JP2019220345A - Enzyme battery electrode, separator, and enzyme battery - Google Patents

Enzyme battery electrode, separator, and enzyme battery Download PDF

Info

Publication number
JP2019220345A
JP2019220345A JP2018116819A JP2018116819A JP2019220345A JP 2019220345 A JP2019220345 A JP 2019220345A JP 2018116819 A JP2018116819 A JP 2018116819A JP 2018116819 A JP2018116819 A JP 2018116819A JP 2019220345 A JP2019220345 A JP 2019220345A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
carbon
battery
enzyme battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018116819A
Other languages
Japanese (ja)
Inventor
彰彦 八手又
Akihiko Yatemata
彰彦 八手又
寛人 渡部
Hiroto Watabe
寛人 渡部
博友 伊藤
Hirotomo Ito
博友 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2018116819A priority Critical patent/JP2019220345A/en
Publication of JP2019220345A publication Critical patent/JP2019220345A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide an enzyme battery excellent in operational stability and output characteristics.SOLUTION: There are provided: an enzyme battery electrode and an enzyme battery, in which at least one of a positive electrode and a negative electrode includes enzymes as a component and the positive electrode and/or the negative electrode has at least one slit and/or hole; a separator having a slit and/or a hole therein; and an enzyme battery including the enzyme battery electrode.SELECTED DRAWING: None

Description

本発明は、酵素電池用電極、セパレーター、および酵素電池に関する。   The present invention relates to an electrode for an enzyme battery, a separator, and an enzyme battery.

近年開発が進められている酵素電池は、糖やアルコール、有機酸等の有機物を燃料にして、酵素反応により生成した電気エネルギーを利用する発電型デバイスである。酵素電池においては、負極および/または正極に酸化還元酵素を含み、多種多様な有機物と空気中の酸素を燃料として発電するエネルギーシステムであり、常温作動が可能、豊富な有機エネルギー源が活用可能、生体への高い安全性が利点として挙げられる。
酵素電池から取り出した電気エネルギーを電源として活用する以外にも、酵素が持つ基質特異性を利用し、糖などの目的とする有機物をセンシングするための自己発電型センサーとして応用する方法も提案されている。自己発電型センサーは発電と有機物センシング機能を併せ持つため、電源不要な小型軽量化、低コスト化が可能となることに加え、酵素による微小量検出や基質特異性に由来する高いセンシング精度が特長となる。そのため、生体向けのウェアラブルデバイスやインプラントデバイス等に使われるセンサーおよび電源としての利用が期待されている。
他方、酵素電池においては、負極及び正極に酸化還元酵素を含み、多種多様な有機物と空気中の酸素を燃料として発電するエネルギーシステムであり、常温作動、豊富な有機エネルギー源の活用、環境・生体への高い安全性等、複数の利点がある一方、動作及び出力安定性、寿命、コスト等に関する課題もある。
Enzyme batteries, which are being developed in recent years, are power generation devices that use electric energy generated by an enzymatic reaction using organic substances such as sugars, alcohols, and organic acids as fuel. An enzyme battery is an energy system that contains oxidoreductase in the negative electrode and / or positive electrode, generates electricity using a variety of organic substances and oxygen in the air as fuel, can operate at room temperature, and can utilize abundant organic energy sources. High safety to the living body is mentioned as an advantage.
In addition to using the electric energy extracted from the enzyme battery as a power source, a method has also been proposed that uses the substrate specificity of the enzyme and applies it as a self-powered sensor for sensing target organic substances such as sugars. I have. The self-powered sensor has both power generation and organic substance sensing functions, so it is not only possible to reduce the size, weight and cost without the need for a power source, but also to detect small amounts with enzymes and high sensing accuracy derived from substrate specificity. Become. Therefore, it is expected to be used as a sensor and a power source used in wearable devices and implant devices for living bodies.
On the other hand, an enzyme battery is an energy system that contains oxidoreductases in the negative and positive electrodes and generates electricity using a variety of organic substances and oxygen in the air as fuel. While there are several advantages, such as high safety to the user, there are also issues regarding operation and output stability, life, cost, and the like.

特開2009−181889号公報JP 2009-181889 A 国際公開第2013/065581号International Publication No. WO 2013/065581 特許第6295630号公報Japanese Patent No. 6295630 特許第5181576号公報Japanese Patent No. 5181576

酵素電池においては、出力は必ずしも十分とは言えず、またその動作の安定性にも一層の改善が望まれている。本発明の目的は、動作不良を防止し、出力が改善された酵素電池を提供することである。   In an enzyme battery, the output is not always sufficient, and further improvement in operation stability is desired. SUMMARY OF THE INVENTION An object of the present invention is to provide an enzyme battery that prevents malfunction and has improved output.

本発明者らは、前記課題を解決すべく検討を重ねた結果、本発明に至った。
すなわち本発明は、正極、および負極の少なくとも一方の構成部材が、酵素を含む酵素電池であって、前記正極および/または負極が、少なくとも1つのスリットおよび/または穴を有することを特徴とする酵素電池用電極に関する。
The present inventors have conducted various studies to solve the above problems, and as a result, have reached the present invention.
That is, the present invention is an enzyme battery in which at least one of the positive electrode and the negative electrode contains an enzyme, wherein the positive electrode and / or the negative electrode has at least one slit and / or hole. The present invention relates to a battery electrode.

また、本発明は、スリットおよび/または穴が、正極および/または負極を貫通する上記酵素電池用電極に関する。   The present invention also relates to the enzyme battery electrode, wherein the slit and / or the hole penetrate the positive electrode and / or the negative electrode.

また、本発明は、上記酵素電池用電極を具備する酵素電池に関する。   The present invention also relates to an enzyme battery including the enzyme battery electrode.

また、本発明は、正極の有するスリットおよび/または穴の近傍に、負極の有するスリットおよび/または穴が設置されてなる上記酵素電池に関する。   In addition, the present invention relates to the enzyme battery, wherein a slit and / or a hole of the negative electrode is provided near a slit and / or a hole of the positive electrode.

また、本発明は、正極、および負極の少なくとも一方の構成部材が、酵素を含む酵素電池に用いられるセパレーターであって、前記セパレーターが、少なくとも1つのスリットおよび/または穴を有することを特徴とするセパレーターに関する。   Further, the present invention is characterized in that at least one of the constituent members of the positive electrode and the negative electrode is a separator used for an enzyme battery containing an enzyme, and the separator has at least one slit and / or hole. Regarding the separator.

また、本発明は、上記セパレーターを具備する上記酵素電池に関する。   In addition, the present invention relates to the enzyme battery provided with the separator.

また、本発明は、セパレーターの有するスリットおよび/または穴の近傍に、正極の有するスリットおよび/または穴、並びに、負極の有するスリットおよび/または穴が設置されてなる上記酵素電池に関する。   In addition, the present invention relates to the enzyme battery, wherein a slit and / or a hole of a positive electrode and a slit and / or a hole of a negative electrode are provided in the vicinity of the slit and / or the hole of the separator.

本発明の酵素電池用電極および酵素電池を用いることにより、電池内の気泡を電池外へ逃がすことができるようになり動作不良や出力低下が抑えられると共に、電極反応物である燃料が一般的には到達し難い電極中央部へ拡散されやすくなり出力向上の効果が得られる。   By using the electrode for an enzyme battery and the enzyme battery of the present invention, air bubbles in the battery can be released to the outside of the battery, malfunctions and output reduction are suppressed, and fuel which is an electrode reactant is generally used. Is easily diffused to the center of the electrode, which is difficult to reach, and an effect of improving output can be obtained.

以下、詳細に本発明について説明する。 Hereinafter, the present invention will be described in detail.

<<スリットおよび穴>>
酵素電池における正極および負極は、電極反応が生起する電極層と、必要に応じて電極層を担持し電荷を集める導電性支持体が設置され、構成される。本発明におけるスリットおよび穴は、正極および/または負極の電極層および/または導電性支持体に設置される。
なお、本発明でいう、穴とは、正極、セパレーター、または、負極を、穿孔などしてできる空間である。穴は形状や面積、数に限定は無いものの、可能な限り総面積が小さい方がよく、好ましくは酵素電池用電極の総面積の80%以下となるものがよい。
また、本発明でいう、スリットとは、正極、セパレーター、または、負極を、切断などしてできる幅の狭い空間である。スリットの幅、長さや数に限定は無いものの、可能な限り長さは短い方がよい。例えば、酵素電池用電極における長辺の80%以下となるものがよい。
また、スリットのアスペクト比は特に限定するものではないが、好ましくは2以上、更に好ましくは10以上、より更に好ましくは50以上である。
酵素電池の出力を考慮すると、電極面積が減少することが無いスリットの方が好ましい。
<< Slits and holes >>
The positive electrode and the negative electrode in the enzyme battery are provided with an electrode layer in which an electrode reaction occurs and, if necessary, a conductive support that carries the electrode layer and collects electric charges. The slit and the hole in the present invention are provided on the electrode layer of the positive electrode and / or the negative electrode and / or the conductive support.
Note that, in the present invention, a hole is a space formed by perforating a positive electrode, a separator, or a negative electrode. The shape, area, and number of the holes are not limited, but the total area is preferably as small as possible, and is preferably 80% or less of the total area of the enzyme battery electrode.
In addition, the term “slit” as used in the present invention refers to a narrow space formed by cutting a positive electrode, a separator, or a negative electrode. Although the width, length and number of the slits are not limited, it is preferable that the length is as short as possible. For example, an electrode that is 80% or less of the long side of the electrode for an enzyme battery is preferable.
The aspect ratio of the slit is not particularly limited, but is preferably 2 or more, more preferably 10 or more, and further preferably 50 or more.
In consideration of the output of the enzyme battery, a slit that does not reduce the electrode area is preferable.

セパレーターを有しない電池構成の場合は、正極の有するスリットおよび/または穴の近傍に、負極の有するスリットおよび/または穴を設置することにより、スリットおよび穴は、電極層を貫通することができる。
また、セパレーターを有する電池構成の場合は、セパレーターの有するスリットおよび/または穴の近傍に、正極の有するスリットおよび/または穴、並びに、負極の有するスリットおよび/または穴を設置することにより、スリットおよび穴は、酵素電池を貫通することができる。
In the case of a battery configuration without a separator, the slits and / or holes of the negative electrode are provided near the slits and / or holes of the positive electrode, so that the slits and holes can penetrate the electrode layer.
In the case of a battery configuration having a separator, the slit and / or hole of the positive electrode and the slit and / or hole of the negative electrode are provided near the slit and / or hole of the separator, so that the slit and The holes can penetrate the enzyme battery.

スリットおよび穴は、電極層から貫通し導電性支持体に到達しても良く、導電性支持体から貫通し電極層に到達してもよい。更に、電極層と導電性支持体を貫通して設置されてもよい。また前記各種スリットおよび穴が併用されてもよい。電池内部に生じた気泡を電池外へ放出することと外部から燃料が供給される場合にその拡散に優れることを考慮すると、スリットおよび穴は電極層と導電性支持体を貫通して設置されることが好ましい。
また、酵素電池にセパレーターを用いる場合、正極と負極が電気的に分離(短絡の防止)できている限りセパレーターに対してもスリットおよび穴は設置でき、それらはセパレーターを貫通しても貫通しなくてもよい。イオン伝導体の拡散を考慮すると、スリットおよび穴はセパレーターを貫通していた方がよい。
更に、少なくとも正極とセパレーターと負極から構成される酵素電池において、正極とセパレーターを貫通、あるいは負極とセパレーターを貫通してスリットおよび穴が設置されてもよい。更に、正極とセパレーターと負極が貫通したスリットおよび穴が設置されてもよい。
The slit and the hole may penetrate from the electrode layer and reach the conductive support, or may penetrate from the conductive support and reach the electrode layer. Further, it may be installed so as to penetrate the electrode layer and the conductive support. The various slits and holes may be used in combination. In consideration of discharging bubbles generated inside the battery to the outside of the battery and excellent diffusion when fuel is supplied from the outside, slits and holes are provided through the electrode layer and the conductive support. Is preferred.
When a separator is used in an enzyme battery, slits and holes can be provided in the separator as long as the positive electrode and the negative electrode can be electrically separated (prevention of short circuit). May be. Considering the diffusion of the ion conductor, it is better that the slits and holes penetrate the separator.
Furthermore, in an enzyme battery comprising at least a positive electrode, a separator and a negative electrode, a slit and a hole may be provided so as to penetrate the positive electrode and the separator, or penetrate the negative electrode and the separator. Further, slits and holes through which the positive electrode, the separator, and the negative electrode penetrate may be provided.

<導電性支持体>
酵素電池において、正極および負極に導電性支持体を用いても良い。酵素電池に用いる導電性支持体は、導電性を有する材料であれば特に限定は無い。カーボンペーパーやカーボンクロス等導電性の炭素材料からなる導電層や金属箔、金属メッシュ等が挙げられる。また、紙類、布類等の非導電性支持体に酵素電池電極用導電炭素組成物やポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を塗布、乾燥したものやそれらを併用したものを用いてもよい。前記組成物の塗布方法としては、特に限定されるものではなく、一般的な方法を適用できる。
<Conductive support>
In an enzyme battery, a conductive support may be used for the positive electrode and the negative electrode. The conductive support used for the enzyme battery is not particularly limited as long as the material has conductivity. Examples include a conductive layer, a metal foil, and a metal mesh made of a conductive carbon material such as carbon paper and carbon cloth. In addition, a conductive polymer such as a conductive carbon composition for enzyme battery electrodes or a conductive polymer such as polyaniline, polyacetylene, polypyrrole, or polythiophene is applied to a non-conductive support such as paper or cloth, and dried or a combination thereof is used. May be used. The method for applying the composition is not particularly limited, and a general method can be applied.

<酵素電池電極用導電炭素組成物>
酵素電池電極用導電炭素組成物は、少なくとも導電性炭素と溶剤とバインダーを含む。また、酵素電池電極用導電炭素組成物は、必要に応じて分散剤、増粘剤、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤等を配合できる。導電性炭素及び溶剤とバインダー、分散剤の割合は、特に限定されるものではなく、広い範囲内で適宜選択され得る。VOC排出の観点から、水あるいは水性溶剤を用いることが好ましく、それに伴いバインダーおよび分散剤等も水性であることが好ましい。
<Conductive carbon composition for enzyme battery electrode>
The conductive carbon composition for an enzyme battery electrode contains at least conductive carbon, a solvent, and a binder. In addition, the conductive carbon composition for an enzyme battery electrode may contain a dispersant, a thickener, a film-forming auxiliary, an antifoaming agent, a leveling agent, a preservative, a pH adjuster, and the like, if necessary. The proportions of the conductive carbon and the solvent, the binder, and the dispersant are not particularly limited, and can be appropriately selected within a wide range. From the viewpoint of VOC emission, it is preferable to use water or an aqueous solvent, and accordingly, it is preferable that the binder and the dispersant are also aqueous.

<導電性炭素>
本発明における導電性炭素としては、黒鉛、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、グラフェン系炭素材料(グラフェン、グラフェンナノプレートレット)、多孔質炭素、ナノポーラスカーボン、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。導電性の観点から、少なくとも黒鉛が含有されていることが好ましい。
<Conductive carbon>
As the conductive carbon in the present invention, graphite, carbon black, conductive carbon fiber (carbon nanotube, carbon nanofiber, carbon fiber), graphene-based carbon material (graphene, graphene nanoplatelet), porous carbon, nanoporous carbon, Fullerenes or the like can be used alone or in combination of two or more. From the viewpoint of conductivity, it is preferable that at least graphite is contained.

黒鉛としては、例えば人造黒鉛や天然黒鉛等を使用することが出来る。人造黒鉛は、無定形炭素の熱処理により、不規則な配列の微小黒鉛結晶の配向を人工的に行わせたものであり、一般的には石油コークスや石炭系ピッチコークスを主原料として製造される。天然黒鉛としては、鱗片状黒鉛、塊状黒鉛、土状黒鉛等を使用することが出来る。また、鱗片状黒鉛を化学処理等した膨張黒鉛(膨張性黒鉛ともいう)や、膨張黒鉛を熱処理して膨張化させた後、微細化やプレスにより得られた膨張化黒鉛等を使用することも出来る。これらの黒鉛の中でも、導電膜に用いる場合は、導電性の観点で天然黒鉛が好ましい。   As the graphite, for example, artificial graphite or natural graphite can be used. Artificial graphite is made by artificially orienting micro graphite crystals of irregular arrangement by heat treatment of amorphous carbon, and is generally manufactured using petroleum coke or coal-based pitch coke as a main raw material. . As the natural graphite, flaky graphite, massive graphite, earthy graphite and the like can be used. In addition, expanded graphite obtained by chemically treating flaky graphite or the like (also referred to as expandable graphite), or expanded graphite obtained by heat treatment of expanded graphite to expand it and then obtained by miniaturization or pressing may be used. I can do it. Among these graphites, when used for a conductive film, natural graphite is preferred from the viewpoint of conductivity.

これら黒鉛の表面は、本発明に用いる導電炭素組成物の特性を損なわない限りにおいてバインダー樹脂との親和性を増すために、表面処理、例えばエポキシ処理、ウレタン処理、シランカップリング処理、および酸化処理等が施されていてもよい。   The surface of these graphites is subjected to a surface treatment such as an epoxy treatment, a urethane treatment, a silane coupling treatment, and an oxidation treatment in order to increase the affinity with the binder resin as long as the properties of the conductive carbon composition used in the present invention are not impaired. Etc. may be applied.

また、用いる黒鉛の平均粒径は、2〜100μmが好ましく、特に、20〜50μmが好ましい。   Further, the average particle size of the graphite used is preferably 2 to 100 μm, particularly preferably 20 to 50 μm.

黒鉛の平均粒径が2μm未満では、黒鉛粒子のアスペクト比が低下し、黒鉛粒子間の接触が、点接触になりやすくなるため、導電ネットワークを十分に形成できない。一方で、黒鉛の平均粒径が100μm以上では、黒鉛粒子間の空隙が大きくなり、導電ネットワーク中の黒鉛以外の炭素材料間で形成する導電パスの割合が多くなり、導電性の低下を引き起こす。   If the average particle size of the graphite is less than 2 μm, the aspect ratio of the graphite particles is reduced, and the contact between the graphite particles tends to be point contact, so that a sufficient conductive network cannot be formed. On the other hand, if the average particle size of graphite is 100 μm or more, the voids between the graphite particles become large, and the proportion of conductive paths formed between carbon materials other than graphite in the conductive network increases, causing a decrease in conductivity.

本発明でいう平均粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。   The average particle size referred to in the present invention is a particle size (D50) at which 50% is obtained when the volume ratio of the particles is integrated from a fine particle size in a volume particle size distribution. The particle size is measured by a typical particle size distribution meter, for example, a dynamic light scattering type particle size distribution meter (“Microtrack UPA” manufactured by Nikkiso Co., Ltd.).

市販の黒鉛としては、例えば、薄片状黒鉛として、日本黒鉛工業社製のCMX、UP−5、UP−10、UP−20、UP−35N、CSSP、CSPE、CSP、CP、CB−150、CB−100、ACP、ACP−1000、ACB−50、ACB−100、ACB−150、SP−10、SP−20、J−SP、SP−270、HOP、GR−60、LEP、F#1、F#2、F#3、中越黒鉛社製のCX−3000、FBF、BF、CBR、SSC−3000、SSC−600、SSC−3、SSC、CX−600、CPF−8、CPF−3、CPB−6S、CPB、96E、96L、96L−3、90L−3、CPC、S−87、K−3、CF−80、CF−48、CF−32、CP−150、CP−100、CP、HF−80、HF−48、HF−32、SC−120、SC−80、SC−60、SC−32、伊藤黒鉛工業社製のEC1500、EC1000、EC500、EC300、EC100、EC50、西村黒鉛社製の10099M、PB−99等が挙げられる。球状天然黒鉛としては、日本黒鉛工業社製のCGC−20、CGC−50、CGB−20、CGB−50が挙げられる。土状黒鉛としては、日本黒鉛工業社製の青P、AP、AOP、P#1、中越黒鉛社製のAPR、S−3、AP−6、300Fが挙げられる。人造黒鉛としては、日本黒鉛工業社製のPAG−60、PAG−80、PAG−120、PAG−5、HAG−10W、HAG−150、中越黒鉛社製のRA−3000、RA−15、RA−44、GX−600、G−6S、G−3、G−150、G−100、G−48、G−30、G−50、SECカーボン社製のSGP−100、SGP−50、SGP−25、SGP−15、SGP−5、SGP−1、SGO−100、SGO−50、SGO−25、SGO−15、SGO−5、SGO−1、SGX−100、SGX−50、SGX−25、SGX−15、SGX−5、SGX−1が挙げられる。   As commercially available graphite, for example, as flaky graphite, CMX, UP-5, UP-10, UP-20, UP-35N, CSSP, CSPE, CSP, CP, CB-150, CB manufactured by Nippon Graphite Industry Co., Ltd. -100, ACP, ACP-1000, ACB-50, ACB-100, ACB-150, SP-10, SP-20, J-SP, SP-270, HOP, GR-60, LEP, F # 1, F # 2, F # 3, Chuetsu Graphite CX-3000, FBF, BF, CBR, SSC-3000, SSC-600, SSC-3, SSC, CX-600, CPF-8, CPF-3, CPB- 6S, CPB, 96E, 96L, 96L-3, 90L-3, CPC, S-87, K-3, CF-80, CF-48, CF-32, CP-150, CP-100, CP, HF- 80 HF-48, HF-32, SC-120, SC-80, SC-60, SC-32, EC1500, EC1000, EC500, EC300, EC100, EC50 manufactured by Ito Graphite Industries, 10099M, PB manufactured by Nishimura Graphite -99 and the like. Examples of the spherical natural graphite include CGC-20, CGC-50, CGB-20, and CGB-50 manufactured by Nippon Graphite Industry Co., Ltd. Examples of the earth graphite include Blue P, AP, AOP, P # 1 manufactured by Nippon Graphite Industries, Ltd., and APR, S-3, AP-6, 300F manufactured by Chuetsu Graphite. Examples of artificial graphite include PAG-60, PAG-80, PAG-120, PAG-5, HAG-10W, HAG-150, and RA-3000, RA-15, and RA- manufactured by Chuetsu Graphite Co., Ltd. 44, GX-600, G-6S, G-3, G-150, G-100, G-48, G-30, G-50, SGP-100, SGP-50, SGP-25 manufactured by SEC Carbon , SGP-15, SGP-5, SGP-1, SGO-100, SGO-50, SGO-25, SGO-15, SGO-5, SGO-1, SGX-100, SGX-50, SGX-25, SGX -15, SGX-5, and SGX-1.

また、本発明中の導電炭素組成物に占める黒鉛の含有率は、特に、導電性炭素100質量%中、40〜100質量%であることが好ましい。   In addition, the content of graphite in the conductive carbon composition of the present invention is particularly preferably 40 to 100% by mass based on 100% by mass of the conductive carbon.

黒鉛の含有率が、導電性炭素100質量%中60質量%未満の場合では、過剰量の黒鉛以外の導電性炭素による黒鉛粒子の配向性の低下および導電ネットワークの大部分を黒鉛以外の導電性炭素が占めることで、特異的な高い導電性が発現しなくなる。一方で、黒鉛の含有率が導電性炭素100質量%中99質量%を超える場合には、黒鉛粒子による平面方向の導電性が支配的となり、導電膜の導電性は頭打ちする。   When the graphite content is less than 60% by mass in 100% by mass of conductive carbon, the orientation of graphite particles is reduced due to an excessive amount of conductive carbon other than graphite, and most of the conductive network is made of conductive material other than graphite. When carbon occupies, specific high conductivity is not exhibited. On the other hand, when the graphite content exceeds 99% by mass in 100% by mass of the conductive carbon, the conductivity in the planar direction due to the graphite particles becomes dominant, and the conductivity of the conductive film reaches a peak.

黒鉛含有率が、導電性炭素100質量%中、70〜98質量%である場合、黒鉛粒子による平面方向の高い導電性に加え、適切な量の黒鉛以外の導電性炭素(B−2)によって、黒鉛由来の平面方向の導電性を阻害せずに垂直方向の導電ネットワークが強化され、非常に高い導電性を発現できる。   When the graphite content is 70 to 98% by mass in 100% by mass of the conductive carbon, in addition to the high conductivity in the planar direction by the graphite particles, an appropriate amount of the conductive carbon (B-2) other than graphite is used. In addition, the conductive network in the vertical direction is strengthened without impairing the conductivity in the planar direction derived from graphite, and very high conductivity can be exhibited.

(黒鉛以外の導電性炭素B−2)
黒鉛以外の導電性炭素としては、特に限定されるものではないが、粒径および比表面積の観点からカーボンブラックが好ましい。それ以外にも、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、グラフェン系炭素材料、多孔質炭素、ナノポーラスカーボン、フラーレン等を単独で、もしくは2種類以上併せて使用することが出来る。
(Conductive carbon B-2 other than graphite)
The conductive carbon other than graphite is not particularly limited, but carbon black is preferable from the viewpoint of the particle size and the specific surface area. In addition, conductive carbon fiber (carbon nanotube, carbon nanofiber, carbon fiber), graphene-based carbon material, porous carbon, nanoporous carbon, fullerene, etc. can be used alone or in combination of two or more. .

カーボンブラックとしては、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどの各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。   As carbon black, furnace black, which is produced by continuously pyrolyzing gaseous or liquid raw materials in a reaction furnace, particularly Ketjen black made from ethylene heavy oil, and burning the raw material gas, the flame of the channel steel bottom Channel black deposited by quenching and deposition, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and particularly various types such as acetylene black using acetylene gas as a raw material, or 2 More than one kind can be used together. In addition, carbon black that has been subjected to an oxidation treatment and hollow carbon, which are commonly used, can also be used.

カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。   Oxidation treatment of carbon is performed by treating carbon at high temperature in air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., such as phenol group, quinone group, carboxyl group, carbonyl group. This is a process of directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon. However, since the conductivity of carbon generally decreases as the amount of functional groups introduced increases, it is preferable to use carbon that has not been oxidized.

用いるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m2/g以上、1500m2/g以下、好ましくは50m2/g以上、1500m2/g以下、更に好ましくは100m2/g以上、1500m2/g以下のものを使用することが望ましい。比表面積が20m2/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m2/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。 As the specific surface area of the carbon black used increases, the number of contact points between the carbon black particles increases, which is advantageous in reducing the internal resistance of the electrode. Specifically, in specific surface area determined from the adsorption of nitrogen (BET), 20m 2 / g or more, 1500 m 2 / g or less, preferably 50 m 2 / g or more, 1500 m 2 / g or less, more preferably 100 m 2 / G or more and 1500 m 2 / g or less. If carbon black having a specific surface area of less than 20 m 2 / g is used, it may be difficult to obtain sufficient conductivity, and carbon black exceeding 1500 m 2 / g may be difficult to obtain as a commercial material. is there.

また、用いるカーボンブラックの粒径は、一次粒子径で0.005〜1μmが好ましく、特に、0.01〜0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。   The particle size of the carbon black used is preferably from 0.005 to 1 μm in terms of primary particle size, and particularly preferably from 0.01 to 0.2 μm. However, the primary particle size here is an average of the particle sizes measured by an electron microscope or the like.

市販のカーボンブラックとしては、例えば、東海カーボン社製のトーカブラック#4300、#4400、#4500、#5500、デグサ社製のプリンテックスL、コロンビヤン社製のRaven7000、5750、5250、5000ULTRAIII、5000ULTRA、Conductex SC ULTRA、Conductex 975 ULTRA、PUERBLACK100、115、205、三菱化学社製の#2350、#2400B、#2600B、#3050B、#3030B、#3230B、#3350B、#3400B、#5400B、キャボット社製のMONARCH1400、1300、900、VulcanXC−72R、BlackPearls2000、TIMCAL社製のEnsaco250G、Ensaco260G、Ensaco350G、SuperP−Li等のファーネスブラック)、ライオン社製のEC−300J、EC−600JD等のケッチェンブラック、デンカ社製のデンカブラック、デンカブラックHS−100、FX−35等のアセチレンブラックが挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。   Commercially available carbon blacks include, for example, Toka Black # 4300, # 4400, # 4500, and # 5500 manufactured by Tokai Carbon Co., Ltd., Printex L manufactured by Degussa, Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA manufactured by Colombian, and Conductex SC ULTRA, Conductex 975 ULTRA, PUERBLACK100, 115, 205, # 2350, # 2400B, # 2600B, # 3050B, # 3030B, # 3230B, # 3350B, # 3400B, # 5400B, manufactured by Mitsubishi Chemical Corporation. MONARCH 1400, 1300, 900, Vulcan XC-72R, BlackPearls2000, Ensaco 250G manufactured by TIMCAL, Ensa acetylene black such as co-260G, Ensaco 350G, furnace black such as SuperP-Li), Ketjen black such as EC-300J and EC-600JD manufactured by Lion, Denka black manufactured by Denka, Denka black HS-100 and FX-35. However, the present invention is not limited to these, and two or more kinds may be used in combination.

カーボンナノチューブは、グラフェンシートが環を巻いたナノスケールのチューブ状の構造を有しており、グラフェンシートの積層数によって、単層、多層に区別される。カーボンナノチューブは、原料や合成方法によって繊維径や長さ、結晶性、集合状態を制御することで、材料の比表面積、導電性等の諸物性を制御することが可能となる。グラフェン系炭素材料と同様、合成コストや取り扱いを考慮すると、単層カーボンナノチューブよりも多層カーボンナノチューブの方が好ましい場合がある。
市販のカーボンナノチューブとしては、VGCF、VGCF−H、VGCF−X等の昭和電工社製カーボンナノチューブ、名城ナノカーボン社製カーボンナノチューブ等が挙げられる。
A carbon nanotube has a nanoscale tubular structure in which a graphene sheet is wound around a ring, and is classified into a single layer and a multilayer according to the number of stacked graphene sheets. By controlling the fiber diameter, length, crystallinity, and aggregation state of the carbon nanotube depending on the raw material and the synthesis method, various physical properties such as the specific surface area and conductivity of the material can be controlled. As in the case of the graphene-based carbon material, in consideration of synthesis cost and handling, a multi-walled carbon nanotube may be preferable to a single-walled carbon nanotube in some cases.
Examples of commercially available carbon nanotubes include carbon nanotubes manufactured by Showa Denko KK, such as VGCF, VGCF-H, and VGCF-X, and carbon nanotubes manufactured by Meijo Nanocarbon Co., Ltd.

グラフェン系炭素材料としては、炭素原子が同一平面上に六角形に配置し、グラファイトを構成する単原子層であるグラフェンが、単層若しくは、多層構造を有している炭素材料であれば良い。単層及び多層グラフェンは、グラファイトを機械的、化学的に剥がしたり、炭化水素系ガスからCVD法でなどにより合成されるが、合成コストや取り扱いを考慮すると、単層グラフェンよりも十数〜数十層積層された多層グラフェンが好ましい場合がある。
市販のグラフェン系炭素材料としては、例えば、xGnP−C−750、xGnP−M−5等のXGSciences社製グラフェンナノプレートレット等が挙げられる。
The graphene-based carbon material may be any carbon material in which carbon atoms are hexagonally arranged on the same plane and graphene, which is a monoatomic layer constituting graphite, has a single-layer or multilayer structure. Single-layer and multi-layer graphene are mechanically and chemically peeled from graphite or synthesized from a hydrocarbon-based gas by a CVD method or the like. In some cases, multilayer graphene having ten layers is preferable.
Examples of commercially available graphene-based carbon materials include graphene nanoplatelets manufactured by XGS Sciences, such as xGnP-C-750 and xGnP-M-5.

多孔質炭素は、一般的に酢酸マグネシウムなどの鋳型材料と炭素原料を混合して焼成後、鋳型材料を除去することで得られる。鋳型材料の種類、粒径、規則性等を制御することで得られる多孔質炭素の物性を制御することが出来る。
市販の多孔質炭素としては、クノーベルMHグレード、クノーベルP(2)010グレード、クノーベルP(3)010グレード、クノーベルP(4)050グレード等の東洋カーボン社製の多孔質炭素等が挙げられる。
Porous carbon is generally obtained by mixing a template material such as magnesium acetate and a carbon raw material, firing the mixture, and then removing the template material. The physical properties of the obtained porous carbon can be controlled by controlling the type, particle size, regularity and the like of the mold material.
Examples of commercially available porous carbon include porous carbon manufactured by Toyo Carbon Co., such as Knobel MH grade, Knobel P (2) 010 grade, Knobel P (3) 010 grade, and Knobel P (4) 050 grade.

ナノポーラスカーボンは、表面にメソポーラス構造を有し粒径20〜50nm程度の球状粒子である。メソポーラス構造に由来する高い表面積、細孔容積により優れた吸着能を有している。
市販のナノポーラスカーボンとしては、Easy−N社製ナノポーラスカーボンが挙げられる。
Nanoporous carbon is a spherical particle having a mesoporous structure on the surface and a particle size of about 20 to 50 nm. It has excellent adsorption capacity due to its high surface area and pore volume derived from the mesoporous structure.
Examples of commercially available nanoporous carbon include Nanoporous Carbon manufactured by Easy-N.

<溶剤>
本発明に使用する溶剤としては、特に限定せず使用することができる。必要に応じて、例えば、分散性や支持体への塗工性向上のために、複数の溶剤種を混ぜて使用しても良い。溶剤としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類、水等が挙げられる。中でも水や、炭素数が4以下のアルコール系溶剤が好ましい。
<Solvent>
The solvent used in the present invention can be used without any particular limitation. If necessary, a plurality of solvent types may be mixed and used, for example, in order to improve dispersibility and coatability on a support. Solvents include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic amides, phosphoric amides, sulfoxides, carboxylic esters, phosphoric esters, ethers, nitriles And water. Among them, water and alcohol solvents having 4 or less carbon atoms are preferable.

<バインダー>
本発明におけるバインダーとは、導電性炭素などの粒子を結着させるために使用されるものであり、それら粒子を溶媒中へ分散させる効果は小さいものである。
バインダーとしては、従来公知のものを使用することができ、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、スチレン−ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等、ポリフッ化ビニリデン、ポリフッ化ビニル、パーフルオロカーボン及びテトラフルオロエチレン等のフッ素原子を含む高分子化合物が挙げられる。又、これらの樹脂の変性物、混合物、又は共重合体でも良い。これらバインダーは、1種または複数を組み合わせて使用することも出来る。
<Binder>
The binder in the present invention is used for binding particles such as conductive carbon, and has a small effect of dispersing the particles in a solvent.
As the binder, conventionally known binders can be used, for example, acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicone resin, Fluororesins, synthetic rubbers such as styrene-butadiene rubber and fluororubber, conductive resins such as polyaniline and polyacetylene, and polymer compounds containing a fluorine atom such as polyvinylidene fluoride, polyvinyl fluoride, perfluorocarbon and tetrafluoroethylene. Can be Further, modified products, mixtures, or copolymers of these resins may be used. These binders can be used alone or in combination of two or more.

また、水性液状媒体を使用する場合、一般的に水性エマルションとも呼ばれるバインダーも使用できる。水性エマルションとは、バインダー樹脂が水中で溶解せずに、微粒子の状態で分散されているものである。   When an aqueous liquid medium is used, a binder generally called an aqueous emulsion can also be used. The aqueous emulsion is one in which the binder resin is not dissolved in water but is dispersed in the form of fine particles.

使用するエマルションは特に限定されないが、(メタ)アクリル系エマルション、ニトリル系エマルション、ウレタン系エマルション、ジエン系エマルション(SBR(スチレンブタジエンゴム)など)、フッ素系エマルション(PVDF(ポリフッ化ビニリデン)やPTFE(ポリテトラフルオロエチレン)など)等が挙げられる。   Emulsions to be used are not particularly limited, but include (meth) acrylic emulsions, nitrile emulsions, urethane emulsions, diene emulsions (SBR (styrene butadiene rubber), etc.), fluorine emulsions (PVDF (polyvinylidene fluoride) and PTFE ( Polytetrafluoroethylene) and the like.

(分散剤)
本発明において使用する分散剤は、導電性炭素に対して分散剤として有効に機能し、その凝集を緩和することができる。分散剤は導電性炭素に対して凝集を緩和する効果が得られれば特に限定されるものではない。
(Dispersant)
The dispersant used in the present invention effectively functions as a dispersant for conductive carbon, and can reduce the aggregation thereof. The dispersant is not particularly limited as long as it has an effect of alleviating aggregation of the conductive carbon.

(分散機・混合機)
前記組成物を得る際に用いられる装置としては、顔料分散等に通常用いられている分散機、混合機が使用できる。
(Disperser / Mixer)
As a device used for obtaining the composition, a disperser or a mixer generally used for pigment dispersion or the like can be used.

例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントシェーカー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。   For example, mixers such as a disperser, a homomixer, or a planetary mixer; homogenizers such as "CLEARMIX" manufactured by M Technique Co., Ltd. or "FILMIX" manufactured by PRIMIX; a paint shaker (manufactured by Red Devil), a ball mill, and a sand mill Media type dispersing machines such as (Dynomill, manufactured by Shinmaru Enterprises Co., Ltd.), attritors, pearl mills (DCP mills, manufactured by Erich) or Koball mills; wet jet mills ("Genus PY" manufactured by Genus, Sugino) Medialess dispersing machine such as "Starburst" manufactured by Machine Company, "Nanomizer" manufactured by Nanomizer, etc.), "Clear SS-5" manufactured by M Technique, or "MICROS" manufactured by Nara Machinery; or other roll mills But these The present invention is not limited. In addition, it is preferable to use a disperser that has been subjected to a treatment for preventing metal from mixing from the disperser.

例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、または、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。   For example, when a media type disperser is used, a method using a ceramic or resin disperser with an agitator and a vessel, or a disperser with a metal agitator and a vessel treated with tungsten carbide spraying or resin coating, etc. It is preferable to use As the medium, it is preferable to use ceramic beads such as glass beads, zirconia beads, or alumina beads. Also, when a roll mill is used, it is preferable to use a ceramic roll. As the dispersing device, only one type may be used, or a plurality of types of devices may be used in combination.

(塗工・乾燥)
酵素電池電極用導電炭素組成物の塗工及び乾燥は、カーボンペーパー等の導電性支持体や紙類等の非導電性支持体に前記組成物を直接塗布し乾燥することにより作製する方法や、転写基材などに前記組成物を塗布し乾燥することにより形成された塗膜を前記支持体やセパレーター等に転写する方法等で作製される。
組成物の塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。
(Coating and drying)
Coating and drying of the conductive carbon composition for an enzyme battery electrode is performed by directly applying and drying the composition on a conductive support such as carbon paper or a non-conductive support such as paper or the like, It is prepared by a method of transferring a coating film formed by applying the composition onto a transfer base material and drying and transferring it to the support, a separator, or the like.
The method for applying the composition is not particularly limited, and examples thereof include general methods such as a knife coater, a bar coater, a blade coater, a spray, a dip coater, a spin coater, a roll coater, a die coater, a curtain coater, and screen printing. Methods can be applied.

<<酵素電池用負極>>
酵素電池用負極では、燃料の酸化反応により発生した電子を正極に供給する。
酵素電池用負極は、触媒に酵素電池負極用酵素を用いる。導電性支持体やセパレーター等の基材に前記酵素電池電極用導電炭素組成物を直接塗布し乾燥した塗膜や、転写基材などに前記酵素電池電極用導電炭素組成物を塗布し乾燥することにより形成された塗膜を支持体やセパレーター等に転写して作製した塗膜に、酵素やメディエーターを担持させたり、導電性支持体に酵素やメディエーターを直接担持させたり、酵素を含む酵素電池電極用導電炭素組成物を支持体に塗布し乾燥したりして作製される。
前記組成物の塗布方法としては、特に限定されるものではなく、前記導電性支持体の作製の際に使用するような一般的な方法を適用できる。
酵素やメディエーターを担持する方法は、上記組成物に含ませて行っても良いし、塗布後乾燥した塗膜や、導電性支持体に後から行っても良い。後から行う場合では、酵素やメディエーターを溶解させた液を上記塗膜や、導電性支持体に浸漬等させた後、乾燥させて担持する方法等が使用できる。
<< Negative electrode for enzyme battery >>
In the negative electrode for an enzyme battery, electrons generated by an oxidation reaction of the fuel are supplied to the positive electrode.
The enzyme battery negative electrode uses an enzyme battery negative electrode enzyme as a catalyst. Coating the conductive carbon composition for an enzyme battery electrode directly onto a substrate such as a conductive support or a separator and drying the coating; or applying and drying the conductive carbon composition for an enzyme battery electrode on a transfer substrate or the like. Enzymes and mediators are supported on the coatings prepared by transferring the coatings formed by the method onto a support or a separator, etc., or enzymes or mediators are directly supported on a conductive support, or an enzyme battery electrode containing an enzyme. The conductive carbon composition is applied to a support and dried.
The method for applying the composition is not particularly limited, and a general method used for producing the conductive support can be applied.
The method of supporting an enzyme or a mediator may be carried out by incorporating the composition into the above composition, or may be carried out later on a coating film dried after application or a conductive support. In the latter case, a method in which a solution in which an enzyme or a mediator is dissolved is immersed in the above-mentioned coating film or a conductive support, and then dried and supported can be used.

<酵素電池負極用酵素>
本発明における酵素としては、反応により電子を授受できる酵素であれば特に制限はなく、供給する燃料やコスト、デバイスの種類等に応じて適宜選択される。酵素としては、物質代謝など生体内での多くの酸化還元反応を触媒する酸化還元酵素が好ましい。
酵素電池の負極に用いる酵素は電子を放出できるものであればよく、糖や有機酸などのオキシダーゼやデヒドロゲナーゼなどが利用できる。中でも、他の酵素に比べ安価で、安定性が高く、人体の血液や尿などの生体試料に含まれるグルコースを燃料にできるグルコースオキシダーゼやグルコースデヒドロゲナーゼが好ましい場合がある。
<Enzyme for negative electrode of enzyme battery>
The enzyme in the present invention is not particularly limited as long as it is an enzyme capable of giving and receiving electrons by a reaction, and is appropriately selected according to the fuel to be supplied, the cost, the type of device, and the like. As the enzyme, an oxidoreductase that catalyzes many in vivo oxidation-reduction reactions such as substance metabolism is preferable.
The enzyme used for the negative electrode of the enzyme battery may be any one that can emit electrons, and oxidases such as sugars and organic acids, dehydrogenases and the like can be used. Among them, glucose oxidase and glucose dehydrogenase, which are cheaper than other enzymes, have high stability, and can use glucose contained in a biological sample such as human blood or urine as a fuel, may be preferable.

<メディエーター>
酵素には電極に直接電子を伝達できる直接電子移動型(DET型)酵素と直接電子を伝達できない酵素が存在する。DET型でない酵素の場合には、燃料の酸化によって生じた電子を酵素から電極に伝達する役割を担うメディエーターを併用する必要がある。メディエーターとしては、電極に電子を伝達できる酸化還元物質であれば特に制限はなく、従来公知のものを使用できる。メディエーターの使用方法としては、電極に担持させる方法や電解液に溶解させて使用する方法等がある。メディエーターとしては、テトラチアフルバレン、ハイドロキノンや1,4‐ナフトキノン等のキノン類、フェロセン、フェリシアン化物、オスミウム錯体、及びこれら化合物を修飾したポリマー等が例示できる。
<Mediator>
The enzymes include a direct electron transfer type (DET type) enzyme that can transfer electrons directly to the electrode and an enzyme that cannot transfer electrons directly. In the case of an enzyme that is not a DET type, it is necessary to use a mediator that plays a role of transferring electrons generated by fuel oxidation from the enzyme to the electrode. The mediator is not particularly limited as long as it is a redox substance capable of transmitting electrons to the electrode, and a conventionally known mediator can be used. Examples of the method of using the mediator include a method of supporting the electrode on an electrode and a method of dissolving it in an electrolytic solution. Examples of the mediator include quinones such as tetrathiafulvalene, hydroquinone and 1,4-naphthoquinone, ferrocene, ferricyanide, osmium complex, and polymers modified with these compounds.

<<酵素電池用正極>>
酵素電池用正極では、負極で発生した電子を受け取り、電極中の還元反応によりこれを消費する。酵素電池用正極の構造としては、例えば、酸素を電子受容体として使用する酸素還元反応の場合では、反応場となる正極触媒の活性点まで電子及びプロトンの伝導パスや酸素の供給パスが確保されていることが効率的な発電を行う上では好ましい。
酵素電池用正極は、触媒に無機化合物を用いるものと酵素を用いるものがある。導電性支持体(カーボンペーパーや導電性カーボン層など)やセパレーター等の基材に正極触媒を含む組成物を直接塗布し乾燥することにより作製する方法や、転写基材などに前記組成物を塗布し乾燥することにより形成された塗膜を前記導電性支持体やセパレーター等に転写する方法等で作製される。また、正極触媒に酵素を用いるものは、酵素電池用負極と同様の方法で組成物作製、塗布を行ってもよい。
組成物の塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。
<< Positive electrode for enzyme battery >>
The positive electrode for an enzyme battery receives the electrons generated at the negative electrode and consumes them by a reduction reaction in the electrode. As a structure of the cathode for an enzyme battery, for example, in the case of an oxygen reduction reaction using oxygen as an electron acceptor, a conduction path of electrons and protons and a supply path of oxygen are secured up to the active point of the cathode catalyst which is a reaction field. Is preferable for efficient power generation.
The positive electrodes for enzyme batteries include those using an inorganic compound as a catalyst and those using an enzyme. A method in which a composition containing a positive electrode catalyst is directly applied to a substrate such as a conductive support (such as carbon paper or a conductive carbon layer) or a separator and dried, or the composition is applied to a transfer substrate or the like. Then, the coating film formed by drying and drying is transferred to the conductive support, the separator, or the like. In the case of using an enzyme for the positive electrode catalyst, the composition may be prepared and applied in the same manner as in the negative electrode for an enzyme battery.
The method for applying the composition is not particularly limited, and examples thereof include general methods such as a knife coater, a bar coater, a blade coater, a spray, a dip coater, a spin coater, a roll coater, a die coater, a curtain coater, and screen printing. Methods can be applied.

<酵素電池正極用触媒>
酵素電池正極で無機化合物を触媒として用いる場合、酸素還元触媒として貴金属触媒、卑金属酸化物触媒、炭素触媒が挙げられる。中でも、炭素触媒は金属含有量がほとんど無いあるいは少なくコストの面でも好ましい。
貴金属触媒とは、遷移金属元素のうちルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、白金、金から選択される元素を一種以上含む触媒である。これら貴金属触媒は単体でも別の元素や化合物に担持されたものでも良い。
卑金属酸化物触媒は、ジルコニウム、タンタル、チタン、ニオブ、バナジウム、鉄、マンガン、コバルト、ニッケル、銅、亜鉛、クロム、タングステン、およびモリブデンからなる群より選択された少なくとも1種の卑金属元素を含む酸化物を使用することができ、より好ましくはこれら卑金属元素の炭窒化物や、これら遷移金属元素の炭窒酸化物を使用することができる。
炭素触媒は、1種または2種以上の、炭素材料と、窒素元素および/または前記卑金属元素を含有する化合物とを混合し、熱処理を行い作製された炭素触媒であって、従来公知のものを使用できる。炭素触媒に用いられる炭素材料は、無機材料由来の炭素粒子および/または有機材料を熱処理して得られる炭素粒子であれば特に限定されない。
また、酵素を触媒として用いる場合、酵素電池の正極では電子を消費できる酵素であれば良く、ビリルビンオキシダーゼ、ラッカーゼ、アスコルビン酸オキシダーゼなどの還元酵素の一種で、分子状酸素の還元を触媒する酸素還元酵素を用いることが出来る。酸素還元酵素を使用する酵素電池用正極では、電位負荷や副反応における酵素の劣化により無機化合物の触媒より使用耐久性が低いことがある。
<Catalyst for enzyme battery positive electrode>
When an inorganic compound is used as a catalyst in a positive electrode of an enzyme battery, a noble metal catalyst, a base metal oxide catalyst, or a carbon catalyst is used as an oxygen reduction catalyst. Among them, the carbon catalyst is preferable in terms of cost because it has little or no metal content.
The noble metal catalyst is a catalyst containing one or more of transition metal elements selected from ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold. These noble metal catalysts may be used alone or supported on another element or compound.
The base metal oxide catalyst is an oxide containing at least one base metal element selected from the group consisting of zirconium, tantalum, titanium, niobium, vanadium, iron, manganese, cobalt, nickel, copper, zinc, chromium, tungsten, and molybdenum. A carbonitride of these base metal elements and a carbonitride of these transition metal elements can be more preferably used.
The carbon catalyst is a carbon catalyst prepared by mixing one or more kinds of a carbon material and a compound containing a nitrogen element and / or a base metal element and subjecting the mixture to a heat treatment. Can be used. The carbon material used for the carbon catalyst is not particularly limited as long as it is a carbon particle obtained by heat-treating an inorganic material-derived carbon particle and / or an organic material.
In addition, when an enzyme is used as a catalyst, an enzyme capable of consuming electrons can be used at the positive electrode of an enzyme battery. Enzymes can be used. A positive electrode for an enzyme battery using an oxygen reductase may have lower use durability than an inorganic compound catalyst due to potential load or deterioration of the enzyme due to side reactions.

<<セパレーター>>
セパレーターとしては、負極と正極を電気的に分離できる(短絡の防止)ものであれば、特に限定されず従来公知の材料を用いる事ができる。具体的には、ポリエチレン繊維、ポリプロピレン繊維、ガラス繊維、樹脂不織布、ガラス不織布、フェルト、濾紙、和紙等を用いることができる。また、正極と負極が十分な距離を保ち接触による短絡が無い構造を取るならば、セパレーターを用いなくてもよい。
<< Separator >>
The separator is not particularly limited as long as it can electrically separate the negative electrode and the positive electrode (prevent short circuit), and a conventionally known material can be used. Specifically, polyethylene fiber, polypropylene fiber, glass fiber, resin nonwoven fabric, glass nonwoven fabric, felt, filter paper, Japanese paper, and the like can be used. In addition, if the positive electrode and the negative electrode have a structure in which a sufficient distance is maintained and there is no short circuit due to contact, a separator need not be used.

<<そのほかの電池構成部材>>
<イオン伝導体>
本発明におけるイオン伝導体は負極と正極の間でイオンの伝導を行うものである。イオン伝導体の形態はイオン伝導性を有するものであれば特に限定されるものではない。イオン伝導体としては例えば、リン酸緩衝液などの液体に電解質が溶けている電解液や、固体のポリマー電解質などを使用してもよい。また、イオン伝導体は前記セパレーターに予め担持する等、酵素電池に内蔵してもよい。
<< Other battery components >>
<Ion conductor>
The ionic conductor in the present invention conducts ions between the negative electrode and the positive electrode. The form of the ion conductor is not particularly limited as long as it has ion conductivity. As the ion conductor, for example, an electrolytic solution in which an electrolyte is dissolved in a liquid such as a phosphate buffer solution, a solid polymer electrolyte, or the like may be used. Further, the ionic conductor may be built in the enzyme battery, for example, by being pre-loaded on the separator.

<燃料>
本願の酵素電池で使用できる燃料としては、酵素で分解できる有機物であれば特に限定はされず、D−グルコース等の単糖類、デンプン等の多糖類、エタノール等のアルコール、有機酸などの有機物であれば幅広く利用できる。また、燃料は前記セパレーターに予め担持する等、酵素電池に内蔵してもよい。
<Fuel>
The fuel that can be used in the enzyme battery of the present application is not particularly limited as long as it is an organic substance that can be decomposed by an enzyme, and is a monosaccharide such as D-glucose, a polysaccharide such as starch, an alcohol such as ethanol, and an organic substance such as an organic acid. If available, it can be widely used. Further, the fuel may be incorporated in the enzyme battery, for example, by previously supporting the fuel on the separator.

<酵素電池の用途>
本発明における酵素電池は前述の様に、発電した電力を用いた電源、電源とセンサーを兼ねる自己発電型センサー、有機物センサーや水分センサー等として機能し、これらは様々な用途での利用が見込まれる。使い方としては、電源として別方式の電池(コイン電池など)、センサーとして本発明の酵素電池を利用したり、電源及びセンサーに本発明の酵素電池を1種類以上利用したり、電源として本発明の酵素電池、センサーとして別方式のセンサーを利用したりすることができる。
<Use of enzyme battery>
As described above, the enzyme battery according to the present invention functions as a power source using the generated power, a self-generating sensor serving as a power source and a sensor, an organic matter sensor, a moisture sensor, and the like, and these are expected to be used in various applications. . It can be used as a power source using another type of battery (such as a coin battery), the enzyme battery of the present invention as a sensor, or using one or more of the enzyme batteries of the present invention as a power source and a sensor. Other types of sensors can be used as enzyme batteries and sensors.

本発明における酵素電池の電源用途としては、例えば、家庭用電源、モバイル機器用の電源、使い捨て電源、生体用ウェアラブル電源・インプラント電源、バイオマス燃料用電源、IoTセンサー用電源、周囲の有機物を燃料として発電できる環境発電(エネルギーハーベスト)電源などが挙げられる。   As the power source application of the enzyme battery in the present invention, for example, household power source, mobile device power source, disposable power source, biological wearable power source / implant power source, biomass fuel power source, IoT sensor power source, and surrounding organic matter as fuel Examples include an energy harvesting (energy harvesting) power supply that can generate electricity.

センサーの用途としては、例えば、各種有機物を対象とした有機物センサー、血液や汗、尿、便、涙、唾液、呼気などの生体試料中の有機物や体液を対象とした生体センサー、水分を対象にした水分センサー、果物や食品中の糖等を対象にした食品用センサー、IoTセンサー、大気や河川、土壌など環境中の有機物を対象にした環境センサー、動物や昆虫、植物を対象にした動植物センサー等が挙げられ、上記は電源とセンサーを兼ねる自己発電型センサーであっても良いし、電源としては利用しないセンサーとしての利用だけでも良い。生体センサーとしては、例えば、血液中の糖をセンシングする血糖値センサーや、尿中の糖をセンシングする尿糖値センサー、汗中の乳酸値をセンシングする疲労度センサーや熱中症センサー、汗や尿中の水分をセンシングする発汗センサーや排尿センサー等が挙げられる。また、生体向けのウェアラブルセンサーとしての用途として例えば、おむつ内にセンサーを仕込んだ排尿センサーや尿糖値センサー、経皮貼付型の発汗、熱中症センサーなどが挙げられる。   Examples of applications of the sensor include an organic substance sensor for various organic substances, a biological sensor for biological substances such as blood, sweat, urine, stool, tears, saliva, and breath, and a biological sensor for water. Moisture sensor, food sensor for sugar in fruits and foods, IoT sensor, environmental sensor for organic matter in the environment such as air, rivers and soil, animal and plant sensors for animals, insects and plants The above may be a self-power generation type sensor serving both as a power supply and a sensor, or may be used only as a sensor that is not used as a power supply. Examples of the biological sensor include a blood glucose level sensor for sensing glucose in blood, a urine glucose level sensor for sensing glucose in urine, a fatigue sensor and a heat stroke sensor for sensing lactic acid level in sweat, and sweat and urine. Examples include a perspiration sensor and a urination sensor that sense moisture in the inside. Examples of applications as wearable sensors for a living body include a urination sensor and a urine glucose level sensor in which a sensor is provided in a diaper, a percutaneous sticking type perspiration, and a heat stroke sensor.

IoTセンサーとしては、無線機とセンサーを組み合わせ、センシング情報をワイヤレスで外部に送信する使い方ができる。その場合、本発明の酵素電池を好適に使用することができる。
例えば、無線機の電源及びセンサーとして酵素電池を利用したり、無線機の電源に酵素電池、センサーとして別の酵素電池を利用したり、無線機の電源に酵素電池、センサーとして別方式のセンサーを利用したり、無線機及びセンサーの電源に1種以上の酵素電池、センサーとして別方式のセンサーを利用したり、無線機の電源に別方式の電池(コイン電池など)、センサーとして酵素電池を利用したりすることができる。
上記のIoTセンサーをおむつ用の生体センサーとして利用する場合は、おむつ内に酵素電池を仕込み、例えば下記の様な使い方が出来る。尿糖値センサーの場合、尿中の糖を燃料及びセンシング対象として利用し、得られた電力で無線機を作動したり、尿中の糖をセンシング対象として利用し、予め燃料を内蔵し尿中の水分を利用し発電し得られた電力で無線機を作動したり、尿中の糖をセンシング対象として利用し、別方式の電池(コイン電池など)の電力で無線機を作動したりできる。排尿センサーの場合、予め燃料を内蔵し尿中の水分をセンシング対象とし、また同時に水分を利用し発電し得られた電力で無線機を作動したり、予め燃料を内蔵し尿中の水分を利用し発電し得られた電力で無線機及び別方式の排尿センサーを作動したり、予め燃料を内蔵し尿中の水分をセンシング対象とし、別方式の電池(コイン電池など)の電力で無線機を作動したりできる。
As an IoT sensor, a combination of a wireless device and a sensor can be used to wirelessly transmit sensing information to the outside. In that case, the enzyme battery of the present invention can be suitably used.
For example, an enzyme battery is used as the power supply and sensor of the wireless device, an enzyme battery is used as the power source of the wireless device, another enzyme battery is used as the sensor, or an enzyme battery is used as the power source of the wireless device and another sensor is used as the sensor. Use one or more types of enzyme batteries for the power supply of the wireless device and sensor, use another type of sensor as the sensor, or use another type of battery (such as a coin battery) for the power source of the wireless device, and use the enzyme battery as the sensor. Or you can.
When the above-mentioned IoT sensor is used as a biosensor for a diaper, an enzyme battery is installed in the diaper, and for example, the following usage can be performed. In the case of a urine sugar level sensor, the sugar in urine is used as a fuel and a sensing target, a radio device is operated with the obtained electric power, and the sugar in urine is used as a sensing target, and the fuel is built in advance and the urine sugar is detected. The wireless device can be operated with the power generated by using water, or the wireless device can be operated with the power of another type of battery (such as a coin battery) using sugar in urine as a sensing target. In the case of a urination sensor, the fuel is pre-built and the water in the urine is to be sensed.At the same time, the radio is operated using the power generated by using the water, or the power is generated by pre-built the fuel and using the water in the urine Using the obtained power to operate the wireless device and another type of urination sensor, or operating the wireless device with the power of another type of battery (such as a coin battery) by incorporating fuel in advance and targeting moisture in urine it can.

以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例および比較例における「部」は「質量部」、「%」は「質量%」を表す。   Hereinafter, the present invention will be described more specifically with reference to Examples. However, the following Examples do not limit the scope of the present invention. In Examples and Comparative Examples, “parts” represents “parts by mass”, and “%” represents “% by mass”.

<酵素電池電極用導電炭素組成物の作製>
鱗状黒鉛CB−150(日本黒鉛社製)を18部、ファーネスブラックVULCAN(登録商標)XC72(CABOT社製)を4.5部、バインダーとしてエマルション型アクリル樹脂分散溶液(トーヨーケム社製:W−168)を3部(固形分50%)、分散剤としてカルボキシメチルセルロース水溶液50部(固形分2%)、溶剤として水49.5部をミキサーに入れて混合し、更にサンドミルに入れて分散を行い、酵素電池用導電炭素組成物を得た。
<Preparation of conductive carbon composition for enzyme battery electrode>
18 parts of scaly graphite CB-150 (manufactured by Nippon Graphite), 4.5 parts of furnace black VULCAN (registered trademark) XC72 (manufactured by CABOT), and an emulsion-type acrylic resin dispersion solution (manufactured by Toyochem: W-168) as a binder. ) (50% solids), 50 parts of carboxymethylcellulose aqueous solution (2% solids) as a dispersant, and 49.5 parts of water as a solvent in a mixer, and further mixed in a sand mill for dispersion. A conductive carbon composition for an enzyme battery was obtained.

<酵素電池用導電性支持体の作製>
前記酵素電池用導電炭素組成物を、支持体となる定性ろ紙No.1(アドバンテック社製)上にドクターブレードを用いて塗布した後、加熱乾燥し、導電層の厚さが80μmとなるよう調整した。長さ8cm幅7cmの四角形に切り出したものを酵素電池用導電性支持体とした。
<Preparation of conductive support for enzyme battery>
A qualitative filter paper No. no. 1 (manufactured by Advantech Co., Ltd.) using a doctor blade, and then dried by heating to adjust the thickness of the conductive layer to 80 μm. A rectangular cutout having a length of 8 cm and a width of 7 cm was used as a conductive support for an enzyme battery.

<酵素電池負極用電極の作製>
導電性炭素材料としてファーネスブラックVULCAN(登録商標)XC72(CABOT社製)の組成物をドクターブレードにより、前記導電性支持体の片端に、乾燥後の導電性炭素材料の目付け量が2mg/cmとなるように塗布し導電性支持体を得た。その後、メディエーターとしてテトラチアフルバレンのメタノール溶液と、負極触媒としてグルコースオキシダーゼ水溶液を導電性支持体にそれぞれ滴下し、自然乾燥させ酵素電池用負極を得た。
上記作製した酵素電池用負極の中央部に任意にカッターナイフを用いてスリット、もしくは穴開けポンチを用いて穴を作製した。スリットは電極を貫通するものと貫通しないものを設定し、貫通しないものは全て電極層側に設置し深さは同層内に留まるものとした。穴は全て電極を貫通するものとした。作製した酵素電池用負極を表1に示す。
<Preparation of electrode for enzyme battery negative electrode>
A composition of furnace black VULCAN (registered trademark) XC72 (manufactured by CABOT) as a conductive carbon material was applied to one end of the conductive support by a doctor blade, and the basis weight of the dried conductive carbon material was 2 mg / cm 2. Was applied to obtain a conductive support. Thereafter, a methanol solution of tetrathiafulvalene as a mediator and an aqueous solution of glucose oxidase as a negative electrode catalyst were respectively dropped on the conductive support, and air-dried to obtain a negative electrode for an enzyme battery.
A slit or a hole was formed in the center of the above-prepared negative electrode for an enzyme battery using a cutter knife or a punch. Slits that penetrate the electrode and those that do not penetrate were set, and those that did not penetrate were all placed on the electrode layer side, and the depth remained in the same layer. All holes penetrated the electrode. Table 1 shows the prepared negative electrodes for enzyme batteries.

<酵素電池正極用炭素触媒の作製>
グラフェンナノプレートレットxGnP−C−750(XGscience社製)と鉄フタロシアニン P−26(山陽色素社製)を、質量比1/0.5(グラフェンナノプレートレット/鉄フタロシアニン)となるようにそれぞれ秤量し、乾式混合を行い、混合物を
得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、酵素電池用正極触媒(1)を得た。
<Preparation of carbon catalyst for enzyme battery positive electrode>
Graphene nanoplatelet xGnP-C-750 (manufactured by XGscience) and iron phthalocyanine P-26 (manufactured by Sanyo Dyeing Co., Ltd.) were weighed so as to have a mass ratio of 1 / 0.5 (graphene nanoplatelet / iron phthalocyanine). Then, dry mixing was performed to obtain a mixture. The mixture was filled in an alumina crucible and heat-treated at 800 ° C. for 2 hours in a nitrogen atmosphere in an electric furnace to obtain a positive electrode catalyst for an enzyme battery (1).

<酵素電池用正極の作製>
酵素電池正極用炭素触媒4.8部、水性液状媒体として水49.2部、更に分散剤としてカルボキシメチルセルロース水溶液40部(固形分2%)をミキサーに入れて混合し、更にサンドミルに入れて分散した。その後、バインダーとしてエマルション型アクリル樹脂分散溶液(トーヨーケム社製:W−168)6部(固形分50%)を加えミキサーで混合し、酵素電池正極用電極組成物を得た。
その後、酵素電池正極用電極組成物を、ドクターブレードにより、前記導電性支持体の片端に、乾燥後の酵素電池正極用炭素触媒の目付け量が2mg/cmとなるように塗布し、待機雰囲気中95℃、60分間乾燥し、酵素電池用正極(1)を得た。
また、導電性炭素材料としてファーネスブラックVULCAN(登録商標)XC72(CABOT社製)組成物をドクターブレードにより、導電性支持体の片端の片面に、乾燥後の導電性炭素材料の目付け量が2mg/cmとなるように塗布、乾燥した後、正極触媒(2)として酸素還元酵素のビリルビンオキシダーゼ水溶液を滴下し自然乾燥させ、酵素電池用正極(7)を得た。
酵素電池用負極と同様に、前記酵素電池用正極にスリットおよび穴を設けた。作製した正極を表2に示す。
<Preparation of positive electrode for enzyme battery>
4.8 parts of a carbon catalyst for an enzyme battery positive electrode, 49.2 parts of water as an aqueous liquid medium, and 40 parts of a carboxymethyl cellulose aqueous solution (2% solid content) as a dispersant are mixed in a mixer, and further mixed and dispersed in a sand mill. did. Thereafter, 6 parts (solid content: 50%) of an emulsion type acrylic resin dispersion solution (manufactured by Toyochem Corporation: W-168) was added as a binder and mixed with a mixer to obtain an electrode composition for an enzyme battery positive electrode.
Thereafter, the electrode composition for a positive electrode of an enzyme battery was applied to one end of the conductive support using a doctor blade so that the basis weight of the carbon catalyst for a positive electrode of the enzyme battery after drying was 2 mg / cm 2, and a standby atmosphere was used. Drying was performed at 95 ° C for 60 minutes to obtain a positive electrode (1) for an enzyme battery.
Further, a furnace black VULCAN (registered trademark) XC72 (manufactured by CABOT) composition as a conductive carbon material was applied to one surface of one end of the conductive support by a doctor blade, and the basis weight of the dried conductive carbon material was 2 mg / coated to cm 2, and dried, dropped naturally dried bilirubin oxidase solution oxygen reduction enzyme as a cathode catalyst (2), to give a positive electrode (7) for the enzyme cell.
Similarly to the enzyme battery negative electrode, the enzyme battery positive electrode was provided with slits and holes. Table 2 shows the prepared positive electrodes.

<セパレーター>
酵素電池のセパレーターとして、定性ろ紙No.1(アドバンテック社製)を用いた。スリットおよび穴を設けないセパレーター(1)、中央部に10mmの貫通したスリットを任意に設けたセパレーター(2)、中央部に直径10mmの貫通した穴を任意に設けたセパレーター(3)をそれぞれ作製した。
<Separator>
As a separator for an enzyme battery, qualitative filter paper No. 1 (manufactured by Advantech) was used. A separator (1) without a slit and a hole, a separator (2) optionally provided with a 10 mm penetrating slit in the center, and a separator (3) optionally provided with a 10 mm diameter penetrating hole in the center are produced. did.

<酵素電池の作製>
酵素電池用負極、同正極に加えて、セパレーターを貼り合わせて、表3に示す酵素電池を作製した。実施例12および15については、酵素電池作製後、負極、正極、セパレーターを貫通するように長さ20mmスリットを設けた。作製した酵素電池を表3に示す。
また、酵素電池用負極(1)、同正極(1)、セパレーター(1)を用いて、実施例1〜15と同様にこれらを貼り合わせて比較例1を作製した。また、比較例2は酵素電池用正極(7)を用いた以外は比較例1と同様に作製した。
<Preparation of enzyme battery>
In addition to the negative electrode for an enzyme battery and the positive electrode, a separator was attached thereto to produce an enzyme battery shown in Table 3. In Examples 12 and 15, after the production of the enzyme battery, a slit having a length of 20 mm was provided so as to penetrate the negative electrode, the positive electrode, and the separator. Table 3 shows the produced enzyme batteries.
In addition, Comparative Example 1 was prepared by using the negative electrode (1) for an enzyme battery, the positive electrode (1), and the separator (1) to attach them in the same manner as in Examples 1 to 15. Comparative Example 2 was produced in the same manner as in Comparative Example 1 except that the positive electrode (7) for an enzyme battery was used.

<出力評価>
上記で作製した酵素電池の正極を作用極、酵素電池負極を対極兼参照極として、ポテンショ・ガルバノスタット(VersaSTAT3、Princeton Applied Research社製)に接続し、酵素電池セパレーター部分に燃料として0.01MのD−グルコースを含む0.1Mりん酸緩衝液を滴下した。pH7、室温下で、Linear Sweep Voltammetry(LSV)測定を行い、得られた還元電流曲線から最大出力(mW/cm)を算出した。最大出力の評価は、酵素電池にスリットおよび穴を設けない比較例1および2の最大出力に対する各実施例における最大出力の百分率(%)で比較した。得られた結果を表3に示す。
<Output evaluation>
The positive electrode of the enzyme battery prepared above was connected to a potentio galvanostat (VersaSTAT3, Princeton Applied Research) using the positive electrode of the enzyme battery as a working electrode and the negative electrode of the enzyme battery as a counter electrode and a reference electrode. A 0.1 M phosphate buffer containing D-glucose was added dropwise. Linear Sweep Voltammetry (LSV) was measured at pH 7 and room temperature, and the maximum output (mW / cm 2 ) was calculated from the obtained reduction current curve. The maximum output was evaluated in terms of percentage (%) of the maximum output in each example with respect to the maximum output of Comparative Examples 1 and 2 in which no slit and hole were provided in the enzyme battery. Table 3 shows the obtained results.

<動作安定性評価>
実施例1〜15と比較例1および2の酵素電池を前記の方法でそれぞれ2個ずつ追加作製し、LSV測定を実施、最大出力を算出した。出力評価での結果と合わせて3点の最大値と最小値との差を見積もり、その差が最大値の15%以内に収まったものを〇、それ以上のものを△として動作安定性を評価した。得られた結果を表3に示す。
<Operation stability evaluation>
Two additional enzyme batteries were prepared for each of Examples 1 to 15 and Comparative Examples 1 and 2 by the above method, LSV measurement was performed, and the maximum output was calculated. Estimate the difference between the maximum value and the minimum value of the three points together with the results of the output evaluation, and evaluate the operation stability as Δ if the difference is within 15% of the maximum value, and Δ if the difference is within 15% of the maximum value. did. Table 3 shows the obtained results.

実施例1〜12は、比較例1よりいずれも最大出力が上回った。これは、スリットおよび穴の存在により燃料であるD−グルコースの拡散が進み、性能改善に至ったと考えられる。また、スリットと穴を比較するとスリットの方が最大出力は大きくなっている。これは穴を設置した場合、電極面積が小さくなることが原因の1つと考えられる。また、例えば実施例1と2を比較すると、電極に設けたスリットが貫通する場合では最大出力に加えて動作安定性も向上する。これは、燃料の拡散が改善されるだけでなく、電池内部の気泡が電池外へ放出可能となり動作不能な電極箇所が減少したためと考えられる。
Examples 1 to 12 all had higher maximum outputs than Comparative Example 1. It is considered that the diffusion of D-glucose as a fuel progressed due to the presence of the slits and holes, leading to an improvement in performance. Further, when comparing the slit with the hole, the maximum output is larger in the slit. This is considered to be one of the causes of the decrease in the electrode area when the holes are provided. Further, for example, when comparing the first and second embodiments, when the slit provided in the electrode penetrates, the operation stability is improved in addition to the maximum output. This is considered to be because not only the diffusion of the fuel was improved, but also the bubbles inside the battery could be released to the outside of the battery, and the number of inoperable electrode portions was reduced.

Claims (7)

正極、および負極の少なくとも一方の構成部材が、酵素を含む酵素電池であって、
前記正極および/または負極が、少なくとも1つのスリットおよび/または穴を有することを特徴とする酵素電池用電極。
At least one of the positive electrode and the negative electrode is an enzyme battery containing an enzyme,
An electrode for an enzyme battery, wherein the positive electrode and / or the negative electrode has at least one slit and / or hole.
スリットおよび/または穴が、正極および/または負極を貫通する請求項1記載の酵素電池用電極。 The electrode for an enzyme battery according to claim 1, wherein the slit and / or the hole penetrate the positive electrode and / or the negative electrode. 請求項1または2記載の酵素電池用電極を具備する酵素電池。 An enzyme battery comprising the enzyme battery electrode according to claim 1. 正極の有するスリットおよび/または穴の近傍に、負極の有するスリットおよび/または穴が設置されてなる請求項3記載の酵素電池。 The enzyme battery according to claim 3, wherein a slit and / or a hole of the negative electrode is provided near a slit and / or a hole of the positive electrode. 正極、および負極の少なくとも一方の構成部材が、酵素を含む酵素電池に用いられるセパレーターであって、
前記セパレーターが、少なくとも1つのスリットおよび/または穴を有することを特徴とするセパレーター。
At least one of the positive electrode and the negative electrode is a separator used for an enzyme battery containing an enzyme,
The separator, wherein the separator has at least one slit and / or hole.
請求項5記載のセパレーターを具備する請求項3記載の酵素電池。 An enzyme battery according to claim 3, comprising the separator according to claim 5. セパレーターの有するスリットおよび/または穴の近傍に、正極の有するスリットおよび/または穴、並びに、負極の有するスリットおよび/または穴が設置されてなる請求項6記載の酵素電池。
The enzyme battery according to claim 6, wherein a slit and / or a hole of the positive electrode and a slit and / or a hole of the negative electrode are provided near the slit and / or the hole of the separator.
JP2018116819A 2018-06-20 2018-06-20 Enzyme battery electrode, separator, and enzyme battery Pending JP2019220345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018116819A JP2019220345A (en) 2018-06-20 2018-06-20 Enzyme battery electrode, separator, and enzyme battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018116819A JP2019220345A (en) 2018-06-20 2018-06-20 Enzyme battery electrode, separator, and enzyme battery

Publications (1)

Publication Number Publication Date
JP2019220345A true JP2019220345A (en) 2019-12-26

Family

ID=69096819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018116819A Pending JP2019220345A (en) 2018-06-20 2018-06-20 Enzyme battery electrode, separator, and enzyme battery

Country Status (1)

Country Link
JP (1) JP2019220345A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215213A1 (en) * 2021-04-07 2022-10-13 東洋インキScホールディングス株式会社 Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215213A1 (en) * 2021-04-07 2022-10-13 東洋インキScホールディングス株式会社 Composition for forming enzyme sensor electrode, enzyme sensor electrode, and enzyme sensor

Similar Documents

Publication Publication Date Title
Wang et al. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries
WO2020013138A1 (en) Carbon catalyst for positive electrode of enzyme power-generation device, and enzyme power-generation device
JP7119612B2 (en) Composition for porous electrode, porous electrode and battery using the same
JP7318294B2 (en) Carbon material for anode electrode, composition, electrode, and biofuel cell using the same
JP7484161B2 (en) Microbial fuel cell device
JP7371474B2 (en) Microbial fuel cell device
JP2019220345A (en) Enzyme battery electrode, separator, and enzyme battery
JP2020009659A (en) Microbial fuel cell device
JP7200640B2 (en) Enzyme power generation device
JP2020009740A (en) Enzyme power generation device
JP7205209B2 (en) Catalyst ink material for biofuel cell anode, catalyst ink composition for biofuel cell anode, biofuel cell anode, biofuel cell device
JP2019216082A (en) Enzyme battery positive electrode catalyst, enzyme battery positive electrode paste composition, and use thereof
Junior et al. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells
JP7400438B2 (en) Electrodes for enzyme power generation devices and enzyme power generation devices
JP7571658B2 (en) Electrode for enzyme sensor and enzyme sensor
JP7375509B2 (en) Electrodes for enzyme sensors and enzyme sensors
JP7215139B2 (en) Catalyst ink composition for biofuel cell anode, biofuel cell anode, biofuel cell device
JP7063128B2 (en) Conductive substrate for enzyme power generation device, electrode for enzyme power generation device and enzyme power generation device
JP7155814B2 (en) Fuel cell positive electrode catalyst, fuel cell positive electrode paste composition, fuel cell positive electrode, fuel cell, and moisture sensor
JP7521290B2 (en) Composition for forming an enzyme sensor electrode, electrode for enzyme sensor, and enzyme sensor
JP7512693B2 (en) Electrode for enzyme sensor and enzyme sensor
JP7543684B2 (en) Composition for forming anode of microbial fuel cell, anode and microbial fuel cell
JP7559490B2 (en) Composition for forming an electrode for a microbial fuel cell, an electrode for a microbial fuel cell, and a microbial fuel cell
JP7192264B2 (en) Electrode for enzyme power generation device and enzyme power generation device
JP7318364B2 (en) Carbon-based material for enzyme power generation device, electrode composition for enzyme power generation device, electrode for enzyme power generation device, and enzyme power generation device