WO2022217913A1 - 显示装置以及全息显示设备 - Google Patents

显示装置以及全息显示设备 Download PDF

Info

Publication number
WO2022217913A1
WO2022217913A1 PCT/CN2021/130924 CN2021130924W WO2022217913A1 WO 2022217913 A1 WO2022217913 A1 WO 2022217913A1 CN 2021130924 W CN2021130924 W CN 2021130924W WO 2022217913 A1 WO2022217913 A1 WO 2022217913A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase modulation
liquid crystal
display device
display panel
panel
Prior art date
Application number
PCT/CN2021/130924
Other languages
English (en)
French (fr)
Inventor
刘毅
邵喜斌
薄灵丹
曲莹莹
陈东川
李哲
栗鹏
廖燕平
李承珉
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/915,520 priority Critical patent/US20230229111A1/en
Publication of WO2022217913A1 publication Critical patent/WO2022217913A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • G03H1/12Spatial modulation, e.g. ghost imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0088Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/31Polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/33Complex modulation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/55Having optical element registered to each pixel
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/60Multiple SLMs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present disclosure relates to a display device and a holographic display device including the display device.
  • the holographic 3D display technology can completely record and reconstruct the waveform of the 3D object, providing all the depth perception required by the human visual system. the same three-dimensional properties.
  • the amplitude and phase information of the object light wave can be completely recorded by the interference of a reference light wave and the object light wave, and the diffraction of the illumination light wave by such a recorded interference pattern (ie, a hologram) can reproduce the original object. picture.
  • the holographic recording process is highly redundant and therefore has three-dimensional visual properties of reproduced images.
  • One of the objectives of the embodiments of the present disclosure is to provide a display device and a holographic display device including the display device.
  • the display device can synchronously adjust and express the amplitude and phase, and realize a three-dimensional (3D) display with high resolution and high definition.
  • the display device can increase the screen size for holographic display, and has a simple structure and low cost.
  • At least one embodiment of the present disclosure provides a display device.
  • the display device includes: a display panel including a first linear polarizer located on the light exit side, so that the display panel emits linearly polarized image light; and a phase modulation panel disposed on the light exit side of the display panel and configured to The linearly polarized image light is phase modulated.
  • the display panel includes a plurality of pixel units arranged in an array
  • the phase modulation panel includes a plurality of phase modulation units arranged in an array
  • each phase modulation unit in the plurality of phase modulation units corresponds to at least one pixel unit to modulate the phase of the linearly polarized image light emitted by the corresponding at least one pixel unit.
  • the plurality of phase modulation units and the plurality of pixel units are in one-to-one correspondence.
  • the phase modulation panel includes a first liquid crystal layer
  • each of the phase modulation cells includes a modulation electrode configured to drive the liquid crystal in the first liquid crystal layer to deflect to achieve the adjustment of all the The phase of the linearly polarized image light of the first liquid crystal layer is modulated.
  • the plurality of pixel units include pixel units that emit light of the same color.
  • the plurality of pixel units include pixel units that emit light of different colors, and the pixel units of different colors correspond to different phase modulation units.
  • the display panel includes a liquid crystal display panel, the liquid crystal display panel includes a second linear polarizer and a second liquid crystal layer, the second linear polarizer is disposed on the opposite side of the first linear polarizer, so The second liquid crystal layer is sandwiched between the first linear polarizer and the second linear polarizer.
  • the absorption axis of the first linear polarizer and the absorption axis of the second linear polarizer are perpendicular to each other.
  • the first liquid crystal layer includes at least one of nematic liquid crystal, cholesteric liquid crystal, and smectic liquid crystal.
  • the second liquid crystal layer includes at least one of nematic liquid crystal, cholesteric liquid crystal, and smectic liquid crystal.
  • At least one phase modulation unit of the plurality of phase modulation units is configured to be independently controlled.
  • each phase modulation unit of the plurality of phase modulation units is configured to be independently controlled.
  • a holographic display device including the display device described in any one of the above.
  • the holographic display device further includes a controller connected to the display panel and the phase modulation panel, respectively, to provide the display panel with an intensity modulation control signal for display and to provide the phase modulation control signal for the display panel.
  • the modulation panel provides phase modulation control signals.
  • Fig. 1 is the schematic diagram showing each polarization state of light wave and corresponding phase difference
  • FIG. 2 is a schematic cross-sectional view of a display device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an arrangement of a linear polarizer of a display device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic plan view of a display panel of a display device according to an embodiment of the present disclosure
  • FIG. 5 is a schematic plan view of a phase modulation panel of a display device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic plan view of a display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view of a display device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a holographic display device according to an embodiment of the present disclosure.
  • Words like "connected” or “communicated” are not limited to the physical or mechanical connections or communications shown in the figures, but may include equivalent connections or communications, whether direct or indirect. “Up”, “Down”, “Left”, “Right”, etc. are only used to represent the relative positional relationship, and when the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • a light wave is a transverse electromagnetic wave, and the vibration direction of its light vector is perpendicular to the propagation direction of the light wave.
  • the direction of light vibration is asymmetric relative to the direction of light wave propagation. This asymmetry causes the properties of light waves to change with the direction of light vibration.
  • Polarization properties According to the different trajectories of the vector end of the optical field at any point in space at different times, its polarization state can be divided into linear polarization, circular polarization and elliptical polarization.
  • the electric field vector of light waves can be expressed as a linear combination of two independent components vibrating in the x and y directions, namely
  • the difference in the amplitude ratio E y /E x determines the different polarization states of the light. As shown in Figure 1, different The polarization states corresponding to the values are different.
  • the light wave is linearly polarized light.
  • the phase difference the light wave is circularly polarized light. In other cases, the light waves are elliptically polarized light.
  • the change in the polarization state of the light wave is related to the change in the phase difference of the two components of the light wave.
  • the liquid crystal can be deflected according to the voltage applied to it, it can be used to change the phase difference of light waves passing through it. Based on this, the inventors realized that the phase and amplitude of light can be adjusted separately through reasonable configuration, thereby realizing holographic three-dimensional display.
  • a display device is provided according to at least some embodiments of the present disclosure.
  • the display device includes: a display panel including a first linear polarizer located on the light exit side, so that the display panel emits linearly polarized image light; and a phase modulation panel disposed on the light exit side of the display panel and configured to The linearly polarized image light is phase modulated.
  • the display device according to the embodiment of the present disclosure modulates the intensity of light through the display panel, so that a specific pattern can be formed for image display; in addition, the phase of the image light emitted by the display panel is modulated through the phase modulation panel, so that the image
  • the light includes both intensity information and phase information, so that a holographic three-dimensional image can be displayed.
  • the display device includes a display panel 1 and a phase modulation panel 2 .
  • the display panel 1 and the phase modulation panel 2 are stacked on each other.
  • the light-emitting surface of the display panel 1 and the light-incident surface of the phase modulation panel 2 are opposite to each other, so that the intensity-modulated image light emitted from the display panel 1 enters the phase modulation panel through the light-incident surface of the phase modulation panel, and the phase modulation panel will The phase of the incoming image light is modulated, so the light emitted from the phase modulation panel includes both intensity and phase information.
  • the display panel 1 is used to modulate the amplitude of the light waves, that is to say the intensity of the light waves.
  • the display panel 1 is a liquid crystal display panel.
  • the display panel 1 includes a first linear polarizer 11 on the light exit side, so that the image light emitted from the display panel 1 is linearly polarized light whose polarization direction is consistent with the transmission axis of the first linear polarizer 11 .
  • the display panel 1 includes a second linear polarizer 13 , a first substrate 101 , a pixel electrode 16 and a common electrode 17 , and is located on the pixel electrode 16 and the common electrode 17 in order from bottom to top in the figure.
  • the pixel electrode 16 and the common electrode 17 and the first alignment layer 14 are formed on the first substrate 101
  • the second alignment layer 15 is formed on the second substrate 102 .
  • the second linear polarizer 13 and the first linear polarizer 11 are disposed on opposite sides of the first substrate 101 and the second substrate 102, respectively.
  • first substrate 101 and the second substrate 102 may be transparent glass substrates, respectively.
  • first substrate 101 and the second substrate 102 may also be any suitable substrates such as transparent plastic substrates.
  • first alignment layer 14 and the second alignment layer 15 may include polyimide (PI).
  • PI polyimide
  • embodiments according to the present disclosure are not limited thereto, as long as the first alignment layer 14 and the second alignment layer 15 can have an initial alignment function for the liquid crystal in the liquid crystal layer 12 , the first alignment layer 14 and the second alignment layer 15 may include Any suitable material or prepared by any suitable process.
  • both the pixel electrode 16 and the common electrode 17 are formed on the first substrate 101 .
  • one of the pixel electrode 16 and the common electrode 17 may be formed on the first substrate 101
  • the other of the pixel electrode 16 and the common electrode 17 may be formed on the second substrate 102 .
  • the pixel electrode 16 and the common electrode 17 can apply an electric field to the liquid crystal in the liquid crystal layer to control the rotation (or deflection) of the liquid crystal
  • the pixel electrode 16 and the common electrode 17 can adopt any suitable configuration.
  • the common electrode 17 may be a full-surface electrode.
  • the first linear polarizer 11 is formed on the side of the second substrate 102 away from the liquid crystal layer 12
  • the second linear polarizer 13 is formed on the side of the first substrate 101 away from the liquid crystal layer 12 .
  • embodiments according to the present disclosure are not limited thereto, and at least one of the second linear polarizer 13 and the first linear polarizer 11 may be formed between the first substrate 101 and the second substrate 102 as long as the second linear polarizer 13 And the first linear polarizer 11 may be disposed on both sides of the liquid crystal layer 12 respectively.
  • the absorption axis of the first linear polarizer 11 and the absorption axis of the second linear polarizer 13 are perpendicular to each other.
  • the absorption axis of the first linear polarizer 11 may extend in the vertical direction in FIG. 3
  • the absorption axis of the second linear polarizer 13 may extend in the horizontal direction in FIG. 3 .
  • the absorption axis of the first linear polarizer 11 may extend in the horizontal direction in FIG. 3
  • the absorption axis of the second linear polarizer 13 may extend in the vertical direction in FIG. 3 . .
  • the absorption axes of the first linear polarizer 11 and the second linear polarizer 13 are perpendicular to each other, but embodiments according to the present disclosure are not limited thereto, the first linear polarizer 11 and the second linear polarizer 13
  • the absorption axes may also be parallel to each other or at other suitable angles.
  • FIG. 4 is a schematic plan view of the display panel 1 .
  • the display panel 1 includes a plurality of pixel units 100 arranged in an array.
  • Each pixel unit can independently modulate the image light emitted from the pixel unit.
  • a plurality of pixel units are sequentially arranged along the row direction (X direction) and the column direction (Y direction) to form a two-dimensional matrix.
  • Each pixel unit modulates the intensity of the corresponding image light, and can emit image light with pattern information for image display.
  • each pixel unit 100 may include a pixel electrode 16, and the pixel electrode 16 and the common electrode 17 cooperate with each other to control the deflection of the liquid crystal corresponding to the pixel unit.
  • the two-dimensional array arrangement shown in FIG. 4 arranged sequentially along the row direction and the column direction is only exemplary, and any suitable array arrangement may be adopted for the plurality of pixel units in the display panel 1 Way.
  • the light wave incident from the light incident surface of the display panel 1 (the surface on the lower side of the display panel 1 in FIG. 2 ) is converted into linearly polarized light via the second linear polarizer 13 , and its vibration direction is perpendicular to the direction of the linear polarizer 13 .
  • Absorb shaft Then, the linearly polarized light is incident on the liquid crystal layer 12 .
  • the linearly polarized light enters the first linear polarizer 11 after being modulated by the liquid crystal layer 12 . Based on the different alignment states of the liquid crystals in the liquid crystal layer, the polarization direction of the linearly polarized light will change.
  • the intensity of light emitted from the first linear polarizer 11 is determined based on the relationship between the polarization direction of light and the direction of the absorption axis of the first linear polarizer 11 .
  • the liquid crystal in the pixel unit is rotated to a specific direction, thereby making the polarization state of the linearly polarized light transmitted through the liquid crystal layer 12 Change.
  • the modulated linearly polarized light is converted into another linearly polarized light via the first linear polarizer 11 , the vibration direction of which is perpendicular to the absorption axis of the first linear polarizer 11 .
  • the display panel 1 can modulate the intensity of light through different pixel units, thereby emitting linearly polarized image light to perform image display.
  • color filters of different colors may be provided in a plurality of pixel units.
  • the plurality of pixel units may include pixel units of different colors, and the pixel units of each color may include color filters of corresponding colors, so that the pixel units of different colors emit light of different colors.
  • pixel cells of different colors may include red pixel cells, green pixel cells, and blue pixel cells.
  • the embodiments according to the present disclosure are not limited thereto, for example, the pixel unit may further include a white pixel unit (without a color filter) or pixel units of different colors include pixel units with other color combinations, so that the display panel 1 can perform Color display.
  • the proportions of the polarized light modulated into different polarization states through the liquid crystal layer that can pass through the linear polarizer 11 are different, resulting in the intensity of the image light emitted from each pixel unit is different.
  • the above formula for the relationship between polarization direction and phase it can be known that after passing through the liquid crystal layer and the linear polarizers 13 and 11 of the display panel, the light waves emitted by the display panel 1 are linearly polarized light with the same phase. Therefore, it provides a basis for the next step to perform phase modulation on the image light emitted from the display panel 1 through the phase modulation panel to obtain a predetermined phase.
  • the phase modulation panel 2 is used to modulate the phase of the light wave.
  • the phase modulation panel 2 includes a third substrate 201 , a modulation electrode 23 and a common electrode 24 , a third alignment layer 21 , a liquid crystal layer 25 , and a fourth alignment layer in order from bottom to top in the figure. 22.
  • the fourth substrate 202 The modulation electrode 23 and the common electrode 24 are formed on the third substrate 201 , the third alignment layer 21 is formed on the third substrate 201 on which the modulation electrode 23 and the common electrode 24 are formed, and the fourth alignment layer 22 is formed on the fourth substrate 202 .
  • the side of the third substrate 201 on which the third alignment layer 21 is formed and the side of the fourth substrate 202 on which the fourth alignment layer 22 is formed face each other.
  • the liquid crystal layer 25 is sandwiched between the third alignment layer 21 and the fourth alignment layer 22 .
  • the modulation electrode 23 and the common electrode 24 may be respectively applied with different voltages, thereby forming an electric field therebetween for driving the deflection of the liquid crystal in the liquid crystal layer.
  • the modulation electrode 23 is used to drive the liquid crystal deflection in the liquid crystal layer 25 to modulate the phase of the image light passing through the liquid crystal layer 25 , and may cooperate with the common electrode 24 to generate an electric field for driving the liquid crystal deflection.
  • the phase modulation panel may include a plurality of phase modulation units arranged in an array. Each phase modulation unit can independently modulate the phase of the image light emitted from the phase modulation unit. It can be seen from FIG. 5 that a plurality of phase modulation units 200 are sequentially arranged along the row direction (X direction) and the column direction (Y direction) to form a two-dimensional matrix. Each phase modulation unit 200 modulates the phase of the corresponding image light, so that phase information can be added to the image light with intensity information, thereby performing holographic three-dimensional display.
  • each phase modulation unit 200 may include a modulation electrode 23 , and the modulation electrode 23 and the common electrode 24 cooperate with each other to control the liquid crystal deflection corresponding to the phase modulation unit 200 .
  • the two-dimensional array arrangement in the row direction and the column direction shown in FIG. 5 is only exemplary, and any suitable array arrangement may be adopted for the plurality of phase modulation units in the phase modulation panel. cloth method.
  • the third substrate 201 and the fourth substrate 202 may be transparent glass substrates, respectively, however, embodiments according to the present disclosure are not limited thereto, and may also be any suitable substrates such as transparent plastic substrates.
  • Materials of the third alignment layer 21 and the fourth alignment layer 22 may include polyimide (PI).
  • PI polyimide
  • embodiments according to the present disclosure are not limited thereto, as long as the third alignment layer 21 and the fourth alignment layer 22 can have an initial alignment function for the liquid crystal in the liquid crystal layer 25 , the third alignment layer 21 and the fourth alignment layer 22 may include Any suitable material or prepared by any suitable process.
  • the modulation electrodes 23 and the common electrodes 24 in the phase modulation panel are both formed on the third substrate 201 , however, the implementation according to the present disclosure is not limited thereto, the modulation electrodes 23 and the common electrodes 24 are One may be formed on the third substrate 201 , and the other of the modulation electrode 23 and the common electrode 24 may be formed on the fourth substrate 202 . As long as the modulation electrode 23 and the common electrode 24 can apply an electric field to the liquid crystal in the liquid crystal layer to control the deflection of the liquid crystal, the modulation electrode 23 and the common electrode 24 may adopt any suitable configuration. For example, in the case where the common electrode 24 is formed on the fourth substrate 202, the common electrode 24 may be a full-surface electrode.
  • the phase modulation panel 2 can be understood as a liquid crystal display panel with two polarizers removed.
  • the phase modulation panel since the two polarizers are removed, it cannot modulate the intensity of the incident light, but can only modulate the phase of the polarized light passing through the liquid crystal layer, so that on the image light with intensity information Add phase information to obtain image light with both intensity information and phase information, so that holographic three-dimensional display can be performed.
  • the phase modulation panel 2 also has no color filter layer, so the phase modulation panel also does not affect the color of the image light emitted from the display panel 1 .
  • FIG. 6 is a schematic diagram showing the relationship between the plane distribution of the pixel units in the display panel and the phase modulation units in the phase modulation panel.
  • the plurality of pixel units 100 in the display panel 1 are in one-to-one correspondence with the plurality of phase modulation units 200 in the phase modulation panel 2 .
  • each pixel unit 100 substantially overlaps the corresponding phase modulation unit.
  • the orthographic projection of each pixel unit 100 on a plane parallel to the display panel is substantially consistent with the orthographic projection of the corresponding phase modulation unit 200 on a plane parallel to the display panel.
  • each pixel unit 100 can enter the corresponding phase modulation unit 200 for phase modulation, so that each pixel unit 100 and the corresponding phase modulation unit 200 form a holographic display unit, and the hologram
  • the display unit can perform both intensity modulation and phase modulation on the light.
  • each holographic display unit can independently modulate the intensity and phase of the passing light.
  • the dotted rectangular boxes of the phase modulation unit 200 are shown to have different sizes or areas, but this does not constitute a limitation to the embodiments of the present disclosure.
  • the plane area of the pixel unit of the display panel 1 in the embodiment of the present disclosure and the plane area of the phase modulation unit in the phase modulation unit 2 in the phase modulation panel may be the same or different.
  • one phase modulation unit 200 may correspond to multiple pixel units 100 , so as to perform uniform phase modulation on the image light emitted by the multiple pixel units 100 corresponding to each phase modulation unit 200 .
  • one phase modulation unit 200 may correspond to one, two, three or more pixel units.
  • At least one phase modulation unit of the plurality of phase modulation units 200 in the phase modulation panel 2 is configured to be independently controlled. That is to say, the modulation electrodes of at least one phase modulation unit may apply different voltages to other modulation units, so that the degree of phase modulation of the image light passing therethrough by different phase modulation units may be the same or different, and the at least one phase modulation unit The same or different phase modulation control signals as the other phase modulation units may be applied independently of the other phase modulation units.
  • each phase modulation unit of the plurality of phase modulation units 200 is configured to be independently controlled. For example, each phase modulation unit may apply the same or different phase modulation control signal as the other phase modulation units independently of the other phase modulation units.
  • the modulation electrodes of each phase modulation unit may be independently applied with a voltage corresponding to the phase modulation control signal.
  • between the adjacent pixel units 100 in the display panel 1 and between the adjacent phase modulation units 200 in the phase modulation panel 2 may be provided to block the light of the adjacent pixel units 100 and the adjacent phase A component in which the light rays of the modulation unit crosstalk each other.
  • a black matrix may be provided between adjacent pixel units 100 and adjacent phase modulation units 200 to prevent crosstalk between adjacent pixel units or phase modulation units.
  • the light wave carrying the intensity information modulated by the display panel 1 is incident on the first liquid crystal layer 25, and after being modulated by each phase modulation unit, different phase differences are obtained, that is, the polarization state changes.
  • the phase modulation panel 2 modulates only the phase of the light wave.
  • the phase modulation panel 2 can realize the continuous change of the phase of the light wave.
  • phase modulation panel is disposed on the light-emitting side of the display panel and is configured to phase modulate the linearly polarized image light
  • the phase modulation panel The intensity of light passing through different phase modulation units is not individually modulated. For example, light can pass through different phase modulation units with approximately the same transmittance. Therefore, it can be considered that the phase modulation panel does not modulate the light intensity.
  • the phase and the amplitude can be adjusted and represented respectively, so the holographic 3D display with high resolution and high definition can be realized.
  • the display device can increase the screen size for holographic 3D display, and has a simple structure and low cost.
  • the display panel 1 can be a conventional liquid crystal display panel
  • the phase modulation panel can be understood as removing the two polarizers for the polarizer and the analyzer and the color filter on the basis of the liquid crystal display panel and other structures, and the other panel structures can be the same.
  • any one of the liquid crystal display panel and the phase modulation panel may be an in-plane switching (IPS) mode, an advanced hyperdimensional field switching (ADS) mode, a vertical alignment (VA) mode, and a twisted nematic (TN) mode liquid crystal panel , the present disclosure does not specifically limit the specific type of the liquid crystal panel.
  • IPS in-plane switching
  • ADS advanced hyperdimensional field switching
  • VA vertical alignment
  • TN twisted nematic
  • the display panel 1' includes an organic light emitting diode (OLED) display panel 12' and a first linear polarizer 11.
  • the linear polarizer 11 is arranged on the light-emitting side of the OLED display panel 12'.
  • the display panel 1 is replaced with an OLED display panel 1'. Since the intensity adjustment of the OLED display panel does not require a polarizer, the display panel in this embodiment does not have the second linear polarizer 13 located below for the polarizer. However, the light emitted from the display panel needs to be set to have a uniform phase.
  • arranging the first linear polarizer 11 on the light-emitting side of the OLED display panel can make the image light emitted from the OLED display panel have a uniform phase, so that the phase can be modulated in the phase modulation panel, and holographic three-dimensional display can be performed .
  • the display panel 1' includes a plurality of pixel units 100, which are arranged in an array.
  • Each pixel unit 100 may include at least one light emitting diode.
  • each pixel unit 100 may include one light emitting diode.
  • the light-emitting diode can emit light waves of different intensities according to the driving signal, so as to realize the intensity modulation of different pixel units.
  • For the pixel units of the OLED display panel light-emitting diodes of different colors may be used, and pixel units of different colors may also be formed in the form of white light-emitting diodes and color filters.
  • the pixel units in the display panel and the positional relationship between the pixel units and the phase modulation units in the phase modulation panel reference may be made to the descriptions in the foregoing embodiments, which will not be repeated here.
  • OLED display panel is an example of an active light-emitting display panel.
  • the display panel according to the embodiment of the present disclosure may also adopt other types of active light-emitting display panels, for example, a miniature light-emitting diode array display panel or a miniature light-emitting diode array display panel.
  • the structure of the phase modulation panel in this embodiment is the same as the structure of the phase modulation panel in the embodiment shown in FIG. 2 , and the specific structure can refer to the relevant descriptions in the above-mentioned embodiments, which will not be repeated here.
  • the plurality of pixel units of the display panel include pixel units that emit light of the same color. Thereby, a monochromatic holographic 3D display can be realized.
  • the plurality of pixel units of the display panel include pixel units that emit light of different colors, and the pixel units of different colors correspond to different phase modulation units. Thereby, color holographic 3D display can be realized.
  • the display panel 1 using the liquid crystal display panel and the liquid crystal in the liquid crystal layer in the phase modulation panel can use any one or more of the following liquid crystals: nematic liquid crystal, cholesteric liquid crystal, Crystalline liquid crystal.
  • the embodiments of the present disclosure do not limit the material of the liquid crystal layer.
  • Embodiments of the present disclosure also provide a holographic display device.
  • the holographic display device includes any one of the display devices in the foregoing embodiments.
  • FIG. 8 only takes the display panel including the liquid crystal display panel as an example for exemplary description, but the embodiments of the present disclosure are not limited thereto.
  • a controller 3 for controlling the display panel and the phase modulation panel, respectively is further included in the holographic display apparatus.
  • the controller 3 is respectively connected to the display panel 1 and the phase modulation panel 2 to provide the display panel 1 with an intensity modulation control signal for display and the phase modulation panel 2 with a phase modulation control signal.
  • the controller 3 is schematically shown in the form of a block in FIG. 8 , however, it should be noted that the controller 3 may not be an integral structure.
  • the part of the controller 3 for controlling the display panel 1 may be integrated in the display panel 1
  • the part of the controller 3 for controlling the phase modulation panel 2 may be integrated in the phase modulation panel 2 .
  • a part other than the above two parts may be integrally connected to control the operations of the display panel and the phase modulation panel .
  • controller 3 may include various circuit structures, and the circuit structures may be configured to perform the various operational functions described above, which will not be repeated here.
  • the controller 3 may receive image display information from the outside, where the image display information includes intensity information corresponding to the pixel unit and phase information corresponding to the phase modulation unit.
  • the image display information includes intensity information corresponding to the pixel unit and phase information corresponding to the phase modulation unit.
  • each holographic display unit composed of the pixel unit and the phase modulation unit can modulate the emitted image light into image light with intensity and phase information.
  • the intensity information of the pixel unit and the phase information corresponding to the phase modulation unit may be the amplitude and phase information of the object to be displayed obtained according to the digital holographic reconstruction technique described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Liquid Crystal (AREA)

Abstract

本公开涉及一种显示装置以及全息显示设备。该显示装置包括:显示面板(1),包括位于出光侧的第一线偏振片(11),以使所述显示面板发出线性偏振图像光;以及相位调制面板(2),设置于所述显示面板(1)的出光侧且被配置为对所述线性偏振图像光进行相位调制。该全息显示设备包括该显示装置。该显示装置可以对振幅和相位进行同步调节和表现,实现具有高分辨率和高清晰度的全息三维显示。

Description

显示装置以及全息显示设备
出于所有目的,本申请要求于2021年4月12日递交的中国专利申请第202110391627.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种显示装置以及包括该显示装置的全息显示设备。
背景技术
全息3D显示技术能够完整地记录和重建3D物体的波形,提供人眼视觉系统所需的全部深度感,其基本机理是利用光波干涉法同时记录物光波的振幅与相位,再现像与原物具有相同的三维特性。根据全息术,用一个参考光波和物光波干涉,可以完全记录物光波的振幅和相位信息,并且由这样一张记录的干涉图(即全息图)对照明光波的衍射,可以重现原来物体的像。全息记录过程是高度冗余的,因此具有再现像的三维视觉特性。
发明内容
本公开实施例的目的之一在于提供一种显示装置以及包括这种显示装置的全息显示设备。该显示装置可以对振幅和相位进行同步调节和表现,实现具有高分辨率和高清晰度的三维(3D)显示。此外,该显示装置可以增大用于全息显示的屏幕尺寸,且结构简单,成本较低。
本公开的至少一实施例提供一种显示装置。该显示装置包括:显示面板,包括位于出光侧的第一线偏振片,以使所述显示面板发出线性偏振图像光;以及相位调制面板,设置于所述显示面板的出光侧且被配置为对所述线性偏振图像光进行相位调制。
在一些示例中,所述显示面板包括阵列排布的多个像素单元,所述相位调制面板包括阵列排布的多个相位调制单元,所述多个相位调制单元中的每个相位调制单元对应于至少一个像素单元,以对对应的所述至少一个像素单 元发出的所述线性偏振图像光的相位进行调制。
在一些示例中,所述多个相位调制单元和所述多个像素单元一一对应。
在一些示例中,所述相位调制面板包括第一液晶层,每个所述相位调制单元包括调制电极,所述调制电极被配置为驱动所述第一液晶层中的液晶偏转以实现对经过所述第一液晶层的所述线性偏振图像光的相位进行调制。
在一些示例中,所述多个像素单元包括发出同种颜色光的像素单元。
在一些示例中,所述多个像素单元包括发出不同颜色光的像素单元,不同颜色的所述像素单元对应于不同的所述相位调制单元。
在一些示例中,所述显示面板包括液晶显示面板,所述液晶显示面板包括第二线偏振片和第二液晶层,所述第二线偏振片设置在所述第一线偏振片的相反侧,所述第二液晶层夹设在所述第一线偏振片和所述第二线偏振片之间。
在一些示例中,所述第一线偏振片的吸收轴与所述第二线偏振片的吸收轴相互垂直。
在一些示例中,所述第一液晶层包括向列型液晶、胆甾型液晶和近晶型液晶中至少之一。
在一些示例中,所述第二液晶层包括向列型液晶、胆甾型液晶和近晶型液晶中至少之一。
在一些示例中,所述多个相位调制单元中至少一个相位调制单元被配置为被独立控制。
在一些示例中,所述多个相位调制单元中的每个相位调制单元被配置为被独立控制。
根据本公开的至少一实施例提供一种全息显示设备,包括上述任一项所述的显示装置。
在一些示例中,全息显示设备还包括控制器,所述控制器分别与所述显示面板和所述相位调制面板相连,以为所述显示面板提供用于显示的强度调制控制信号以及为所述相位调制面板提供相位调制控制信号。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是显示光波各偏振状态以及相应的相位差的示意图;
图2是根据本公开一实施例的显示装置的截面示意图;
图3是根据本公开一实施例的显示装置的线性偏振片的设置的示意图;
图4是根据本公开一实施例的显示装置的显示面板的平面示意图;
图5是根据本公开一实施例的显示装置的相位调制面板的平面示意图;
图6是根据本公开一实施例的显示装置的平面示意图;
图7是根据本公开一实施例的显示装置的截面示意图;以及
图8是根据本公开一实施例的全息显示设备的示意图。
具体实施方式
为了使得本公开的技术方案的目的、技术方案和优点更加清楚,下文中将结合本公开具体实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。附图中相同的附图标记代表相同的部件。需要说明的是,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不必然表示数量限制。“包括”、“包含”或者“具有”等类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“连通”等类似的词语并非限定于附图中所示的物理的或者机械的连接或连通,而是可以包括与其等效的连接或连通,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
除了传统的利用光波干涉法同时记录物光波的振幅与相位的方法之外,已经发展了计算机全息技术。在一些技术中,对于实际存在的物体,可利用 扫描仪或数字摄像机进行数据采集,而对于实际不存在的物体,可将其函数形式直接输入计算机,然后,利用计算机计算出物光波与参考光波的干涉条纹的分布图。在另一些技术中,在获得干涉全息图后,利用计算机模拟生成参考光,利用相关算法(例如,角谱算法等)对全息图进行再现成像,获得物体的振幅和相位信息,然后在计算机上重建物体的三维模型,而无须相干光解调。这种技术通常被称为数字全息重构,其可以直接获得被记录物体的再现像的复振幅分布,并进一步分别获得物光波的振幅和相位信息。
光波为一种横电磁波,其光矢量的振动方向与光波传播方向垂直。在垂直于光波传播方向的平面内,光振动方向相对于光波传播方向是不对称的,这种不对称导致了光波性质随光振动方向的不同而发生变化,这种不对称性质称为光波的偏振特性。根据空间中任一点光电场的矢量末端在不同时刻的轨迹不同,其偏振态可分为线偏振、圆偏振和椭圆偏振。
假设光波沿z方向传播,其电场矢量可表示为:
Figure PCTCN2021130924-appb-000001
为了表征光波的偏振特性,可将光波的电场矢量表示为沿x、y方向振动的两个独立分量的线性组合,即
E=iE x+jE y
其中,
Figure PCTCN2021130924-appb-000002
上述公式经运算消去t可得到,
Figure PCTCN2021130924-appb-000003
其中,
Figure PCTCN2021130924-appb-000004
为相位差。
相位差
Figure PCTCN2021130924-appb-000005
和振幅比E y/E x的不同决定了光的不同偏振态。如图1所示,不同的
Figure PCTCN2021130924-appb-000006
值所对应的偏振态是不同的。当E y、E x二分量的相位差
Figure PCTCN2021130924-appb-000007
±1,±2,…)时,光波为线偏振光。当E y、E x二分量的振幅相等,即E 0y=E 0x,并且相位差
Figure PCTCN2021130924-appb-000008
时,光波为圆偏振光。在其他情况下,光波为椭圆偏振光。
因此,光波偏振态的改变与光波的两个分量的相位差的变化相关。此外,由于液晶可根据施加于其的电压而偏转,因此可以用于使通过其的光波的相位差发生变化。基于此,发明人认识到通过合理配置可以实现对光的相位和振幅的分别调节,从而实现全息三维显示。
根据本公开的至少一些实施例提供一种显示装置。该显示装置包括:显示面板,包括位于出光侧的第一线偏振片,以使所述显示面板发出线性偏振图像光;以及相位调制面板,设置于所述显示面板的出光侧且被配置为对所述线性偏振图像光进行相位调制。根据本公开实施例的显示装置通过显示面板对于光的强度进行调制,从而能够形成特定的图案以进行图像显示;此外,通过相位调制面板对显示面板发出的图像光的相位进行调制,从而使得图像光既包括强度信息又包括相位信息,从而能够显示全息三维影像。
根据本公开一实施例的显示装置的截面示意图,如图2所示,该显示装置包括显示面板1和相位调制面板2。例如,显示面板1和相位调制面板2彼此叠置。显示面板1的出光面和相位调制面板2的入光面彼此相对,以使得从显示面板1发出经过强度调制的图像光通过相位调制面板的入光面进入到相位调制面板中,相位调制面板将进入的图像光的相位进行调制,因此,从相位调制面板发出的光既包括强度信息又包括相位信息。
显示面板1用于对光波的振幅进行调制,也就是说对光波的强度进行调制。例如,显示面板1为液晶显示面板。如图2所示,显示面板1包括位于出光侧的第一线偏振片11,以使得从显示面板1发出的图像光为偏振方向与第一线偏振片11的透射轴一致的线性偏振光。
例如,如图2所示,显示面板1在图中从下至上的方向上依次包括第二线偏振片13、第一基板101、像素电极16和公共电极17、位于像素电极16和公共电极17上的第一取向层14、液晶层12、第二取向层15、第二基板102、以及第一线偏振片11。例如,像素电极16和公共电极17以及第一取向层14形成在第一基板101上,第二取向层15形成在第二基板102上。第二线偏振片13和第一线偏振片11分别设置在第一基板101和第二基板102彼此相反的两侧。
例如,第一基板101和第二基板102可以分别为透明玻璃基板。然而,根据本公开的实施例不限于此,第一基板101和第二基板102也可以为透明塑料基板等任意合适的基板。
第一取向层14和第二取向层15的材料可以包括聚酰亚胺(PI)。然而,根据本公开的实施例不限于此,只要第一取向层14和第二取向层15能够对液晶层12中的液晶具有初始取向功能,第一取向层14和第二取向层15可以包括任何合适的材料或通过任意合适的工艺进行制备。
在图2所示的实施例中,像素电极16和公共电极17均形成在第一基板101上。然而,根据本公开的实施不限于此,像素电极16和公共电极17其中之一可以形成在第一基板101上,而像素电极16和公共电极17中的另一个可以形成在第二基板102上。只要像素电极16和公共电极17能够对液晶层中的液晶施加电场以控制液晶的转动(或偏转),像素电极16和公共电极17可以采用任意合适的配置方式。例如,在公共电极17形成在第二基板102的情况下,公共电极17可以为整面电极。
在图2所示的实施例中,第一线偏振片11形成在第二基板102远离液晶层12的一侧,第二线偏振片13形成在第一基板101远离液晶层12的一侧。然而,根据本公开的实施例不限于此,第二线偏振片13和第一线偏振片11中的至少之一可以形成在第一基板101和第二基板102之间,只要第二线偏振片13和第一线偏振片11分别设置在液晶层12两侧即可。
如图3所示,第一线偏振片11的吸收轴与第二线偏振片13的吸收轴相互垂直。例如,如图3中左侧示图所示,第一线偏振片11的吸收轴可沿图3中的竖直方向延伸,第二线偏振片13的吸收轴可沿图3中的水平方向延伸。或者,如图3中右侧示图所示,第一线偏振片11的吸收轴可沿图3中的水平方向延伸,第二线偏振片13的吸收轴可沿图3中的竖直方向延伸。图3仅仅示出了第一线偏振片11和第二线偏振片13的吸收轴彼此垂直的情况,但根据本公开的实施例不限于此,第一线偏振片11和第二线偏振片13的吸收轴也可以彼此平行或采用其他合适的角度。
图4为显示面板1的平面结构示意图。如图4所示,显示面板1包括以阵列形式布置的多个像素单元100。每个像素单元可以独立调制从该像素单元出射的图像光。从图4可以看到,多个像素单元沿行方向(X方向)和列方向(Y方向)依次排列而形成二维矩阵。每个像素单元对相应的图像光的强度进行调制,则可以出射带有图案信息的图像光,以进行图像显示。结合图2和图4,每个像素单元100可以包括一个像素电极16,像素电极16与公共电极17彼此配合以形成控制该像素单元对应的液晶的偏转。需要说明的是,图4中所示的沿行方向和列方向依次排布的二维阵列排布形式仅仅是示例性的,显示面板1中的多个像素单元可以采用任何合适的阵列排布方式。
在进行显示时,从显示面板1的入光面(图2中显示面板1下侧的面)入射的光波经由第二线偏振片13转换为线偏振光,其振动方向垂直于线偏振 片13的吸收轴。然后,该线偏振光入射至液晶层12。该线偏振光经过液晶层12的调制后,入射到第一线偏振片11。基于液晶层中液晶的不同排列状态,该线偏振光的偏振方向会发生变化。在第一线偏振片11处,基于光的偏振方向和第一线偏振片11的吸收轴的方向之间的关系而决定从第一线偏振片11出射的光的强度。在每个像素单元中,通过对像素电极和公共电极之间施加预定的电场,从而使得该像素单元中的液晶转动至特定的方向,进而使透射通过液晶层12的线偏振光部分的偏振状态改变。经调制的线偏振光经由第一线偏振片11转换为另一线偏振光,其振动方向垂直于第一线偏振片11的吸收轴。对于不同的像素单元,根据所要显示的图像信息,其可以通过像素电极和公共电极施加不同的电压,从而使得不同像素单元中液晶偏转程度不同,对线偏振光的偏振方向的改变也不同。进而,透过第一线偏振片11的光的强度也不同。因此,显示面板1可以通过不同的像素单元对光的强度进行调制,从而发出线性偏振图像光而进行图像显示。
此外,虽然图中没有详细示出,为了进行彩色显示,多个像素单元中可以设置不同颜色的彩膜。例如,多个像素单元可以包括不同颜色的像素单元,每种颜色的像素单元可以包括对应颜色的彩膜,从而使得不同颜色的像素单元出射不同颜色的光。例如,不同颜色的像素单元可以包括红色像素单元、绿色像素单元和蓝色像素单元。然而,根据本公开的实施例不限于此,例如,像素单元还可以包括白色像素单元(不设置彩膜)或者不同颜色的像素单元包括具有其他颜色组合的像素单元,从而使得显示面板1可以进行彩色显示。
结合图1可以知道,以一种线偏振光为起点,在与不同像素单元对应的液晶的偏转不同的情况下,光的偏振状态发生改变从而可以在椭圆偏振光、圆偏振光、椭圆偏振光、线偏振光、椭圆偏振光、圆偏振光、椭圆偏振光、线偏振光各种偏振状态下进行连续变化。在经过具有确定吸收轴方向的线偏振片11时,经过液晶层调制成不同偏振状态的偏振光所能通过线偏振片11的比例是不同的,导致从各个像素单元发出的图像光的强度是不同的。结合上文对于偏振方向与相位关系的公式可以知道,在经过显示面板的液晶层和线偏振片13、11之后,由显示面板1所发出的光波为相位一致的线性偏振光。从而,为下一步通过相位调制面板对显示面板1出射的图像光进行相位调制以得到预定的相位提供了基础。
相位调制面板2用于对光波的相位进行调制。例如,如图2所示,相位 调制面板2在图中从下至上的方向上依次包括第三基板201、调制电极23和公共电极24、第三取向层21、液晶层25、第四取向层22、第四基板202。调制电极23和公共电极24形成在第三基板201上,第三取向层21形成在形成有调制电极23和公共电极24的第三基板201上,第四取向层22形成在第四基板202上。第三基板201的形成有第三取向层21的一侧与第四基板202的形成有第四取向层22的一侧彼此面对。液晶层25夹设在第三取向层21和第四取向层22之间。
例如,调制电极23和公共电极24可以分别施加不同电压,从而在二者之间形成驱动液晶层中的液晶偏转的电场。例如,调制电极23用于驱动液晶层25中的液晶偏转以实现对经过液晶层25的图像光的相位进行调制可以是与公共电极24进行配合以产生用于驱动液晶偏转的电场。
相位调制面板可以包括阵列排布的多个相位调制单元。每个相位调制单元可以独立调制从该相位调制单元出射的图像光的相位。从图5可以看到,多个相位调制单元200沿行方向(X方向)和列方向(Y方向)依次排列而形成二维矩阵。每个相位调制单元200对相应的图像光的相位进行调制,则可以在带有强度信息的图像光的基础上增加相位信息,从而进行全息三维显示。结合图2和图5,每个相位调制单元200可以包括一个调制电极23,调制电极23与公共电极24彼此配合以形成控制该相位调制单元200对应的液晶偏转。需要说明的是,图5中所示的沿行方向和列方向依次排布的二维阵列排布形式仅仅是示例性的,相位调制面板中的多个相位调制单元可以采用任何合适的阵列排布方式。
例如,第三基板201和第四基板202可以分别为透明玻璃基板,然而,根据本公开的实施例不限于此,也可以为透明塑料基板等任意合适的基板。
第三取向层21和第四取向层22的材料可以包括聚酰亚胺(PI)。然而,根据本公开的实施例不限于此,只要第三取向层21和第四取向层22能够对液晶层25中的液晶具有初始取向功能,第三取向层21和第四取向层22可以包括任何合适的材料或通过任意合适的工艺进行制备。
在图2所示的实施例中,相位调制面板中的调制电极23和公共电极24均形成在第三基板201上,然而,根据本公开的实施不限于此,调制电极23和公共电极24其中之一可以形成在第三基板201上,而调制电极23和公共电极24中的另一个可以形成在第四基板202上。只要调制电极23和公共电 极24能够对液晶层中的液晶施加电场以控制液晶的偏转,调制电极23和公共电极24可以采用任意合适的配置方式。例如,在公共电极24形成在第四基板202的情况下,公共电极24可以为整面电极。
例如,相位调制面板2可以理解为去掉两个偏振片的液晶显示面板。对于相位调制面板,由于去掉了两个偏振片,其并不能对入射的光线的强度进行调制,而只能对经过液晶层的偏振光的相位进行调制,从而在带有强度信息的图像光上附加相位信息,得到既具有强度信息又具有相位信息的图像光,从而能够进行全息三维显示。此外,相位调制面板2也没有彩膜层,因此,相位调制面板也不会影响从显示面板1发出的图像光的色彩。图6显示了显示面板中的像素单元与相位调制面板中的相位调制单元的平面分布相关关系示意图。从图6可以看到,显示面板1中的多个像素单元100与相位调制面板2中的多个相位调制单元200一一对应。例如,每个像素单元100基本上与对应的相位调制单元重叠。例如,每个像素单元100在平行于显示面板的平面上的正投影与对应的相位调制单元200在平行于显示面板的平面上的正投影基本一致。通过这种布置方式,每个像素单元100出射的图像光能够进入对应的相位调制单元200中以进行相位调制,从而每个像素单元100和对应的相位调制单元200组成一个全息显示单元,该全息显示单元既可以对光线进行强度调制,也可以对光线进行相位调制。此外,由不同的像素单元和不同的相位调制单元组成的多个全息显示单元中,每个全息显示单元均能够对通过的光线的强度和相位分别独立地进行调制。需要说明的是,为了显示显示面板1中的像素单元100和相位调制面板2中的相位调制单元200的相对位置关系,用于示意性表示像素单元100的实线矩形框和用于示意性表示相位调制单元200的虚线矩形框被示出为具有不同的大小或面积,但这不并构成对于本公开实施例的限制。本公开实施例中的显示面板1的像素单元的平面面积和相位调制面板中的相位调制单元2中的相位调制单元的平面面积可以相同,也可以不同。
图6中以显示面板1中的多个像素单元100和相位调制面板2中的多个相位调制单元200一一对应为例进行了描述。然而,根据本公开的实施不限于此。例如,一个相位调制单元200可以对应于多个像素单元100,以对每个相位调制单元200对应的多个像素单元100出射的图像光进行统一的相位调制。例如,一个相位调制单元200可以对应于一个、两个、三个或者更多个 像素单元。
例如,相位调制面板2中的多个相位调制单元200中至少一个相位调制单元被配置为被独立控制。也就是说,至少一个相位调制单元的调制电极可以施加于其他调制单元不同的电压,从而使得不同相位调制单元对经过其的图像光的相位调制程度可以相同或不同,并且该至少一个相位调制单元可以独立于其他相位调制单元而施加与其他相位调制单元相同或不同的相位调制控制信号。在一些示例中,多个相位调制单元200中的每个相位调制单元被配置为被独立控制。例如,每个相位调制单元可以独立于其他相位调制单元而施加与其他相位调制单元相同或不同的相位调制控制信号。例如,每个相位调制单元的调制电极可以独立地被施加对应相位调制控制信号的电压。
虽然图中没有示出,但显示面板1中的相邻像素单元100之间以及相位调制面板2中的相邻相位调制单元200之间可以设置阻挡相邻像素单元100的光线以及相邻的相位调制单元的光线彼此串扰的部件。例如,可以在相邻的像素单元100和相邻的相位调制单元200之间设置黑矩阵,以防止相邻像素单元或相位调制单元之间的串扰。
经显示面板1调制的携带强度信息的光波入射至第一液晶层25,在经过各个相位调制单元的调制后,获得不同的相位差,也就是说发生了偏振态的变化。此外,光波经相位调制面板2后基本不会发生强度变化。因此,相位调制面板2仅对光波的相位进行调制。通过施加不同的电压于相位调制单元200的调制电极23与公共电极24,相位调制面板2可以实现光波相位的连续变化。结合图1可以知道,以由显示面板1出射的线偏振光为起点,在各个相位调制单元引入不同的相位差的情况下,图像光的偏振状态发生改变从而可以在椭圆偏振光、圆偏振光、椭圆偏振光、线偏振光、椭圆偏振光、圆偏振光、椭圆偏振光、线偏振光各种偏振状态下进行连续变化。
需要说明的是,相位调制面板设置于显示面板的出光侧且被配置为对所述线性偏振图像光进行相位调制并不表示经过相位调制面板的光的强度完全不发生变化,而是相位调制面板不会针对经过不同相位调制单元的光线强度进行个别地调制。例如,光线可以以大致相同的透过率经过不同的相位调制单元。因此,可以认为相位调制面板不对光强进行调制。
通过上述结构,可以实现对相位和振幅的分别调节和表现,因此可以实现具有高分辨率和高清晰度的全息3D显示。此外,该显示装置可以增大用于 全息3D显示的屏幕尺寸,且结构简单,成本较低。
例如,在一些实施例中显示面板1可以为常规的液晶显示面板,而相位调制面板可以理解为在液晶显示面板的基础上去除用于起偏器和检偏器的两个偏振片以及彩膜等结构,而其他的面板结构二者可以是相同。例如,液晶显示面板和相位调制面板中的任何一个可以为面内转换(IPS)模式、高级超维场转换(ADS)模式、垂直取向(VA)模式和扭转向列(TN)模式的液晶面板,本公开对于液晶面板的具体类型没有特别的限制。
如图7所示,在本公开的另一实施例中,显示面板1’包括有机发光二极管(OLED)显示面板12’和第一线偏振片11。线偏振片11设置在OLED显示面板12’的出光侧。与上面的实施例不同的是,显示面板1替换为OLED显示面板1’。由于OLED显示面板的强度调节并不需要偏振片,因此,该实施例中的显示面板中并没有位于下方用于起偏器的第二线偏振片13。然而,由于需要将显示面板出射的光线设置为具有统一相位。因此,在OLED显示面板的出光侧设置第一线偏振片11,可以使得从OLED显示面板出射的图像光具有统一的相位,以使得在相位调制面板中能够对相位进行调制,并进行全息三维显示。
此外,显示面板1’包括多个像素单元100,其以阵列形式布置。每一个像素单元100可包括至少一个发光二极管。例如,每一个像素单元100可包括一个发光二极管。发光二极管根据可根据驱动信号发出不同强度的光波,从而实现不同像素单元的强度调制。对于OLED显示面板的像素单元可以采用不同颜色的发光二极管,也可以采用白色发光二极管配合彩膜的形式形成不同颜色的像素单元。显示面板中的像素单元的其他布置形式以及其与相位调制面板中的相位调制单元之间的位置关系可以参照上述实施例中的描述,这里不再赘述。
需要说明的是上述OLED显示面板为主动发光型显示面板的一个示例。根据本公开的实施例中的显示面板还可以采用其他类型的主动发光型显示面板,例如,微型发光二极管阵列显示面板或迷你发光二极管阵列显示面板等。
例如,该实施例中的相位调制面板的结构与图2所示实施例中的相位调制面板的结构相同,其具体结构均可以参照上述实施例中的相关描述,在此不再赘述。
在本公开的一些实施例中,显示面板的多个像素单元包括发出同种颜色 光的像素单元。由此,可以实现单色全息3D显示。
在本公开的一些实施例中,显示面板的多个像素单元包括发出不同颜色光的像素单元,不同颜色的像素单元对应于不同的相位调制单元。由此,可以实现彩色全息3D显示。
本公开的实施例中采用液晶显示面板的显示面板1以及相位调制面板中的液晶层中的液晶均可以采用以下液晶中的任意一种或几种:向列型液晶、胆甾型液晶、近晶型液晶。本公开的实施例对液晶层的材料不作限制。
本公开的实施例还提供一种全息显示设备。如图8所示,该全息显示设备包括上述实施例中的任意一种显示装置。图8中仅仅以显示面板包括液晶显示面板为例进行示例性描述,然而本公开的实施例不限于此。例如,在该全息显示设备中,除了上述显示装置之外,还包括用于分别控制显示面板和相位调制面板的控制器3。例如,该控制器3分别与显示面板1和相位调制面板2相连,以为显示面板1提供用于显示的强度调制控制信号以及为相位调制面板2提供相位调制控制信号。图8中以方框的形式示意性地示出了控制器3,然而需要说明的是,控制器3可以不是一个整体的结构。例如,控制器3中用于控制显示面板1的部分可以集成在显示面板1中,而控制器3中用于控制相位调制面板2的部分可以集成在相位调制面板2中。或者,除了集成在显示面板1中的部分和集成在相位调制面板2中的部分之外,还可以包括整体连接上述两个部分之外的部分,以对显示面板和相位调制面板的操作进行控制。
例如,控制器3可以包括各种电路结构,所述电路结构可以被配置为执行上述的各种操作功能,这里不再赘述。
例如,控制器3可以接受来自外部的图像显示信息,该图像显示信息包括对应于像素单元的强度信息和对应于相位调制单元的相位信息。通过该控制器的控制,可以使得由像素单元和相位调制单元组成的各个全息显示单元能够将出射的图像光调制为带有强度和相位信息的图像光。例如,像素单元的强度信息和对应于相位调制单元的相位信息可以为上文所述的根据数字全息重构技术获得的要显示物体的振幅和相位信息。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (14)

  1. 一种显示装置,包括:
    显示面板,包括位于出光侧的第一线偏振片,以使所述显示面板发出线性偏振图像光;以及
    相位调制面板,设置于所述显示面板的出光侧且被配置为对所述线性偏振图像光进行相位调制。
  2. 如权利要求1所述的显示装置,其中,所述显示面板包括阵列排布的多个像素单元,所述相位调制面板包括阵列排布的多个相位调制单元,所述多个相位调制单元中的每个相位调制单元对应于至少一个像素单元,以对对应的所述至少一个像素单元发出的所述线性偏振图像光的相位进行调制。
  3. 如权利要求2所述的显示装置,其中,所述多个相位调制单元和所述多个像素单元一一对应。
  4. 如权利要求2或3所述的显示装置,其中,所述相位调制面板包括第一液晶层,每个所述相位调制单元包括调制电极,所述调制电极被配置为驱动所述第一液晶层中的液晶偏转以实现对经过所述第一液晶层的所述线性偏振图像光的相位进行调制。
  5. 如权利要求2至4任一项所述的显示装置,其中,所述多个像素单元包括发出同种颜色光的像素单元。
  6. 如权利要求2至4任一项所述的显示装置,其中,所述多个像素单元包括发出不同颜色光的像素单元,不同颜色的所述像素单元对应于不同的所述相位调制单元。
  7. 如权利要求1至6中任一项所述的显示装置,其中,所述显示面板包括液晶显示面板,所述液晶显示面板包括第二线偏振片和第二液晶层,所述第二线偏振片设置在所述第一线偏振片的相反侧,所述第二液晶层夹设在所述第一线偏振片和所述第二线偏振片之间。
  8. 如权利要求7所述的显示装置,其中,所述第一线偏振片的吸收轴与所述第二线偏振片的吸收轴相互垂直。
  9. 如权利要求4所述的显示装置,其中,所述第一液晶层包括向列型液晶、胆甾型液晶和近晶型液晶中至少之一。
  10. 如权利要求7所述的显示装置,其中,所述第二液晶层包括向列型 液晶、胆甾型液晶和近晶型液晶中至少之一。
  11. 如权利要求2所述的显示装置,其中,所述多个相位调制单元中至少一个相位调制单元被配置为被独立控制。
  12. 如权利要求11所述的显示装置,其中,所述多个相位调制单元中的每个相位调制单元被配置为被独立控制。
  13. 一种全息显示设备,包括如权利要求1至12中任一项所述的显示装置。
  14. 根据权利13所述的全息显示设备,还包括控制器,所述控制器分别与所述显示面板和所述相位调制面板相连,以为所述显示面板提供用于显示的强度调制控制信号以及为所述相位调制面板提供相位调制控制信号。
PCT/CN2021/130924 2021-04-12 2021-11-16 显示装置以及全息显示设备 WO2022217913A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/915,520 US20230229111A1 (en) 2021-04-12 2021-11-16 Display device and holographic display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110391627.4 2021-04-12
CN202110391627.4A CN115202176A (zh) 2021-04-12 2021-04-12 显示装置以及全息显示设备

Publications (1)

Publication Number Publication Date
WO2022217913A1 true WO2022217913A1 (zh) 2022-10-20

Family

ID=83570819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130924 WO2022217913A1 (zh) 2021-04-12 2021-11-16 显示装置以及全息显示设备

Country Status (3)

Country Link
US (1) US20230229111A1 (zh)
CN (1) CN115202176A (zh)
WO (1) WO2022217913A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140050904A (ko) * 2012-10-22 2014-04-30 경희대학교 산학협력단 입체영상 표시 장치
CN105319766A (zh) * 2015-12-01 2016-02-10 深圳市华星光电技术有限公司 偏光装置及显示器
CN105892075A (zh) * 2016-06-08 2016-08-24 京东方科技集团股份有限公司 一种全息显示系统及全息显示方法
CN106154798A (zh) * 2016-09-08 2016-11-23 京东方科技集团股份有限公司 一种全息显示装置及其显示方法
CN215006256U (zh) * 2021-04-12 2021-12-03 京东方科技集团股份有限公司 显示装置以及全息显示设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140050904A (ko) * 2012-10-22 2014-04-30 경희대학교 산학협력단 입체영상 표시 장치
CN105319766A (zh) * 2015-12-01 2016-02-10 深圳市华星光电技术有限公司 偏光装置及显示器
CN105892075A (zh) * 2016-06-08 2016-08-24 京东方科技集团股份有限公司 一种全息显示系统及全息显示方法
CN106154798A (zh) * 2016-09-08 2016-11-23 京东方科技集团股份有限公司 一种全息显示装置及其显示方法
CN215006256U (zh) * 2021-04-12 2021-12-03 京东方科技集团股份有限公司 显示装置以及全息显示设备

Also Published As

Publication number Publication date
CN115202176A (zh) 2022-10-18
US20230229111A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
Lanman et al. Polarization fields: dynamic light field display using multi-layer LCDs
TWI479201B (zh) 自動立體顯示裝置
CA1331060C (en) Apparatus and method for an electronically controlled color filter for use in information display applications
US11126037B2 (en) Liquid crystal display panel, display device and operating method thereof
CN111965863B (zh) 显示装置及其控制方法
KR101135757B1 (ko) 입체 디스플레이 시스템
TWI514841B (zh) 自動立體顯示裝置
KR100478804B1 (ko) 광학시프터 및 광학표시시스템
JP7330901B2 (ja) 表示パネル、表示装置及び表示方法
KR20100019447A (ko) 각각의 앵글에서 최대 해상도의 입체 화상을 시청하기 위한 방법과 상기 방법을 실행하기 위한 장치
WO2019205995A1 (zh) 显示设备、光学系统和虚拟现实头戴显示设备
CN103116228A (zh) 使用透射型液晶显示面板的空间光调制面板及使用该空间光调制面板的3d显示装置
WO2017152521A1 (zh) 显示装置
CN112005161B (zh) 成像器件、显示装置和成像设备
US20120026303A1 (en) Method for forming and observing stereo images having maximum spatial resolution and a device for carrying out said method
TWI464457B (zh) 數位全像顯示裝置
CN111103731B (zh) 基于介质超透镜阵列的2d/3d可切换显示装置
WO2012096032A1 (ja) 立体画像表示装置
CN109283735A (zh) 一种显示装置及方法
WO2017118048A1 (zh) 显示装置及其驱动方法
CN215006256U (zh) 显示装置以及全息显示设备
WO2013174106A1 (zh) 显示装置及其控制方法
CN111965886A (zh) 一种显示面板及显示装置
JP2017003688A (ja) 光線制御素子および立体表示装置
CN110047900B (zh) 显示面板和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936779

Country of ref document: EP

Kind code of ref document: A1