WO2022215213A1 - Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor - Google Patents

Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor Download PDF

Info

Publication number
WO2022215213A1
WO2022215213A1 PCT/JP2021/014825 JP2021014825W WO2022215213A1 WO 2022215213 A1 WO2022215213 A1 WO 2022215213A1 JP 2021014825 W JP2021014825 W JP 2021014825W WO 2022215213 A1 WO2022215213 A1 WO 2022215213A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme sensor
sensor electrode
composition
forming
meth
Prior art date
Application number
PCT/JP2021/014825
Other languages
French (fr)
Japanese (ja)
Inventor
彰彦 八手又
茂紀 井上
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to PCT/JP2021/014825 priority Critical patent/WO2022215213A1/en
Publication of WO2022215213A1 publication Critical patent/WO2022215213A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements

Definitions

  • the present invention relates to a composition for forming an enzyme sensor electrode, an electrode for an enzyme sensor, and an enzyme sensor.
  • Enzyme sensors that easily measure specific components contained in biological samples such as blood and sweat, water environments, wastewater, media for culture facilities such as cells, and foods are being researched and put into practical use.
  • a blood sugar level sensor that detects or quantifies glucose in blood by electrochemical means. This selectively oxidizes the glucose contained in the blood due to the substrate specificity of the enzyme, and the electric charge reaches the electrode via a mediator or directly, generating an electric current, and the glucose concentration can be quantified from the electric current value. can be done.
  • Electrodes in practically used enzyme sensors are sometimes formed with a metal layer by sputtering, plating, or the like (for example, Patent Document 1).
  • the measurement sensitivity is still insufficient, and it is preferable not to use expensive metals from the viewpoint of corrosion and cost.
  • the binder that binds the electrode members is required to have strong adhesiveness, but it is desirable that the total amount of resin is as small as possible.
  • the above enzyme sensor is required to improve detection sensitivity from the viewpoint of quantitative performance. Therefore, enzyme sensors are required to detect weak electric currents, and electrodes for enzyme sensors are required to have low resistance.
  • An object of the present invention is to provide a composition for forming an enzyme sensor electrode, an enzyme sensor electrode, and a highly sensitive enzyme sensor that are excellent in adhesion and can be used to manufacture a highly sensitive sensor.
  • the present invention relates to a composition for forming an enzyme sensor electrode containing a conductive material, aqueous resin fine particles, and an aqueous liquid medium, wherein the conductive material contains two or more types of carbon materials (A).
  • the present invention also relates to the composition for forming an enzyme sensor electrode, wherein the aqueous resin fine particles have a particle size of 10 to 500 nm.
  • the present invention also relates to the composition for forming an enzyme sensor electrode, wherein the aqueous resin fine particles contain an acrylic emulsion polymer and/or a methacrylic emulsion polymer.
  • the present invention also relates to the composition for forming an enzyme sensor electrode, wherein the aqueous resin fine particles contain crosslinked resin fine particles.
  • the present invention also relates to the composition for forming an enzyme sensor electrode, wherein the conductive material is a carbon material (A).
  • the present invention further relates to the composition for forming an enzyme sensor electrode, which contains an oxidoreductase.
  • the present invention further relates to the composition for forming an enzyme sensor electrode, which contains a water-soluble dispersant.
  • the content of the carbon material (A) in the total solid content of 100% by mass of the composition for forming an enzyme sensor electrode is 50 to 98% by mass, and the total solid content of the carbon material (A) is 100% by mass.
  • the composition for forming an enzyme sensor electrode is characterized in that the content of graphite (Aa) in mass % is 25 to 99 mass %.
  • the present invention also relates to the composition for forming an enzyme sensor electrode, wherein the graphite (Aa) contains graphite having a specific surface area of 1 m 2 /g or more.
  • the present invention also relates to the composition for forming an enzyme sensor electrode, wherein the carbon material (Ab) other than graphite contains a carbon material having a specific surface area of 10 m 2 /g or more.
  • graphite (Aa) includes graphite having a specific surface area of 1 m 2 /g or more, and carbon material (Ab) is a carbon material having a specific surface area of 10 m 2 /g or more. It relates to the composition for forming an enzyme sensor electrode containing
  • the present invention also relates to an enzyme sensor electrode formed from the composition for forming an enzyme sensor electrode.
  • the present invention further relates to the enzyme sensor electrode comprising an oxidoreductase.
  • the present invention also relates to the enzyme sensor electrode-forming composition or an enzyme sensor including the enzyme sensor electrode.
  • the present invention also relates to the enzyme sensor, wherein the substance to be sensed is selected from glucose, fructose, and lactic acid.
  • composition for forming an enzyme sensor electrode, an electrode for an enzyme sensor, and a highly sensitive enzyme sensor that are excellent in adhesion and capable of producing a highly sensitive sensor.
  • FIG. 1 is a schematic diagram showing an enzyme sensor manufactured in Examples.
  • FIG. 1 is a schematic diagram showing an enzyme sensor manufactured in Examples.
  • composition for forming an enzyme sensor electrode the electrode for an enzyme sensor, and the enzyme sensor according to the present invention will be described.
  • "-" indicating a numerical range means that the numerical values described before and after it are included as the lower limit and the upper limit.
  • composition for forming an enzyme sensor electrode of the present invention contains a conductive material, aqueous resin fine particles, and an aqueous liquid medium, and the conductive material is two or more carbon materials (A ). Since the present composition for forming an enzyme sensor electrode is a composition in which water-based resin fine particles and a conductive material are dispersed together, an enzyme sensor electrode having excellent adhesion to a substrate and high strength can be obtained after forming a coating film. can get.
  • the coating film since the water-based resin fine particles and the conductive material are bound by point contact, the enzyme in the electrode is less likely to be embedded in the resin, and the contact between the substrate to be detected and the enzyme is facilitated. Therefore, an enzyme sensor using an electrode obtained from the composition for forming an enzyme sensor electrode of the present invention can easily achieve high sensitivity.
  • a mediator responsible for electron transfer between the enzyme and the electrode when used, the diffusion of the mediator in the electrode is excellent, and it is easy to achieve higher sensitivity.
  • the adhesiveness is excellent, the ratio of the resin can be kept low, and as a result, the resistance due to the resin is reduced.
  • an enzyme sensor with excellent conductivity and good sensitivity can be obtained.
  • the enzyme sensor electrode obtained from the present composition for forming an enzyme sensor electrode has excellent adhesion and can achieve a highly sensitive enzyme sensor.
  • the composition for forming an enzyme sensor electrode of the present invention contains at least a conductive material, aqueous resin fine particles, and an aqueous liquid medium, and may further contain other components as necessary. . Each component constituting the composition for forming the present enzyme sensor electrode will be described below.
  • the conductive material is contained in order to increase the electron conductivity of the electrode and facilitate the oxidation-reduction reaction.
  • the present composition for forming an enzyme sensor electrode contains at least two types of carbon materials (A) and may further contain other conductive materials. By using two or more types of carbon materials (A) in combination, an enzyme sensor with excellent conductivity and good sensitivity can be obtained.
  • the carbon material (A) it is possible to appropriately select and use from carbon materials having conductivity.
  • Specific examples of carbon materials include graphite, carbon black, conductive carbon fibers (carbon nanotubes, carbon nanofibers, carbon fibers), graphene, fullerene, and the like.
  • the carbon material (A) is preferably a combination of graphite (Aa) and a carbon material (Ab) other than graphite from the viewpoint of conductivity and adhesion.
  • Examples of graphite (Aa) include artificial graphite and natural graphite.
  • Artificial graphite is made by artificially orienting irregularly arranged fine graphite crystals by heat treatment of amorphous carbon, and is generally produced using petroleum coke or coal-based pitch coke as the main raw material.
  • As the natural graphite flaky graphite, spherical graphite, flake graphite, massive graphite, earthy graphite, and the like can be used.
  • expanded graphite obtained by chemically treating flake graphite also referred to as expandable graphite
  • expanded graphite obtained by subjecting the expanded graphite to heat treatment to expand it, and then pulverizing or pressing the expanded graphite may also be used.
  • natural graphite is preferable from the viewpoint of conductivity
  • spherical graphite, flake graphite, flake graphite, expanded graphite, and flake graphite are preferable.
  • the average particle size of graphite is preferably 0.5 to 500 ⁇ m, particularly preferably 2 to 100 ⁇ m, from the viewpoint of conductivity and adhesion.
  • the carbon material (Ab) other than graphite enters the gaps of the graphite (Ab), and the filling rate increases and the conductivity improves.
  • the average particle size as used in the present invention is the particle size (D50) at which 50% is reached when the volume ratio of the particles is integrated from the smaller particle size in the volume particle size distribution. It is measured by a typical particle size distribution meter, for example, a dynamic light scattering type particle size distribution meter ("Microtrac UPA" manufactured by Nikkiso Co., Ltd.).
  • graphite for example, as flaky graphite, CMX, UP-5, UP-10, UP-20, UP-35N, CSSP, CSPE, CSP, CP, CPB, UCP, J manufactured by Nippon Graphite Industry Co., Ltd.
  • Spherical natural graphite includes CGC-20, CGC-50, CGB-20 and CGB-50 manufactured by Nippon Graphite Industry Co., Ltd.
  • Examples of earthy graphite include Blue P, AP, AOP, and P#1 manufactured by Nippon Graphite Industry Co., Ltd., and APR, S-3, AP-6, and 300F manufactured by Chuetsu Graphite Co., Ltd.
  • the specific surface area of graphite the larger the area where the electrochemical reaction occurs, which is advantageous for increasing the sensitivity.
  • the specific surface area (BET) determined from the nitrogen adsorption amount is preferably 1 m 2 /g or more, more preferably 5 m 2 /g or more, and still more preferably 10 m 2 /g or more. is desirable. If graphite with a specific surface area of less than 1 m 2 /g is used, it may become difficult to obtain sufficient sensitivity. Graphite with a density exceeding 300 m 2 /g may be difficult to obtain as a commercial material.
  • the content of graphite in the total 100% by mass of the carbon material is preferably 25 to 99% by mass, more preferably 50 to 96% by mass, from the viewpoint of adhesion and conductivity.
  • Examples of carbon materials (Ab) other than graphite include carbon black, conductive carbon fibers (carbon nanotubes, carbon nanofibers, carbon fibers), graphene, and fullerene. Conductive carbon fibers are preferred.
  • furnace black produced by continuously pyrolyzing gaseous or liquid raw materials in a reactor, especially ketjen black made from ethylene heavy oil as a raw material, raw material gas is burned, and the flame is applied to the bottom surface of the channel steel.
  • Channel black precipitated by quenching after exposure to heat thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, acetylene black made from acetylene gas, etc.
  • thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material
  • acetylene black made from acetylene gas etc.
  • carbon black subjected to oxidation treatment, hollow carbon, and the like, which are commonly used can also be used.
  • Oxidation treatment of carbon is carried out by subjecting carbon to high temperature treatment in the air, or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., to remove, for example, phenol groups, quinone groups, carboxyl groups, and carbonyl groups.
  • This is a treatment for directly introducing (covalently bonding) oxygen-containing polar functional groups to the surface of carbon, and is commonly used to improve the dispersibility of carbon.
  • the conductivity of carbon generally decreases as the amount of functional groups introduced increases, it is preferable to use carbon that has not been oxidized.
  • the specific surface area of carbon black increases, the number of contact points between carbon black particles increases, which is advantageous for lowering the internal resistance of the electrode. Also, the larger the specific surface area, the larger the area where the electrochemical reaction occurs, which is advantageous for increasing the sensitivity. Specifically, it is desirable to use a specific surface area (BET) of 10 m 2 /g or more, which is determined from the nitrogen adsorption amount. If carbon black with a specific surface area of less than 10 m 2 /g is used, it may become difficult to obtain sufficient electrical conductivity. Moreover, carbon black exceeding 1500 m 2 /g may be difficult to obtain as a commercial material.
  • the primary particle size of carbon black is preferably 0.005 to 1 ⁇ m, more preferably 0.01 to 0.2 ⁇ m.
  • the carbon black by using carbon black having a particle size smaller than that of the graphite (Aa), the carbon black enters the gaps of the graphite (Aa), thereby increasing the filling rate and improving the electrical conductivity.
  • the primary particle size referred to here is the average particle size measured with an electron microscope or the like.
  • carbon blacks include, for example, Ketjenblack Toka Black #4400, #4500, #5500 manufactured by Tokai Carbon Co., Ltd.; Printex L manufactured by Degussa; #2350, #2400B, # manufactured by Mitsubishi Chemical Corporation; 2600B, #3050B, #3230B, #3350B, #3400B, #5400B, Vulcan XC-72R manufactured by Cabot Corporation, BlackPearls 2000, Ensaco 250G manufactured by TIMCAL, etc.
  • Furnace black, EC-200L manufactured by Lion Specialty Chemicals, EC-300J, EC-600JD, etc., and acetylene blacks include Denka Black HS-100, Denka Black Li-400, Denka Black FX-35, etc. manufactured by Denka Co., Ltd., and may be used alone or in combination of two or more. They may be used in combination.
  • carbon nanotubes include single-walled carbon nanotubes in which a single graphene sheet forms a tube having a diameter in the nanometer range, and multi-walled carbon nanotubes in which multiple graphene sheets are used.
  • the diameter of single-walled carbon nanotubes is preferably 0.7 to 2.0 nm, and the diameter of multi-walled carbon nanotubes is preferably about 30 nm.
  • conductive carbon fibers and carbon nanotubes include vapor grown carbon fibers such as VGCF manufactured by Showa Denko Co., Ltd., EC1.0, EC1.5, EC2.0, EC1.5-P manufactured by Meijo Nano Carbon, etc. , FloTube9000, FloTube9100, FloTube9110, FloTube9200 manufactured by CNano, NC7000 manufactured by Nanocyl, 100T manufactured by Knano, and the like.
  • VGCF vapor grown carbon fibers
  • the content of carbon materials (Ab) other than graphite in the total 100% by mass of the carbon materials is preferably 1 to 75% by mass, and 4 to 50% by mass, from the viewpoint of conductivity and adhesion to non-conductive substrates. % is more preferred. From the viewpoint of sensitivity and the like, the carbon material contained in 100% by mass of the electrode is preferably 50 to 98% by mass, more preferably 60 to 95% by mass.
  • Aqueous resin fine particles are those in which a resin does not dissolve in an aqueous liquid medium and exists in the state of fine particles, and its dispersion is generally called an aqueous emulsion.
  • the water-based resin fine particles (emulsion polymers) constituting the emulsion include (meth)acrylic emulsion polymers, nitrile emulsion polymers, urethane emulsion polymers, diene emulsion polymers (styrene-butadiene rubber (SBR), etc.).
  • fluorine-based emulsion polymers polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), etc.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • emulsions are preferable because they are excellent in adhesion between particles and in flexibility (flexibility of membranes).
  • the (meth)acrylic emulsion polymer is a general term for acrylic emulsion polymer and methacrylic emulsion polymer.
  • a (meth)acrylic emulsion polymer is preferred from the viewpoint of dispersibility in an aqueous liquid medium and adhesion.
  • the particle structure of the aqueous resin fine particles may be a multi-layered structure, so-called core-shell particles.
  • core-shell particles For example, by localizing a resin obtained by mainly polymerizing a monomer having a functional group in the core or shell, or by providing a difference in Tg or composition between the core and the shell, curability and drying can be improved. properties, film formability, and mechanical strength of the binder can be improved.
  • the average particle size of the aqueous resin fine particles is preferably 10 to 500 nm, more preferably 10 to 300 nm, from the viewpoint of binding properties and particle stability. Also, if a large amount of coarse particles exceeding 1 ⁇ m is contained, the stability of the particles is impaired, so the content of coarse particles exceeding 1 ⁇ m is preferably 5% or less.
  • the average particle size in the present invention means volume average particle size, which can be measured by a dynamic light scattering method.
  • Measurement of the average particle size by the dynamic light scattering method can be performed as follows.
  • the aqueous resin fine particle dispersion is diluted with water 200 to 1000 times in accordance with the solid content.
  • About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrac manufactured by Nikkiso Co., Ltd.], and the solvent (water in the present invention) and the refractive index conditions of the resin are input according to the sample, and then the measurement is performed.
  • the peak of the volume particle size distribution data (histogram) obtained at this time is taken as the average particle size of the present invention.
  • the (meth)acrylic emulsion polymer is an emulsion polymer containing 10% by mass or more of constituent units derived from a monomer having a (meth)acryloyl group, preferably having a (meth)acryloyl group.
  • the monomer-derived structural unit is 20% by mass or more, more preferably 30% by mass or more. Since a monomer having a (meth)acryloyl group is excellent in reactivity, resin fine particles can be produced relatively easily. Also, a coating film made of a (meth)acrylic emulsion polymer is excellent in adhesion and flexibility.
  • crosslinked resin fine particles refer to resin fine particles having an internal crosslinked structure (three-dimensional crosslinked structure), and it is important that the particles are internally crosslinked.
  • crosslinked resin fine particles have a crosslinked structure, it is possible to ensure resistance to electrolyte solution elution, and the effect can be enhanced by adjusting the crosslinkage inside the particles.
  • a specific functional group in the crosslinked resin fine particles it is possible to contribute to adhesion to the base material or other electrode constituent materials.
  • by adjusting the crosslinked structure and the amount of functional groups it is possible to obtain a composite ink with excellent durability of the enzyme sensor.
  • cross-linking between particles can be used in combination with cross-linking. Variation may also occur. Therefore, the cross-linking agent must be used to such an extent that it does not impair the electrolyte resistance.
  • the crosslinkable resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention are obtained by emulsion polymerization of an ethylenically unsaturated monomer in water with a radical polymerization initiator in the presence of a surfactant. It is a resin fine particle obtained by
  • the (meth)acrylic emulsion polymer preferably used in the present invention can be obtained by emulsion polymerization of ethylenically unsaturated monomers containing the following monomers (C1) and (C2) in the following proportions: preferable.
  • (C1) from the group consisting of an ethylenically unsaturated monomer (c1) having a monofunctional or polyfunctional alkoxysilyl group and a monomer (c2) having two or more ethylenically unsaturated groups in one molecule At least one selected monomer: 0.1 to 5% by mass (C2) Ethylenically unsaturated monomer (c3) other than the monomers (c1) to (c2): 95 to 99.9% by mass (However, the total of (c1) to (c3) is 100% by mass)
  • each of (c1) and (c3) is one molecule unless otherwise specified. Indicates a monomer having one ethylenically unsaturated group in it.
  • the functional group (alkoxysilyl group, ethylenically unsaturated group) possessed by the monomers contained in the monomer group (C1) is a self-crosslinking reactive functional group, and mainly causes internal cross-linking during particle synthesis. have the effect of forming Sufficient internal cross-linking of the particles can improve electrolyte resistance. Therefore, by using the monomers contained in the monomer group (C1), crosslinked resin fine particles can be obtained. In addition, the electrolytic solution resistance can be improved by sufficiently performing particle cross-linking.
  • Examples of the monomer (c1) having one ethylenically unsaturated group and an alkoxysilyl group in one molecule include ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ - Methacryloxypropyltributoxysilane, ⁇ -Methacryloxypropylmethyldimethoxysilane, ⁇ -Methacryloxypropylmethyldiethoxysilane, ⁇ -Acryloxypropyltrimethoxysilane, ⁇ -Acryloxypropyltriethoxysilane, ⁇ -Acryloxypropylmethyl Dimethoxysilane, ⁇ -methacryloxymethyltrimethoxysilane, ⁇ -acryloxymethyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinylmethyldimethoxysilane and the like.
  • Examples of the monomer (c2) having two or more ethylenically unsaturated groups in one molecule include allyl (meth)acrylate, 1-methylallyl (meth)acrylate, and 2-methylallyl (meth)acrylate. , 1-butenyl (meth)acrylate, 2-butenyl (meth)acrylate, 3-butenyl (meth)acrylate, 1,3-methyl-3-butenyl (meth)acrylate, 2- (meth)acrylate Chlorallyl, 3-chloroallyl (meth)acrylate, o-allylphenyl (meth)acrylate, 2-(allyloxy)ethyl (meth)acrylate, allyllactyl (meth)acrylate, citronellyl (meth)acrylate, (meth)acrylate Geranyl acrylate, rhodinyl (meth)acrylate, cinnamyl (meth)acrylate, diallyl maleate, diallylitaconic acid, vinyl (
  • the alkoxysilyl group or ethylenically unsaturated group in the monomer (c1) or the monomer (c2) is mainly intended to self-condense or polymerize during polymerization to introduce a crosslinked structure into the particles. However, a part thereof may remain inside or on the surface of the particles even after the polymerization.
  • the remaining alkoxysilyl groups or ethylenically unsaturated groups contribute to cross-linking between particles of the binder composition.
  • an alkoxysilyl group is preferable because it has the effect of contributing to the improvement of adhesion to the substrate.
  • the monomers contained in the monomer group (C1) are used in the total ethylenically unsaturated monomers used for emulsion polymerization (total 100% by mass) in an amount of 0.1 to 5% by mass. It is characterized by It is preferably 0.5 to 3% by mass.
  • the crosslinkable resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention are the monomers (c1 ), and in addition to the monomer (c2) having two or more ethylenically unsaturated groups in one molecule, as the monomer group (C2), the monomers (c1) and (c2) other than It can be obtained by simultaneously emulsion-polymerizing the monomer (c3) having an ethylenically unsaturated group.
  • the monomer (c3) is not particularly limited as long as it is a monomer other than the monomers (c1) and (c2) and has an ethylenically unsaturated group.
  • an epoxy group, an amide group, or a hydroxyl group can remain inside or on the surface of the crosslinked resin fine particles, thereby improving the adhesion of the substrate. Physical properties can be improved.
  • the functional groups of the monomers (c4) to (c6) tend to remain inside or on the surface of the particles even after the synthesis of the particles, and even in small amounts, the effect of adhesion to the substrate is large. Moreover, a part thereof may be used for a cross-linking reaction, and by adjusting the degree of cross-linking of these functional groups, it is possible to balance electrolyte resistance and adhesion.
  • Examples of the monomer (c4) having one ethylenically unsaturated group in one molecule and a monofunctional or polyfunctional epoxy group include glycidyl (meth)acrylate and 3,4-epoxycyclohexyl (meth)acrylate. etc.
  • Examples of the monomer (c5) having one ethylenically unsaturated group and a monofunctional or polyfunctional amide group in one molecule include primary amide group-containing ethylenically unsaturated monomers such as (meth)acrylamide.
  • Alkylol such as N-methylolacrylamide, N,N-di(methylol)acrylamide, N-methylol-N-methoxymethyl(meth)acrylamide, for example, benzyl(meth)acrylate, phenoxyethyl(meth)acrylate , styrene, ⁇ -methylstyrene, 2-methylstyrene, chlorostyrene, allylbenzene, ethynylbenzene and the like.
  • Examples of the monomer (c7) other than the monomer (c8) and the monomer (c9) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) ) alkyl group-containing ethylenically unsaturated monomers such as acrylate, pentyl (meth) acrylate, heptyl (meth) acrylate; (meth) acrylonitrile and other nitrile group-containing ethylenically unsaturated monomers; ) acrylate, perfluoroethylmethyl (meth)acrylate, 2-perfluorobutylethyl (meth)acrylate, 2-perfluorohexylethyl (meth)acrylate, 2-perfluorooctylethyl (meth)acrylate, 2-perfluoroiso nonylethyl (meth)acrylate, 2-perfluoronon
  • Examples of the monomer (c7) other than the monomer (c8) and the monomer (c9) include maleic acid, fumaric acid, itaconic acid, citraconic acid, and alkyl or alkenyl monoesters thereof. , ⁇ -(meth)acryloxyethyl phthalate monoester, ⁇ -(meth)acryloxyethyl isophthalate monoester, ⁇ -(meth)acryloxyethyl terephthalate monoester, ⁇ -(meth)acryloxyethyl succinate carboxyl group-containing ethylenically unsaturated monomers such as monoesters, acrylic acid, methacrylic acid, crotonic acid and cinnamic acid; tertiary-butyl group-containing ethylenically unsaturated monomers such as tert-butyl (meth)acrylate; Sulfonic acid group-containing ethylenically unsaturated monomers such as vinylsulfonic acid and
  • a keto group-containing ethylenically unsaturated monomer is used as the monomer (c7)
  • a polyfunctional hydrazide compound having two or more hydrazide groups capable of reacting with the keto group is mixed with the binder composition as a cross-linking agent.
  • a strong coating film can be obtained by cross-linking the keto group and the hydrazide group. As a result, it has excellent electrolytic solution resistance and binding properties.
  • an ethylenically unsaturated monomer having a carboxyl group, a tertiary butyl group (the tertiary butanol is eliminated by heat to form a carboxyl group), a sulfonic acid group, and a phosphoric acid group In the fine resin particles obtained by copolymerizing the polymer, the above-mentioned functional groups remain in the particles and on the surface even after polymerization. It can be preferably used because it may prevent the formation of the particles or maintain the stability of the particles after synthesis. Its content is preferably 0.2% to 20% by weight, more preferably 0.5% to 10% by weight.
  • carboxyl groups, tertiary butyl groups, sulfonic acid groups, and phosphoric acid groups may react during polymerization and be used for intraparticle cross-linking.
  • a monomer containing a carboxyl group, a tertiary butyl group, a sulfonic acid group, and a phosphoric acid group 0.0% of the total ethylenically unsaturated monomers (total 100% by mass) used for emulsion polymerization is used. It is preferably contained in an amount of 1 to 10% by mass, more preferably 1 to 5% by mass.
  • these functional groups may be used for cross-linking within particles or between particles by reacting during drying.
  • a carboxyl group can react with an epoxy group during polymerization and drying to introduce a crosslinked structure into the resin fine particles.
  • a tertiary butyl group is heated to a certain temperature or higher, tertiary butyl alcohol is produced and a carboxyl group is formed, so that it can react with an epoxy group in the same manner as described above.
  • These monomers (c7) are used in combination of two or more of the above-mentioned monomers in order to adjust the polymerization stability and glass transition temperature of the particles, as well as the film-forming properties and physical properties of the coating film.
  • the (meth)acrylic emulsion polymer which is crosslinked resin fine particles, is synthesized by a conventionally known emulsion polymerization method.
  • emulsifier used in emulsion polymerization in the present invention conventionally known emulsifiers such as reactive emulsifiers having ethylenically unsaturated groups and non-reactive emulsifiers having no ethylenically unsaturated groups can be arbitrarily used. can.
  • Reactive emulsifiers having an ethylenically unsaturated group can be broadly classified into anionic, nonionic, and nonionic emulsifiers.
  • anionic reactive emulsifier or nonionic reactive emulsifier having an ethylenically unsaturated group when used, the dispersion particle size of the copolymer becomes finer and the particle size distribution becomes narrower, so that the electrolytic solution resistance is improved. is possible and preferable.
  • These anionic reactive emulsifiers or nonionic reactive emulsifiers having an ethylenically unsaturated group may be used singly or in combination of two or more.
  • anionic reactive emulsifiers having ethylenically unsaturated groups are shown below, but emulsifiers that can be used in the present invention are not limited to those described below.
  • emulsifiers examples include alkyl ethers (commercially available products include Aqualon KH-05, KH-10, and KH-20 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Adekaria Soap SR-10N and SR-20N manufactured by ADEKA Corporation, Kao Co., Ltd. Latemul PD-104, etc.); JS-2, etc.); , HS-10, HS-20, HS-30, Adekaria Soap SDX-222, SDX-223, SDX-232, SDX-233, SDX-259, SE-10N, SE-20N, etc.
  • alkyl ethers commercially available products include Aqualon KH-05, KH-10, and KH-20 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Adekaria Soap SR-10N and SR-20N manufactured by ADEKA Corporation, Kao Co., Ltd. Latemul PD-104, etc.); JS-2, etc
  • nonionic reactive emulsifiers examples include alkyl ether-based emulsifiers (commercially available products include Adekaria Soap ER-10, ER-20, ER-30, and ER-40 manufactured by ADEKA Corporation, and Latemul PD- manufactured by Kao Corporation. 420, PD-430, PD-450, etc.); -50, Adekaria Soap NE-10, NE-20, NE-30, NE-40, etc. manufactured by ADEKA Co., Ltd.); 564, RMA-568, RMA-1114, etc.).
  • a non-reactive emulsifier having no ethylenically unsaturated groups may be used in combination with the above-described reactive emulsifier having ethylenically unsaturated groups. can be done.
  • Non-reactive emulsifiers can be broadly classified into non-reactive anionic emulsifiers and non-reactive nonionic emulsifiers.
  • non-reactive nonionic emulsifiers include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether; polyoxyethylene alkyl ethers such as polyoxyethylene octylphenyl ether and polyoxyethylene nonylphenyl ether; Phenyl ethers; sorbitan higher fatty acid esters such as sorbitan monolaurate, sorbitan monostearate and sorbitan trioleate; polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate; Polyoxyethylene higher fatty acid esters such as polyoxyethylene monostearate; glycerin higher fatty acid esters such as oleic acid monoglyceride and stearic acid monoglyceride; polyoxyethylene/polyoxypropylene block copolymers, polyoxyethylene distyrenated phenyl ether etc. can be exemplified.
  • non-reactive anionic emulsifiers include higher fatty acid salts such as sodium oleate; alkylarylsulfonates such as sodium dodecylbenzenesulfonate; alkylsulfuric acid ester salts such as sodium laurylsulfate; Polyoxyethylene alkyl ether sulfate salts such as sodium sulfate; Polyoxyethylene alkyl aryl ether sulfate salts such as sodium polyoxyethylene nonylphenyl ether sulfate; sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, polyoxyethylene lauryl sulfosuccinate Alkyl sulfosuccinate ester salts such as sodium and derivatives thereof; polyoxyethylene distyrenated phenyl ether sulfate ester salts and the like can be exemplified.
  • the amount of emulsifier used is not necessarily limited, and can be appropriately selected according to the physical properties required when the crosslinked resin fine particles are used as the final binder.
  • the amount of the emulsifier is usually preferably 0.1 to 30 parts by mass, more preferably 0.3 to 20 parts by mass, more preferably 0.3 to 20 parts by mass, based on the total 100 parts by mass of the ethylenically unsaturated monomers. More preferably, it falls within the range of 5 to 10 parts by mass.
  • a water-soluble protective colloid can be used in combination with the emulsion polymerization of the (meth)acrylic emulsion polymer.
  • water-soluble protective colloids include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose salts; Saccharides and the like can be mentioned, and these can be used either singly or in combination.
  • the amount of the water-soluble protective colloid to be used is 0.1 to 5 parts by mass, more preferably 0.5 to 2 parts by mass, per 100 parts by mass of the ethylenically unsaturated monomer.
  • the aqueous medium used for emulsion polymerization of the (meth)acrylic emulsion polymer includes water, and hydrophilic organic solvents can also be used within a range that does not impair the object of the present invention.
  • the polymerization initiator used for obtaining the (meth)acrylic emulsion polymer is not particularly limited as long as it has the ability to initiate radical polymerization, and known oil-soluble polymerization initiators and water-soluble polymerization initiators can be used. can be used.
  • the oil-soluble polymerization initiator is not particularly limited.
  • Organic peroxides such as oxy-3,5,5-trimethylhexanoate and di-tert-butyl peroxide; 2,2'-azobisisobutyronitrile, 2,2'-azobis-2,4- Examples include azobis compounds such as dimethylvaleronitrile, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 1,1'-azobis-cyclohexane-1-carbonitrile, and the like. These can be used singly or in combination of two or more.
  • These polymerization initiators are preferably used in an amount of 0.1 to 10.0 parts by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer.
  • a water-soluble polymerization initiator it is preferable to use.
  • a reducing agent can be used together with a polymerization initiator if desired. This makes it easier to accelerate the emulsion polymerization rate and to carry out the emulsion polymerization at low temperatures.
  • Such reducing agents include, for example, ascorbic acid, ersorbic acid, tartaric acid, citric acid, glucose, reducing organic compounds such as metal salts such as formaldehyde sulfoxylate; sodium thiosulfate, sodium sulfite, sodium bisulfite; Examples include reducing inorganic compounds such as sodium bisulfite, ferrous chloride, Rongalit, and thiourea dioxide. These reducing agents are preferably used in an amount of 0.05 to 5.0 parts by mass with respect to 100 parts by mass of all the ethylenically unsaturated monomers.
  • Polymerization can also be carried out by photochemical reaction, radiation irradiation, etc., without using the polymerization initiator described above.
  • the polymerization temperature should be equal to or higher than the polymerization initiation temperature of each polymerization initiator.
  • the temperature is usually about 70°C.
  • the polymerization time is not particularly limited, it is usually 2 to 24 hours.
  • buffering agents such as sodium acetate, sodium citrate, sodium bicarbonate, etc.
  • chain transfer agents such as octyl mercaptan, 2-ethylhexyl thioglycolate, octyl thioglycolate, stearyl mercaptan, lauryl mercaptan.
  • t-dodecylmercaptan can be used in appropriate amounts.
  • a monomer having an acidic functional group such as a carboxyl group-containing ethylenically unsaturated monomer
  • a basic compound before or after the polymerization. can.
  • it can be neutralized with ammonia or alkylamines such as trimethylamine, triethylamine and butylamine; alcoholamines such as 2-dimethylaminoethanol, diethanolamine, triethanolamine and aminomethylpropanol; and bases such as morpholine.
  • highly volatile bases are highly effective for drying, and preferred bases are aminomethylpropanol and ammonia.
  • the glass transition temperature (hereinafter also referred to as Tg) of the (meth)acrylic emulsion polymer is preferably -50 to 70°C, more preferably -30 to 50°C.
  • the glass transition temperature is a value determined using a DSC (differential scanning calorimeter).
  • Measurement of the glass transition temperature by DSC can be performed as follows. About 2 mg of the resin obtained by drying the crosslinked resin fine particles is weighed on an aluminum pan, the test container is set on a DSC measurement holder, and the endothermic peak of the chart obtained at a temperature increase of 10° C./min is read. Let the peak temperature at this time be the glass transition temperature of this invention.
  • the particle structure of the (meth)acrylic emulsion polymer can be a multi-layered structure, so-called core-shell particles.
  • core-shell particles For example, by localizing a resin obtained by mainly polymerizing a monomer having a functional group in the core or shell, or by providing a difference in Tg or composition between the core and the shell, curability and drying can be improved. properties, film formability, and mechanical strength of the binder can be improved.
  • the average particle size of the crosslinked resin fine particles of the (meth)acrylic emulsion polymer is preferably 10 to 500 nm, more preferably 30 to 300 nm, from the viewpoint of catalyst binding and particle stability. preferable. In addition, when a large amount of coarse particles exceeding 1 ⁇ m is contained, the stability of the particles is impaired.
  • the average particle size in the present invention means volume average particle size, which can be measured by a dynamic light scattering method.
  • Measurement of the average particle size by the dynamic light scattering method can be performed as follows.
  • the crosslinked resin fine particle dispersion is diluted with water 200 to 1000 times depending on the solid content.
  • About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrac manufactured by Nikkiso Co., Ltd.], and the solvent (water in the present invention) and the refractive index conditions of the resin are input according to the sample, and then the measurement is performed.
  • the peak of the volume particle size distribution data (histogram) obtained at this time is taken as the average particle size of the present invention.
  • the composition for forming an enzyme sensor electrode further includes an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked It preferably contains at least one uncrosslinked compound (E) [hereinafter sometimes referred to as compound (E)] selected from the group consisting of crosslinked oxazoline group-containing compounds.
  • compound (E) is a resin that disperses without dissolving in an aqueous liquid medium.
  • the "uncrosslinked functional group-containing compound” which is the compound (E) is a (meth)acrylic emulsion polymer suitably used in the present invention, such as a monomer contained in the monomer group (C1). Unlike the compound that forms an internal crosslinked structure (three-dimensional crosslinked structure), it refers to a compound that is added after the resin fine particles are emulsion polymerized (polymer formation) (does not participate in the formation of internal crosslinks in the resin fine particles). That is, "uncrosslinked” means that it does not participate in the formation of the internal crosslinked structure (three-dimensional crosslinked structure) of the (meth)acrylic emulsion polymer preferably used in the present invention.
  • the (meth)acrylic emulsion polymer preferably used in the present invention has a crosslinked structure to ensure electrolyte resistance, and by using the compound (E), the epoxy in the compound (E) At least one functional group selected from a group, an amide group, a hydroxyl group, and an oxazoline group can contribute to adhesion with a substrate or other electrode constituent material. Furthermore, by adjusting the crosslinked structure and the amount of functional groups, it is possible to obtain a composite ink with excellent durability of the enzyme sensor.
  • the crosslinkable resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention must be crosslinked inside the particles. Electrolytic solution resistance can be ensured by appropriately adjusting the cross-linking inside the particles. Furthermore, at least one compound selected from the group consisting of an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked oxazoline group-containing compound is added to the functional group-containing crosslinked resin fine particles. By adding the uncrosslinked compound (E), an epoxy group, an amide group, a hydroxyl group, or an oxazoline group acts on the base material, and the adhesion to the base material and other electrode constituent materials can be effectively improved. can.
  • the above functional group contained in the compound (E) is stable even during long-term storage and against heat during electrode production, so that even when used in a small amount, the effect of adhesion to the substrate is large. Furthermore, it is excellent in storage stability.
  • the compound (E) may react with the functional groups in the crosslinked resin fine particles for the purpose of adjusting the flexibility and electrolytic solution resistance as a binder. If too many functional groups in compound (E) are used for the reaction of (E), there will be fewer functional groups that can interact with the substrate or electrode. Therefore, the reaction between the crosslinked resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention and the compound (E) does not impair the adhesion to the substrate or other electrode constituent materials. should be to some extent.
  • Uncrosslinked epoxy group-containing compound examples include epoxy group-containing ethylenically unsaturated monomers such as glycidyl (meth)acrylate and 3,4-epoxycyclohexyl (meth)acrylate; Radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidylaniline, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N, polyfunctional epoxy compounds such as N'-dig
  • epoxy resins such as bisphenol A-epichlorohydrin type epoxy resins and bisphenol F-epichlorohydrin type epoxy resins, and ethylenic unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers.
  • a radically polymerizable resin obtained by polymerizing a saturated monomer is preferred.
  • Epoxy-based resins can be expected to have a synergistic effect of improving electrolytic solution resistance by having a bisphenol skeleton and improving adhesion to substrates by hydroxyl groups contained in the skeleton.
  • radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers have more epoxy groups in the resin skeleton, thereby improving substrate adhesion. Further, by being a resin, an effect of improving electrolyte solution resistance as compared with a monomer can be expected.
  • Uncrosslinked amide group-containing compound examples include primary amide group-containing compounds such as (meth)acrylamide; N-methylolacrylamide, N,N-di(methylol)acrylamide, N- Alkylol (meth)acrylamide compounds such as methylol-N-methoxymethyl (meth)acrylamide; N-methoxymethyl-(meth)acrylamide, N-ethoxymethyl-(meth)acrylamide, N-propoxymethyl-(meth)acrylamide , N-butoxymethyl-(meth)acrylamide, N-pentoxymethyl-(meth)acrylamide monoalkoxy (meth)acrylamide compounds; N,N-di(methoxymethyl)acrylamide, N-ethoxymethyl-N- Methoxymethyl methacrylamide, N,N-di(ethoxymethyl)acrylamide, N-ethoxymethyl-N-propoxymethyl methacrylamide, N,N-di(propoxymethyl)acrylamide, N-di(propoxymethyl)acrylamide,
  • radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers including amide group-containing ethylenically unsaturated monomers such as acrylamide are particularly preferred.
  • the substrate adhesion is improved, and by being a resin, the effect of improving the electrolytic solution resistance compared to the monomer can be expected.
  • uncrosslinked hydroxyl group-containing compound examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) hydroxyl group-containing ethylenically unsaturated monomers such as acrylate 4-hydroxyvinylbenzene, 1-ethynyl-1-cyclohexanol, allyl alcohol; ethylenically unsaturated monomers containing the hydroxyl group-containing ethylenically unsaturated monomers Radical polymerizable resins obtained by polymerization; linear aliphatic diols such as ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol branched chain aliphatic diols such
  • radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers containing hydroxyl group-containing ethylenically unsaturated monomers, or cyclic diols are particularly preferable. Radically polymerized resins obtained by polymerizing ethylenically unsaturated monomers containing hydroxyl group-containing ethylenically unsaturated monomers have more hydroxyl groups in the resin skeleton, thereby improving adhesion to substrates.
  • it since it is a resin, it can be expected to have the effect of improving the electrolyte resistance as compared with a monomer.
  • cyclic diols can be expected to have the effect of improving electrolyte resistance by having a cyclic structure in the skeleton.
  • Uncrosslinked oxazoline group-containing compound examples include 2'-methylenebis(2-oxazoline), 2,2'-ethylenebis(2-oxazoline), 2,2'-ethylenebis (4-methyl-2-oxazoline), 2,2'-propylenebis(2-oxazoline), 2,2'-tetramethylenebis(2-oxazoline), 2,2'-hexamethylenebis(2-oxazoline) , 2,2′-octamethylenebis(2-oxazoline), 2,2′-p-phenylenebis(2-oxazoline), 2,2′-p-phenylenebis(4,4′-dimethyl-2-oxazoline ), 2,2′-p-phenylenebis(4-methyl-2-oxazoline), 2,2′-p-phenylenebis(4-phenyl-2-oxazoline), 2,2′-m-phenylenebis( 2-oxazoline), 2,2′-m-phenylenebis( 2-oxazoline), 2,2′-m-phenylenebis
  • oxazoline group-containing compounds in particular, phenylenebis-type oxazoline compounds such as 2′-p-phenylenebis(2-oxazoline), or ethylenically unsaturated monomers containing oxazoline group-containing ethylenically unsaturated monomers A radically polymerizable resin obtained by polymerizing is preferred.
  • the phenylene bis-type oxazoline compound has a phenyl group in its skeleton, and thus has an effect of improving electrolyte resistance.
  • radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers containing oxazoline group-containing ethylenically unsaturated monomers have more oxazoline groups in the resin skeleton, thereby improving adhesion to substrates.
  • the electrolytic solution resistance can be improved as compared with a monomer.
  • the compound (E) is preferably added in an amount of 0.1 to 50 parts by mass, more preferably 5 to 40 parts by mass, per 100 parts by mass of the solid content of the crosslinked resin fine particles. Furthermore, two or more compounds (E) can be used in combination.
  • the molecular weight of compound (E) is not particularly limited, it preferably has a mass average molecular weight of 1,000 to 1,000,000, more preferably 5,000 to 500,000.
  • the said mass average molecular weight is a value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • the aqueous liquid medium can be appropriately selected from solvents capable of dispersing the conductive material and the aqueous resin fine particles.
  • the aqueous liquid medium preferably contains water, and if necessary, a liquid medium that is compatible with water may be used in combination, for example, in order to improve coatability on a substrate.
  • Liquid media compatible with water include alcohols, glycols, cellosolves, aminoalcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphate esters. , ethers, nitriles and the like, and may be used as long as they are compatible with water.
  • the composition for forming an enzyme sensor electrode may further contain other components as long as the effects of the present invention are exhibited.
  • other components include water-soluble resins such as dispersants and thickeners; film-forming aids, antifoaming agents, leveling agents, preservatives, pH adjusters, oxidoreductases, mediators, and the like.
  • water-soluble resins such as dispersants and thickeners
  • film-forming aids such as antifoaming agents, leveling agents, preservatives, pH adjusters, oxidoreductases, mediators, and the like.
  • a water-soluble resin such as a thickener or a dispersant.
  • the present composition for forming an enzyme sensor electrode preferably contains a water-soluble resin as a dispersant or thickener.
  • a dispersant is an agent that acts on a carbon material or the like to suppress its aggregation.
  • water-soluble resins include acrylic resins, polyurethane resins, polyester resins, polyamide resins, polyimide resins, polyallylamine resins, phenol resins, epoxy resins, phenoxy resins, urea resins, melamine resins, alkyd resins, formaldehyde resins, and silicone resins. , fluororesins, and polymer compounds containing polysaccharide resins such as carboxymethyl cellulose. Modified products, mixtures, or copolymers of these resins may also be used as long as they are water-soluble. These may be used singly or in combination.
  • the present composition for forming an enzyme sensor electrode may contain an oxidoreductase.
  • the oxidoreductase is not particularly limited as long as it is an enzyme that can give and receive electrons by reaction, and is appropriately selected according to the target to be detected. Oxidase or dehydrogenase of sugar or organic acid can be used. Among them, glucose oxidase and glucose dehydrogenase, which can detect glucose contained in biological samples such as human blood and urine, are sometimes preferable. In addition, fructose oxidase and fructose dehydrogenase that can detect fructose, and lactate oxidase and lactate dehydrogenase that can detect lactic acid are sometimes preferable.
  • the oxidoreductase may be used by being added to the composition for forming the enzyme sensor electrode, or may be added after forming a coating film for the sensor electrode, which will be described later.
  • Mediator Enzymes include direct electron transfer (DET) enzymes that can transfer electrons directly to the electrode and enzymes that cannot transfer electrons directly. It is necessary to use a mediator that plays a role in transmitting to the electrode.
  • the mediator is not particularly limited as long as it is a redox substance capable of transferring electrons to the electrode, and conventionally known mediators can be used.
  • Methods of using the mediator include a method of supporting it on an electrode, a method of dissolving it in an electrolytic solution, and the like.
  • mediators include nonmetallic compounds such as tetrathiafulvalene, quinones such as hydroquinone and 1,4-naphthoquinone, ferrocene, ferricyanide, osmium complexes, and polymers modified with these compounds.
  • composition for forming electrode for enzyme sensor Any method can be employed for preparing the composition for forming an enzyme sensor electrode, depending on each component.
  • each component may be dispersed at the same time, or the aqueous resin fine particles may be added after the conductive material is dispersed in the aqueous liquid medium.
  • the enzyme may be loaded after forming the electrode with a composition comprising a conductive material, aqueous resin fine particles, and an aqueous liquid medium.
  • Dispersers and mixers used for dispersing pigments and the like can be used.
  • mixers such as Disper, Homomixer, or Planetary Mixer; Homogenizers such as M Technic's "Clairmix” or PRIMIX's “Filmix”; Paint conditioner (manufactured by Red Devil), ball mill, sand mill (“Dyno Mill” manufactured by Shinmaru Enterprises Co., Ltd.), Attritor, Pearl Mill (“DCP Mill” manufactured by Eirich Co., etc.), media-type dispersing machines such as coball mills; wet jet mills (“Genus PY” manufactured by Genus Co., Ltd., Sugino "Starburst” manufactured by Machine Co., Ltd., “Nanomizer” manufactured by Nanomizer, etc.), “Crea SS-5" manufactured by M Technic Co., Ltd., or "MICRO
  • the enzyme sensor electrode of the present invention is characterized by being formed from the composition for forming an enzyme sensor electrode, and may be a working electrode, a counter electrode or a reference electrode.
  • the enzyme sensor electrode is formed on, for example, a substrate.
  • the electrode can be obtained, for example, by applying a composition for forming an enzyme sensor electrode to at least one surface of a base material and, if necessary, performing press treatment or the like to form a conductive layer.
  • oxidoreductases and mediators may be carried as necessary.
  • the enzyme sensor electrode is provided on, for example, a substrate.
  • the substrate used for the enzyme sensor is not particularly limited, and may be either a conductive substrate or a non-conductive substrate.
  • the conductive substrate include a conductive layer made of a conductive carbon material such as carbon paper and carbon cloth, a metal foil, a metal mesh, and the like.
  • non-conductive substrates include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acrylic resins such as polymethyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polycarbonate, polyimide, polytetrafluoroethylene, and perfluoro.
  • Resin films of alkoxyalkane, perfluoroethylene propene copolymer, ethylenetetrafluoroethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, ethylenechlorotrifluoroethylene copolymer, etc. can be exemplified.
  • paper, cloth, etc. are mentioned besides a resin film.
  • a conductive carbon composition, a conductive polymer such as polyaniline, polyacetylene, polypyrrole, polythiophene, etc. is printed or coated on the surface, dried, sputtered with a conductive material such as a metal, or used in combination.
  • the method for printing and applying the composition is not particularly limited, and general methods can be applied.
  • the enzyme sensor electrode can be formed by applying a composition for forming an enzyme sensor electrode to the above non-conductive base material, printing the composition, and, if necessary, performing press treatment or the like.
  • the method for coating and printing the composition on a non-conductive substrate is not particularly limited, and examples include screen printing, inkjet printing, gravure printing, kiss reverse gravure coater, knife coater, bar coater, blade coater, General methods such as spray, dip coater, spin coater, roll coater, die coater, curtain coater, etc. can be applied.
  • rolling treatment may be performed using a lithographic press, calender rolls, or the like.
  • the coating may be performed while being heated. If the thickness of the electrode portion excluding the base material is thin, the penetration of the electrolytic solution into the inside of the electrode is rapid and noise can be reduced, so the thickness is preferably 15 ⁇ m or less. Also, the higher the density, the higher the strength of the electrode, so 1.4 g/cm 3 or more is preferable.
  • An enzyme sensor is characterized by including the composition for forming an enzyme sensor electrode or the electrode for an enzyme sensor.
  • the electrodes in an enzyme sensor are arranged in a working electrode and a counter electrode, or a working electrode, a counter electrode and a reference electrode. These electrodes may be produced by forming conductive layers on different non-conductive substrates, by forming conductive layers for the respective electrodes on the same non-conductive substrate, or by forming the same non-conductive layer on the same non-conductive substrate. Electrodes may be fabricated by forming a non-conductive portion after placing a conductive layer on a conductive substrate.
  • electrodes may be produced by forming a metal layer on a non-conductive base material in advance by metal sputtering or the like, and then forming a conductive layer for each electrode.
  • a reference electrode is provided, it is produced, for example, by laminating silver or silver chloride on top of the conductive layer.
  • a method of forming a metal layer by metal sputtering there are a method of forming a metal layer by metal sputtering, a method of using an extended conductive layer, and a method of further forming a metal layer on the upper and lower portions of the extended conductive layer by metal sputtering. I can give an example.
  • Methods for supporting an oxidoreductase or a mediator on an electrode include a method of including an oxidoreductase and, if necessary, a mediator in the upper portion of the working electrode, counter electrode and reference electrode, or in the upper portion and/or inside of the working electrode; Examples thereof include a method of forming a layer containing an oxidoreductase and, if necessary, a mediator.
  • a hydrophilic compound and/or a hydrophilic resin may be mixed.
  • Sensor applications include, for example, organic sensors that target various organic substances, biosensors that target organic substances and body fluids in biological samples such as blood, sweat, urine, feces, tears, saliva, and exhaled breath, and sensors that target moisture.
  • food sensor for fruits and food IoT sensor
  • environmental sensor for organic matter in the environment such as air, rivers, and soil
  • animal and plant sensor for animals, insects, and plants cell culture sensors for monitoring medium components and the like in cell culture.
  • biosensors include a blood sugar sensor that senses sugar in blood, a urine sugar sensor that senses sugar in urine, a fatigue sensor that senses lactic acid in sweat, a heat stroke sensor that senses sweat and urine
  • Examples include a perspiration sensor and a urination sensor that sense moisture inside.
  • a wearable sensor for the living body for example, a urination sensor and a urine sugar level sensor with a sensor installed in a diaper, a perspiration and heatstroke sensor with a percutaneous attachment type, a puncture type interstitial fluid sugar sensor, etc.
  • Example group A ⁇ Production of Compound (E) [Production of Epoxy Group-Containing Compound]> [Production Example 1] 20 parts of isopropyl alcohol and 20 parts of water are charged in a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a reflux vessel. Also, 2 parts of potassium persulfate was dissolved in 30 parts of isopropyl alcohol and 30 parts of water, and charged into the dropping tank 2 . After the internal temperature was raised to 80° C. and the contents were sufficiently replaced with nitrogen, the contents were added dropwise to the dropping tanks 1 and 2 over 2 hours to carry out polymerization. After the dropwise addition was completed, stirring was continued for 1 hour while maintaining the internal temperature at 80°C. A group-containing compound (methyl methacrylate/methyl acrylate/glycidyl methacrylate copolymer) solution was obtained. The solid content was obtained from the residue after baking at 150°C for 20 minutes.
  • Synthesis Examples 2 to 6 Aqueous resin fine particle dispersions of Synthesis Examples 2 to 6 were obtained by synthesizing in the same manner as in Synthesis Example 1 except that the types and amounts of the monomers were changed as shown in Table 1.
  • Preparation Example 7 An aqueous resin fine particle dispersion of Preparation Example 7 was obtained by adding 15 parts by mass of an epoxy resin to 100 parts by mass of the solid content of the aqueous resin fine particle dispersion obtained in Synthesis Example 1 above.
  • Preparation Examples 8-12 Aqueous resins of Preparation Examples 8 to 12 were prepared in the same manner as in Synthesis Example 7, except that in Preparation Example 7, the raw material aqueous resin fine particle dispersion and the type and blending ratio of the compound (E) were changed as shown in Table 2. A fine particle dispersion was obtained.
  • the epoxy resin in Table 2 is a bisphenol A-epichlorohydrin type epoxy resin with an epoxy equivalent of 320 manufactured by ADEKA Corporation under the product name of ADEKA RESIN EM-1-60L.
  • Synthesis Examples 13-14 Synthesis was carried out in the same manner as in Synthesis Example 1, except that the types and amounts of the monomers were changed as shown in Table 3, to obtain aqueous resin fine particle dispersions of Synthesis Examples 13 and 14.
  • Example 1 ⁇ Preparation of composition for forming enzyme sensor electrode> Dissolve 3 parts by mass of a water-soluble resin (CMC Daicel #1240 (manufactured by Daicel Chemical Industries, Ltd.)) in 500 parts by mass of ion-exchanged water, and graphite (UP-5- ⁇ (manufactured by Nippon Graphite Co., Ltd.)) 70 parts by mass and other than graphite 10 parts by mass of a carbon material (furnace black VULCAN (registered trademark) XC72 (manufactured by CABOT)) was added and mixed in a mixer. Then, it was dispersed with a sand mill.
  • a water-soluble resin CMC Daicel #1240 (manufactured by Daicel Chemical Industries, Ltd.)
  • graphite UP-5- ⁇ (manufactured by Nippon Graphite Co., Ltd.)
  • carbon material furnace black VULCAN (registered trademark) X
  • the water-dispersible resin fine particle dispersion of Synthesis Example 1 was added so as to give a solid content of 17 parts by mass, ion-exchanged water was appropriately added, and the mixture was mixed with a mixer to obtain a composition (1) for forming an enzyme sensor electrode.
  • the above composition for forming an enzyme sensor electrode is coated on a PET substrate (Lumirror (manufactured by Toray Industries, Inc.)) having a thickness of 100 ⁇ m, which is a non-conductive substrate, using a doctor blade, and then dried by heating to form an enzyme sensor.
  • An electrode (1) was obtained.
  • Enzyme sensor electrodes (2) to (24) were prepared in the same manner as in Example 1, except that in the preparation of the composition for forming an enzyme sensor electrode of Example 1, the types and blending amounts of each component were changed as shown in Table 4. ).
  • N-methyl-2-pyrrolidone was used as the liquid medium instead of ion-exchanged water.
  • each of the electrodes was cut vertically and horizontally with a knife from the surface of the electrode to a depth reaching the substrate at intervals of 2 mm.
  • a pressure-sensitive adhesive tape was attached to the incision and immediately peeled off, and the degree of detachment of the coated surface was determined visually. Evaluation criteria are shown below. Table 4 shows the results. ⁇ : “Almost no peeling” ⁇ : “Half peeling” (level with no practical problem) ⁇ : “Peeled off in most parts”
  • Electrodes prepared in the above Examples and Comparative Examples were cut into a size of 10 ⁇ 30 mm, and the portions other than the lower portion of 5 ⁇ 5 mm were masked with a tape.
  • An aqueous solution of ferrocene as a mediator in methanol and an aqueous solution of glucose dehydrogenase as an enzyme are dropped on a 5 ⁇ 5 mm area that is not masked, and air-dried to support the mediator and the enzyme, thereby obtaining an electrode for an enzyme sensor.
  • rice field Using the enzyme sensor electrode prepared above as a working electrode, a counter electrode (platinum coil electrode) and a reference electrode (silver/silver chloride electrode) were placed in an electrolytic cell.
  • aqueous solution prepared by dissolving potassium ferricyanide as a mediator and glucose oxidase as an enzyme in 0.1 M phosphate buffer (pH 7) was dropped into the opening surrounded by the insulating resist of the enzyme sensor electrode (4). It was dried to carry the mediator and the enzyme to obtain an enzyme sensor.
  • Electrode for the enzyme sensor prepared above coated with silver/silver chloride was used as a reference electrode, and the others were used as a working electrode and a counter electrode.
  • D-glucose was added as (sensing object) to 5 mM, a potential of 0.5 V (vs Ag/AgCl) was applied, and the current value was measured 10 seconds later.
  • a potential of 0.5 V vs Ag/AgCl
  • Example group B [Example 31] ⁇ Preparation of composition for forming enzyme sensor electrode> 5 parts by mass of a water-soluble resin (B-a10: CMC Daicel #1240 (manufactured by Daicel Chemical Industries, Ltd.)) is dissolved in 500 parts by mass of ion-exchanged water, and graphite (A-a11: spherical natural graphite CGB-50 (Nippon Graphite Co., Ltd.) )) and 8 parts by mass of a carbon material other than graphite (A-b11: Lionite EC-200L (manufactured by Lion Specialty Chemicals, specific surface area 380 m 2 /g)) were added and mixed in a mixer.
  • a water-soluble resin B-a10: CMC Daicel #1240 (manufactured by Daicel Chemical Industries, Ltd.)
  • graphite A-a11: spherical natural graphite CGB-50 (Nippon Graphite Co.
  • the conductive layer (31) was cut to 10 x 30 mm, and masking was performed with tape except for the lower portion of 5 x 5 mm.
  • a methanol aqueous solution of ferrocene as a mediator and an aqueous solution of glucose dehydrogenase as an enzyme were dropped on a 5 ⁇ 5 mm conductive layer that had not been masked, and the mediator and enzyme were supported by air drying. After that, the masking tape was peeled off. An enzyme sensor electrode (31) was obtained.
  • Enzyme sensor electrode-forming compositions (32) to (48) were obtained in the same manner as in Example 31, except that the types and amounts of each component were changed as shown in Table 5. Then, the enzyme sensor electrodes of Examples 32 to 47 and Comparative Example 4 were obtained in the same manner as in Example 31.
  • the enzyme sensor electrode shown in FIG. (32) was obtained.
  • An aqueous solution prepared by dissolving potassium ferricyanide as a mediator and glucose oxidase as an enzyme in 0.1 M phosphate buffer (pH 7) is dropped into the opening surrounded by the insulating resist of the enzyme sensor electrode (32), and dried naturally. Then, the mediator and the enzyme were loaded to obtain an enzyme sensor.
  • the electrode (32) for the enzyme sensor prepared above is coated with silver/silver chloride as a reference electrode, and the others are used as a working electrode and a counter electrode.
  • D-glucose was added as a reaction substrate (object to be sensed) to 5 mM, a potential of 0.5 V (vs Ag/AgCl) was applied, and the current value was measured 10 seconds later.
  • a potential of 0.5 V vs Ag/AgCl was applied and the current value was measured 10 seconds after the glucose concentration and the current value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: a composition for forming an enzyme sensor electrode and an enzyme sensor electrode which are excellent in adhesiveness and make it possible to produce a highly sensitive sensor; and a highly sensitive enzyme sensor. A composition for forming an enzyme sensor electrode according to the present invention comprises an electrically conductive material, aqueous resin fine particles, and an aqueous liquid medium, wherein the electrically conductive material contains two or more types of carbon materials (A).

Description

酵素センサー電極形成用組成物、酵素センサー用電極、および酵素センサーComposition for Forming Enzyme Sensor Electrode, Enzyme Sensor Electrode, and Enzyme Sensor
 本発明は、酵素センサー電極形成用組成物、酵素センサー用電極、および酵素センサーに関する。 The present invention relates to a composition for forming an enzyme sensor electrode, an electrode for an enzyme sensor, and an enzyme sensor.
 血液や汗等の生体試料や水環境、排水、細胞等培養設備の培地、食品等に含まれる特定成分を、簡便に計測する酵素センサーが研究、実用化されている。例えば、血液中のグルコースを電気化学的な手段により検出、あるいは定量化する血糖値センサー等が挙げられる。これは血中に含まれるグルコースに対し酵素の基質特異性により選択的に酸化し、メディエーターを介して、あるいは直接電極に電荷が到達して電流が発生、その電流値からグルコース濃度を定量することができる。実用化されている酵素センサーにおける電極部分は、スパッタやめっき等により金属層が形成されたものが用いられることがある(例えば特許文献1)。しかし、その測定感度は未だ十分とは言い難い状況であり、高価な金属を使用しないことは腐食やコストの観点からも好ましい。また、電極は構成物が剥がれることなく用いられることが望まれるため、電極部材を結着するバインダーには強い密着性が求められるが、樹脂総量は少ない方が望ましい。 Enzyme sensors that easily measure specific components contained in biological samples such as blood and sweat, water environments, wastewater, media for culture facilities such as cells, and foods are being researched and put into practical use. For example, there is a blood sugar level sensor that detects or quantifies glucose in blood by electrochemical means. This selectively oxidizes the glucose contained in the blood due to the substrate specificity of the enzyme, and the electric charge reaches the electrode via a mediator or directly, generating an electric current, and the glucose concentration can be quantified from the electric current value. can be done. Electrodes in practically used enzyme sensors are sometimes formed with a metal layer by sputtering, plating, or the like (for example, Patent Document 1). However, the measurement sensitivity is still insufficient, and it is preferable not to use expensive metals from the viewpoint of corrosion and cost. In addition, since it is desired that the electrodes are used without peeling of the constituents, the binder that binds the electrode members is required to have strong adhesiveness, but it is desirable that the total amount of resin is as small as possible.
特開2008-045877号公報JP 2008-045877 A
 上記酵素センサーは、定量性などの観点から検出感度の向上が求められている。そのため酵素センサーは微弱な電流を検出することが求められており、酵素センサー用の電極は低抵抗化などが求められている。 The above enzyme sensor is required to improve detection sensitivity from the viewpoint of quantitative performance. Therefore, enzyme sensors are required to detect weak electric currents, and electrodes for enzyme sensors are required to have low resistance.
 本発明の目的は、密着性に優れ、高感度のセンサーを製造可能な酵素センサー電極形成用組成物および酵素センサー用電極、並びに、高感度の酵素センサーを提供することである。 An object of the present invention is to provide a composition for forming an enzyme sensor electrode, an enzyme sensor electrode, and a highly sensitive enzyme sensor that are excellent in adhesion and can be used to manufacture a highly sensitive sensor.
 本発明者らは、前記の諸問題を解決するために研究を重ねた結果、本発明に至った。
 すなわち本発明は、導電材と、水性樹脂微粒子と、水性液状媒体とを含有し、前記導電材が2種類以上の炭素材料(A)を含む、酵素センサー電極形成用組成物に関する。
The inventors of the present invention have completed the present invention as a result of extensive research in order to solve the above problems.
That is, the present invention relates to a composition for forming an enzyme sensor electrode containing a conductive material, aqueous resin fine particles, and an aqueous liquid medium, wherein the conductive material contains two or more types of carbon materials (A).
 また本発明は、前記水性樹脂微粒子の粒径が10~500nmである、前記酵素センサー電極形成用組成物に関する。 The present invention also relates to the composition for forming an enzyme sensor electrode, wherein the aqueous resin fine particles have a particle size of 10 to 500 nm.
 また本発明は、前記水性樹脂微粒子が、アクリル系乳化重合物及び/またはメタクリル系乳化重合物を含む、前記酵素センサー電極形成用組成物に関する。 The present invention also relates to the composition for forming an enzyme sensor electrode, wherein the aqueous resin fine particles contain an acrylic emulsion polymer and/or a methacrylic emulsion polymer.
 また本発明は、前記水性樹脂微粒子が、架橋型樹脂微粒子を含む、前記酵素センサー電極形成用組成物に関する。 The present invention also relates to the composition for forming an enzyme sensor electrode, wherein the aqueous resin fine particles contain crosslinked resin fine particles.
 また本発明は、前記導電材が炭素材料(A)である、前記酵素センサー電極形成用組成物に関する。 The present invention also relates to the composition for forming an enzyme sensor electrode, wherein the conductive material is a carbon material (A).
 また本発明は、更に、酸化還元酵素を含有する、前記酵素センサー電極形成用組成物に関する。 The present invention further relates to the composition for forming an enzyme sensor electrode, which contains an oxidoreductase.
 また本発明は、更に、水溶性分散剤を含有する、前記酵素センサー電極形成用組成物に関する。 The present invention further relates to the composition for forming an enzyme sensor electrode, which contains a water-soluble dispersant.
 また本発明は、酵素センサー電極形成用組成物の固形分の合計100質量%中の炭素材料(A)の含有量が50~98質量%であり、炭素材料(A)の固形分の合計100質量%中の黒鉛(A-a)の含有量が25~99質量%であることを特徴とする前記酵素センサー電極形成用組成物に関する。 Further, in the present invention, the content of the carbon material (A) in the total solid content of 100% by mass of the composition for forming an enzyme sensor electrode is 50 to 98% by mass, and the total solid content of the carbon material (A) is 100% by mass. The composition for forming an enzyme sensor electrode is characterized in that the content of graphite (Aa) in mass % is 25 to 99 mass %.
 また本発明は、黒鉛(A-a)が、比表面積が1m/g以上である黒鉛を含む前記酵素センサー電極形成用組成物に関する。 The present invention also relates to the composition for forming an enzyme sensor electrode, wherein the graphite (Aa) contains graphite having a specific surface area of 1 m 2 /g or more.
 また本発明は、黒鉛以外の炭素材料(A-b)が、比表面積が10m/g以上である炭素材料を含む前記酵素センサー電極形成用組成物に関する。 The present invention also relates to the composition for forming an enzyme sensor electrode, wherein the carbon material (Ab) other than graphite contains a carbon material having a specific surface area of 10 m 2 /g or more.
 また本発明は、黒鉛(A-a)が、比表面積が1m/g以上である黒鉛を含み、かつ、炭素材料(A-b)が、比表面積が10m/g以上である炭素材料を含む前記酵素センサー電極形成用組成物に関する。 In the present invention, graphite (Aa) includes graphite having a specific surface area of 1 m 2 /g or more, and carbon material (Ab) is a carbon material having a specific surface area of 10 m 2 /g or more. It relates to the composition for forming an enzyme sensor electrode containing
 また本発明は、前記酵素センサー電極形成用組成物より形成される酵素センサー用電極に関する。 The present invention also relates to an enzyme sensor electrode formed from the composition for forming an enzyme sensor electrode.
 また本発明は、更に、酸化還元酵素を含んでなる前記酵素センサー用電極に関する。 The present invention further relates to the enzyme sensor electrode comprising an oxidoreductase.
 また本発明は、前記酵素センサー電極形成用組成物、または前記酵素センサー用電極を含む酵素センサーに関する。 The present invention also relates to the enzyme sensor electrode-forming composition or an enzyme sensor including the enzyme sensor electrode.
 また本発明は、センシング対象物質が、グルコース、フルクトース、および乳酸から選択される前記酵素センサーに関する。 The present invention also relates to the enzyme sensor, wherein the substance to be sensed is selected from glucose, fructose, and lactic acid.
 本発明によれば、密着性に優れ、高感度のセンサーを製造可能な酵素センサー電極形成用組成物および酵素センサー用電極、並びに、高感度の酵素センサーを提供できる。 According to the present invention, it is possible to provide a composition for forming an enzyme sensor electrode, an electrode for an enzyme sensor, and a highly sensitive enzyme sensor that are excellent in adhesion and capable of producing a highly sensitive sensor.
実施例で製造した酵素センサーを示す概略図である。1 is a schematic diagram showing an enzyme sensor manufactured in Examples. FIG.
 以下、本発明に係る酵素センサー電極形成用組成物、酵素センサー用電極、及び酵素センサーについて説明する。
 なお、本発明において数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
Hereinafter, the composition for forming an enzyme sensor electrode, the electrode for an enzyme sensor, and the enzyme sensor according to the present invention will be described.
In the present invention, "-" indicating a numerical range means that the numerical values described before and after it are included as the lower limit and the upper limit.
[酵素センサー用電極形成用組成物]
 本発明の酵素センサー電極形成用組成物(以下、合材インキともいう)は、導電材と、水性樹脂微粒子と、水性液状媒体とを含有し、前記導電材が2種類以上の炭素材料(A)を含むものである。
 本酵素センサー電極形成用組成物は、水性樹脂微粒子と、導電材とが共に分散された組成物であるため、塗膜形成後に、基材との密着性に優れ、強度の高い酵素センサー電極が得られる。
 また、塗膜において、水性樹脂微粒子と導電材の結着は点接触によるため、電極中における酵素が樹脂中に包埋されにくく、検出対象となる基質と酵素との接触が容易となる。そのため、本酵素センサー電極形成用組成物により得られる電極を用いた酵素センサーは高感度化を達成しやすい。また、酵素と電極の間で電子授受を担うメディエーターを使用した場合、電極中のメディエーターの拡散にも優れ、更なる高感度化を達成しやすい。
 また、密着性に優れることから樹脂の割合を低く抑えることができ、その結果、樹脂による抵抗が低減される。
 更に、導電材として2種類以上の炭素材料(A)を含むことで、導電性に優れかつ感度の良好な酵素センサーを得ることができる。
 以上のことから、本酵素センサー電極形成用組成物により得られる酵素センサー電極は、密着性に優れ、高感度の酵素センサーを達成することができる。
 本発明の酵素センサー電極形成用組成物は、少なくとも導電材と、水性樹脂微粒子と、水性液状媒体とを含有するものであり、必要に応じて更に他の成分を含有してもよいものである。以下このような本酵素センサー電極形成用組成物を構成する各成分について説明する。
[Composition for Forming Electrode for Enzyme Sensor]
The composition for forming an enzyme sensor electrode of the present invention (hereinafter also referred to as a composite ink) contains a conductive material, aqueous resin fine particles, and an aqueous liquid medium, and the conductive material is two or more carbon materials (A ).
Since the present composition for forming an enzyme sensor electrode is a composition in which water-based resin fine particles and a conductive material are dispersed together, an enzyme sensor electrode having excellent adhesion to a substrate and high strength can be obtained after forming a coating film. can get.
Further, in the coating film, since the water-based resin fine particles and the conductive material are bound by point contact, the enzyme in the electrode is less likely to be embedded in the resin, and the contact between the substrate to be detected and the enzyme is facilitated. Therefore, an enzyme sensor using an electrode obtained from the composition for forming an enzyme sensor electrode of the present invention can easily achieve high sensitivity. In addition, when a mediator responsible for electron transfer between the enzyme and the electrode is used, the diffusion of the mediator in the electrode is excellent, and it is easy to achieve higher sensitivity.
Moreover, since the adhesiveness is excellent, the ratio of the resin can be kept low, and as a result, the resistance due to the resin is reduced.
Furthermore, by including two or more types of carbon materials (A) as conductive materials, an enzyme sensor with excellent conductivity and good sensitivity can be obtained.
As described above, the enzyme sensor electrode obtained from the present composition for forming an enzyme sensor electrode has excellent adhesion and can achieve a highly sensitive enzyme sensor.
The composition for forming an enzyme sensor electrode of the present invention contains at least a conductive material, aqueous resin fine particles, and an aqueous liquid medium, and may further contain other components as necessary. . Each component constituting the composition for forming the present enzyme sensor electrode will be described below.
<導電材>
 導電材は、電極での電子伝導性を高め酸化還元反応を進めやすくするために含有される。本酵素センサー電極形成用組成物では、少なくとも2種類以上の炭素材料(A)を含み、更に他の導電材を含んでいてもよいものである。2種類以上の炭素材料(A)を組み合わせて用いることにより、導電性に優れかつ感度の良好な酵素センサーを得ることができる。
<Conductive material>
The conductive material is contained in order to increase the electron conductivity of the electrode and facilitate the oxidation-reduction reaction. The present composition for forming an enzyme sensor electrode contains at least two types of carbon materials (A) and may further contain other conductive materials. By using two or more types of carbon materials (A) in combination, an enzyme sensor with excellent conductivity and good sensitivity can be obtained.
 炭素材料(A)としては、導電性を有する炭素材料の中から適宜選択して用いることができる。炭素材料の具体例としては、黒鉛、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、グラフェン、フラーレン等が挙げられる。
 炭素材料(A)は、導電性や密着性の点から、黒鉛(A-a)と、黒鉛以外の炭素材料(A-b)の組み合わせが好ましい。
As the carbon material (A), it is possible to appropriately select and use from carbon materials having conductivity. Specific examples of carbon materials include graphite, carbon black, conductive carbon fibers (carbon nanotubes, carbon nanofibers, carbon fibers), graphene, fullerene, and the like.
The carbon material (A) is preferably a combination of graphite (Aa) and a carbon material (Ab) other than graphite from the viewpoint of conductivity and adhesion.
 黒鉛(A-a)としては、例えば人造黒鉛や天然黒鉛等が挙げられる。人造黒鉛は、無定形炭素の熱処理により、不規則な配列の微小黒鉛結晶の配向を人工的に行わせたものであり、一般的には石油コークスや石炭系ピッチコークスを主原料として製造される。天然黒鉛としては、薄片状黒鉛、球形黒鉛、鱗片状黒鉛、塊状黒鉛、土状黒鉛等を使用することができる。また、鱗片状黒鉛を化学処理等した膨張黒鉛(膨張性黒鉛ともいう)や、膨張黒鉛を熱処理して膨張化させた後、微細化やプレスにより得られた膨張化黒鉛等を使用することもできる。これらの黒鉛の中でも、導電性の観点から、天然黒鉛が好ましく、球形黒鉛、鱗片状黒鉛、鱗状黒鉛、膨張化黒鉛、および薄片状黒鉛が好ましい。 Examples of graphite (Aa) include artificial graphite and natural graphite. Artificial graphite is made by artificially orienting irregularly arranged fine graphite crystals by heat treatment of amorphous carbon, and is generally produced using petroleum coke or coal-based pitch coke as the main raw material. . As the natural graphite, flaky graphite, spherical graphite, flake graphite, massive graphite, earthy graphite, and the like can be used. In addition, expanded graphite obtained by chemically treating flake graphite (also referred to as expandable graphite), expanded graphite obtained by subjecting the expanded graphite to heat treatment to expand it, and then pulverizing or pressing the expanded graphite may also be used. can. Among these graphites, natural graphite is preferable from the viewpoint of conductivity, and spherical graphite, flake graphite, flake graphite, expanded graphite, and flake graphite are preferable.
 黒鉛の平均粒径は導電性及び密着性の点から、0.5~500μmが好ましく、特に、2~100μmが好ましい。特に、後述する黒鉛以外の炭素材料(A-b)よりも大きい粒径の黒鉛を用いることで、黒鉛(A-a)の隙間に黒鉛以外の炭素材料(A-b)が入り込んで充填率が高まり、導電性が向上する。
 本発明でいう平均粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。
The average particle size of graphite is preferably 0.5 to 500 μm, particularly preferably 2 to 100 μm, from the viewpoint of conductivity and adhesion. In particular, by using graphite with a particle size larger than the carbon material (Ab) other than graphite described later, the carbon material (Ab) other than graphite enters the gaps of the graphite (Ab), and the filling rate increases and the conductivity improves.
The average particle size as used in the present invention is the particle size (D50) at which 50% is reached when the volume ratio of the particles is integrated from the smaller particle size in the volume particle size distribution. It is measured by a typical particle size distribution meter, for example, a dynamic light scattering type particle size distribution meter ("Microtrac UPA" manufactured by Nikkiso Co., Ltd.).
 市販の黒鉛としては、例えば、薄片状黒鉛として、日本黒鉛工業社製のCMX、UP-5、UP-10、UP-20、UP-35N、CSSP、CSPE、CSP、CP、CPB、UCP、J-CPB、CB-150、CB-100、ACP、ACP-1000、ACB-50、ACB-100、ACB-150、SP-10、SP-20、SP-5030、J-SP、SP-270、HOP、GR-60、LEP、F#1、F#2、F#3、中越黒鉛社製のCX-3000、FBF、BF、CBR、SSC-3000、SSC-600、SSC-3、SSC、CX-600、CPF-8、CPF-3、CPB-6S、CPB、96E、96L、96L-3、90L-3、CPC、S-87、K-3、CF-80、CF-48、CF-32、CP-150、CP-100、CP、HF-80、HF-48、HF-32、SC-120、SC-80、SC-60、SC-32、伊藤黒鉛工業社製のCNP15、CNP7、Z-5F、EC1500、EC1000、EC500、EC300、EC100、EC50、西村黒鉛社製の10099M、PB-99等が挙げられる。球形天然黒鉛としては、日本黒鉛工業社製のCGC-20、CGC-50、CGB-20、CGB-50が挙げられる。土状黒鉛としては、日本黒鉛工業社製の青P、AP、AOP、P#1、中越黒鉛社製のAPR、S-3、AP-6、300Fが挙げられる。人造黒鉛としては、日本黒鉛工業社製のPAG-60、PAG-80、PAG-120、PAG-5、HAG-10W、HAG-150、中越黒鉛社製のRA-3000、RA-15、RA-44、GX-600、G-6S、G-3、G-150、G-100、G-48、G-30、G-50、SECカーボン社製のSGP-100、SGP-50、SGP-25、SGP-15、SGP-5、SGP-1、SGO-100、SGO-50、SGO-25、SGO-15、SGO-5、SGO-1、SGX-100、SGX-50、SGX-25、SGX-15、SGX-5、SGX-1が挙げられる。これらを単独または2種以上を併用して使用することができる。 As commercially available graphite, for example, as flaky graphite, CMX, UP-5, UP-10, UP-20, UP-35N, CSSP, CSPE, CSP, CP, CPB, UCP, J manufactured by Nippon Graphite Industry Co., Ltd. - CPB, CB-150, CB-100, ACP, ACP-1000, ACB-50, ACB-100, ACB-150, SP-10, SP-20, SP-5030, J-SP, SP-270, HOP , GR-60, LEP, F # 1, F # 2, F # 3, CX-3000 manufactured by Chuetsu Graphite Co., Ltd., FBF, BF, CBR, SSC-3000, SSC-600, SSC-3, SSC, CX- 600, CPF-8, CPF-3, CPB-6S, CPB, 96E, 96L, 96L-3, 90L-3, CPC, S-87, K-3, CF-80, CF-48, CF-32, CP-150, CP-100, CP, HF-80, HF-48, HF-32, SC-120, SC-80, SC-60, SC-32, CNP15, CNP7, Z- 5F, EC1500, EC1000, EC500, EC300, EC100, EC50, Nishimura Graphite 10099M, PB-99, and the like. Spherical natural graphite includes CGC-20, CGC-50, CGB-20 and CGB-50 manufactured by Nippon Graphite Industry Co., Ltd. Examples of earthy graphite include Blue P, AP, AOP, and P#1 manufactured by Nippon Graphite Industry Co., Ltd., and APR, S-3, AP-6, and 300F manufactured by Chuetsu Graphite Co., Ltd. As artificial graphite, PAG-60, PAG-80, PAG-120, PAG-5, HAG-10W, HAG-150 manufactured by Nippon Graphite Industry Co., Ltd., RA-3000 manufactured by Chuetsu Graphite Co., RA-15, RA- 44, GX-600, G-6S, G-3, G-150, G-100, G-48, G-30, G-50, SGP-100, SGP-50, SGP-25 manufactured by SEC Carbon , SGP-15, SGP-5, SGP-1, SGO-100, SGO-50, SGO-25, SGO-15, SGO-5, SGO-1, SGX-100, SGX-50, SGX-25, SGX -15, SGX-5, SGX-1. These can be used alone or in combination of two or more.
 黒鉛の比表面積は、値が大きいほど、電気化学反応の起きる面積が大きくなるため、感度を上げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、好ましくは1m/g以上、より好ましくは5m/g以上、更に好ましくは10m/g以上のものを使用することが望ましい。比表面積が1m/gを下回る黒鉛を用いると、十分な感度を得ることが難しくなる場合がある。また、300m/gを超える黒鉛は、市販材料での入手が困難となる場合がある。 The larger the specific surface area of graphite, the larger the area where the electrochemical reaction occurs, which is advantageous for increasing the sensitivity. Specifically, the specific surface area (BET) determined from the nitrogen adsorption amount is preferably 1 m 2 /g or more, more preferably 5 m 2 /g or more, and still more preferably 10 m 2 /g or more. is desirable. If graphite with a specific surface area of less than 1 m 2 /g is used, it may become difficult to obtain sufficient sensitivity. Graphite with a density exceeding 300 m 2 /g may be difficult to obtain as a commercial material.
 炭素材料の合計100質量%中の黒鉛の含有量は、密着性及び導電性の点から、好ましくは25~99質量%であり、より好ましくは50~96質量%である。 The content of graphite in the total 100% by mass of the carbon material is preferably 25 to 99% by mass, more preferably 50 to 96% by mass, from the viewpoint of adhesion and conductivity.
 黒鉛以外の炭素材料(A-b)はカーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、グラフェン、フラーレン等が挙げられ、コストや導電性などの観点から、カーボンブラック又は導電性炭素繊維が好ましい。 Examples of carbon materials (Ab) other than graphite include carbon black, conductive carbon fibers (carbon nanotubes, carbon nanofibers, carbon fibers), graphene, and fullerene. Conductive carbon fibers are preferred.
 カーボンブラックとしては、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、アセチレンガスを原料とするアセチレンブラックなどの各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。
 カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。
As carbon black, furnace black produced by continuously pyrolyzing gaseous or liquid raw materials in a reactor, especially ketjen black made from ethylene heavy oil as a raw material, raw material gas is burned, and the flame is applied to the bottom surface of the channel steel. Channel black precipitated by quenching after exposure to heat, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, acetylene black made from acetylene gas, etc. The above can be used in combination. In addition, carbon black subjected to oxidation treatment, hollow carbon, and the like, which are commonly used, can also be used.
Oxidation treatment of carbon is carried out by subjecting carbon to high temperature treatment in the air, or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., to remove, for example, phenol groups, quinone groups, carboxyl groups, and carbonyl groups. This is a treatment for directly introducing (covalently bonding) oxygen-containing polar functional groups to the surface of carbon, and is commonly used to improve the dispersibility of carbon. However, since the conductivity of carbon generally decreases as the amount of functional groups introduced increases, it is preferable to use carbon that has not been oxidized.
 カーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。また、比表面積の値が大きいほど、電気化学反応の起きる面積が大きくなるため、感度を上げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、好ましくは10m/g以上のものを使用することが望ましい。比表面積が10m/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合がある。また、1500m/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。
 また、カーボンブラックの粒径は、一次粒子径で0.005~1μmが好ましく、特に、0.01~0.2μmが好ましい。特に、前記黒鉛(A-a)よりも小さい粒径のカーボンブラックを用いることで、黒鉛(A-a)の隙間にカーボンブラックが入り込んで充填率が高まり、導電性が向上する。なお、ここでいう一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。
As the specific surface area of carbon black increases, the number of contact points between carbon black particles increases, which is advantageous for lowering the internal resistance of the electrode. Also, the larger the specific surface area, the larger the area where the electrochemical reaction occurs, which is advantageous for increasing the sensitivity. Specifically, it is desirable to use a specific surface area (BET) of 10 m 2 /g or more, which is determined from the nitrogen adsorption amount. If carbon black with a specific surface area of less than 10 m 2 /g is used, it may become difficult to obtain sufficient electrical conductivity. Moreover, carbon black exceeding 1500 m 2 /g may be difficult to obtain as a commercial material.
The primary particle size of carbon black is preferably 0.005 to 1 μm, more preferably 0.01 to 0.2 μm. In particular, by using carbon black having a particle size smaller than that of the graphite (Aa), the carbon black enters the gaps of the graphite (Aa), thereby increasing the filling rate and improving the electrical conductivity. The primary particle size referred to here is the average particle size measured with an electron microscope or the like.
 市販のカーボンブラックとしては、例えば、ケッチェンブラックとして、東海カーボン社製のトーカブラック#4400、#4500、#5500、デグサ社製のプリンテックスL、三菱ケミカル社製の#2350、#2400B、#2600B、#3050B、#3230B、#3350B、#3400B、#5400B、キャボット社製のVulcanXC-72R、BlackPearls2000、TIMCAL社製のEnsaco250G、等のファーネスブラック、ライオン・スペシャリティ・ケミカルズ社製のEC-200L、EC-300J、EC-600JD等、アセチレンブラックとして、デンカ社製のデンカブラックHS-100、デンカブラックLi-400、デンカブラックFX-35等のが挙げられ、1種単独で、または2種以上を組み合わせて用いてもよい。 Commercially available carbon blacks include, for example, Ketjenblack Toka Black #4400, #4500, #5500 manufactured by Tokai Carbon Co., Ltd.; Printex L manufactured by Degussa; #2350, #2400B, # manufactured by Mitsubishi Chemical Corporation; 2600B, #3050B, #3230B, #3350B, #3400B, #5400B, Vulcan XC-72R manufactured by Cabot Corporation, BlackPearls 2000, Ensaco 250G manufactured by TIMCAL, etc. Furnace black, EC-200L manufactured by Lion Specialty Chemicals, EC-300J, EC-600JD, etc., and acetylene blacks include Denka Black HS-100, Denka Black Li-400, Denka Black FX-35, etc. manufactured by Denka Co., Ltd., and may be used alone or in combination of two or more. They may be used in combination.
 導電性炭素繊維としては石油由来の原料から焼成して得られるものがよく、植物由来の原料からも焼成して得られるものを用いてもよい。また、カーボンナノチューブは、グラフェンシートが一層でナノメートル領域の直径を有するチューブを形成した単層カーボンナノチューブ、グラフェンシートが多層である多層カーボンナノチューブが挙げられる。単層カーボンナノチューブの直径は0.7~2.0nmが好ましく、多層カーボンナノチューブの直径は30nm程度が好ましい。 As the conductive carbon fiber, those obtained by sintering petroleum-derived raw materials are good, and those obtained by sintering plant-derived raw materials may also be used. Examples of carbon nanotubes include single-walled carbon nanotubes in which a single graphene sheet forms a tube having a diameter in the nanometer range, and multi-walled carbon nanotubes in which multiple graphene sheets are used. The diameter of single-walled carbon nanotubes is preferably 0.7 to 2.0 nm, and the diameter of multi-walled carbon nanotubes is preferably about 30 nm.
 市販の導電性炭素繊維やカーボンナノチューブとしては、昭和電工社製のVGCF等の気相法炭素繊維、名城ナノカーボン社製のEC1.0,EC1.5,EC2.0,EC1.5-P等の単層カーボンナノチューブ、CNano社製のFloTube9000、FloTube9100、FloTube9110、FloTube9200、Nanocyl社製のNC7000、Knano社製の100T等が挙げられる。 Commercially available conductive carbon fibers and carbon nanotubes include vapor grown carbon fibers such as VGCF manufactured by Showa Denko Co., Ltd., EC1.0, EC1.5, EC2.0, EC1.5-P manufactured by Meijo Nano Carbon, etc. , FloTube9000, FloTube9100, FloTube9110, FloTube9200 manufactured by CNano, NC7000 manufactured by Nanocyl, 100T manufactured by Knano, and the like.
 炭素材料の合計100質量%中の黒鉛以外の炭素材料(A-b)含有率は、導電性や非導電性基材への密着性等から、1~75質量%が好ましく、4~50質量%が更に好ましい。また、感度等の観点から電極100質量%中に含まれる炭素材料は、50~98質量%が好ましく、60~95質量%が更に好ましい。 The content of carbon materials (Ab) other than graphite in the total 100% by mass of the carbon materials is preferably 1 to 75% by mass, and 4 to 50% by mass, from the viewpoint of conductivity and adhesion to non-conductive substrates. % is more preferred. From the viewpoint of sensitivity and the like, the carbon material contained in 100% by mass of the electrode is preferably 50 to 98% by mass, more preferably 60 to 95% by mass.
<水性樹脂微粒子>
 水性樹脂微粒子は、樹脂が水性液状媒体中で溶解せずに微粒子の状態で存在するもので、その分散体は一般的に水性エマルションとも呼ばれる。
 エマルションを構成する水性樹脂微粒子(乳化重合物)としては、(メタ)アクリル系乳化重合物、ニトリル系乳化重合物、ウレタン系乳化重合物、ジエン系乳化重合物(スチレンブタジエンゴム(SBR)など)、フッ素系乳化重合物(ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン(PTFE)など)等が挙げられる。水溶性高分子と異なり、エマルションは粒子間の結着性と柔軟性(膜の可とう性)に優れるも点で好ましい。なお、(メタ)アクリル系乳化重合物とは、アクリル系乳化重合物と、メタアクリル系乳化重合物の総称である。水性液状媒体中の分散性や密着性などの点から、(メタ)アクリル系乳化重合物が好ましい。
<Aqueous resin microparticles>
Aqueous resin fine particles are those in which a resin does not dissolve in an aqueous liquid medium and exists in the state of fine particles, and its dispersion is generally called an aqueous emulsion.
The water-based resin fine particles (emulsion polymers) constituting the emulsion include (meth)acrylic emulsion polymers, nitrile emulsion polymers, urethane emulsion polymers, diene emulsion polymers (styrene-butadiene rubber (SBR), etc.). , fluorine-based emulsion polymers (polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), etc.), and the like. Unlike water-soluble polymers, emulsions are preferable because they are excellent in adhesion between particles and in flexibility (flexibility of membranes). The (meth)acrylic emulsion polymer is a general term for acrylic emulsion polymer and methacrylic emulsion polymer. A (meth)acrylic emulsion polymer is preferred from the viewpoint of dispersibility in an aqueous liquid medium and adhesion.
(水性樹脂微粒子の粒子構造)
 水性樹脂微粒子の粒子構造は、多層構造、いわゆるコアシェル粒子であってもよい。例えば、コア部、またはシェル部に官能基を有する単量体を主に重合させた樹脂を局在化させたり、コアとシェルによってTgや組成に差を設けたりすることにより、硬化性、乾燥性、成膜性、バインダーの機械強度を向上させることができる。
(Particle structure of aqueous resin fine particles)
The particle structure of the aqueous resin fine particles may be a multi-layered structure, so-called core-shell particles. For example, by localizing a resin obtained by mainly polymerizing a monomer having a functional group in the core or shell, or by providing a difference in Tg or composition between the core and the shell, curability and drying can be improved. properties, film formability, and mechanical strength of the binder can be improved.
(水性樹脂微粒子の粒子径)
 水性樹脂微粒子の平均粒子径は、結着性や粒子の安定性の点から、10~500nmであることが好ましく、10~300nmがより好ましい。また、1μmを超えるような粗大粒子が多く含有されるようになると粒子の安定性が損なわれるので、1μmを超える粗大粒子は多くとも5%以下であることが好ましい。なお、本発明における平均粒子径とは、体積平均粒子径のことを表し、動的光散乱法により測定できる。
(Particle diameter of aqueous resin fine particles)
The average particle size of the aqueous resin fine particles is preferably 10 to 500 nm, more preferably 10 to 300 nm, from the viewpoint of binding properties and particle stability. Also, if a large amount of coarse particles exceeding 1 μm is contained, the stability of the particles is impaired, so the content of coarse particles exceeding 1 μm is preferably 5% or less. The average particle size in the present invention means volume average particle size, which can be measured by a dynamic light scattering method.
 動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。水性樹脂微粒子分散液は固形分に応じて200~1000倍に水希釈しておく。該希釈液約5mlを測定装置[(株)日機装社製マイクロトラック]のセルに注入し、サンプルに応じた溶剤(本発明では水)および樹脂の屈折率条件を入力後、測定を行う。この時得られた体積粒子径分布データ(ヒストグラム)のピークを本発明の平均粒子径とする。 Measurement of the average particle size by the dynamic light scattering method can be performed as follows. The aqueous resin fine particle dispersion is diluted with water 200 to 1000 times in accordance with the solid content. About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrac manufactured by Nikkiso Co., Ltd.], and the solvent (water in the present invention) and the refractive index conditions of the resin are input according to the sample, and then the measurement is performed. The peak of the volume particle size distribution data (histogram) obtained at this time is taken as the average particle size of the present invention.
((メタ)アクリル系乳化重合物)
 本発明において(メタ)アクリル系乳化重合物とは、(メタ)アクリロイル基を有する単量体由来の構成単位を10質量%以上含有する乳化重合物であり、好ましくは(メタ)アクリロイル基を有する単量体由来の構成単位を20質量%以上、更に好ましくは30質量%以上である。(メタ)アクリロイル基を有する単量体は反応性に優れるため、樹脂微粒子を比較的容易に作製することができる。また、(メタ)アクリル系乳化重合物による塗膜は密着性や可撓性に優れる。
((Meth)acrylic emulsion polymer)
In the present invention, the (meth)acrylic emulsion polymer is an emulsion polymer containing 10% by mass or more of constituent units derived from a monomer having a (meth)acryloyl group, preferably having a (meth)acryloyl group. The monomer-derived structural unit is 20% by mass or more, more preferably 30% by mass or more. Since a monomer having a (meth)acryloyl group is excellent in reactivity, resin fine particles can be produced relatively easily. Also, a coating film made of a (meth)acrylic emulsion polymer is excellent in adhesion and flexibility.
 (メタ)アクリル系乳化重合物を使用する場合、以下で説明する架橋型樹脂微粒子を含むことが好ましい。架橋型樹脂微粒子とは、内部架橋構造(三次元架橋構造)を有する樹脂微粒子を示し、粒子内部で架橋していることが重要である。架橋型樹脂微粒子が架橋構造をとることにより耐電解液溶出性を確保することができ、粒子内部の架橋を調整することでその効果を高めることができる。また、架橋型樹脂微粒子が特定の官能基を含有することにより、基材、または他の電極構成材料との密着性に寄与することができる。さらには架橋構造や官能基の量を調整することで、酵素センサーの耐久性に優れた合材インキを得ることができる。
 また、架橋には粒子同士の架橋(粒子間架橋)を併用することもできるが、この場合、多くは架橋剤をあとで添加するため、架橋剤成分の電解液への漏出や電極作製時のバラツキが生じる場合もある。このため、架橋剤は耐電解液性を損なわない程度に用いる必要がある。
When a (meth)acrylic emulsion polymer is used, it preferably contains crosslinked resin fine particles described below. Crosslinkable resin fine particles refer to resin fine particles having an internal crosslinked structure (three-dimensional crosslinked structure), and it is important that the particles are internally crosslinked. When the crosslinked resin fine particles have a crosslinked structure, it is possible to ensure resistance to electrolyte solution elution, and the effect can be enhanced by adjusting the crosslinkage inside the particles. In addition, by containing a specific functional group in the crosslinked resin fine particles, it is possible to contribute to adhesion to the base material or other electrode constituent materials. Furthermore, by adjusting the crosslinked structure and the amount of functional groups, it is possible to obtain a composite ink with excellent durability of the enzyme sensor.
In addition, cross-linking between particles (inter-particle cross-linking) can be used in combination with cross-linking. Variation may also occur. Therefore, the cross-linking agent must be used to such an extent that it does not impair the electrolyte resistance.
 本発明で好適に使用される(メタ)アクリル系乳化重合物中の架橋型樹脂微粒子は、エチレン性不飽和単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合して得られる樹脂微粒子である。本発明で好適に使用される(メタ)アクリル系乳化重合物は、下記単量体(C1)および(C2)を下記割合で含むエチレン性不飽和単量体を乳化重合することにより得ることが好ましい。
 (C1)単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)からなる群より選ばれる少なくとも1つの単量体:0.1~5質量%
 (C2)前記単量体(c1)~(c2)以外のエチレン性不飽和単量体(c3):95~99.9質量%
 (但し、前記(c1)~(c3)の合計を100質量%とする)
The crosslinkable resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention are obtained by emulsion polymerization of an ethylenically unsaturated monomer in water with a radical polymerization initiator in the presence of a surfactant. It is a resin fine particle obtained by The (meth)acrylic emulsion polymer preferably used in the present invention can be obtained by emulsion polymerization of ethylenically unsaturated monomers containing the following monomers (C1) and (C2) in the following proportions: preferable.
(C1) from the group consisting of an ethylenically unsaturated monomer (c1) having a monofunctional or polyfunctional alkoxysilyl group and a monomer (c2) having two or more ethylenically unsaturated groups in one molecule At least one selected monomer: 0.1 to 5% by mass
(C2) Ethylenically unsaturated monomer (c3) other than the monomers (c1) to (c2): 95 to 99.9% by mass
(However, the total of (c1) to (c3) is 100% by mass)
 本発明で好適に使用される(メタ)アクリル系乳化重合物中の架橋型樹脂微粒子を構成するエチレン性不飽和単量体のうち(c1)、(c3)は、特に断らない限り、1分子中に1つのエチレン性不飽和基を有する単量体のことを示す。 Among the ethylenically unsaturated monomers constituting the crosslinkable resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention, each of (c1) and (c3) is one molecule unless otherwise specified. Indicates a monomer having one ethylenically unsaturated group in it.
・単量体群(C1)
 単量体群(C1)に含まれる単量体の有する官能基(アルコキシシリル基、エチレン性不飽和基)は、自己架橋型反応性官能基であり、主に粒子合成中における粒子内部架橋を形成する効果がある。粒子の内部架橋を十分に行うことで、耐電解液性を向上させることができる。したがって、単量体群(C1)に含まれる単量体を使用することで架橋型樹脂微粒子とすることができる。また、粒子架橋を十分に行うことで、耐電解液性を向上させることができる。
・Monomer group (C1)
The functional group (alkoxysilyl group, ethylenically unsaturated group) possessed by the monomers contained in the monomer group (C1) is a self-crosslinking reactive functional group, and mainly causes internal cross-linking during particle synthesis. have the effect of forming Sufficient internal cross-linking of the particles can improve electrolyte resistance. Therefore, by using the monomers contained in the monomer group (C1), crosslinked resin fine particles can be obtained. In addition, the electrolytic solution resistance can be improved by sufficiently performing particle cross-linking.
 1分子中に1つのエチレン性不飽和基と、アルコキシシリル基とを有する単量体(c1)としては、例えば、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリブトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシメチルトリメトキシシラン、γ-アクリロキシメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシランなどがあげられる。 Examples of the monomer (c1) having one ethylenically unsaturated group and an alkoxysilyl group in one molecule include γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ- Methacryloxypropyltributoxysilane, γ-Methacryloxypropylmethyldimethoxysilane, γ-Methacryloxypropylmethyldiethoxysilane, γ-Acryloxypropyltrimethoxysilane, γ-Acryloxypropyltriethoxysilane, γ-Acryloxypropylmethyl Dimethoxysilane, γ-methacryloxymethyltrimethoxysilane, γ-acryloxymethyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinylmethyldimethoxysilane and the like.
 1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)としては、例えば、(メタ)アクリル酸アリル、(メタ)アクリル酸1-メチルアリル、(メタ)アクリル酸2-メチルアリル、(メタ)アクリル酸1-ブテニル、(メタ)アクリル酸2-ブテニル、(メタ)アクリル酸3-ブテニル、(メタ)アクリル酸1,3-メチル-3-ブテニル、(メタ)アクリル酸2-クロルアリル、(メタ)アクリル酸3-クロルアリル、(メタ)アクリル酸o-アリルフェニル、(メタ)アクリル酸2-(アリルオキシ)エチル、(メタ)アクリル酸アリルラクチル、(メタ)アクリル酸シトロネリル、(メタ)アクリル酸ゲラニル、(メタ)アクリル酸ロジニル、(メタ)アクリル酸シンナミル、ジアリルマレエート、ジアリルイタコン酸、(メタ)アクリル酸ビニル、クロトン酸ビニル、オレイン酸ビニル,リノレン酸ビニル、(メタ)アクリル酸2-(2’-ビニロキシエトキシ)エチルなどのエチレン性不飽和基含有(メタ)アクリル酸エステル類;ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸トリエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸ペンタエリスリトール、ジアクリル酸1,1,1-トリスヒドロキシメチルエタン、トリアクリル酸1,1,1-トリスヒドロキシメチルエタン、1,1,1-トリスヒドロキシメチルプロパントリアクリル酸などの多官能(メタ)アクリル酸エステル類;ジビニルベンゼン、アジピン酸ジビニルなどのジビニル類;イソフタル酸ジアリル、フタル酸ジアリル、マレイン酸ジアリルなどのジアリル類などがあげられる。 Examples of the monomer (c2) having two or more ethylenically unsaturated groups in one molecule include allyl (meth)acrylate, 1-methylallyl (meth)acrylate, and 2-methylallyl (meth)acrylate. , 1-butenyl (meth)acrylate, 2-butenyl (meth)acrylate, 3-butenyl (meth)acrylate, 1,3-methyl-3-butenyl (meth)acrylate, 2- (meth)acrylate Chlorallyl, 3-chloroallyl (meth)acrylate, o-allylphenyl (meth)acrylate, 2-(allyloxy)ethyl (meth)acrylate, allyllactyl (meth)acrylate, citronellyl (meth)acrylate, (meth)acrylate Geranyl acrylate, rhodinyl (meth)acrylate, cinnamyl (meth)acrylate, diallyl maleate, diallylitaconic acid, vinyl (meth)acrylate, vinyl crotonate, vinyl oleate, vinyl linolenate, (meth)acrylic acid Ethylenically unsaturated group-containing (meth)acrylic acid esters such as 2-(2'-vinyloxyethoxy)ethyl; ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, di(meth) Tetraethylene glycol acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, 1,1,1-trishydroxymethylethane diacrylate, 1,1,1-trishydroxymethyl triacrylate Polyfunctional (meth)acrylic acid esters such as ethane and 1,1,1-trishydroxymethylpropane triacrylic acid; Divinyls such as divinylbenzene and divinyl adipate; Diallyl isophthalate, Diallyl phthalate, Diallyl maleate, etc. and diallyls of
 単量体(c1)または単量体(c2)中のアルコキシシリル基またはエチレン性不飽和基は、主に重合中にそれぞれが自己縮合、または重合して粒子に架橋構造を導入することを目的としているが、その一部が重合後にも粒子内部や表面に残存していてもよい。残存したアルコキシシリル基、またはエチレン性不飽和基は、バインダー組成物の粒子間架橋に寄与する。特にアルコキシシリル基は基材への密着性向上に寄与する効果があるため好ましい。 The alkoxysilyl group or ethylenically unsaturated group in the monomer (c1) or the monomer (c2) is mainly intended to self-condense or polymerize during polymerization to introduce a crosslinked structure into the particles. However, a part thereof may remain inside or on the surface of the particles even after the polymerization. The remaining alkoxysilyl groups or ethylenically unsaturated groups contribute to cross-linking between particles of the binder composition. In particular, an alkoxysilyl group is preferable because it has the effect of contributing to the improvement of adhesion to the substrate.
 本発明では、単量体群(C1)に含まれる単量体は、乳化重合に使用するエチレン性不飽和単量体全体(合計100質量%)中に0.1~5質量%使用されることを特徴とする。好ましくは0.5~3質量%である。 In the present invention, the monomers contained in the monomer group (C1) are used in the total ethylenically unsaturated monomers used for emulsion polymerization (total 100% by mass) in an amount of 0.1 to 5% by mass. It is characterized by It is preferably 0.5 to 3% by mass.
・単量体群(C2)
 本発明で好適に使用される(メタ)アクリル系乳化重合物中の架橋型樹脂微粒子は、上述した1分子中に1つのエチレン性不飽和基と、アルコキシシリル基とを有する単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)に加えて、単量体群(C2)として、単量体(c1)、(c2)以外の、エチレン性不飽和基を有する単量体(c3)を同時に乳化重合することで得ることができる。
・Monomer group (C2)
The crosslinkable resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention are the monomers (c1 ), and in addition to the monomer (c2) having two or more ethylenically unsaturated groups in one molecule, as the monomer group (C2), the monomers (c1) and (c2) other than It can be obtained by simultaneously emulsion-polymerizing the monomer (c3) having an ethylenically unsaturated group.
 この単量体(c3)としては、単量体(c1)、(c2)以外であって、エチレン性不飽和基を有する単量体であれば特に限定されないが、例えば、1分子中に1つのエチレン性不飽和基と、単官能または多官能エポキシ基とを有する単量体(c4)、1分子中に1つのエチレン性不飽和基と、単官能または多官能アミド基とを有する単量体(c5)、および1分子中に1つのエチレン性不飽和基と、単官能または多官能水酸基とを有する単量体(c6)からなる群より選ばれる少なくとも1つの単量体、および、単量体(c1)、(c2)、(c4)~(c6)以外の、エチレン性不飽和基を有する単量体(c7)を使用することができる。
 単量体(c4)~(c6)を使用することにより、エポキシ基、アミド基、または水酸基を架橋型樹脂微粒子の粒子内や表面に残存させることができ、これにより基材の密着性などの物性を向上させることができる。単量体(c4)~(c6)は、粒子合成後でもその官能基が粒子内部や表面に残存しやすく、少量でも基材への密着性効果が大きい。また、その一部が架橋反応に使用されてもよく、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。
The monomer (c3) is not particularly limited as long as it is a monomer other than the monomers (c1) and (c2) and has an ethylenically unsaturated group. A monomer (c4) having one ethylenically unsaturated group and a monofunctional or polyfunctional epoxy group, a monomer having one ethylenically unsaturated group and a monofunctional or polyfunctional amide group in one molecule body (c5), and at least one monomer selected from the group consisting of a monomer (c6) having one ethylenically unsaturated group and a monofunctional or polyfunctional hydroxyl group in one molecule, and a monomer A monomer (c7) having an ethylenically unsaturated group can be used other than the monomers (c1), (c2), (c4) to (c6).
By using the monomers (c4) to (c6), an epoxy group, an amide group, or a hydroxyl group can remain inside or on the surface of the crosslinked resin fine particles, thereby improving the adhesion of the substrate. Physical properties can be improved. The functional groups of the monomers (c4) to (c6) tend to remain inside or on the surface of the particles even after the synthesis of the particles, and even in small amounts, the effect of adhesion to the substrate is large. Moreover, a part thereof may be used for a cross-linking reaction, and by adjusting the degree of cross-linking of these functional groups, it is possible to balance electrolyte resistance and adhesion.
 1分子中に1つのエチレン性不飽和基と、単官能または多官能エポキシ基とを有する単量体(c4)としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレートなどがあげられる。 Examples of the monomer (c4) having one ethylenically unsaturated group in one molecule and a monofunctional or polyfunctional epoxy group include glycidyl (meth)acrylate and 3,4-epoxycyclohexyl (meth)acrylate. etc.
 1分子中に1つのエチレン性不飽和基と、単官能または多官能アミド基とを有する単量体(c5)としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有エチレン性不飽和単量体;N-メチロールアクリルアミド、N,N-ジ(メチロール)アクリルアミド、N-メチロール-N-メトキシメチル(メタ)アクリルアミドなどのアルキロールは、例えば、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、スチレン、α-メチルスチレン、2-メチルスチレン、クロロスチレン、アリルベンゼン、エチニルベンゼンなどが挙げられる。 Examples of the monomer (c5) having one ethylenically unsaturated group and a monofunctional or polyfunctional amide group in one molecule include primary amide group-containing ethylenically unsaturated monomers such as (meth)acrylamide. Alkylol such as N-methylolacrylamide, N,N-di(methylol)acrylamide, N-methylol-N-methoxymethyl(meth)acrylamide, for example, benzyl(meth)acrylate, phenoxyethyl(meth)acrylate , styrene, α-methylstyrene, 2-methylstyrene, chlorostyrene, allylbenzene, ethynylbenzene and the like.
 上記単量体(c8)、単量体(c9)以外の単量体(c7)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘプチル(メタ)アクリレートなどのアルキル基含有エチレン性不飽和単量体;(メタ)アクリロニトリルなどのニトリル基含有エチレン性不飽和単量体;パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2-パーフルオロブチルエチル(メタ)アクリレート、2-パーフルオロヘキシルエチル(メタ)アクリレート、2-パーフルオロオクチルエチル(メタ)アクリレート、2-パーフルオロイソノニルエチル(メタ)アクリレート、2-パーフルオロノニルエチル(メタ)アクリレート、2-パーフルオロデシルエチル(メタ)アクリレート、パーフルオロプロピルプロピル(メタ)アクリレート、パーフルオロオクチルプロピル(メタ)アクリレート、パーフルオロオクチルアミル(メタ)アクリレート、パーフルオロオクチルウンデシル(メタ)アクリレートなどの炭素数1~20のパーフルオロアルキル基を有するパーフルオロアルキル基含有エチレン性不飽和単量体;パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレンなどのパーフルオロアルキル、アルキレン類などのパーフルオロアルキル基含有エチレン性不飽和化合物;ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレート、n-ブトキシポリエチレングリコール(メタ)アクリレート、n-ペンタキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシポリプロピレングリコール(メタ)アクリレート、n-ブトキシポリプロピレングリコール(メタ)アクリレート、n-ペンタキシポリプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート、メトキシポリテトラメチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ヘキサエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレートなどのポリエーテル鎖を有するエチレン性不飽和化合物;ラクトン変性(メタ)アクリレートなどのポリエステル鎖を有するエチレン性不飽和化合物;(メタ)アクリル酸ジメチルアミノエチルメチルクロライド塩、トリメチル-3-(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)アンモニウムクロライド、トリメチル-3-(1-(メタ)アクリルアミドプロピル)アンモニウムクロライド、およびトリメチル-3-(1-(メタ)アクリルアミド-1,1-ジメチルエチル)アンモニウムクロライドなどの四級アンモニウム塩基含有エチレン性不飽和化合物;酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルなどの脂肪酸ビニル系化合物;ブチルビニルエーテル、エチルビニルエーテルなどのビニルエーテル系エチレン性不飽和単量体;1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセンなどのα-オレフィン系エチレン性不飽和単量体;酢酸アリル、シアン化アリルなどのアリル単量体;シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトンなどのビニル単量体;アセチレン、エチニルトルエンなどのエチニル単量体などがあげられる。 Examples of the monomer (c7) other than the monomer (c8) and the monomer (c9) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) ) alkyl group-containing ethylenically unsaturated monomers such as acrylate, pentyl (meth) acrylate, heptyl (meth) acrylate; (meth) acrylonitrile and other nitrile group-containing ethylenically unsaturated monomers; ) acrylate, perfluoroethylmethyl (meth)acrylate, 2-perfluorobutylethyl (meth)acrylate, 2-perfluorohexylethyl (meth)acrylate, 2-perfluorooctylethyl (meth)acrylate, 2-perfluoroiso nonylethyl (meth)acrylate, 2-perfluorononylethyl (meth)acrylate, 2-perfluorodecylethyl (meth)acrylate, perfluoropropylpropyl (meth)acrylate, perfluorooctylpropyl (meth)acrylate, perfluorooctyl Perfluoroalkyl group-containing ethylenically unsaturated monomers having a perfluoroalkyl group having 1 to 20 carbon atoms such as amyl (meth)acrylate and perfluorooctylundecyl (meth)acrylate; perfluorobutylethylene, perfluorohexyl Perfluoroalkyl group-containing ethylenically unsaturated compounds such as ethylene, perfluoroalkyls such as perfluorooctylethylene and perfluorodecylethylene, and alkylenes; polyethylene glycol (meth)acrylate, methoxypolyethyleneglycol (meth)acrylate, ethoxypolyethylene glycol (meth) acrylate, propoxy polyethylene glycol (meth) acrylate, n-butoxy polyethylene glycol (meth) acrylate, n-pentoxy polyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, methoxy polypropylene glycol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate, propoxy polypropylene glycol (meth) acrylate, n-butoxy polypropylene glycol (meth) acrylate, n-pentoxy polypropylene glycol (meth) acrylate, phenoxy polypropylene glycol polytetramethylene glycol (meth)acrylate, methoxypolytetramethylene glycol (meth)acrylate, phenoxytetraethyleneglycol (meth)acrylate, hexaethyleneglycol (meth)acrylate, methoxyhexaethyleneglycol (meth)acrylate Ethylenically unsaturated compound having a polyether chain such as acrylate; Ethylenically unsaturated compound having a polyester chain such as lactone-modified (meth)acrylate; (meth)acrylic acid dimethylaminoethylmethyl chloride salt, trimethyl-3-(1 - (meth)acrylamido-1,1-dimethylpropyl)ammonium chloride, trimethyl-3-(1-(meth)acrylamidopropyl)ammonium chloride, and trimethyl-3-(1-(meth)acrylamidopropyl)ammonium chloride ethylenically unsaturated compounds containing quaternary ammonium bases such as ethyl)ammonium chloride; fatty acid vinyls such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl hexanoate, vinyl caprylate, vinyl laurate, vinyl palmitate, vinyl stearate vinyl ether-based ethylenically unsaturated monomers such as butyl vinyl ether and ethyl vinyl ether; allyl monomers such as allyl acetate and allyl cyanide; vinyl monomers such as vinyl cyanide, vinylcyclohexane and vinyl methyl ketone; ethynyl monomers such as acetylene and ethynyltoluene. be done.
 また、上記単量体(c8)、単量体(c9)以外の単量体(c7)としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、または、これらのアルキルもしくはアルケニルモノエステル、フタル酸β-(メタ)アクリロキシエチルモノエステル、イソフタル酸β-(メタ)アクリロキシエチルモノエステル、テレフタル酸β-(メタ)アクリロキシエチルモノエステル、コハク酸β-(メタ)アクリロキシエチルモノエステル、アクリル酸、メタクリル酸、クロトン酸、けい皮酸などのカルボキシル基含有エチレン性不飽和単量体;ターシャリーブチル(メタ)アクリレートなどのターシャリーブチル基含有エチレン性不飽和単量体;ビニルスルホン酸、スチレンスルホン酸などのスルホン酸基含有エチレン性不飽和単量体;(2-ヒドロキシエチル)メタクリレートアッシドホスフェートなどのリン酸基含有エチレン性不飽和単量体;ダイアセトン(メタ)アクリルアミド、アクロレイン、N-ビニルホルムアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシプロピル(メタ)アクリレート、アセトアセトキシブチル(メタ)アクリレートなどのケト基含有エチレン性不飽和単量体(1分子中に1つのエチレン性不飽和基と、ケト基とを有する単量体)などがあげられる。 Examples of the monomer (c7) other than the monomer (c8) and the monomer (c9) include maleic acid, fumaric acid, itaconic acid, citraconic acid, and alkyl or alkenyl monoesters thereof. , β-(meth)acryloxyethyl phthalate monoester, β-(meth)acryloxyethyl isophthalate monoester, β-(meth)acryloxyethyl terephthalate monoester, β-(meth)acryloxyethyl succinate carboxyl group-containing ethylenically unsaturated monomers such as monoesters, acrylic acid, methacrylic acid, crotonic acid and cinnamic acid; tertiary-butyl group-containing ethylenically unsaturated monomers such as tert-butyl (meth)acrylate; Sulfonic acid group-containing ethylenically unsaturated monomers such as vinylsulfonic acid and styrenesulfonic acid; Phosphate group-containing ethylenically unsaturated monomers such as (2-hydroxyethyl) methacrylate acid phosphate; Diacetone (meth) Keto group-containing ethylenically unsaturated monomers such as acrylamide, acrolein, N-vinylformamide, vinyl methyl ketone, vinyl ethyl ketone, acetoacetoxyethyl (meth)acrylate, acetoacetoxypropyl (meth)acrylate, and acetoacetoxybutyl (meth)acrylate. Examples include monomers (monomers having one ethylenically unsaturated group and a keto group in one molecule).
 単量体(c7)として、ケト基含有エチレン性不飽和単量体を使用する場合、架橋剤としてケト基と反応しうるヒドラジド基を2個以上有する多官能ヒドラジド化合物をバインダー組成物に混合すると、ケト基とヒドラジド基との架橋により強靱な塗膜を得ることができる。このことにより優れた耐電解液性、結着性を有する。 When a keto group-containing ethylenically unsaturated monomer is used as the monomer (c7), a polyfunctional hydrazide compound having two or more hydrazide groups capable of reacting with the keto group is mixed with the binder composition as a cross-linking agent. A strong coating film can be obtained by cross-linking the keto group and the hydrazide group. As a result, it has excellent electrolytic solution resistance and binding properties.
 また、単量体(c7)の中でもカルボキシル基、ターシャリーブチル基(熱によりターシャリーブタノールが脱離してカルボキシル基になる。)、スルホン酸基、およびリン酸基を有するエチレン性不飽和単量体を共重合して得られた樹脂微粒子は、重合後にも粒子内や表面に前記官能基が残存し、基材の密着性などの物性を向上させる効果があると同時に、合成時の凝集を防いだり、合成後の粒子安定性を保持したりする場合あるため好ましく使用することができる。その含有率は、好ましくは0.2重量%~20重量%、更に好ましくは0.5重量%~10重量%である。 Among the monomers (c7), an ethylenically unsaturated monomer having a carboxyl group, a tertiary butyl group (the tertiary butanol is eliminated by heat to form a carboxyl group), a sulfonic acid group, and a phosphoric acid group In the fine resin particles obtained by copolymerizing the polymer, the above-mentioned functional groups remain in the particles and on the surface even after polymerization. It can be preferably used because it may prevent the formation of the particles or maintain the stability of the particles after synthesis. Its content is preferably 0.2% to 20% by weight, more preferably 0.5% to 10% by weight.
 カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基は、その一部が重合中に反応し、粒子内架橋に使われても構わない。カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基を含む単量体を用いる場合には、乳化重合に使用するエチレン性不飽和単量体全体(合計100質量%)中に0.1~10質量%含まれることが好ましく、さらには1~5質量%含まれることがより好ましい。さらにこれらの官能基は、乾燥時に反応して粒子内や粒子間の架橋に使われても構わない。 Some of the carboxyl groups, tertiary butyl groups, sulfonic acid groups, and phosphoric acid groups may react during polymerization and be used for intraparticle cross-linking. When a monomer containing a carboxyl group, a tertiary butyl group, a sulfonic acid group, and a phosphoric acid group is used, 0.0% of the total ethylenically unsaturated monomers (total 100% by mass) used for emulsion polymerization is used. It is preferably contained in an amount of 1 to 10% by mass, more preferably 1 to 5% by mass. Furthermore, these functional groups may be used for cross-linking within particles or between particles by reacting during drying.
 例えばカルボキシル基は、重合中および乾燥時にエポキシ基と反応して樹脂微粒子に架橋構造を導入できる。同様に、ターシャリーブチル基も一定温度以上の熱が加わるとターシャリーブチルアルコールが生成するとともにカルボキシル基が形成されるため、前記同様エポキシ基と反応することができる。 For example, a carboxyl group can react with an epoxy group during polymerization and drying to introduce a crosslinked structure into the resin fine particles. Similarly, when a tertiary butyl group is heated to a certain temperature or higher, tertiary butyl alcohol is produced and a carboxyl group is formed, so that it can react with an epoxy group in the same manner as described above.
 これらの単量体(c7)は、粒子の重合安定性やガラス転移温度、さらには成膜性や塗膜物性を調整するために、上記にあげたような単量体を2種以上併用して用いることができる。また、例えば(メタ)アクリロニトリルなどを併用することでゴム弾性が発現する効果がある。 These monomers (c7) are used in combination of two or more of the above-mentioned monomers in order to adjust the polymerization stability and glass transition temperature of the particles, as well as the film-forming properties and physical properties of the coating film. can be used In addition, for example, the joint use of (meth)acrylonitrile or the like has the effect of exhibiting rubber elasticity.
((メタ)アクリル系乳化重合体の製造方法)
 架橋型樹脂微粒子である(メタ)アクリル系乳化重合体は、従来既知の乳化重合方法により合成される。
(Method for producing (meth)acrylic emulsion polymer)
The (meth)acrylic emulsion polymer, which is crosslinked resin fine particles, is synthesized by a conventionally known emulsion polymerization method.
 本発明において乳化重合の際に用いられる乳化剤としては、エチレン性不飽和基を有する反応性乳化剤やエチレン性不飽和基を有しない非反応性乳化剤など、従来公知のものを任意に使用することができる。 As the emulsifier used in emulsion polymerization in the present invention, conventionally known emulsifiers such as reactive emulsifiers having ethylenically unsaturated groups and non-reactive emulsifiers having no ethylenically unsaturated groups can be arbitrarily used. can.
 エチレン性不飽和基を有する反応性乳化剤はさらに大別して、アニオン系、非イオン系のノニオン系のものが例示できる。特にエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤を用いると、共重合体の分散粒子径が微細となるとともに粒度分布が狭くなるため、耐電解液性を向上することができ好ましい。このエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤は、1種を単独で使用しても、複数種を混合して用いてもよい。 Reactive emulsifiers having an ethylenically unsaturated group can be broadly classified into anionic, nonionic, and nonionic emulsifiers. In particular, when an anionic reactive emulsifier or nonionic reactive emulsifier having an ethylenically unsaturated group is used, the dispersion particle size of the copolymer becomes finer and the particle size distribution becomes narrower, so that the electrolytic solution resistance is improved. is possible and preferable. These anionic reactive emulsifiers or nonionic reactive emulsifiers having an ethylenically unsaturated group may be used singly or in combination of two or more.
 エチレン性不飽和基を有するアニオン系反応性乳化剤の一例として、以下にその具体例を例示するが、本願発明において使用可能とする乳化剤は、以下に記載するもののみに限定されるものではない。 Specific examples of anionic reactive emulsifiers having ethylenically unsaturated groups are shown below, but emulsifiers that can be used in the present invention are not limited to those described below.
 乳化剤としては、アルキルエーテル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンKH-05、KH-10、KH-20、株式会社ADEKA製アデカリアソープSR-10N、SR-20N、花王株式会社製ラテムルPD-104など);スルフォコハク酸エステル系(市販品としては、例えば、花王株式会社製ラテムルS-120、S-120A、S-180P、S-180A、三洋化成株式会社製エレミノールJS-2など);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンH-2855A、H-3855B、H-3855C、H-3856、HS-05、HS-10、HS-20、HS-30、株式会社ADEKA製アデカリアソープSDX-222、SDX-223、SDX-232、SDX-233、SDX-259、SE-10N、SE-20N、など);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製アントックスMS-60、MS-2N、三洋化成工業株式会社製エレミノールRS-30など);リン酸エステル系(市販品としては、例えば、第一工業製薬株式会社製H-3330PL、株式会社ADEKA製アデカリアソープPP-70など)などがあげられる。 Examples of emulsifiers include alkyl ethers (commercially available products include Aqualon KH-05, KH-10, and KH-20 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Adekaria Soap SR-10N and SR-20N manufactured by ADEKA Corporation, Kao Co., Ltd. Latemul PD-104, etc.); JS-2, etc.); , HS-10, HS-20, HS-30, Adekaria Soap SDX-222, SDX-223, SDX-232, SDX-233, SDX-259, SE-10N, SE-20N, etc. manufactured by ADEKA Co., Ltd.) (Meth) acrylate sulfate ester (commercially available, for example, Antox MS-60, MS-2N manufactured by Nippon Nyukazai Co., Ltd., Eleminol RS-30 manufactured by Sanyo Chemical Industries, Ltd.); Phosphate ester (commercially available Examples of the product include H-3330PL manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., Adekari Soap PP-70 manufactured by ADEKA Co., Ltd.), and the like.
 ノニオン系反応性乳化剤としては、例えばアルキルエーテル系(市販品としては、例えば、株式会社ADEKA製アデカリアソープER-10、ER-20、ER-30、ER-40、花王株式会社製ラテムルPD-420、PD-430、PD-450など);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンRN-10、RN-20、RN-30、RN-50、株式会社ADEKA製アデカリアソープNE-10、NE-20、NE-30、NE-40など);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製RMA-564、RMA-568、RMA-1114など)などがあげられる。 Examples of nonionic reactive emulsifiers include alkyl ether-based emulsifiers (commercially available products include Adekaria Soap ER-10, ER-20, ER-30, and ER-40 manufactured by ADEKA Corporation, and Latemul PD- manufactured by Kao Corporation. 420, PD-430, PD-450, etc.); -50, Adekaria Soap NE-10, NE-20, NE-30, NE-40, etc. manufactured by ADEKA Co., Ltd.); 564, RMA-568, RMA-1114, etc.).
 (メタ)アクリル系架橋型樹脂微粒子を乳化重合により得るに際しては、前記したエチレン性不飽和基を有する反応性乳化剤とともに、必要に応じエチレン性不飽和基を有しない非反応性乳化剤を併用することができる。非反応性乳化剤は、非反応性アニオン系乳化剤と非反応性ノニオン系乳化剤とに大別することができる。 When (meth)acrylic crosslinkable resin fine particles are obtained by emulsion polymerization, a non-reactive emulsifier having no ethylenically unsaturated groups may be used in combination with the above-described reactive emulsifier having ethylenically unsaturated groups. can be done. Non-reactive emulsifiers can be broadly classified into non-reactive anionic emulsifiers and non-reactive nonionic emulsifiers.
 非反応性ノニオン系乳化剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテル類;ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエートなどのソルビタン高級脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレートなどのポリオキシエチレンソルビタン高級脂肪酸エステル類;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレートなどのポリオキシエチレン高級脂肪酸エステル類;オレイン酸モノグリセライド、ステアリン酸モノグリセライドなどのグリセリン高級脂肪酸エステル類;ポリオキシエチレン・ポリオキシプロピレン・ブロックコポリマー、ポリオキシエチレンジスチレン化フェニルエーテルなどを例示することができる。 Examples of non-reactive nonionic emulsifiers include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl ether; polyoxyethylene alkyl ethers such as polyoxyethylene octylphenyl ether and polyoxyethylene nonylphenyl ether; Phenyl ethers; sorbitan higher fatty acid esters such as sorbitan monolaurate, sorbitan monostearate and sorbitan trioleate; polyoxyethylene sorbitan higher fatty acid esters such as polyoxyethylene sorbitan monolaurate; Polyoxyethylene higher fatty acid esters such as polyoxyethylene monostearate; glycerin higher fatty acid esters such as oleic acid monoglyceride and stearic acid monoglyceride; polyoxyethylene/polyoxypropylene block copolymers, polyoxyethylene distyrenated phenyl ether etc. can be exemplified.
 また、非反応性アニオン系乳化剤の例としては、オレイン酸ナトリウムなどの高級脂肪酸塩類;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルアリールスルホン酸塩類;ラウリル硫酸ナトリウムなどのアルキル硫酸エステル塩類;ポリエキシエチレンラウリルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸エステル塩類;ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類;モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウムなどのアルキルスルホコハク酸エステル塩およびその誘導体類;ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩類などを例示することができる。 Examples of non-reactive anionic emulsifiers include higher fatty acid salts such as sodium oleate; alkylarylsulfonates such as sodium dodecylbenzenesulfonate; alkylsulfuric acid ester salts such as sodium laurylsulfate; Polyoxyethylene alkyl ether sulfate salts such as sodium sulfate; Polyoxyethylene alkyl aryl ether sulfate salts such as sodium polyoxyethylene nonylphenyl ether sulfate; sodium monooctyl sulfosuccinate, sodium dioctyl sulfosuccinate, polyoxyethylene lauryl sulfosuccinate Alkyl sulfosuccinate ester salts such as sodium and derivatives thereof; polyoxyethylene distyrenated phenyl ether sulfate ester salts and the like can be exemplified.
 乳化剤の使用量は、必ずしも限定されるものではなく、架橋型樹脂微粒子が最終的なバインダーとして使用される際に求められる物性にしたがって適宜選択できる。例えば、エチレン性不飽和単量体の合計100質量部に対して、乳化剤は通常0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましく、0.5~10質量部の範囲内であることがさらに好ましい。 The amount of emulsifier used is not necessarily limited, and can be appropriately selected according to the physical properties required when the crosslinked resin fine particles are used as the final binder. For example, the amount of the emulsifier is usually preferably 0.1 to 30 parts by mass, more preferably 0.3 to 20 parts by mass, more preferably 0.3 to 20 parts by mass, based on the total 100 parts by mass of the ethylenically unsaturated monomers. More preferably, it falls within the range of 5 to 10 parts by mass.
 (メタ)アクリル系乳化重合体の乳化重合に際しては、水溶性保護コロイドを併用することもできる。水溶性保護コロイドとしては、例えば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、変性ポリビニルアルコールなどのポリビニルアルコール類;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩などのセルロース誘導体;グアガムなどの天然多糖類などがあげられ、これらは、単独でも複数種併用の態様でも利用できる。水溶性保護コロイドの使用量としては、エチレン性不飽和単量体の合計100質量部当り0.1~5質量部であり、さらに好ましくは0.5~2質量部である。 A water-soluble protective colloid can be used in combination with the emulsion polymerization of the (meth)acrylic emulsion polymer. Examples of water-soluble protective colloids include polyvinyl alcohols such as partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol and modified polyvinyl alcohol; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose salts; Saccharides and the like can be mentioned, and these can be used either singly or in combination. The amount of the water-soluble protective colloid to be used is 0.1 to 5 parts by mass, more preferably 0.5 to 2 parts by mass, per 100 parts by mass of the ethylenically unsaturated monomer.
 (メタ)アクリル系乳化重合体の乳化重合に際して用いられる水性媒体としては、水があげられ、親水性の有機溶剤も本発明の目的を損なわない範囲で使用することができる。 The aqueous medium used for emulsion polymerization of the (meth)acrylic emulsion polymer includes water, and hydrophilic organic solvents can also be used within a range that does not impair the object of the present invention.
 (メタ)アクリル系乳化重合体を得るに際して用いられる重合開始剤としては、ラジカル重合を開始する能力を有するものであれば特に制限はなく、公知の油溶性重合開始剤や水溶性重合開始剤を使用することができる。 The polymerization initiator used for obtaining the (meth)acrylic emulsion polymer is not particularly limited as long as it has the ability to initiate radical polymerization, and known oil-soluble polymerization initiators and water-soluble polymerization initiators can be used. can be used.
 油溶性重合開始剤としては特に限定されず、例えば、ベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルハイドロパーオキサイド、tert-ブチルパーオキシ(2-エチルヘキサノエート)、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、ジ-tert-ブチルパーオキサイドなどの有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、1,1’-アゾビス-シクロヘキサン-1-カルボニトリルなどのアゾビス化合物などをあげることができる。これらは1種類または2種類以上を混合して使用することができる。これら重合開始剤は、エチレン性不飽和単量体100質量部に対して、0.1~10.0質量部の量を用いるのが好ましい。 The oil-soluble polymerization initiator is not particularly limited. Organic peroxides such as oxy-3,5,5-trimethylhexanoate and di-tert-butyl peroxide; 2,2'-azobisisobutyronitrile, 2,2'-azobis-2,4- Examples include azobis compounds such as dimethylvaleronitrile, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 1,1'-azobis-cyclohexane-1-carbonitrile, and the like. These can be used singly or in combination of two or more. These polymerization initiators are preferably used in an amount of 0.1 to 10.0 parts by mass with respect to 100 parts by mass of the ethylenically unsaturated monomer.
 本発明においては水溶性重合開始剤を使用することが好ましく、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、2,2’-アゾビス(2-メチルプロピオンアミジン)ジハイドロクロライドなど、従来既知のものを好適に使用することができる。また、乳化重合を行うに際して、所望により重合開始剤とともに還元剤を併用することができる。これにより、乳化重合速度を促進したり、低温において乳化重合を行ったりすることが容易になる。このような還元剤としては、例えば、アスコルビン酸、エルソルビン酸、酒石酸、クエン酸、ブドウ糖、ホルムアルデヒドスルホキシラートなどの金属塩などの還元性有機化合物、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウムなどの還元性無機化合物、塩化第一鉄、ロンガリット、二酸化チオ尿素などを例示できる。これら還元剤は、全エチレン性不飽和単量体100質量部に対して、0.05~5.0質量部の量を用いるのが好ましい。 In the present invention, it is preferable to use a water-soluble polymerization initiator. can be preferably used. Moreover, when performing emulsion polymerization, a reducing agent can be used together with a polymerization initiator if desired. This makes it easier to accelerate the emulsion polymerization rate and to carry out the emulsion polymerization at low temperatures. Such reducing agents include, for example, ascorbic acid, ersorbic acid, tartaric acid, citric acid, glucose, reducing organic compounds such as metal salts such as formaldehyde sulfoxylate; sodium thiosulfate, sodium sulfite, sodium bisulfite; Examples include reducing inorganic compounds such as sodium bisulfite, ferrous chloride, Rongalit, and thiourea dioxide. These reducing agents are preferably used in an amount of 0.05 to 5.0 parts by mass with respect to 100 parts by mass of all the ethylenically unsaturated monomers.
 なお、前記した重合開始剤によらずとも、光化学反応や、放射線照射などによっても重合を行うことができる。重合温度は各重合開始剤の重合開始温度以上とする。例えば、過酸化物系重合開始剤では、通常70℃程度とすればよい。重合時間は特に制限されないが、通常2~24時間である。 Polymerization can also be carried out by photochemical reaction, radiation irradiation, etc., without using the polymerization initiator described above. The polymerization temperature should be equal to or higher than the polymerization initiation temperature of each polymerization initiator. For example, in the case of a peroxide-based polymerization initiator, the temperature is usually about 70°C. Although the polymerization time is not particularly limited, it is usually 2 to 24 hours.
 さらに必要に応じて、緩衝剤として、酢酸ナトリウム、クエン酸ナトリウム、重炭酸ナトリウムなどが、また、連鎖移動剤としてのオクチルメルカプタン、チオグリコール酸2-エチルヘキシル、チオグリコール酸オクチル、ステアリルメルカプタン、ラウリルメルカプタン、t-ドデシルメルカプタンなどのメルカプタン類が適量使用できる。 Further, if necessary, buffering agents such as sodium acetate, sodium citrate, sodium bicarbonate, etc., and chain transfer agents such as octyl mercaptan, 2-ethylhexyl thioglycolate, octyl thioglycolate, stearyl mercaptan, lauryl mercaptan. , and t-dodecylmercaptan can be used in appropriate amounts.
 (メタ)アクリル系乳化重合体の重合にカルボキシル基含有エチレン性不飽和単量体などの酸性官能基を有する単量体を使用した場合、重合前や重合後に塩基性化合物で中和することができる。中和する際、アンモニアもしくはトリメチルアミン、トリエチルアミン、ブチルアミンなどのアルキルアミン類;2-ジメチルアミノエタノール、ジエタノールアミン、トリエタノールアミン、アミノメチルプロパノールなどのアルコールアミン類;モルホリンなどの塩基で中和することができる。ただし、乾燥性に効果が高いのは揮発性の高い塩基であり、好ましい塩基はアミノメチルプロパノール、アンモニアである。 When a monomer having an acidic functional group such as a carboxyl group-containing ethylenically unsaturated monomer is used in the polymerization of a (meth)acrylic emulsion polymer, it may be neutralized with a basic compound before or after the polymerization. can. When neutralizing, it can be neutralized with ammonia or alkylamines such as trimethylamine, triethylamine and butylamine; alcoholamines such as 2-dimethylaminoethanol, diethanolamine, triethanolamine and aminomethylpropanol; and bases such as morpholine. . However, highly volatile bases are highly effective for drying, and preferred bases are aminomethylpropanol and ammonia.
((メタ)アクリル系乳化重合体の特性)
 また(メタ)アクリル系乳化重合体のガラス転移温度(以下、Tgともいう)は、-50~70℃が好ましく、-30~50℃がさらに好ましい。なお、ガラス転移温度は、DSC(示差走査熱量計)を用いて求めた値である。
(Characteristics of (meth)acrylic emulsion polymer)
The glass transition temperature (hereinafter also referred to as Tg) of the (meth)acrylic emulsion polymer is preferably -50 to 70°C, more preferably -30 to 50°C. The glass transition temperature is a value determined using a DSC (differential scanning calorimeter).
 DSC(示差走査熱量計)によるガラス転移温度の測定は以下のようにして行うことができる。架橋型樹脂微粒子を乾固した樹脂約2mgをアルミニウムパン上で秤量し、該試験容器をDSC測定ホルダーにセットし、10℃/分の昇温条件にて得られるチャートの吸熱ピークを読み取る。このときのピーク温度を本発明のガラス転移温度とする。 Measurement of the glass transition temperature by DSC (differential scanning calorimeter) can be performed as follows. About 2 mg of the resin obtained by drying the crosslinked resin fine particles is weighed on an aluminum pan, the test container is set on a DSC measurement holder, and the endothermic peak of the chart obtained at a temperature increase of 10° C./min is read. Let the peak temperature at this time be the glass transition temperature of this invention.
 また、(メタ)アクリル系乳化重合体の粒子構造を多層構造、いわゆるコアシェル粒子にすることもできる。例えば、コア部、またはシェル部に官能基を有する単量体を主に重合させた樹脂を局在化させたり、コアとシェルによってTgや組成に差を設けたりすることにより、硬化性、乾燥性、成膜性、バインダーの機械強度を向上させることができる。 Also, the particle structure of the (meth)acrylic emulsion polymer can be a multi-layered structure, so-called core-shell particles. For example, by localizing a resin obtained by mainly polymerizing a monomer having a functional group in the core or shell, or by providing a difference in Tg or composition between the core and the shell, curability and drying can be improved. properties, film formability, and mechanical strength of the binder can be improved.
(粒子径)
 (メタ)アクリル系乳化重合体の架橋型樹脂微粒子の平均粒子径は、触媒の結着性や粒子の安定性の点から、10~500nmであることが好ましく、30~300nmであることがより好ましい。また、1μmを超えるような粗大粒子が多く含有されるようになると粒子の安定性が損なわれるので、1μmを超える粗大粒子は多くとも5質量%以下であることが好ましい。なお、本発明における平均粒子径とは、体積平均粒子径のことを表し、動的光散乱法により測定できる。
(Particle size)
The average particle size of the crosslinked resin fine particles of the (meth)acrylic emulsion polymer is preferably 10 to 500 nm, more preferably 30 to 300 nm, from the viewpoint of catalyst binding and particle stability. preferable. In addition, when a large amount of coarse particles exceeding 1 μm is contained, the stability of the particles is impaired. The average particle size in the present invention means volume average particle size, which can be measured by a dynamic light scattering method.
 動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。架橋型樹脂微粒子分散液は固形分に応じて200~1000倍に水希釈しておく。該希釈液約5mlを測定装置[(株)日機装社製マイクロトラック]のセルに注入し、サンプルに応じた溶剤(本発明では水)および樹脂の屈折率条件を入力後、測定を行う。この時得られた体積粒子径分布データ(ヒストグラム)のピークを本発明の平均粒子径とする。 Measurement of the average particle size by the dynamic light scattering method can be performed as follows. The crosslinked resin fine particle dispersion is diluted with water 200 to 1000 times depending on the solid content. About 5 ml of the diluted solution is injected into a cell of a measuring device [Microtrac manufactured by Nikkiso Co., Ltd.], and the solvent (water in the present invention) and the refractive index conditions of the resin are input according to the sample, and then the measurement is performed. The peak of the volume particle size distribution data (histogram) obtained at this time is taken as the average particle size of the present invention.
(重合した樹脂微粒子に添加する未架橋の化合物(E))
 本酵素センサー電極形成用組成物は、前記(メタ)アクリル系乳化重合体に加えて、さらに、未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(E)[以下、化合物(E)と表記する場合がある]とを含むことが好ましい。化合物(E)は、水性液状媒体に溶解することがなく、分散する樹脂である。
(Uncrosslinked compound (E) added to polymerized fine resin particles)
In addition to the (meth)acrylic emulsion polymer, the composition for forming an enzyme sensor electrode further includes an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked It preferably contains at least one uncrosslinked compound (E) [hereinafter sometimes referred to as compound (E)] selected from the group consisting of crosslinked oxazoline group-containing compounds. Compound (E) is a resin that disperses without dissolving in an aqueous liquid medium.
 化合物(E)である「未架橋の官能基含有化合物」とは、単量体群(C1)に含まれる単量体のように本発明で好適に使用される(メタ)アクリル系乳化重合体の内部架橋構造(三次元架橋構造)を形成する化合物とは異なり、樹脂微粒子が乳化重合(ポリマー形成)された後に添加される(樹脂微粒子の内部架橋形成に関与しない)化合物のことをいう。すなわち、「未架橋」とは、本発明で好適に使用される(メタ)アクリル系乳化重合体の内部架橋構造(三次元架橋構造)の形成に関与していないことを意味する。 The "uncrosslinked functional group-containing compound" which is the compound (E) is a (meth)acrylic emulsion polymer suitably used in the present invention, such as a monomer contained in the monomer group (C1). Unlike the compound that forms an internal crosslinked structure (three-dimensional crosslinked structure), it refers to a compound that is added after the resin fine particles are emulsion polymerized (polymer formation) (does not participate in the formation of internal crosslinks in the resin fine particles). That is, "uncrosslinked" means that it does not participate in the formation of the internal crosslinked structure (three-dimensional crosslinked structure) of the (meth)acrylic emulsion polymer preferably used in the present invention.
 本発明で好適に使用される(メタ)アクリル系乳化重合体が架橋構造をとることにより耐電解液性が確保され、また、化合物(E)を使用することで、化合物(E)中のエポキシ基、アミド基、水酸基、およびオキサゾリン基から選ばれる少なくとも1つの官能基が、基材、または他の電極構成材料との密着性に寄与することができる。さらには架橋構造や官能基の量を調整することで、酵素センサーの耐久性に優れた合材インキを得ることができる。 The (meth)acrylic emulsion polymer preferably used in the present invention has a crosslinked structure to ensure electrolyte resistance, and by using the compound (E), the epoxy in the compound (E) At least one functional group selected from a group, an amide group, a hydroxyl group, and an oxazoline group can contribute to adhesion with a substrate or other electrode constituent material. Furthermore, by adjusting the crosslinked structure and the amount of functional groups, it is possible to obtain a composite ink with excellent durability of the enzyme sensor.
 なお、本発明で好適に使用される(メタ)アクリル系乳化重合体中の架橋型樹脂微粒子は、粒子内部で架橋していることが必要である。粒子内部の架橋を適度に調整することによって、耐電解液性を確保することができる。さらに、官能基含有架橋型樹脂微粒子に未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(E)を添加することで、エポキシ基、アミド基、水酸基またはオキサゾリン基が基材に作用し、基材や他の電極構成材料への密着性を効果的に向上させることができる。化合物(E)に含まれる上記官能基は、長期保存時や電極作製時の熱によっても安定であるため、少量の使用でも基材への密着性効果が大きい。さらには保存安定性にも優れている。化合物(E)は、バインダーとしての可とう性や耐電解液性を調整する目的で架橋型樹脂微粒子中の官能基と反応してもよいが、官能基含有架橋型樹脂微粒子中の官能基との反応のために化合物(E)中の官能基が使われすぎると、基材または電極と相互作用し得る官能基が少なくなってしまう。このため、本発明で好適に使用される(メタ)アクリル系乳化重合体中の架橋型樹脂微粒子と化合物(E)との反応は、基材または他の電極構成材料への密着性を損なわない程度である必要がある。また、化合物(E)に含まれる上記官能基の一部が架橋反応に用いられる場合(化合物(E)が多官能化合物の場合)には、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。 The crosslinkable resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention must be crosslinked inside the particles. Electrolytic solution resistance can be ensured by appropriately adjusting the cross-linking inside the particles. Furthermore, at least one compound selected from the group consisting of an uncrosslinked epoxy group-containing compound, an uncrosslinked amide group-containing compound, an uncrosslinked hydroxyl group-containing compound, and an uncrosslinked oxazoline group-containing compound is added to the functional group-containing crosslinked resin fine particles. By adding the uncrosslinked compound (E), an epoxy group, an amide group, a hydroxyl group, or an oxazoline group acts on the base material, and the adhesion to the base material and other electrode constituent materials can be effectively improved. can. The above functional group contained in the compound (E) is stable even during long-term storage and against heat during electrode production, so that even when used in a small amount, the effect of adhesion to the substrate is large. Furthermore, it is excellent in storage stability. The compound (E) may react with the functional groups in the crosslinked resin fine particles for the purpose of adjusting the flexibility and electrolytic solution resistance as a binder. If too many functional groups in compound (E) are used for the reaction of (E), there will be fewer functional groups that can interact with the substrate or electrode. Therefore, the reaction between the crosslinked resin fine particles in the (meth)acrylic emulsion polymer preferably used in the present invention and the compound (E) does not impair the adhesion to the substrate or other electrode constituent materials. should be to some extent. Further, when some of the functional groups contained in the compound (E) are used for the cross-linking reaction (when the compound (E) is a polyfunctional compound), by adjusting the degree of cross-linking of these functional groups, It is possible to balance electrolyte resistance and adhesion.
・未架橋のエポキシ基含有化合物
 未架橋のエポキシ基含有化合物としては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレートなどのエポキシ基含有エチレン性不飽和単量体;前記エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N’-ジグリシジルアミノメチル)シクロヘキサンなどの多官能エポキシ化合物;ビスフェノールA-エピクロロヒドリン型エポキシ樹脂、ビスフェノールF-エピクロロヒドリン型エポキシ樹脂などのエポキシ系樹脂などがあげられる。
Uncrosslinked epoxy group-containing compound Examples of the uncrosslinked epoxy group-containing compound include epoxy group-containing ethylenically unsaturated monomers such as glycidyl (meth)acrylate and 3,4-epoxycyclohexyl (meth)acrylate; Radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers; ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidylaniline, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N, polyfunctional epoxy compounds such as N'-diglycidylaminomethyl)cyclohexane; and epoxy resins such as bisphenol A-epichlorohydrin type epoxy resins and bisphenol F-epichlorohydrin type epoxy resins.
 エポキシ基含有化合物の中でも特にビスフェノールA-エピクロロヒドリン型エポキシ樹脂、ビスフェノールF-エピクロロヒドリン型エポキシ樹脂などのエポキシ系樹脂や、エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。エポキシ系樹脂は、ビスフェノール骨格を有することで耐電解液性を向上させ、また、骨格に含まれる水酸基により基材密着性を向上させるという相乗効果が期待できる。また、エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内により多くのエポキシ基を有することにより基材密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。 Among epoxy group-containing compounds, epoxy resins such as bisphenol A-epichlorohydrin type epoxy resins and bisphenol F-epichlorohydrin type epoxy resins, and ethylenic unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers. A radically polymerizable resin obtained by polymerizing a saturated monomer is preferred. Epoxy-based resins can be expected to have a synergistic effect of improving electrolytic solution resistance by having a bisphenol skeleton and improving adhesion to substrates by hydroxyl groups contained in the skeleton. In addition, radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers containing epoxy group-containing ethylenically unsaturated monomers have more epoxy groups in the resin skeleton, thereby improving substrate adhesion. Further, by being a resin, an effect of improving electrolyte solution resistance as compared with a monomer can be expected.
・未架橋のアミド基含有化合物
 未架橋のアミド基含有化合物としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有化合物;N-メチロールアクリルアミド、N,N-ジ(メチロール)アクリルアミド、N-メチロール-N-メトキシメチル(メタ)アクリルアミドなどのアルキロール(メタ)アクリルアミド系化合物;N-メトキシメチル-(メタ)アクリルアミド、N-エトキシメチル-(メタ)アクリルアミド、N-プロポキシメチル-(メタ)アクリルアミド、N-ブトキシメチル-(メタ)アクリルアミド、N-ペントキシメチル-(メタ)アクリルアミドなどのモノアルコキシ(メタ)アクリルアミド系化合物;N,N-ジ(メトキシメチル)アクリルアミド、N-エトキシメチル-N-メトキシメチルメタアクリルアミド、N,N-ジ(エトキシメチル)アクリルアミド、N-エトキシメチル-N-プロポキシメチルメタアクリルアミド、N,N-ジ(プロポキシメチル)アクリルアミド、N-ブトキシメチル-N-(プロポキシメチル)メタアクリルアミド、N,N-ジ(ブトキシメチル)アクリルアミド、N-ブトキシメチル-N-(メトキシメチル)メタアクリルアミド、N,N-ジ(ペントキシメチル)アクリルアミド、N-メトキシメチル-N-(ペントキシメチル)メタアクリルアミドなどのジアルコキシ(メタ)アクリルアミド系化合物;N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルアクリルアミドなどのジアルキルアミノ(メタ)アクリルアミド系化合物;N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミドなどのジアルキル(メタ)アクリルアミド系化合物;ダイアセトン(メタ)アクリルアミドなどのケト基含有(メタ)アクリルアミド系化合物など、以上のアミド基含有エチレン性不飽和単量体;前記アミド基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂などがあげられる。
Uncrosslinked amide group-containing compound Examples of the uncrosslinked amide group-containing compound include primary amide group-containing compounds such as (meth)acrylamide; N-methylolacrylamide, N,N-di(methylol)acrylamide, N- Alkylol (meth)acrylamide compounds such as methylol-N-methoxymethyl (meth)acrylamide; N-methoxymethyl-(meth)acrylamide, N-ethoxymethyl-(meth)acrylamide, N-propoxymethyl-(meth)acrylamide , N-butoxymethyl-(meth)acrylamide, N-pentoxymethyl-(meth)acrylamide monoalkoxy (meth)acrylamide compounds; N,N-di(methoxymethyl)acrylamide, N-ethoxymethyl-N- Methoxymethyl methacrylamide, N,N-di(ethoxymethyl)acrylamide, N-ethoxymethyl-N-propoxymethyl methacrylamide, N,N-di(propoxymethyl)acrylamide, N-butoxymethyl-N-(propoxymethyl) methacrylamide, N,N-di(butoxymethyl)acrylamide, N-butoxymethyl-N-(methoxymethyl)methacrylamide, N,N-di(pentoxymethyl)acrylamide, N-methoxymethyl-N-(pentoxy dialkoxy (meth) acrylamide compounds such as methyl) methacrylamide; dialkylamino (meth) acrylamide compounds such as N,N-dimethylaminopropyl acrylamide and N,N-diethylaminopropyl acrylamide; N,N-dimethylacrylamide, N , dialkyl (meth)acrylamide compounds such as N-diethylacrylamide; keto group-containing (meth)acrylamide compounds such as diacetone (meth)acrylamide; the above amide group-containing ethylenically unsaturated monomers; A radically polymerizable resin obtained by polymerizing an ethylenically unsaturated monomer containing an ethylenically unsaturated monomer may be used.
 アミド基含有化合物の中でも、特にアクリルアミドなどのアミド基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。樹脂骨格内に、より多くのアミド基を有することにより基材密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。 Among amide group-containing compounds, radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers including amide group-containing ethylenically unsaturated monomers such as acrylamide are particularly preferred. By having more amide groups in the resin skeleton, the substrate adhesion is improved, and by being a resin, the effect of improving the electrolytic solution resistance compared to the monomer can be expected.
・未架橋の水酸基含有化合物
 未架橋の水酸基含有化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート4-ヒドロキシビニルベンゼン、1-エチニル-1-シクロヘキサノール、アリルアルコールなどの水酸基含有エチレン性不飽和単量体;前記水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂;エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオールなどの直鎖脂肪族ジオール類;プロピレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオールなどの分岐鎖脂肪族ジオール類;1,4-ビス(ヒドロキシメチル)シクロヘキサンなどの環状ジオール類などがあげられる。
- Uncrosslinked hydroxyl group-containing compound Examples of uncrosslinked hydroxyl group-containing compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) hydroxyl group-containing ethylenically unsaturated monomers such as acrylate 4-hydroxyvinylbenzene, 1-ethynyl-1-cyclohexanol, allyl alcohol; ethylenically unsaturated monomers containing the hydroxyl group-containing ethylenically unsaturated monomers Radical polymerizable resins obtained by polymerization; linear aliphatic diols such as ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol branched chain aliphatic diols such as propylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol and 2,2-diethyl-1,3-propanediol; 1,4-bis(hydroxymethyl)cyclohexane and cyclic diols such as
 水酸基含有化合物の中でも、特に水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂、または環状ジオール類が好ましい。水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内に、より多くの水酸基を有することにより基材密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。また、環状ジオール類は、骨格に環状構造を有することにより、耐電解液性を向上させる効果が期待できる。 Among hydroxyl group-containing compounds, radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers containing hydroxyl group-containing ethylenically unsaturated monomers, or cyclic diols are particularly preferable. Radically polymerized resins obtained by polymerizing ethylenically unsaturated monomers containing hydroxyl group-containing ethylenically unsaturated monomers have more hydroxyl groups in the resin skeleton, thereby improving adhesion to substrates. In addition, since it is a resin, it can be expected to have the effect of improving the electrolyte resistance as compared with a monomer. Moreover, cyclic diols can be expected to have the effect of improving electrolyte resistance by having a cyclic structure in the skeleton.
・未架橋のオキサゾリン基含有化合物
 未架橋のオキサゾリン基含有化合物としては、例えば、2’-メチレンビス(2-オキサゾリン)、2,2’-エチレンビス(2-オキサゾリン)、2,2’-エチレンビス(4-メチル-2-オキサゾリン)、2,2’-プロピレンビス(2-オキサゾリン)、2,2’-テトラメチレンビス(2-オキサゾリン)、2,2’-ヘキサメチレンビス(2-オキサゾリン)、2,2’-オクタメチレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4-フェニル-2-オキサゾリン)、2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4-フェニレンビス-2-オキサゾリン)、2,2’-o-フェニレンビス(2-オキサゾリン)、2,2’-o-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(4-エチル-2-オキサゾリン)、2,2’-ビス(4-フェニル-2-オキサゾリン)、さらにはオキサゾリン基含有ラジカル重合系樹脂などがあげられる。
- Uncrosslinked oxazoline group-containing compound Examples of the uncrosslinked oxazoline group-containing compound include 2'-methylenebis(2-oxazoline), 2,2'-ethylenebis(2-oxazoline), 2,2'-ethylenebis (4-methyl-2-oxazoline), 2,2'-propylenebis(2-oxazoline), 2,2'-tetramethylenebis(2-oxazoline), 2,2'-hexamethylenebis(2-oxazoline) , 2,2′-octamethylenebis(2-oxazoline), 2,2′-p-phenylenebis(2-oxazoline), 2,2′-p-phenylenebis(4,4′-dimethyl-2-oxazoline ), 2,2′-p-phenylenebis(4-methyl-2-oxazoline), 2,2′-p-phenylenebis(4-phenyl-2-oxazoline), 2,2′-m-phenylenebis( 2-oxazoline), 2,2′-m-phenylenebis(4-methyl-2-oxazoline), 2,2′-m-phenylenebis(4,4′-dimethyl-2-oxazoline), 2,2′ -m-phenylenebis(4-phenylenebis-2-oxazoline), 2,2'-o-phenylenebis(2-oxazoline), 2,2'-o-phenylenebis(4-methyl-2-oxazoline), 2,2'-bis(2-oxazoline), 2,2'-bis(4-methyl-2-oxazoline), 2,2'-bis(4-ethyl-2-oxazoline), 2,2'-bis (4-phenyl-2-oxazoline), radical polymerizable resins containing oxazoline groups, and the like.
 オキサゾリン基含有化合物の中でも、特に、2’-p-フェニレンビス(2-オキサゾリン)などのフェニレンビス型オキサゾリン化合物、または、オキサゾリン基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。フェニレンビス型オキサゾリン化合物は、骨格内にフェニル基を有することにより耐電解液性を向上させる効果がある。また、オキサゾリン基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内により多くのオキサゾリン基を有することにより基材密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させることができる。 Among oxazoline group-containing compounds, in particular, phenylenebis-type oxazoline compounds such as 2′-p-phenylenebis(2-oxazoline), or ethylenically unsaturated monomers containing oxazoline group-containing ethylenically unsaturated monomers A radically polymerizable resin obtained by polymerizing is preferred. The phenylene bis-type oxazoline compound has a phenyl group in its skeleton, and thus has an effect of improving electrolyte resistance. In addition, radical polymerizable resins obtained by polymerizing ethylenically unsaturated monomers containing oxazoline group-containing ethylenically unsaturated monomers have more oxazoline groups in the resin skeleton, thereby improving adhesion to substrates. Moreover, by being a resin, the electrolytic solution resistance can be improved as compared with a monomer.
(化合物(E)の添加量、分子量)
 化合物(E)は、架橋型樹脂微粒子の固形分100質量部に対して0.1~50質量部添加するのが好ましく、5~40質量部添加するのがさらに好ましい。さらに、化合物(E)は2種類以上併用することも可能である。
(Addition amount of compound (E), molecular weight)
The compound (E) is preferably added in an amount of 0.1 to 50 parts by mass, more preferably 5 to 40 parts by mass, per 100 parts by mass of the solid content of the crosslinked resin fine particles. Furthermore, two or more compounds (E) can be used in combination.
 化合物(E)の分子量は特に限定されないが、質量平均分子量が1,000~1,000,000であるのが好ましく、さらには5,000~500,000がより好ましい。なお、上記質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。 Although the molecular weight of compound (E) is not particularly limited, it preferably has a mass average molecular weight of 1,000 to 1,000,000, more preferably 5,000 to 500,000. In addition, the said mass average molecular weight is a value of polystyrene conversion measured by the gel permeation chromatography (GPC) method.
<水性液状媒体>
 水性液状媒体は、導電材及び水性樹脂微粒子を分散可能な溶媒の中から適宜選択して使用できる。水性液状媒体としては、水を含むことが好ましく、例えば基材への塗工性向上のためなど、必要に応じて、水と相溶する液状媒体を組み合わせて用いてもよい。
 水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類等が挙げられ、水と相溶する範囲で使用してもよい。
<Aqueous liquid medium>
The aqueous liquid medium can be appropriately selected from solvents capable of dispersing the conductive material and the aqueous resin fine particles. The aqueous liquid medium preferably contains water, and if necessary, a liquid medium that is compatible with water may be used in combination, for example, in order to improve coatability on a substrate.
Liquid media compatible with water include alcohols, glycols, cellosolves, aminoalcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphate esters. , ethers, nitriles and the like, and may be used as long as they are compatible with water.
<任意成分>
 酵素センサー電極形成用組成物は、本発明の効果を奏する範囲で更に他の成分を含有してもよい。当該他の成分としては、分散剤、増粘剤などの水溶性樹脂;成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、酸化還元酵素、メディエーターなどが挙げられる。特に、水性樹脂微粒子だけでは合材インキの粘性や分散安定性を得ることが難しい場合があるため、増粘剤や分散剤などの水溶性樹脂を含有することが好ましい。
<Optional component>
The composition for forming an enzyme sensor electrode may further contain other components as long as the effects of the present invention are exhibited. Examples of other components include water-soluble resins such as dispersants and thickeners; film-forming aids, antifoaming agents, leveling agents, preservatives, pH adjusters, oxidoreductases, mediators, and the like. In particular, since it may be difficult to obtain the viscosity and dispersion stability of the composite ink only with the aqueous resin fine particles, it is preferable to contain a water-soluble resin such as a thickener or a dispersant.
(水溶性樹脂)
 本酵素センサー電極形成用組成物は、分散剤や増粘剤として、水溶性を示す樹脂を含むことが好ましい。分散剤は、炭素材料等に対して作用しその凝集を抑制するものをいう。水溶性樹脂としては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアリルアミン樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシメチルセルロース等の多糖類の樹脂を含む高分子化合物が挙げられる。また、水溶性であれば、これらの樹脂の変性物、混合物、又は共重合体でもよい。これらは、1種または複数を組み合わせて使用してもよい。
(Water-soluble resin)
The present composition for forming an enzyme sensor electrode preferably contains a water-soluble resin as a dispersant or thickener. A dispersant is an agent that acts on a carbon material or the like to suppress its aggregation. Examples of water-soluble resins include acrylic resins, polyurethane resins, polyester resins, polyamide resins, polyimide resins, polyallylamine resins, phenol resins, epoxy resins, phenoxy resins, urea resins, melamine resins, alkyd resins, formaldehyde resins, and silicone resins. , fluororesins, and polymer compounds containing polysaccharide resins such as carboxymethyl cellulose. Modified products, mixtures, or copolymers of these resins may also be used as long as they are water-soluble. These may be used singly or in combination.
(酸化還元酵素)
 本酵素センサー電極形成用組成物は、酸化還元酵素を含んでいてもよい。酸化還元酵素としては、反応により電子を授受できる酵素であれば特に制限はなく、検出対象に応じて適宜選択される。糖や有機酸などのオキシダーゼやデヒドロゲナーゼなどが利用できる。中でも、人体の血液や尿などの生体試料に含まれるグルコースを検出対象にできるグルコースオキシダーゼやグルコースデヒドロゲナーゼが好ましい場合がある。その他、フルクトースを検出対象にできるフルクトースオキシダーゼやフルクトースデヒドロゲナーゼ、乳酸を検出対象にできる乳酸オキシダーゼや乳酸デヒドロゲナーゼが好ましい場合がある。
 なお酸化還元酵素は、酵素センサー電極形成用組成物に添加して用いてもよく、後述するセンサー用電極の塗膜を形成後に添加してもよい。
(oxidoreductase)
The present composition for forming an enzyme sensor electrode may contain an oxidoreductase. The oxidoreductase is not particularly limited as long as it is an enzyme that can give and receive electrons by reaction, and is appropriately selected according to the target to be detected. Oxidase or dehydrogenase of sugar or organic acid can be used. Among them, glucose oxidase and glucose dehydrogenase, which can detect glucose contained in biological samples such as human blood and urine, are sometimes preferable. In addition, fructose oxidase and fructose dehydrogenase that can detect fructose, and lactate oxidase and lactate dehydrogenase that can detect lactic acid are sometimes preferable.
The oxidoreductase may be used by being added to the composition for forming the enzyme sensor electrode, or may be added after forming a coating film for the sensor electrode, which will be described later.
(メディエーター)
 酵素には電極に直接電子を伝達できる直接電子移動型(DET型)酵素と直接電子を伝達できない酵素が存在し、DET型以外の酵素の場合には、燃料の酸化によって生じた電子を酵素から電極に伝達する役割を担うメディエーターを併用する必要がある。メディエーターとしては、電極に電子を伝達できる酸化還元物質であれば特に制限はなく、従来公知のものを使用できる。メディエーターの使用方法としては、電極に担持させる方法や電解液に溶解させて使用する方法等がある。メディエーターとしては、テトラチアフルバレン、ハイドロキノンや1,4‐ナフトキノン等のキノン類などの非金属化合物、フェロセン、フェリシアン化物、オスミウム錯体、及びこれら化合物を修飾したポリマー等が例示できる。
(Mediator)
Enzymes include direct electron transfer (DET) enzymes that can transfer electrons directly to the electrode and enzymes that cannot transfer electrons directly. It is necessary to use a mediator that plays a role in transmitting to the electrode. The mediator is not particularly limited as long as it is a redox substance capable of transferring electrons to the electrode, and conventionally known mediators can be used. Methods of using the mediator include a method of supporting it on an electrode, a method of dissolving it in an electrolytic solution, and the like. Examples of mediators include nonmetallic compounds such as tetrathiafulvalene, quinones such as hydroquinone and 1,4-naphthoquinone, ferrocene, ferricyanide, osmium complexes, and polymers modified with these compounds.
<酵素センサー用電極形成用組成物の調製方法>
 酵素センサー電極形成用組成物の調製方法は、各成分に応じて任意の方法を採用できる。例えば、各成分を同時に分散してもよく、導電材を水性液状媒体中に分散後、水性樹脂微粒子を添加してもよい。また、先に導電材、水性樹脂微粒子、水性液状媒体からなる組成物で電極を形成した後、酵素を担持してもよい。
<Method for preparing composition for forming electrode for enzyme sensor>
Any method can be employed for preparing the composition for forming an enzyme sensor electrode, depending on each component. For example, each component may be dispersed at the same time, or the aqueous resin fine particles may be added after the conductive material is dispersed in the aqueous liquid medium. Alternatively, the enzyme may be loaded after forming the electrode with a composition comprising a conductive material, aqueous resin fine particles, and an aqueous liquid medium.
<分散機・混合機>
 酵素センサー用電極形成用組成物の調製に用いる装置としては、顔料分散等に用いられている公知の分散機、混合機が使用できる。
 例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。
<Disperser/Mixer>
As an apparatus used for preparing the composition for forming an electrode for an enzyme sensor, known dispersers and mixers used for dispersing pigments and the like can be used.
For example, mixers such as Disper, Homomixer, or Planetary Mixer; Homogenizers such as M Technic's "Clairmix" or PRIMIX's "Filmix"; Paint conditioner (manufactured by Red Devil), ball mill, sand mill (“Dyno Mill” manufactured by Shinmaru Enterprises Co., Ltd.), Attritor, Pearl Mill (“DCP Mill” manufactured by Eirich Co., etc.), media-type dispersing machines such as coball mills; wet jet mills (“Genus PY” manufactured by Genus Co., Ltd., Sugino "Starburst" manufactured by Machine Co., Ltd., "Nanomizer" manufactured by Nanomizer, etc.), "Crea SS-5" manufactured by M Technic Co., Ltd., or "MICROS" manufactured by Nara Machinery Co., Ltd. Medialess disperser; or other roll mills, etc. Examples include, but are not limited to.
[酵素センサー用電極]
 本発明の酵素センサー用電極は、上記酵素センサー電極形成用組成物より形成されたものであることを特徴とし、作用極、対極、参照極のいずれであってもよい。酵素センサー用電極は、例えば基材上に形成される。当該電極は、例えば、基材の少なくとも片側の表面に酵素センサー電極形成用組成物を塗工、必要に応じてプレス処理等を行って、導電層を形成することで得ることができる。また、必要に応じて酸化還元酵素やメディエーターを担持させてもよい。
[Enzyme sensor electrode]
The enzyme sensor electrode of the present invention is characterized by being formed from the composition for forming an enzyme sensor electrode, and may be a working electrode, a counter electrode or a reference electrode. The enzyme sensor electrode is formed on, for example, a substrate. The electrode can be obtained, for example, by applying a composition for forming an enzyme sensor electrode to at least one surface of a base material and, if necessary, performing press treatment or the like to form a conductive layer. In addition, oxidoreductases and mediators may be carried as necessary.
<基材>
 酵素センサー用電極は、例えば基材上に設けられる。酵素センサーに用いる基材としては特に限定されず導電性基材、非導電性基材のいずれであってもよい。導電性基材としては、カーボンペーパーやカーボンクロス等導電性の炭素材料からなる導電層や金属箔、金属メッシュ等が挙げられる。また、非導電性基材としては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリカーボネート、ポリイミド、ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレンテトラフルオロエチレンコポリマー、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、エチレンクロロトリフルオロエチレンコポリマー等の樹脂フィルムが例示できる。また、樹脂フィルム以外にも紙や布等も挙げられる。更にその表面に導電性炭素組成物やポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を印刷・塗布、乾燥したものや金属等の導電材をスパッタリングしたもの、更にそれらを併用したものを用いてもよい。また、前記組成物の印刷および塗布方法としては、特に限定されるものではなく、一般的な方法を適用できる。
<Base material>
The enzyme sensor electrode is provided on, for example, a substrate. The substrate used for the enzyme sensor is not particularly limited, and may be either a conductive substrate or a non-conductive substrate. Examples of the conductive substrate include a conductive layer made of a conductive carbon material such as carbon paper and carbon cloth, a metal foil, a metal mesh, and the like. Examples of non-conductive substrates include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acrylic resins such as polymethyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polycarbonate, polyimide, polytetrafluoroethylene, and perfluoro. Resin films of alkoxyalkane, perfluoroethylene propene copolymer, ethylenetetrafluoroethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, ethylenechlorotrifluoroethylene copolymer, etc. can be exemplified. Moreover, paper, cloth, etc. are mentioned besides a resin film. Furthermore, a conductive carbon composition, a conductive polymer such as polyaniline, polyacetylene, polypyrrole, polythiophene, etc. is printed or coated on the surface, dried, sputtered with a conductive material such as a metal, or used in combination. may Moreover, the method for printing and applying the composition is not particularly limited, and general methods can be applied.
<酵素センサー用電極の形成>
 酵素センサー用電極は、前記の非導電性基材に酵素センサー電極形成用組成物を塗工・印刷、必要に応じてプレス処理等を行って形成することができる。非導電性基材上に前記の組成物を塗工・印刷する方法としては、特に制限はなく、例えばスクリーン印刷、インクジェット印刷、グラビア印刷、キスリバースグラビアコーター、ナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、等の一般的な方法を適用できる。
<Formation of electrode for enzyme sensor>
The enzyme sensor electrode can be formed by applying a composition for forming an enzyme sensor electrode to the above non-conductive base material, printing the composition, and, if necessary, performing press treatment or the like. The method for coating and printing the composition on a non-conductive substrate is not particularly limited, and examples include screen printing, inkjet printing, gravure printing, kiss reverse gravure coater, knife coater, bar coater, blade coater, General methods such as spray, dip coater, spin coater, roll coater, die coater, curtain coater, etc. can be applied.
 また、塗布後に平版プレスやカレンダーロール等による圧延処理を行ってもよく、導電層を軟化させてプレスしやすくするため、加熱しながら行ってもよい。基材を除く電極部の厚みが薄いと電極内部への電解液の浸透が早く、またノイズを少なくできるため15μm以下がよい。また密度が高い程、電極の強度が高まるため、1.4g/cm以上が好ましい。 Further, after coating, rolling treatment may be performed using a lithographic press, calender rolls, or the like. In order to soften the conductive layer and make it easier to press, the coating may be performed while being heated. If the thickness of the electrode portion excluding the base material is thin, the penetration of the electrolytic solution into the inside of the electrode is rapid and noise can be reduced, so the thickness is preferably 15 μm or less. Also, the higher the density, the higher the strength of the electrode, so 1.4 g/cm 3 or more is preferable.
[酵素センサー]
 本発明に係る酵素センサーは、前記酵素センサー電極形成用組成物、または前記酵素センサー用電極を含むことを特徴とする。
 酵素センサーにおける電極は、作用極及び対極、あるいは作用極、対極及び参照極の構成で設置される。これらの電極は、異なる非導電性基材上に導電層をそれぞれ形成することで作製する場合や、同一の非導電性基材上にそれぞれの電極について導電層を形成する場合や、同一の非導電性基材上に導電層を設置した後に非導電部位を形成することで電極を作製してもよい。また予め、非導電性基材に金属スパッタなどで金属層を形成した上に、各電極の導電層を形成して電極を作製してもよい。参照極を設置する場合は、例えば導電層の上部へ更に銀や塩化銀などを積層することによって作製される。各電極のリード部は、金属スパッタなどで金属層を形成する方法、導電層を延長して用いる方法、延長した導電層の上部や下部に金属スパッタなどで金属層を更に形成する方法等、が例示できる。
[Enzyme sensor]
An enzyme sensor according to the present invention is characterized by including the composition for forming an enzyme sensor electrode or the electrode for an enzyme sensor.
The electrodes in an enzyme sensor are arranged in a working electrode and a counter electrode, or a working electrode, a counter electrode and a reference electrode. These electrodes may be produced by forming conductive layers on different non-conductive substrates, by forming conductive layers for the respective electrodes on the same non-conductive substrate, or by forming the same non-conductive layer on the same non-conductive substrate. Electrodes may be fabricated by forming a non-conductive portion after placing a conductive layer on a conductive substrate. Alternatively, electrodes may be produced by forming a metal layer on a non-conductive base material in advance by metal sputtering or the like, and then forming a conductive layer for each electrode. When a reference electrode is provided, it is produced, for example, by laminating silver or silver chloride on top of the conductive layer. For the lead portion of each electrode, there are a method of forming a metal layer by metal sputtering, a method of using an extended conductive layer, and a method of further forming a metal layer on the upper and lower portions of the extended conductive layer by metal sputtering. I can give an example.
 電極に酸化還元酵素やメディエーターを担持する方法としては、作用極、対極及び参照極の上部、あるいは作用極の上部及び/または内部に、酸化還元酵素や必要に応じてメディエーターを含ませる方法や、酸化還元酵素や必要に応じてメディエーターを含む層を形成する方法等が挙げられる。酸化還元酵素やメディエーターを含む層を形成する場合、親水性化合物および/または親水性樹脂を混合してもよい。 Methods for supporting an oxidoreductase or a mediator on an electrode include a method of including an oxidoreductase and, if necessary, a mediator in the upper portion of the working electrode, counter electrode and reference electrode, or in the upper portion and/or inside of the working electrode; Examples thereof include a method of forming a layer containing an oxidoreductase and, if necessary, a mediator. When forming a layer containing an oxidoreductase or a mediator, a hydrophilic compound and/or a hydrophilic resin may be mixed.
 センサーの用途としては、例えば、各種有機物を対象とした有機物センサー、血液や汗、尿、便、涙、唾液、呼気などの生体試料中の有機物や体液を対象とした生体センサー、水分を対象にした水分センサー、果物や食品中の糖等を対象にした食品用センサー、IoTセンサー、大気や河川、土壌など環境中の有機物を対象にした環境センサー、動物や昆虫、植物を対象にした動植物センサー、細胞培養における培地成分等をモニタリングする細胞培養センサー等が挙げられる。生体センサーとしては、例えば、血液中の糖をセンシングする血糖値センサーや、尿中の糖をセンシングする尿糖値センサー、汗中の乳酸値をセンシングする疲労度センサーや熱中症センサー、汗や尿中の水分をセンシングする発汗センサーや排尿センサー等が挙げられる。また、生体向けのウェアラブルセンサーとしての用途として例えば、おむつ内にセンサーを仕込んだ排尿センサーや尿糖値センサー、経皮貼付型の発汗、熱中症センサー、穿刺型での間質液の糖センサー、等が挙げられる。 Sensor applications include, for example, organic sensors that target various organic substances, biosensors that target organic substances and body fluids in biological samples such as blood, sweat, urine, feces, tears, saliva, and exhaled breath, and sensors that target moisture. food sensor for fruits and food, IoT sensor, environmental sensor for organic matter in the environment such as air, rivers, and soil, animal and plant sensor for animals, insects, and plants , cell culture sensors for monitoring medium components and the like in cell culture. Examples of biosensors include a blood sugar sensor that senses sugar in blood, a urine sugar sensor that senses sugar in urine, a fatigue sensor that senses lactic acid in sweat, a heat stroke sensor that senses sweat and urine Examples include a perspiration sensor and a urination sensor that sense moisture inside. In addition, as a wearable sensor for the living body, for example, a urination sensor and a urine sugar level sensor with a sensor installed in a diaper, a perspiration and heatstroke sensor with a percutaneous attachment type, a puncture type interstitial fluid sugar sensor, etc.
 以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。尚、特に断らない限り、実施例および比較例における「部」は「質量部」を、「%」は「質量%」を表す。 Although the present invention will be described in more detail below with reference to examples, the following examples do not limit the scope of rights of the present invention. In the examples and comparative examples, "part" means "part by mass" and "%" means "% by mass" unless otherwise specified.
・実施例群A
<化合物(E)の製造[エポキシ基含有化合物の製造]>
[製造例1]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器にイソプロピルアルコール20部、水20部を仕込み、別途、メチルメタクリレート40部、メチルアクリレート40部、グリシジルメタクリレート20部を滴下槽1に、また、過硫酸カリウム2部をイソプロピルアルコール30部および水30部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1、2を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却し、固形分40%のエポキシ基含有化合物(メチルメタクリレート/メチルアクリレート/グリシジルメタクリレート共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
・Example group A
<Production of Compound (E) [Production of Epoxy Group-Containing Compound]>
[Production Example 1]
20 parts of isopropyl alcohol and 20 parts of water are charged in a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a reflux vessel. Also, 2 parts of potassium persulfate was dissolved in 30 parts of isopropyl alcohol and 30 parts of water, and charged into the dropping tank 2 . After the internal temperature was raised to 80° C. and the contents were sufficiently replaced with nitrogen, the contents were added dropwise to the dropping tanks 1 and 2 over 2 hours to carry out polymerization. After the dropwise addition was completed, stirring was continued for 1 hour while maintaining the internal temperature at 80°C. A group-containing compound (methyl methacrylate/methyl acrylate/glycidyl methacrylate copolymer) solution was obtained. The solid content was obtained from the residue after baking at 150°C for 20 minutes.
<化合物(E)の製造[アミド基含有化合物の製造]>
[製造例2]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、水90部を仕込み、別途、アクリルアミド20部を滴下槽1に、また、過硫酸カリウム2部を水90部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1、2を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却し、固形分40%のアミド基含有化合物(ポリアクリルアミド)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<Production of compound (E) [production of amide group-containing compound]>
[Production Example 2]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a reflux vessel was charged with 90 parts of water. The dropping tank 2 was charged. After the internal temperature was raised to 80° C. and the contents were sufficiently replaced with nitrogen, the contents were added dropwise to the dropping tanks 1 and 2 over 2 hours to carry out polymerization. After the dropwise addition was completed, stirring was continued for 1 hour while maintaining the internal temperature at 80°C. A group-containing compound (polyacrylamide) solution was obtained. The solid content was obtained from the residue after baking at 150°C for 20 minutes.
[製造例3]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、水40部を仕込み、別途、2-エチルヘキシルアクリレート40部、スチレン40部、ジメチルアクリルアミド20部を滴下槽1に、また、過硫酸カリウム2部を水60部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1、2を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却し、固形分40%のアミド基含有化合物(2-エチルヘキシルアクリレート/スチレン/ジメチルアクリルアミド共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[Production Example 3]
A reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a reflux vessel was charged with 40 parts of water. 2 parts of potassium sulfate was dissolved in 60 parts of water and charged into the dropping tank 2 . After the internal temperature was raised to 80° C. and the contents were sufficiently replaced with nitrogen, the contents were added dropwise to the dropping tanks 1 and 2 over 2 hours to carry out polymerization. After the dropwise addition was completed, stirring was continued for 1 hour while maintaining the internal temperature at 80°C. A solution of a group-containing compound (2-ethylhexyl acrylate/styrene/dimethylacrylamide copolymer) was obtained. The solid content was obtained from the residue after baking at 150°C for 20 minutes.
<化合物(E)の製造[水酸基含有化合物の製造]>
[製造例4]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、イソプロピルアルコール20部、水20部を仕込み、別途、メチルメタクリレート40部、ブチルアクリレート40部、2-ヒドロキシエチルメタクリレート20部を滴下槽1に、また、過硫酸カリウム2部をイソプロピルアルコール30部および水30部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1、2を2時間かけて滴下し、重合した。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却し、固形分40%の水酸基含有化合物(メチルメタクリレート/ブチルアクリレート/2-ヒドロキシエチルメタクリレート共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<Production of Compound (E) [Production of Hydroxyl Group-Containing Compound]>
[Production Example 4]
20 parts of isopropyl alcohol and 20 parts of water were charged into a reaction vessel equipped with a stirrer, thermometer, dropping funnel, and reflux vessel, and 40 parts of methyl methacrylate, 40 parts of butyl acrylate, and 20 parts of 2-hydroxyethyl methacrylate were added dropwise. A solution of 2 parts of potassium persulfate dissolved in 30 parts of isopropyl alcohol and 30 parts of water was charged to tank 1 and to dropping tank 2 . After raising the internal temperature to 80° C. and sufficiently purging with nitrogen, dropping was added to dropping tanks 1 and 2 over 2 hours for polymerization. After the completion of the dropwise addition, stirring was continued for 1 hour while maintaining the internal temperature at 80°C. A containing compound (methyl methacrylate/butyl acrylate/2-hydroxyethyl methacrylate copolymer) solution was obtained. The solid content was obtained from the residue after baking at 150°C for 20 minutes.
<水性樹脂微粒子分散体の調製>
[合成例1]
 攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、イオン交換水40部と界面活性剤としてアデカリアソープSR-10(株式会社ADEKA製)0.2部とを仕込み、別途、メチルメタクリレート49部、ブチルアクリレート50部、アクリル酸0.5部、3-メタクリロキシプロピルトリメトキシシラン0.5部、イオン交換水53部および界面活性剤としてアデカリアソープSR-10(株式会社ADEKA製)1.8部をあらかじめ混合しておいたプレエマルションのうちの1%をさらに加えた。内温を70℃に昇温し十分に窒素置換した後、過硫酸カリウムの5%水溶液10部の10%を添加し重合を開始した。反応系内を70℃で5分間保持した後、内温を70℃に保ちながらプレエマルションの残りと過硫酸カリウムの5%水溶液の残りを3時間かけて滴下し、さらに2時間攪拌を継続した。固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却した。25%アンモニア水を添加して、pHを8.5とし、さらにイオン交換水で固形分を40%に調整して水性樹脂微粒子分散体を得た。なお、固形分は、150℃20分焼き付け残分により求めた。単量体の配合比率を表1に示す。
<Preparation of aqueous resin fine particle dispersion>
[Synthesis Example 1]
A reaction vessel equipped with a stirrer, thermometer, dropping funnel, and reflux vessel was charged with 40 parts of ion-exchanged water and 0.2 parts of Adekaria Soap SR-10 (manufactured by ADEKA Co., Ltd.) as a surfactant. 49 parts of methyl methacrylate, 50 parts of butyl acrylate, 0.5 parts of acrylic acid, 0.5 parts of 3-methacryloxypropyltrimethoxysilane, 53 parts of ion-exchanged water and as a surfactant Adekaria Soap SR-10 (ADEKA Co., Ltd.) 1% of the pre-emulsion pre-mixed with 1.8 parts of the product) was further added. After raising the internal temperature to 70° C. and sufficiently purging with nitrogen, 10% of 10 parts of a 5% aqueous solution of potassium persulfate was added to initiate polymerization. After maintaining the inside of the reaction system at 70°C for 5 minutes, the remainder of the pre-emulsion and the remainder of the 5% aqueous solution of potassium persulfate were added dropwise over 3 hours while maintaining the internal temperature at 70°C, and stirring was continued for 2 hours. . After confirming that the conversion rate exceeded 98% by measuring the solid content, the temperature was cooled to 30°C. 25% aqueous ammonia was added to adjust the pH to 8.5, and ion-exchanged water was added to adjust the solid content to 40% to obtain an aqueous resin fine particle dispersion. The solid content was obtained from the residue after baking at 150°C for 20 minutes. Table 1 shows the mixing ratio of the monomers.
[合成例2~6]
 合成例1において、単量体の種類及び配合量を表1の通りに変更した以外は、合成例1と同様の方法で合成し、合成例2~6の水性樹脂微粒子分散体を得た。
[Synthesis Examples 2 to 6]
Aqueous resin fine particle dispersions of Synthesis Examples 2 to 6 were obtained by synthesizing in the same manner as in Synthesis Example 1 except that the types and amounts of the monomers were changed as shown in Table 1.
[調製例7]
 上記合成例1で得た水性樹脂微粒子分散体の固形分100質量部に対して、エポキシ樹脂15質量部を添加し、調製例7の水性樹脂微粒子分散体を得た。
[Preparation Example 7]
An aqueous resin fine particle dispersion of Preparation Example 7 was obtained by adding 15 parts by mass of an epoxy resin to 100 parts by mass of the solid content of the aqueous resin fine particle dispersion obtained in Synthesis Example 1 above.
[調製例8~12]
 調製例7において、原料の水性樹脂微粒子分散体と、化合物(E)の種類及び配合割合を表2のように変更した以外は、合成例7と同様にして、調製例8~12の水性樹脂微粒子分散体を得た。
 なお、表2中のエポキシ樹脂は、製品名アデカレジンEM-1-60L、株式会社ADEKA製、エポキシ当量320、ビスフェノールA-エピクロロヒドリン型エポキシ樹脂を示す。
[Preparation Examples 8-12]
Aqueous resins of Preparation Examples 8 to 12 were prepared in the same manner as in Synthesis Example 7, except that in Preparation Example 7, the raw material aqueous resin fine particle dispersion and the type and blending ratio of the compound (E) were changed as shown in Table 2. A fine particle dispersion was obtained.
The epoxy resin in Table 2 is a bisphenol A-epichlorohydrin type epoxy resin with an epoxy equivalent of 320 manufactured by ADEKA Corporation under the product name of ADEKA RESIN EM-1-60L.
[合成例13~14]
 合成例1において、単量体の種類及び配合量を表3の通りに変更した以外は、合成例1と同様の方法で合成し、合成例13~14の水性樹脂微粒子分散体を得た。
[Synthesis Examples 13-14]
Synthesis was carried out in the same manner as in Synthesis Example 1, except that the types and amounts of the monomers were changed as shown in Table 3, to obtain aqueous resin fine particle dispersions of Synthesis Examples 13 and 14.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例1]
<酵素センサー電極形成用組成物の調製>
 イオン交換水500質量部に水溶性樹脂(CMCダイセル#1240(ダイセル化学工業社製))3質量部を溶解させ、黒鉛(UP-5-α(日本黒鉛社製))70質量部と黒鉛以外の炭素材料(ファーネスブラックVULCAN(登録商標)XC72(CABOT社製))10質量部を添加しミキサーに入れて混合した。次いで、サンドミルにて分散を行った。
 合成例1の水分散性樹脂微粒子分散体を固形分17質量部となるよう添加し、適宜イオン交換水を加えてミキサーで混合し、酵素センサー電極形成用組成物(1)を得た。
[Example 1]
<Preparation of composition for forming enzyme sensor electrode>
Dissolve 3 parts by mass of a water-soluble resin (CMC Daicel #1240 (manufactured by Daicel Chemical Industries, Ltd.)) in 500 parts by mass of ion-exchanged water, and graphite (UP-5-α (manufactured by Nippon Graphite Co., Ltd.)) 70 parts by mass and other than graphite 10 parts by mass of a carbon material (furnace black VULCAN (registered trademark) XC72 (manufactured by CABOT)) was added and mixed in a mixer. Then, it was dispersed with a sand mill.
The water-dispersible resin fine particle dispersion of Synthesis Example 1 was added so as to give a solid content of 17 parts by mass, ion-exchanged water was appropriately added, and the mixture was mixed with a mixer to obtain a composition (1) for forming an enzyme sensor electrode.
<酵素センサー用電極の作製>
 前記の酵素センサー電極形成用組成物を非導電性基材である厚さ100μmのPET基材(ルミラー(東レ社製))上にドクターブレードを用いて塗布した後、加熱乾燥して酵素センサー用電極(1)を得た。
<Preparation of electrode for enzyme sensor>
The above composition for forming an enzyme sensor electrode is coated on a PET substrate (Lumirror (manufactured by Toray Industries, Inc.)) having a thickness of 100 μm, which is a non-conductive substrate, using a doctor blade, and then dried by heating to form an enzyme sensor. An electrode (1) was obtained.
[実施例2~24、比較例1~3]
 実施例1の酵素センサー電極形成用組成物の調製において、各成分の種類及び配合量を表4のとおり変更した以外は、実施例1と同様にして、酵素センサー用電極(2)~(24)を得た。なお、比較例1は液状媒体にイオン交換水の代わりにN-メチル-2-ピロリドンを使用した。
[Examples 2 to 24, Comparative Examples 1 to 3]
Enzyme sensor electrodes (2) to (24) were prepared in the same manner as in Example 1, except that in the preparation of the composition for forming an enzyme sensor electrode of Example 1, the types and blending amounts of each component were changed as shown in Table 4. ). In Comparative Example 1, N-methyl-2-pyrrolidone was used as the liquid medium instead of ion-exchanged water.
<電極の密着性評価>
 上記実施例及び比較例で作製した電極に、各々ナイフを用いて電極表面から基材に達する深さまでの切込みを2mm間隔で縦横それぞれ碁盤目の切り込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、塗面の脱落の程度を目視でそれぞれ判定した。評価基準を下記に示す。結果を表4に示す。
  ○:「剥離ほぼなし」
  △:「半分程度剥離」(実用上問題のないレベル)
  ×:「ほとんどの部分で剥離」
<Evaluation of electrode adhesion>
In the electrodes prepared in the above examples and comparative examples, each of the electrodes was cut vertically and horizontally with a knife from the surface of the electrode to a depth reaching the substrate at intervals of 2 mm. A pressure-sensitive adhesive tape was attached to the incision and immediately peeled off, and the degree of detachment of the coated surface was determined visually. Evaluation criteria are shown below. Table 4 shows the results.
○: “Almost no peeling”
△: "Half peeling" (level with no practical problem)
×: “Peeled off in most parts”
<電気化学評価>
 上記実施例及び比較例で作製した電極を、各々10×30mmに切り出し、下部5×5mm以外をテープでマスキング処理を行った。マスキング処理を行っていない5×5mmの箇所に、メディエーターであるフェロセンのメタノール水溶液と、酵素であるグルコースデヒドロゲナーゼ水溶液をそれぞれ滴下、自然乾燥させてメディエーターと酵素を担持した後、酵素センサー用電極を得た。
 上記作製した酵素センサー用電極を作用極として、対極(白金コイル電極)、参照電極(銀/塩化銀電極)が取り付けられた電解槽に、電解液として0.1Mリン酸緩衝液(pH7.0)を入れ、反応基質(センシング対象物)としてD-グルコースを20mMとなるように添加し、0.5V(vsAg/AgCl)の電位を印加して10秒後の電流値を測定した。比較例1における電位印加10秒後の電流値に対する、各実施例における同電流値の百分率(%)で比較した。酵素センサー用電極で測定される電流値が大きい程、センシング対象物質を検出しやすいため感度が高いと言える。結果を表4に示す。
〇:120%以上
△:100%以上120%未満
×:100%未満(比較例1より悪い)
<Electrochemical evaluation>
Each of the electrodes prepared in the above Examples and Comparative Examples was cut into a size of 10×30 mm, and the portions other than the lower portion of 5×5 mm were masked with a tape. An aqueous solution of ferrocene as a mediator in methanol and an aqueous solution of glucose dehydrogenase as an enzyme are dropped on a 5×5 mm area that is not masked, and air-dried to support the mediator and the enzyme, thereby obtaining an electrode for an enzyme sensor. rice field.
Using the enzyme sensor electrode prepared above as a working electrode, a counter electrode (platinum coil electrode) and a reference electrode (silver/silver chloride electrode) were placed in an electrolytic cell. ) was added, D-glucose was added as a reaction substrate (object to be sensed) to 20 mM, a potential of 0.5 V (vs Ag/AgCl) was applied, and the current value was measured 10 seconds later. The percentage (%) of the same current value in each example with respect to the current value 10 seconds after potential application in Comparative Example 1 was compared. It can be said that the higher the current value measured by the enzyme sensor electrode, the easier it is to detect the substance to be sensed, and thus the higher the sensitivity. Table 4 shows the results.
○: 120% or more △: 100% or more and less than 120% ×: less than 100% (worse than Comparative Example 1)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<酵素センサーの作製>
 図1を参照して説明する。基材2として厚さ100μmのPET基材(ルミラー(東レ社製))上に、酵素センサー電極形成用組成物(4)を2×30mmの開口部を3か所備えたメタルマスクを用いて塗布後、加熱乾燥し導電層3を形成した。その後、導電層の一部に絶縁性のレジストインキをメタルマスクを用いて塗工、その後加熱乾燥し、開口部を有する絶縁層4を形成した。更に、銀/塩化銀を分散したインキを絶縁層4の開口部内の電極の内1つに塗工し、加熱乾燥して参照極6を形成し、図1に示す酵素センサー用電極(4)を得た。
<Production of enzyme sensor>
Description will be made with reference to FIG. On a PET substrate (Lumirror (manufactured by Toray Industries, Inc.)) having a thickness of 100 μm as the substrate 2, the enzyme sensor electrode forming composition (4) was applied using a metal mask having three openings of 2×30 mm. After coating, the conductive layer 3 was formed by heating and drying. After that, an insulating resist ink was applied to a part of the conductive layer using a metal mask, and then dried by heating to form an insulating layer 4 having an opening. Furthermore, one of the electrodes in the opening of the insulating layer 4 is coated with an ink in which silver/silver chloride is dispersed, and dried by heating to form a reference electrode 6, which is an electrode for an enzyme sensor (4) shown in FIG. got
 前記、酵素センサー用電極(4)の絶縁性レジストで囲われた開口部内に、メディエーターであるフェリシアン化カリウムと酵素であるグルコースオキシダーゼを0.1Mリン酸緩衝(pH7)で溶解した水溶液を滴下、自然乾燥させてメディエーターと酵素を担持し、酵素センサーを得た。 An aqueous solution prepared by dissolving potassium ferricyanide as a mediator and glucose oxidase as an enzyme in 0.1 M phosphate buffer (pH 7) was dropped into the opening surrounded by the insulating resist of the enzyme sensor electrode (4). It was dried to carry the mediator and the enzyme to obtain an enzyme sensor.
<電気化学評価>
 上記作製した酵素センサー用電極に銀/塩化銀が塗工された電極を参照極、他は作用極と対極として、電解液に0.1Mリン酸緩衝液(pH7.0)中に、反応基質(センシング対象物)としてD-グルコースを5mMとなるように添加し、0.5V(vsAg/AgCl)の電位を印加して10秒後の電流値を測定した。同様に、10mM、20mMのグルコースを含む各0.1Mりん酸緩衝液を用いて、それぞれ0.5V(vsAg/AgCl)の電位を印加して10秒後の電流値を測定したところ、グルコース濃度と電流値に相関が見られた。基質濃度による電流値変化が得られ、センサーとして活用が可能であることが示された。
<Electrochemical evaluation>
The electrode for the enzyme sensor prepared above coated with silver/silver chloride was used as a reference electrode, and the others were used as a working electrode and a counter electrode. D-glucose was added as (sensing object) to 5 mM, a potential of 0.5 V (vs Ag/AgCl) was applied, and the current value was measured 10 seconds later. Similarly, using 0.1 M phosphate buffers containing 10 mM and 20 mM glucose, a potential of 0.5 V (vs Ag/AgCl) was applied and the current value was measured 10 seconds after the glucose concentration and the current value. We obtained a change in the current value depending on the substrate concentration, and it was shown that it can be used as a sensor.
・実施例群B
[実施例31]
<酵素センサー電極形成用組成物の作製>
 イオン交換水500質量部に水溶性樹脂(B-a10:CMCダイセル#1240(ダイセル化学工業社製))5質量部を溶解させ、黒鉛(A-a11:球状天然黒鉛CGB-50(日本黒鉛社製))72質量部と黒鉛以外の炭素材料(A-b11:ライオナイトEC-200L(ライオン・スペシャリティ・ケミカルズ社製、比表面積380m/g)8質量部を添加しミキサーに入れて混合した。次いで、サンドミルにて分散を行った。
 次に水分散性樹脂微粒子(B-b10:(メタ)アクリル系エマルションW-168(トーヨーケム社製固形分50質量%))30質量部を添加し、適宜イオン交換水を加えてミキサーで混合し、表5に示す酵素センサー電極形成用組成物(31)を得た。
・Example group B
[Example 31]
<Preparation of composition for forming enzyme sensor electrode>
5 parts by mass of a water-soluble resin (B-a10: CMC Daicel #1240 (manufactured by Daicel Chemical Industries, Ltd.)) is dissolved in 500 parts by mass of ion-exchanged water, and graphite (A-a11: spherical natural graphite CGB-50 (Nippon Graphite Co., Ltd.) )) and 8 parts by mass of a carbon material other than graphite (A-b11: Lionite EC-200L (manufactured by Lion Specialty Chemicals, specific surface area 380 m 2 /g)) were added and mixed in a mixer. Then, it was dispersed in a sand mill.
Next, 30 parts by mass of water-dispersible resin fine particles (B-b10: (meth)acrylic emulsion W-168 (solid content: 50% by mass, manufactured by Toyochem Co., Ltd.)) was added, and ion-exchanged water was added as appropriate and mixed with a mixer. , an enzyme sensor electrode-forming composition (31) shown in Table 5 was obtained.
<酵素センサー用電極の作製>
 酵素センサー電極形成用組成物(31)を非導電性基材である厚さ100μmのPET基材(ルミラー(東レ社製))上にドクターブレードを用いて塗布した後、加熱乾燥して導電層(31)を得た。
<Preparation of electrode for enzyme sensor>
After applying the enzyme sensor electrode-forming composition (31) onto a non-conductive PET substrate (Lumirror (manufactured by Toray Industries, Inc.)) having a thickness of 100 μm using a doctor blade, it is dried by heating to form a conductive layer. (31) was obtained.
 前記導電層(31)を10×30mmに切り出し、下部5×5mm以外をテープでマスキング処理を行った。マスキング処理を行っていない5×5mmの導電層に、メディエーターであるフェロセンのメタノール水溶液と、酵素であるグルコースデヒドロゲナーゼ水溶液をそれぞれ滴下、自然乾燥させてメディエーターと酵素を担持した後、マスキングテープを剥がして酵素センサー用電極(31)を得た。 The conductive layer (31) was cut to 10 x 30 mm, and masking was performed with tape except for the lower portion of 5 x 5 mm. A methanol aqueous solution of ferrocene as a mediator and an aqueous solution of glucose dehydrogenase as an enzyme were dropped on a 5×5 mm conductive layer that had not been masked, and the mediator and enzyme were supported by air drying. After that, the masking tape was peeled off. An enzyme sensor electrode (31) was obtained.
 実施例31において、各成分の種類及び配合量を表5の通りに変更した以外は、実施例31と同様にして、それぞれ酵素センサー電極形成用組成物(32)~(48)を得た。
 次いで、実施例31と同様の方法によって実施例32~47および比較例4の酵素センサー用電極を得た。
Enzyme sensor electrode-forming compositions (32) to (48) were obtained in the same manner as in Example 31, except that the types and amounts of each component were changed as shown in Table 5.
Then, the enzyme sensor electrodes of Examples 32 to 47 and Comparative Example 4 were obtained in the same manner as in Example 31.
<電気化学評価>
 上記作製した酵素センサー用電極を作用極として、対極(白金コイル電極)、参照電極(銀/塩化銀電極)が取り付けられた電解槽に、電解液として0.1Mリン酸緩衝液(pH7.0)を入れ、反応基質(センシング対象物)としてD-グルコースを20mMとなるように添加し、0.5V(vsAg/AgCl)の電位を印加して10秒後の電流値を測定した。表1に示すように、比較例4における電位印加10秒後の電流値に対する、各実施例における同電流値の百分率(%)で比較した。酵素センサー用電極で測定される電流値が大きい程、センシング対象物質を検出しやすいため感度が高いと言える。結果を表5に示す。
(評価基準)
3:160%以上
2:130%以上160%未満
1:100%より大きく130%未満
<Electrochemical evaluation>
Using the enzyme sensor electrode prepared above as a working electrode, a counter electrode (platinum coil electrode) and a reference electrode (silver/silver chloride electrode) were placed in an electrolytic cell. ) was added, D-glucose was added as a reaction substrate (object to be sensed) to 20 mM, a potential of 0.5 V (vs Ag/AgCl) was applied, and the current value was measured 10 seconds later. As shown in Table 1, the percentage (%) of the same current value in each example with respect to the current value 10 seconds after potential application in Comparative Example 4 was compared. It can be said that the higher the current value measured by the enzyme sensor electrode, the easier it is to detect the substance to be sensed, and thus the higher the sensitivity. Table 5 shows the results.
(Evaluation criteria)
3: 160% or more 2: 130% or more and less than 160% 1: greater than 100% and less than 130%
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 いずれの実施例においても、比較例4より電流値が高く得られたため、本発明により高感度なセンサーとして利用できる。 In each example, a higher current value was obtained than in Comparative Example 4, so the present invention can be used as a highly sensitive sensor.
これは、黒鉛(A-a)に黒鉛以外の炭素材料(A-b)を混合することで、電極の導電性が向上したことと電気化学反応の起きる面積が増大したことに起因すると考える。
また、実施例31~35より、黒鉛以外の炭素材料(A-b)の質量部が大きい程、電流値が向上することが確認された。これは、黒鉛以外の炭素材料(A-b)の質量部が大きいと、良好な導電パスを形成するため電極の導電性が向上することと、黒鉛(A-a)よりも黒鉛以外の炭素材料(A-b)の方が比表面積が大きいため、電気化学反応の起きる面積が増大することに起因すると考える。また、実施例43と実施例44の比較により、黒鉛(A-a)の比表面積が大きい程、電流値が向上することが確認された。これは、電気化学反応の起きる面積が増大したためと考える。また、実施例43と実施例32の比較により、黒鉛以外の炭素材料(A-b)の比表面積が大きい程、電流値が向上することが確認された。これも、電気化学反応の起きる面積が増大したためと考える。また、実施例45~47より、黒鉛(A-a)の比表面積が大きく、かつ、黒鉛以外の炭素材料(A-b)の比表面積も大きいと、どちらか一方が大きい実施例32や実施例44よりも、電流値が向上することが確認された。
This is considered to be due to the fact that the conductivity of the electrode was improved and the area where the electrochemical reaction occurred was increased by mixing the carbon material (Ab) other than graphite with the graphite (Aa).
Further, from Examples 31 to 35, it was confirmed that the current value improved as the mass part of the carbon material (Ab) other than graphite increased. This is because when the mass part of the carbon material (Ab) other than graphite is large, the conductivity of the electrode is improved due to the formation of a good conductive path, and the carbon other than graphite is higher than that of graphite (Aa). This is attributed to the fact that the material (Ab) has a larger specific surface area, so that the area where the electrochemical reaction occurs increases. Further, by comparing Examples 43 and 44, it was confirmed that the larger the specific surface area of graphite (Aa), the more the current value was improved. It is considered that this is because the area where the electrochemical reaction occurs has increased. Further, by comparing Example 43 and Example 32, it was confirmed that the larger the specific surface area of the carbon material (Ab) other than graphite, the higher the current value. This is also considered to be due to the increase in the area where the electrochemical reaction occurs. Further, from Examples 45 to 47, when the specific surface area of graphite (Aa) is large and the specific surface area of carbon material (Ab) other than graphite is large, either one is large. It was confirmed that the current value was improved more than in Example 44.
 前記実施例群Aの酵素センサーの作製において、実施例32の酵素センサー電極形成用組成物(32)を用いた以外は、当該酵素センサーの作製と同様の方法で図1に示す酵素センサー用電極(32)を得た。当該酵素センサー用電極(32)の絶縁性レジストで囲われた開口部内に、メディエーターであるフェリシアン化カリウムと酵素であるグルコースオキシダーゼを0.1Mリン酸緩衝(pH7)で溶解した水溶液を滴下、自然乾燥させてメディエーターと酵素を担持し、酵素センサーを得た。
 上記作製した酵素センサー用電極(32)に銀/塩化銀が塗工された電極を参照極、他は作用極と対極として、電解液に0.1Mリン酸緩衝液(pH7.0)中に、反応基質(センシング対象物)としてD-グルコースを5mMとなるように添加し、0.5V(vsAg/AgCl)の電位を印加して10秒後の電流値を測定した。同様に、10mM、20mMのグルコースを含む各0.1Mりん酸緩衝液を用いて、それぞれ0.5V(vsAg/AgCl)の電位を印加して10秒後の電流値を測定したところ、グルコース濃度と電流値に相関が見られた。基質濃度による電流値変化が得られ、センサーとして活用が可能であることが示された。
In the production of the enzyme sensor of Example Group A, the enzyme sensor electrode shown in FIG. (32) was obtained. An aqueous solution prepared by dissolving potassium ferricyanide as a mediator and glucose oxidase as an enzyme in 0.1 M phosphate buffer (pH 7) is dropped into the opening surrounded by the insulating resist of the enzyme sensor electrode (32), and dried naturally. Then, the mediator and the enzyme were loaded to obtain an enzyme sensor.
The electrode (32) for the enzyme sensor prepared above is coated with silver/silver chloride as a reference electrode, and the others are used as a working electrode and a counter electrode. , D-glucose was added as a reaction substrate (object to be sensed) to 5 mM, a potential of 0.5 V (vs Ag/AgCl) was applied, and the current value was measured 10 seconds later. Similarly, using 0.1 M phosphate buffers containing 10 mM and 20 mM glucose, a potential of 0.5 V (vs Ag/AgCl) was applied and the current value was measured 10 seconds after the glucose concentration and the current value. We obtained a change in the current value depending on the substrate concentration, and it was shown that it can be used as a sensor.
1 酵素センサー
2 基材
3 導電層
4 絶縁層
5 開口部
6 参照極
1 enzyme sensor 2 substrate 3 conductive layer 4 insulating layer 5 opening 6 reference electrode

Claims (15)

  1.  導電材と、水性樹脂微粒子と、水性液状媒体とを含有し、
    前記導電材が2種類以上の炭素材料(A)を含む、酵素センサー電極形成用組成物。
    Containing a conductive material, aqueous resin fine particles, and an aqueous liquid medium,
    A composition for forming an enzyme sensor electrode, wherein the conductive material contains two or more carbon materials (A).
  2.  前記水性樹脂微粒子の粒径が10~500nmである、請求項1に記載の酵素センサー電極形成用組成物。 The composition for forming an enzyme sensor electrode according to claim 1, wherein the particle size of the aqueous resin fine particles is 10 to 500 nm.
  3.  前記水性樹脂微粒子が、アクリル系乳化重合物及び/またはメタクリル系乳化重合物を含む、請求項1または2に記載の酵素センサー電極形成用組成物。 The composition for forming an enzyme sensor electrode according to claim 1 or 2, wherein the aqueous resin fine particles contain an acrylic emulsion polymer and/or a methacrylic emulsion polymer.
  4.  前記水性樹脂微粒子が、架橋型樹脂微粒子を含む、請求項1~3のいずれか一項に記載の酵素センサー電極形成用組成物。 The composition for forming an enzyme sensor electrode according to any one of claims 1 to 3, wherein the aqueous resin fine particles contain crosslinked resin fine particles.
  5.  更に、酸化還元酵素を含有する、請求項1~4のいずれか一項に記載の酵素センサー電極形成用組成物。 The composition for forming an enzyme sensor electrode according to any one of claims 1 to 4, further comprising an oxidoreductase.
  6.  更に、水溶性樹脂を含有する、請求項1~5のいずれか一項に記載の酵素センサー電極形成用組成物。 The composition for forming an enzyme sensor electrode according to any one of claims 1 to 5, further comprising a water-soluble resin.
  7.  前記炭素材料(A)が、黒鉛(A-a)と黒鉛以外の炭素材料(A-b)とを含む、請求項1~6のいずれか一項に記載の酵素センサー電極形成用組成物。 The composition for forming an enzyme sensor electrode according to any one of claims 1 to 6, wherein the carbon material (A) contains graphite (Aa) and a carbon material (Ab) other than graphite.
  8.  酵素センサー電極形成用組成物の固形分の合計100質量%中の炭素材料(A)の含有量が50~98質量%であり、前記炭素材料(A)の固形分の合計100質量%中の黒鉛(A-a)の含有量が25~99質量%である、請求項7に記載の酵素センサー電極形成用組成物。 The content of the carbon material (A) in the total solid content of 100% by mass of the composition for forming an enzyme sensor electrode is 50 to 98% by mass, and the carbon material (A) in the total solid content of 100% by mass 8. The composition for forming an enzyme sensor electrode according to claim 7, wherein the content of graphite (Aa) is 25 to 99% by mass.
  9.  前記黒鉛(A-a)が、比表面積が1m/g以上である黒鉛を含む、請求項7または8に記載の酵素センサー電極形成用組成物。 9. The composition for forming an enzyme sensor electrode according to claim 7, wherein said graphite (Aa) contains graphite having a specific surface area of 1 m 2 /g or more.
  10.  前記黒鉛以外の炭素材料(A-b)が、比表面積が10m/g以上である炭素材料を含む、請求項7~9のいずれか一項に記載の酵素センサー電極形成用組成物。 The composition for forming an enzyme sensor electrode according to any one of claims 7 to 9, wherein the carbon material (Ab) other than graphite includes a carbon material having a specific surface area of 10 m 2 /g or more.
  11.  前記黒鉛(A-a)が、比表面積が1m/g以上である黒鉛を含み、かつ、炭素材料(A-b)が、比表面積が10m/g以上である炭素材料を含む、請求項7~10のいずれか一項に記載の酵素センサー電極形成用組成物。 The claim that the graphite (Aa) comprises graphite having a specific surface area of 1 m 2 /g or more, and the carbon material (Ab) comprises a carbon material having a specific surface area of 10 m 2 /g or more. Item 11. The composition for forming an enzyme sensor electrode according to any one of items 7 to 10.
  12.  請求項1~11のいずれか一項に記載の酵素センサー電極形成用組成物より形成される酵素センサー用電極。 An enzyme sensor electrode formed from the composition for forming an enzyme sensor electrode according to any one of claims 1 to 11.
  13.  更に、酸化還元酵素を含む、請求項12記載の酵素センサー用電極。 The enzyme sensor electrode according to claim 12, further comprising an oxidoreductase.
  14.  請求項1~11のいずれか一項に記載の酵素センサー電極形成用組成物、または請求項12~13のいずれかに一項に記載の酵素センサー用電極を含む、酵素センサー。 An enzyme sensor comprising the enzyme sensor electrode-forming composition according to any one of claims 1 to 11 or the enzyme sensor electrode according to any one of claims 12 and 13.
  15.  センシング対象物質が、グルコース、フルクトース、および乳酸から選択される、請求項14に記載の酵素センサー。 The enzyme sensor according to claim 14, wherein the substance to be sensed is selected from glucose, fructose, and lactic acid.
PCT/JP2021/014825 2021-04-07 2021-04-07 Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor WO2022215213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014825 WO2022215213A1 (en) 2021-04-07 2021-04-07 Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014825 WO2022215213A1 (en) 2021-04-07 2021-04-07 Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor

Publications (1)

Publication Number Publication Date
WO2022215213A1 true WO2022215213A1 (en) 2022-10-13

Family

ID=83545269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014825 WO2022215213A1 (en) 2021-04-07 2021-04-07 Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor

Country Status (1)

Country Link
WO (1) WO2022215213A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220345A (en) * 2018-06-20 2019-12-26 東洋インキScホールディングス株式会社 Enzyme battery electrode, separator, and enzyme battery
WO2020013138A1 (en) * 2018-07-09 2020-01-16 東洋インキScホールディングス株式会社 Carbon catalyst for positive electrode of enzyme power-generation device, and enzyme power-generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220345A (en) * 2018-06-20 2019-12-26 東洋インキScホールディングス株式会社 Enzyme battery electrode, separator, and enzyme battery
WO2020013138A1 (en) * 2018-07-09 2020-01-16 東洋インキScホールディングス株式会社 Carbon catalyst for positive electrode of enzyme power-generation device, and enzyme power-generation device

Similar Documents

Publication Publication Date Title
JP6834524B2 (en) Electrode-forming compositions, electrodes, and microbial fuel cells used in microbial fuel cells
KR101698623B1 (en) Binder composition for non-aqueous secondary battery electrode
WO2020013138A1 (en) Carbon catalyst for positive electrode of enzyme power-generation device, and enzyme power-generation device
JP5880544B2 (en) Aqueous composition for secondary battery electrode formation, secondary battery electrode, and secondary battery
JP5252134B2 (en) Aqueous composition for secondary battery electrode formation, secondary battery electrode, and secondary battery
JP2019084519A (en) Aqueous conductive dispersion body, production method for aqueous conductive dispersion body, biosensor and production method for biosensor
JP7119612B2 (en) Composition for porous electrode, porous electrode and battery using the same
JP2011134649A (en) Resin fine grain for nonaqueous secondary cell electrode
JP6743483B2 (en) Composition for forming catalyst layer used in water electrolysis apparatus, catalyst layer and water electrolysis apparatus
JP6939189B2 (en) Composition for forming a positive electrode of an enzyme battery, a positive electrode for an enzyme battery and an enzyme battery
JP2016081704A (en) Conductive composition, electrode for power storage device, and power storage device
JP2019038870A (en) Aqueous conductive dispersion liquid, biosensor, and method for manufacturing biosensor
KR20180083333A (en) A composition for a non-aqueous secondary battery adhesion layer, an adhesive layer for a non-aqueous secondary battery, and a non-
CN113166603A (en) Adhesive sheet
WO2022215213A1 (en) Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor
JP2021089152A (en) Enzyme sensor electrode forming composition, enzyme sensor electrode, and enzyme sensor
JP2020009748A (en) Carbon material for anode electrode, composition, electrode, and biofuel cell using the same
JP2018170092A (en) Composition for electrode formation used in microbial fuel cell, electrode and microbial fuel cell
JP6244783B2 (en) Capacitor electrode forming composition, capacitor electrode, and capacitor
JP2020013778A (en) Enzyme power generation device electrode forming composition, enzyme power generation device electrode, and enzyme power generation device
JP7063156B2 (en) Compositions for forming battery electrodes, electrodes, and microbial fuel cell devices
JP7472609B2 (en) Electrode for enzyme sensor and enzyme sensor
JP2020177906A (en) Composition for fuel battery electrode formation, and electrode and fuel battery which are arranged by use thereof
JP7200640B2 (en) Enzyme power generation device
JP2010050429A (en) Binder composition for electric double-layer capacitor electrode, the electric double-layer capacitor electrode, and the electric double-layer capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936017

Country of ref document: EP

Kind code of ref document: A1