的发射功率变大;当电子设备和用户之间的距离变小时,天线的发射功率变小。
结合第二方面,在一种实施方式中,检测装置包括以下一项或多项:电容式传感器、飞行时间传感器、接近光传感器、生物识别传感器、霍尔传感器、陀螺仪传感器、加速度传感器和天线阻抗检测电路中的一个或多个。
结合第二方面,在一种实施方式中,用户包括多个人体部位,多个人体部位包括第一部位;电子设备运行第一应用程序时,电子设备与第一部位的距离为第一距离;电子设备运行第二应用程序时,电子设备与第一部位的距离为第二距离,其中,第一距离和第二距离不同。
结合第二方面,在一种实施方式中,多个人体部位还包括第二部位;电子设备运行第一应用程序时,电子设备与第二部位的距离变化时,天线的发射功率变化;或,电子设备运行第二应用程序时,电子设备与第二部位的距离变化时,天线的发射功率变化。
结合第二方面,在一种实施方式中,电子设备在运行第一应用程序或第二应用程序之前,天线的发射功率为第三发射功率,第三发射功率小于或等于第一发射功率,且第三发射功率小于或等于第二发射功率。
结合第二方面,在一种实施方式中,第三发射功率小于或等于符合电磁能量吸收规范的最大传输功率。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括:一个或多个处理器、显示屏、一个或多个存储器;其中,显示屏、一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器在执行该计算机指令时,使得电子设备执行如第一方面或第二方面中的任意一种实施方式所描述的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,包括指令,其特征在于,当该指令在电子设备上运行时,使得该电子设备执行如第一方面或第二方面中的任意一种实施方式所描述的方法。
实施本申请实施例提供的技术方案,在用户使用电子设备的过程中,电子设备可以根据运行的应用程序来确定电子设备的天线发射功率,当应用程序对应的场景不同,天线的发射功率不同。这样,避免电子设备仅根据传感器的数据确定电子设备的天线发射功率的情况,减少了驱动传感器引起的功耗,保证无论用户是否靠近电子设备,都不会出现辐射超标的问题,保障用户的安全,同时提高电子设备的通信性能。
附图说明
图1为本申请实施例提供的一种无线通信系统10;
图2为一种控制发射功率的方法流程示意图;
图3A为本申请实施例提供的电子设备100的硬件结构示意图;
图3B为本申请实施例提供的电子设备100的用户界面;
图4为本申请实施例提供的电子设备100的软件结构框图;
图5为本申请实施例提供的发射功率控制方法的流程示意图;
图6为本申请实施例提供的电子设备100调整发射功率的时序图;
图7为本申请实施例提供的另一种电子设备100调整发射功率的时序图;
图8A-图8F为本申请实施例提供的一些示例性场景;
图9为本申请实施例提供的一种电路框架示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1示出了本申请涉及的无线通信系统10。
无线通信系统10可以是第五代移动通信(the 5th Generation,5G)系统、新空口(new radio,NR)系统,还可以是长期演进(Long Term Evolution,LTE)系统,机器与机器通信(Machine to Machine,M2M)系统,未来演进的第六代通信系统等。如图1所示,无线通信系统10可包括:一个或多个网络设备101,一个或多个终端103,以及核心网115。其中:
网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(Access Point,AP)、传输节点(Trans TRP)、中心单元(Central Unit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端103可以分布在整个无线通信系统10中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是用户设备UE、移动设备、移动台(mobile station)、移动单元(mobile unit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
具体的,网络设备101可用于在网络设备控制器(未示出)的控制下,通过无线接口105与终端103通信。在一些实施例中,所述网络设备控制器可以是核心网115的一部分,也可以集成到网络设备101中。具体的,网络设备101可用于通过回程(blackhaul)接口113(如S1接口)向核心网115传输控制信息或者用户数据。具体的,网络设备101与网络设备101之间也可以通过回程(blackhaul)接口111(如X2接口),直接地或者间接地,相互通信。
需要说明的,图1示出的无线通信系统10是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
在无线通信系统10中,当终端103向网络设备101传输数据时,终端103产生的电磁辐射会对靠近终端103的人体组织产生影响。针对该影响,可以利用电磁能量吸收比(SAR)、最大允许暴露值(Maximum Permissive Exposure,MPE)或者电磁场辐射(Electromagnetic Field,EMF)等参数来衡量终端对人体产生的电磁辐射大小。
在本申请实施例中,以SAR为例,一些规范组织设立了SAR限制值,该SAR限制值能够限制终端103向网络设备101传输数据时,终端103天线发射功率的大小,保障用户处于安全的辐射范围。
可以理解的是,终端103发送无线电信号时都可能会产生电磁辐射,需要对电磁辐射进行控制的场景不限于上述提及的终端103向网络设备101传输数据时产生的辐射,例如,终端103利用无线通信技术向路由器发送信号等场景。
电子设备需要控制发射功率以符合SAR规范,但又需要提升发射功率以提高通信性能、克服干扰。为了兼顾这两方面,可以在检测到用户靠近电子设备100时再降低发射功率。该检测可以通过接近光传感器等传感器来实施。
一种实施情况是,这类传感器常开,并将检测结果随时报给应用处理器(AP),从而AP依据该检测结果指示功率控制电路调整发射功率。如果在向外发射信号之前检测到用户靠近,则功率控制电路可控制发射功率以符合SAR规范。如图2所示,功率控制电路可依据以下因素控制发射功率:通信频段和通信协议,网络侧下发的功率调整命令(如设置最大用户设备(user equipment,UE)发射机功率),以及传感器数据。其中,不同通信协议对各个通信频段的传输功率分别进行了约束。电子设备100的发射功率必须小于或等于网络侧下发的最大UE发射机功率。如果传感器数据指示用户靠近电子设备,则在满足前两个因素的约束之下进一步控制发射功率满足SAR规范;否则,发射功率可不受SAR规范限制。
可以看出,这种实施情况需要传感器常开,这样才能在用户靠近时及时地降低发射功率以确保符合SAR规范,但是这会导致传感器的功耗很高。而且,传感器的驱动以及相关算法执行在应用处理器(AP)上,需要唤醒AP才能通知功率控制电路调整发射功率,从而进一步增加了整机功耗。另外,这种实施情况没有基于传感器来区分出是四肢还是躯干靠近电子设备。
如图3A所示,本申请实施例提供了一种电子设备100,该电子设备100可以是如图1所示的无线通信系统10中的终端103。电子设备100可以通过无线通信技术进行通信。其中,该电子设备100可以包括手机、可折叠电子设备、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备、或智慧城市设备中的至少一种。本申请实施例对该电子设备100的具体类型不作特殊限制。
为了改善上述实施情况存在的部分或全部问题,本申请实施例提供一种发射功率控制方法,在该发射功率控制方法中,电子设备可以通过位置识别机制确定电子设备与用户的位置 关系,之后根据该位置关系调整电子设备的天线发射功率。可以看出,电子设备根据使用场景来调整天线的发射功率时,避免了电子设备仅使用传感器来调整天线的发射功率的问题,且电子设备无需常开处理器,减少了驱动传感器引起的功耗。
其中,电子设备与用户的位置关系可以是指电子设备是否远离用户,进一步地,电子设备是否远离用户可以细分为电子设备是否远离用户的头部、躯干、四肢中的一项或多项人体部位。
位置识别机制包括但不限于以下两种方式:
1、确定使用场景
使用场景和电子设备当前所处的运行状态相关。电子设备所处的运行状态不同时,使用场景不同。电子设备所处的运行状态可以包括但不限于:通话状态、拍照状态、视频播放状态等等。使用场景可以包括但不限于:通话场景、拍照场景、视频播放场景等等。
电子设备可以根据应用程序的运行情况,和/或,硬件设备的调用情况,确定使用场景,从而根据使用场景调整发射功率。
硬件设备可包括但不限于:多媒体器件、外围设备等等。
多媒体器件可以是指电子设备中的某些硬件部件。例如,摄像头、扬声器、麦克风、受话器、按键、USB接口等。外围设备是指可以连接到电子设备的主机,并与电子设备进行数据交互的外部设备。例如,耳机、游戏手柄、键盘、鼠标、便携机等。
电子设备可以根据使用场景确定电子设备与用户的位置关系。例如,当使用场景为拍照场景时,电子设备判断远离用户。当使用场景为通话场景时,电子设备判断靠近用户。
具体关于电子设备根据应用程序的运行情况,和/或,硬件设备的调用情况确定使用场景的描述可以参考后续内容,这里先不赘述。
2、确定使用场景并获取检测装置数据
检测用户是否远离的检测装置包括但不限于:电容式传感器、飞行时间传感器、接近光传感器、生物识别传感器、霍尔传感器、陀螺仪传感器、加速度传感器和天线阻抗检测电路。具体关于检测装置的描述可以参考后续内容。
电子设备根据使用场景和检测装置数据来确定电子设备与用户的位置关系时,可以存在以下两种情况:
1)、电子设备可以结合使用场景和检测装置数据来确定电子设备与用户的位置关系。这样,电子设备可以获得更加精准的判断结果。
2)、在电子设备根据使用场景确定电子设备与用户的位置关系后,电子设备可以根据检测装置采集的数据校准或进一步确认电子设备与用户的位置关系。
这样,当电子设备根据使用场景判断出现偏差时,电子设备可以利用检测装置数据纠正该结果,或者,当电子设备根据使用场景无法判断出电子设备与用户的位置关系时,电子设备可以利用检测装置数据来判断电子设备与用户的位置关系,又或者,电子设备可以利用检测装置数据进一步确定电子设备判断结果的准确性。
在本申请实施例中,在电子设备调整天线的发射功率之前,可以默认采用低功率,在明确远离人体或明确远离用户的某人体部位时,再提高发射功率。这样,可以保证无论用户是否靠近电子设备,都不会出现辐射超标的问题,保障用户的安全。其中,电子设备默认采用的低功率可以是指电子设备使用的符合SAR规范的最低发射功率,或者,可以是指多个功率等级中,功率值较低或最低的等级对应的发射功率。
另外,当电子设备靠近或远离用户的不同人体部位时,电子设备可以确定不同的发射功 率。由于用户的头部、躯干、四肢可以接收的辐射值是不一样的,因此该细分有利于在满足SAR规范的条件下更精细的提升发射功率,尽可能多的提升通信性能。例如,当电子设备远离躯干和四肢时,天线的发射功率可以调整为P A;当电子设备靠近四肢且远离躯干时,天线的发射功率可以调整为P B;当电子设备靠近躯干时,天线的发射功率可以调整为P C,其中,P A>P B>P C。此外,当电子设备还可以在靠近头部时,天线的发射功率需要调整为P D,P C>P D,或P C与P D基本相等。
总的来说,本申请实施例提供的发射功率控制方法能够准确判断电子设备是否远离用户,有效保障用户在使用电子设备的过程中处于安全的辐射范围,同时提高电子设备的通信性能,且电子设备无需常开传感器,只有在确定使用场景时,才会调用传感器,进一步确定电子设备与用户的位置关系,从而降低了电子设备的功耗,延长了电子设备的待机时间,增强了电子设备的续航能力。
图3A是本申请实施例提供的电子设备100的硬件结构示意图。
如图3A所示,电子设备100可以包括:内部存储器121,处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,听筒170B,麦克风170C,耳机接口170D,传感器模块180,摄像头193,显示屏194等。
其中,传感器模块180可以包括陀螺仪传感器180A,加速度传感器180B,接近光传感器180C,霍尔传感器180D,电容接近传感器180E,生物识别传感器180F、飞行时间(Time-of-Flight,ToF)传感器180G等。其中,陀螺仪传感器180A可以检测电子设备100围绕三个轴(x,y和z轴)的角速度。陀螺仪传感器180B还可以用于导航,体感游戏场景。加速度传感器180B可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。接近光传感器180C可以检测电子设备100附近是否有物体,例如附近是否有用户,电子设备100可以利用接近光传感器180C检测用户在通话时耳朵是否贴近听筒170B。霍尔传感器180D可以检测具有折叠屏的电子设备100是处于折叠态还是展开态。电容接近传感器180E可以检测被测物体与检测电极的距离,当被测物体越靠近检测电极,检测电极上的感应电荷就越多,从而检测电极上的电容就会随之增大。生物识别传感器180F包括指纹传感器,指纹传感器用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。飞行时间传感器180G可以使用微小的激光发射红外线,其中产生的光会从任何物体反弹并返回到传感器,根据红外线发出与返回传感器之间的时间差,测量被测物与该传感器之间的距离。
集成于电子设备100的“刘海”位置(区域AA)处的器件可如图3B所示,区域AA处可以集成摄像头193,听筒170B、接近光传感器180C、飞行时间传感器180G等。摄像头193可以是多个,例如前置摄像头193-1、前置摄像头193-2。“刘海”位置可以处于电子设备100的顶部。与顶部相对的,在电子设备底部可集成麦克风170C,耳机接口170D,其中,麦克风170C可用于将声音信号转换为电信号,耳机接口170D可用于连接有线耳机。图3B为电子设备100的一种结构示意,摄像头193、接近光传感器180C和飞行时间传感器180G中的一个或多个还可以位于显示屏194的下方,或位于电子设备100的其它位置。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。 内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序等。存储数据区可存储电子设备100使用过程中所创建的数据等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
在一些实施例中,内部存储器121还可用于存储通信协议。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。处理器110中还可以设置存储器,用于存储指令和数据。
在一些实施例中,处理器110可用于确定使用场景,并根据使用场景确定电子设备100与用户的位置关系,在确定电子设备100远离用户时,指示功率控制信号调整发射功率。另外,处理器110还可用于控制传感器的驱动,并根据传感器采集的数据,结合使用场景校准或进一步判断电子设备100是否远离用户。进一步地,处理器110还可用于判断电子设备100是否远离用户头部、躯干、四肢中的一项或多项人体部位,针对电子设备100。具体关于电子设备判断是否远离用户或用户的某项人体部位的描述可以参考后续内容。
处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2S接口可以用于音频通信,可用于处理器110与音频模块170耦合,实现处理器110与音频模块170之间的通信。PCM接口也可以用于音频通信,可用于音频模块170与无线通信模块160耦合。UART接口可用于异步通信,通常被用于连接处理器110与无线通信模块160。MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。GPIO接口可以被配置为控制信号,也可被配置为数据信号,可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备(例如耳机、键盘、游戏手柄、AR设备等)之间传输数据。
上述接口连接关系只是示意性说明,并不构成对电子设备100的结构限定,电子设备100也可以采用不同的接口连接方式,或多种接口连接方式的组合。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
其中,天线1和天线2用于发射和检测到电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。天线1、天线2还可以连接天线阻抗检测电路,天线阻抗检测电路可用于检测是否有外部物体(例如手部等人体部位)位于天线附近。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1检测到电磁波,并对检测到的电磁波进行滤波,放大等处理,传送至调制解调处理器(modem)进行解调。移动通信模块150还可以对经调制解调处理器(modem)调制后的信号放大,经天线1转为电磁波辐射出去。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信技术的解决方案。无线通信模块160经由天线2检测到电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110检测到待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。示例性地,无线通信模块160可以包括蓝牙模块、Wi-Fi模块等。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与基站等网络设备以及其他设备通信。无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
调制解调处理器(modem)中可包括功率控制电路,功率控制电路可以调整信号发射功率。功率控制电路可依据以下因素控制发射功率:通信频段和通信协议,以及网络侧下发的功率调整命令(如设置最大用户设备(user equipment,UE)发射机功率)。不同通信协议对各个通信频段的传输功率分别进行了约束,在此基础上,网络侧还可以通过功率调整命令来调整电子设备100的发射功率。另外,为了进一步控制发射功率在各种使用场景下满足SAR规范,电子设备100还可以根据应用程序的运行情况和/或硬件设备的调用情况,确定使用场景,在根据使用场景判断是否调整电子设备100的发射功率。另外,电子设备100还可以根据传感器(例如接近光传感器180C)采集的数据校准或进一步确认是否调整电子设备100的发射功率,进而控制发射功率在该使用场景下满足SAR规范,后续实施例中会详细说明,这里先不展开。
电子设备100可以通过GPU,显示屏194,以及应用处理器等实现显示功能。其中,GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。显示屏194用于显示图像,视频等。显示屏194包括显示面板。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及处理器等实现音频功能,例如电话通话、音乐播放,录音等。其中,音频模 块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。
可以理解的,电子设备100可以是图1示出的无线通信系统10中的终端103,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
以上是以电子设备100为例对本申请实施例作出的具体说明。应该理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。电子设备100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
电子设备可以是搭载iOS、Android、Microsoft或者其它操作系统的便携式终端设备,例如手机、平板电脑、可穿戴设备等,还可以是具有触敏表面或触控面板的膝上型计算机(Laptop)、具有触敏表面或触控面板的台式计算机等非便携式终端设备。电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件结构。
图4是本申请实施例的电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图4所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图4所示,应用程序框架层可以包括应用管理器,窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
应用管理器用于获取电子设备100前台运行的应用程序的运行情况,电子设备100可以根据该应用程序的运行情况判断电子设备100是否远离用户。例如,当应用管理器检测到电子设备100前台运行的应用程序为通话应用程序时,电子设备100判断靠近用户。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
下面介绍本申请实施例提供的发射功率控制方法。
在本申请实施例中,发射功率控制方法包括多种不同的实施方案:
方案1:根据电子设备100的使用场景确定电子设备100与用户的位置关系
使用场景和电子设备当前所处的运行状态相关。电子设备所处的运行状态不同时,使用场景不同。电子设备所处的运行状态可以包括但不限于:通话状态、拍照状态、视频播放状态、导航状态等等。使用场景可以包括但不限于:通话场景、拍照场景、视频播放场景、录像场景、导航场景等等。
电子设备100可以根据设备的状态获知使用场景,并可根据使用场景获知电子设备100与用户的位置关系。电子设备100与用户的位置关系可以包括:电子设备100远离用户和电子设备100未远离用户。其中,电子设备100远离用户是指电子设备100不接触用户的头部、躯干、四肢等任意一个或多个人体部位,或者与用户的头部、躯干、四肢等任意一个或多个人体部位相隔一定距离之外。
示例性的,当电子设备100远离用户时,电子设备100与用户的头部、躯干、四肢等任意一个或多个人体部位之间的距离为第一距离,使用第一发射功率发射无线信号,以传输数据。当电子设备100未远离用户时,电子设备100与用户的头部、躯干、四肢等任意一个或多个人体部位之间的距离为第二距离,使用第二发射功率发射无线信号,以传输数据。其中,第一距离大于第二距离,第一发射功率大于第二发射功率。在另外的场景中,第一距离小于第二距离,第一发射功率小于第二发射功率。
电子设备100可以根据以下一项或多项所述的方式获知电子设备100的状态,从而获知电子设备100的使用场景:
1)、电子设备100根据应用程序的运行情况来确定使用场景
示例性的,电子设备100可以根据应用程序的类别、功能、名称等信息来确定电子设备100所处的运行状态。其中,该应用程序可以是指电子设备100运行中的应用程序,或者,电子设备100前台运行的应用程序。前台运行的应用程序可以指正在运行中且可直接与用户交互的应用程序。应用程序的类别可以包括但不限于游戏类、娱乐类、社交类等等,应用程序的功能可以包括但不限于拍照、录像、录音、记录、通话、聊天等等。例如,常用的应用程序可以为通话应用、拍照应用、视频播放应用、游戏应用等等。
也就是说,电子设备100可以获知应用程序的运行情况,以获知电子设备100与用户的位置关系,从而可以调整电子设备100中天线的发射功率。
具体地,电子设备运行第一应用程序时,天线的发射功率可以为第一发射功率,电子设备运行第二应用程序时,天线的发射功率可以为第二发射功率,其中,第一应用程序对应的使用场景和第二应用程序对应的使用场景不同时,第一发射功率与第二发射功率不同。
例如,电子设备100运行直播类应用程序时,根据电子设备显示该直播类应用程序的直播界面,确定使用场景为直播场景,则电子设备100判断远离用户,至少是远离用户的头部。一般情况下,当用户使用直播类应用程序时,一般需要将用户的动作和表情等都呈现在直播画面中,则此时用户应当与电子设备100保持在一定距离外,才能够使电子设备100的摄像头能够捕捉到用户的动作和表情等。
以电子设备100为移动终端为例,表1示例性示出了一些前台运行的应用程序、使用场景与电子设备是否远离用户的对应关系。
表1
Figure PCTCN2022085411-appb-000001
可以理解的是,上述表1只是解释说明,不构成对本申请实施例的限制。
2)、电子设备100根据硬件设备被调用的情况来获知使用场景
硬件设备包括但不限于:多媒体器件以及外围设备。
其中,多媒体器件可以包括但不限于摄像头、音频模块、按键、USB接口、耳机接口等电子设备100本身自带的硬件设备。外围设备可以包括耳机、键盘、鼠标、游戏手柄、VR设备等等,电子设备100可以检测外围设备是否接入电子设备100。
例如,电子设备100调用了摄像头,使用摄像头的录像功能,则确定使用场景为录像场景。例如,电子设备100调用了摄像头以及耳机接口,该耳机接口用于连接自拍杆,则确定使用场景为拍照场景,并判断电子设备100远离用户(至少是远离用户的头部),可以将发射功率调整为相对应的发射功率。一般情况下,用户使用自拍杆进行拍照,是为了将电子设备置于用户一定距离外,使摄像头能够拍摄到更广阔的视野,并使用自拍杆上的按钮完成拍照,那么,这种场景下用户并不接触电子设备100,即电子设备100远离用户(一般是远离用户的头部、躯干和四肢),可以将发射功率调整为相对应的发射功率。又例如,电子设备100调用了按键或触控了电子设备100的显示屏,则确定使用场景为电子设备100靠近用户,即电子设备100未远离用户(一般是远离头部,但靠近四肢),可以将发射功率调整为相对应的发射功率。因为当电子设备100的按键被调用时,则说明用户接触到了电子设备100。
另外,由于在电子设备运行应用程序的过程中,应用程序除了调用电子设备的软件接口,还有可能调用电子设的硬件接口。电子设备可以在运行应用程序时,根据硬件设备的调用情况调整发射功率。
在本申请实施例中,硬件设备的调用情况还可以是指应用操作。
3)、电子设备100根据检测装置的调用情况来确定使用场景
检测装置是指可将外界信息(例如,压力、温度、湿度、图像、距离等)转换成电子设备100可识别的数据的器件,检测装置可以接收检测信号。检测装置可以包括但不限于:电容式传感器、飞行时间传感器、接近光传感器、雷达传感器、生物识别传感器、霍尔传感器、陀螺仪传感器、加速度传感器、天线阻抗检测电路等等。
例如,电子设备100调用了生物识别传感器,且生物识别传感器获取到用户的指纹数据,则电子设备100判断使用场景为用户解锁场景,在用户解锁场景的场景下,一般是远离头部,但靠近四肢。
可以理解的是,在电子设备100确定与用户的位置关系时,某些使用场景可能存在很大的不确定性,电子设备100无法根据该使用场景确定用户与电子设备100的位置关系时,例如,使用场景为视频通话场景时,电子设备100可能靠近用户,例如用户手持手机进行视频通话的场景(在一些实施例中,还可以区分为:远离头部,靠近四肢);或者,电子设备100可能远离用户,用户将手机置于桌上进行视频通话的场景(在一些实施例中,可以还可以区分为:远离头部、躯干和四肢)。则针对视频通话场景等使用场景,可能存在多种位置关系,电子设备100可以判断为多种位置关系中发射功率最低的情况,即未远离用户(在一些实施例中,可以还判断为:远离头部,靠近四肢)。即,在电子设备100判断未远离用户的情况下,还可能包括电子设备100靠近用户和不确定是否远离用户这两种可能性。
综上所述,电子设备100可以根据应用程序的运行情况、硬件设备和检测装置的调用情况来判断电子设备100与用户的位置关系,从而区分出电子设备100是否调整发射功率的不同情况。
方案2:结合检测装置数据获知电子设备100与用户的位置关系
由于在电子设备100根据应用程序或硬件设备确定使用场景后,对电子设备100是否远离用户可能会存在误判或漏判的情况,或者,电子设备100与用户的位置关系可能会在确定 的使用场景下发生变化。电子设备100可以直接利用使用场景结合检测装置数据来判断电子设备100是否远离用户,或者,电子设备100可以在根据使用场景判断出电子设备100未远离用户之后,再根据检测装置数据进一步判断电子设备100是否靠近用户。也就是说,电子设备100可以结合检测装置采集的数据来调整或校准用户使用电子设备100过程中的发射功率,避免出现电子设备100与用户的位置关系发生变化时,发射功率不准确的问题,及时保障用户的安全。
具体地,当电子设备100调用电容式传感器时,该检测装置数据为电子设备100通过电容式传感器获取的用户作用于电子设备100屏幕的压力大小,电容式传感器可以通过检测作用于屏幕上的压力来判断用户是否靠近。例如,当电容式传感器检测到用户触摸电子设备,则说明用户靠近电子设备(在一些实施例中,可以还可以区分为:远离头部,靠近四肢),则可以相应的调整发射功率。具体的,当电子设备100检测到压力值由第一压力值增加为第二压力值,则电子设备100可以降低发射功率,例如将第一发射功率降低为第二发射功率。
当电子设备100调用飞行时间传感器时,该检测装置数据为电子设备100通过飞行时间传感器获取的用户与电子设备100的距离,飞行时间传感器可以通过检测用户与电子设备的距离来判断用户是否靠近,例如,当该距离小于某一阈值时,电子设备100判断靠近用户。从而可以降低发射功率,例如将第一发射功率降低为第二发射功率。
当电子设备100调用接近光传感器时,接近光传感器可以检测电子设备100附近是否有物体。例如,当接近光传感器检测到用户靠近电子设备(在一些实施例中,还可以区分为:靠近头部),则可以相应的调整发射功率。具体的,当电子设备100根据接近光传感器检测到用户的靠近,电子设备100降低发射功率,例如将第一发射功率降低为第二发射功率。
当电子设备100调用的传感器为生物识别传感器,例如,该生物识别传感器为指纹传感器时,电子设备100可以根据采集的指纹判断电子设备100靠近用户。当电子设备100根据指纹传感器检测到用户的靠近,电子设备100降低发射功率,例如将第一发射功率降低为第二发射功率。
当电子设备100调用霍尔传感器时,霍尔传感器可以检测具有折叠屏的电子设备100是处于折叠态还是展开态。当电子设备100根据霍尔传感器检测到折叠屏由折叠态变为展开态,电子设备100降低发射功率,例如将第一发射功率降低为第二发射功率。
当电子设备100调用陀螺仪传感器时,该检测装置数据为电子设备100通过陀螺仪传感器确定电子设备100围绕(即,x,y和z轴)的角速度。类似的,当电子设备100调用的传感器为加速度传感器时,该检测装置数据为电子设备100通过加速度传感器确定电子设备100在各个方向上(一般为三轴)加速度的大小。电子设备100可以通过不同方向的角速度或者加速度的大小来判断用户是否接触电子设备100并存在某一动作,从而判断电子设备100与用户的位置关系。例如,当电子设备100利用加速度传感器检测到用户使电子设备100由竖屏变为横屏状态,则判断用户靠近电子设备100。从而电子设备100可以降低发射功率,例如将第一发射功率降低为第二发射功率。
当电子设备100调用天线阻抗检测电路时,检测装置数据可以是指天线的阻抗值。天线阻抗检测电路可用于检测是否有外来物(例如手部等人体部位)位于天线附近。当外来物越靠近天线,天线的阻抗值越大。当天线阻抗检测电路检测到的阻抗值由第一阻抗值增加到第二阻抗值时,电子设备100可以降低发射功率,例如将第一发射功率降低为第二发射功率。
这样,确保电子设备100判断结果的准确性,保障后续电子设备100以正确的判断结果确定发射功率,确保用户的安全。并且,电子设备无需常开传感器,只有在确定使用场景时, 才会调用传感器,进一步确定电子设备与用户的位置关系,从而减少了电子设备功耗,延长了电子设备的续航时间。
方案3:电子设备100是否远离用户进一步细分为电子设备是否远离用户的头部、躯干、四肢中的一项或多项人体部位
不同的人体部位(例如,头部、躯干和四肢中的一项或多项)可以接受的辐射值不同,当电子设备分别靠近不同的人体部位时,符合电磁能量吸收规范的最大功率可能也不同。这样,针对靠近或远离不同的人体部位时,电子设备100可以确定不同的发射功率,从而在保障用户安全的前提下,尽可能多的提升发射功率,增强通信性能。
也就是说,在电子设备运行应用程序的过程中,电子设备与人体部位的距离发生变化时,电子设备可以调整发射功率的大小。
那么,电子设备100可以在确定与用户的位置关系时,进一步确定状态索引(Status Index,SI)。
状态索引SI指示了设备状态。设备状态是指电子设备100和用户各人体部位之间的位置关系。人体部位可以包括但不限于:头部、四肢、躯干等等。设备状态则可以表示电子设备是否远离上述一项或多项人体部位。
SI的值不同时,可以指示不同的设备状态。例如,当SI的值为1,2,3时,可以指示电子设备100分别远离用户的头部、躯干、四肢。
在一些实施例中,以电子设备100和用户的头部、四肢、躯干的位置关系为例来细分电子设备100是否远离用户。由于电子设备100更容易识别或区分出是否远离躯干的情况,这里,状态索引SI可以包括以下三种情况:
情况一:SI=1时,指示电子设备100远离用户,包括远离四肢和躯干。此时可以将发射功率调整为P A
情况二:SI=2时,指示电子设备100确定远离躯干,不确定是否远离四肢。此时可以将发射功率调整为P B
情况三:SI=3时,指示电子设备100不确定是否远离躯干和四肢。此时可以将发射功率调整为P C
电子设备100可以根据状态索引SI来调整发射功率。以电子设备100和用户的四肢、躯干的位置关系为例时,SAR规范中,将电子设备100靠近四肢时,符合电磁能量吸收规范的最大功率记为P limb,将电子设备100靠近躯干时,符合电磁能量吸收规范的最大功率记为P body
那么,当SI=1时,调整后的发射功率,也就是电子设备100实际的发射功率P A应该满足:P A≥P1。P1=MAX{P limb,P body}。由于SI=1指示电子设备100已经远离用户,电子设备100的发射功率可以不受SAR规范的限制,即电子设备100的发射功率可以大于用户最高SAR限值对应的发射功率。由于以电子设备100和用户的四肢、躯干的位置关系为例,所以此处电子设备的发射功率可以大于等于电子设备100靠近四肢或躯干时,符合电磁能量吸收规范的最大发射功率中的较大值。
当SI=2时,调整后的发射功率,也就是电子设备100实际的发射功率P B应该满足:P B≤P limb。由于SI=2指示电子设备100确定远离躯干,但不确定是否远离四肢时,电子设备100的发射功率可以不受SAR规范中躯干对应的SAR限值的影响,但是会受到四肢对应的SAR限值的限制。即电子设备100的发射功率可以大于躯干的SAR限值对应的发射功率,但必须 不超过四肢的SAR限值对应的发射功率。另外,当P limb>P body时,电子设备100实际的发射功率P B可以进一步限定为P body≤P B≤P limb
当SI=3时,调整后的发射功率,也就是电子设备100实际的发射功率P C应该满足:P C≤P2。P C=MIN{P limb,P body}。由于SI=3指示电子设备100不确定是否远离四肢或躯干,则电子设备100的发射功率会受到四肢和躯干的SAR限值的限制。由于以电子设备100和用户的四肢、躯干的位置关系为例,所以此处电子设备100的发射功率可以小于等于电子设备100靠近四肢或躯干时,符合电磁能量吸收规范的最大发射功率中的较小值。
可以理解的是,在电子设备100不确定是否远离某一部位,电子设备100优先判定为靠近该部位。再者,在电子设备100无法区分靠近或远离的部位为多个部位中的哪个部位时,电子设备100优先判定靠近对辐射限制要求更高的部位或远离对辐射限制要求更低的部位。
可以理解的是,用户各人体部位的细分可以存在其他方式,状态索引SI还可以有其他的分类方式。本申请实施例对用户各人体部位的细分和状态索引SI的分类方式不作限制。
进一步地,根据电子设备100与用户各人体部位的距离,不同状态索引下的发射功率可以存在多个功率等级。例如,在电子设备100远离用户的情况下,当电子设备100分别距离用户第一距离和第二距离(第一距离>第二距离)时,前者对应的功率等级可以大于后者对应的功率等级。其中,上述P A可以是SI=1中的具体某一功率等级对应的功率值,P B可以是SI=2中的具体某一功率等级对应的功率值,P C可以是SI=3中的具体某一功率等级对应的功率值。
可以理解的是,上述第一发射功率或第二发射功率可以是指P A,P B,P C中的一个发射功率,或位于P A,P B,P C的某一等级范围内的发射功率。
电子设备100可以通过方案1和/或方案2的方式判断以上三种情况,当然,电子设备100可以直接根据检测装置数据获知电子设备100与用户的位置关系。例如,电子设备100可以通过方案1的方式,根据运行的体感游戏类应用程序确定使用场景为体感游戏场景,电子设备100判断远离用户,进一步地,电子设备通过方案2的方式,根据触摸传感器获知电子设备100靠近用户但不确定是否远离躯干和四肢,并可以相应的调整发射功率。
方案4:默认使用满足SAR规范的最低发射功率P MIN
最低发射功率P MIN是指针对用户的任意人体部位都满足SAR规范的最低功率值,或者,可以是指多个功率等级中,功率值较低或最低的等级对应的发射功率。当电子设备100靠近用户,以最低发射功率P MIN发送信号时,用户各人体部位的SAR值都不超过SAR规范中的限制值。即,最低发射功率P MIN小于等于所述电子设备靠近用户时,符合电磁能量吸收规范的最大功率。P MIN可以小于或等于P C
在本申请实施例中,最低发射功率P MIN还可以是指第三发射功率。
这样,在电子设备100调整发射功率之前,默认使用满足SAR规范的最低发射功率P MIN,保证在电子设备100传输数据的过程中,无论用户是否靠近电子设备100,都不会出现辐射超标的情况,保障用户的安全。
电子设备100可以将方案3和方案4结合使用,即,电子设备100在默认使用满足SAR规范的最低发射功率的P MIN基础上,进一步确定电子设备100是否远离用户进一步细分为电子设备是否远离用户的头部、躯干、四肢中的一项或多项人体部位,并在不同的情况下调整发射功率。这样,可以在保证用户安全的前提下,进一步提升发射功率,提高电子设备100的通信性能。
方案5:调整发射功率的时序
电子设备100可以在确定使用场景之前,默认使用满足SAR规范的最低发射功率PMIN。在确定使用场景之后,当电子设备100确定远离用户时,再增大发射功率。
这样,在电子设备100确定使用场景之前,电子设备100默认以最保守的最低发射功率P MIN传输数据,或者以较低的发射功率传输数据,避免出现在用户靠近电子设备100的情况下,电子设备100以超过SAR规范的发射功率发送数据,保障用户的安全。只有在电子设备100确定使用场景,明确电子设备100远离用户时才增大发射功率,这样,在兼顾用户安全的前提下,有效提高通信性能,减少干扰,提升用户体验感。
进一步地,电子设备100将是否远离用户细分为是否远离用户的头部、躯干、四肢等一项或多项人体部位,针对不同的情况,电子设备100可以将发射功率增大到不同的数值范围。
这样,电子设备100可以在满足SAR规范的条件下更精细的提升发射功率,尽可能多的提升通信性能。具体可参见上述方案3中的相关内容,这里不再赘述。
例如,电子设备100最开始设置发射功率为最低发射功率P MIN,在电子设备100运行拍照类应用程序时,电子设备100确定使用场景为拍照场景,并结合触摸传感器检测到用户靠近电子设备100的显示屏,电子设备100判断SI=3,调整发射功率为P C,之后,电子设备100结合飞行时间传感器检测到用户与电子设备100间隔第一距离,电子设备100判断SI=1,调整发射功率为P A
可以理解的是,本申请实施例可以包括上述一种或多种方案的内容,且上述方案可以任意组合,本申请实施例对此不作限制。
图5示例性示出了本申请实施例提供的发射功率控制方法的流程示意图。
如图5所示,所述方法包括:
S101、电子设备100默认以最低发射功率P MIN发送信号。
最低发射功率P MIN是指针对用户的任意人体部位都满足SAR规范的最低功率值,或者,可以是指多个功率等级中,功率值较低或最低的等级对应的发射功率。
该信号可以是指用户在语音通话、浏览网页、观看视频等场景下,电子设备100发出的信号。该信号的接收方可以是指其他电子设备、基站、路由器等设备。
可以理解的是,在电子设备100默认以最低发射功率P MIN发送信号之前,还包括电子设备100确定发射天线。针对不同的发射天线,电子设备100可以存在不同的最低发射功率P MIN
可以看出,在电子设备100执行后续步骤之前,电子设备100可以默认以最低发射功率P MIN向其他设备发送信号。
S102、电子设备100确定使用场景
电子设备100确定使用场景的时机可以包括但不限于以下四种情况:
1、电子设备100持续确定使用场景
这样,无论电子设备100是否需要发送数据,电子设备100可以不断确定并及时更新设备适用场景,使电子设备100能够在发送数据时,及时确定出准确的使用场景。
2、电子设备100需要发送数据时
这样,电子设备100可以仅在需要发送数据时确定使用场景,减少电子设备100的功耗 和系统资源的占用。
3、网络侧设备下发功率调整命令之后
在电子设备100与网络侧设备建立通信连接(例如,语音连接或数字连接)之后,电子设备100的发射功率就会受到网络侧设备的控制。网络侧设备可以通过向电子设备100发送功率调整命令来约束电子设备100发送数据时的发射功率,使双方的通信质量保持稳定。从而,电子设备100可以在网络侧下发功率调整命令之后确定使用场景。
4、电子设备100开启应用处理器之后
由于电子设备100需要根据应用处理器来确定使用场景,当电子设备100在开启应用处理器之后再确定使用场景时,电子设备100不需要唤醒应用处理器,这样,可以减少电子设备100的功率损耗。
使用场景和电子设备100当前所处的运行状态相关。电子设备100所处的运行状态不同时,使用场景不同。电子设备100所处的运行状态与电子设备100运行的应用程序以及硬件设备的调用有关。
也就是说,电子设备100可以根据以下一项或多项所述的方式确定使用场景:
1、电子设备100根据应用程序的运行情况来确定使用场景
电子设备100可以根据前台运行的应用程序的类别、功能等信息来确定电子设备100所处的运行状态。其中,应用程序的类别可以包括但不限于游戏类、娱乐类、社交类等等,应用程序的功能可以包括但不限于拍照、录像、录音、记录、通话等等。
2、电子设备100根据硬件设备被调用的情况来确定使用场景
硬件设备包括但不限于多媒体器件、外围设备。
其中,多媒体器件可以包括但不限于摄像头、音频模块、按键、USB接口、耳机接口等等。外围设备可以包括耳机、键盘、鼠标、游戏手柄、VR设备等等。
具体关于电子设备100确定使用场景的方式可以参见前述内容,这里不再赘述。
S103、电子设备100获取检测装置数据
检测装置可以包括但不限于:电容式传感器、飞行时间传感器、接近光传感器、生物识别传感器、霍尔传感器、陀螺仪和加速度传感器、天线阻抗检测电路。具体关于不同检测装置的检测装置数据可以参考前述内容,这里不再赘述。
可以理解的是,S103为可选的步骤。即,在电子设备100确定使用场景之后,电子设备100可以获取检测装置数据,也可以不获取检测装置数据。
S104、电子设备100确定电子设备100和用户的位置关系
电子设备100和用户的位置关系是指电子设备100是否远离用户,或电子设备100是否远离用户的头部、四肢、躯干等一项或多项人体部位。
在一些实施例中,电子设备100可以根据S102中确定的使用场景来确定电子设备100和用户的位置关系,从而调整电子设备100的发射功率。
例如,电子设备100可以更新并维护一个使用场景对照表,该对照表中可以指示不同的使用场景下,电子设备100和用户的位置关系。例如上述表1示出了电子设备100根据应用程序确定使用场景时,使用场景与电子设备是否远离用户的对应关系。
在另一些实施例中,电子设备100可以根据S102中确定的使用场景和S103中获取的传 感器数据来确定电子设备100和用户的位置关系,从而调整电子设备100的发射功率。
其中,电子设备100可以根据以下三种方式确定电子设备100和用户的位置关系的方式:
1、电子设备100根据应用程序的运行情况以及传感器数据确定电子设备100和用户的位置关系。
2、电子设备100根据硬件设备的调用情况以及传感器数据确定电子设备100和用户的位置关系。
3、电子设备100根据应用程序的运行情况、硬件设备的调用情况以及检测装置数据确定电子设备100和用户的位置关系。
这样,结合使用场景和检测装置数据来确定电子设备100和用户的位置关系,可以避免电子设备100仅根据设备适用场景来确定位置关系时,出现判断错误或无法判断的情况,使电子设备100可以获得更加准确和精确的位置关系。
在另一些实施例中,电子设备100可以在根据使用场景来确定电子设备100远离用户之后,再根据检测装置数据进一步确定电子设备100与用户的位置关系,从而调整电子设备100的发射功率。
使用场景指示电子设备100远离用户可以包括以下两种情况:
电子设备100运行的应用程序为特定应用程序
特定应用程序是指电子设备100确定通常不靠近用户时运行的应用程序。例如,直播类应用程序、体感游戏类应用程序、教育辅导类应用程序等等。
电子设备100调用的硬件设备为特定的硬件设备
特定的硬件设备可以是指电子设备100确定通常远离用户时调用的多媒体器件或外围设备。例如,摄像头、USB接口、键盘、鼠标、游戏手柄等等。
这样,在电子设备100根据应用程序或硬件设备初步判断电子设备100是否靠近用户之后,调用传感器,并根据传感器数据再次判断电子设备100是否靠近用户,避免出现电子设备判断错误的情况。进一步地,电子设备100可以仅针对远离用户的情况来判断该情况的准确性,明确电子设备远离用户的场景,保证电子设备100仅针对远离用户时提升发射功率的安全性,加快电子设备100确定电子设备100和用户的位置关系的速度,提高发射功率控制的效率。
S105、根据电子设备100和用户的位置关系,电子设备100调整发射功率
电子设备100调整发射功率的策略是指:电子设备100根据SAR规范,确定用户各人体部位在靠近或远离电子设备100时,各部位的SAR值都符合规范要求的发射功率。
在一些实施例中,电子设备100和用户的位置关系可以包括:电子设备100远离用户,电子设备100未远离用户。当电子设备100远离用户时,电子设备100增大发射功率,当电子设备未远离用户时,电子设备100保持默认的最低发射功率P MIN。具体关于最低发射功率P MIN可以参考前述内容。
电子设备100未远离用户包括但不限于以下两种情况:
1、电子设备100根据使用场景确定靠近用户。
2、电子设备100根据使用场景无法判断是否靠近用户。
也就是说,只有当电子设备100明确远离用户时才会增大发射功率,否则,电子设备100不改变发射功率的大小,有效保障用户的安全。
在一个具体的例子中,图6示例性示出了电子设备100调整发射功率的时序图。如图7所示,0-t1时段电子设备100默认使用最低发射功率P MIN,t1时刻电子设备100判断远离用户,调整发射功率为P X(P X>P MIN),t2时刻电子设备100判断远离用户,调整发射功率为默认使用最低发射功率P MIN
在另一些实施例中,电子设备100未远离用户可以进一步细分为:电子设备100远离躯干,不确定是否远离四肢;电子设备100不确定是否远离躯干和四肢。当电子设备100远离躯干,不确定是否远离四肢,电子设备100调整后的发射功率P满足:P≤P limb,当电子设备100不确定是否远离躯干和四肢,电子设备100调整后的发射功率P满足:P≤P2。其中,P2=MIN{P limb,P body},P limb为电子设备100靠近四肢时,符合电磁能量吸收规范的最大功率,P body为电子设备100靠近躯干时,符合电磁能量吸收规范的最大功率。
另外,在电子设备细分是否远离用户各人体部位的情况下,电子设备100远离用户时,调整后的发射功率P可以满足:P≥P1,其中,P1=MAX{P limb,P body}。
可以理解的是,在电子设备100无法判断是否远离用户的某人体部位时,默认以电子设备靠近该部位为判断结果。这样,可以尽量避免出现电子设备100以超出用户可承受的辐射范围的发射功率发送信号的问题。
在一个具体的例子中,当P limb>P body时,图7示例性示出了电子设备100调整发射功率的时序图。如图7所示,0-t1时段电子设备100默认使用最低发射功率P MIN,t1时刻电子设备100判断远离用户,调整发射功率为P A(P A≥P limb),t2时刻电子设备100判断远离躯干,但不确定是否远离四肢,调整发射功率为P B(P B≤P limb),t3时刻电子设备100判断靠近用户但不确定是否靠近躯干和四肢,调整发射功率为P C(P C≤P body)。
可以看出,当电子设备靠近用户时,可以进一步细分电子设备靠近用户的躯干还是四肢,这样,针对不同的情况,电子设备可以选择不同的发射功率,在兼顾用户安全的前提下能够更大限度地提升发射功率,改善通信性能。
在一些实施例中,电子设备100调整的发射功率还可以受到用户年龄层次的限制。由于,成年人的SAR限制高于未成年人的SAR限制,所以未成年人对辐射的限制要求高于成年人对辐射的限制要求,从用户安全使用方面考虑,针对未成年人的发射功率应低于针对成年人的发射功率。具体地,电子设备100可以根据应用程序的不同受众群体,来判断当前用户是否为未成年人,例如,当运行的应用程序为儿童游戏、儿童教学辅导类等应用程序时,电子设备100判断当前用户为未成年人,电子设备100再根据上述过程判断电子设备100与用户的位置关系来调整发射功率。
在一些实施例中,电子设备100还可以获知同一应用下的不同操作,根据不同操作,调整到相应的发射功率。例如,在通话应用或社交软件的通话功能下,当用户未打开外放时,一般认为电子设备100是靠近用户(例如至少靠近用户头部),则使用相应的发射功率;当用户进行打开外放的操作时,一般认为电子设备100是远离用户(例如至少远离用户头部),响应于打开外放的操作,使用相应的发射功率,例如可以提升发射功率。
再者,电子设备100的发射功率还会受到通信协议、通信频段和网络侧设备下发的功率调整命令的约束。电子设备100可以在根据电子设备100与用户的位置关系调整发射功率时,进一步调整该功率使其满足通信协议、通信频段和功率调整命令对发射功率的要求。例如,电子设备100的发射功率必须小于网络侧下发的功率调整命令中指示的最大UE发射功率。
下面结合场景来介绍本申请实施例提供的发射功率控制方法。
图8A-图8F为本申请实施例提供的一些示例性场景。
图8A示例性示出了用户观看手机视频的场景。如图8A所示,用户躺在床上观看电子设备100上播放的视频,并用手托举着电子设备100。在电子设备100确定使用场景之前,默认使用最低发射功率,之后,电子设备100可以根据电子设备100运行的视频播放类应用程序和/或扬声器,确定使用场景为视频播放场景,但是电子设备100并不能准确判断电子设备100是否一定远离用户。因为一般情况下,利用手机观看视频时,用户可以将手机置于桌上,不接触手机,也可以用手托举着手机。电子设备100可以利用加速度传感器进一步确定电子设备100有位置变化的趋势,即用户接触到电子设备100并使电子设备100有位置上的变化,即判断电子设备100靠近用户,但不确定电子设备100靠近用户的躯干还是四肢,则SI=3,且靠近的距离为X,电子设备100调整发射功率为P CX。进一步地,在用户使用电子设备100观看手机视频的过程中,电子设备100可以通过检测装置例如触摸传感器、加速度传感器、飞行时间传感器等采集的数据确定电子设备100与用户的位置关系是否发生变化,例如,当用户进一步拉近与电子设备100的距离,电子设备100通过飞行时间传感器获取到用户与电子设备100的距离为Y(X>Y),调整发射功率为P CY(P CX>P CY),其中,P CX和P CY可以是SI=3对应的不同等级下的发射功率。
图8B示例性示出了用户进行电话聊天的场景。如图8B所示,用户手举电子设备100正在接听电话,此时电子设备100不靠近用户的躯干。电子设备100可以根据电子设备100运行的通话应用程序和/或扬声器、麦克风的调用,确定使用场景为通话场景,因为一般情况下,通话场景中,电子设备100会靠近用户的头部。进一步地,电子设备100可以通过例如接近光传感器获取到用户与电子设备100的距离为X,确定电子设备100远离躯干,但不确定是否远离四肢,进而将发射功率调整到P CX,随后,电子设备100还可以根据通过例如接近光传感器监测电子设备100与用户的位置关系是否发生改变,例如,当电子设备100仍处于通话场景,但是接近光传感器获取到用户与电子设备100的距离变化为Y(X>Y),电子设备100调整发射功率为P CY(P CX>P CY),其中,P CX和P CY可以是SI=3对应的不同等级下的发射功率。
图8C示例性示出了用户体验大屏体感游戏的场景。如图8C所示,此时电子设备100为大屏设备,用户使用电子设备100体验体感游戏,用户完成相应的体感动作,这样电子设备100可以通过摄像头采集到的体感动作分析用户的运动情况。这时,用户与电子设备100间隔一定的距离。电子设备100可以根据电子设备100运行的体感类游戏应用程序,确定使用场景为体感游戏场景。进一步地,电子设备100可以通过例如电容式传感器确定用户没有作用于电子设备100屏幕的压力,则确定电子设备100远离用户,进而将发射功率调整为P A,之后,电子设备100还可以通过例如电容式传感器或者接近光传感器,检测电子设备100与用户之间的位置关系是否发生变化,如果电子设备100与用户的位置关系一直处于远离状态,则电子设备100保持发射功率为P A,否则,电子设备100降低发射功率至相应的等级,例如,电子设备100通过例如电容式传感器检测用户接触电子设备100,但不能区分出接触电子设备100的是用户的哪一人体部位,电子设备100将状态索引SI确定为SI=3,即为不确定是否远离躯干和四肢,将发射功率调整为P C
图8D示例性示出了用户进行直播的场景。如图8D所示,用户正在使用直播类应用程序进行直播,并通过左耳机201和右耳机202获取电子设备100传出的声音或采集用户的声音, 电子设备100可以通过摄像头将用户的图像录入直播画面中,此时用户距离电子设备100一定距离外。电子设备100可以根据电子设备100运行的直播类应用程序和/或摄像头、耳机的调用,确定使用场景为直播场景。电子设备100可以通过例如电容式传感器确定用户没有作用于电子设备100屏幕的压力,则确定电子设备100远离用户,进而将发射功率调整到相应的大小。
图8E示例性示出了用户进行视频通话的场景。如图8E所示,用户使用视频通话类应用程序进行聊天,且电子设备100置于桌上,用户并不接触电子设备100。电子设备100根据接近光传感器判断电子设备100远离用户,进而将发射功率调整到相应的大小。
其中,图8D、图8E与图8C的判断过程相同,首先电子设备100确定的使用场景都为电子设备100远离用户的情况下的某一使用场景。之后,电子设备100可以利用检测装置的数据来进一步调整发射功率的大小。具体关于图8D和图8E的描述可以参考图8C的相关描述。
图8F示例性示出了另一种用户进行视频通话的场景。如图8F所示,用户手持电子设备100,并使用视频通话类应用程序进行聊天。电子设备100可以通过加速度传感器获取用户作用于电子设备100在各个方向上的加速度的大小。电子设备100确定远离用户的躯干,靠近用户的四肢,进而将发射功率调整为P BX,P BX为状态索引SI=2的情况下,电子设备100调整的发射功率,之后,电子设备100可以通过接近光传感器检测电子设备100与用户之间的距离是否发生变化,例如,当电子设备100检测到电子设备100与用户头部之间的距离进一步靠近时,电子设备将发射功率调整为P BY,P BY为状态索引SI=2的情况下,电子设备100调整的另一发射功率,并且,P BX,P BY为状态索引SI=2的情况下,电子设备100划分的不同等级下的发射功率,其中,P BX>P BY
在一些实施例中,根据电子设备100的应用程序调整发射功率。例如,电子设备100运行第一应用程序,天线的发射功率为第一发射功率。响应于用户的操作,电子设备运行第二应用程序。在电子设备100运行第二应用程序后,天线的发射功率为第二发射功率。其中,第一发射功率和第二发射功率不同,第一发射功率和所述第二发射功率均小于或等于符合电磁能量吸收规范的最大传输功率。在一个具体的场景中,电子设备100在运行视频播放应用,此时天线使用相应的发射功率进行发射。在用户播放视频时,有电话接入,响应于用户接听电话的操作,通话应用的通话功能打开,此时天线使用相应的发射功率进行发射,例如降低发射功率。
可以理解的是,不限于上述场景,本申请实施例还可以应用到其他场景中,例如录音场景、阅读场景、购物场景等等,本申请实施例对此不作限制。
下面结合图9介绍本申请实施例涉及到的电路框架。
该电路可以实现电子设备100根据应用程序的运行状态或硬件设备的调用情况、以及传感器数据来调整发射功率,并根据该发射功率传输数据。该电路包括:检测装置301、多媒体器件302、外围设备303、应用处理器304、基带处理器305、收发器306、检测电路307、放大器308、天线开关、耦合器等309、天线310。
检测装置301可用于将外界信息(例如,压力、温度、湿度、图像等)转换成电子设备可识别的信息。例如,温度传感器、电容接近传感器等。
多媒体器件302可以是指电子设备100中的某些硬件部件。例如,摄像头、扬声器、麦克风、受话器、按键、USB接口等。
外围设备303是指可以连接到电子设备100的主机,并与电子设备100进行数据交互的外部设备,例如,耳机、游戏手柄、键盘、鼠标、便携机等。
应用处理器304可用于根据传感器、多媒体器件、外围设备发送的数据以及应用程序的运行情况,指示基带处理器中的功率控制电路调整发射功率,另外,应用处理器还可用于控制传感器的驱动以及执行相关算法。
基带处理器305可用于处理数据和存储数据。基带处理器还包含功率控制电路,功率控制电路可用于控制发射功率以符合SAR规范。
收发器306可用于将电信号转换为光信号。检测电路307可用于检测发射功率,天线开关可用于切换天线发射、接收状态,耦合器可用于将信号分成多路信号。
在本申请实施例中,应用处理器304可以获取检测装置301、多媒体器件302、外围设备303发送的数据以及应用程序的运行数据,再根据这些数据判断电子设备100是否远离用户或者细分是否远离用户的哪一人体部位,从而根据电子设备100与用户的位置关系调整电子设备100的发射功率。当电子设备100需要调整发射功率时,应用处理器304可以向基带处理器305中的功率控制电路发送调整发射功率的请求,该请求中包含电子设备100需要调整的发射功率的大小,响应于该请求,功率控制电路调整发射功率,之后,当电子设备存在需要发送的数据,电子设备100可以通过天线310,根据调整后的发射功率发送数据。
本申请的各实施方式可以任意进行组合,以实现不同的技术效果。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
总之,以上所述仅为本技术方案的实施例而已,并非用于限定本方案的保护范围。凡根据本方案的揭露,所作的任何修改、等同替换、改进等,均应包含在本方案的保护范围之内。

Claims (20)

  1. 一种发射功率控制方法,其特征在于,所述方法运用于电子设备,所述电子设备包括天线,所述电子设备使用所述天线传输无线信号,所述方法包括:
    所述电子设备运行第一应用程序,所述天线的发射功率为第一发射功率;
    所述电子设备运行第二应用程序;
    在所述电子设备运行所述第二应用程序后,所述天线的发射功率为第二发射功率;
    其中,所述第一应用程序对应的使用场景和所述第二应用程序对应的使用场景不同,所述第一发射功率与所述第二发射功率不同。
  2. 根据权利要求1所述的方法,其特征在于,所述电子设备还包括检测装置,所述检测装置用于检测所述电子设备和用户之间的距离变化;
    当所述电子设备运行所述第一应用程序时,所述电子设备获取所述电子设备和用户之间的距离变化。
  3. 根据权利要求2所述的方法,其特征在于,当所述电子设备获取所述电子设备和用户之间的距离变化时,所述天线的发射功率变化。
  4. 根据权利要求3所述的方法,其特征在于,当所述电子设备和用户之间的距离变大时,所述天线的发射功率变大;当所述电子设备和用户之间的距离变小时,所述天线的发射功率变小。
  5. 根据权利要求2所述的方法,其特征在于,所述检测装置包括以下一项或多项:电容式传感器、飞行时间传感器、接近光传感器、生物识别传感器、霍尔传感器、陀螺仪传感器、加速度传感器和天线阻抗检测电路中的一个或多个。
  6. 根据权利要求2至5中任一所述的方法,其特征在于,
    当所述电子设备和用户之间的距离小于第一值时,所述第一发射功率小于或等于符合电磁能量吸收规范的最大传输功率。
  7. 根据权利要求1至6中任一所述的方法,其特征在于,所述用户包括多个人体部位,所述多个人体部位包括第一部位;
    所述电子设备运行所述第一应用程序时,所述电子设备与所述第一部位的距离为第一距离;
    所述电子设备运行所述第二应用程序时,所述电子设备与所述第一部位的距离为第二距离,其中,所述第一距离和所述第二距离不同。
  8. 根据权利要求7所述的方法,其特征在于,所述多个人体部位还包括第二部位;
    所述电子设备运行所述第一应用程序时,所述电子设备与所述第二部位的距离变化时,所述天线的发射功率变化;或,
    所述电子设备运行所述第二应用程序时,所述电子设备与所述第二部位的距离变化时,所述天线的发射功率变化。
  9. 根据权利要求1至8中任一所述的方法,其特征在于,所述电子设备运行所述第一应用程序时,当所述电子设备运行所述第一应用程序下的不同应用操作时,所述天线的发射功率变化;或,
    所述电子设备运行所述第二应用程序时,当所述电子设备运行所述第二应用程序下的不同应用操作时,所述天线的发射功率变化。
  10. 根据权利要求9所述的方法,其特征在于,所述应用操作包括对硬件设备的操作。
  11. 根据权利要求10所述的方法,其特征在于,所述硬件设备包括所述电子设备中的硬件设备和所述电子设备的外设。
  12. 根据权利要求1至11中任一所述的方法,其特征在于,所述电子设备在运行所述第一应用程序或所述第二应用程序之前,所述天线的发射功率为第三发射功率,所述第三发射功率小于或等于所述第一发射功率,且所述第三发射功率小于或等于所述第二发射功率。
  13. 根据权利要求12所述的方法,其特征在于,所述第三发射功率小于或等于符合电磁能量吸收规范的最大传输功率。
  14. 一种发射功率控制方法,其特征在于,所述方法运用于电子设备,所述电子设备包括天线,所述电子设备使用所述天线传输无线信号,所述方法包括:
    所述电子设备运行第一应用程序;
    所述电子设备将天线的发射功率由第三发射功率调整为第一发射功率;
    其中,所述第一发射功率大于或等于所述第三发射功率,所述第三发射功率小于或等于符合电磁能量吸收规范的最大传输功率。
  15. 根据权利要求14所述的方法,其特征在于,所述电子设备运行所述第一应用程序时,当所述电子设备运行所述第一应用程序下的不同应用操作时,所述天线的发射功率变化;或,
    所述电子设备运行所述第二应用程序时,当所述电子设备运行所述第二应用程序下的不同应用操作时,所述天线的发射功率变化。
  16. 根据权利要求15所述的方法,其特征在于,所述应用操作包括对硬件设备的操作。
  17. 根据权利要求16所述的方法,其特征在于,所述硬件设备包括所述电子设备中的硬件设备和所述电子设备的外设。
  18. 根据权利要求14至17中任一所述的方法,其特征在于,所述电子设备还包括检测装置,所述检测装置用于检测所述电子设备和用户之间的距离变化;
    当所述电子设备运行所述第一应用程序时,所述电子设备获取所述电子设备和用户之间的距离变化,则所述天线的发射功率变化。
  19. 一种电子设备、其特征在于,包括:一个或多个处理器、显示屏、一个或多个存储器;其中,所述显示屏、一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器在执行所述计算机指令时,使得所述电子设备执行如权利要求1至13、14至18任一项所述的方法。
  20. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行时,使得所述电子设备执行如权利要求1至13、14至18任一项所述的方法。
PCT/CN2022/085411 2021-04-16 2022-04-06 发射功率控制方法及相关设备 WO2022218196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110414582.8A CN115226185A (zh) 2021-04-16 2021-04-16 发射功率控制方法及相关设备
CN202110414582.8 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022218196A1 true WO2022218196A1 (zh) 2022-10-20

Family

ID=83605759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085411 WO2022218196A1 (zh) 2021-04-16 2022-04-06 发射功率控制方法及相关设备

Country Status (2)

Country Link
CN (1) CN115226185A (zh)
WO (1) WO2022218196A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765802A (zh) * 2022-10-24 2023-03-07 维沃移动通信有限公司 电子设备、检测方法和可读存储介质
CN116774173A (zh) * 2023-07-06 2023-09-19 南京能智电子科技有限公司 一种雷达发射功率调节模块的故障数据识别系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039001A (zh) * 2014-06-27 2014-09-10 联想(北京)有限公司 功率控制方法和功率控制装置
CN109068383A (zh) * 2018-08-24 2018-12-21 维沃移动通信有限公司 一种调节天线发射功率的方法及终端设备
CN109391904A (zh) * 2018-10-11 2019-02-26 深圳市万普拉斯科技有限公司 Sar调整方法、装置、移动终端及可读存储介质
CN110519835A (zh) * 2018-05-21 2019-11-29 青岛海信移动通信技术股份有限公司 一种发射功率调整的方法和设备
CN111245983A (zh) * 2020-01-09 2020-06-05 Oppo广东移动通信有限公司 天线控制方法和装置、电子设备、计算机可读存储介质
CN111479011A (zh) * 2020-04-02 2020-07-31 Oppo广东移动通信有限公司 功率调整方法、装置、存储介质及电子设备
US20200259515A1 (en) * 2019-02-13 2020-08-13 Intel Corporation Transmission management techniques for avoiding excessive exposure of humans to electromagnetic energy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039001A (zh) * 2014-06-27 2014-09-10 联想(北京)有限公司 功率控制方法和功率控制装置
CN110519835A (zh) * 2018-05-21 2019-11-29 青岛海信移动通信技术股份有限公司 一种发射功率调整的方法和设备
CN109068383A (zh) * 2018-08-24 2018-12-21 维沃移动通信有限公司 一种调节天线发射功率的方法及终端设备
CN109391904A (zh) * 2018-10-11 2019-02-26 深圳市万普拉斯科技有限公司 Sar调整方法、装置、移动终端及可读存储介质
US20200259515A1 (en) * 2019-02-13 2020-08-13 Intel Corporation Transmission management techniques for avoiding excessive exposure of humans to electromagnetic energy
CN111245983A (zh) * 2020-01-09 2020-06-05 Oppo广东移动通信有限公司 天线控制方法和装置、电子设备、计算机可读存储介质
CN111479011A (zh) * 2020-04-02 2020-07-31 Oppo广东移动通信有限公司 功率调整方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN115226185A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2020244497A1 (zh) 一种柔性屏幕的显示方法及电子设备
US11683850B2 (en) Bluetooth reconnection method and related apparatus
CN112822663B (zh) 蓝牙连接方法及相关装置
JP2022548121A (ja) 折り畳み可能画面表示方法および電子デバイス
WO2022218196A1 (zh) 发射功率控制方法及相关设备
WO2020000448A1 (zh) 一种柔性屏幕的显示方法及终端
CN110401767B (zh) 信息处理方法和设备
WO2021083128A1 (zh) 一种声音处理方法及其装置
KR102491006B1 (ko) 데이터 송신 방법 및 전자 기기
WO2022062796A1 (zh) 一种网络控制方法、装置及电子设备
JP7234379B2 (ja) スマートホームデバイスによってネットワークにアクセスするための方法および関連するデバイス
EP4171135A1 (en) Device control method, and related apparatus
WO2022143180A1 (zh) 协同显示方法、终端设备及计算机可读存储介质
US20210105651A1 (en) Measurement gap processing method, terminal, and network node
KR20220047358A (ko) 통화 방법 및 장치
JP7193647B2 (ja) 接続確立方法および端末デバイス
US20220124556A1 (en) Uplink transmission drop method, uplink transmission drop configuration method, and related device
WO2022022674A1 (zh) 应用图标布局方法及相关装置
WO2022048453A1 (zh) 解锁方法及电子设备
CN115016697A (zh) 投屏方法、计算机设备、可读存储介质和程序产品
WO2020124447A1 (zh) 面向多卡的网络管理
US20240178771A1 (en) Method and apparatus for adjusting vibration waveform of linear motor
WO2022135157A1 (zh) 页面显示的方法、装置、电子设备以及可读存储介质
WO2022042774A1 (zh) 头像显示方法及电子设备
US20220417689A1 (en) Audio Transmission Method and Electronic Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787423

Country of ref document: EP

Kind code of ref document: A1