WO2022218098A1 - 电池和电子设备 - Google Patents

电池和电子设备 Download PDF

Info

Publication number
WO2022218098A1
WO2022218098A1 PCT/CN2022/081747 CN2022081747W WO2022218098A1 WO 2022218098 A1 WO2022218098 A1 WO 2022218098A1 CN 2022081747 W CN2022081747 W CN 2022081747W WO 2022218098 A1 WO2022218098 A1 WO 2022218098A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
current collector
layer
positive electrode
negative electrode
Prior art date
Application number
PCT/CN2022/081747
Other languages
English (en)
French (fr)
Inventor
谢红斌
黄庆叁
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022218098A1 publication Critical patent/WO2022218098A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium ion batteries, and in particular, to a battery and an electronic device.
  • the batteries used in electronic devices are lithium-ion batteries, which are generally single-cell batteries.
  • the batteries of electronic devices In order to improve people's experience of using electronic devices, it is generally required that the batteries of electronic devices have a faster charging speed, which requires the batteries to have a larger capacity.
  • the space for storing batteries in electronic devices is limited. Therefore, how to store batteries in electronic devices? Loading the largest capacity battery in the limited space of the device has become a hot research topic in the current battery field.
  • the battery of some electronic equipment adopts the structure of double-cell parallel connection to expand the capacity of the battery by increasing the current; the battery of some electronic equipment adopts the structure of double-cell series connection to increase the voltage by increasing the voltage. the capacity of the battery.
  • the battery of the above-mentioned structure occupies a large space, so the improved battery capacity is limited.
  • the present application provides a battery, which has high energy density and small occupied space, thereby improving the battery capacity.
  • a battery in a first aspect, includes: at least two battery cells and at least two current collectors; wherein each of the battery cells includes a positive electrode layer, a negative electrode layer, and a battery disposed between the positive electrode layer and the negative electrode layer.
  • the separator between the cells; the cell and the current collector are arranged at intervals, and the positive electrode layer of the cell and the negative electrode layer of the adjacent cell are respectively arranged on both sides of the same current collector; the at least two cells A series connection and/or a parallel connection is achieved through the current collectors.
  • an electronic device includes the battery according to the first aspect.
  • each cell and the adjacent cell can be connected in series or in parallel, Further, a series or parallel structure of a plurality of cells inside the battery is realized.
  • the voltage of the battery can be increased without changing the current, so as to meet the user's fast charging requirements, or, when multiple cells inside the battery are connected in parallel, the voltage can remain unchanged.
  • the present application can also realize a series-parallel structure inside the battery by flexibly arranging a plurality of series-connected cells and a plurality of parallel-connected cells, thereby improving the charging and discharging power of the battery.
  • FIG. 1 is a schematic structural diagram of a battery in one embodiment
  • FIG. 2 is a schematic structural diagram of a current collector in one embodiment
  • FIG. 3 is a schematic structural diagram of another current collector in one embodiment
  • FIG. 4 is a schematic structural diagram of a battery in one embodiment
  • FIG. 5 is a schematic structural diagram of a battery in one embodiment
  • FIG. 6 is a schematic diagram of an equivalent circuit in one embodiment
  • FIG. 9 is a schematic structural diagram of a battery in one embodiment
  • FIG. 10 is a schematic structural diagram of a battery in one embodiment
  • FIG. 11 is a schematic diagram of an equivalent circuit in one embodiment
  • FIG. 12 is a schematic structural diagram of a battery in one embodiment
  • 13 is a schematic diagram of an equivalent circuit in one embodiment
  • FIG. 14 is a schematic diagram of a winding core structure of a battery in one embodiment
  • FIG. 15 is a schematic diagram of a winding core structure of a battery in one embodiment
  • the first cell 201 The second cell 202 The first current collector 203;
  • the second current collector 204 The first positive electrode layer 2011 The second negative electrode layer 2012;
  • the second positive electrode layer 2021 The first negative electrode layer 2022 The first separator 2013;
  • the second isolation film 2023 The first metal layer 2031 The second metal layer 2032;
  • the second composite layer 2043 The first tab 2034 The second tab 2035;
  • the third polar ear 2044 The fourth polar ear 2045;
  • the first cell 301 The second cell 302 The third cell 303;
  • the fourth cell 304 The fifth cell 305 The first current collector 306;
  • the second collector 307 The third collector 308 The fourth collector 309;
  • the fifth current collector 310 The first positive electrode layer 3011 The fifth negative electrode layer 3012;
  • the first separator 3013 The fifth positive electrode layer 3021 The fourth negative electrode layer 3022;
  • the second separator 3023 The fourth positive electrode layer 2031 The third negative electrode layer 2032;
  • the third separator 2033 The third positive electrode layer 3041 The second negative electrode layer 3042;
  • the fourth separator 3043 the second positive electrode layer 3051 the first negative electrode layer 3052;
  • the second positive electrode layer 3051 the first negative electrode layer 3052 the fifth separator 3053;
  • the first cell 401 The second cell 402
  • the fourth cell 404 The first current collector 405 The second current collector 406;
  • the third current collector 407 The fourth current collector 408 The first positive electrode layer 4011;
  • the third negative electrode layer 4022 The second separator 4023 The third positive electrode layer 4031;
  • the second negative electrode layer 4032 The third separator 4033 The second positive electrode layer 4041;
  • the first negative electrode layer 4042 and the fourth isolation film 4043 are The first negative electrode layer 4042 and the fourth isolation film 4043.
  • the battery proposed in this application can be used in any electronic device, such as a mobile phone, a watch, an IPAD, a notebook computer, and the like.
  • a mobile phone such as a mobile phone, a watch, an IPAD, a notebook computer, and the like.
  • most of the batteries used in electronic devices on the market are lithium-ion batteries, and generally they are single-cell batteries, that is, only one cell is used.
  • the volume requirements of the battery are generally very high, so it is necessary to install a battery with a maximum capacity in a limited space.
  • the charging speed of the battery is particularly important. Therefore, multiple batteries are used in series and in parallel.
  • the cells of some mobile phones adopt the structure of double batteries in parallel to increase the current to improve the charging speed of the battery while the charging voltage remains unchanged. This results in a waste of space, thereby reducing the battery capacity that can be used by the electronic device, and will not meet the user's requirements for using the battery capacity.
  • some mobile phones use the structure of double batteries in series to increase the voltage to improve the charging speed of the battery while the charging current remains unchanged, but this method will increase the overall internal resistance of the battery, thereby increasing the battery during the charging process. The heat generated in the battery in turn reduces the life of the battery. Therefore, based on the above technical problems, the present application provides a battery with high energy density, which effectively improves the battery capacity and thus the charging speed of the battery, compared with the traditional cell battery.
  • the following mainly introduces the battery and electronic device proposed in this application.
  • a battery 1 is provided.
  • the battery 1 includes: at least two cells 101 and at least two current collectors 102 ; wherein, each cell 101 includes a positive electrode layer 1011 , a negative electrode layer 1012 and a separator 1013 disposed between the positive electrode layer and the negative electrode layer; the cell 101 and the current collector 102 are spaced apart, and the positive electrode layer 1011 of the cell 101 and the negative electrode layer 1012 of the adjacent cell 101 are respectively arranged in the same Two sides of the current collector 102; at least two battery cells 101 are connected in series and/or in parallel through the current collector 102.
  • the current collector can be used to transfer the charges on the electrode layers with different electrical polarities, so that the different electrode layers can be turned on, and then two cells containing the corresponding electrode layers can be connected in series; the current collector can also be used to connect different electrodes The charges on the non-polar electrode layers are isolated, so that the different electrode layers can be isolated, so that two cells containing the corresponding electrode layers are connected in parallel. For example, taking the current collector 102 in FIG.
  • the current collector 102 can transfer the charge on the positive electrode layer 1011 of the battery cell 101 connected on the right to the negative electrode layer 1012 of the battery cell 101 connected on the left side, so that the The positive electrode layer 1011 and the negative electrode layer 1012 are conductive, thereby connecting the two cells 101 in series; alternatively, the current collector 102 can connect the charge on the positive electrode layer 1011 of the cell 101 connected on the right side with the negative electrode of the cell 101 connected on the left side The charges on the layer 1012 are isolated, so that the positive electrode layer 1011 and the negative electrode layer 1012 are isolated, and the two battery cells 101 are connected in parallel.
  • electrode sheets or tabs can be welded or arranged on the current collector, and by connecting the electrode tabs or tabs, the current collector has the function of conducting different electrode layers, and by disconnecting the electrode tabs or tabs, The current collector has the function of isolating different electrode layers.
  • the battery provided in this embodiment may include two battery cells 101 , or may include multiple battery cells 101 .
  • a current collector 102 is arranged between every two cells 101, so that the cells 101 and the current collector 102 are spaced apart, and the positive electrode layer 1011 of each cell 101 and the negative electrode layer 1012 of the adjacent cell 101 are respectively arranged in the same
  • the two sides of the current collector 102 enable each cell 101 and the adjacent cells 101 to be connected in series or in parallel. For example, in the battery 1 shown in FIG.
  • the first cell 101 on the left in the figure is cell A
  • the second cell 101 on the left is cell B
  • the gap between cell A and cell B is The current collector 102
  • the negative electrode layer of the battery core A is arranged on one side of the current collector P
  • the positive electrode layer of the battery core B is arranged on the other side of the current collector P.
  • the battery A and the battery B can be connected in series; or, when the current collector P does not connect the negative layer of the battery A with the positive layer of the battery B Core A and battery B are connected in parallel.
  • the positive electrode layer 1011 of each cell 101 and the negative electrode layer 1012 of the adjacent cell 101 may be respectively coated on both sides of the same current collector 102, or may be set in other ways. on both sides of the same current collector 102 .
  • all the cells 101 included in the battery can be connected in series to form a battery with an internal series structure; optionally, all the cells 101 included in the battery can be connected in parallel to form an internal parallel connection.
  • a battery with a structure optionally, some of the cells 101 included in the battery may be connected in series, and some of the cells 101 may be connected in parallel to form a battery with an internal series-parallel structure.
  • the material of the positive electrode layer 1011 can be selected from lithium iron phosphate, lithium manganese iron phosphate, lithium vanadium phosphate, lithium vanadium phosphate, lithium cobaltate, lithium manganate, lithium nickelate, lithium nickel cobalt manganate, lithium-rich manganese-based materials , one or more of nickel cobalt lithium aluminate, etc.; the material of the negative electrode layer 1012 can be selected from one or more of graphite, silicon oxide, tin oxide, lithium titanate, and the like.
  • the isolation film 1013 can be made of any type of insulating material.
  • each cell and the adjacent cell can be connected in series or in parallel. , thereby realizing the series or parallel structure of multiple cells inside the battery.
  • the voltage of the battery can be increased without changing the current, so as to meet the user's fast charging requirements, or, when multiple cells inside the battery are connected in parallel, the voltage can remain unchanged.
  • the present application can also realize a series-parallel structure inside the battery by flexibly arranging a plurality of series-connected cells and a plurality of parallel-connected cells, thereby improving the charging and discharging power of the battery.
  • FIG. 2 is a schematic structural diagram of a current collector provided by the present application.
  • the current collector may be the current collector 102 in the battery shown in FIG. 1 , and the current collector includes a composite layer 1021 and two metal layers 1022 arranged on both sides of the composite layer 1021 , and tabs 1023 are arranged on each metal layer 1022 .
  • One metal layer 1022 can be disposed on one side of the composite layer 1021, and another metal layer 1022 can be disposed on the other side of the composite layer 1021; one tab 1023 can be welded on one metal layer 1022, and the other tab 1023 can be welded on on another metal layer 1022.
  • the current collector 102 is used to conduct the positive electrode provided on one metal layer of the current collector 102 and the negative electrode layer provided on the other metal layer of the current collector 102; If the tabs 1023 on the two metal layers 1022 are not connected, the current collector 102 is used to isolate the positive electrode layer provided on one metal layer 1022 of the current collector 102 and the negative electrode provided on the other metal layer 1022 of the current collector 102 charge between layers.
  • the current collector 102 is used to conduct the charge between the positive electrode layer provided on one metal layer 1022 of the current collector 102 and the negative electrode layer provided on the other metal layer 1022 of the current collector 102, the The cells on the side of one metal layer 1022 and the cells on the side of the other metal layer 1022 of the current collector 102 are connected in series; if the current collector 102 is used to isolate the positive electrode layer and the The charge between the negative electrode layers disposed on the other metal layer 1022 of the current collector 102 is realized by the cell disposed on the side of one metal layer 1022 of the current collector 102 and the cell disposed on the other metal layer 1022 of the current collector 102 connected in parallel.
  • the tabs 1023 can be made of any type of conductive material.
  • the tabs 1023 can be welded at any position on the metal layer 1022, and the welding positions of the tabs 1023 on the metal layers 1022 can be on the same horizontal line or alternately arranged on different horizontal lines.
  • the tabs 1023 have positive and negative polarities, and the polarities of the tabs 1022 on different metal layers welded on the same current collector are opposite, and the positive and negative polarities of the tabs 1022 are the same as those of the metal layer 1022 of the current collector 102
  • the positive and negative of the electrode layers provided on it correspond. For example, if a positive electrode layer is provided on one metal layer, the tab welded on the metal layer is equivalent to the positive electrode tab and has positive polarity. The tabs are equivalent to the negative tabs and have negative polarity.
  • the composite layer 101 can be polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether ether ketone, polyimide, polyamide, polyethylene terephthalate Alcohol, polyamideimide, polycarbonate, cyclic polyolefin, polyphenylene sulfide, polyvinyl acetate, polytetrafluoroethylene, polymethylene naphthalene, polyvinylidene fluoride, polyethylene naphthalate Ester, polypropylene carbonate, vinylidene fluoride-hexafluoropropylene, vinylidene fluoride-co-chlorotrifluoroethylene, silicone, vinylon, polypropylene, polyethylene, polyvinyl chloride, polystyrene, poly One or more combinations of ether nitrile, polyurethane, polyphenylene ether, polyester, polysulfone and derivatives thereof; the composite layer 1021 can also be one or more of conductive agent
  • compositions wherein the conductive agent can be at least one of carbon nanotubes, graphene, conductive graphite, carbon black, carbon fiber, graphite, metal powder, conductive ceramic powder, composite conductive materials; Vinylidene fluoride, vinylidene fluoride-fluorinated olefin copolymer, polytetrafluoroethylene, sodium carboxymethyl cellulose, styrene-butadiene rubber, polyurethane, fluorinated rubber, polyvinyl alcohol, polyvinylidene fluoride, polyamide, etc.
  • active material can be lithium iron phosphate, lithium iron manganese phosphate, lithium vanadium phosphate, lithium vanadium phosphate, lithium cobaltate, lithium manganate, lithium nickelate, lithium nickel cobalt manganate, lithium-rich manganese
  • base material nickel cobalt aluminate, graphite, silicon oxide, tin oxide, lithium titanate, etc.
  • the metal powder can be aluminum, copper, nickel, copper, cobalt, tungsten, tin, lead, iron , silver, gold, platinum or at least one of their alloys.
  • the thickness of the composite layer 1021 may be 1-40 ⁇ m, and optimally may be 3-20 ⁇ m.
  • the composite layer 1021 is composited by at least one of coating, calendering, rolling, bonding, evaporation, vapor deposition, chemical deposition, magnetron sputtering, and electroless plating.
  • the metal layer 1022 can be the same metal material or different metal materials, and the metal layer 1022 can be aluminum, copper, nickel, copper, cobalt, tungsten, tin, lead, iron, silver, gold, platinum or alloys thereof at least one of the composition.
  • the thicknesses of the two metal layers 1022 disposed on the same current collector may be the same or different, and the specific thickness of the metal layers 102 is 1 nm-10 ⁇ m, and the optimal thickness may be 100 nm-1 ⁇ m.
  • the two metal layers 1022 disposed on the same current collector have the same metal material and the same thickness, which can simplify the battery process and improve the battery forming speed during the battery manufacturing process.
  • the corresponding current collector when the tabs provided on the two metal layers of the current collector are connected, the corresponding current collector is used to conduct the connection between the positive electrode layer on one metal layer and the negative electrode layer on the other metal layer. Charge, so that the cells arranged on the two metal layers of the collector are connected in series; when the tabs arranged on the two metal layers of the collector are not connected, the corresponding collector is used to isolate the electrodes on one metal layer.
  • the electricity between the positive electrode layer and the negative electrode layer on the other metal layer enables the parallel connection of the battery cells respectively arranged on the two metal layer sides of the current collector.
  • the structure of the first current collector 102 on the left is the current collector structure shown in Fig. 2, which includes two tabs.
  • the first current collector 102 on the left A current collector 102 is used to conduct the charge between the negative electrode layer 1012 provided on the left metal layer and the positive electrode layer 1011 provided on the right metal layer, so that the cell 101 on the left side of the current collector 102 and the right side
  • the battery cores 101 are connected in series; when the two tabs are not welded together, the first current collector 102 on the left is used to isolate the negative electrode layer 1012 arranged on the left metal layer and the negative electrode layer 1012 arranged on the right metal layer.
  • the charge between the positive electrode layers 1011 makes the cell 101 on the left side of the current collector 102 and the cell 101 on the right side connect in parallel.
  • the two metal layers are separated by the composite layer, and the two metal layers are respectively provided with tabs, and the tabs on the two metal layers are connected, so that the current collector can connect the two sides.
  • the electric charge between the positive electrode layer and the negative electrode layer of the battery cell is conducted, so as to realize the series connection of the battery cell, or by disconnecting the tabs on the metal layers, the current collector can connect the positive electrode layer and the negative electrode layer of the battery cell on both sides.
  • the charge isolation between them so as to realize the parallel connection of the cells. If it is necessary to set the cells in series in the battery, it is only necessary to connect the tabs on the two metal layers of the current collector between the cells to be connected in series.
  • the tabs on the two metal layers of the current collector between the parallel cells only need to be disconnected, which realizes the flexible design of series and parallel connection between the cells inside the battery.
  • FIG. 3 is a schematic structural diagram of another current collector provided by the present application, and the current collector may be the current collector 102 in the battery shown in FIG. 1 .
  • the current collector 102 includes two metal layers 1022 , and the current collector 102 is used to conduct conduction between the positive electrode layer provided on one metal layer 1022 of the current collector 102 and the negative electrode layer provided on the other metal layer 1022 of the current collector 102 charge.
  • the current collector 102 is used to conduct the charge between the positive electrode layer provided on one metal layer 1022 of the current collector 102 and the negative electrode layer provided on the other metal layer 1022 of the current collector 102, the The cells on the side of one metal layer 1022 and the cells on the other metal layer 1022 of the current collector 102 are connected in series.
  • the negative electrode layer of the cell may be provided on one metal layer 1022
  • the positive electrode layer may be provided on the other metal layer 1022 .
  • the two metal layers 1022 can be stacked and arranged. Since the two metal layers 1022 are made of metal materials, charge transfer can be performed directly. Therefore, the current collector 102 shown in FIG. 3 can conduct the positive electrode layers of the cells on the sides of the two metal layers. The charge between the negative electrode layer and the current collector 102 enables the cells on both sides of the current collector 102 to be connected in series. For example, in the battery 1 in FIG. 1 , assuming that the structure of the first current collector 102 on the left is the current collector structure shown in FIG.
  • the first current collector 102 on the left is used to conduct the negative electrode disposed on the left metal layer.
  • the electric charge between the layer 1012 and the positive electrode layer 1011 disposed on the right metal layer makes the cell 101 on the left side of the current collector 102 and the cell 101 on the right side connect in series.
  • the current collector is directly connected by setting two metal layers, so that the cells on both sides of the current collector are connected in series.
  • the two metal layers do not need to be provided with a composite layer, and no extra tabs are required to realize the electrical connection.
  • the use of the current collector provided in this embodiment can further save the use of materials and increase the capacity of the formed battery.
  • FIG. 4 is a schematic structural diagram of a battery provided by the present application.
  • FIG. 4 mainly introduces a schematic structural diagram of two battery cells connected in series.
  • the battery 2 includes a first cell 201 , a first current collector 203 , a second cell 202 and a second current collector 204 arranged in sequence;
  • the first cell 201 includes a first positive electrode layer 2011 , a second negative electrode layer 2012 and a A first separator 2013 between the first positive electrode layer 2011 and the second negative electrode layer 2012;
  • the second cell 202 includes a second positive electrode layer 2021, a first negative electrode layer 2022, and a second positive electrode layer 2021 and a second negative electrode layer 2022.
  • a second separator 2023 between the negative electrode layers 2022 .
  • the first positive electrode layer 2011 and the first negative electrode layer 2022 are arranged on both sides of the first current collector 203, and the first current collector 203 is used to isolate the charge between the first positive electrode layer 2011 and the first negative electrode layer 2022; the second positive layer 2021 and the second negative electrode layer 2012 are disposed on both sides of the second current collector 204 , and the second current collector 204 is used to conduct the charge between the second positive electrode layer 2021 and the second negative electrode layer 2012 .
  • the second current collector 204 since the second current collector 204 conducts the charges between the second positive electrode layer 2021 and the second negative electrode layer 2012, the current of the second cell 202 passes through the second current collector from the second positive electrode layer 2021 204 flows into the second negative electrode layer 2012 of the first cell 201 , thereby realizing the series connection of the second cell 202 and the first cell 201 .
  • the first current collector 203 needs to isolate the charges between the first positive electrode layer 2011 and the first negative electrode layer 2022. Therefore, the first current collector 203 can use the current collector shown in FIG. The two tabs on the fluid do not conduct.
  • the second current collector 204 needs to conduct electric charge between the second positive electrode layer 2021 and the second negative electrode layer 2012 .
  • the second current collector may use the current collector shown in FIG. 2 , and the two tabs on the current collector are in conduction, or the second current collector may also use the current collector shown in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of the corresponding battery 2 when the current collector is provided with tabs. As shown in FIG.
  • the first current collector 203 in the battery 2 includes a first metal layer 2031 , a first composite layer 2033 , and a second metal layer 2032 arranged in sequence, and a first tab is arranged on the first metal layer 2031 2034, a second tab 2035 is arranged on the second metal layer 2032;
  • the second current collector 204 includes a third metal layer 2041, a second composite layer 2043, and a fourth metal layer 2042 arranged in sequence, and the third metal layer 2041 is arranged on the There is a third tab 2044, and a fourth tab 2045 is provided on the fourth metal layer.
  • the first positive electrode layer 2011 is disposed on the first metal layer 2031, the first negative electrode layer 2011 is disposed on the second metal layer 2032; the second positive electrode layer 2021 is disposed on the third metal layer 2041, and the second negative electrode layer 2011
  • the electrode layer 2012 is disposed on the fourth metal layer 2042 .
  • the first tab 2034 is welded on the first metal layer 2031
  • the second tab 2035 is welded on the second metal layer 2032
  • the third tab 2043 is welded on the third metal layer 2041
  • the fourth tab 2044 is welded on the third tab.
  • the first tab 2034 and the second tab 2035 are not connected, and the third tab 2044 and the fourth tab 2045 are connected; the first tab 2034 is the positive voltage output end of the battery, and the second tab 2035 is the negative voltage output terminal of the battery.
  • the above-mentioned first positive electrode layer and the second positive electrode layer can be positive electrode layers of the same material, or can be positive electrode layers of different materials; the above-mentioned first negative electrode layer and the second negative electrode layer can be negative electrodes of the same material layer, it can also be a negative electrode layer of different materials.
  • the series connection of the first cell 201 and the second cell 202 is realized, for example, the equivalent circuit shown in FIG. A positive voltage is output at the electrode, and a negative voltage is output at the negative electrode of the second cell.
  • the first current collector 203 and the second current collector 204 are provided with respective tabs, so the tabs on the first current collector 203 can be connected or disconnected, and the second collector can be connected or disconnected
  • the tabs on the fluid 204 can flexibly set the series structure or parallel structure of the cells inside the battery.
  • three kinds of internal structures can be formed by connecting or not connecting the first tab 2034 and the second tab 2035, and connecting or disconnecting the third tab 2044 and the fourth tab 2045.
  • the series-parallel structure of the battery cell the following three structures are described in detail:
  • the first structure is: assuming that the first tab 2034 and the second tab 2035 on the first current collector 203 are disconnected, the third tab 2044 and the fourth tab 2045 on the second current collector 204 are disconnected, Then the first cell 201 and the second cell 202 inside the battery are connected in parallel (as shown in the equivalent circuit diagram in FIG. 7 ), and the connection end formed by the connection between the first tab 2034 and the third tab 2044 is used as the connection terminal of the battery.
  • the positive voltage output terminal, the connection formed by the connection between the second tab 2035 and the fourth tab 2045 is used as the negative voltage output terminal of the battery.
  • the first current collector 203 isolates the charges between the first positive electrode layer 2011 and the first negative electrode layer 2022, the current of the first cell 201 cannot pass through the first collector from the first positive electrode layer 2011.
  • the fluid 203 flows into the first negative electrode layer 2022 of the second battery core 202; the second current collector 204 isolates the charge between the second positive electrode layer 2021 and the second negative electrode layer 2012, so the current of the second battery core 202 cannot flow from the second battery core 202.
  • the two positive electrode layers 2021 flow into the second negative electrode layer 2012 of the second cell 201 through the second current collector 204; based on this design, the first tab 2034 and the third tab 2044 are welded together to form a positive voltage output terminal, and the The second tab 2035 and the fourth tab 2045 are welded together to form a negative voltage output terminal, which realizes the parallel connection of the first cell 201 and the second cell 202 .
  • the second structure is: assuming that the first tab 2034 and the second tab 2035 on the first current collector 203 are connected, and the third tab 2044 and the fourth tab 2045 on the second current collector 204 are not connected, then The second cell 202 and the first cell 201 inside the battery are connected in series (as shown in the equivalent circuit diagram in FIG. 8 ), the third tab 2044 is used as the positive voltage output terminal of the battery, and the fourth tab 2045 is used as the battery the negative voltage output terminal.
  • the first current collector 203 since the first current collector 203 conducts the charge between the first positive electrode layer 2011 and the first negative electrode layer 2022, the current of the first cell 201 passes from the first positive electrode layer 2011 through the first collector The fluid 203 flows into the first negative electrode layer 2022 of the second cell 202 , thereby realizing the series connection of the first cell 201 and the second cell 202 .
  • the second current collector 204 isolates the charge between the second positive electrode layer 2021 and the second negative electrode layer 2012 , so the current of the second cell 202 cannot flow from the second positive electrode layer 2021 to the second current collector 204 through the second current collector 204 .
  • the second negative electrode layer 2012 of the cell 201 based on this design, the first tab 2034 and the second tab 2035 are welded together, and the third tab 2044 is directly used as the positive voltage output terminal, and the fourth tab 2045 It is directly used as the negative voltage output terminal to realize the series connection of the first battery cell 101 and the second battery cell 102 .
  • the third structure is: assuming that the first tab 2034 and the second tab 2035 on the first current collector 203 are not connected, and the third tab 2044 and the fourth tab 2045 on the second current collector 204 are connected, then The cells 201 and 202 inside the battery are connected in series (as shown in the equivalent circuit diagram in FIG. 6 ), and the first tab 2034 is used as the positive voltage output terminal of the battery, and the second tab 2035 is used as the negative voltage output of the battery end.
  • the first current collector 203 isolates the charges between the first positive electrode layer 2011 and the first negative electrode layer 2022, the current of the first cell 201 cannot pass through the first collector from the first positive electrode layer 2011.
  • the fluid 203 flows into the first negative electrode layer 2022 of the second battery cell 202; at the same time, the first current collector 203 conducts the charge between the first positive electrode layer 2011 and the first negative electrode layer 2022, and the current of the first battery core 201 Flow from the first positive electrode layer 2011 through the first current collector 203 to the first negative electrode layer 2022 of the second cell 202; based on this design, the third tab 2044 and the fourth tab 2045 are welded together, and the first tab The tab 2034 is directly used as a positive voltage output terminal, and the second tab 2035 is directly used as a negative voltage output terminal to realize the series connection of the first cell 101 and the second cell 102 .
  • FIG. 9 is a schematic structural diagram of a battery 2 corresponding to a current collector in FIG. 5 when no tabs are provided. As shown in FIG.
  • the first current collector 203 in the battery 2 includes a first metal layer 2031 , a first composite layer 2033 , and a second metal layer 2032 arranged in sequence, and a first tab is arranged on the first metal layer 2031 2034, a second tab 2035 is arranged on the second metal layer 2032;
  • the second current collector 204 includes a third metal layer 2041 and a fourth metal layer 2042 arranged in sequence; wherein, the first positive electrode layer 2011 is arranged on the first metal layer On the layer 2031, the first negative electrode layer 2022 is arranged on the second metal layer 2032; the second positive electrode layer 2021 is arranged on the third metal layer 2041, and the second negative electrode layer 2012 is arranged on the fourth metal layer 2042;
  • the first tab 2034 is welded on the first metal layer 2031, the second tab 2035 is welded on the second metal layer 2032, and the first tab 2034 and the second tab 2035 are not connected; the first tab 2034 is for the battery Positive voltage output terminal, the second tab 2035 is the negative voltage output terminal of the battery.
  • the first current collector 203 is provided with a tab, and the first tab 2034 and the second tab 2035 are not connected, and the second current collector 204 is not provided with a tab, but directly passes through the third metal
  • the layer 2041 and the fourth metal layer 2042 are connected. Since the second current collector 204 conducts the charge between the second positive electrode layer 2021 and the second negative electrode layer 2012, the current of the second cell 202 passes through the second positive electrode layer 2021.
  • the second current collector 204 flows into the second negative electrode layer 2012 of the first cell 201, thereby realizing the series connection of the second cell 202 and the first cell 201. Therefore, the cells inside the battery shown in FIG. 9 are Connected in series, for example, the equivalent circuit shown in FIG.
  • the first tab 2034 is the positive voltage output terminal of the battery
  • the second tab 2035 is the negative voltage output terminal of the battery.
  • the second current collector shown in FIG. 6 does not have a composite layer, and the second current collector is directly used to conduct between the positive electrode layer and the negative electrode layer of the cells on both sides. It can simplify the process flow of current collector recombination. When multiple cells connected in series are arranged inside the battery, the material usage and space occupation of the battery can be further reduced, and the battery capacity can be improved while improving the energy density of the battery. .
  • the first tab 2034 in FIG. 5 can be the positive voltage output terminal in FIG.
  • the diode lugs 2035 may be the positive and negative voltage output terminals in FIG. 6 ; or, assuming that the battery shown in FIG. 5 is used to realize the series connection of the second cell 202 and the first cell 201 in FIG. 8 , in FIG. 5
  • the third tab 2044 can be the positive voltage output terminal in FIG. 8, and the fourth tab 2045 can be the positive and negative voltage output terminals in FIG. 8; it is assumed that the battery described in FIG.
  • the first tab 2034 in FIG. 9 may be the positive voltage output terminal in FIG. 6
  • the second tab 2035 may be the positive and negative voltage output terminals in FIG. 6 .
  • the present application can also provide a structure in which a plurality of cells in a battery are connected in series and parallel.
  • the following embodiments of FIGS. 10-11 introduce a structure in which three parallel cells are connected in series with two parallel cells
  • the following Figures 12-11 Embodiment 13 introduces a structure in which two series-connected cells are connected in parallel with two series-connected cells.
  • FIG. 10 is a schematic structural diagram of a battery provided by the application, and the cells inside the battery are a structure in which three parallel cells are connected in series with two parallel cells.
  • the battery 3 includes a first cell 301, a fifth current collector 310, a second cell 302, a fourth current collector 309, a third cell 303, a third current collector 308, a fourth cell 304, and a second current collector 307 , the fifth cell 305 and the first current collector 306 .
  • the first battery core 301 includes a first positive electrode layer 3011, a fifth negative electrode layer 3012, and a first separator 3013 disposed between the first positive electrode layer 3011 and the fifth negative electrode layer 301; the second battery core 302 includes a fifth negative electrode layer 3013.
  • the third battery core 203 includes the fourth positive electrode layer 2031, the third negative electrode layer 2032 and the The third separator 2033 arranged between the fourth positive electrode layer 2031 and the third negative electrode layer 2032;
  • the fourth cell 304 includes the third positive electrode layer 3041, the second negative electrode layer 3042, and the third positive electrode layer 3041 and the second negative electrode layer 3042.
  • the fourth separator 3043 between the negative electrode layers 3042; the fifth cell 305 includes a second positive electrode layer 3051, a first negative electrode layer 3052, and a fifth separator disposed between the second positive electrode layer 3051 and the first negative electrode layer 3052 3053.
  • the first positive electrode layer 3011 and the first negative electrode layer 3052 are arranged on both sides of the first current collector 306; the second positive electrode layer 3051 and the second negative electrode layer 2042 are arranged on both sides of the second current collector 307; the third positive electrode layer 3041 and the third The negative electrode layer 2032 is arranged on both sides of the third collector 308; the fourth positive electrode layer 3031 and the fourth negative electrode layer 3022 are arranged on both sides of the fourth collector 309; the fifth positive electrode layer 3021 and the fifth negative electrode layer 3012 are arranged on the fifth collector Both sides of fluid 310.
  • the first current collector 306 is used to conduct the charge between the first positive electrode layer 3011 and the first negative electrode positive layer 3052
  • the second current collector 307 is used to isolate the charge between the second positive electrode layer 3051 and the second negative electrode positive layer 3042
  • the third current collector 308 is used to conduct the charge between the third positive electrode layer 3041 and the third negative electrode positive layer 3032
  • the fourth current collector 309 is used to isolate the fourth positive electrode layer 3031 and the fourth negative electrode positive layer 3022.
  • the fifth current collector 310 is used to isolate the electric charges between the fifth positive electrode layer 3021 and the fifth negative electrode positive layer 3012 .
  • both the first current collector 306 and the third current collector 308 that are connected can adopt the current collector structure described in the embodiment of FIG. 2;
  • the current collector 308 can also adopt the current collector structure as shown in the embodiment of FIG. 3, and it is not necessary to weld the tabs and directly communicate; All can adopt the current collector structure as described in the embodiment of FIG. 2 .
  • the side where the first current collector 306 is provided with the first positive electrode layer 3011 , the side where the fifth current collector 310 is provided with the fifth positive electrode layer 3021 , and the fourth current collector 306 where the fourth positive electrode layer 3031 is provided One side of the fluid 309 is connected, and the first connection terminal A formed is the positive voltage output terminal of the battery; the side of the first current collector 306 with the first negative electrode layer 3052 and the One side of the second current collector 307 is connected, and the formed second connection end B is the negative voltage output end of the battery.
  • tabs can be welded on the metal layers on both sides of the first current collector 306 . (positive tab and negative tab), and connect the tabs to realize the series connection of the first cell 301 and the fifth cell 305; the tabs (positive tab and negative tab) can be welded on the metal layers on both sides of the third current collector 308 , and connect the tabs to realize the series connection of the fourth cell 304 and the third cell 303; when the above-mentioned non-conductive second current collector 307, fourth current collector 309 and fifth current collector 310 are implemented as shown in FIG.
  • electrode tabs (positive electrode tab and negative electrode tab) can be welded on the metal layers on both sides of the second current collector 307, and the tabs can be disconnected to realize the fifth cell 305 and the fourth cell 304.
  • the fifth set Tabs (positive tab and negative tab) can be welded on the metal layers on both sides of the fluid 310, and the tabs are disconnected to realize parallel connection of the second cell 302 and the first cell 301.
  • the above-mentioned positive lug is a lug welded on a metal layer provided with a positive electrode layer, which is equivalent to the first or third lug in the embodiment of FIG. 5
  • the above-mentioned negative electrode lug is a metal layer provided with a negative electrode layer.
  • the tab welded on the layer is equivalent to the second tab or the fourth tab in the embodiment of FIG. 5 .
  • the tab please refer to the description of the foregoing embodiments in FIGS. 2 to 5 , which will not be repeated here.
  • the positive tab (corresponding to 3031) on one side of the metal layer of the current collector 310 is connected to form a first connection terminal A, and the first connection terminal A is the positive voltage output terminal (corresponding to U+) of the battery;
  • the negative tab (corresponding to 3052) on the layer and the negative tab (corresponding to 3042) on the metal layer on one side of the second current collector 307 are connected to form a second connection end B, and the second connection end B is the negative voltage output end of the battery (corresponding to 3042).
  • U-
  • the battery provided in this embodiment realizes the series-parallel connection of each cell inside the battery, and realizes the equivalent circuit shown in FIG. 11 , that is, the first cell 301 , the second cell 302 and the third cell 303 are connected in parallel , the fourth cell 304 and the fifth cell 305 are connected in parallel, and the parallel cell formed by the parallel connection of the first cell 301, the second cell 302 and the third cell 303 is connected to the fourth cell 304 and the third cell
  • the parallel cells formed after the five cells 305 are connected in parallel are connected in series.
  • a series-parallel structure inside the battery is realized by setting two groups of parallel-connected battery cells to be connected in series, thereby improving the charging and discharging power of the battery.
  • FIG. 12 is a schematic structural diagram of a battery provided by the application, and the cells inside the battery are a structure in which two cells connected in series are connected in parallel with two cells connected in series.
  • the battery 4 includes a first cell 401 , a fourth current collector 408 , a second cell 402 , a third current collector 407 , a third cell 403 , a second current collector 406 , a fourth cell 404 , and a third cell 403 .
  • a current collector 405 is a current collector 405 .
  • the first battery core 401 includes a first positive electrode layer 4011, a fourth negative electrode layer 4012, and a first separator 4013 disposed between the first positive electrode layer 4011 and the fourth negative electrode layer 4012; the second battery core 402 includes a fourth negative electrode layer 4013.
  • the third battery core 403 includes a third positive electrode layer 4031, a second negative electrode layer 4032 and The third separator 4033 arranged between the third positive electrode layer 4031 and the second negative electrode layer 4032;
  • the fourth cell 404 includes the second positive electrode layer 4041, the first negative electrode layer 4042, and the second positive electrode layer 4041 and the first negative electrode layer 4042.
  • the fourth separator 4043 between the negative electrode layers 4042.
  • the first positive electrode layer 4011 and the first negative electrode layer 4042 are arranged on both sides of the first current collector 405; the second positive electrode layer 4041 and the second negative electrode layer 4032 are arranged on both sides of the second current collector 406; the third positive electrode layer 4031 and the third The negative electrode layer 4022 is arranged on both sides of the third current collector 407 ; the fourth positive electrode layer 4021 and the fourth negative electrode layer 4012 are arranged on both sides of the fourth current collector 408 .
  • the first current collector 405 is used to conduct the charge between the first positive electrode layer 4011 and the first negative electrode positive layer 4042
  • the second current collector 406 is used to conduct the electric charge between the second positive electrode layer 4041 and the second negative electrode positive layer 4032.
  • the third current collector 407 is used to isolate the charge between the third positive electrode layer 4031 and the third negative electrode positive layer 4022
  • the fourth current collector 408 is used to conduct between the fourth positive electrode layer 4021 and the fourth negative electrode positive layer 4012 charge.
  • the first current collector 405 , the second current collector 406 , and the fourth current collector 408 that are conductive can all adopt the current collector structure described in the embodiment of FIG. 2 ;
  • the current collector 405 , the second current collector 406 and the fourth current collector 408 can also adopt the current collector structure as described in the embodiment of FIG. 3 , and are directly connected without welding the tabs; the above-mentioned non-conductive third current collector 407
  • the current collector structure of the embodiment of FIG. 2 can be used.
  • the side of the first current collector 405 provided with the first positive electrode layer 4011 is connected to the side of the third current collector 403 provided with the third positive electrode layer 4031, and the formed first connection end C is the battery Positive voltage output terminal; the side of the first current collector 405 provided with the first negative electrode layer 4042 is connected to the side of the third current collector 407 provided with the third negative electrode layer 4022, and the second connection terminal D formed It is the negative voltage output terminal of the battery.
  • the metal on both sides of the first current collector 405 is The tabs (positive tab and negative tab) can be welded on the layer, and the tabs can be connected to realize the series connection of the first cell 401 and the fourth cell 404; the metal layers on both sides of the second current collector 406 can be welded with tabs ( A positive ear and a negative ear), and the tabs are connected to realize the series connection of the fourth cell 404 and the third cell 403; the metal layers on both sides of the fourth current collector 408 can be welded on the tabs (positive tab and negative tab), The tabs are connected to realize the series connection of the second cell 402 and the first cell 402 .
  • the metal layers on both sides of the third current collector 407 can be welded with tabs (positive tab and negative tab), and the The connection of the tabs realizes the parallel connection of the third cell 403 and the second cell 402 .
  • the positive tab (corresponding to 4011) on one side of the metal layer of the first current collector 405 and the positive tab (corresponding to 4031) on one side of the metal layer of the third current collector 407 are connected to form the first A connection end C, the first connection end C is the positive voltage output end of the battery (corresponding to U+); the negative tab (corresponding to 4022 ) on one side of the metal layer of the third current collector 407 and the metal layer on one side of the first current collector 405
  • the negative tabs (corresponding to 4042) on the layer are connected to form a second connection terminal D, and the second connection terminal D is the negative voltage output terminal (corresponding to U-) of the battery.
  • the battery provided in this embodiment realizes the double-series and double-parallel connection of the internal cells of the battery, and realizes the equivalent circuit shown in FIG. 13 , that is, the first battery 401 and the second battery 402 are connected in series, and the third battery 403 and the fourth cell 404 are connected in series, and the first cell 401 and the second cell 402 are connected in series to form a series cell, and the third cell 403 and the fourth cell 404 are connected in series to form a series cell.
  • the cores are connected in parallel.
  • a structure of two groups of cells connected in series is arranged in parallel, so as to realize a double-series-double-parallel connection structure inside the battery, thereby improving the charging and discharging power of the battery.
  • the battery in any of the above-mentioned embodiments may be of a roll-core structure, and the battery cores and the adjacent current collectors are arranged in a layered manner through a coating process.
  • the battery 2 corresponding to the embodiment in FIG. 5 can be formed into a battery with a winding core structure as shown in FIG. 14 , wherein the first positive electrode layer (corresponding to 2011 in FIG. 5 ), the first The separator (corresponding to 2013 in FIG. 5 ), the second negative electrode layer (corresponding to 2012 in FIG. 5 ) form the first cell (corresponding to 201 in FIG. 5 ), the second positive electrode layer (corresponding to 2021 in FIG. 5 ), The second separator (corresponding to 2023 in FIG.
  • the first negative electrode layer (corresponding to 2022 in FIG. 5 ) form the second cell (corresponding to 202 in FIG. 5 ), and the first tab (corresponding to 202 in FIG. 5 ) 2034) and the second tab (corresponding to 2035 in Figure 5) are not connected, the third tab (corresponding to 2044 in Figure 5) and the fourth tab (corresponding to 2045 in Figure 5) are connected, and the first tab is The positive voltage output end of the battery, and the second tab is the negative voltage output end of the battery.
  • the battery shown in FIG. 14 realizes the series connection of the first cell and the second cell inside the battery.
  • first tabs and the second tabs on the first current collector of the battery in FIG. 14 may be staggered, and the third tabs and the fourth tabs on the second current collector may be staggered,
  • the arrangement positions of the tabs shown in FIG. 15 which can isolate the tabs from each other during the molding process of the battery and will not affect each other, thereby reducing the failure rate of battery molding.
  • the present application further provides an electronic device, which includes the battery of any of the foregoing embodiments.
  • Electronic equipment also includes data processing devices, robots, computers, printers, scanners, tablet computers, smart terminals, mobile phones, driving recorders, navigators, sensors, cameras, servers, cloud servers, cameras, video cameras, projectors, watches, Headphones, mobile storage, wearables, vehicles, home appliances, and/or medical equipment.
  • the vehicles include airplanes, ships and/or vehicles;
  • the household appliances include televisions, air conditioners, microwave ovens, refrigerators, rice cookers, humidifiers, washing machines, electric lamps, gas stoves, and range hoods;
  • the medical equipment includes nuclear magnetic resonance instruments, B-ultrasound and/or electrocardiograph.
  • the disclosed apparatus may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, and can also be implemented in the form of software program modules.
  • the integrated unit if implemented in the form of a software program module and sold or used as a stand-alone product, may be stored in a computer readable memory.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or all or part of the technical solution, and the computer software product is stored in a memory.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请涉及一种电池和电子设备,电池包括:至少两个电芯、至少两个集流体;其中,每个电芯包括正极层、负极层以及设置于正极层和负极层之间的隔离膜;电芯与所述集流体间隔设置,且每个电芯的正极层与相邻电芯的负极层分别设置于同一个集流体的两面;至少两个电芯之间通过所述集流体实现串联连接和/或并联连接由于每个电芯的正极层与相邻电芯的负极层分别设置于相应的集流体的两面,使每个电芯和相邻电芯可以实现串联连接或并联连接,进而实现了电池内部多个电芯的串联或并联结构,进而提升电池的能量密度。另外,本申请还可以通过灵活设置多个串联的电芯和多个并联的电芯,实现电池内部的串并联结构,进而提升电池的充电与放电功率。

Description

电池和电子设备
相关申请的交叉引用
本发明要求于2021年4月15日提交中国专利局,申请号为2021104055573,申请名称为“电池和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本申请涉及锂离子电池技术领域,特别是涉及一种电池和电子设备。
背景技术
目前电子设备中使用的电池为锂离子电池,而一般都是单电芯电池。为了提高人们对电子设备的使用体验,一般需要电子设备的电池具有较快的充电速度,这就需要电池具备较大的容量,然而电子设备中存放电池的空间是有限的,因此,如何在电子设备有限的空间内装载最大容量的电池成为了当下电池领域研究的热点。
目前,为了扩大电池的容量,有些电子设备的电池采用双电池并联的结构,以通过增加电流的方式扩大电池的容量;有些电子设备的电池采用双电池串联的结构,以通过增加电压的方式扩大电池的容量。
然而,上述结构的电池占用的空间较大,因此提升的电池容量有限。
发明内容
基于此,本申请提供了一种电池,该电池的能量密度大,且占用的空间小,提升了电池容量。
第一方面,一种电池,所述电池包括:至少两个电芯、至少两个集流体;其中,每个所述电芯包括正极层、负极层以及设置于所述正极层和负极层之间的隔离膜;所述电芯与所述集流体间隔设置,且所述电芯的正极层与相邻电芯的负极层分别设置于同一个集流体的两面;所述至少两个电芯之间通过所述集流体实现串联连接和/或并联连接。
第二方面,一种电子设备,所述电子设备包括上述第一方面所述的电池。
上述电池和电子设备,由于每个电芯的正极层与相邻电芯的负极层分别设置在同一个集流体的两面,使每个电芯和相邻电芯可以实现串联连接或并联连接,进而实现了电池内部多个电芯的串联或并联结构。当电池内部多个电芯串联时,可以在电流不变的情况下提升电池的电压,以便满足用户快速充电的要求,或者,当电池内部多个电芯并联时,可以在电压不变的情况下增加电池的电流,以便满足用户快速充电的要求,并且,由于电芯与集流体间隔设置,也即电芯与集流体之间层叠设置,也不会过多的损耗成型电池内部的空间使用,进而提升电池的能量密度。另外,本申请还可以通过灵活设置多个串联的电芯和多个并联的电芯,实现电池内部的串并联结构,进而提升电池的充电与放电功率。
附图说明
图1为一个实施例中的一种电池的结构示意图;
图2为一个实施例中的一种集流体的结构示意图;
图3为一个实施例中的另一种集流体的结构示意图;
图4为一个实施例中的一种电池的结构示意图;
图5为一个实施例中的一种电池的结构示意图;
图6为一个实施例中的一种等效电路的示意图;
图7为一个实施例中的一种等效电路的示意图;
图8为一个实施例中的一种等效电路的示意图;
图9为一个实施例中的一种电池的结构示意图;
图10为一个实施例中的一种电池的结构示意图;
图11为一个实施例中的一种等效电路的示意图;
图12为一个实施例中的一种电池的结构示意图;
图13为一个实施例中的一种等效电路的示意图;
图14为一个实施例中的一种电池的卷芯结构示意图;
图15为一个实施例中的一种电池的卷芯结构示意图;
电池   1;
电芯   101        集流体     102       正极层      1011;
负极层 1012       隔离膜     1013      复合层      1021;
金属层 1022       极耳       1023;
电池   2;
第一电芯   201     第二电芯   202     第一集流体   203;
第二集流体 204     第一正极层 2011    第二负极层   2012;
第二正极层 2021    第一负极层 2022    第一隔离膜   2013;
第二隔离膜 2023    第一金属层 2031    第二金属层   2032;
第三金属层 2041    第四金属层 2042    第一复合层   2033;
第二复合层 2043    第一极耳   2034    第二极耳     2035;
第三极耳   2044    第四极耳   2045;
电池   3;
第一电芯   301     第二电芯   302    第三电芯   303;
第四电芯   304     第五电芯   305    第一集流体 306;
第二集流体 307     第三集流体 308    第四集流体 309;
第五集流体 310     第一正极层 3011   第五负极层 3012;
第一隔离膜 3013    第五正极层 3021   第四负极层 3022;
第二隔离膜 3023    第四正极层 2031   第三负极层 2032;
第三隔离膜 2033    第三正极层 3041   第二负极层 3042;
第四隔离膜 3043    第二正极层 3051   第一负极层 3052;
第二正极层 3051    第一负极层 3052   第五隔离膜 3053;
电池   4;
第一电芯   401     第二电芯   402    第三电芯   403;
第四电芯   404     第一集流体 405    第二集流体 406;
第三集流体 407     第四集流体 408    第一正极层 4011;
第四负极层 4012    第一隔离膜 4013   第四正极层 4021;
第三负极层 4022    第二隔离膜 4023   第三正极层 4031;
第二负极层 4032    第三隔离膜 4033   第二正极层 4041;
第一负极层 4042    第四隔离膜 4043。
具体实施例方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请提出的电池可以应用在任何电子设备中,比如,手机、手表、IPAD、笔记本电脑等。目前市场上的电子设备中使用的电池多为锂离子电池,而一般都是单电芯电池,即只使用一个电芯。而电子设备中因为用户的体验效果,一般对电池的体积要求非常高,所以需要在有限的空间内装下最大化容量的电池。然而,在目前电子设备空间容量提升有限的情况下,电池的充电速度尤为重要。因此出现了多个电池串、并联使用的情况。比如,某些手机的电芯就采用双电池并联的结构,以在充电电压不变的情况下增加电流以提高电池的充电速度,但是这种方式使串联的电池与电池之间存在空间间隙,造成空间浪费,从而使电子设备能用的电池容量降低,将不满足用户对电池容量的使用要求。再例如,一些手机采用的是双电池串联的结构,以在充电电流不变的情况下增加电压以提高电池的充电速度,但是这种方式会增加电池的总体内阻,从而增加电池在充电过程中的热量产生,进而减少电池的使用寿命。因此,基于上述技术问题,本申请提供了一种高能量密度的电池,相比于传统的电芯电池,有效的提升了电池容量,进而也提升了电池的充电速度。下面主要介绍本申请提出的电池和电子设备。
首先介绍本申请提出电池,参阅图1,提供了一种电池1,该电池1包括:至少两个电芯101、至少两个集流体102;其中,每个电芯101包括正极层1011、负极层1012以及设置于正极层和负极层之间的隔离膜1013;电芯101与集流体102间隔设置,且电芯101的正极层1011与相邻电芯101的负极层1012分别设置于同一个集流体102的两面;至少两个电芯101之间通过集流体102实现串联连接和/或并联连接。
其中,集流体可以用于将具有不同电极性的电极层上的电荷进行转移,使不同电极层实现导通,进而串联包含相应电极层的两个电芯;集流体也可以用于将不同电极性的电极层上的电荷进行隔离,进而使不同电极层实现隔离,从而并联包含相应电极层的两个电芯。比如,以图1中的集流体102进行说明,其中的集流体102可以将右侧连接的电芯101的正极层1011上的电荷转移到左侧连接的电芯101的负极层1012上,使正极层1011和负极层1012导通,进而使两个电芯101串联;或者,集流体102可以将右侧连接的电芯101的正极层1011上的电荷与左侧连接的电芯101的负极层1012上的电荷进行隔离,使正极层1011和负极层1012隔离,进而使两个电芯101并联。在实际应用中,可以在集流体上焊接或设置电极片或极耳,并通过连接电极片或极耳,使集流体具有导通不同电极层的功能,以及通过断开电极片或极耳,使集流体具有隔离不同电极层的功能。
本实施例提供的电池可以包括两个电芯101,也可以包括多个电芯101。每两个电芯101之间设置一个集流体102,使电芯101和集流体102间隔设置,且每个电芯101的正极层1011与相邻电芯101的负极层1012分别设置在同一个集流体102的两面,使每个电芯101和相邻电芯101可以实现串联连接或并联连接。比如,在如图1所示的电池1中,假设图中左边第一个电芯101为电芯A,左边第二个电芯101为电芯B,电芯A和电芯B之间的集流体102为集流体P,则电芯A的负极层设置于集流体P的一侧面,电芯B的正极层设置于集流体P的另一侧面,当集流体P将电芯A的负极层与电芯B的正极层连通时,可以使电芯A和电芯B串联连接;或者,当集流体P将电芯A的负极层与电芯B的正极层不连通时,可以使电芯A和电芯B并联连接。可选的,在电池的具体制造过程中,每个电芯101的正极层1011与相邻电芯101的负极层1012可以分别涂覆在同一个集流体102的两面,也可以通过其它方式设置于同一个集流体102的两面。
可选的,电池中包含的所有电芯101之间均可实现串联连接,形成内部串联结构的电池;可选的,电池中包含的所有电芯101之间均可以实现并联连接,形成内部并联结构的电池;可选的,电池中包含的部分电芯101之间可以串联连接,部分电芯101之间可以并联连接,形成内部串并联结构的电池。
其中,正极层1011的材料可以选用磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料、镍钴铝酸锂等中的一种或多种;负极层1012的材料可以选用石墨、氧化亚硅、氧化锡、钛酸锂等中的一种或多种。隔离膜1013可以选用任何类型的绝缘材料制成。
上述实施例提供的电池,由于每个电芯的正极层与相邻电芯的负极层分别设置在同一个集流体的两面,使每个电芯和相邻电芯可以实现串联连接或并联连接,进而实现了电池内部多个电芯的串联或并联结构。当电池内部多个电芯串联时,可以在电流不变的情况下提升电池的电压,以便满足用户快速充电的要求,或者,当电池内部多个电芯并联时,可以在电压不变的情况下增加电池的电流,以便满足用户快速充电的要求,并且,由于电芯与集流体间隔设置,也即电芯与集流体之间层叠设置,也不会过多的损耗成型电池内部的空间使用,进而提升电池的能量密度。另外,本申请还可以通过灵活设置多个串联的电芯和多个并联的电芯,实现电池内部的串并联结构,进而提升电池的充电与放电功率。
图2为本申请提供的一种集流体的结构示意图。该集流体可以是图1所示电池中的集流体102,该集流体包括复合层1021、设置于复合层1021两侧的两个金属层1022,各金属层1022上设置有极耳1023。
其中,一个金属层1022可以设置于复合层1021的一面,另一个金属层1022可以设置于复合层1021的另一面;一个极耳1023可以焊接在一个金属层1022上,另一个极耳1023可以焊接另一个金属层1022上。
若两个金属层1022上的极耳1023连通,则集流体102用于导通设置于集流体102的一个金属层上的正电极和设置于集流体102的另一个金属层上的负极层;若两个金属层1022上的极耳1023不连通,则集流体102用于隔离设置于集流体102的一个金属层1022上的正极层和设置于集流体102的另一个金属层1022上的负极层之间电荷。
若集流体102用于导通设置于集流体102的一个金属层1022上的正极层和设置于集流体102的另一个金属层1022上的负极层之间的电荷,则设置于集流体102的一个金属层1022侧的电芯和设置于集流体102的另一个金属层1022侧的电芯实现串联连接;若集流体102用于隔离设置于集流体102的一个金属层1022上的正极层和设置于集流体102的另一个金属层1022上的负极层之间电荷,则设置于集流体102的一个金属层1022侧的电芯和设置于集流体102的另一个金属层1022的电芯实现并联连接。
可选的,上述极耳1023可以采用任何类型的导电材料。极耳1023可以焊接在金属层1022上的任何位置,而且,各极耳1023在各金属层1022上的焊接位置可以在同一水平线上,也 可以交错设置在不同水平线上。需要说明的是,极耳1023具有正负性,且焊接在同一集流体上的不同金属层侧的极耳1022的极性相反,且极耳1022的正负性与集流体102的金属层1022上设置的电极层的正负性对应。比如,一个金属层上设置有正极层,则焊接在该金属层上的极耳相当于正极耳,具有正电极性,另一个金属层上设置有负极层,则焊接在另一个金属层上的极耳相当于负极耳,具有负电极性。
上述复合层101可以为聚对苯二甲酸亚乙酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚醚醚酮、聚酰亚胺、聚酰胺、聚乙二醇、聚酰胺酰亚胺、聚碳酸酯、环状聚烯烃、聚苯硫醚、聚乙酸乙烯酯、聚四氟乙烯,聚亚甲基萘、聚偏二氟乙烯,聚萘二甲酸亚乙酯、聚碳酸亚丙酯、偏二氟乙烯-六氟丙烯、偏二氟乙烯-共-三氟氯乙烯、有机硅、维尼纶、聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯、聚醚腈、聚氨酯、聚苯醚、聚酯、聚砜及其衍生物组成的一种或多种组合;复合层1021也可以为导电剂、粘合剂、活性物质以及金属粉末中的一种或多种组成,其中的导电剂可以为碳纳米管、石墨烯、导电石墨、炭黑、碳纤维、石墨、金属粉末、导电陶瓷粉、复合导电材料中的至少一种组成;粘合剂可以为聚偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶、聚乙烯醇、聚偏氟乙烯、聚酰胺等中的至少一种组成;活性物质可以为磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料、镍钴铝酸锂、石墨、氧化亚硅、氧化锡、钛酸锂等中的至少一种组成;金属粉末可以为铝、铜、镍、铜、钴、钨、锡、铅、铁、银、金、铂或其合金中的至少一种组成。
可选的,复合层1021的厚度可以为1~40μm,最优的可以选为3~20μm。可选的,复合层1021通过涂布、压延、辊压、粘接、蒸镀、气相沉积、化学沉积、磁控溅射、化学镀中的至少一种方式进行复合。
上述金属层1022可以是相同的金属材料,也可以是不同的金属材料,金属层1022可以为铝、铜、镍、铜、钴、钨、锡、铅、铁、银、金、铂或其合金中的至少一种组成。可选的,设置在同一集流体上的两个金属层1022的厚度可以相同,也可以不同,具体的金属层102的厚度为1nm~10μm,最优的可以选为100nm~1μm。可选的,设置在同一集流体上的两个金属层1022的金属材料相同,且厚度相同,可以在电池的制作流程中,简化电池的工艺流程,提高电池成型速度。
在本实施例中,当设置在集流体的两个金属层上的极耳连通时,对应的集流体用于导通一个金属层上的正极层和另一个金属层上的负极层之间的电荷,使分别设置于集流体两个金属层侧的电芯实现串联连接;当设置在集流体的两个金属层上的极耳不连通时,对应的集流体用于隔离一个金属层上的正极层和另一个金属层上的负极层之间的电,使分别设置于集流体两个金属层侧的电芯实现并联连接。例如,图1中的电池1,假设左边第一个集流体102的结构为图2所示的集流体结构,其上包含两个极耳,当这两个极耳焊接在一起时,左边第一个集流体102用于导通设置于左侧金属层上的负极层1012和设置于右侧金属层上的正极层1011之间的电荷,使集流体102左侧的电芯101和右侧的电芯101实现串联连接;当这两个极耳没有焊接在一起时,左边第一个集流体102用于隔离设置于左侧金属层上的负极层1012和设置于右侧金属层上的正极层1011之间的电荷,使集流体102左侧的电芯101和右侧的电芯101实现并联连接。
上述实施例提供的集流体,通过复合层将两个金属层隔离开,以及通过分别在两个金属层上设置极耳,并通过连接两个金属层上的极耳使集流体可以将两侧电芯的正极层和负极层之间的电荷导通,从而实现电芯的串联连接,或者通过断开连个金属层上的极耳使集流体可以将两侧电芯的正极层和负极层之间的电荷隔离,从而实现电芯的并联连接。如果需要在电池中设置串联的电芯,只要将需要串联的电芯之间的集流体的两个金属层上的极耳连通即可,如果需要在电池中设置并联的电芯,只要将需要并联的电芯之间的集流体的两个金属层上的极耳不连通即可,实现了电池内部电芯之间串联和并联连接的灵活设计。
在图2实施例中介绍的集流体通过两个金属层上的极耳连接实现电芯的正极层和负极层能之间的电荷导通,本申请实施例还提供另一种集流体来实现电芯的正极层和负极层能之间的电荷导通。图3为本申请提供的另一种集流体的结构示意图,该集流体可以是图1所示电池中的集流体102。该集流体102包括两个金属层1022,集流体102用于导通设置于集流体102的一个金属层1022上的正极层和设置于集流体102的另一个金属层1022上的负极层之间的电荷。
若集流体102用于导通设置于集流体102的一个金属层1022上的正极层和设置于集流体102的另一个金属层1022上的负极层之间的电荷,则设置于集流体102的一个金属层1022侧的电芯和设置于集流体102的另一个金属层1022的电芯实现串联连接。
其中,电芯的负极层可以设置于一个金属层1022上,正极层可以设置于另一个金属层1022上。两个金属层1022可以层叠设置,由于两个金属层1022均为金属材质,可以直接进行电荷转移,因此,图3所示的集流体102可以导通两个金属层侧的电芯的正极层和负极层之间的电荷,使集流体102两侧的电芯实现串联连接。例如,图1中的电池1,假设左边第一个集流体102的结构为图3所示的集流体结构,则左边第一个集流体102用于导通设置于左侧金属层上的负极层1012和设置于右侧金属层上的正极层1011之间的电荷,使集流体102左侧的电芯101和右侧的电芯101实现串联连接。
本实施例中的集流体通过设置两个金属层直接连通,实现集流体两侧的电芯串联连接,两个金属层上不需要设置复合层,也不需要设置额外的极耳就能实现电芯的串联连接,当电池中包含多个串联连接的电芯时,采用本实施例提供的集流体可以进一步的节省材料的使用,提升成型电池的容量。
图4为本申请提供的一种电池的结构示意图。该图4主要介绍的是两个电芯串联的结构示意图。该电池2包括依次设置的第一电芯201、第一集流体203、第二电芯202和第二集流体204;第一电芯201包括第一正极层2011、第二负极层2012以及设置于第一正极层2011和所述第二负极层2012之间的第一隔离膜2013;第二电芯202包括第二正极层2021、第一负极层2022以及设置于第二正极层2021和第一负极层2022之间的第二隔离膜2023。第一正极层2011和第一负极层2022设置于第一集流体203的两面,第一集流体203用于隔离第一正极层2011和第一负极层2022之间的电荷;第二正级层2021和第二负极层2012设置于第二集流体204的两面,第二集流体204用于导通第二正极层2021和第二负极层2012之间的电荷。
在本实施例中,由于第二集流体204将第二正极层2021和第二负极层2012之间的电荷导通,则第二电芯202的电流从第二正极层2021经过第二集流体204流入到第一电芯201的第二负极层2012,从而实现了第二电芯202和第一电芯201的串联连接。
在本实施例中,第一集流体203需要将第一正极层2011和第一负极层2022之间的电荷隔离,因此,第一集流体203可以采用图2所示的集流体,且该集流体上的两个极耳不导通。第二集流体204需要将第二正极层2021和第二负极层2012之间的电荷导通。第二集流体可以采用图2所示的集流体,且该集流体上的两个极耳导通,或者,该第二集流体也可以采用图3所示的集流体。
可选的,在图4所述的电池基础上,图4中的第一集流体和第二集流体上均可设置极耳,并通过连通或不连通各集流体上的极耳,实现第一电芯和第二电芯的串联连接,或并联连接。图5为集流体上设置有极耳时对应的电池2的结构示意图。如图5所示,该电池2中的第一集流体203包括依次设置的第一金属层2031、第一复合层2033、第二金属层2032,第一金属层2031上设置有第一极耳2034,第二金属层2032上设置有第二极耳2035;第二集流体204包括依次设置的第三金属层2041、第二复合层2043、第四金属层2042,第三金属层2041上设置有第三极耳2044,第四金属层上设置有第四极耳2045。
其中,第一正电极层2011设置于第一金属层2031上,第一负电极层2011设置于第二金 属层2032上;第二正电极层2021设置于第三金属层2041上,第二负电极层2012设置于第四金属层2042上。
第一极耳2034焊接在第一金属层2031上,第二极耳2035焊接在第二金属层2032上,第三极耳2043焊接在第三金属层2041上,第四极耳2044焊接在第四金属层2042上;第一极耳2034和第二极耳2035不连通,第三极耳2044和第四极耳2045连通;第一极耳2034为电池的正电压输出端,第二极耳2035为电池的负电压输出端。
上述第一正电极层和第二正电极层可以为相同材料的正电极层,也可以为不同材料的正电极层;上述第一负电极层和第二负电极层可以为相同材料的负电极层,也可以是不同材料的负电极层。
本实施例中,当第一极耳2034和第二极耳2035不连通,第三极耳2044和第四极耳2045连通,且第一极耳2034为电池的正电压输出端,第二极耳2035为电池的负电压输出端时,实现了第一电芯201和第二电芯202的串联连接,例如,实现了如图6所示的等效电路,且在第一电芯的正电极处输出正电压,在第二电芯的负电极处输出负电压。
本实施例中,第一集流体203和第二集流体204上均设置有各自的极耳,因此可以通过连通或不连通第一集流体203上的极耳,以及连通或者不连通第二集流体204上的极耳灵活设置电池内部电芯的串联结构或并联结构。比如,如图5所示的电池结构,可以通过连通或不连通第一极耳2034和第二极耳2035,以及连通或不连通第三极耳2044和第四极耳2045,形成三种内部电芯的串并联结构,下面具体介绍这三种结构:
第一种结构为:假设将第一集流体203上的第一极耳2034和第二极耳2035不连通,第二集流体204上的第三极耳2044和第四极耳2045不连通,则该电池内部的第一电芯201和第二电芯202并联连接(如图7所示的等效电路图),且第一极耳2034和第三极耳2044连通形成的连接端作为电池的正电压输出端,第二极耳2035和第四极耳2045连通形成的连通作为电池的负电压输出端。
在第一种结构中,由于第一集流体203将第一正极层2011和第一负极层2022之间的电荷隔离,则第一电芯201的电流无法从第一正极层2011经过第一集流体203流入到第二电芯202的第一负极层2022;第二集流体204将第二正极层2021和第二负极层2012之间的电荷隔离,则第二电芯202的电流无法从第二正极层2021经过第二集流体204流入到第二电芯201的第二负极层2012;基于该设计,将第一极耳2034和第三极耳2044焊接在一起形成正电压输出端,将第二极耳2035和第四极耳2045焊接在一起形成负电压输出端,实现了第一电芯201和第二电芯202的并联连接。
第二种结构为:假设将第一集流体203上的第一极耳2034和第二极耳2035连通,第二集流体204上的第三极耳2044和第四极耳2045不连通,则该电池内部的第二电芯202和第一电芯201串联连接(如图8所示的等效电路图),且第三极耳2044作为电池的正电压输出端,第四极耳2045作为电池的负电压输出端。
在第二种结构中,由于第一集流体203将第一正极层2011和第一负极层2022之间的电荷导通,则第一电芯201的电流从第一正极层2011经过第一集流体203流入到第二电芯202的第一负极层2022,从而实现了第一电芯201和第二电芯202的串联连接。同时,第二集流体204将第二正极层2021和第二负极层2012之间的电荷隔离,则第二电芯202的电流无法从第二正极层2021经过第二集流体204流入到第二电芯201的第二负极层2012;基于该设计,将第一极耳2034和第二极耳2035焊接在一起,以及将第三极耳2044直接作为正电压输出端,将第四极耳2045直接作为负电压输出端,实现第一电芯101和第二电芯102的串联连接。
第三种结构为:假设将第一集流体203上的第一极耳2034和第二极耳2035不连通,第二集流体204上的第三极耳2044和第四极耳2045连通,则该电池内部的电芯201和电芯202串联连接(如图6所示的等效电路图),且第一极耳2034作为电池的正电压输出端,第二极 耳2035作为电池的负电压输出端。
在第二种结构中,由于第一集流体203将第一正极层2011和第一负极层2022之间的电荷隔离,则第一电芯201的电流无法从第一正极层2011经过第一集流体203流入到第二电芯202的第一负极层2022;同时,第一集流体203将第一正极层2011和第一负极层2022之间的电荷导通,则第一电芯201的电流从第一正极层2011经过第一集流体203流入到第二电芯202的第一负极层2022;基于该设计,将第三极耳2044和第四极耳2045焊接在一起,以及将第一极耳2034直接作为正电压输出端,将第二极耳2035直接作为负电压输出端,实现第一电芯101和第二电芯102的串联连接。
可选的,在图5所述的电池基础上,图5中的第一集流体或第二集流体上也可不设置极耳,实现第一电芯和第二电芯的串联连接。图9为图5中的一个集流体上不设置极耳时对应的电池2的结构示意图。如图9所示,该电池2中的第一集流体203包括依次设置的第一金属层2031、第一复合层2033、第二金属层2032,第一金属层2031上设置有第一极耳2034,第二金属层2032上设置有第二极耳2035;第二集流体204包括依次设置的第三金属层2041和第四金属层2042;其中,第一正电极层2011设置于第一金属层2031上,第一负电极层2022设置于第二金属层2032上;第二正电极层2021设置于第三金属层2041上,第二负电极层2012设置于第四金属层2042上;
第一极耳2034焊接在第一金属层2031上,第二极耳2035焊接在第二金属层2032上,第一极耳2034和第二极耳2035不连通;第一极耳2034为电池的正电压输出端,第二极耳2035为所述电池的负电压输出端。
本实施例中,第一集流体203上设置有极耳,且第一极耳2034和第二极耳2035不连通,而第二集流体204上没有设置极耳,而是直接通过第三金属层2041和第四金属层2042实现连通,由于第二集流体204导通第二正极层2021和第二负极层2012之间的电荷,则第二电芯202的电流从第二正极层2021经过第二集流体204流入到第一电芯201的第二负极层2012,从而实现了第二电芯202和第一电芯201的串联连接,因此,图9所示的电池内部的电芯是串联连接的,例如,实现了如图6所示的等效电路,其中,第一极耳2034为电池的正电压输出端,第二极耳2035为电池的负电压输出端。图6所述的第二集流体相比于图5所述的第二集流体,其中不设置复合层,且直接使第二集流体用于导通两侧电芯的正极层和负极层之间电荷,可以简化集流体复合的工艺流程,在电池内部设置多个串联连接的电芯时,进一步的减少电池的材料使用以及占用空间,进而在提高电池能量密度的同时,还可以提升电池容量。
假设使用图5所述的电池实现图6中的第一电芯201和第二电芯202的串联连接时,图5中的第一极耳2034可以为图6中的正电压输出端,第二极耳2035可以为图6中的正负压输出端;或者,假设使用图5所述的电池实现图8中的第二电芯202和第一电芯201的串联连接时,图5中的第三极耳2044可以为图8中的正电压输出端,第四极耳2045可以为图8中的正负压输出端;假设使用图9所述的电池实现图6中的第一电芯201和第二电芯202的串联连接时,图9中的第一极耳2034可以为图6中的正电压输出端,第二极耳2035可以为图6中的正负压输出端。
本申请还可以提供一种电池内部多个电芯进行串并联的结构,下面图10-图11实施例介绍三个并联的电芯与二个并联的电芯串联的结构,下面图12-图13实施例介绍二个串联的电芯与二个串联的电芯并联的结构。
图10为本申请提供的一种电池的结构示意图,该电池内部的电芯为三个并联的电芯与二个并联的电芯串联的结构。该电池3包括第一电芯301、第五集流体310、第二电芯302、第四集流体309、第三电芯303、第三集流体308、第四电芯304、第二集流体307、第五电芯305和第一集流体306。
其中,第一电芯301包括第一正极层3011、第五负极层3012以及设置于第一正极层3011和第五负极层301之间的第一隔离膜3013;第二电芯302包括第五正极层3021、第四负极层 3022以及设置于第五正极层3021和第四负极层3022之间的第二隔离膜3023;第三电芯203包括第四正极层2031、第三负极层2032以及设置于第四正极层2031和第三负极层2032之间的第三隔离膜2033;第四电芯304包括第三正极层3041、第二负极层3042以及设置于第三正极层3041和第二负极层3042之间的第四隔离膜3043;第五电芯305包括第二正极层3051、第一负极层3052以及设置于第二正极层3051和第一负极层3052之间的第五隔离膜3053。
第一正极层3011和第一负极层3052设置于第一集流体306的两面;第二正极层3051和第二负极层2042设置于第二集流体307的两面;第三正极层3041和第三负极层2032设置于第三集流体308的两面;第四正极层3031和第四负极层3022设置于第四集流体309的两面;第五正极层3021和第五负极层3012设置于第五集流体310的两面。
第一集流体306用于导通第一正极层3011和第一负极正层3052之间的电荷,第二集流体307用于隔离第二正极层3051和第二负极正层3042之间的电荷,第三集流体308用于导通第三正极层3041和第三负极正层3032之间的电荷,第四集流体309用于隔离第四正极层3031和第四负极正层3022之间的电荷,第五集流体310用于隔离第五正极层3021和第五负极正层3012之间的电荷。
可选的,上述导通的第一集流体306和第三集流体308均可以采用如图2实施例所述的集流体结构;可选的,上述导通的第一集流体306和第三集流体308也可以采用如图3实施例所述的集流体结构,不需要焊接极耳而直接进行连通;上述不导通的第二集流体307、第四集流体309和第五集流体310均可以采用如图2实施例所述的集流体结构。
其中,设置有第一正电极层3011的第一集流体306的一侧、设置有第五正电极层3021的第五集流体310的一侧和设置有第四正电极层3031的第四集流体309的一侧连接,且形成的第一连接端A为电池的正电压输出端;设置有第一负电极层3052的第一集流体306的一侧和设置有第二负电极层3042的第二集流体307的一侧连接,且形成的第二连接端B为电池的负电压输出端。
可选的,当上述导通的第一集流体306和第三集流体308均采用如图2实施例所述的集流体结构时,第一集流体306的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳连通实现第一电芯301和第五电芯305串联连接;第三集流体308的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳连通实现第四电芯304和第三电芯303串联连接;当上述不导通的第二集流体307、第四集流体309和第五集流体310均采用如图2实施例所述的集流体结构时,第二集流体307的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳不连通实现第五电芯305和第四电芯304并联连接;第四集流体309的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳不连通实现第三电芯303和第二电芯302并联连接;第五集流体310的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳不连通实现第二电芯302和第一电芯301并联连接。
需要说明的是,上述正极耳为设置有正极层的金属层上焊接的极耳,相当于图5实施例中的第一极耳或第三极耳,上述负极耳为设置有负极层的金属层上焊接的极耳,相当于图5实施例中的第二极耳或第四极耳,对于极耳的介绍可具体参见前述图2-图5实施例的说明,此处不赘述。
基于上述电芯的串并联结构,其中第一集流体306的一侧金属层上的正极耳(对应3011)、第四集流体309的一侧金属层上的正极耳(对应3021)和第五集流体310的一侧金属层上的正极耳(对应3031)连接形成第一连接端A,第一连接端A为电池的正电压输出端(对应U+);第一集流体306的一侧金属层上的负极耳(对应3052)和第二集流体307的一侧金属层上的负极耳(对应3042)连接形成第二连接端B,第二连接端B为电池的负电压输出端(对应U-)。
本实施例提供的电池实现了电池内部各电芯的串并联连接,实现了如图11所示的等效电 路,即第一电芯301、第二电芯302和第三电芯303并联连接,第四电芯304和第五电芯305并联连接,以及第一电芯301、第二电芯302和第三电芯303并联连接后形成的并联电芯,与第四电芯304和第五电芯305并联连接后形成的并联电芯进行串联连接。上述实施例通过设置两组各自并联的电芯进行串联的结构,实现电池内部的串并联结构,进而提升电池的充电与放电功率。
图12为本申请提供的一种电池的结构示意图,该电池内部的电芯为二个串联的电芯与二个串联的电芯并联的结构。该电池4包括依次设置的第一电芯401、第四集流体408、第二电芯402、第三集流体407、第三电芯403、第二集流体406、第四电芯404和第一集流体405。
其中,第一电芯401包括第一正极层4011、第四负极层4012以及设置于第一正极层4011和第四负极层4012之间的第一隔离膜4013;第二电芯402包括第四正极层4021、第三负极层4022以及设置于第四正极层4021和第三负极层4022之间的第二隔离膜4023;第三电芯403包括第三正极层4031、第二负极层4032以及设置于第三正极层4031和第二负极层4032之间的第三隔离膜4033;第四电芯404包括第二正极层4041、第一负极层4042以及设置于第二正极层4041和第一负极层4042之间的第四隔离膜4043。
第一正极层4011和第一负极层4042设置于第一集流体405的两面;第二正极层4041和第二负极层4032设置于第二集流体406的两面;第三正极层4031和第三负极层4022设置于第三集流体407的两面;第四正极层4021和第四负极层4012设置于第四集流体408的两面。
第一集流体405用于导通第一正极层4011和第一负极正层4042之间的电荷,第二集流体406用于导通第二正极层4041和第二负极正层4032之间的电荷,第三集流体407用于隔离第三正极层4031和第三负极正层4022之间的电荷,第四集流体408用于导通第四正极层4021和第四负极正层4012之间的电荷。
可选的,上述导通的第一集流体405、第二集流体406和第四集流体408均可以采用如图2实施例所述的集流体结构;可选的,上述导通的第一集流体405、第二集流体406和第四集流体408也可以采用如图3实施例所述的集流体结构,不需要焊接极耳而直接进行连通;上述不导通的第三集流体407可以采用如图2实施例的集流体结构。
其中,设置有第一正电极层4011的第一集流体405的一侧和设置有第三正电极层4031的第三集流体403的一侧连接,且形成的第一连接端C为电池的正电压输出端;设置有第一负电极层4042的第一集流体405的一侧和设置有第三负电极层4022的第三集流体407的一侧连接,且形成的第二连接端D为电池的负电压输出端。
可选的,当上述导通的第一集流体405、第二集流体406和第四集流体408均采用如图2实施例所述的集流体结构时,第一集流体405的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳连通实现第一电芯401和第四电芯404串联连接;第二集流体406的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳连通实现第四电芯404和第三电芯403串联连接;第四集流体408的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳连通实现第二电芯402和第一电芯402串联连接。当上述不导通的第三集流体407采用如图2实施例所述的集流体结构时,第三集流体407的两侧金属层上可以焊接极耳(正极耳和负极耳),并将极耳连通实现第三电芯403和第二电芯402并联连接。
基于上述电芯的串并联结构,其中第一集流体405的一侧金属层上的正极耳(对应4011)和第三集流体407的一侧金属层上的正极耳(对应4031)连接形成第一连接端C,第一连接端C为电池的正电压输出端(对应U+);第三集流体407的一侧金属层上的负极耳(对应4022)和第一集流体405的一侧金属层上的负极耳(对应4042)连接形成第二连接端D,第二连接端D为电池的负电压输出端(对应U-)。
本实施例提供的电池实现了电池内部电芯的双串联双并联连接,实现了如图13所示的等效电路,即第一电芯401和第二电芯402串联连接,第三电芯403和第四电芯404串联连接,以及第一电芯401和第二电芯402串联连接后形成的串联电芯,与第三电芯403和第四电芯 404串联连接后形成的串联电芯进行并联连接。上述实施例通过设置两组各自串联的电芯进行并联的结构,实现电池内部的双串联双并联连接结构,进而提升电池的充电与放电功率。
需要说明,上述图10和图12所示的多个电芯串并联的结构,仅是举例说明,并不构成对电芯个数和串并联方式的限定,基于上述串并联的原理,本申请提供的电池内部的多个电芯可以采用各种串并联方式。
综合上述实施例,上述任何实施例中的电池可以为卷芯结构,且电芯与相邻的集流体之间通过涂覆工艺层叠式设置。例如,对应图5实施例所述的电池2成型时可以成为如图14所示的卷芯结构的电池,其中,该电池中的第一正极层(对应图5中的2011)、第一个隔离膜(对应图5中的2013)、第二负极层(对应图5中的2012)形成第一电芯(对应图5中的201),第二正极层(对应图5中的2021)、第二个隔离膜(对应图5中的2023)、第一负极层(对应图5中的2022)形成第二电芯(对应图5中的202),第一极耳(对应图5中的2034)和第二极耳(对应图5中的2035)不连通,第三极耳(对应图5中的2044)和第四极耳(对应图5中的2045)连通,第一极耳为电池的正电压输出端,第二极耳为电池的负电压输出端。图14所示的电池实现了电池内部第一电芯和第二电芯的串联连接。
可选的,图14中电池的第一集流体上的第一极耳和第二极耳可以进行交错设置,以及第二集流体上的第三极耳和第四极耳可以进行交错设置,具体可参见图15所示的各极耳的设置位置,其可以使电池在成型的过程中,各极耳相互隔离,不会相互影响,进而降低电池成型的失败率。
在一个实施例中,本申请还提供了一种电子设备,其包括了上述任一实施例的电池。电子设备还包括数据处理装置、机器人、电脑、打印机、扫描仪、平板电脑、智能终端、手机、行车记录仪、导航仪、传感器、摄像头、服务器、云端服务器、相机、摄像机、投影仪、手表、耳机、移动存储、可穿戴设备、交通工具、家用电器、和/或医疗设备。所述交通工具包括飞机、轮船和/或车辆;所述家用电器包括电视、空调、微波炉、冰箱、电饭煲、加湿器、洗衣机、电灯、燃气灶、油烟机;所述医疗设备包括核磁共振仪、B超仪和/或心电图仪。
本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
所述集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random  Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的全部或部分处理过程是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种电池,其特征在于,所述电池包括:至少两个电芯、至少两个集流体;其中,每个所述电芯包括正极层、负极层以及设置于所述正极层和负极层之间的隔离膜;所述电芯与所述集流体间隔设置,且所述电芯的正极层与相邻电芯的负极层分别设置于同一个集流体的两面;
    所述至少两个电芯之间通过所述集流体实现串联连接和/或并联连接。
  2. 根据权利要求1所述的电池,其特征在于,所述集流体包括复合层、设置于所述复合层两侧的两个金属层;各所述金属层上设置有极耳。
  3. 根据权利要求2所述的电池,其特征在于,若所述两个金属层上的极耳连通,则所述集流体用于导通设置于所述集流体的一个金属层上的正极层和设置于所述集流体的另一个金属层上的负极层之间的电荷;
    若所述两个金属层上的极耳不连通,则所述集流体用于隔离设置于所述集流体的一个金属层上的正极层和设置于所述集流体的另一个金属层上的负极层之间的电荷。
  4. 根据权利要求1所述的电池,所述集流体包括两个金属层,所述集流体用于导通设置于所述集流体的一个金属层上的正极层和设置于所述集流体的另一个金属层上的负极层之间的电荷。
  5. 根据权利要求3或4所述的电池,其特征在于,若所述集流体用于导通设置于所述集流体的一个金属层上的正极层和设置于所述集流体的另一个金属层上的负极层之间的电荷,则设置于所述集流体的一个金属层侧的电芯和设置于所述集流体的另一个金属层侧的电芯实现串联连接。
  6. 根据权利要求3所述的电池,其特征在于,若所述集流体用于隔离设置于所述集流体的一个金属层上的正极层和设置于所述集流体的另一个金属层上的负极层之间电荷,则设置于所述集流体的一个金属层侧的电芯和设置于所述集流体的另一个金属层侧的电芯实现并联连接。
  7. 根据权利要求3或4所述的电池,其特征在于,所述电池包括依次设置的第一电芯、第一集流体、第二电芯和第二集流体;所述第一电芯包括第一正极层、第二负极层以及设置于所述第一正极层和所述第二负极层之间的第一隔离膜;所述第二电芯包括第二正极层、第一负极层以及设置于所述第二正极层和所述第一负极层之间的第二隔离膜;
    所述第一正极层和所述第一负极层设置于所述第一集流体的两面;所述第一集流体用于隔离所述第一正极层和第一负极层之间的电荷;
    所述第二正级层和所述第二负极层设置于所述第二集流体的两面,所述第二集流体用于导通所述第二正极层和第二负极层之间的电荷。
  8. 根据权利要求7所述的电池,其特征在于,所述第一集流体包括依次设置的第一金属层、第一复合层、第二金属层,所述第一金属层上设置有第一极耳,所述第二金属层上设置有第二极耳;所述第二集流体包括依次设置的第三金属层、第二复合层、第四金属层,所述第三金属层上设置有第三极耳,所述第四金属层上设置有第四极耳;所述第一正电极层设置于所述第一金属层上,所述第一负电极层设置于所述第二金属层上;所述第二正电极层设置于所述第三金属层上,所述第二负电极层设置于所述第四金属层上;
    其中,所述第一极耳和所述第二极耳不连通,所述第三极耳和所述第四极耳连通;
    所述第一极耳为所述电池的正电压输出端,所述第二极耳为所述电池的负电压输出端。
  9. 根据权利要求7所述的电池,其特征在于,所述第一集流体包括依次设置的第一金属层、第一复合层、第二金属层,所述第一金属层上设置有第一极耳,所述第二金属层上设置有第二极耳;所述第二集流体包括依次设置的第三金属层和第四金属层;所述第一正电极层设置于所述第一金属层上,所述第一负电极层设置于所述第二金属层上;所述第二正电极 层设置于所述第三金属层上,所述第二负电极层设置于所述第四金属层上;
    其中,所述第一极耳和所述第二极耳不连通;
    所述第一极耳为所述电池的正电压输出端,所述第二极耳为所述电池的负电压输出端。
  10. 根据权利要求3或4所述的电池,其特征在于,所述电池包括依次设置的第一电芯、第五集流体、第二电芯、第四集流体、第三电芯、第三集流体、第四电芯、第二集流体、第五电芯和第一集流体;
    其中,所述第一电芯包括第一正极层、第五负极层以及设置于所述第一正极层和所述第五负极层之间的第一隔离膜;所述第二电芯包括第五正极层、第四负极层以及设置于所述第五正极层和所述第四负极层之间的第二隔离膜;所述第三电芯包括第四正极层、第三负极层以及设置于所述第四正极层和所述第三负极层之间的第三隔离膜;所述第四电芯包括第三正极层、第二负极层以及设置于所述第三正极层和所述第二负极层之间的第四隔离膜;所述第五电芯包括第二正极层、第一负极层以及设置于所述第二正极层和所述第一负极层之间的第五隔离膜;
    所述第一正极层和所述第一负极层设置于所述第一集流体的两面;所述第二正极层和所述第二负极层设置于所述第二集流体的两面;所述第三正极层和所述第三负极层设置于所述第三集流体的两面;所述第四正极层和所述第四负极层设置于所述第四集流体的两面;所述第五正极层和所述第五负极层设置于所述第五集流体的两面;
    所述第一集流体用于导通所述第一正极层和所述第一负极正层之间的电荷,所述第二集流体用于隔离所述第二正极层和所述第二负极正层之间的电荷,所述第三集流体用于导通所述第三正极层和所述第三负极正层之间的电荷,所述第四集流体用于隔离所述第四正极层和所述第四负极正层之间的电荷,所述第五集流体用于隔离所述第五正极层和所述第五负极正层之间的电荷;
    设置有所述第一正电极层的第一集流体的一侧、设置有所述第五正电极层的第五集流体的一侧和设置有所述第四正电极层的第四集流体的一侧连接,且形成的第一连接端为所述电池的正电压输出端;设置有所述第一负电极层的第一集流体的一侧和设置有所述第二负电极层的第二集流体的一侧连接,且形成的第二连接端为所述电池的负电压输出端。
  11. 根据权利要求3或4所述的电池,其特征在于,所述电池包括依次设置的第一电芯、第四集流体、第二电芯、第三集流体、第三电芯、第二集流体、第四电芯和第一集流体;
    其中,所述第一电芯包括第一正极层、第四负极层以及设置于所述第一正极层和所述第四负极层之间的第一隔离膜;所述第二电芯包括第四正极层、第三负极层以及设置于所述第四正极层和所述第三负极层之间的第二隔离膜;所述第三电芯包括第三正极层、第二负极层以及设置于所述第三正极层和所述第二负极层之间的第三隔离膜;所述第四电芯包括第二正极层、第一负极层以及设置于所述第二正极层和所述第一负极层之间的第四隔离膜;
    所述第一正极层和所述第一负极层设置于所述第一集流体的两面;所述第二正极层和所述第二负极层设置于所述第二集流体的两面;所述第三正极层和所述第三负极层设置于所述第三集流体的两面;所述第四正极层和所述第四负极层设置于所述第四集流体的两面;
    所述第一集流体用于导通所述第一正极层和所述第一负极正层之间的电荷,所述第二集流体用于导通所述第二正极层和所述第二负极正层之间的电荷,所述第三集流体用于隔离所述第三正极层和所述第三负极正层之间的电荷,所述第四集流体用于导通所述第四正极层和所述第四负极正层之间的电荷;
    设置有所述第一正电极层的第一集流体的一侧和设置有所述第三正电极层的第三集流体的一侧连接,且形成的第一连接端为所述电池的正电压输出端;设置有所述第一负电极层的第一集流体的一侧和设置有所述第三负电极层的第三集流体的一侧连接,且形成的第二连接端为所述电池的负电压输出端。
  12. 根据权利要求1-4任一项所述的电池,其特征在于,所述电池为卷芯结构。
  13. 根据权利要求1-4任一项所述的电池,其特征在于,所述电芯与相邻的集流体之间通过涂覆工艺层叠式设置。
  14. 根据权利要求2或3所述的电池,其特征在于,所述复合层为导电剂、粘合剂、活性物质以及金属粉末中的一种或多种组成。
  15. 根据权利要求14所述的电池,其特征在于,所述复合层的厚度为1~40μm。
  16. 根据权利要求14所述的电池,其特征在于,所述复合层通过涂布、压延、辊压、粘接、蒸镀、气相沉积、化学沉积、磁控溅射、化学镀中的至少一种方式进行复合。
  17. 根据权利要求2或4所述的电池,其特征在于,所述两个金属层的金属材料相同,且厚度相同。
  18. 根据权利要求17所述的电池,其特征在于,所述金属层为铝、铜、镍、铜、钴、钨、锡、铅、铁、银、金、铂或其合金中的至少一种组成。
  19. 根据权利要求17所述的电池,其特征在于,所述金属层的厚度为1nm~10μm。
  20. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-19任一项所述的电池。
PCT/CN2022/081747 2021-04-15 2022-03-18 电池和电子设备 WO2022218098A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110405557.3A CN113178666B (zh) 2021-04-15 2021-04-15 电池和电子设备
CN202110405557.3 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022218098A1 true WO2022218098A1 (zh) 2022-10-20

Family

ID=76923977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081747 WO2022218098A1 (zh) 2021-04-15 2022-03-18 电池和电子设备

Country Status (2)

Country Link
CN (1) CN113178666B (zh)
WO (1) WO2022218098A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178666B (zh) * 2021-04-15 2023-03-21 Oppo广东移动通信有限公司 电池和电子设备
CN114300796B (zh) * 2021-12-30 2024-05-28 三一技术装备有限公司 一种电池
CN115085316A (zh) * 2022-06-27 2022-09-20 立讯精密工业股份有限公司 一种充电装置、充电器及智能穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170155142A1 (en) * 2015-12-01 2017-06-01 Energy Control Limited Composite lithium secondary battery
CN108365255A (zh) * 2017-12-19 2018-08-03 成都亦道科技合伙企业(有限合伙) 一种锂电池电芯、锂电池及其制备方法
CN207719355U (zh) * 2017-12-19 2018-08-10 成都亦道科技合伙企业(有限合伙) 集流体结构、锂电池电芯及其锂电池
CN109935888A (zh) * 2017-12-19 2019-06-25 成都亦道科技合伙企业(有限合伙) 集流体结构、锂电池电芯及其锂电池
CN110635175A (zh) * 2019-10-28 2019-12-31 深圳吉阳智能科技有限公司 一种内部串联式电芯和内部串联式电池
CN212659570U (zh) * 2020-07-28 2021-03-05 深圳市海鸿新能源技术有限公司 一种双极性集流体、极片及电芯
CN113178666A (zh) * 2021-04-15 2021-07-27 Oppo广东移动通信有限公司 电池和电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100471A (ja) * 1998-09-22 2000-04-07 Mitsubishi Cable Ind Ltd シート電池
KR100922855B1 (ko) * 2007-10-25 2009-10-27 킴스테크날리지 주식회사 쿼지바이폴라 구조를 갖는 적층형 전기화학셀
JP5518763B2 (ja) * 2011-02-16 2014-06-11 日立ビークルエナジー株式会社 非水電解液電池
CN109935910B (zh) * 2017-12-19 2024-04-02 成都大超科技有限公司 一种锂电池电芯、锂电池及其制备方法
CN109935884B (zh) * 2017-12-19 2024-05-07 成都大超科技有限公司 锂电池单电芯及其锂电池
CN108767262B (zh) * 2018-05-30 2020-09-25 中航锂电(洛阳)有限公司 集流体用塑料膜、集流体及其制备方法、极片、储能装置
CN109802186A (zh) * 2019-01-04 2019-05-24 刘海云 电芯串
CN111740066B (zh) * 2019-03-25 2023-05-12 宁德新能源科技有限公司 极片及具有所述极片的电极组件
CN117219971A (zh) * 2019-06-17 2023-12-12 东莞新能安科技有限公司 电池组件及电化学装置
CN210926206U (zh) * 2019-12-30 2020-07-03 江西迪比科股份有限公司 一种满足低温充电的锂离子电池
CN112289969A (zh) * 2020-10-19 2021-01-29 中国电子科技集团公司第十八研究所 一种双极性集流体及双极性固态锂二次电池的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170155142A1 (en) * 2015-12-01 2017-06-01 Energy Control Limited Composite lithium secondary battery
CN108365255A (zh) * 2017-12-19 2018-08-03 成都亦道科技合伙企业(有限合伙) 一种锂电池电芯、锂电池及其制备方法
CN207719355U (zh) * 2017-12-19 2018-08-10 成都亦道科技合伙企业(有限合伙) 集流体结构、锂电池电芯及其锂电池
CN109935888A (zh) * 2017-12-19 2019-06-25 成都亦道科技合伙企业(有限合伙) 集流体结构、锂电池电芯及其锂电池
CN110635175A (zh) * 2019-10-28 2019-12-31 深圳吉阳智能科技有限公司 一种内部串联式电芯和内部串联式电池
CN212659570U (zh) * 2020-07-28 2021-03-05 深圳市海鸿新能源技术有限公司 一种双极性集流体、极片及电芯
CN113178666A (zh) * 2021-04-15 2021-07-27 Oppo广东移动通信有限公司 电池和电子设备

Also Published As

Publication number Publication date
CN113178666A (zh) 2021-07-27
CN113178666B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2022218098A1 (zh) 电池和电子设备
US9431674B2 (en) Balanced stepped electrode assembly, and battery cell and device comprising the same
JP6302271B2 (ja) リチウムイオン二次電池の回復方法
KR20140060366A (ko) 휴대용 전자 디바이스를 위한 배터리 내의 그래핀 집전체
US20150303538A1 (en) Compact battery with high energy density and power density
CN103069633A (zh) 具有新型结构的电极组件和用于该电极组件的制造方法
WO2022227821A1 (zh) 电池组件及其控制方法和电子设备
WO2023241234A1 (zh) 电化学装置及用电设备
JP2013530510A (ja) 電極組立体およびこれを含むリチウム二次電池
CN109148797A (zh) 电极组件以及包括该电极组件的锂二次电池
WO2022156358A1 (zh) 一种单面印刷层叠电池及印刷电池组
WO2020238226A1 (zh) 一种电池及电池组
JP7430791B2 (ja) セグメント膜、バッテリ組合せ、および電気デバイス
CN109244599B (zh) 一种具有快速加热功能的复合负极极片、及采用其的电芯和电池
WO2023184399A1 (zh) 一种电化学装置及电子设备
US20190363395A1 (en) Thin film solid-state secondary battery
CN110635175A (zh) 一种内部串联式电芯和内部串联式电池
WO2023137673A1 (zh) 电极组件、电化学装置及用电设备
WO2022000329A1 (zh) 一种电化学装置及电子装置
KR20170033777A (ko) 축전 디바이스
CN113937424A (zh) 电芯组件、电池组件及电子设备
US20190363365A1 (en) Solid-state battery structure
WO2024131865A1 (zh) 复合集流体及其制造方法、复合极片及其制造方法及锂电池
WO2023159583A1 (zh) 电化学装置及电子装置
TW201242146A (en) Electrode assembly of novel structure and process for preparation of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787327

Country of ref document: EP

Kind code of ref document: A1