WO2022217493A1 - Led灯源的控制电路和石头灯 - Google Patents

Led灯源的控制电路和石头灯 Download PDF

Info

Publication number
WO2022217493A1
WO2022217493A1 PCT/CN2021/087186 CN2021087186W WO2022217493A1 WO 2022217493 A1 WO2022217493 A1 WO 2022217493A1 CN 2021087186 W CN2021087186 W CN 2021087186W WO 2022217493 A1 WO2022217493 A1 WO 2022217493A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
driving
electrically connected
light source
Prior art date
Application number
PCT/CN2021/087186
Other languages
English (en)
French (fr)
Inventor
金钊
Original Assignee
金钊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金钊 filed Critical 金钊
Priority to PCT/CN2021/087186 priority Critical patent/WO2022217493A1/zh
Publication of WO2022217493A1 publication Critical patent/WO2022217493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light

Definitions

  • the present application relates to the technical field of lighting, for example, to a control circuit of a light-emitting diode (Light-Emitting Diode, LED) light source and a stone lamp.
  • a light-emitting diode Light-Emitting Diode, LED
  • Stone lamps as a decorative lamp, can be installed on rockeries and steps, for example, to provide lighting and to enhance the atmosphere at the same time.
  • the power of the stone lamp is fixed and cannot be adjusted, and it can only achieve lighting with one brightness, which cannot well match the environment to achieve the ideal lighting effect, and the user experience is poor.
  • the present application provides a control circuit of an LED light source and a stone lamp, and a user can adjust the luminous brightness of the LED light source to match the surrounding environment and achieve a good lighting effect.
  • a control circuit of an LED light source comprising: a coding switch, a control module and a driving module;
  • the encoding switch includes a plurality of encoded signal output terminals; the encoding switch is configured to receive an external encoding instruction, and according to the encoding instruction, controls at least one encoded signal output terminal of the plurality of encoded signal output terminals to output an encoded signal ;
  • the control module includes a drive signal output end and a plurality of encoded signal receiving ends; the drive module includes a drive signal input end and a drive current output end; the plurality of encoded signal output ends are one with the plurality of encoded signal receiving ends. a corresponding electrical connection; the driving signal output terminal is electrically connected to the driving signal input terminal; the driving current output terminal is configured to be electrically connected to the LED light source;
  • the control module is configured to output a driving signal to the driving module according to the coding signal output by the coding switch;
  • the driving module is configured to output a driving current to the LED light source according to the driving signal, so as to drive the LED light source to emit light.
  • a stone lamp comprising: an LED light source and the above-mentioned control circuit of the LED light source.
  • FIG. 1 is a structural block diagram of a control circuit of an LED light source provided by an embodiment of the present application
  • FIG. 2 is a structural block diagram of a control circuit of another LED light source provided by an embodiment of the present application.
  • FIG. 3 is a structural block diagram of a control circuit of another LED light source provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a power module provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a drive module provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a control circuit of another LED light source provided by an embodiment of the present application.
  • FIG. 7 is a structural block diagram of a stone lamp provided by an embodiment of the present application.
  • FIG. 1 is a structural block diagram of a control circuit of an LED light source provided by an embodiment of the present application.
  • the control circuit 10 of the LED light source includes: an encoding switch 100, a control module 200 and a driving module 300;
  • the encoding switch 100 includes a plurality of encoding signal output terminals 110;
  • the control module 200 includes a plurality of encoding signal receiving terminals 210 and a driving signal output terminal 220;
  • the driving module 300 includes a driving signal input terminal 310 and a driving current output terminal 320;
  • a plurality of encoding signal output terminals 110 are electrically connected with a plurality of encoding signal receiving terminals 210 in one-to-one correspondence;
  • the driving signal output terminal 220 It is electrically connected to the driving signal input end 310;
  • the driving current output end 320 is electrically connected to the LED light source 20;
  • the signal output terminal 110 outputs an encoded signal;
  • the control module 200 is configured to output a driving signal to the
  • the coding switch 100 can be any switch element with multiple selection positions, such as a potentiometer, etc. At this time, the user can control the selection position of the coding switch 100 as the coding command as required, so that the coding switch 100 can output according to different coding commands.
  • different encoding signals alternatively, the encoding switch 100 can also be an encoder, the encoder can be controlled by an external controller, and an ambient light detection device can be integrated in the external controller, so as to output different brightness according to different ambient light
  • the coded instruction is sent to the coded switch 100, so that the coded switch 100 can output different coded signals according to different coded instructions.
  • a temperature detection device can also be integrated in the external controller to output different coded instructions to the code according to different ambient temperatures.
  • the switch 100 enables the encoding switch 100 to output different encoding signals according to different encoding instructions. Therefore, the coding instruction can be a user-selected rotation gear or a button gear, an adjustment gear of an ambient light detection device, or an adjustment gear of a temperature detection device, which is not limited here, as long as the encoded instruction is capable of It is enough to indicate the command of different selection gears.
  • the control module 200 can be a chip, a single-chip microcomputer, a microprocessor or a microcomputer integrated with a central processing unit (Central Process Unit, CPU), a memory, a timer, etc., and the corresponding relationship between different coding signals and different driving signals can be set as required.
  • CPU central processing unit
  • the driving module 300 can be a driving element that drives the lower-level equipment elements to start according to the driving signal sent by the upper level.
  • the driving module 300 receives the driving signal sent by the control module 200, it can generate a corresponding driving current according to the driving signal and output it to the LED.
  • the light source 20 is used to drive the LED light source 20 to present light with corresponding brightness.
  • FIG. 1 is only an exemplary diagram of an embodiment of the present application, and FIG. 1 only exemplarily shows that the encoding switch 100 includes three encoded signal output ends 110 , the control module 200 includes three encoded signal receiving ends 210 , and the encoding
  • the signal output terminal 111 is electrically connected to the encoded signal receiving terminal 211
  • the encoded signal output terminal 112 is electrically connected to the encoded signal receiving terminal 212
  • the encoded signal output terminal 113 is electrically connected to the encoded signal receiving terminal 213 .
  • the encoding switch includes multiple encoding signal output terminals
  • the control module includes multiple encoding signal receiving terminals, that is, the number of encoding signal output terminals may be two or more, and the corresponding number of encoding signal receiving terminals may also be
  • the embodiment of the present application receives the encoded signal output terminal of the encoding switch and the encoded signal of the control module.
  • the number of terminals is not limited.
  • the user or the external controller can provide different coding instructions according to different external environments, and the coding switch outputs different coding signals to the control module according to the different coding instructions, so that the control module outputs different driving signals To the driving module, so that the driving module can provide different driving currents to the LED light source, so as to control the LED light source to show different luminous brightness, thereby improving the luminous effect of the LED light source, so that the LED light source can be flexibly and conveniently applied to More lighting scenes.
  • FIG. 2 is a structural block diagram of another control circuit of an LED light source provided by an embodiment of the present application.
  • the coding switch 100 may further include a public signal output terminal 120 ; the control module 200 may further include The public signal receiving terminal 230; the public signal output terminal 120 is electrically connected to the public signal receiving terminal 230; the encoding switch 100 is set to conduct at least one encoding signal output terminal 110 and the public signal output terminal 120 according to the encoding instruction, so as to control and communicate with the public signal At least one coded signal output terminal 110 electrically connected to the output terminal 120 outputs the coded signal.
  • the encoding switch 100 when the user selects a selection gear of the coding switch 100 as a coding command as required, or the external controller outputs a coding command according to the brightness of the ambient light, or the external controller outputs a coding according to the ambient temperature.
  • the encoding switch 100 will control the corresponding encoded signal output end 110 to be electrically connected to the public signal output end 120 according to the received encoding command; 120 and the public signal receiving end 230 are correspondingly electrically connected, so the encoded signal receiving end 210 of the control module 200 and the public signal receiving end 230 can be electrically connected through the encoding switch 100, and the control module 200 can receive the encoded signal receiving end 210 and the public signal according to the
  • the connection relationship between the terminals 230 can be used to obtain the encoded signal, and then the corresponding driving signal can be generated.
  • connection relationship between the encoded signal output terminal 110 of the encoding switch 100 and the public signal output terminal 120 is the encoded signal.
  • the control module 200 The corresponding gear can be known according to the encoded signal.
  • the encoding signal output terminal 110 of the encoding switch 100 and the public signal output terminal 120 will have different connection relationships, so that the encoding signal receiving terminal 210 of the control module 200 and the public signal receiving terminal 230 have different connection relationships.
  • Different connection relationships enable the control module 200 to receive different encoded signals.
  • FIG. 2 is only an exemplary diagram of an embodiment of the present application, and FIG. 2 only exemplarily shows that the encoding switch 100 includes three encoded signal output terminals 110 , the control module 200 includes three encoded signal receiving ends 210 , and the encoding The signal output terminal 111 is electrically connected to the encoded signal receiving terminal 211 , the encoded signal output terminal 112 is electrically connected to the encoded signal receiving terminal 212 , and the encoded signal output terminal 113 is electrically connected to the encoded signal receiving terminal 213 .
  • the encoding switch includes multiple encoding signal output terminals
  • the control module includes multiple encoding signal receiving terminals, that is, the number of encoding signal output terminals may be two or more, and the corresponding number of encoding signal receiving terminals may also be
  • the embodiment of the present application receives the encoded signal output terminal of the encoding switch and the encoded signal of the control module.
  • the number of terminals is not limited.
  • the types of different encoded signal output terminals 110 are different; the number and/or type of encoded signal output terminals 110 electrically connected to the common signal output terminal 120 are different, and the encoded signals output by the encoding switch 100 are different; the control module 200 is set to Output different driving signals to the driving module 300 according to different coding signals; the driving module 300 is configured to output different driving currents to the LED light source 20 according to the different driving signals, so as to drive the LED light source 20 to emit light of different brightness.
  • the common signal output terminal 120 may be electrically connected to one encoded signal output terminal 110.
  • the encoded signal output terminal 110 electrically connected to the common signal output terminal 120 is different, and the output terminal of the encoding signal output terminal 100 is different.
  • the encoded signals are different; in addition, the common signal output terminal 120 may be electrically connected to at least two encoded signal output terminals 110 at the same time, and when the number of encoded signal output terminals 110 electrically connected to the common signal output terminal 120 is different, the encoding switch The coded signals output by 100 are different; or, when the number of coded signal output terminals 110 electrically connected to the common signal output terminal 120 is the same, but the types are different, the coded signals output by the coding switch 100 will also be different. That is to say, the control circuit 10 of the LED light source provided in the embodiment of the present application can generate various encoded signals through fewer encoded signal output terminals 110, thereby meeting various lighting requirements while reducing costs.
  • multiple lighting gears can be set externally, and the lighting gears selected by the user are different, or multiple lighting gears can be set through an external controller, and the ambient light detected by the ambient light detection device integrated in the external controller is detected.
  • the brightness is different, or the ambient temperature detected by the temperature detection device integrated in the external controller is different, the type of the encoded signal output terminal 110 electrically connected to the common signal output terminal 120 is different, or the encoded signal electrically connected to the common signal output terminal 120
  • the number of the output terminals 110 is different, or the type and quantity of the encoded signal output terminals 110 electrically connected to the common signal output terminal 120 are different, so that the encoded signals output by the encoding switch 100 are different, so that the control module 200 generates different encoding signals according to different types and numbers.
  • Different driving signals so that the driving module 300 outputs different driving currents to the LED light source 20 according to the different driving signals, so as to control the luminous brightness of the LED light source 20 .
  • This embodiment of the present application does not limit the number of the encoded signal output ends 110, nor does it limit the type of the encoded signal output ends 110.
  • the control module 200 When including the first coded signal receiving end 211, the second coded signal receiving end 212, the third coded signal receiving end 213, and the common signal receiving end 230, 7 kinds of coded signals can be realized, that is, 7 kinds of lighting gears can be set to satisfy 7 lighting needs.
  • Table 1 is a schematic diagram of the relationship between a lighting gear and a coded signal provided by an embodiment of the present application.
  • the encoding switch 100 receives the encoding instruction 1.
  • the first encoding signal output terminal 111 is electrically connected to the common signal output terminal 120, and the encoding switch 100 outputs the encoding signal 1 to the control Module 200;
  • the encoding switch 100 receives the encoding instruction 5, at this time the first encoded signal output end 111 and the third encoded signal output end 113 are electrically connected to the common signal output end 120 at the same time, the encoding switch 100 Output the encoded signal 5 to the control module 200;
  • the encoding switch 100 receives the encoding command 7, at this time the first encoded signal output end 111, the second encoded signal output end 112 and the third encoded signal output end 113 is also electrically connected to the public signal output terminal 120 , and the en
  • Table 1 is a schematic diagram of the relationship between a lighting gear and a coding signal provided by the embodiment of the present application
  • the technical solutions provided in the embodiments of the present application can not only be applied in the field of lighting technology, but also can be used in other technical fields.
  • This kind of heating gear when applied to the vibration field, can set a variety of vibration gears of the vibrator.
  • the above embodiment only takes the lighting gear of the LED light source as an example for description.
  • FIG. 3 is a structural block diagram of another control circuit of an LED light source provided by an embodiment of the present application.
  • the control circuit 10 of the LED light source may further include: a power supply module 400 ; a power supply module 400 may include an AC signal input end 410, a first power supply output end 420 and a second power supply output end 430; the driving module 300 may further include a first power supply input end 330; the control module 200 may further include a second power supply input end 240;
  • the signal input terminal 410 is electrically connected to the AC power supply 30
  • the first power supply output terminal 420 is electrically connected to the first power supply input terminal 330
  • the second power supply output terminal 430 is electrically connected to the second power supply input terminal 240 ;
  • the power supply module 400 is configured to The AC signal of the power supply 30 is converted into a first power supply signal and a second power supply signal, and the first power supply signal is output to the driving module 300 through the first power supply output terminal 420 , and the second power
  • the power module 400 may be a conversion circuit capable of converting the AC voltage of the AC power source 30 into a working voltage required by the control module 200 and the driving module 300 .
  • the working voltage of the control module 200 may be 5V DC (Direct Current, DC)
  • the working voltage of the driving module 300 may be 12VDC
  • the power module 400 converts the AC voltage of the AC power source 30 to 12V AC (Alternating Current, AC).
  • 12VDC is transmitted to the drive module 300 through the first power output terminal 420 to supply power to the drive module 300
  • 12VDC is converted to 5VDC, and transmitted to the control module 200 through the second power output terminal 430 to supply power to the control module 200 .
  • FIG. 4 is a schematic structural diagram of a power supply module provided by an embodiment of the present application.
  • the power supply module 400 may further include a rectifier circuit 440 and a voltage regulator circuit 450; the rectifier circuit 440 and the AC signal input terminal 410.
  • the first power output terminal 420 is electrically connected to the voltage regulator circuit 450; the rectifier circuit 440 is configured to convert the AC signal into a first power supply signal and transmit it to the driving module 300 and the voltage regulator circuit 450; the voltage regulator circuit 450 is connected to the second power supply signal.
  • the power output terminal 430 is electrically connected; the voltage regulator circuit 450 is configured to convert the first power signal into the second power signal and transmit it to the control module 200 .
  • the rectifier circuit 440 may include a bridge rectifier circuit composed of a first diode D1, a second diode D2, a third diode D3 and a fourth diode D4, and the rectifier circuit 440 converts the AC power
  • the AC voltage of 30 is converted into DC voltage, and transmitted to the driving module 300 through the first power output terminal 420, and can also be transmitted to the voltage regulator circuit 450 through the first current limiting resistor R1;
  • the voltage regulator circuit 450 may include voltage regulator chips U1, The first filter capacitor C1 and the second filter capacitor C2, the voltage regulator circuit 450 can step down and stabilize the DC voltage converted by the rectifier circuit 440, and finally transmit it to the control module 200 through the second power output terminal 430.
  • the model of the first diode D1, the second diode D2, the third diode D3 and the fourth diode D4 may be SS54A
  • the model of the voltage regulator chip U1 may be an L7805 chip
  • the first The capacitance value of the filter capacitor C1 is 0.33uF
  • the capacitance value of the second filter capacitor C2 is 22uF.
  • the AC signal input end 410 of the power module 400 can be an electrical plug-in, such as a VH-2A electrical plug-in, etc., which can be pluggable and connected with the AC signal output end;
  • an anti-surge circuit composed of a safety switch F and a varistor Z can also be set as a protection component;
  • a third capacitor C3 can also be set between the rectifier circuit 440 and the first power output end 420 and the fourth capacitor C4, the third capacitor C3 is set to store energy, and the fourth capacitor C4 is set to filter and debounce.
  • the model of the varistor Z can be selected as RL1812A300K, the capacitance value of the third capacitor C3 is 100uF, and the capacitance value of the fourth capacitor C4 is 0.1uF.
  • FIG. 5 is a schematic structural diagram of a driving module provided by an embodiment of the present application.
  • the driving module 300 may further include an energy storage inductor L, a freewheeling diode D, a driving chip U2 and a sampling resistor R.
  • the driving chip U2 may include a control terminal DIM, an enabling terminal SW, a chip signal output terminal VOUT and a first sampling terminal CS; the control terminal DIM is electrically connected with the driving signal input terminal 310; A power input terminal 330 is electrically connected, and the enabling terminal SW is also electrically connected to the chip signal output terminal VOUT through the freewheeling diode D; the chip signal output terminal VOUT is electrically connected to the driving current output terminal 320 through the sampling resistor R; the first sampling terminal CS It is electrically connected to the driving current output terminal 320; the driving chip U2 is configured to output the driving current to the LED light source 20 according to the first power signal, the driving signal and the first sampling signal of the driving current output terminal 320 collected by the first sampling terminal CS.
  • the driving chip U2 receives the driving signal sent by the control module 200 through the control terminal DIM, and receives the first power supply signal sent by the power supply module 400 through the enabling terminal SW, wherein the energy storage inductor L and the freewheeling diode D form a freewheeling circuit, which is set as
  • the driver chip U2 provides a stable working voltage.
  • the driving chip U2 converts the first power signal into different driving currents according to different driving signals, and transmits them to the LED light source 20 through the driving current output terminal 320 .
  • the driving chip U2 passes the chip signal output terminal VOUT and the driving current output terminal 320 .
  • the sampling resistor R between the signal output terminal VOUT and the driving current output terminal 320, obtain the output driving current through the voltage division of the sampling resistor R,
  • the sampling signal is fed back to the drive chip U2, so that the output drive current is a constant current, that is, the drive chip U2 converts the first power supply signal into a corresponding drive current according to the drive signal, and uses the feedback first sampling signal to output a constant current.
  • the driving current is appropriately adjusted so that the driving current transmitted to the LED light source 20 is constant.
  • the driver chip U2 can be selected as BP1808 chip
  • the inductance value of the energy storage inductor L can be 47uH
  • the freewheeling diode D can be selected as SS54A type
  • the resistance value of the sampling resistor R can be 0.56 ⁇ .
  • the driving current output terminal 320 can be an electrical plug-in, such as an XH-2A electrical plug-in, which can facilitate the electrical connection between the control circuit 10 of the LED light source and the LED light source 20 .
  • the driving module 300 may further include a first voltage dividing resistor R301 and a second voltage dividing resistor R302; the driving chip U2 may further include a second sampling terminal OVP and a ground terminal GND; the first voltage dividing resistor R301 The first end of the first voltage dividing resistor R301 is electrically connected to the chip signal output end VOUT, the second end of the first voltage dividing resistor R301 and the first end of the second voltage dividing resistor R302 are electrically connected to the first node P1; The two terminals are electrically connected to the ground terminal GND; the ground terminal GND is electrically connected to the ground signal; the second sampling terminal OVP is electrically connected to the second terminal of the first voltage dividing resistor R301 and the first terminal of the second voltage dividing resistor R302 Node P1; the driving chip U3 is further set to adjust the voltage of the electrical signal output by the chip signal output terminal VOUT within a preset voltage range according to the potential of the first node P1
  • the driving module 300 can also be provided with an overvoltage protection function, and the electrical signal output by the chip signal output terminal VOUT can also be electrically connected to the ground terminal GND through the first voltage dividing resistor R301 and the second voltage dividing resistor R302 in sequence, and the second sampling terminal OVP It is set to collect the potential of the first node P1 divided by the first voltage dividing resistor R301 and compare it with the preset voltage inside the driver chip U2. When the collected potential of the first node P1 exceeds the preset voltage, The driving chip U2 can adjust the electrical signal output by the chip signal output terminal VOUT in time, so as to avoid the drive current finally transmitted to the LED light source 20 being too high and the LED light source 20 from being burned out.
  • the resistance value of the first voltage dividing resistor R301 may be 39K ⁇
  • the resistance value of the second voltage dividing resistor R302 may be 1K ⁇ .
  • the driving module 300 may further include a charging capacitor C; the driving chip U2 may further include a soft-start terminal COMP; the soft-start terminal COMP is electrically connected to the ground terminal GND through the charging capacitor C; the driving chip U2 is also set as The charging capacitor C is charged through the soft start terminal COMP, and when the power in the charging capacitor C reaches a preset power level, the signal output terminal VOUT of the control chip outputs an electrical signal.
  • the drive module 300 may also be provided with a soft-start protection function.
  • the drive chip U2 is also provided with a soft-start terminal COMP, and the soft-start terminal COMP is set with a fixed soft-start voltage, and the charging capacitor C is charged by the soft-start voltage. If the power reaches the preset power, the signal output terminal VOUT of the control chip starts to output an electrical signal, that is, the LED light source 20 is controlled to start lighting.
  • the capacitance value of the capacitor C can control the charging time of the charging capacitor C, that is, the power-on speed of the driver chip U2 can be reasonably controlled, and then the lighting time of the LED light source 20 can be controlled, which can avoid the spike pulse that may be generated at the moment of driving. The problem of burning out the LED light source 20.
  • the voltage value of the preset voltage may be 1V
  • the selection range of the capacitance value of the charging capacitor C may be between 1nF-10nF.
  • the driving module 300 may further include a fifth capacitor C5 and a sixth capacitor C6, and the driving chip U2 may further include a power supply terminal VDD.
  • the power supply terminal VDD is electrically connected to the ground terminal GND through the fifth capacitor C5, and the chip signal output terminal VOUT is also electrically connected to the ground terminal GND through the sixth capacitor C6.
  • the power supply terminal VDD is set to provide a working voltage for the driving chip U2, the fifth capacitor C5 is set to filter the working voltage, and the sixth capacitor C6 is set to filter the electrical signal output by the chip signal output terminal VOUT.
  • the capacitance value of the fifth capacitor C5 is 1uF
  • the capacitance value of the sixth capacitor C6 is 1uF.
  • FIG. 6 is a schematic structural diagram of another control circuit of an LED light source provided by an embodiment of the present application.
  • the control circuit 10 of the LED light source may further include: a burning module 500; burning
  • the recording module 500 can include a programming terminal 520; the control module 200 can also include a programming signal input end 250; the programming signal input end 250 is electrically connected to an external programming device (not shown in the figure) through the programming terminal 520;
  • the module 200 is further configured to receive a programming signal provided by an external programming device, and generate a corresponding relationship between the encoded signal and the driving signal based on the programming signal.
  • the control module 200 can generate different driving signals according to different coding signals, which can be programmed by an external programming device. computer, etc.
  • the electrical connection between the external programming device and the control 200 is realized through the programming module 500 .
  • the programming module 500 may include four terminals, a power terminal 510 , a programming terminal 520 , a second programming terminal 530 and a ground terminal 540 .
  • the power terminal 510 can be electrically connected to the second power output terminal 430 of the power module 400 to obtain the working voltage required by the programming module 500 .
  • the programming terminal 520 is electrically connected to the programming signal input end 250 of the control module 200
  • the second programming terminal 530 is electrically connected to the first encoding signal receiving end 213 of the control module 200
  • the programming terminal 520 and the second programming terminal 530 are electrically connected Both can realize the transmission of the encoding program of the corresponding relationship between the encoding signal and the driving signal, and improve the data burning efficiency.
  • the ground terminal 540 is electrically connected to the ground signal.
  • the control module 200 may further include a seventh capacitor C7 , the seventh capacitor C7 is electrically connected between the second power supply input terminal 240 and the ground terminal GND, and the seventh capacitor C7 is set to be the second power supply signal Perform filtering and debounce processing.
  • the coding switch 100 may select the TSR_06S model, which may include four coding signal output terminals 110, wherein the fourth coding signal output terminal 114 may be suspended; the control module 200 may select the PL51T020_SOP8 chip, the ground terminal VSS and the ground signal circuit Connection; the capacitance value of the seventh capacitor C7 is 1uF; the programming module 500 can choose the 1P*4 model.
  • the control circuit of the LED light source includes an encoding switch, a control module, a driving module, a power supply module and a programming module; by receiving multiple encoded signal output ends of the encoding switch and multiple encoded signals of the control module
  • the terminals are electrically connected one by one, and the encoding switch receives different external encoding commands, and selectively transmits different encoding signals to the control module through different encoding signal output terminals, so that the control module outputs different encoding signals according to the received encoding signals.
  • the driving signal is sent to the driving signal input end of the driving module, so that the driving module is controlled to output different driving currents to the LED light source, so that the LED light source can present different luminous brightness; at the same time, the power supply module provides the driving module with a first power supply signal , provide the second power supply signal for the control module and the programming module, the energy storage inductor and the freewheeling diode of the driving module can provide a regulated voltage for the driving chip, and the driving module can also provide the first sampling resistance according to the sampling resistor and the first sampling terminal feedback. Sampling the signal to achieve a constant output of the driving current.
  • the overload protection of the driving current is realized.
  • the starting voltage and the capacitance value of the charging capacitor are used to prevent the LED light source from being burned out by the spike of the driving current output at the moment of driving.
  • FIG. 7 is a structural block diagram of a stone lamp provided by an embodiment of the present application.
  • the stone lamp 1 includes an LED light source 20 and a control circuit 10 of the LED light source provided by the embodiment of the present application.
  • the stone lamp 1 provided by the embodiment of the present application includes the technical features of the control circuit 10 of the LED light source provided by the embodiment of the present application, so it has the effects of the control circuit 10 of the LED light source provided by the embodiment of the present application. Reference may be made to the above description of the control circuit 10 of the LED light source provided by the embodiment of the present application, and details are not repeated here.
  • the control circuit 10 of the LED light source provided in the embodiment of the present application can also be applied to other lighting devices, such as desk lamps, street lamps and other lamps with lighting brightness adjustment, which are not limited by the embodiments of the present application. .

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种LED灯源(20)的控制电路(10)和石头灯(1),包括:编码开关(100)、控制模块(200)和驱动模块(300);编码开关(100)包括多个编码信号输出端(110),控制模块(200)包括驱动信号输出端(220)和多个编码信号接收端(210),驱动模块(300)包括驱动信号输入端(310)和驱动电流输出端(320),多个编码信号输出端(110)与多个编码信号接收端(210)一一对应电连接,驱动信号输出端(220)与驱动信号输入端(310)电连接,驱动电流输出端(320)设置为与LED灯源(20)电连接;编码开关(100)设置为根据外部的编码指令控制多个编码信号输出端(110)中的至少一个编码信号输出端(110)输出编码信号;控制模块(200)设置为根据编码开关(100)输出的编码信号输出驱动信号至驱动模块(300);驱动模块(300)设置为根据驱动信号输出驱动电流至LED灯源(20),以驱动LED灯源(20)发光。

Description

LED灯源的控制电路和石头灯 技术领域
本申请涉及照明技术领域,例如涉及一种发光二极管(Light-Emitting Diode,LED)灯源的控制电路和石头灯。
背景技术
随着人们生活水平的日渐提高,灯具已经成为人们日常生活中一种必不可少的电器。石头灯,作为一种装饰灯,例如可以安装在假山上、台阶上,在提供照明的同时还能够提升氛围。石头灯的功率固定不可调节,只能实现一种亮度的照明,不能很好的匹配环境达到理想的照明效果,用户体验感较差。
发明内容
本申请提供了一种LED灯源的控制电路和石头灯,用户可以调节LED灯源的发光亮度,以匹配周围环境,达到良好的照明效果。
提供了一种LED灯源的控制电路,包括:编码开关、控制模块和驱动模块;
所述编码开关包括多个编码信号输出端;所述编码开关设置为接收外部的编码指令,根据所述编码指令,控制所述多个编码信号输出端中的至少一个编码信号输出端输出编码信号;
所述控制模块包括驱动信号输出端和多个编码信号接收端;所述驱动模块包括驱动信号输入端和驱动电流输出端;所述多个编码信号输出端与所述多个编码信号接收端一一对应电连接;所述驱动信号输出端与所述驱动信号输入端电连接;所述驱动电流输出端设置为与LED灯源电连接;
所述控制模块设置为根据所述编码开关输出的所述编码信号,输出驱动信号至所述驱动模块;
所述驱动模块设置为根据所述驱动信号,输出驱动电流至所述LED灯源,以驱动所述LED灯源发光。
还提供了一种石头灯,包括:LED灯源和上述的LED灯源的控制电路。
附图说明
图1是本申请实施例提供的一种LED灯源的控制电路的结构框图;
图2是本申请实施例提供的另一种LED灯源的控制电路的结构框图;
图3是本申请实施例提供的另一种LED灯源的控制电路的结构框图;
图4是本申请实施例提供的一种电源模块的结构示意图;
图5是本申请实施例提供的一种驱动模块的结构示意图;
图6是本申请实施例提供的另一种LED灯源的控制电路的结构示意图;
图7是本申请实施例提供的一种石头灯的结构框图。
具体实施方式
下面结合附图和实施例对本申请进行说明。
图1是本申请实施例提供的一种LED灯源的控制电路的结构框图。如图1所示,该LED灯源的控制电路10包括:编码开关100、控制模块200和驱动模块300;编码开关100包括多个编码信号输出端110;控制模块200包括多个编码信号接收端210和驱动信号输出端220;驱动模块300包括驱动信号输入端310和驱动电流输出端320;多个编码信号输出端110与多个编码信号接收端210一一对应电连接;驱动信号输出端220与驱动信号输入端310电连接;驱动电流输出端320与LED灯源20电连接;编码开关100设置为接收外部的编码指令,根据编码指令,控制多个编码信号输出端110中的至少一个编码信号输出端110输出编码信号;控制模块200设置为根据编码开关100输出的编码信号,输出驱动信号至驱动模块300;驱动模块300设置为根据驱动信号,输出驱动电流至LED灯源20,以驱动LED灯源20发光。
编码开关100可以是任何具有多个选择档位的开关元件,如电位器等,此时用户可以根据需要控制编码开关100的选择档位作为编码指令,使得编码开关100根据不同的编码指令,输出不同的编码信号;或者,编码开关100还可以为编码器,该编码器能够由外部控制器进行控制,该外部控制器中可集成有环境光检测器件,以根据不同的环境光的亮度输出不同的编码指令至编码开关100,使得编码开关100能够根据不同的编码指令,输出不同的编码信号,外部控制器中还可以集成有温度检测器件,以根据不同的环境温度输出不同的编码指令至编码开关100,使得编码开关100能够根据不同的编码指令,输出不同的编码信号。因此,编码指令可以是用户选择的旋转档位或按键档位,可以是环境光检测器件的调节档位,还可以是温度检测器件的调节档位,此处不做限定,编码指令只要是能够表示不同选择档位的指令即可。控制模块200可以为集成有中央处理器(Central Process Unit,CPU)、存储器、计时器等的芯片、单片机、微处理器或微型计算机等,可以根据需要设置不同编码信号与不同驱动信 号的对应关系,以在控制模块200接收到编码开关100输出的编码信号时,能够生成对应的驱动信号。驱动模块300可以是根据上级发送的驱动信号以驱动下级设备元件启动的驱动元件,在驱动模块300接收控制模块200发送的驱动信号时,其可根据该驱动信号生成对应驱动电流,并输出至LED灯源20,以驱动LED灯源20呈现出相应亮度的光。
图1仅为本申请实施例示例性的附图,图1中仅示例性的示出了编码开关100包括三个编码信号输出端110,控制模块200包括三个编码信号接收端210,且编码信号输出端111和编码信号接收端211电连接,编码信号输出端112和编码信号接收端212电连接,编码信号输出端113和编码信号接收端213电连接。而在本申请实施例中编码开关包括多个编码信号输出端,控制模块包括多个编码信号接收端,即编码信号输出端的数量可以为两个或多个,相应的编码信号接收端的数量也可以为两个或多个,在满足多个编码信号输出端与多个编码信号接收端一一对应电连接的前提下,本申请实施例对编码开关的编码信号输出端和控制模块的编码信号接收端的数量均不做限定。
本申请实施例提供的技术方案,用户或外部控制器可以根据不同的外部环境提供不同的编码指令,编码开关根据不同的编码指令输出不同的编码信号至控制模块,使得控制模块输出不同的驱动信号至驱动模块,以使驱动模块提供不同的驱动电流至LED灯源,从而控制LED灯源呈现出不同的发光亮度,进而能够提高LED灯源的发光效果,使得LED灯源能够灵活方便的适用于更多的照明场景。
可选的,图2是本申请实施例提供的另一种LED灯源的控制电路的结构框图,如图2所示,编码开关100还可以包括公共信号输出端120;控制模块200还可以包括公共信号接收端230;公共信号输出端120与公共信号接收端230电连接;编码开关100设置为根据编码指令,导通至少一个编码信号输出端110与公共信号输出端120,以控制与公共信号输出端120电连接的至少一个编码信号输出端110输出编码信号。
示例性的,当用户根据需要选择编码开关100的一种选择档位作为一种编码指令,或者外部控制器根据环境光的亮度输出一种编码指令,或者外部控制器根据环境温度输出一种编码指令时,编码开关100会根据接收到的编码指令控制对应的编码信号输出端110与公共信号输出端120电连接;由于编码信号输出端110与编码信号接收端210对应电连接,公共信号输出端120与公共信号接收端230对应电连接,因此控制模块200的编码信号接收端210与公共信号接收端230可通过编码开关100实现电连接,控制模块200能够根据编码信号接收端210和公共信号接收端230之间的连接关系,获知编码信号,进而可 以生成对应的驱动信号,也就是说,编码开关100的编码信号输出端110与公共信号输出端120的连接关系即为编码信号,控制模块200可根据该编码信号获知对应的档位。其中,编码指令不同,编码开关100的编码信号输出端110与公共信号输出端120之间会具有不同的连接关系,进而使得控制模块200的编码信号接收端210与公共信号接收端230之间具有不同的连接关系,从而使控制模块200能够接收到不同的编码信号。
图2仅为本申请实施例示例性的附图,图2中仅示例性的示出了编码开关100包括三个编码信号输出端110,控制模块200包括三个编码信号接收端210,且编码信号输出端111和编码信号接收端211电连接,编码信号输出端112和编码信号接收端212电连接,编码信号输出端113和编码信号接收端213电连接。而在本申请实施例中编码开关包括多个编码信号输出端,控制模块包括多个编码信号接收端,即编码信号输出端的数量可以为两个或多个,相应的编码信号接收端的数量也可以为两个或多个,在满足多个编码信号输出端与多个编码信号接收端一一对应电连接的前提下,本申请实施例对编码开关的编码信号输出端和控制模块的编码信号接收端的数量均不做限定。
可选的,不同编码信号输出端110的类型不同;与公共信号输出端120电连接的编码信号输出端110的数量和/或类型不同,编码开关100输出的编码信号不同;控制模块200设置为根据不同的编码信号输出不同的驱动信号至驱动模块300;驱动模块300设置为根据不同的驱动信号,输出不同的驱动电流至LED灯源20,以驱动LED灯源20发出不同亮度的光。
公共信号输出端120可以与一个编码信号输出端110电连接,在多个编码信号输出端110的类型不同时,与公共信号输出端120电连接的编码信号输出端110不同,编码开关100输出的编码信号不同;另外,还可以是公共信号输出端120同时与至少两个编码信号输出端110电连接,在与公共信号输出端120的电连接的编码信号输出端110的数量不同时,编码开关100输出的编码信号不同;或者,与公共信号输出端120的电连接的编码信号输出端110的数量相同、但类型不同时,同样会使编码开关100输出的编码信号不同。也就是说,本申请实施例提供的LED灯源的控制电路10,可以通过较少的编码信号输出端110生成多种编码信号,在降低成本的同时满足多种照明需求。示例性的,可以在外部设置多种照明档位,用户选择的照明档位不同,或者可以通过外部控制器设置多种照明档位,外部控制器中集成的环境光检测器件检测到的环境光亮度不同,或外部控制器中集成的温度检测器件检测到的环境温度不同,与公共信号输出端120电连接的编码信号输出端110的类型不同,或与公共信号输出端120电连接的编码信号输出端110的数量不同,或与公共信号输出端120电连接的编码信号输出端110的类型和数量均不相同,进而编码开关100输出的 编码信号不同,使得控制模块200根据不同的编码信号生成不同的驱动信号,以使驱动模块300根据不同的驱动信号输出不同的驱动电流至LED灯源20,控制LED灯源20的发光亮度。
本申请实施例对编码信号输出端110的数量不做限定,对编码信号输出端110的类型也不做限定。示例性的,参考图2,当编码开关100包括第一编码信号输出端111、第二编码信号输出端112和第三编码信号输出端113,以及公共信号输出端120,对应的,控制模块200包括第一编码信号接收端211、第二编码信号接收端212和第三编码信号接收端213,以及公共信号接收端230时,可以实现7种编码信号,即可以设置7种照明档位,满足7种照明需求。表1是本申请实施例提供的一种照明档位与编码信号的关系示意表。如表1所示,当用户选择档位1时,编码开关100接收到编码指令1,此时第一编码信号输出端111与公共信号输出端120电连接,编码开关100输出编码信号1至控制模块200;当用户选择档位5时,编码开关100接收到编码指令5,此时第一编码信号输出端111和第三编码信号输出端113同时与公共信号输出端120电连接,编码开关100输出编码信号5至控制模块200;当用户选择档位7时,编码开关100接收到编码指令7,此时第一编码信号输出端111、第二编码信号输出端112和第三编码信号输出端113同时与公共信号输出端120电连接,编码开关100输出编码信号7至控制模块200。如此,不同的照明档位与不同的编码指令对应,不同的编码指令与不同的编码信号对应,最终使LED灯源20呈现出不同的发光亮度。
表1是本申请实施例提供的一种照明档位与编码信号的关系示意表
Figure PCTCN2021087186-appb-000001
Figure PCTCN2021087186-appb-000002
本申请实施例提供的技术方案,不仅可以应用在照明技术领域,可以设置多种LED灯源的照明档位,还可以应用于其他技术领域,如应用于加热领域时,可以设置加热器的多种加热档位,应用于振动领域时,可以设置振动器的多种振动档位,上述实施例仅以LED灯源的照明档位为例进行说明。
可选的,图3是本申请实施例提供的另一种LED灯源的控制电路的结构框图,如图3所示,该LED灯源的控制电路10还可以包括:电源模块400;电源模块400可以包括交流信号输入端410、第一电源输出端420和第二电源输出端430;驱动模块300还可以包括第一电源输入端330;控制模块200还可以包括第二电源输入端240;交流信号输入端410与交流电源30电连接,第一电源输出端420与第一电源输入端330电连接,第二电源输出端430与第二电源输入端240电连接;电源模块400设置为将交流电源30的交流信号转换为第一电源信号和第二电源信号,并将第一电源信号通过第一电源输出端420输出至驱动模块300,以及将第二电源信号通过第二电源输出端430输出至控制模块200。
电源模块400可以是能够将交流电源30的交流电压转换为控制模块200和驱动模块300所需的工作电压的转换电路。示例性的,控制模块200的工作电压可以为5V直流(Direct Current,DC),驱动模块300的工作电压可以为12VDC,电源模块400将交流电源30的交流电压12V交流(Alternating Current,AC)转换为12VDC,通过第一电源输出端420传输至驱动模块300,为驱动模块300供电,将12VDC转换为5VDC,通过第二电源输出端430传输至控制模块200,以为控制模块200供电。
可选的,图4是本申请实施例提供的一种电源模块的结构示意图,如图4所示,电源模块400还可以包括整流电路440和稳压电路450;整流电路440与交流信号输入端410、第一电源输出端420和稳压电路450电连接;整流电路440设置为将交流信号转换为第一电源信号,并传输至驱动模块300和稳压电路450;稳压电路450与第二电源输出端430电连接;稳压电路450设置为将第一电源信号转换为第二电源信号,并传输至控制模块200。
参考图4,整流电路440可以包括由第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4组成的桥式整流电路,整流电路440将交流电源30的交流电压转换为直流电压,并通过第一电源输出端420传输至驱动模块300,还可以经过第一限流电阻R1传输至稳压电路450;稳压电路450可以包括稳压芯片U1、第一滤波电容C1和第二滤波电容C2,稳压电路450可以对经过整流电路440转换后的直流电压降压和稳压处理,最终通过第二电源输出端430传输至控制模块200。示例性的,第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4的型号可以为SS54A,稳压芯片U1的型号可以为L7805芯片,第一滤波电容C1的电容值为0.33uF,第二滤波电容C2的电容值为22uF。
可选的,参考图4,电源模块400的交流信号输入端410可以是电插件,如VH-2A电插件等,可以与交流信号输出端实现可插拔连接;在交流信号输入端410和整流电路440之间,还可以设置由保险开关F和压敏电阻Z组成的防浪涌电路,设置为保护元器件;在整流电路440和第一电源输出端420之间还可以设置第三电容C3和第四电容C4,第三电容C3设置为储能,第四电容C4设置为滤波去抖。示例性的,压敏电阻Z的型号可以选择RL1812A300K,第三电容C3的电容值为100uF,第四电容C4的电容值为0.1uF。
可选的,图5是本申请实施例提供的一种驱动模块的结构示意图,如图5所示,驱动模块300还可以包括储能电感L、续流二极管D、驱动芯片U2和采样电阻R;驱动芯片U2可以包括控制端DIM、使能端SW、芯片信号输出端VOUT和第一采样端CS;控制端DIM与驱动信号输入端310电连接;使能端SW通过储能电感L与第一电源输入端330电连接,使能端SW还通过续流二极管D与芯片信号输出端VOUT电连接;芯片信号输出端VOUT通过采样电阻R与驱动电流输出端320电连接;第一采样端CS与驱动电流输出端320电连接;驱动芯片U2设置为根据第一电源信号、驱动信号以及第一采样端CS采集的驱动电流输出端320的第一采样信号,输出驱动电流至LED灯源20。
驱动芯片U2通过控制端DIM接收控制模块200发送的驱动信号,通过使能端SW接收电源模块400发送的第一电源信号,其中储能电感L和续流二极管D组成续流电路,设置为为驱动芯片U2提供稳定的工作电压。驱动芯片U2根据不同的驱动信号,将第一电源信号转换为不同的驱动电流,并通过驱动电流输出端320传输至LED灯源20,驱动芯片U2通过芯片信号输出端VOUT与驱动电流输出端320电连接,并将采样电阻R设置于信号输出端VOUT与驱动电流输出端320之间,通过采样电阻R的分压来获取输出的驱动电流,同时通过将第一采样端CS采集到的第一采样信号反馈至驱动芯片U2,实现输出的驱动电流为恒定电流,也就是说,驱动芯片U2根据驱动信号将第一电源信号转换为对应的驱动电流,并通过反馈的第一采样信号对输出的驱动电流进行适当调 节,以使传输至LED灯源20的驱动电流恒定。示例性的,驱动芯片U2可以选择BP1808芯片,储能电感L的电感值可以为47uH,续流二极管D可以选择SS54A型号,采样电阻R的电阻值可以为0.56Ω。驱动电流输出端320可以为电插件,如XH-2A电插件等,可以方便LED灯源的控制电路10与LED灯源20的电连接。
可选的,参考图5,驱动模块300还可以包括第一分压电阻R301和第二分压电阻R302;驱动芯片U2还可以包括第二采样端OVP和接地端GND;第一分压电阻R301的第一端与芯片信号输出端VOUT电连接,第一分压电阻R301的第二端与第二分压电阻R302的第一端电连接于第一节点P1;第二分压电阻R302的第二端与接地端GND电连接;接地端GND与接地信号电连接;第二采样端OVP与第一分压电阻R301的第二端和第二分压电阻R302的第一端电连接于第一节点P1;驱动芯片U3还设置为根据第二采样端OVP采集的第一节点P1的电位,调节芯片信号输出端VOUT输出的电信号的电压在预设电压范围内。
驱动模块300还可以设置有过压保护功能,芯片信号输出端VOUT输出的电信号还可以依次通过第一分压电阻R301和第二分压电阻R302与接地端GND电连接,第二采样端OVP设置为采集经过第一分压电阻R301分压后的第一节点P1的电位,并与驱动芯片U2内部的预设电压进行比较,当采集到的第一节点P1的电位超过预设电压时,驱动芯片U2可以及时调节芯片信号输出端VOUT输出的电信号,避免最终传输至LED灯源20的驱动电流过高,烧坏LED灯源20。示例性的,第一分压电阻R301的电阻值可以为39KΩ,第二分压电阻R302的电阻值可以为1KΩ。
可选的,参考图5,驱动模块300还可以包括充电电容C;驱动芯片U2还可以包括软启动端COMP;软启动端COMP通过充电电容C与接地端GND电连接;驱动芯片U2还设置为通过软启动端COMP为充电电容C进行充电,直至充电电容C中的电量达到预设电量时,控制芯片信号输出端VOUT输出电信号。
驱动模块300还可以设置有软启动保护功能,在驱动芯片U2还设置有软启动端COMP,软启动端COMP设置有固定的软启动电压,通过软启动电压为充电电容C充电,当充电电容C的电量达到预设电量,则控制芯片信号输出端VOUT开始输出电信号,即控制LED灯源20开始点亮,也就是说,通过合理地设置软启动端COMP对应的固定的软启动电压和充电电容C的电容值,可以控制充电电容C的充电时间,即可以合理地控制驱动芯片U2的上电速度,进而控制LED灯源20的点亮时间,可以避免在驱动瞬间,可能产生的尖峰脉冲烧坏LED灯源20的问题。示例性的,预设电压的电压值可以为1V,充电电容C 的电容值的选取范围可以在1nF-10nF之间。
可选的,参考图5,驱动模块300还可以包括第五电容C5和第六电容C6,驱动芯片U2还可以包括供电端VDD。供电端VDD通过第五电容C5与接地端GND电连接,芯片信号输出端VOUT还通过第六电容C6与接地端GND电连接。供电端VDD设置为为驱动芯片U2提供工作电压,第五电容C5设置为为工作电压滤波,第六电容C6设置为为芯片信号输出端VOUT输出的电信号滤波。示例性的,第五电容C5的电容值为1uF,第六电容C6的电容值为1uF。
可选的,图6是本申请实施例提供的另一种LED灯源的控制电路的结构示意图,如图6所示,该LED灯源的控制电路10还可以包括:烧录模块500;烧录模块500可以包括烧录端子520;控制模块200还可以包括烧录信号输入端250;烧录信号输入端250通过烧录端子520与外部烧录设备(图中未示出)电连接;控制模块200还设置为接收外部烧录设备提供的烧录信号,并基于烧录信号生成编码信号与驱动信号的对应关系。
控制模块200可以根据不同的编码信号生成不同的驱动信号,是可以通过外部烧录设备烧录的,外部烧录设备可以是能够通过编码程序生成编码信号与驱动信号的对应关系的上位机,如电脑等。外部烧录设备与控制200的电连接通过烧录模块500实现。烧录模块500可以包括四个端子,电源端子510、烧录端子520、第二烧录端子530和接地端子540。电源端子510可以与电源模块400的第二电源输出端430电连接,以获取烧录模块500所需的工作电压。烧录端子520与控制模块200的烧录信号输入端250电连接,第二烧录端子530与控制模块200的第一编码信号接收端213电连接,烧录端子520和第二烧录端子530均可以实现编码信号与驱动信号的对应关系的编码程序的传输,提供数据烧录效率。接地端子540与接地信号电连接。
可选的,参考图6,控制模块200还可以包括第七电容C7,第七电容C7电连接于第二电源输入端240和接地端GND之间,第七电容C7设置为为第二电源信号进行滤波去抖处理。示例性的,编码开关100可以选取TSR_06S型号,其可以包括四个编码信号输出端110,其中第四编码信号输出端114可以悬空;控制模块200可选取PL51T020_SOP8芯片,其接地端子VSS与接地信号电连接;第七电容C7的电容值为1uF;烧录模块500可以选择1P*4型号。
本申请实施例提供的LED灯源的控制电路,包括编码开关、控制模块、驱动模块、电源模块和烧录模块;通过将编码开关的多个编码信号输出端与控制模块的多个编码信号接收端一一对应电连接,在编码开关接收到外部不同的编码指令,选择性的将不同的编码信号通过不同编码信号输出端传输至控制模块,使得控制模块根据接收到的编码信号,输出不同的驱动信号至驱动模块的驱动 信号输入端,以使控制驱动模块输出不同的驱动电流至LED灯源,从而使得LED灯源能够呈现不同的发光亮度;同时,电源模块为驱动模块提供第一电源信号,为控制模块和烧录模块提供第二电源信号,驱动模块的储能电感和续流二极管可以为驱动芯片提供稳压的电压,驱动模块还可以根据采样电阻和第一采样端反馈的第一采样信号,实现驱动电流的恒定输出,根据第二采样端反馈的第一分压电阻和第二分压电阻之间第一节点的电位,实现驱动电流的过载保护,通过合理控制软启动端的软启动电压和充电电容的电容值,避免在驱动瞬间输出的驱动电流的尖峰脉冲烧坏LED灯源。本申请实施例提供的技术方案,在实现LED灯源不同的发光效果、能够应用于不同的照明场景的同时,还可以有效保护LED灯源,避免烧坏,更加安全。
本申请实施例还提供了一种石头灯。图7是本申请实施例提供的一种石头灯的结构框图,如图7所示,该石头灯1,包括:LED灯源20和本申请实施例提供的LED灯源的控制电路10。
本申请实施例提供的石头灯1,包括本申请实施例提供的LED灯源的控制电路10的技术特征,因此具备本申请实施例提供的LED灯源的控制电路10所具备的效果,相同之处可参照上述对本申请实施例提供的LED灯源的控制电路10的描述,此处不再赘述。另外,本申请实施例提供的LED灯源的控制电路10,还可以适用于其他照明装置上,如台灯、路灯等多种具有照明亮度调节的灯具上,对此,本申请实施例不做限定。

Claims (10)

  1. 一种发光二极管LED灯源的控制电路,包括:编码开关、控制模块和驱动模块;
    所述编码开关包括多个编码信号输出端;所述编码开关设置为接收外部的编码指令,根据所述编码指令,控制所述多个编码信号输出端中的至少一个编码信号输出端输出编码信号;
    所述控制模块包括驱动信号输出端和多个编码信号接收端;所述驱动模块包括驱动信号输入端和驱动电流输出端;所述多个编码信号输出端与所述多个编码信号接收端一一对应电连接;所述驱动信号输出端与所述驱动信号输入端电连接;所述驱动电流输出端设置为与LED灯源电连接;
    所述控制模块设置为根据所述编码开关输出的所述编码信号,输出驱动信号至所述驱动模块;
    所述驱动模块设置为根据所述驱动信号,输出驱动电流至所述LED灯源,以驱动所述LED灯源发光。
  2. 根据权利要求1所述的LED灯源的控制电路,其中,所述编码开关还包括公共信号输出端;所述控制模块还包括公共信号接收端;所述公共信号输出端与所述公共信号接收端电连接;
    所述编码开关设置为通过如下方式控制所述多个编码信号输出端中的至少一个编码信号输出端输出编码信号:导通所述至少一个编码信号输出端与所述公共信号输出端,以控制与所述公共信号输出端电连接的所述至少一个编码信号输出端输出编码信号。
  3. 根据权利要求2所述的LED灯源的控制电路,其中,不同编码信号输出端的类型不同;
    在与所述公共信号输出端电连接的所述至少一个编码信号输出端的数量和类型中的至少之一不同的情况下,所述编码开关输出的编码信号不同;
    所述控制模块设置为通过如下方式根据所述编码开关输出的所述编码信号,输出驱动信号至所述驱动模块:根据不同的编码信号输出不同的驱动信号至所述驱动模块;
    所述驱动模块设置为通过如下方式根据所述驱动信号,输出驱动电流至所述LED灯源,以驱动所述LED灯源发光:根据所述不同的驱动信号,输出不同的驱动电流至所述LED灯源,以驱动所述LED灯源发出不同亮度的光。
  4. 根据权利要求1所述的LED灯源的控制电路,还包括:电源模块;所述电源模块包括交流信号输入端、第一电源输出端和第二电源输出端;所述驱 动模块还包括第一电源输入端;所述控制模块还包括第二电源输入端;
    所述交流信号输入端设置为与交流电源电连接,所述第一电源输出端与所述第一电源输入端电连接,所述第二电源输出端与所述第二电源输入端电连接;所述电源模块设置为将所述交流电源的交流信号转换为第一电源信号和第二电源信号,并将所述第一电源信号通过所述第一电源输出端输出至所述驱动模块,以及将所述第二电源信号通过所述第二电源输出端输出至所述控制模块。
  5. 根据权利要求4所述的LED灯源的控制电路,其中,所述电源模块还包括整流电路和稳压电路;
    所述整流电路与所述交流信号输入端、所述第一电源输出端和所述稳压电路电连接;所述整流电路设置为将所述交流信号转换为所述第一电源信号,并传输至所述驱动模块和所述稳压电路;
    所述稳压电路与所述第二电源输出端电连接;所述稳压电路设置为将所述第一电源信号转换为所述第二电源信号,并传输至所述控制模块。
  6. 根据权利要求4所述的LED灯源的控制电路,其中,所述驱动模块还包括储能电感、续流二极管、驱动芯片和采样电阻;
    所述驱动芯片包括控制端、使能端、芯片信号输出端和第一采样端;所述控制端与所述驱动信号输入端电连接;所述使能端通过所述储能电感与所述第一电源输入端电连接,所述使能端还通过所述续流二极管与所述芯片信号输出端电连接;所述芯片信号输出端通过所述采样电阻与所述驱动电流输出端电连接;所述第一采样端与所述驱动电流输出端电连接;
    所述驱动芯片设置为根据所述第一电源信号、所述驱动信号以及所述第一采样端采集的所述驱动电流输出端的第一采样信号,输出所述驱动电流至所述LED灯源。
  7. 根据权利要求6所述的LED灯源的控制电路,其中,所述驱动模块还包括第一分压电阻和第二分压电阻;所述驱动芯片还包括第二采样端和接地端;
    所述第一分压电阻的第一端与所述芯片信号输出端电连接,所述第一分压电阻的第二端与所述第二分压电阻的第一端电连接于第一节点;所述第二分压电阻的第二端与所述接地端电连接;所述接地端设置为与接地信号电连接;
    所述第二采样端与所述第一分压电阻的第二端和所述第二分压电阻的第一端电连接于所述第一节点;所述驱动芯片还设置为根据所述第二采样端采集的所述第一节点的电位,调节所述芯片信号输出端输出的电信号的电压在预设电压范围内。
  8. 根据权利要求7所述的LED灯源的控制电路,其中,所述驱动模块还包括充电电容;所述驱动芯片还包括软启动端;
    所述软启动端通过所述充电电容与所述接地端电连接;所述驱动芯片还设置为通过所述软启动端为所述充电电容进行充电,直至所述充电电容中的电量达到预设电量时,控制所述芯片信号输出端输出所述电信号。
  9. 根据权利要求1所述的LED灯源的控制电路,还包括:烧录模块;所述烧录模块包括烧录端子;所述控制模块还包括烧录信号输入端;
    所述烧录信号输入端通过所述烧录端子设置为与外部烧录设备电连接;所述控制模块还设置为接收所述外部烧录设备提供的烧录信号,并基于所述烧录信号生成所述编码信号与所述驱动信号的对应关系。
  10. 一种石头灯,包括:发光二极管LED灯源和权利要求1~9任一项所述的LED灯源的控制电路。
PCT/CN2021/087186 2021-04-14 2021-04-14 Led灯源的控制电路和石头灯 WO2022217493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087186 WO2022217493A1 (zh) 2021-04-14 2021-04-14 Led灯源的控制电路和石头灯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087186 WO2022217493A1 (zh) 2021-04-14 2021-04-14 Led灯源的控制电路和石头灯

Publications (1)

Publication Number Publication Date
WO2022217493A1 true WO2022217493A1 (zh) 2022-10-20

Family

ID=83639943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087186 WO2022217493A1 (zh) 2021-04-14 2021-04-14 Led灯源的控制电路和石头灯

Country Status (1)

Country Link
WO (1) WO2022217493A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214595A1 (en) * 2005-03-25 2006-09-28 Arc Technology Co., Ltd. Burglar-proof wireless light adjusting module
CN203167379U (zh) * 2013-04-03 2013-08-28 深圳斯派克节能服务有限公司 一种隔离式led日光灯驱动电源
CN204014198U (zh) * 2014-07-23 2014-12-10 台州嵩达塑胶有限公司 一种基于ZigBee技术的LED日光灯智能灯座
CN109951921A (zh) * 2019-03-21 2019-06-28 厦门东昂光电科技有限公司 一种旋钮灯工作电路及手持灯
CN211128310U (zh) * 2019-12-27 2020-07-28 常州市海铂尔电子科技有限公司 一种基于lora技术的led驱动电源调光控制装置
CN211321556U (zh) * 2019-12-16 2020-08-21 深圳市金叶光线发展有限公司 一种旋钮开关调光调色电源
CN211580262U (zh) * 2019-11-12 2020-09-25 漳州立达信光电子科技有限公司 灯具驱动控制电路及灯具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214595A1 (en) * 2005-03-25 2006-09-28 Arc Technology Co., Ltd. Burglar-proof wireless light adjusting module
CN203167379U (zh) * 2013-04-03 2013-08-28 深圳斯派克节能服务有限公司 一种隔离式led日光灯驱动电源
CN204014198U (zh) * 2014-07-23 2014-12-10 台州嵩达塑胶有限公司 一种基于ZigBee技术的LED日光灯智能灯座
CN109951921A (zh) * 2019-03-21 2019-06-28 厦门东昂光电科技有限公司 一种旋钮灯工作电路及手持灯
CN211580262U (zh) * 2019-11-12 2020-09-25 漳州立达信光电子科技有限公司 灯具驱动控制电路及灯具
CN211321556U (zh) * 2019-12-16 2020-08-21 深圳市金叶光线发展有限公司 一种旋钮开关调光调色电源
CN211128310U (zh) * 2019-12-27 2020-07-28 常州市海铂尔电子科技有限公司 一种基于lora技术的led驱动电源调光控制装置

Similar Documents

Publication Publication Date Title
JP2009200257A (ja) Led駆動回路
De Britto et al. A proposal of Led Lamp Driver for universal input using Cuk converter
JP3172933U (ja) 発光ダイオードの駆動装置およびそれを使用する照明設備
CN209748853U (zh) Led灯控制电路、灯具及照明系统
CN102474947B (zh) 照明装置
JP3231207U (ja) スリープとフェイドアウト機能を有する照明器具制御回路及び照明器具
CN110099479A (zh) Led模块和照明装置
CN104780694B (zh) 一种led触控调光恒流驱动电源
US8890427B2 (en) Apparatus and method of operation of a low-current LED lighting circuit
EP2399427B1 (en) DIMMABLE LED LIGHT SOURCE HAVING CONTROLLED GROUPS OF LEDs
WO2022217493A1 (zh) Led灯源的控制电路和石头灯
US20120007514A1 (en) Led lighting device capable of changing illumination color
CN103369788B (zh) Led灯的分段调光装置
WO2015061954A1 (zh) 利用改变交流电电压导通角作为控制命令而对负载进行操作控制的方法与其调控装置
CN209824076U (zh) 一种ic芯片、驱动电路及灯具控制系统
US20100045206A1 (en) LED Driving Circuit
CN202374498U (zh) 大功率led驱动电路
CN111867192B (zh) 基于线性电源的低待机功率智能灯泡
CN201707822U (zh) 高亮led实验光源
CN113766702A (zh) 一种照明灯具及其调光调色方法
CN209250926U (zh) 点灯装置、照明器具以及招牌
CN216852423U (zh) 一种植物灯电源调光电路
CN220235020U (zh) 一种高压智能照明驱动电路
CN210868247U (zh) 一种可控硅调光控制器
CN212319474U (zh) 一种物联网台灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936385

Country of ref document: EP

Kind code of ref document: A1