WO2022215191A1 - Heartbeat detection method and heartbeat detection device - Google Patents

Heartbeat detection method and heartbeat detection device Download PDF

Info

Publication number
WO2022215191A1
WO2022215191A1 PCT/JP2021/014756 JP2021014756W WO2022215191A1 WO 2022215191 A1 WO2022215191 A1 WO 2022215191A1 JP 2021014756 W JP2021014756 W JP 2021014756W WO 2022215191 A1 WO2022215191 A1 WO 2022215191A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
threshold
time
heartbeat
sampling time
Prior art date
Application number
PCT/JP2021/014756
Other languages
French (fr)
Japanese (ja)
Inventor
伸昭 松浦
啓 桑原
利彦 近藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/014756 priority Critical patent/WO2022215191A1/en
Priority to JP2023512570A priority patent/JP7491466B2/en
Publication of WO2022215191A1 publication Critical patent/WO2022215191A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval

Definitions

  • the present invention relates to a heartbeat detection method and a heartbeat detection device for detecting heartbeats (R waves) from an electrocardiogram waveform.
  • the ECG (Electrocardiogram) waveform is an observation of the electrical activity of the heart and consists of a continuous heartbeat waveform.
  • One heartbeat waveform consists of components such as P wave, Q wave, R wave, S wave, T wave, etc., which reflect the activity of the atria and ventricles.
  • the R wave accompanies the contraction of the ventricle, and since it has a large amplitude, the heartbeat is often detected based on the R wave.
  • a simple method for detecting heartbeats (R waves) from ECG waveforms is to detect peaks in a time series. That is, a certain threshold is set for the data time series, and when the ECG waveform exceeds the threshold, it is determined as an R wave.
  • FIG. 5 is a flow chart explaining a conventional heartbeat detection method.
  • the heartbeat detection device calculates an index value based on the ECG waveform value and the previous ECG waveform value (step S101 in FIG. 5).
  • the heartbeat detection device compares the index value and the threshold value (step S102 in FIG. 5), determines a heartbeat when the index value exceeds the threshold value (step S103 in FIG. 5), and determines that the index value is equal to or less than the threshold value. Occasionally, it is not determined as a heartbeat.
  • the heartbeat detection device updates the threshold using the index value and the previous index value (step S104 in FIG. 5). By adaptively updating the threshold value, it is possible to perform heartbeat detection that reflects changes in the signal level due to, for example, the wearing state of electrodes on the subject.
  • Patent Document 1 As such a conventional heartbeat detection method, there is a method disclosed in Patent Document 1.
  • the index value is not reflected in the threshold when it is unlikely that the index value is derived from the ECG waveform.
  • the threshold value is not reflected in the threshold when it is unlikely that the index value is derived from the ECG waveform.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a heartbeat detection method and a heartbeat detection device that do not erroneously recognize peaks with too small amplitudes as heartbeats.
  • a heartbeat detection method of the present invention includes a first step of calculating an index value from a sampled data string of an electrocardiogram waveform of a living body at each sampling time, and a threshold value for heartbeat detection and a threshold derived from the electrocardiogram waveform of a living body. a second step of comparing with the lower limit of the likely range; and determining in the second step that the threshold is equal to or greater than the lower limit, and when a peak of the index value exceeding the threshold is detected, the peak and a third step of setting the sampling time to the heartbeat time, and not performing heartbeat detection by comparing the threshold and the index value when the threshold is determined to be less than the lower limit in the second step. It is characterized.
  • the heartbeat detection apparatus of the present invention includes: an index value calculation unit configured to calculate an index value from a sampled data string of an electrocardiogram waveform of a living body at each sampling time; a threshold determination unit configured to compare the lower limit of a plausible range as the threshold derived from the threshold determination unit determines that the threshold is equal to or greater than the lower limit, and the index value exceeding the threshold a heartbeat time determination unit configured to set the sampling time of the peak as the heartbeat time when a peak is detected, wherein the heartbeat time determination unit determines that the threshold value is less than the lower limit value. , heartbeat detection by comparison between the threshold value and the index value is not performed.
  • Heart rate detection can be performed on
  • FIG. 1 is a block diagram showing the configuration of a heartbeat detection device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a heart rate detection method according to an embodiment of the invention.
  • FIG. 3 is a flow chart for explaining the operation of the threshold value setting section of the heartbeat detection device according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration example of a computer that implements the heartbeat detection device according to the embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a conventional heartbeat detection method.
  • FIG. 1 is a block diagram showing the configuration of a heartbeat detection device according to an embodiment of the invention
  • FIG. 2 is a flow chart for explaining a heartbeat detection method according to an embodiment of the invention.
  • the heartbeat detection apparatus includes an electrocardiograph 1 for outputting an ECG waveform sampling data string, a storage unit 2 for storing an ECG waveform sampling data string and sampling time information, and sampling data from the ECG waveform sampling data string.
  • a positive/negative inversion value calculation unit 3 that calculates the positive/negative inversion value of the time difference for each sampling time, and a positive/negative inversion value in a certain time range before the sampling time to be processed and a certain value after the sampling time to be processed.
  • a maximum value detection unit 4 that detects the maximum value of the positive/negative reversed values in the time range at each sampling time, and an index that calculates an index value obtained by subtracting the maximum value from the positive/negative reversed value at the sampling time to be processed at each sampling time.
  • a value calculation unit 5 a threshold determination unit 6 that compares the threshold value for heartbeat detection with the lower limit value of a range that is likely to be a threshold value derived from the ECG waveform of the living body, and a threshold value that is determined to be equal to or higher than the lower limit value, and exceeds the threshold value.
  • a heartbeat time determining unit 7 for setting the sampling time of the peak when the peak of the index value is detected to be the heartbeat time, and a threshold setting unit 8 for updating the threshold based on the peak of the index value exceeding the current threshold.
  • the maximum value detection unit 4 includes a FIFO buffer (First In, First Out) 40 to which the time difference positive/negative inversion value calculated by the positive/negative inversion value calculation unit 3 is input, and a FIFO buffer to which the output value of the FIFO buffer 40 is input. 41, a FIFO buffer 42 to which the output value of the FIFO buffer 41 is input, and sampling the maximum value of the positive/negative inverted value of the time difference stored in the FIFO buffer 40 and the inverted positive/negative value of the time difference stored in the FIFO buffer 42. It is composed of a detection processing unit 43 that detects each time.
  • a detection processing unit 43 that detects each time.
  • the index value calculation unit 5 detects the maximum value detected by the maximum value detection unit 4 from the FIFO buffer 50 to which the time difference positive/negative inversion value calculated by the positive/negative value calculation unit 3 is input, and the output value of the FIFO buffer 50. and a subtraction processing unit 51 that calculates an index value obtained by subtracting , at each sampling time.
  • the heartbeat detection method of this embodiment will be described below.
  • the procedure from detecting one heartbeat to obtaining the heartbeat time will be described.
  • Time-series data of heartbeat times is obtained by repeating such calculation of heartbeat times over the period of the ECG waveform data.
  • D(i) is the data string obtained by sampling the ECG waveform.
  • the electrocardiograph 1 measures an ECG waveform of a living body (human body) (not shown) and outputs a sampling data string D(i) of the ECG waveform. At this time, the electrocardiograph 1 adds sampling time information to each sampling data and outputs the data. Since the specific method of measuring the ECG waveform is a well-known technique, detailed description thereof will be omitted.
  • the storage unit 2 stores the sampling data sequence D(i) of the ECG waveform output from the electrocardiograph 1 and the information on the sampling time.
  • the positive/negative inversion value calculation unit 3 calculates the data D(i+1) after one sampling of the sampling data D(i) and the data D(i+1) one sampling before.
  • Data D(i-1) are obtained from the storage unit 2 (step S1 in FIG. 2).
  • the positive/negative inversion value calculator 3 calculates the time difference positive/negative inversion value Y(i) of the sampling data D(i) for each sampling time as shown in the following equation (step S2 in FIG. 2).
  • Y(i) - ⁇ D(i+1)-D(i-1) ⁇ (1)
  • the positive/negative inversion value calculation unit 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 50 at each sampling time (step S3 in FIG. 2).
  • the input value is held in the FIFO buffer 50, and after a time corresponding to the size of the FIFO buffer 50 (the delay time from when the positive/negative time difference value is input to the FIFO buffer 50 until it is output), It will be used for subtraction processing.
  • the positive/negative inversion value calculation unit 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 40 at each sampling time (step S4 in FIG. 2).
  • the output of FIFO buffer 40 is input to FIFO buffer 41 (step S5 in FIG. 2), and the output of FIFO buffer 41 is input to FIFO buffer 42 (step S6 in FIG. 2).
  • the FIFO buffers 40 to 42 are for obtaining the maximum value of the time difference positive/negative inversion value within a certain time range.
  • the time interval L3 corresponding to the length of the FIFO buffer 41 (the delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 41 until it is output) is the width of the peak derived from the R wave (approximately 10 ms). ), preferably about 50 ms.
  • a time interval L2 corresponding to the length of the FIFO buffer 40 (a delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 40 until it is output)
  • the maximum value M can be obtained for the range from (L3/2) to (L2+L3/2), and the maximum value M can be subtracted from the output value a.
  • the detection processing unit 43 detects the maximum value M of the time difference positive/negative inversion value stored in the FIFO buffer 40 and the time difference positive/negative inversion value stored in the FIFO buffer 42 at each sampling time (step S7 in FIG. 2). .
  • the threshold determination unit 6 compares the current threshold Th for heartbeat detection with the lower limit value Thmin of the plausible range as the threshold Th derived from the ECG waveform of the living body (step S9 in FIG. 2).
  • a likely range for the threshold Th derived from the ECG waveform of the living body can be determined based on past measurement results.
  • the initial value of the threshold Th may be set in advance to an arbitrary value within a plausible range as the threshold Th.
  • the heartbeat time determination unit 7 detects a peak of the index value b(i) exceeding the threshold value Th (Fig. 2: YES at step S10), the sampling time of this peak is set as the heartbeat time (step S11 in FIG. 2).
  • the sampling time of the index value b(i) refers to the sampling time of the time difference positive/negative inversion value Y(i) on which the index value b(i) is based (the sampling time of the data D(i)).
  • the sampling time of the index value b(i) can be acquired from the storage unit 2 .
  • the heartbeat time determining unit 7 detects a peak of the index value b(i) exceeding the threshold Th when the threshold determining unit 6 determines that the current threshold Th is less than the lower limit Thmin (NO in step S9). If not (NO in step S10), the heartbeat (R wave) is not determined and the heartbeat time is not determined.
  • FIG. 3 is a flow chart for explaining the operation of the threshold setting unit 8 (step S12).
  • the threshold setting unit 8 compares the calculated threshold candidate Thc with a threshold limit value L based on the current threshold Th and the difference limit value that can be said to be plausible as the time difference positive/negative inversion value of the ECG waveform of the living body.
  • the threshold Th is not updated (YES in step S23 of FIG. 3).
  • threshold value Th (step S24 in FIG. 3).
  • the threshold limit value L will be described later.
  • the threshold setting unit 8 performs the above processing at each sampling time.
  • the process of step S22 is repeatedly executed to sequentially calculate the threshold candidate Thc, and the threshold candidate Thc becomes the threshold value. If it is equal to or less than the limit value L, the threshold Th is updated.
  • the QRS interval (from the beginning of the Q wave to the end of the S wave) is 0.06-0.1 s.
  • the time from the maximum value of the R wave to the minimum value of the S wave can be considered to be about 15 to 25 ms as 1/4 of the QRS interval. Furthermore, the sharpest change occurs near the center of the range from the highest value of the R wave to the lowest value of the S wave. Assuming that the time range is about half from the maximum value of the R wave to the minimum value of the S wave, it is estimated to be about 7.5 to 12.5 ms. If there is a change in the electrocardiographic potential corresponding to the QRS amplitude during this time, the rate of change in the electrocardiographic potential is considered to be about 350 ⁇ V/ms at maximum. If the change rate of the electrocardiographic potential is converted into the positive/negative inversion value of the time difference obtained by the equation (1), it becomes 700 ⁇ V when the sampling interval is 1 ms, and is further rounded to 1000 ⁇ V with a margin.
  • the index value b represents the height of the clearance of the time difference value in the surrounding time domain with respect to the peak derived from the R wave.
  • the noise presents a sharp unimodal peak, in the worst case the value is reflected in the index value b as it is.
  • the threshold Th is set based on the value obtained by multiplying the value of the peak to be detected by a coefficient ⁇ of 1 or less.
  • the threshold Th decreases.
  • the threshold Th is unbelievably low as a threshold Th derived from a human ECG waveform, even if there is a peak in the index value b, the probability that this peak is derived from the R wave is low.
  • the heartbeat determination (step S10) is not performed. detection can be achieved.
  • the threshold update method described with reference to FIG. 3 is an example, and the threshold may be updated by another method.
  • the storage unit 2, the positive/negative inversion value calculation unit 3, the maximum value detection unit 4, the index value calculation unit 5, the threshold determination unit 6, the heartbeat time determination unit 7, and the threshold value setting unit 8 of the heartbeat detection apparatus described in this embodiment are , a CPU (Central Processing Unit), a storage device, and an interface, and a program that controls these hardware resources.
  • a CPU Central Processing Unit
  • FIG. 1 A configuration example of this computer is shown in FIG.
  • the computer comprises a CPU 200 , a storage device 201 and an interface device (I/F) 202 .
  • the I/F 202 is connected to the electrocardiograph 1 and the like.
  • a program for implementing the heartbeat detection method of the present invention is stored in the storage device 201 .
  • the CPU 200 executes the processing described in this embodiment according to the programs stored in the storage device 201 .
  • the present invention can be applied to technology for detecting the heartbeat of a living body.
  • SYMBOLS 1 Electrocardiograph, 2... Storage part, 3... Positive/negative inversion value calculation part, 4... Maximum value detection part, 5... Index value calculation part, 6... Threshold determination part, 7... Heartbeat time determination part, 8... Threshold value setting Sections 40 to 42, 50... FIFO buffer, 43... Detection processing section, 51... Subtraction processing section.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

This heartbeat detection device includes: an index value calculating unit (5) that calculates, for each sampling time, index values from a sampling data string of an ECG waveform of a living body; a threshold value determining unit (6) that compares a threshold value for heartbeat detection with the lower limit of the range being likely as a threshold value derived from the ECG waveform of the living body; a heartbeat time determining unit (7) that determines the sampling time of the peak as a heartbeat time when the threshold value determining unit (6) determines that the threshold value is not less than the lower limit, and detects an index value peak exceeding the threshold value; and a threshold value setting unit (8) that renews the threshold value on the basis of the index value peak exceeding the current threshold value.

Description

心拍検出方法および心拍検出装置Heartbeat detection method and heartbeat detection device
 本発明は、心電図波形から心拍(R波)を検出するための心拍検出方法および心拍検出装置に関するものである。 The present invention relates to a heartbeat detection method and a heartbeat detection device for detecting heartbeats (R waves) from an electrocardiogram waveform.
 ECG(Electrocardiogram、心電図)波形は、心臓の電気的な活動を観測したもので、連続した心拍の波形からなる。1つの心拍波形は、それぞれ心房や心室の活動を反映したP波、Q波、R波、S波、T波等の成分からなっている。そのうち、心室の収縮に伴うものがR波であり、振幅も大きいため、心拍の検出はR波に基づいて行われることが多い。 The ECG (Electrocardiogram) waveform is an observation of the electrical activity of the heart and consists of a continuous heartbeat waveform. One heartbeat waveform consists of components such as P wave, Q wave, R wave, S wave, T wave, etc., which reflect the activity of the atria and ventricles. Of these waves, the R wave accompanies the contraction of the ventricle, and since it has a large amplitude, the heartbeat is often detected based on the R wave.
 ECG波形から心拍(R波)を検出する方法としては、時系列におけるピークを検出する方法が簡便である。すなわちデータの時系列に対してある閾値を設定し、ECG波形が閾値を超えたときにR波と判定する。 A simple method for detecting heartbeats (R waves) from ECG waveforms is to detect peaks in a time series. That is, a certain threshold is set for the data time series, and when the ECG waveform exceeds the threshold, it is determined as an R wave.
 図5は従来の心拍検出方法を説明するフローチャートである。心拍検出装置は、ECG波形の値が入力されると(図5ステップS100)、そのECG波形値と以前のECG波形値とに基づいて指標値を算出する(図5ステップS101)。次に、心拍検出装置は、指標値と閾値とを比較し(図5ステップS102)、指標値が閾値を超えているときに心拍と判定し(図5ステップS103)、指標値が閾値以下のときには心拍と判定しない。そして、心拍検出装置は、指標値と以前の指標値とを用いて閾値を更新する(図5ステップS104)。閾値を適応的に更新することで、被験者への電極の装着状態などによる信号レベルの変化を反映した心拍検出を行うことができる。 FIG. 5 is a flow chart explaining a conventional heartbeat detection method. When an ECG waveform value is input (step S100 in FIG. 5), the heartbeat detection device calculates an index value based on the ECG waveform value and the previous ECG waveform value (step S101 in FIG. 5). Next, the heartbeat detection device compares the index value and the threshold value (step S102 in FIG. 5), determines a heartbeat when the index value exceeds the threshold value (step S103 in FIG. 5), and determines that the index value is equal to or less than the threshold value. Occasionally, it is not determined as a heartbeat. Then, the heartbeat detection device updates the threshold using the index value and the previous index value (step S104 in FIG. 5). By adaptively updating the threshold value, it is possible to perform heartbeat detection that reflects changes in the signal level due to, for example, the wearing state of electrodes on the subject.
 このような従来の心拍検出方法として、特許文献1に開示された方法がある。特許文献1に開示された方法では、指標値が、ECG波形に由来するものとして尤もらしくない大きさの場合に、指標値を閾値に反映させないようにしている。これにより、ECG波形に混入した大きなノイズにより閾値が跳ね上がることを防ぐことができ、正確に心拍検出を行えるという利点がある。 As such a conventional heartbeat detection method, there is a method disclosed in Patent Document 1. In the method disclosed in Patent Literature 1, the index value is not reflected in the threshold when it is unlikely that the index value is derived from the ECG waveform. As a result, it is possible to prevent the threshold value from jumping due to large noise mixed in the ECG waveform, and there is an advantage that the heart rate can be detected accurately.
 しかしながら、特許文献1に開示された方法では、振幅が小さくR波としては不適当と考えられるような波形を、R波と誤って認識してしまう可能性があった。 However, with the method disclosed in Patent Document 1, there is a possibility that a waveform with a small amplitude that is considered inappropriate as an R wave may be mistakenly recognized as an R wave.
特許第6652655号公報Japanese Patent No. 6652655
 本発明は、上記課題を解決するためになされたもので、振幅の小さすぎるピークを誤って心拍と認識することのない心拍検出方法および心拍検出装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a heartbeat detection method and a heartbeat detection device that do not erroneously recognize peaks with too small amplitudes as heartbeats.
 本発明の心拍検出方法は、生体の心電図波形のサンプリングデータ列から指標値をサンプリング時刻ごとに算出する第1のステップと、心拍検出のための閾値と生体の心電図波形に由来する前記閾値として尤もらしい範囲の下限値とを比較する第2のステップと、前記第2のステップで前記閾値を前記下限値以上と判定し、前記閾値を超える前記指標値のピークを検出したときに、このピークのサンプリング時刻を心拍時刻とする第3のステップとを含み、前記第2のステップで前記閾値を前記下限値未満と判定した場合に、前記閾値と前記指標値との比較による心拍検出をしないことを特徴とするものである。 A heartbeat detection method of the present invention includes a first step of calculating an index value from a sampled data string of an electrocardiogram waveform of a living body at each sampling time, and a threshold value for heartbeat detection and a threshold derived from the electrocardiogram waveform of a living body. a second step of comparing with the lower limit of the likely range; and determining in the second step that the threshold is equal to or greater than the lower limit, and when a peak of the index value exceeding the threshold is detected, the peak and a third step of setting the sampling time to the heartbeat time, and not performing heartbeat detection by comparing the threshold and the index value when the threshold is determined to be less than the lower limit in the second step. It is characterized.
 また、本発明の心拍検出装置は、生体の心電図波形のサンプリングデータ列から指標値をサンプリング時刻ごとに算出するように構成された指標値算出部と、心拍検出のための閾値と生体の心電図波形に由来する前記閾値として尤もらしい範囲の下限値とを比較するように構成された閾値判定部と、前記閾値判定部によって前記閾値が前記下限値以上と判定され、前記閾値を超える前記指標値のピークを検出したときに、このピークのサンプリング時刻を心拍時刻とするように構成された心拍時刻決定部とを備え、前記心拍時刻決定部は、前記閾値が前記下限値未満と判定された場合に、前記閾値と前記指標値との比較による心拍検出をしないことを特徴とするものである。 Further, the heartbeat detection apparatus of the present invention includes: an index value calculation unit configured to calculate an index value from a sampled data string of an electrocardiogram waveform of a living body at each sampling time; a threshold determination unit configured to compare the lower limit of a plausible range as the threshold derived from the threshold determination unit determines that the threshold is equal to or greater than the lower limit, and the index value exceeding the threshold a heartbeat time determination unit configured to set the sampling time of the peak as the heartbeat time when a peak is detected, wherein the heartbeat time determination unit determines that the threshold value is less than the lower limit value. , heartbeat detection by comparison between the threshold value and the index value is not performed.
 本発明によれば、閾値が下限値未満の場合には、指標値が閾値を超えていても心拍を検出しないようにするので、振幅の小さすぎる指標値のピークを除外することができ、正確に心拍検出を行うことができる。 According to the present invention, if the threshold value is less than the lower limit value, heartbeats are not detected even if the index value exceeds the threshold value. Heart rate detection can be performed on
図1は、本発明の実施例に係る心拍検出装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a heartbeat detection device according to an embodiment of the present invention. 図2は、本発明の実施例に係る心拍検出方法を説明するフローチャートである。FIG. 2 is a flowchart illustrating a heart rate detection method according to an embodiment of the invention. 図3は、本発明の実施例に係る心拍検出装置の閾値設定部の動作を説明するフローチャートである。FIG. 3 is a flow chart for explaining the operation of the threshold value setting section of the heartbeat detection device according to the embodiment of the present invention. 図4は、本発明の実施例に係る心拍検出装置を実現するコンピュータの構成例を示すブロック図である。FIG. 4 is a block diagram showing a configuration example of a computer that implements the heartbeat detection device according to the embodiment of the present invention. 図5は、従来の心拍検出方法を説明するフローチャートである。FIG. 5 is a flowchart illustrating a conventional heartbeat detection method.
 以下、本発明の実施例について図面を参照して説明する。図1は本発明の実施例に係る心拍検出装置の構成を示すブロック図、図2は本発明の実施例に係る心拍検出方法を説明するフローチャートである。心拍検出装置は、ECG波形のサンプリングデータ列を出力する心電計1と、ECG波形のサンプリングデータ列とサンプリング時刻の情報とを記憶する記憶部2と、ECG波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出する正負反転値算出部3と、処理対象のサンプリング時刻よりも前の一定の時間範囲の正負反転値と処理対象のサンプリング時刻よりも後の一定の時間範囲の正負反転値のうちの最大値をサンプリング時刻ごとに検出する最大値検出部4と、処理対象のサンプリング時刻の正負反転値から最大値を引いた指標値をサンプリング時刻ごとに算出する指標値算出部5と、心拍検出のための閾値と生体のECG波形に由来する閾値として尤もらしい範囲の下限値とを比較する閾値判定部6と、閾値が下限値以上と判定され、閾値を超える指標値のピークを検出したときにピークのサンプリング時刻を心拍時刻とする心拍時刻決定部7と、現在の閾値を超える指標値のピークに基づいて閾値を更新する閾値設定部8とを備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a heartbeat detection device according to an embodiment of the invention, and FIG. 2 is a flow chart for explaining a heartbeat detection method according to an embodiment of the invention. The heartbeat detection apparatus includes an electrocardiograph 1 for outputting an ECG waveform sampling data string, a storage unit 2 for storing an ECG waveform sampling data string and sampling time information, and sampling data from the ECG waveform sampling data string. A positive/negative inversion value calculation unit 3 that calculates the positive/negative inversion value of the time difference for each sampling time, and a positive/negative inversion value in a certain time range before the sampling time to be processed and a certain value after the sampling time to be processed. A maximum value detection unit 4 that detects the maximum value of the positive/negative reversed values in the time range at each sampling time, and an index that calculates an index value obtained by subtracting the maximum value from the positive/negative reversed value at the sampling time to be processed at each sampling time. A value calculation unit 5, a threshold determination unit 6 that compares the threshold value for heartbeat detection with the lower limit value of a range that is likely to be a threshold value derived from the ECG waveform of the living body, and a threshold value that is determined to be equal to or higher than the lower limit value, and exceeds the threshold value. A heartbeat time determining unit 7 for setting the sampling time of the peak when the peak of the index value is detected to be the heartbeat time, and a threshold setting unit 8 for updating the threshold based on the peak of the index value exceeding the current threshold. .
 最大値検出部4は、正負反転値算出部3によって算出された時間差分正負反転値を入力とするFIFOバッファ(First In,First Out)40と、FIFOバッファ40の出力値を入力とするFIFOバッファ41と、FIFOバッファ41の出力値を入力とするFIFOバッファ42と、FIFOバッファ40に格納された時間差分正負反転値およびFIFOバッファ42に格納された時間差分正負反転値のうちの最大値をサンプリング時刻ごとに検出する検出処理部43とから構成される。 The maximum value detection unit 4 includes a FIFO buffer (First In, First Out) 40 to which the time difference positive/negative inversion value calculated by the positive/negative inversion value calculation unit 3 is input, and a FIFO buffer to which the output value of the FIFO buffer 40 is input. 41, a FIFO buffer 42 to which the output value of the FIFO buffer 41 is input, and sampling the maximum value of the positive/negative inverted value of the time difference stored in the FIFO buffer 40 and the inverted positive/negative value of the time difference stored in the FIFO buffer 42. It is composed of a detection processing unit 43 that detects each time.
 指標値算出部5は、正負反転値算出部3によって算出された時間差分正負反転値を入力とするFIFOバッファ50と、FIFOバッファ50の出力値から、最大値検出部4によって検出された最大値を引いた指標値をサンプリング時刻ごとに算出する減算処理部51とから構成される。 The index value calculation unit 5 detects the maximum value detected by the maximum value detection unit 4 from the FIFO buffer 50 to which the time difference positive/negative inversion value calculated by the positive/negative value calculation unit 3 is input, and the output value of the FIFO buffer 50. and a subtraction processing unit 51 that calculates an index value obtained by subtracting , at each sampling time.
 以下、本実施例の心拍検出方法を説明する。ここでは、1つの心拍を検出し、その心拍時刻を得るまでの手順を説明する。このような心拍時刻の算出をECG波形データの期間にわたって繰り返すことによって、心拍時刻の時系列データが得られる。 The heartbeat detection method of this embodiment will be described below. Here, the procedure from detecting one heartbeat to obtaining the heartbeat time will be described. Time-series data of heartbeat times is obtained by repeating such calculation of heartbeat times over the period of the ECG waveform data.
 本実施例では、ECG波形をサンプリングしたデータ列をD(i)とする。i(i=1,2,…)は1サンプリングのデータに付与される番号である。番号iが大きくなる程、サンプリング時刻が後になることは言うまでもない。 In this embodiment, D(i) is the data string obtained by sampling the ECG waveform. i (i=1, 2, . . . ) is a number given to data of one sampling. Needless to say, the larger the number i, the later the sampling time.
 心電計1は、図示しない生体(人体)のECG波形を測定し、ECG波形のサンプリングデータ列D(i)を出力する。このとき、心電計1は、各サンプリングデータにサンプリング時刻の情報を付加して出力する。なお、ECG波形の具体的な測定方法は周知の技術であるので、詳細な説明は省略する。
 記憶部2は、心電計1から出力されたECG波形のサンプリングデータ列D(i)とサンプリング時刻の情報とを記憶する。
The electrocardiograph 1 measures an ECG waveform of a living body (human body) (not shown) and outputs a sampling data string D(i) of the ECG waveform. At this time, the electrocardiograph 1 adds sampling time information to each sampling data and outputs the data. Since the specific method of measuring the ECG waveform is a well-known technique, detailed description thereof will be omitted.
The storage unit 2 stores the sampling data sequence D(i) of the ECG waveform output from the electrocardiograph 1 and the information on the sampling time.
 正負反転値算出部3は、サンプリングデータD(i)の時間差分正負反転値Y(i)を算出するため、サンプリングデータD(i)の1サンプリング後のデータD(i+1)と1サンプリング前のデータD(i-1)とを記憶部2から取得する(図2ステップS1)。そして、正負反転値算出部3は、サンプリングデータD(i)の時間差分正負反転値Y(i)を次式のようにサンプリング時刻ごとに算出する(図2ステップS2)。
 Y(i)=-{D(i+1)-D(i-1)}      ・・・(1)
In order to calculate the time difference positive/negative inversion value Y(i) of the sampling data D(i), the positive/negative inversion value calculation unit 3 calculates the data D(i+1) after one sampling of the sampling data D(i) and the data D(i+1) one sampling before. Data D(i-1) are obtained from the storage unit 2 (step S1 in FIG. 2). Then, the positive/negative inversion value calculator 3 calculates the time difference positive/negative inversion value Y(i) of the sampling data D(i) for each sampling time as shown in the following equation (step S2 in FIG. 2).
Y(i)=-{D(i+1)-D(i-1)} (1)
 正負反転値算出部3は、算出した時間差分正負反転値Y(i)をサンプリング時刻ごとにFIFOバッファ50に入力する(図2ステップS3)。入力された値は、FIFOバッファ50内に保持され、FIFOバッファ50の大きさに相当する時間(時間差分正負反転値がFIFOバッファ50に入力されてから出力されるまでの遅延時間)の後、減算処理に用いられることになる。 The positive/negative inversion value calculation unit 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 50 at each sampling time (step S3 in FIG. 2). The input value is held in the FIFO buffer 50, and after a time corresponding to the size of the FIFO buffer 50 (the delay time from when the positive/negative time difference value is input to the FIFO buffer 50 until it is output), It will be used for subtraction processing.
 また、正負反転値算出部3は、算出した時間差分正負反転値Y(i)をサンプリング時刻ごとにFIFOバッファ40に入力する(図2ステップS4)。FIFOバッファ40の出力はFIFOバッファ41に入力され(図2ステップS5)、FIFOバッファ41の出力はFIFOバッファ42に入力される(図2ステップS6)。FIFOバッファ40~42は、一定の時間範囲での時間差分正負反転値の最大値を求めるためのものである。 In addition, the positive/negative inversion value calculation unit 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 40 at each sampling time (step S4 in FIG. 2). The output of FIFO buffer 40 is input to FIFO buffer 41 (step S5 in FIG. 2), and the output of FIFO buffer 41 is input to FIFO buffer 42 (step S6 in FIG. 2). The FIFO buffers 40 to 42 are for obtaining the maximum value of the time difference positive/negative inversion value within a certain time range.
 FIFOバッファ41の長さに相当する時間間隔L3(時間差分正負反転値がFIFOバッファ41に入力されてから出力されるまでの遅延時間)は、R波由来のピークの幅(概ね10ms程度である)に対して十分広くしておく必要があり、50ms程度が好ましい。また、FIFOバッファ40の長さに相当する時間間隔L2(時間差分正負反転値がFIFOバッファ40に入力されてから出力されるまでの遅延時間)、およびFIFOバッファ42の長さに相当する時間間隔L4(時間差分正負反転値がFIFOバッファ42に入力されてから出力されるまでの遅延時間で、L2=L4)は、100ms程度が適当である。また、FIFOバッファ50の長さに相当する時間間隔L1は、L1=L2+L3/2とすればよい。したがって、上記の数値例で言えば、L1は125msとなる。L1=L2+L3/2かつL2=L4とすることにより、FIFOバッファ50の出力値aの時刻(処理対象のサンプリング時刻)に対して、-(L2+L3/2)~-(L3/2)の範囲と(L3/2)~(L2+L3/2)の範囲について最大値Mを求めることができ、出力値aから最大値Mを減算することが可能となる。 The time interval L3 corresponding to the length of the FIFO buffer 41 (the delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 41 until it is output) is the width of the peak derived from the R wave (approximately 10 ms). ), preferably about 50 ms. Also, a time interval L2 corresponding to the length of the FIFO buffer 40 (a delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 40 until it is output), and a time interval corresponding to the length of the FIFO buffer 42 L4 (the delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 42 until it is output, L2=L4) is appropriately about 100 ms. Also, the time interval L1 corresponding to the length of the FIFO buffer 50 may be L1=L2+L3/2. Therefore, in the above numerical example, L1 is 125 ms. By setting L1=L2+L3/2 and L2=L4, the range of -(L2+L3/2) to -(L3/2) is obtained for the time (sampling time to be processed) of the output value a of the FIFO buffer 50. The maximum value M can be obtained for the range from (L3/2) to (L2+L3/2), and the maximum value M can be subtracted from the output value a.
 検出処理部43は、FIFOバッファ40に格納された時間差分正負反転値およびFIFOバッファ42に格納された時間差分正負反転値のうちの最大値Mをサンプリング時刻ごとに検出する(図2ステップS7)。
 減算処理部51は、FIFOバッファ50の出力値aから最大値Mを引いた指標値b=a-Mをサンプリング時刻ごとに算出する(図2ステップS8)。
The detection processing unit 43 detects the maximum value M of the time difference positive/negative inversion value stored in the FIFO buffer 40 and the time difference positive/negative inversion value stored in the FIFO buffer 42 at each sampling time (step S7 in FIG. 2). .
The subtraction processing unit 51 calculates an index value b=a−M by subtracting the maximum value M from the output value a of the FIFO buffer 50 at each sampling time (step S8 in FIG. 2).
 次に、閾値判定部6は、心拍検出のための現在の閾値Thと生体のECG波形に由来する閾値Thとして尤もらしい範囲の下限値Thminとを比較する(図2ステップS9)。生体のECG波形に由来する閾値Thとして尤もらしい範囲は、過去の測定結果に基づいて決定することができる。閾値Thの初期値は、閾値Thとして尤もらしい範囲の中で任意の値を予め設定しておけばよい。 Next, the threshold determination unit 6 compares the current threshold Th for heartbeat detection with the lower limit value Thmin of the plausible range as the threshold Th derived from the ECG waveform of the living body (step S9 in FIG. 2). A likely range for the threshold Th derived from the ECG waveform of the living body can be determined based on past measurement results. The initial value of the threshold Th may be set in advance to an arbitrary value within a plausible range as the threshold Th.
 心拍時刻決定部7は、閾値判定部6によって現在の閾値Thが下限値Thmin以上と判定され(ステップS9においてYES)、閾値Thを超える指標値b(i)のピークを検出したときに(図2ステップS10においてYES)、このピークのサンプリング時刻を心拍時刻とする(図2ステップS11)。 When the threshold determination unit 6 determines that the current threshold value Th is equal to or greater than the lower limit value Thmin (YES in step S9), the heartbeat time determination unit 7 detects a peak of the index value b(i) exceeding the threshold value Th (Fig. 2: YES at step S10), the sampling time of this peak is set as the heartbeat time (step S11 in FIG. 2).
 指標値b(i)のサンプリング時刻とは、指標値b(i)の基となった時間差分正負反転値Y(i)のサンプリング時刻(データD(i)のサンプリング時刻)のことを言う。指標値b(i)のサンプリング時刻は、記憶部2から取得することが可能である。 The sampling time of the index value b(i) refers to the sampling time of the time difference positive/negative inversion value Y(i) on which the index value b(i) is based (the sampling time of the data D(i)). The sampling time of the index value b(i) can be acquired from the storage unit 2 .
 また、心拍時刻決定部7は、閾値判定部6が現在の閾値Thを下限値Thmin未満と判定した場合(ステップS9においてNO)、または閾値Thを超える指標値b(i)のピークを検出できていない場合には(ステップS10においてNO)、心拍(R波)と判定せず、心拍時刻を決定しない。 Further, the heartbeat time determining unit 7 detects a peak of the index value b(i) exceeding the threshold Th when the threshold determining unit 6 determines that the current threshold Th is less than the lower limit Thmin (NO in step S9). If not (NO in step S10), the heartbeat (R wave) is not determined and the heartbeat time is not determined.
 次に、閾値設定部8は、現在の閾値Thを超える指標値b(i)のピークに基づいて閾値Thを更新する(図2ステップS12)。図3は閾値設定部8の動作(ステップS12)を説明するフローチャートである。 Next, the threshold setting unit 8 updates the threshold Th based on the peak of the index value b(i) exceeding the current threshold Th (step S12 in FIG. 2). FIG. 3 is a flow chart for explaining the operation of the threshold setting unit 8 (step S12).
 まず、閾値設定部8は、現在の閾値Thを超える指標値b(i)のピークを検出できたかどうかを判定し(図3ステップS20)、所定個数V(本実施例ではV=5個)以上のピークを連続して検出できた場合には(図3ステップS21においてYES)、これらのピークのうち最新の所定個数Vのピークの平均値baveを求め、この平均値baveに所定の係数α(例えばα=0.4)を乗じた値を閾値の候補Thcとする(図3ステップS22)。
 Thc=α×bave                 ・・・(2)
First, the threshold setting unit 8 determines whether or not a peak of the index value b(i) exceeding the current threshold Th has been detected (step S20 in FIG. 3). If the above peaks can be continuously detected (YES in step S21 in FIG. 3), the average value bave of the newest predetermined number V of these peaks is obtained, and this average value bave is given a predetermined coefficient α (For example, α=0.4) is multiplied to obtain a threshold candidate Thc (step S22 in FIG. 3).
Thc=α×bave (2)
 閾値設定部8は、算出した閾値の候補Thcを、生体のECG波形の時間差分正負反転値として尤もらしいと言える差分限界値と現在の閾値Thとに基づく閾値限界値Lと比較し、閾値の候補Thcが閾値限界値Lを上回るときは閾値Thを更新せず(図3ステップS23においてYES)、閾値の候補Thcが閾値限界値L以下のときは(ステップS23においてNO)、候補Thcを新たな閾値Thとする(図3ステップS24)。閾値限界値Lについては後述する。 The threshold setting unit 8 compares the calculated threshold candidate Thc with a threshold limit value L based on the current threshold Th and the difference limit value that can be said to be plausible as the time difference positive/negative inversion value of the ECG waveform of the living body. When the candidate Thc exceeds the threshold limit value L, the threshold Th is not updated (YES in step S23 of FIG. 3). threshold value Th (step S24 in FIG. 3). The threshold limit value L will be described later.
 閾値設定部8は以上のような処理をサンプリング時刻ごとに行う。閾値Thを超える指標値b(i)のピークが継続して検出される場合には、ステップS22の処理が繰り返し実行されることにより、閾値の候補Thcが逐次算出され、閾値の候補Thcが閾値限界値L以下であれば、閾値Thが更新されることになる。 The threshold setting unit 8 performs the above processing at each sampling time. When the peak of the index value b(i) exceeding the threshold value Th is continuously detected, the process of step S22 is repeatedly executed to sequentially calculate the threshold candidate Thc, and the threshold candidate Thc becomes the threshold value. If it is equal to or less than the limit value L, the threshold Th is updated.
 ここで、閾値設定部8は、閾値Thを超える指標値b(i)のピークを3秒間検出できなかった場合(図3ステップS25においてYES)、ピーク探索の動作をリセットし、閾値Thの設定をやり直す(図3ステップS26)。具体的には、閾値設定部8は、ピーク探索の動作をリセットした時点から2秒間の期間における指標値b(i)のデータを用いて、その最大値bmaxを求め、最大値bmaxに所定の係数β(例えばβ=0.4)を乗じた値を新たな閾値Thとする。
 Th=β×bmax                  ・・・(3)
Here, when the peak of the index value b(i) exceeding the threshold Th is not detected for 3 seconds (YES in step S25 in FIG. 3), the threshold setting unit 8 resets the peak search operation and sets the threshold Th. is redone (step S26 in FIG. 3). Specifically, the threshold setting unit 8 obtains the maximum value bmax using the data of the index value b(i) in a period of 2 seconds after resetting the peak search operation, and sets the maximum value bmax to a predetermined value. A value multiplied by a coefficient β (eg, β=0.4) is set as a new threshold value Th.
Th=β×bmax (3)
 こうして、本実施例では、図2のステップS1~S12の処理をサンプリング時刻ごとに繰り返すことで、心拍時刻の時系列データが得られる。 Thus, in this embodiment, by repeating the processing of steps S1 to S12 in FIG. 2 at each sampling time, time-series data of heartbeat times can be obtained.
 ここで、生体(人体)のECG波形の時間差分正負反転値は最大どれくらいになるのか、逆に言うと、どれくらいの値であれば人のECG波形の時間差分正負反転値として尤もらしくないか、について考える。QRS間隔(Q波の始まりからS波の終りまで)は、0.06~0.1sである。 Here, what is the maximum value of the time difference positive/negative inversion value of the ECG waveform of the living body (human body)? think about. The QRS interval (from the beginning of the Q wave to the end of the S wave) is 0.06-0.1 s.
 R波の最高値からS波の最低値までの時間は、QRS間隔の1/4として、15~25ms程度と考えることができる。さらに、R波の最高値からS波の最低値の中でも、その中央付近が最も急峻に変化する。その時間範囲を、R波の最高値からS波の最低値までの概ね半分とすると、7.5~12.5ms程度と見積もれる。この時間内に、仮にQRS振幅に相当する心電位の変化があるとすると、その心電位の変化率は、最大で350μV/ms程度になると考えられる。この心電位の変化率を式(1)で求められる時間差分正負反転値に直すと、サンプリング間隔が1msの場合は700μVとなり、さらに余裕をみて1000μVと大きく丸める。 The time from the maximum value of the R wave to the minimum value of the S wave can be considered to be about 15 to 25 ms as 1/4 of the QRS interval. Furthermore, the sharpest change occurs near the center of the range from the highest value of the R wave to the lowest value of the S wave. Assuming that the time range is about half from the maximum value of the R wave to the minimum value of the S wave, it is estimated to be about 7.5 to 12.5 ms. If there is a change in the electrocardiographic potential corresponding to the QRS amplitude during this time, the rate of change in the electrocardiographic potential is considered to be about 350 μV/ms at maximum. If the change rate of the electrocardiographic potential is converted into the positive/negative inversion value of the time difference obtained by the equation (1), it becomes 700 μV when the sampling interval is 1 ms, and is further rounded to 1000 μV with a margin.
 以上から、サンプリング間隔が1msの場合、時間差分正負反転値が1000μVを超えるものは、人のECG波形の時間差分正負反転値として尤もらしくないと言える。この目安は、サンプリング間隔が5msの場合には、5000μVとなる。すなわち、サンプリング間隔をdTとすれば、人のECG波形の時間差分正負反転値として尤もらしいと言える差分限界値Xは以下のように表現できる。
 X=dT[ms]×1000[μV]          ・・・(4)
From the above, it can be said that when the sampling interval is 1 ms, the time difference positive/negative inversion value exceeding 1000 μV is not likely to be the time difference positive/negative inversion value of the human ECG waveform. This standard is 5000 μV when the sampling interval is 5 ms. That is, if the sampling interval is dT, the difference limit value X, which can be said to be plausible as the time difference positive/negative inversion value of the human ECG waveform, can be expressed as follows.
X=dT[ms]×1000[μV] (4)
 指標値bは、R波由来のピークに対して、その周辺の時間領域の時間差分値のクリアランスの高さを表しており、ECG波形の時間差分正負反転値に大きなノイズが含まれていて、そのノイズが鋭い単峰性のピークを呈するときには、最悪の場合そのままの値が指標値bに反映される。 The index value b represents the height of the clearance of the time difference value in the surrounding time domain with respect to the peak derived from the R wave. When the noise presents a sharp unimodal peak, in the worst case the value is reflected in the index value b as it is.
 現在の閾値Thを超える所定個数V(本実施例ではV=5個)のピークの平均値baveに係数α=0.4を乗じた値を新たな閾値Th’とする場合、標準的な指標値bのピーク値をpとすると、正常時の更新後の閾値Th’は、およそTh’=p×α=p×0.4となる。ピーク値がXの異常ノイズが1回発生したとすると、次の閾値Th’は、(X-p)÷5×0.4=0.08X-0.2Th分上昇する。X=5000μVであれば、400-0.2Th[μV]となる。つまり、サンプリング間隔が5msの場合、現在の閾値Thに対する次の閾値Th’の上げ幅が400-0.2Th[μV]を上回るときは、ノイズの影響を受けている蓋然性が高い。 If the value obtained by multiplying the average value bave of the peaks of a predetermined number V (in this embodiment, V=5) exceeding the current threshold Th by the coefficient α=0.4 is set as the new threshold Th′, the standard index Assuming that the peak value of the value b is p, the updated threshold Th' in the normal state is about Th'=p×α=p×0.4. If abnormal noise with a peak value of X occurs once, the next threshold Th' increases by (Xp)/5*0.4=0.08X-0.2Th. If X=5000 μV, then 400−0.2 Th [μV]. In other words, when the sampling interval is 5 ms, there is a high probability that noise is influencing when the amount of increase in the next threshold Th' from the current threshold Th exceeds 400-0.2 Th [μV].
 そこで、本実施例においては、現在の閾値Thに対して、ステップS22で算出する閾値の候補Thcが閾値限界値L=400+0.8Th[μV](=Th+400-0.2Th)を上回るときは(ステップS23においてYES)、閾値Thを更新しないようにすればよい。なお、閾値限界値Lの一般式は以下のようになる。
 L=Th+(α/V)X-(1/V)Th        ・・・(5)
Therefore, in this embodiment, when the threshold candidate Thc calculated in step S22 exceeds the threshold limit value L = 400 + 0.8 Th [μV] (= Th + 400 - 0.2 Th) with respect to the current threshold Th, ( YES in step S23), the threshold value Th should not be updated. A general formula for the threshold limit value L is as follows.
L=Th+(α/V)X−(1/V)Th (5)
 上記のように、閾値Thは、検出すべきピークの値に1以下の係数αを乗じた値に基づいて設定される。閾値Thを適応的に更新する方法では、入力信号レベルが下がり、小さな振幅を持つ指標値bのピークが連続すると、閾値Thが低下する。閾値Thが人のECG波形に由来する閾値Thとして尤もらしくない程度に下がっている状況では、指標値bのピークがあったとしても、このピークがR波由来である蓋然性は低い。 As described above, the threshold Th is set based on the value obtained by multiplying the value of the peak to be detected by a coefficient α of 1 or less. In the method of adaptively updating the threshold Th, when the input signal level decreases and the peaks of the index value b with small amplitude continue, the threshold Th decreases. In a situation where the threshold Th is unbelievably low as a threshold Th derived from a human ECG waveform, even if there is a peak in the index value b, the probability that this peak is derived from the R wave is low.
 閾値Thが下限値を下回らないように制限するという方法では、指標値bの小さい振幅のピークを検出しないようにできるものの、閾値Thを超える指標値bには反応してしまう。このため、ECG波形に加わったノイズ等に由来するような指標値bのピークでも心拍として検出してしまう。 With the method of restricting the threshold Th so that it does not fall below the lower limit, it is possible to prevent the detection of a peak with a small amplitude of the index value b, but it reacts to the index value b exceeding the threshold Th. Therefore, even a peak of the index value b that is derived from noise or the like added to the ECG waveform is detected as a heartbeat.
 一方、本実施例では、閾値Thが下限値Thmin未満の場合には、心拍判定(ステップS10)をしないので、ECG波形に加わったノイズ等を誤って心拍として検出することがなく、適切な心拍検出を実現することができる。
 なお、図3で説明した閾値更新の方法は1例であって、別の方法で閾値を更新するようにしてもよい。
On the other hand, in the present embodiment, when the threshold value Th is less than the lower limit value Thmin, the heartbeat determination (step S10) is not performed. detection can be achieved.
Note that the threshold update method described with reference to FIG. 3 is an example, and the threshold may be updated by another method.
 本実施例で説明した心拍検出装置の記憶部2と正負反転値算出部3と最大値検出部4と指標値算出部5と閾値判定部6と心拍時刻決定部7と閾値設定部8とは、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。このコンピュータの構成例を図4に示す。 The storage unit 2, the positive/negative inversion value calculation unit 3, the maximum value detection unit 4, the index value calculation unit 5, the threshold determination unit 6, the heartbeat time determination unit 7, and the threshold value setting unit 8 of the heartbeat detection apparatus described in this embodiment are , a CPU (Central Processing Unit), a storage device, and an interface, and a program that controls these hardware resources. A configuration example of this computer is shown in FIG.
 コンピュータは、CPU200と、記憶装置201と、インタフェース装置(I/F)202とを備えている。I/F202には、心電計1などが接続される。本発明の心拍検出方法を実現させるためのプログラムは記憶装置201に格納される。CPU200は、記憶装置201に格納されたプログラムに従って本実施例で説明した処理を実行する。 The computer comprises a CPU 200 , a storage device 201 and an interface device (I/F) 202 . The I/F 202 is connected to the electrocardiograph 1 and the like. A program for implementing the heartbeat detection method of the present invention is stored in the storage device 201 . The CPU 200 executes the processing described in this embodiment according to the programs stored in the storage device 201 .
 本発明は、生体の心拍を検出する技術に適用することができる。 The present invention can be applied to technology for detecting the heartbeat of a living body.
 1…心電計、2…記憶部、3…正負反転値算出部、4…最大値検出部、5…指標値算出部、6…閾値判定部、7…心拍時刻決定部、8…閾値設定部、40~42,50…FIFOバッファ、43…検出処理部、51…減算処理部。 DESCRIPTION OF SYMBOLS 1... Electrocardiograph, 2... Storage part, 3... Positive/negative inversion value calculation part, 4... Maximum value detection part, 5... Index value calculation part, 6... Threshold determination part, 7... Heartbeat time determination part, 8... Threshold value setting Sections 40 to 42, 50... FIFO buffer, 43... Detection processing section, 51... Subtraction processing section.

Claims (6)

  1.  生体の心電図波形のサンプリングデータ列から指標値をサンプリング時刻ごとに算出する第1のステップと、
     心拍検出のための閾値と生体の心電図波形に由来する前記閾値として尤もらしい範囲の下限値とを比較する第2のステップと、
     前記第2のステップで前記閾値を前記下限値以上と判定し、前記閾値を超える前記指標値のピークを検出したときに、このピークのサンプリング時刻を心拍時刻とする第3のステップとを含み、
     前記第2のステップで前記閾値を前記下限値未満と判定した場合に、前記閾値と前記指標値との比較による心拍検出をしないことを特徴とする心拍検出方法。
    a first step of calculating an index value from a sampled data string of an electrocardiogram waveform of a living body at each sampling time;
    a second step of comparing a threshold for heartbeat detection with a lower limit of a plausible range for the threshold derived from a biological electrocardiogram waveform;
    a third step in which when the threshold is determined to be equal to or greater than the lower limit in the second step and a peak of the index value exceeding the threshold is detected, the sampling time of the peak is set to the heartbeat time;
    A heartbeat detection method, wherein when the second step determines that the threshold is less than the lower limit, heartbeat detection is not performed by comparing the threshold and the index value.
  2.  請求項1記載の心拍検出方法において、
     前記心電図波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出する第4のステップと、
     処理対象のサンプリング時刻よりも前の一定の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の一定の時間範囲の前記正負反転値のうちの最大値をサンプリング時刻ごとに検出する第5のステップとをさらに含み、
     前記第1のステップは、前記処理対象のサンプリング時刻の前記正負反転値から前記最大値を引いた減算値を前記指標値としてサンプリング時刻ごとに算出するステップを含むことを特徴とする心拍検出方法。
    The heart rate detection method of claim 1, wherein
    a fourth step of calculating, at each sampling time, the positive/negative inversion value of the time difference of the sampled data from the sampled data string of the electrocardiogram waveform;
    The maximum value of the positive/negative inverted value within a certain time range before the sampling time to be processed and the positive/negative inverted value within a certain time range after the sampling time to be processed is detected at each sampling time. a fifth step;
    The heartbeat detection method, wherein the first step includes a step of calculating, at each sampling time, a subtraction value obtained by subtracting the maximum value from the positive/negative inversion value of the sampling time to be processed as the index value.
  3.  請求項1または2記載の心拍検出方法において、
     現在の閾値を超える前記指標値のピークに基づいて前記閾値を更新する第6のステップをさらに含むことを特徴とする心拍検出方法。
    The heartbeat detection method according to claim 1 or 2,
    A heartbeat detection method, further comprising a sixth step of updating the threshold based on peaks in the index value that exceed a current threshold.
  4.  生体の心電図波形のサンプリングデータ列から指標値をサンプリング時刻ごとに算出するように構成された指標値算出部と、
     心拍検出のための閾値と生体の心電図波形に由来する前記閾値として尤もらしい範囲の下限値とを比較するように構成された閾値判定部と、
     前記閾値判定部によって前記閾値が前記下限値以上と判定され、前記閾値を超える前記指標値のピークを検出したときに、このピークのサンプリング時刻を心拍時刻とするように構成された心拍時刻決定部とを備え、
     前記心拍時刻決定部は、前記閾値が前記下限値未満と判定された場合に、前記閾値と前記指標値との比較による心拍検出をしないことを特徴とする心拍検出装置。
    an index value calculation unit configured to calculate an index value at each sampling time from a sampled data string of an electrocardiogram waveform of a living body;
    a threshold determination unit configured to compare a threshold for heartbeat detection with a lower limit of a plausible range as the threshold derived from an electrocardiogram waveform of a living body;
    A heartbeat time determination unit configured to set a sampling time of the peak as a heartbeat time when the threshold is determined to be equal to or greater than the lower limit value by the threshold determination unit and a peak of the index value exceeding the threshold is detected. and
    The heartbeat detection device, wherein the heartbeat time determination unit does not perform heartbeat detection by comparing the threshold value and the index value when the threshold value is determined to be less than the lower limit value.
  5.  請求項4記載の心拍検出装置において、
     前記心電図波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出するように構成された正負反転値算出部と、
     処理対象のサンプリング時刻よりも前の一定の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の一定の時間範囲の前記正負反転値のうちの最大値をサンプリング時刻ごとに検出するように構成された最大値検出部とをさらに備え、
     前記指標値算出部は、前記処理対象のサンプリング時刻の前記正負反転値から前記最大値を引いた減算値を前記指標値としてサンプリング時刻ごとに算出することを特徴とする心拍検出装置。
    The heartbeat detection device of claim 4, wherein
    a positive/negative inverted value calculation unit configured to calculate, at each sampling time, a positive/negative inverted value of the time difference of the sampling data from the sampled data string of the electrocardiogram waveform;
    The maximum value of the positive/negative inverted value within a certain time range before the sampling time to be processed and the positive/negative inverted value within a certain time range after the sampling time to be processed is detected at each sampling time. further comprising a maximum value detection unit configured to
    The heartbeat detection device, wherein the index value calculation unit calculates a subtraction value obtained by subtracting the maximum value from the positive/negative inversion value of the sampling time to be processed as the index value at each sampling time.
  6.  請求項4または5記載の心拍検出装置において、
     現在の閾値を超える前記指標値のピークに基づいて前記閾値を更新するように構成された閾値設定部をさらに備えることを特徴とする心拍検出装置。
    The heartbeat detection device according to claim 4 or 5,
    The heart rate detection device, further comprising a threshold setting unit configured to update the threshold based on peaks of the index value exceeding a current threshold.
PCT/JP2021/014756 2021-04-07 2021-04-07 Heartbeat detection method and heartbeat detection device WO2022215191A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/014756 WO2022215191A1 (en) 2021-04-07 2021-04-07 Heartbeat detection method and heartbeat detection device
JP2023512570A JP7491466B2 (en) 2021-04-07 2021-04-07 Heart rate detection method and heart rate detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014756 WO2022215191A1 (en) 2021-04-07 2021-04-07 Heartbeat detection method and heartbeat detection device

Publications (1)

Publication Number Publication Date
WO2022215191A1 true WO2022215191A1 (en) 2022-10-13

Family

ID=83545295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014756 WO2022215191A1 (en) 2021-04-07 2021-04-07 Heartbeat detection method and heartbeat detection device

Country Status (2)

Country Link
JP (1) JP7491466B2 (en)
WO (1) WO2022215191A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150156A1 (en) * 2016-02-29 2017-09-08 日本電信電話株式会社 Heartbeat detecting method and heartbeat detecting device
WO2018074145A1 (en) * 2016-10-17 2018-04-26 日本電信電話株式会社 Heartbeat detecting method and heartbeat detecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150156A1 (en) * 2016-02-29 2017-09-08 日本電信電話株式会社 Heartbeat detecting method and heartbeat detecting device
WO2018074145A1 (en) * 2016-10-17 2018-04-26 日本電信電話株式会社 Heartbeat detecting method and heartbeat detecting device

Also Published As

Publication number Publication date
JPWO2022215191A1 (en) 2022-10-13
JP7491466B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
JP6652655B2 (en) Heartbeat detection method and heartbeat detection device
US10945623B2 (en) Heartbeat detection method and heartbeat detection device
US10172531B2 (en) Heartbeat detection method and heartbeat detection device
JP6645926B2 (en) Biological signal processing method and apparatus
JP6404784B2 (en) Heart rate detection method and heart rate detection device
CN112773582A (en) Artificial limb control method, device, system and medium
JP2016123594A (en) Device and method of estimating autonomic nerve activity
JP2018175152A (en) Heart rate detection method and heart rate detection device
WO2022215191A1 (en) Heartbeat detection method and heartbeat detection device
US10750969B2 (en) Heartbeat detection method and heartbeat detection device
JP2015217060A (en) Heartbeat detection method and heartbeat detector
WO2023032119A1 (en) Heartbeat detection method and heartbeat detection device
JPWO2014141682A1 (en) Sensor terminal and signal acquisition method
WO2022215190A1 (en) Heartbeat detection method and heartbeat detection device
WO2023032120A1 (en) Heartbeat detection method and heartbeat detection device
EP2886044A1 (en) System and a method for acquisition of biopotential signals with motion artifact reduction.
CN106037718B (en) Wearable electrocardiogram system
JP7147866B2 (en) Heart rate detection method, heart rate detection device and program
WO2022149382A1 (en) Signal analysis device, signal analysis method, and program
WO2022149307A1 (en) Signal analysis device, signal analysis method, and program
JP7248150B2 (en) Heart rate detection device, heart rate detection method, and heart rate detection program
JP2020096710A (en) Ecg peak detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935995

Country of ref document: EP

Kind code of ref document: A1