WO2022218004A1 - 一种提高合金构件微区表面质量的加工方法 - Google Patents

一种提高合金构件微区表面质量的加工方法 Download PDF

Info

Publication number
WO2022218004A1
WO2022218004A1 PCT/CN2022/073038 CN2022073038W WO2022218004A1 WO 2022218004 A1 WO2022218004 A1 WO 2022218004A1 CN 2022073038 W CN2022073038 W CN 2022073038W WO 2022218004 A1 WO2022218004 A1 WO 2022218004A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy component
alloy
micro
surface quality
electrolytic machining
Prior art date
Application number
PCT/CN2022/073038
Other languages
English (en)
French (fr)
Inventor
郭鹏飞
林鑫
兰红波
张世春
王家昌
刘岩松
Original Assignee
青岛理工大学
西北工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学, 西北工业大学 filed Critical 青岛理工大学
Publication of WO2022218004A1 publication Critical patent/WO2022218004A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/08Working media
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of electrolytic machining of laser additive manufacturing, in particular to a machining method for improving the surface quality of alloy component micro-regions.
  • laser three-dimensional forming technology can realize high-performance, mold-free, full-dense, near-net-shape forming of complex metal components, and is widely used in aviation, aerospace, navigation, nuclear power and other fields.
  • laser three-dimensional forming has achieved a lot of successful practices in the high-efficiency forming of large components and the high-precision forming of small components, but the inverse relationship between efficiency and precision is a basic process rule of laser three-dimensional forming technology.
  • high-power lasers, large laser spot diameters, and high powder feed rates can be used to increase the deposition rate of laser stereoforming.
  • the high deposition rate (deposition rate greater than 1 kg/h) has obvious macroscopic wave-like undulations on the surface of the laser three-dimensional forming, which makes the surface quality extremely poor. Therefore, the shaped components must be subjected to subsequent surface machining before they can be used.
  • electrolytic machining technology is mainly used for difficult-to-machine materials such as Inconel 718 nickel-based superalloy. Electrochemical machining technology can realize the electrochemical leveling of the surface of components, so as to achieve the purpose of improving the surface quality.
  • the prior art process only stops at further adopting the electrolytic machining technology for the subsequent surface processing of the formed component, that is, using a DC power source to perform anode dissolution, thereby realizing the leveling of the workpiece surface.
  • a DC power source to perform anode dissolution
  • the existing technology for surface treatment of formed components cannot achieve surface micro-region leveling, and the quality of the surface treatment is poor.
  • the inventors of the present application have found that the microscopic unevenness after conventional DC electrolytic machining is mainly due to the relatively complex microstructure of the Inconel 718 alloy formed by laser three-dimensional forming (such as ⁇ matrix phase, Nb segregation zone, ⁇ /Laves eutectic phase and ⁇ /Laves eutectic phase). /(Nb,Ti)C eutectic is equal), and during the ECM process, there are obvious differences in the dissolution rates of these constituent phases (for example, the dissolution rate of the Nb segregation zone is the largest, followed by the ⁇ matrix phase, Laves phase and (Nb) , the dissolution rate of Ti)C phase is the slowest), resulting in poor microscopic surface quality.
  • the inventor of the present application has a profound and significant research significance for the discovery that there are still problems of uneven micro-regions on the surface of components and poor surface treatment quality after DC electrolytic machining.
  • the present disclosure provides a processing method for improving the surface quality of the alloy component micro-region, that is, using a nanosecond pulse power source (to realize nanosecond pulse electrolytic machining), by effectively controlling the anodic dissolution rate of different composition phases in the alloy component , to solve the problem of uneven surface of large alloy components, so as to obtain components with better surface quality.
  • a processing method for improving the surface quality of a micro-region of an alloy component adopts a nanosecond pulse electrolytic machining process.
  • the alloy component obtained by the above processing method has a surface roughness Ra of 0.01-0.1 ⁇ m, no grain boundary corrosion, phase boundary corrosion, and no overcut phenomenon.
  • an engine adopts the above alloy member, the alloy member being a hot end part.
  • a gas turbine adopts the above alloy component, the alloy component being a hot end part.
  • a nuclear reactor adopts the above alloy member, the alloy member being a hot end part.
  • the prior art has not found that there are still uneven micro-regions and poor microscopic surface quality after the DC electrolytic machining of the component surface, thereby affecting the service life of the alloy components, and there is no further progress on the surface of the alloy components after the DC electrolytic machining.
  • the present disclosure has found that the surface of the electrolytically processed alloy component still has the problems of uneven micro-regions and poor surface quality of the micro-region, which lead to easy damage and reduced service life of components using the alloy component. Therefore, the discovery of the above-mentioned problems in the present disclosure is very important and innovative, and has far-reaching significance for promoting the further application of alloy components.
  • the nanosecond pulse electrolytic machining process can further improve the microscopic flatness of the surface of the alloy component and greatly improve the surface quality of the alloy component.
  • the surface roughness Ra of the alloy component obtained by this process is 0.01 -0.1 ⁇ m
  • no grain boundary corrosion and phase boundary corrosion no overcut phenomenon
  • the existing surface roughness Ra after DC electrolytic machining is 1-10 ⁇ m (the surface roughness of the tool cathode also affects the surface roughness of the workpiece), And there is serious grain boundary corrosion and phase boundary corrosion.
  • DC electrolytic machining is performed first, and nanosecond pulse electrolytic machining is performed for the remaining finishing allowance, which is helpful to further improve the surface treatment effect, and obtain high-quality surface workpieces quickly and well.
  • Fig. 1 is the surface micro-topography diagram of the laser/electrolysis combined precise forming of Inconel 718 alloy described in the background art: (a) the current density on the horizontal section is 2A/cm 2 ; (b) the current density on the vertical section is 2A/cm 2 ; (c) the current density on the horizontal section is 10A/cm 2 ; (d) the current density on the vertical section is 10A/cm 2 ; (e) the current density on the horizontal section is 20A/cm 2 ; (f) the current density on the vertical section is 20A/cm 2 ; (g) the current density on the horizontal section is 40A/cm 2 ; (h) the current density on the vertical section is 40A/cm 2 .
  • reagents or raw materials used in the present invention can be purchased through conventional channels. Unless otherwise specified, the reagents or raw materials used in the present invention are used in a conventional manner in the art or in accordance with product instructions. In addition, any methods and materials similar or equivalent to those described can be used in the methods of the present invention. Methods and materials for preferred embodiments described herein are provided for illustrative purposes only.
  • the prior art has not found the problem of uneven micro-domain and poor micro-surface quality after DC electrolytic machining on the surface of the component, which affects the service life of the alloy component. Therefore, the present disclosure provides a method to improve the micro-domain of the alloy component. Surface quality processing method.
  • a processing method for improving the surface quality of an alloy component micro-area adopts a nanosecond pulse electrolytic machining process. Timely discharge, and the heat is quickly taken away by the high-speed flowing electrolyte, and fresh electrolyte is replenished into the processing gap, thereby avoiding concentration polarization and improving the surface quality; on the other hand, nanosecond pulse ECM passes through the processing gap The charge-discharge process of the electric double layer on the surface of the two electrodes controls the electrochemical anodic dissolution process.
  • the machining gap is small, the charge and discharge time constant of the electric double layer is smaller than the pulse width, electrochemical anodic dissolution occurs, and the corrosion rate is fast; and where the surface is concave, the charge and discharge time constant of the electric double layer is greater than the pulse width, No anodic dissolution occurs; this difference in dissolution rate results in a smoother surface, ultimately improving surface quality.
  • alloys include solid solution strengthened alloys, precipitation strengthened alloys, and particle reinforced metal matrix composites.
  • alloys include solid solution strengthened alloys, precipitation strengthened alloys, and particle reinforced metal matrix composites.
  • Inconel 718 nickel-based superalloy is a precipitation-strengthened alloy, and the laser additive manufacturing structure has both element segregation and secondary phase particles with stable electrochemical properties, it has both solid-solution-strengthened alloys and particle-enhanced metals.
  • the characteristics of the matrix composite material are very representative and have a wide range of uses. However, there is a serious unevenness problem in the electrolytically machined surface micro-region, which limits the further application of nickel-based superalloys. Therefore, the alloy is preferably a nickel-based superalloy. .
  • the nanosecond pulse electrochemical machining process parameters are: the initial machining gap between the two poles is 1-3 ⁇ m, the electrolyte flow rate is 5-15ml/s, and the pulse voltage is 10 -24V, the pulse width is 1-100ns, the duty cycle is 30-60%, the feeding speed is 1-10mm/s, and the electrolyte is selected from sodium nitrate solution (mass fraction is 10%).
  • the optimal parameters are that the initial machining gap of the two poles is 2 ⁇ m, the electrolyte flow rate is 10ml/s, the pulse width is 3ns, the duty cycle is 50%, and the feed rate is 2mm/s.
  • the electrolyte is sodium nitrate solution (mass fraction is 10%).
  • Nanosecond Pulse Electrochemical Machining In order to optimize the effect of nanosecond pulse electrochemical machining and maximize the advantages of nanosecond pulse electrochemical machining, the remaining finishing allowance is preferably 0.5 mm.
  • the DC electrolytic machining process parameters can be a voltage of 20-30V, a machining gap of 0.3-0.7mm, an electrolyte flow rate of 5-15m/s, and the electrolyte is selected from sodium nitrate solution (quality score is 10%).
  • the nanosecond pulse ECM process parameters the initial machining gap of the two poles is 1-3 ⁇ m, the electrolyte flow rate is 5-15m/s, and the pulse width is 10 -50ns, the duty cycle is 40-60%, the feed rate is 1-10mm/s, the electrolyte is selected from sodium nitrate solution (mass fraction is 10%); is 10ml/s, the pulse width is 20ns, the duty cycle is 50%, the feed rate is 2mm/s, and the electrolyte is sodium nitrate solution (mass fraction is 10%).
  • the change of the high-frequency electric field in the nanosecond pulse electrolytic machining process will have a periodic force on the solution ions in the machining gap, thereby forming a certain intensity of ultrasonic vibration, which will accelerate the discharge of the electrolytic products in the machining gap, thereby further improving.
  • the prior art discloses a subsequent electrolytic machining method for nickel-based superalloy components
  • the method focuses on changing the filling method of the electrolyte so that the workpiece to be processed will not be immersed in the electrolyte, thereby improving the
  • the precision of electrolytic machining here mainly considers the shape accuracy of the workpiece, not for the problem that the surface of the component after DC electrolytic machining still has the problem of micro area unevenness, especially, this method does not deeply study the surface of the component after electrolytic machining. existing technical problems. It can be seen that the prior art technicians only use the conventional electrolytic machining process, and no one has further in-depth research on the surface of the component after the electrolytic machining treatment, resulting in no one finding the problems existing in the traditional technology. Therefore, there is no motivation to further improve the surface quality of the alloy components.
  • the present disclosure adopts the tube electrode to carry out the numerical control generating process, which can perform point-by-point, line-by-line, and surface-by-surface generating processing, which greatly improves the flexibility of the processed workpiece and reduces the processing cost.
  • the alloy components can be prepared by the laser three-dimensional forming technology with synchronous feeding of materials.
  • the laser three-dimensional forming process parameters are: laser power 2-6KW, scanning rate 800-2000mm/min, spot diameter 4-6mm, single-layer thickness 0.3-1.1mm, the tower connection rate is 40-60%; preferably, the laser power is 4kW, the scanning rate is 900mm/min, the spot diameter is 5.3mm, the single-layer thickness is 0.9mm, and the overlapping rate is 50%.
  • the deposition rate can reach 1.2 kg/h, and the surface quality is good, but it is more difficult to further improve the surface quality of the alloy components.
  • the alloy component obtained by the above processing method has a surface roughness Ra of 0.01-0.1 ⁇ m, no grain boundary corrosion, phase boundary corrosion, and no overcut phenomenon. Obviously, the alloy component has more excellent surface quality, and the surface roughness is far lower than that of the prior art.
  • an engine adopts the above alloy component, and the alloy component is a hot end part.
  • a gas turbine adopts the above alloy component, and the alloy component is a hot end component.
  • a nuclear reactor adopts the above alloy component, and the alloy component is a hot end part.
  • the above-mentioned engines, gas turbines, nuclear reactors, etc. are all conventional devices, except that the alloy components with improved surface quality obtained by the above-mentioned methods are used as hot-end components. Since the surface quality of the above-mentioned alloy components is further improved, the service life of devices such as engines, gas turbines, and nuclear reactors assembled by using the alloy components can be further improved. The precision and high temperature resistance of the instrument play an important role.
  • a processing method for improving the surface quality of an alloy component micro-area, which directly performs nanosecond pulse electrolytic machining on the surface of the alloy component specifically:
  • nanosecond pulse electrolytic machining is directly performed on them. Due to the uneven surface of the component, when using a stainless steel tube electrode (outer diameter is 1.2mm, inner diameter is 0.8mm) for processing, the highest point of the sample should be used as the benchmark for processing. The distance between the end face of the tube electrode and the highest point of the sample is 1 ⁇ m, the feed rate in the horizontal plane is 2mm/s, the flow rate of the electrolyte is 5ml/s, the electrolyte is sodium nitrate solution (mass fraction is 10%), and the applied potential is 10V , the pulse frequency is 10ns, and the duty cycle is 50%. After processing this layer, the tube electrode is lowered by a certain distance to ensure that the distance between the tube electrode and the surface of the sample is 1 ⁇ m. After one layer is processed, the above process parameters are used in turn to process the remaining allowance.
  • Test results The surface morphology of the sample was observed with a laser confocal microscope, and the surface roughness Ra of the component was directly obtained as 0.1 ⁇ m, and there was weak grain boundary corrosion and phase boundary corrosion.
  • a processing method for improving the surface quality of the micro-area of an alloy component, firstly performing DC electrolytic machining, and then performing nanosecond pulse electrolytic machining specifically:
  • the DC electrolytic machining process parameters are: the tool electrode is a stainless steel tube electrode (outer diameter is 1.2mm, inner diameter is 0.8mm), the applied voltage is 24V, and the machining gap is 0.5mm. , the feed rate is 1.5mm/s, the electrolyte flow rate is 10m/s, the electrolyte is selected from sodium nitrate solution (mass fraction is 10%), after processing one layer, adjust the height of the tube electrode to make the processing gap 0.5mm, and Start the machining of a new layer until the remaining finishing allowance is 0.5mm.
  • nanosecond pulse electrolytic machining is performed, and the specific process parameters are: the tool electrode is a stainless steel tube electrode (outer diameter is 1.2mm, inner diameter is 0.8mm), the feed rate in the horizontal plane is 2mm/s, and the electrolyte flow rate is 5ml/ s, the electrolyte adopts sodium nitrate solution (mass fraction is 10%), the applied potential is 10V, the pulse frequency is 10ns, the duty ratio is 50%, and the processing gap is 1 ⁇ m. After one layer is processed, the above process parameters are used in turn to process the remaining allowance.
  • Test results The surface morphology of the sample was observed with a laser confocal microscope, and the surface roughness Ra of the component was directly obtained as 0.05 ⁇ m, and there was no grain boundary corrosion and phase boundary corrosion.
  • Example 2 Comparing Example 1 and Example 2, it is not difficult to find that the nanosecond pulse electrolytic machining technology can significantly reduce the surface roughness Ra of the workpiece to be processed, and inhibit the grain boundary corrosion and phase boundary corrosion, and obtain excellent surface quality.
  • nanosecond pulse electrolytic machining is directly used, because the material removal rate of this process is extremely low, thereby directly reducing the processing efficiency and the production cost is high; and in Example 2, the DC electrolytic machining technology was first used for rough machining. And leave a finishing allowance of 0.5mm, and then use nanosecond pulse electrolytic machining technology for finishing, which effectively improves the processing efficiency and ensures the quality of the machined surface.
  • a processing method for improving the surface quality of alloy component micro-area adopts DC electrolytic machining. Specifically:
  • the DC electrolytic machining process parameters are: the tool electrode is a stainless steel tube electrode (outer diameter is 1.2mm, inner diameter is 0.8mm), the applied voltage is 24V, the machining gap is 0.5mm, the feed rate is 1.5mm/s, and the electrolyte flow rate is 10m /s, the electrolyte is selected from sodium nitrate solution (mass fraction is 10%), and the DC electrolytic machining of the surface of the component is completed.
  • Test results The surface morphology of the sample was observed with a laser confocal microscope, and the surface roughness Ra of the component was directly obtained to be 89 ⁇ m, and there was serious grain boundary corrosion and phase boundary corrosion.
  • Example 2 After the surface of the laser three-dimensional forming component is treated by DC electrolytic machining, although the surface quality has been significantly improved, the problems of microscopic unevenness and poor surface quality of the micro-area still exist. It can be seen from the comparison between Example 2 and Comparative Example 1 that the nanosecond pulse electrolytic machining process has significant advantages in improving the surface roughness Ra and inhibiting the surface grain boundary corrosion and phase boundary corrosion.
  • is the resistivity of the electrolyte
  • d is the difference between the composition phase of the anode material and the tube electrode
  • C is the electric double layer capacitance of the surface different phase surface. It is not difficult to see that the larger the cathode-anode distance (d), the greater the charge-discharge time constant of the electric double layer.
  • the time constant is greater than the pulse width, only the charge-discharge process occurs, and no anodic dissolution occurs, that is, the depressed ⁇ -phase position does not dissolve.
  • the distance between the cathode and the anode is short, the time constant is small, the charging can be completed within a pulse width range and the anodic dissolution occurs, so that the convex place dissolves and the concave place does not dissolve, so that the The surface becomes smoother.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本发明涉及激光增材制造的电解加工技术领域,具体为一种提高合金构件微区表面质量的加工方法,采用纳秒脉冲电解加工工艺,能进一步提高合金构件表面处理效果,又快又好的获得高质量表面工件。

Description

一种提高合金构件微区表面质量的加工方法 技术领域
本发明涉及激光增材制造的电解加工技术领域,具体为一种提高合金构件微区表面质量的加工方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
激光立体成形技术作为一种先进的增材制造技术,可实现复杂金属构件的高性能、无模具、全致密、近净成形,在航空、航天、航海、核电等领域的应用极为广泛。目前,激光立体成形在大型构件的高效率成形以及小型构件的高精度成形方面已经取得了大量的成功实践,但是效率与精度成反比是激光立体成形技术的一条基本工艺规律。对于大型构件而言,可采用高功率激光、大的激光光斑直径以及大的粉末送进速率来提高激光立体成形技术的沉积速率。但是高沉积速率(沉积速率大于1kg/h)激光立体成形表面存在明显的宏观波浪状起伏,使得表面质量极差。因此,成形构件在使用之前必须进行后续表面加工。例如,对于Inconel 718镍基高温合金等难加工材料而言,主要是采用电解加工技术。电解加工技术可以实现构件表面的电化学整平,从而达到提高表面质量的目的。
现有技术工艺对于成形构件后续表面加工仅仅止步于进一步采用电 解加工技术,即利用直流电源进行阳极溶解,从而实现对工件表面的整平。但是,并没有对成形构件表面电解加工之后的表面微观结构进行深入研究,并没有发现电解加工后的构件表面仍然存在一系列的问题。
也就是说,现有的对于成形构件表面处理的技术无法实现表面微区整平,对表面处理的质量较差。
发明内容
以激光立体成形Inconel 718合金为例,本申请发明人基于传统的直流电解加工技术进行进一步深入研究发现,采用直流电解加工成形后的表面微区质量仍然较差,如图1所示。由图1可以看出,尽管随着电流密度的增大,成形表面变的愈加平整,但是,依然存在明显的微观不平整度。这是现有技术从来没有发现过的问题,因此,并没有相关技术人员认识到该问题的不利影响,也没有给出相应的解决方案。
本申请发明人研究发现,常规的直流电解加工之后的微观不平整度主要是因为激光立体成形Inconel 718合金的微观组织较为复杂(如γ基体相、Nb偏析区、γ/Laves共晶相以及γ/(Nb,Ti)C共晶相等),而电解加工过程中,这些组成相各自的溶解速率存在明显的差异(如Nb偏析区的溶解速率最大,γ基体相次之,Laves相和(Nb,Ti)C相的溶解速率最慢),最终使得微观表面质量较差。这极易引起严重的问题,即在Inconel 718合金构件服役过程中,这种微观表面缺陷,特别是因Nb偏析区溶解速率快、Laves相溶解速率慢而形成的沟槽处,是应力最为集中同时易于萌生微裂纹的地方,这对于航空发动机部件而言,其所承受的动载荷极易诱导 裂纹萌生、扩展,最终发生断裂,从而影响Inconel 718合金零部件的使用效能和服役寿命。
因此,本申请发明人对于直流电解加工之后仍然存在构件表面微区不平整、表面处理质量差问题的发现具有深刻而显著的研究意义。
为了解决上述问题,本公开提供了一种提高合金构件微区表面质量的加工方法,即采用纳秒脉冲电源(实现纳秒脉冲电解加工),通过有效控制合金构件中不同组成相的阳极溶解速率,解决大型合金构件微区表面不平整的难题,从而获得表面质量更好的构件。
具体地,本公开的技术方案如下所述:
在本公开的第一方面,一种提高合金构件微区表面质量的加工方法,采用纳秒脉冲电解加工工艺。
在本公开的第二方面,采用上述加工方法得到的合金构件,所述合金构件表面粗糙度Ra为0.01-0.1μm,无晶界腐蚀和相界腐蚀,无过切现象。
在本公开的第三方面,一种发动机,采用上述合金构件,该合金构件为热端部件。
在本公开的第四方面,一种燃气轮机,采用上述合金构件,该合金构件为热端部件。
在本公开的第五方面,一种核反应器,采用上述合金构件,该合金构件为热端部件。
本公开中的一个或多个技术方案具有如下有益效果:
(1)、现有技术并没有发现对构件表面直流电解加工后仍然存在微 区不平整、微观表面质量较差从而影响合金部件使用寿命的问题,没有对于直流电解加工后的合金构件表面进行进一步深入研究,而本公开却发现了电解加工合金构件表面仍然存在微区不平整、微区表面质量差导致使用该合金构件的部件易损坏、使用寿命降低的问题。因此,本公开关于上述问题的发现本身就具有非常重要的创新性,对于推动合金构件的进一步应用具有深远的意义。
(2)、采用纳秒脉冲电解加工工艺,可以进一步提高合金构件表面微观平整度,极大的提升合金构件的表面质量,具体实施方式中,利用该工艺获得的合金构件表面粗糙度Ra为0.01-0.1μm,无晶界腐蚀和相界腐蚀,无过切现象,而现有直流电解加工后的表面粗糙度Ra为1-10μm(工具阴极表面粗糙度对工件表面粗糙度亦有影响),且存在严重的晶界腐蚀和相界腐蚀。
(3)、本公开中,先进行直流电解加工,针对剩余精加工余量进行纳秒脉冲电解加工有助于进一步提高表面处理效果,又快又好的获得高质量表面工件。
(4)、配合采用管电极进行数控展成法加工,对于大型合金构件,采用靠模法进行加工时,阴极模具加工难度大,制造成本高。而采用易于制造的管电极可进行逐点、逐线、逐面展成加工,这样大大提高了加工工件的柔性化,降低加工成本。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解, 本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
以下,结合附图来详细说明本公开的实施方案,其中:
图1为背景技术中所述的Inconel 718合金激光/电解组合精确成形表面微观形貌图:(a)水平截面上的电流密度为2A/cm 2;(b)竖直截面上的电流密度为2A/cm 2;(c)水平截面上的电流密度为10A/cm 2;(d)竖直截面上的电流密度为10A/cm 2;(e)水平截面上的电流密度为20A/cm 2;(f)竖直截面上的电流密度为20A/cm 2;(g)水平截面上的电流密度为40A/cm 2;(h)竖直截面上的电流密度为40A/cm 2
具体实施方式
下面结合具体实施例,进一步阐述本公开。应理解,这些实施例仅用于说明本公开而不用于限制本公开的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。本发明所使用的试剂或原料均可通过常规途径购买获得,如无特殊说明,本发明所使用的试剂或原料均按照本领域常规方式使用或者按照产品说明书使用。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文 另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作和/或它们的组合。
目前,现有技术并没有发现对构件表面直流电解加工处理后仍然存在微区不平整、微观表面质量较差从而影响合金部件使用寿命的问题,因此,本公开提供了一种提高合金构件微区表面质量的加工方法。
在本公开的一种实施方式中,一种提高合金构件微区表面质量的加工方法,采用纳秒脉冲电解加工工艺,一方面可有效改善流场特性,脉冲间隔可实现加工间隙中电解产物的及时排出,以及热量被高速流动的电解液迅速带走,同时新鲜电解液重新补充到加工间隙中,从而避免浓差极化,提高表面质量;另一方面,纳秒脉冲电解加工通过加工间隙中两极表面双电层充放电过程控制其电化学阳极溶解过程。表面凸起的地方,加工间隙小,双电层充放电的时间常数小于脉冲宽度,发生电化学阳极溶解,蚀除速率快;而表面凹陷的地方,双电层充放电时间常数大于脉冲宽度,不发生阳极溶解;这种溶解速率的差异,可使表面变的愈加平整,最终提高表面质量。
理论上,上述加工方法适用于所有的合金,本领域技术人员可以基于需要对合金种类进行选择,例如合金包括固溶强化型合金、沉淀强化型合金、颗粒增强型金属基复合材料等。当然,由于Inconel 718镍基高温合金为沉淀强化型合金,且激光增材制造组织既有元素偏析又有电化学性能稳定的二次相颗粒存在,兼具固溶强化型合金以及颗粒增强型金属基复合材 料的特点,极具代表性且用途广泛,然而,其电解加工表面微区存在严重的不平整问题,限制了镍基高温合金的进一步应用,因此,所述合金优选为镍基高温合金。
采用纳秒脉冲电解加工可以有两种方式:
一种是直接对合金构件表面进行纳秒脉冲电解加工,此时,纳秒脉冲电解加工工艺参数为:两极初始加工间隙为1-3μm,电解液流速为5-15ml/s,脉冲电压为10-24V,脉冲宽度为1-100ns,占空比为30-60%,进给速度为1-10mm/s,电解液选自硝酸钠溶液(质量分数为10%)。为了优化合金构件表面,提高合金构件质量,最优参数,两极初始加工间隙为2μm,电解液流速为10ml/s,脉冲宽度为3ns,占空比为50%,进给速度为2mm/s,电解液为硝酸钠溶液(质量分数为10%)。
然而,发明人发现,这种直接对合金构件表面进行纳秒脉冲电解加工的处理方式,加工效率极低,无法实现高效、低成本的表面加工,尤其对于大型合金构件。
而另一种纳秒脉冲电解加工方法,即先进行直流电解加工,然后再进行纳秒脉冲电解加工,直流电解加工后,剩余精加工余量为0.3-0.8mm,针对剩余精加工余量进行纳秒脉冲电解加工。为了优化纳秒脉冲电解加工的效果,最大程度发挥纳秒脉冲电解加工的优势,所述剩余精加工余量优选为0.5mm。
通常情况下,对于直流电解加工工艺参数没有具体限定,因此无论直流电解加工过程如何,得到的合金构件表面仍然存在微区不平整、表面质 量差的问题。当然,为了优化最终得到的合金构件的表面质量,直流电解加工工艺参数可以为电压20-30V,加工间隙0.3-0.7mm,电解液流速5-15m/s,电解液选自硝酸钠溶液(质量分数为10%)。最佳的,直流电解加工工艺参数:电压24V,加工间隙0.5mm,电解液流速10m/s,电解液选自硝酸钠溶液(质量分数为10%),处于该条件下能够最大程度的得到最优化的直流电解加工后的合金构件表面,为了进一步提高合金构件表面质量,纳秒脉冲电解加工工艺参数:两极初始加工间隙为1-3μm,电解液流速为5-15m/s,脉冲宽度为10-50ns,占空比为40-60%,进给速度为1-10mm/s,电解液选自硝酸钠溶液(质量分数为10%);优选的,两极初始加工间隙为2μm,电解液流速为10ml/s,脉冲宽度为20ns,占空比为50%,进给速度为2mm/s,电解液为硝酸钠溶液(质量分数为10%)。另外,纳秒脉冲电解加工过程中高频的电场变化,会对加工间隙中溶液离子有周期性的作用力,从而形成一定强度的超声振动,这会加速加工间隙中电解产物的排出,从而进一步改善流场特性,提高表面质量。
虽然,现有技术公开了一种用于镍基高温合金构件的后续电解加工方法,但是,该方法注重的是通过改变电解液的填充方式使得被加工工件不会浸入到电解液中,从而提高电解加工的精度,这里主要考虑了工件的形状精度,并非针对直流电解加工处理后的构件表面仍然存在微区不平整的问题,尤其是,该方法中也并未深入研究电解加工后的构件表面存在的技术问题。可见,现有技术技术人员仅仅采用常规的电解加工工艺,没有人对电解加工处理后的构件表面进一步深入研究,导致并没有人发现传统技 术所存在的问题。因此,并没有进一步提高合金构件微区表面质量的动机。
此外,对于大型合金构件而言,若采用电化学抛光工艺,所使用电解槽的尺寸、电源功率等均提出更高要求,从而增加成本。进一步讲,大型合金构件在电化学抛光过程中,受尺寸的影响,其整体的抛光效果是不均匀的,必须通过调整电场均匀性来控制整体的抛光效果,操作复杂,工艺过程繁琐,因此具有一定的局限性。因此,本公开采用管电极进行数控展成法加工,可进行逐点、逐线、逐面展成加工,这样大大提高了加工工件的柔性化,降低加工成本。
对于合金构件的制备方法,并没有具体的限定,本领域技术人员可以基于实际需要对原始合金构件的制备方法进行选择。其中,可以采用以材料同步送进的激光立体成形技术制备合金构件,所述激光立体成形工艺参数为:激光功率2-6KW,扫描速率800-2000mm/min,光斑直径4-6mm,单层厚度0.3-1.1mm,塔接率40-60%;优选的,激光功率4kW,扫描速率900mm/min,光斑直径5.3mm,单层厚度0.9mm,搭接率50%。基于此条件下得到的合金构件,沉积速率可达1.2kg/h,表面质量较好,但是,对于合金构件表面质量的进一步提升却具有更大的难度。
在本公开的一种实施方式中,采用上述加工方法得到的合金构件,所述合金构件表面粗糙度Ra为0.01-0.1μm,无晶界腐蚀和相界腐蚀,无过切现象。显然,该合金构件具有更优异的表面质量,表面粗糙度远远低于现有技术。
在本公开的一种实施方式中,一种发动机,采用上述合金构件,该合 金构件为热端部件。
在本公开的一种实施方式中,一种燃气轮机,采用上述合金构件,该合金构件为热端部件。
在本公开的一种实施方式中,一种核反应器,采用上述合金构件,该合金构件为热端部件。
对于上述所述的发动机、燃气轮机、核反应器等都是常规装置,不同之处在于以上述方法得到的表面质量得到提高的合金构件作为热端部件。由于上述合金构件表面质量得到进一步地提升,能够进一步提高利用该合金构件组装而成的发动机、燃气轮机、核反应器等装置的使用寿命,尤其是,对于提高该发动机、燃气轮机、核反应器等装置的精密器械的精密度、耐高温等性能具有重要作用。
为了使得本领域技术人员能够更加清楚地了解本公开的技术方案,以下将结合具体的实施例详细说明本公开的技术方案。
实施例1
一种提高合金构件微区表面质量的加工方法,采用直接对合金构件表面进行纳秒脉冲电解加工,具体为:
激光立体成形Inconel 718合金构件完成后,直接对其进行纳秒脉冲电解加工。由于构件表面凹凸不平,采用不锈钢管电极(外径为1.2mm,内径为0.8mm)进行加工时,要以试样的最高点为基准,进行加工。管电极的端面距离试样的最高点为1μm,水平面内的进给速率为2mm/s,电解液流速为5ml/s,电解液采用硝酸钠溶液(质量分数为10%),外加电位 为10V,脉冲频率为10ns,占空比为50%。加工完本层后,管电极再下降一定距离,确保管电极到试样表面的距离为1μm。加工完一层后,依次采用以上工艺参数进行剩余余量的加工。
测试结果:采用激光共聚焦显微镜观察试样表面形貌,并直接获取构件表面粗糙度Ra为0.1μm,存在微弱的晶界腐蚀和相界腐蚀。
实施例2
一种提高合金构件微区表面质量的加工方法,先进行直流电解加工,然后再进行纳秒脉冲电解加工,具体为:
首先对激光立体成形Inconel 718合金构件进行直流电解加工,直流电解加工工艺参数为:工具电极为不锈钢管电极(外径为1.2mm,内径为0.8mm),外加电压为24V,加工间隙为0.5mm,进给速率为1.5mm/s,电解液流速10m/s,电解液选自硝酸钠溶液(质量分数为10%),加工完一层后,调节管电极高度使得加工间隙为0.5mm,并开始新一层的加工,直至剩余精加工余量为0.5mm。然后,进行纳秒脉冲电解加工,具体工艺参数为:工具电极为不锈钢管电极(外径为1.2mm,内径为0.8mm),水平面内的进给速率为2mm/s,电解液流速为5ml/s,电解液采用硝酸钠溶液(质量分数为10%),外加电位为10V,脉冲频率为10ns,占空比为50%,加工间隙为1μm。加工完一层后,依次采用以上工艺参数进行剩余余量的加工。
测试结果:采用激光共聚焦显微镜观察试样表面形貌,并直接获取构件表面粗糙度Ra为0.05μm,无晶界腐蚀和相界腐蚀。
数据分析:
对比实施例1和实施例2,不难发现,采用纳秒脉冲电解加工技术可显著降低被加工工件的表面粗糙度Ra,且抑制了晶界腐蚀和相界腐蚀,获得了优异的表面质量。但是,实施例1中,直接采用纳秒脉冲电解加工,由于该工艺材料去除速率极低,从而直接降低了加工效率,生产成本高;而实施例2中,先采用直流电解加工技术进行粗加工并留有精加工余量0.5mm,然后再采用纳秒脉冲电解加工技术进行精加工,有效提高加工效率,保证了加工表面质量。
对比例1
一种提高合金构件微区表面质量的加工方法,采用直流电解加工。具体为:
直流电解加工工艺参数为:工具电极为不锈钢管电极(外径为1.2mm,内径为0.8mm),外加电压为24V,加工间隙为0.5mm,进给速率为1.5mm/s,电解液流速10m/s,电解液选自硝酸钠溶液(质量分数为10%),完成构件表面的直流电解加工。
测试结果:采用激光共聚焦显微镜观察试样表面形貌,并直接获取构件表面粗糙度Ra为89μm,且存在严重的晶界腐蚀和相界腐蚀。
数据分析:
采用直流电解加工处理激光立体成形构件表面后,尽管表面质量有了显著提高,但是依然存在微观不平整、微区表面质量差的问题。实施例2和对比例1比较可知,纳秒脉冲电解加工工艺提高表面粗糙度Ra、抑制表 面晶界腐蚀和相界腐蚀方面具有显著优势。
原理:
对于纳秒脉冲电解加工过程而言,其暂态加工过程受时间常数τ的影响,而τ=RC=ρdC,其中,ρ为电解液的电阻率,d为阳极材料组成相与管电极之间的距离,C为表面不同相表面的双电层电容。不难看出,阴阳极间距(d)越大,则双电层充放电时间常数越大。对于给定的脉冲频率,当时间常数大于脉冲宽度时,则只发生充放电过程,不发生阳极溶解,即凹陷的γ相位置不溶解。而对于凸起的Laves相而言,阴阳极距离近,则时间常数较小,在一个脉宽范围内能充电完成并发生阳极溶解,这样凸起的地方溶解而凹陷的地方未溶解,从而使得表面愈加平整。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种提高合金构件微区表面质量的加工方法,其特征是,采用纳秒脉冲电解加工工艺。
  2. 如权利要求1所述的一种提高合金构件微区表面质量的加工方法,其特征是,先进行直流电解加工,然后再进行纳米脉冲电解加工。
  3. 如权利要求1所述的一种提高合金构件微区表面质量的加工方法,其特征是,所述加工方法还包括采用管电极进行数控展成法加工。
  4. 如权利要求1所述的一种提高合金构件微区表面质量的加工方法,其特征是,所述合金包括固溶强化型合金、沉淀强化型合金或颗粒增强型金属基复合材料,优选的,所述合金为沉淀强化型合金,进一步地,所述沉淀强化型合金为镍基高温合金。
  5. 如权利要求4所述的一种提高合金构件微区表面质量的加工方法,其特征是,采用以材料同步送进的激光立体成形技术制备合金构件,所述激光立体成形工艺参数为:激光功率2-6KW,扫描速率800-1000mm/min,光斑直径4-6mm,单层厚度0.7-1.1mm,塔接率40-60%;优选的,激光功率4kW,扫描速率900mm/min,光斑直径5.3mm,单层厚度0.9mm,搭接率50%。
  6. 如权利要求2所述的一种提高合金构件微区表面质量的加工方法,其特征是,所述直流电解加工工艺参数:电压20-30V,加工间隙0.3-0.7mm,电解液流速5-15m/s,电解液为硝酸钠溶液(质量分数为10%);优选的,直流电解加工工艺参数:电压24V,加工间隙0.5mm,电解液流速10m/s;
    或,直流电解加工后,剩余精加工余量为0.3-0.8mm,针对剩余精加工余量进行纳秒脉冲电解加工;优选的,所述剩余精加工余量为0.5mm;
    或,纳秒脉冲电解加工工艺参数:两极初始加工间隙为1-3μm,电解液流速为5-15ml/s,脉冲宽度为2-4ns,占空比为40-60%,进给速度为0.5-1.5μm/s,电解液为硝酸钠溶液(质量分数为10%);优选的,两极初始加工间隙为2μm,电解液流速为10ml/s,脉冲宽度为3ns,占空比为50%,进给速度为1μm/s。
  7. 采用权利要求1-6任一所述的加工方法得到的合金构件,其特征是,所述合金构件表面粗糙度Ra为0.01-0.1μm。
  8. 一种发动机,其特征是,采用权利要求7所述的合金构件,该合金构件为热端部件。
  9. 一种燃气轮机,其特征是,采用权利要求7所述的合金构件,该合金构件为热端部件。
  10. 一种核反应器,其特征是,采用权利要求7所述的合金构件,该合金构件为热端部件。
PCT/CN2022/073038 2021-04-15 2022-01-20 一种提高合金构件微区表面质量的加工方法 WO2022218004A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110406950.4A CN113319386B (zh) 2021-04-15 2021-04-15 一种提高合金构件微区表面质量的加工方法
CN202110406950.4 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022218004A1 true WO2022218004A1 (zh) 2022-10-20

Family

ID=77414706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073038 WO2022218004A1 (zh) 2021-04-15 2022-01-20 一种提高合金构件微区表面质量的加工方法

Country Status (2)

Country Link
CN (1) CN113319386B (zh)
WO (1) WO2022218004A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113319386B (zh) * 2021-04-15 2022-06-14 青岛理工大学 一种提高合金构件微区表面质量的加工方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101249580A (zh) * 2008-03-14 2008-08-27 江苏大学 电化学-激光掩模聚焦微刻蚀加工方法及装置
FR2928285A1 (fr) * 2008-03-05 2009-09-11 Koeppern & Co Kg Maschf Procede continu d'usinage electrolytique de pieces metalliques
CN101572231A (zh) * 2009-06-03 2009-11-04 南京航空航天大学 半导体垂直通孔形成方法及装置
CN101693313A (zh) * 2009-10-20 2010-04-14 清华大学 微三维结构的电火花电解组合铣削加工方法
CN103252543A (zh) * 2013-05-20 2013-08-21 南京航空航天大学 超薄工件的电解加工方法及装置
CN105935771A (zh) * 2016-07-07 2016-09-14 四川三阳永年增材制造技术有限公司 一种金属模具3d打印激光微区处理方法
CN107900336A (zh) * 2017-11-21 2018-04-13 大连交通大学 一种激光3D打印Fe基非晶合金复合材料构件的方法
CN108526627A (zh) * 2018-06-27 2018-09-14 江苏大学 一种半导体材料激光电化学复合微加工方法及装置
CN110340372A (zh) * 2018-04-08 2019-10-18 中国航发商用航空发动机有限责任公司 采用prep tc4球形粉末的激光熔化沉积增材制造方法
CN113319386A (zh) * 2021-04-15 2021-08-31 青岛理工大学 一种提高合金构件微区表面质量的加工方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547886B2 (ja) * 1990-05-09 1996-10-23 隆久 増沢 パルス電流による電解加工法及びその装置
CN101579761B (zh) * 2009-05-07 2010-11-03 中国工程物理研究院机械制造工艺研究所 一种两级限脉宽的精密放电加工脉冲电源
CN102019474B (zh) * 2010-09-16 2012-01-04 南京航空航天大学 线电极电化学磨削微细工具在线制备系统及方法
CN104801795A (zh) * 2015-04-13 2015-07-29 南京航空航天大学 线电极径向往复振动的微细电解切割加工方法
CN105665851A (zh) * 2016-04-15 2016-06-15 厦门大学 用于电化学加工的纳秒级脉宽脉冲电源
CN106077852B (zh) * 2016-08-04 2018-05-15 苏州大学 一种电化学加工系统
CN107322113A (zh) * 2017-05-24 2017-11-07 南京航空航天大学 用于金属玻璃微细电解加工的电解液
CN208162800U (zh) * 2018-05-09 2018-11-30 南京工程学院 纳秒脉冲电化学微细加工装置
CN109482991A (zh) * 2019-01-08 2019-03-19 中国工程物理研究院机械制造工艺研究所 一种复合射流微纳加工方法及加工装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928285A1 (fr) * 2008-03-05 2009-09-11 Koeppern & Co Kg Maschf Procede continu d'usinage electrolytique de pieces metalliques
CN101249580A (zh) * 2008-03-14 2008-08-27 江苏大学 电化学-激光掩模聚焦微刻蚀加工方法及装置
CN101572231A (zh) * 2009-06-03 2009-11-04 南京航空航天大学 半导体垂直通孔形成方法及装置
CN101693313A (zh) * 2009-10-20 2010-04-14 清华大学 微三维结构的电火花电解组合铣削加工方法
CN103252543A (zh) * 2013-05-20 2013-08-21 南京航空航天大学 超薄工件的电解加工方法及装置
CN105935771A (zh) * 2016-07-07 2016-09-14 四川三阳永年增材制造技术有限公司 一种金属模具3d打印激光微区处理方法
CN107900336A (zh) * 2017-11-21 2018-04-13 大连交通大学 一种激光3D打印Fe基非晶合金复合材料构件的方法
CN110340372A (zh) * 2018-04-08 2019-10-18 中国航发商用航空发动机有限责任公司 采用prep tc4球形粉末的激光熔化沉积增材制造方法
CN108526627A (zh) * 2018-06-27 2018-09-14 江苏大学 一种半导体材料激光电化学复合微加工方法及装置
CN113319386A (zh) * 2021-04-15 2021-08-31 青岛理工大学 一种提高合金构件微区表面质量的加工方法

Also Published As

Publication number Publication date
CN113319386B (zh) 2022-06-14
CN113319386A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
Guu et al. Effects of workpiece rotation on machinability during electrical-discharge machining
CN103233258B (zh) 一种基于微弧氧化和激光重熔的致密性增强型陶瓷膜层的制备方法
CN103009000B (zh) 一种铌靶材及其制备方法
CN103394685B (zh) 用于制备高熵合金涂层的合金粉末及其制备方法和应用
CN112570732B (zh) 一种降低激光增材制造镍基高温合金热裂敏感性的方法
CN105463451A (zh) 一种提高搅拌摩擦焊用搅拌头耐磨耐高温性能的方法
CN110153425A (zh) 一种小间隙闭式铝合金叶轮激光选区熔化成形方法
WO2022218004A1 (zh) 一种提高合金构件微区表面质量的加工方法
CN102560302A (zh) 一种制备强韧性耐蚀az91d镁合金的组合加工方法
CN103540931A (zh) 一种机械振动辅助感应加热激光表面合金化复合加工方法及装置
Xu et al. Combining PMEDM with the tool electrode sloshing to reduce recast layer of titanium alloy generated from EDM
CN108723525B (zh) 一种用于内壁环槽的电解加工阴极
Zhan et al. Regionalization of microstructure and mechanical properties of Ti6Al4V transition area fabricated by WAAM-LMD hybrid additive manufacturing
CN110592592A (zh) 一种基于脉冲电子束技术的激光熔覆高温防护涂层表面抛光净化方法
CN111761149A (zh) 一种消除高温合金电火花制孔孔壁重熔层的方法
Xu et al. Recast layer removal of 304 stainless steel by combining micro-EDM with negative polarity micro-EDM
Zhang et al. Surface-improvement mechanism of hybrid electrochemical discharge process using variable-amplitude pulses
CN104289775A (zh) 电极复合运动电解切割方法
CN110158010B (zh) 一种基于热喷涂和感应熔覆技术的轴类零件制备方法
CN112077323A (zh) 一种铝合金增材制造件的激光熔化沉积焊接方法
Chen et al. A study on machining characteristics of nickel-based alloy with short electric arc milling
WO2023019882A1 (zh) 一种盐膜法提高合金微区表面质量的方法及应用
RU2418074C1 (ru) Способ упрочнения изделий из металлических материалов с получением наноструктурированных поверхностных слоев
CN109234506A (zh) 一种激光辅助机械喷丸形成梯度纳米结构的复合方法
CN117305743A (zh) 一种高效增大航发叶片轴承材料纳米晶厚度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787235

Country of ref document: EP

Kind code of ref document: A1