WO2023032119A1 - Heartbeat detection method and heartbeat detection device - Google Patents
Heartbeat detection method and heartbeat detection device Download PDFInfo
- Publication number
- WO2023032119A1 WO2023032119A1 PCT/JP2021/032266 JP2021032266W WO2023032119A1 WO 2023032119 A1 WO2023032119 A1 WO 2023032119A1 JP 2021032266 W JP2021032266 W JP 2021032266W WO 2023032119 A1 WO2023032119 A1 WO 2023032119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- value
- sampling
- sampling time
- index value
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 63
- 238000005070 sampling Methods 0.000 claims abstract description 173
- 239000000872 buffer Substances 0.000 description 66
- 238000010586 diagram Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 11
- 230000000747 cardiac effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
Definitions
- the present invention relates to a heartbeat detection method and a heartbeat detection device for detecting heartbeats (R waves) from an electrocardiogram waveform.
- the ECG (Electrocardiogram) waveform is an observation of the electrical activity of the heart and consists of a continuous heartbeat waveform.
- One heartbeat waveform consists of components such as P wave, Q wave, R wave, S wave, T wave, etc., which reflect the activity of the atria and ventricles.
- the R wave accompanies the contraction of the ventricle and has a large amplitude. Therefore, detection of the heartbeat is often performed based on the peak derived from the R wave.
- Patent Document 1 As a conventional heartbeat detection method, there is a method disclosed in Patent Document 1.
- the method disclosed in Patent Document 1 uses an index value that focuses on the relationship between the peak of the time difference value of the ECG waveform and the value in a certain time region before and after the peak, and uses a determination logic based on a threshold. to detect the R wave.
- This method has the advantage that it is possible to give sensitivity not only to the amplitude of the ECG waveform but also to the shape (time width), and it is less likely to mistakenly recognize the T wave, which is wider than the R wave, as the R wave.
- FIG. 14 is a diagram showing an example of an ECG waveform.
- the ECG waveform contains one heart beat.
- the amplitude of the cardiac potential (peak to valley) is about 500 ⁇ V, which is smaller than the normal value (2000 to 3000 ⁇ V), but the amplitude may be attenuated depending on the position and condition of the electrodes that detect the cardiac potential.
- FIG. 15 is a diagram showing a value obtained by taking the time difference of the ECG waveform in FIG. 14 and inverting the positive and negative. By taking the time difference of the ECG waveform, it can be confirmed that an upward peak accompanying a sharp drop in electrocardiographic potential from the R wave to the S wave appears along with the rhythm of the heartbeat.
- FIG. 16 is a diagram plotting time-series data of index values.
- the index value has a form in which peaks with time widths smaller than the interval between time ranges A and B are emphasized.
- the object to be detected is the R wave
- the R wave can be detected by applying a determination logic based on the threshold TH to the index value.
- the threshold TH can be obtained by a method such as obtaining the maximum index value in a period including peaks derived from a plurality of heartbeats and multiplying the maximum value by a coefficient of 1 or less.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a heartbeat detection method and a heartbeat detection device that do not erroneously recognize peaks with too short time widths as heartbeats.
- a heartbeat detection method includes a first step of calculating, at each sampling time, a positive/negative inversion value of a time difference of sampled data from a sampled data string of an electrocardiogram waveform of a living body; A second step of detecting a first maximum value of the positive/negative inverted value in the time range of and the positive/negative inverted value in the second time range after the sampling time to be processed at each sampling time; a second maximum value of the positive/negative inverted value in a third time range before the sampling time to be processed and the positive/negative inverted value in a fourth time range after the sampling time to be processed; a third step of detecting at each sampling time; and a fourth step of calculating at each sampling time as a first index value a subtraction value obtained by subtracting the first maximum value from the positive/negative inversion value at the sampling time to be processed.
- the timing of the leading edge of the third time range with respect to the sampling time to be processed is the same as the timing of the leading edge of the first time range
- the timing of the trailing edge of the fourth time range with respect to the sampling time to be processed is the same as the timing of the trailing edge of the second time range
- the timing of the trailing edge of the third time range and the fourth time range The interval is shorter than the interval between the first time range and the second time range.
- the sixth step includes the step of calculating the first index value at the first sampling time with respect to the first index value before the first sampling time.
- the first sampling The method is characterized by including a step of setting the time as the heartbeat time.
- the interval between the third time range and the fourth time range ranges from 20 ms to 30 ms.
- the heartbeat detection apparatus of the present invention includes a positive/negative inversion value calculation unit configured to calculate, at each sampling time, a positive/negative inversion value of a time difference of sampling data from a sampled data string of an electrocardiogram waveform of a living body; a first maximum value of the positive/negative inverted value in the first time range before the sampling time and the positive/negative inverted value in the second time range after the sampling time to be processed at each sampling time; a first maximum value detection unit configured to detect, the positive/negative inversion value in a third time range before the sampling time to be processed, and a fourth maximum value after the sampling time to be processed a second maximum value detection unit configured to detect a second maximum value of the positive/negative inverted values of the time range at each sampling time; a first index value calculator configured to calculate a subtraction value obtained by subtracting the maximum value of 1 as a first index value at each sampling time; a second index value calculation unit configured to calculate a subtraction value obtained by subtracting the maximum value of 2 as a second index value
- the timing of the leading edge of the third time range with respect to the sampling time to be processed is the same as the timing of the leading edge of the first time range
- the timing of the trailing edge of the fourth time range with respect to the sampling time to be processed is the same as the timing of the trailing edge of the second time range
- the timing of the trailing edge of the third time range and the fourth time range The interval is shorter than the interval between the first time range and the second time range.
- the heartbeat time determination unit may determine the first index value before the first sampling time at the first sampling time.
- the first sampling It is characterized in that the time is the heartbeat time.
- the interval between the third time range and the fourth time range is in the range of 20 ms to 30 ms.
- the sampling time of 1 be the heartbeat time.
- the present invention it is possible to detect peaks of index values that are likely to be R waves, and to exclude peaks of index values that are less credible as R waves and whose duration is too short, thereby accurately detecting heartbeats. It can be performed.
- FIG. 1 is a diagram showing time difference positive/negative inversion values of an ECG waveform.
- FIG. 2 is a diagram showing time-series data of the first index value and the second index value of the ECG waveform. 3 is an enlarged view of FIG. 2.
- FIG. 4 is a diagram showing an example of a pseudo waveform imitating an ECG waveform.
- FIG. 5 is a diagram showing time-series data of the first index value and the second index value of the pseudo waveform.
- 6A to 6C are diagrams showing time-series data of the first index value and the second index value of the ECG waveform.
- 7A to 7C are diagrams showing time-series data of the first index value and the second index value of the pseudo waveform.
- FIG. 1 is a diagram showing time difference positive/negative inversion values of an ECG waveform.
- FIG. 2 is a diagram showing time-series data of the first index value and the second index value of the ECG waveform.
- 3 is an enlarged view of
- FIG. 8 is a block diagram showing the configuration of a heartbeat detection device according to an embodiment of the present invention.
- FIG. 9 is a block diagram showing a configuration example of the maximum value detection unit, the index value calculation unit, and the index value storage unit of the heartbeat detection device according to the embodiment of the present invention.
- FIG. 10 is a flowchart illustrating a heartbeat detection method according to an embodiment of the invention.
- FIG. 11 is a flowchart for explaining a method of calculating the first index value.
- FIG. 12 is a flowchart illustrating a method of calculating the second index value.
- FIG. 13 is a block diagram showing a configuration example of a computer that implements the heartbeat detection device according to the embodiment of the present invention.
- FIG. 14 is a diagram showing an example of an ECG waveform.
- FIG. 15 is a diagram showing time difference positive/negative inversion values of the ECG waveform of FIG.
- FIG. 16 is a diagram showing time-series data of index values calculated by
- FIG. 1 shows time difference positive/negative inversion values of the same ECG waveform as in FIG.
- the difference from FIG. 15 is that the second time ranges C and D are shown together.
- the timing of the leading edge of time range C with respect to the sampling time to be processed (t in the example of FIG. 1) is the same as the timing of the leading edge of time range A.
- the timing of the trailing edge of the time range D with respect to the sampling time to be processed is the same as the timing of the trailing edge of the time range B.
- the interval between time ranges C and D is shorter than the interval between time ranges A and B. In the examples of FIGS. 2 to 4 below, the interval between time ranges C and D is 24 ms.
- the time difference positive/negative inversion value of the ECG waveform is calculated for each sampling time. Then, the maximum value M1 of the time difference positive/negative inversion value in the time range A before the sampling time to be processed and the time difference positive/negative inversion value in the time range B after the sampling time to be processed is A value obtained by subtracting the time difference positive/negative inversion value of the sampling time is set as the first index value x of the sampling time to be processed.
- the maximum value M2 of the time difference positive/negative inversion value in the time range C before the sampling time to be processed and the time difference positive/negative inversion value in the time range D after the sampling time to be processed is A value obtained by subtracting the time difference positive/negative inversion value of the sampling time is set as the second index value y of the sampling time to be processed.
- FIG. 2 is a diagram plotting time-series data of the first index value x and the second index value y of the ECG waveform of FIG. It can be seen that the peak of the second index value y is thinner than the peak of the first index value x.
- FIG. 3 is an enlarged view of the vicinity of the peak derived from the R wave in FIG.
- values are plotted at sampling intervals of 1 ms. It can be seen that the first index value x and the second index value y diverge from the apex of the peak.
- the reason for the difference between the first index value x and the second index value y is that when the time shifts from the center of the peak, the trailing edge of the time range C and the leading edge of the time range D become positive or negative in the time difference of the ECG waveform. This is because interference with the peak of the inversion value increases the maximum value M2 in the time ranges C and D, and the slope of the base of the peak of the second index value y becomes steeper.
- FIG. 4 is a diagram showing an example of a pseudo waveform imitating an ECG waveform.
- the waveforms shown in FIG. 4 are obtained by shortening the time widths of the Q wave, R wave, and S wave by about half, and show an example that should not be detected as the R wave.
- FIG. 5 shows plots similar to those in FIG. 3 for the waveforms in FIG. Compared to FIG. 3, the difference between the first index value x and the second index value y is small.
- the reason why the difference between the first index value x and the second index value y is small is that the width of the peak is narrow with respect to the interval between the time ranges C and D, and the degree of interference between the time ranges C and D and the peak waveform is small. This is because the increase in the maximum value M2 as in the case of FIG. 3 is unlikely to occur.
- the time t3 may be set as the heartbeat time. That is, an upward peak that appears immediately after time t3 can be detected as a peak derived from the R wave.
- the time t3 is not detected as the heartbeat time
- the peak in FIG. It is not detected as a wave-derived peak.
- the above condition may be satisfied in a phase where the first index value x and the second index value y pass the peak and then fall.
- the condition that the first index value x increases at time t3 (x3>x2) is further imposed, it is possible not to detect peaks such as those shown in FIG. 5 as peaks derived from R waves.
- FIGS. 6A to 6C are diagrams plotting time-series data of the first index value x and the second index value y of the ECG waveform of FIG. 7A to 7C are diagrams plotting time-series data of the first index value x and the second index value y of the pseudo-waveform of FIG. 6A and 7A show the case where the interval between time ranges C and D is 20 ms
- FIGS. 6B and 7B show the case where the interval between time ranges C and D is 24 ms
- FIGS. A case of 30 ms is shown.
- the interval between time ranges A and B is 50 ms.
- the first index value x and the second index value y diverge even in the case of pseudo waveforms that should not be detected as R waves.
- the first index value x and the second index value y approach each other even in the case of the ECG waveform.
- the interval between the time ranges C and D for distinguishing between the ECG waveform and the pseudo waveform is preferably set in the range of 20 ms to 30 ms.
- FIG. 8 is a block diagram showing the configuration of a heartbeat detection device according to an embodiment of the present invention.
- the heartbeat detection apparatus includes an electrocardiograph 1 for outputting an ECG waveform sampling data string, a storage unit 2 for storing an ECG waveform sampling data string and sampling time information, and sampling data from the ECG waveform sampling data string.
- a positive/negative inverted value calculation unit 3 that calculates the positive/negative inverted value of the time difference for each sampling time, the positive/negative inverted value of the time difference in the time range A before the sampling time to be processed, and the time after the sampling time to be processed.
- a maximum value detection unit 4 for detecting the maximum value M1 of the time difference positive/negative inversion values in the range B at each sampling time, and a first index obtained by subtracting the maximum value M1 from the time difference positive/negative inversion value at the sampling time to be processed. It has an index value calculation unit 5 that calculates the value x at each sampling time, and an index value storage unit 6 that receives the first index value x.
- the heartbeat detection device detects the maximum value M2 of the time difference positive/negative inversion value in the time range C before the sampling time to be processed and the time difference positive/negative inversion value in the time range D after the sampling time to be processed. and an index value calculator 8 that calculates, at each sampling time, a second index value y obtained by subtracting the maximum value M2 from the time difference positive/negative inversion value at the sampling time to be processed.
- the index value storage unit 9 that receives the second index value y, the second index value y at the first sampling time when the first index value x exceeds the threshold TH, and the first sampling time and a heartbeat time determination unit 10 that sets the first sampling time as the heartbeat time when the first index value x at the second sampling time having a predetermined relationship with the first index value x satisfies a predetermined condition.
- FIG. 9 is a block diagram showing a configuration example of the maximum value detection units 4 and 7, the index value calculation units 5 and 8, and the index value storage units 6 and 9.
- the maximum value detection unit 4 includes a FIFO buffer (First In, First Out) 40 to which the time difference positive/negative inversion value calculated by the positive/negative inversion value calculation unit 3 is input, and a FIFO buffer to which the output value of the FIFO buffer 40 is input. 41, a FIFO buffer 42 to which the output value of the FIFO buffer 41 is input, and the maximum value M1 of the positive/negative inverted value of the time difference stored in the FIFO buffer 40 and the inverted positive/negative value of the time difference stored in the FIFO buffer 42. and a detection processing unit 43 that performs detection at each sampling time.
- FIFO buffer First In, First Out
- the index value calculation unit 5 detects the maximum value detected by the maximum value detection unit 4 from the FIFO buffer 50 to which the time difference positive/negative inversion value calculated by the positive/negative value calculation unit 3 is input, and the output value of the FIFO buffer 50. and a subtraction processing unit 51 that calculates the first index value x obtained by subtracting M1 at each sampling time.
- the index value storage unit 6 is composed of a FIFO buffer 60 to which the first index value x calculated by the subtraction processing unit 51 is input.
- the maximum value detection unit 7 includes a FIFO buffer 70 to which the time difference positive/negative inversion value calculated by the positive/negative inversion value calculation unit 3 is input, a FIFO buffer 71 to which the output value of the FIFO buffer 70 is input, and a FIFO buffer 71.
- the index value calculation unit 8 detects the maximum value detected by the maximum value detection unit 7 from the FIFO buffer 80 to which the time difference positive/negative inversion value calculated by the positive/negative value calculation unit 3 is input, and the output value of the FIFO buffer 80. and a subtraction processing unit 81 that calculates a second index value y obtained by subtracting M2 at each sampling time.
- the index value storage unit 9 is composed of a FIFO buffer 90 to which the second index value y calculated by the subtraction processing unit 81 is input.
- the heartbeat detection method of this embodiment will be described below with reference to FIGS. 10 to 12.
- FIG. Here, the procedure from detecting one heartbeat to obtaining the heartbeat time will be described.
- Time-series data of heartbeat times is obtained by repeating such calculation of heartbeat times over the period of the ECG waveform data.
- D(i) is the data string obtained by sampling the ECG waveform.
- the electrocardiograph 1 measures an ECG waveform of a living body (human body) (not shown) and outputs a sampling data string D(i) of the ECG waveform. At this time, the electrocardiograph 1 adds sampling time information to each sampling data and outputs the data. Since the specific method of measuring the ECG waveform is a well-known technique, detailed description thereof will be omitted.
- the storage unit 2 stores the sampling data sequence D(i) of the ECG waveform output from the electrocardiograph 1 and the information on the sampling time.
- a first index value x is calculated by the maximum value detection unit 4 and the index value calculation unit 5 (step S3 in FIG. 10).
- the positive/negative inversion value calculator 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 50 at each sampling time (step S100 in FIG. 11).
- the input value is held in the FIFO buffer 50, and after a time corresponding to the size of the FIFO buffer 50 (the delay time from when the positive/negative time difference value is input to the FIFO buffer 50 until it is output), It will be used for subtraction processing.
- the positive/negative inversion value calculation unit 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 40 at each sampling time (step S101 in FIG. 11).
- the output of FIFO buffer 40 is input to FIFO buffer 41 (step S102 in FIG. 11), and the output of FIFO buffer 41 is input to FIFO buffer 42 (step S103 in FIG. 11).
- the FIFO buffers 40 to 42 are for obtaining the maximum value of the time difference positive/negative inversion values in the time ranges A and B.
- the time interval L3 corresponding to the length of the FIFO buffer 41 (the delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 41 until it is output) is the width of the peak derived from the R wave (approximately 10 ms). ), preferably about 50 ms. This interval L3 becomes the interval between the time ranges A and B.
- L1 is 125 ms.
- the time (sampling time to be processed) of the output value b of the FIFO buffer 50 is in the range of -(L2+L3/2) to -(L3/2).
- the maximum value M1 can be obtained for the range from (L3/2) to (L2+L3/2), and the maximum value M1 can be subtracted from the output value b.
- the detection processing unit 43 detects the maximum value M1 of the time difference positive/negative inversion value stored in the FIFO buffer 40 and the time difference positive/negative inversion value stored in the FIFO buffer 42 at each sampling time (step S104 in FIG. 11). .
- step S3 the processing of step S3 is performed by the maximum value detection unit 4 and the index value calculation unit 5, and at the same time the second index value y is calculated by the maximum value detection unit 7 and the index value calculation unit 8 (see FIG. 10). step S4).
- the positive/negative inversion value calculator 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 80 at each sampling time (step S200 in FIG. 12). Further, the positive/negative inversion value calculator 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 70 at each sampling time (step S201 in FIG. 12). The output of FIFO buffer 70 is input to FIFO buffer 71 (step S202 in FIG. 12), and the output of FIFO buffer 71 is input to FIFO buffer 72 (step S203 in FIG. 12). The FIFO buffers 70-72 are for obtaining the maximum value of the time difference positive/negative inversion values in the time ranges C and D. FIG.
- the maximum value M2 can be obtained for the range from (L7/2) to (L6+L7/2), and the maximum value M2 can be subtracted from the output value c.
- the detection processing unit 73 detects the maximum value M2 of the time difference positive/negative inversion value stored in the FIFO buffer 70 and the time difference positive/negative inversion value stored in the FIFO buffer 72 at each sampling time (step S204 in FIG. 12). .
- step S4 is performed by the maximum value detection unit 7 and the index value calculation unit 8.
- the subtraction processing unit 51 inputs the calculated first index value x(i) to the FIFO buffer 60 at each sampling time (step S5 in FIG. 10).
- the subtraction processing unit 81 inputs the calculated second index value y(i) to the FIFO buffer 90 at each sampling time (step S6 in FIG. 10).
- the time difference positive/negative inversion value Y(i) is calculated from the sampling data D(i), and the first index value x(i) is calculated from the time difference positive/negative inversion value Y(i). Therefore, the sampling time of the first index value x(i) is the sampling time of the time difference positive/negative inversion value Y(i) (the sampling time of the data D(i)). Is possible. In this way, by repeatedly executing the processing of steps S1 to S10 for each sampling period, time-series data of heartbeat times can be obtained.
- the second sampling time may be a time that is a predetermined time past the first sampling time, and does not have to be two samplings (2 ms) earlier.
- Storage unit 2 positive/negative inversion value calculation unit 3, maximum value detection units 4 and 7, index value calculation units 5 and 8, index value storage units 6 and 9, and heartbeat time determination unit 10 of the heartbeat detection device described in this embodiment can be realized by a computer having a CPU (Central Processing Unit), a storage device and an interface, and a program controlling these hardware resources.
- CPU Central Processing Unit
- FIG. 1 A configuration example of this computer is shown in FIG.
- the computer includes a CPU 100, a storage device 101, and an interface device (I/F) 102.
- the I/F 102 is connected with the electrocardiograph 1 and the like.
- a program for implementing the heartbeat detection method of the present invention is stored in the storage device 101 .
- the CPU 100 executes the processing described in this embodiment according to the programs stored in the storage device 101 .
- the present invention can be applied to technology for detecting the heartbeat of a living body.
- SYMBOLS 1 electrocardiograph, 2... storage part, 3... positive/negative value calculation part, 4, 7... maximum value detection part, 5, 8... index value calculation part, 6, 9... index value storage part, 10... heartbeat time Determination section 40 to 42, 50, 60, 70 to 72, 80, 90... FIFO buffer, 43, 73... Detection processing section, 51, 81... Subtraction processing section.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
This heartbeat detection device comprises: a positive/negative inverse value calculation unit (3) for calculating a positive/negative inverse value of time difference of sampling data of an electrocardiographic waveform; an index value calculation unit (5) for calculating a first index value by subtracting, from a positive/negative inverse value at a processing-target time, the maximum value of positive/negative inverse values in first and second time ranges preceding and succeeding said processing-target time; an index value calculation unit (8) for calculating a second index value by subtracting, from the positive/negative inverse value at said processing-target time, the maximum value of positive/negative inverse values in third and fourth time ranges preceding and succeeding said processing-target time; and a heartbeat time determination unit (10) which, in the case where a prescribed condition is fulfilled by both the second index value at a first time when the first index value has exceeded a threshold and the first index value at a second time which is in a prescribed relation to said first time, determines the first time as the heartbeat time.
Description
本発明は、心電図波形から心拍(R波)を検出するための心拍検出方法および心拍検出装置に関するものである。
The present invention relates to a heartbeat detection method and a heartbeat detection device for detecting heartbeats (R waves) from an electrocardiogram waveform.
ECG(Electrocardiogram、心電図)波形は、心臓の電気的な活動を観測したもので、連続した心拍の波形からなる。1つの心拍波形は、それぞれ心房や心室の活動を反映したP波、Q波、R波、S波、T波等の成分からなっている。そのうち、心室の収縮に伴うものがR波であり、振幅も大きいため、心拍の検出はR波由来のピークに基づいて行われることが多い。
The ECG (Electrocardiogram) waveform is an observation of the electrical activity of the heart and consists of a continuous heartbeat waveform. One heartbeat waveform consists of components such as P wave, Q wave, R wave, S wave, T wave, etc., which reflect the activity of the atria and ventricles. Of these waves, the R wave accompanies the contraction of the ventricle and has a large amplitude. Therefore, detection of the heartbeat is often performed based on the peak derived from the R wave.
従来の心拍検出方法として、特許文献1に開示された方法がある。特許文献1に開示された方法は、ECG波形の時間差分値のピークと、その前後の一定の時間領域での値との関係に着目した指標値を利用し、閾値に基づいた判定ロジックを用いてR波を検出するものである。この方法には、ECG波形の振幅だけでなく形状(時間幅)にも感度を持たせることができ、R波よりも幅の広いT波等を誤ってR波と認識することが少ないといった利点がある。
As a conventional heartbeat detection method, there is a method disclosed in Patent Document 1. The method disclosed in Patent Document 1 uses an index value that focuses on the relationship between the peak of the time difference value of the ECG waveform and the value in a certain time region before and after the peak, and uses a determination logic based on a threshold. to detect the R wave. This method has the advantage that it is possible to give sensitivity not only to the amplitude of the ECG waveform but also to the shape (time width), and it is less likely to mistakenly recognize the T wave, which is wider than the R wave, as the R wave. There is
図14は、ECG波形の例を示す図である。ECG波形には、1拍分の心拍が含まれている。心電位の振幅(peak to valley)は約500μVであり、通常の値(2000~3000μV)より小さいが、心電位を検出する電極の位置や状態によって振幅が減衰することがあり得る。
FIG. 14 is a diagram showing an example of an ECG waveform. The ECG waveform contains one heart beat. The amplitude of the cardiac potential (peak to valley) is about 500 μV, which is smaller than the normal value (2000 to 3000 μV), but the amplitude may be attenuated depending on the position and condition of the electrodes that detect the cardiac potential.
図15は、図14のECG波形の時間差分をとって正負を反転した値を示す図である。ECG波形の時間差分をとることで、R波~S波の急峻な心電位の低下に伴う上向きのピークが、心拍のリズムに沿って出現しているのが確認できる。
FIG. 15 is a diagram showing a value obtained by taking the time difference of the ECG waveform in FIG. 14 and inverting the positive and negative. By taking the time difference of the ECG waveform, it can be confirmed that an upward peak accompanying a sharp drop in electrocardiographic potential from the R wave to the S wave appears along with the rhythm of the heartbeat.
図15の時点tの前後一定の時間範囲A,Bにおける時間差分正負反転値の最大値を、時点tの時間差分正負反転値から減じた指標値は、時点tの周辺でのピークのクリアランスの高さに相当する。この指標値は、ピークを外れた時点については負の値になる。
The index value obtained by subtracting the maximum value of the positive/negative inversion of the time difference in the fixed time ranges A and B before and after the time t in FIG. Equivalent to height. This index value becomes a negative value at times off the peak.
図16は、指標値の時系列データをプロットした図である。図16によると、指標値は、時間範囲AとBの間隔よりも小さい時間幅を持つピークが強調された形になっている。検出対象がR波の場合、時間範囲A,Bを100ms、時間範囲AとBの間隔を50msなどとするのが好適である。図16に示すように、指標値に、閾値THに基づいた判定ロジックを適用することでR波を検出することができる。閾値THは、複数の心拍由来のピークを含む期間における指標値の最大値を求め、その最大値に1以下の係数を乗じるなどの方法で得ることができる。
FIG. 16 is a diagram plotting time-series data of index values. According to FIG. 16, the index value has a form in which peaks with time widths smaller than the interval between time ranges A and B are emphasized. When the object to be detected is the R wave, it is preferable to set the time ranges A and B to 100 ms and the interval between the time ranges A and B to 50 ms. As shown in FIG. 16, the R wave can be detected by applying a determination logic based on the threshold TH to the index value. The threshold TH can be obtained by a method such as obtaining the maximum index value in a period including peaks derived from a plurality of heartbeats and multiplying the maximum value by a coefficient of 1 or less.
しかしながら、以上のような指標値を用いる方法では、時間幅が短くR波としては不適当と考えられるような波形についても、R波と誤って認識してしまう可能性があった。
However, with the method using the index value as described above, there is a possibility that even waveforms that are considered inappropriate as R waves due to their short duration may be erroneously recognized as R waves.
本発明は、上記課題を解決するためになされたもので、時間幅の短すぎるピークを誤って心拍と認識することのない心拍検出方法および心拍検出装置を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a heartbeat detection method and a heartbeat detection device that do not erroneously recognize peaks with too short time widths as heartbeats.
本発明の心拍検出方法は、生体の心電図波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出する第1のステップと、処理対象のサンプリング時刻よりも前の第1の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の第2の時間範囲の前記正負反転値のうちの第1の最大値をサンプリング時刻ごとに検出する第2のステップと、前記処理対象のサンプリング時刻よりも前の第3の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の第4の時間範囲の前記正負反転値のうちの第2の最大値をサンプリング時刻ごとに検出する第3のステップと、前記処理対象のサンプリング時刻の前記正負反転値から前記第1の最大値を引いた減算値を第1の指標値としてサンプリング時刻ごとに算出する第4のステップと、前記処理対象のサンプリング時刻の前記正負反転値から前記第2の最大値を引いた減算値を第2の指標値としてサンプリング時刻ごとに算出する第5のステップと、前記第1の指標値が所定の閾値を超えた第1のサンプリング時刻における前記第2の指標値と、前記第1のサンプリング時刻と所定の関係にある第2のサンプリング時刻における前記第1の指標値とが、所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とする第6のステップとを含むことを特徴とするものである。
A heartbeat detection method according to the present invention includes a first step of calculating, at each sampling time, a positive/negative inversion value of a time difference of sampled data from a sampled data string of an electrocardiogram waveform of a living body; A second step of detecting a first maximum value of the positive/negative inverted value in the time range of and the positive/negative inverted value in the second time range after the sampling time to be processed at each sampling time; a second maximum value of the positive/negative inverted value in a third time range before the sampling time to be processed and the positive/negative inverted value in a fourth time range after the sampling time to be processed; a third step of detecting at each sampling time; and a fourth step of calculating at each sampling time as a first index value a subtraction value obtained by subtracting the first maximum value from the positive/negative inversion value at the sampling time to be processed. a fifth step of calculating a subtraction value obtained by subtracting the second maximum value from the positive/negative inverted value of the sampling time to be processed as a second index value for each sampling time; the second index value at a first sampling time when the index value exceeds a predetermined threshold, and the first index value at a second sampling time having a predetermined relationship with the first sampling time, and a sixth step of setting the first sampling time to heartbeat time when a predetermined condition is satisfied.
また、本発明の心拍検出方法の1構成例において、前記処理対象のサンプリング時刻に対する前記第3の時間範囲の前縁のタイミングは、前記第1の時間範囲の前縁のタイミングと同じであり、前記処理対象のサンプリング時刻に対する前記第4の時間範囲の後縁のタイミングは、前記第2の時間範囲の後縁のタイミングと同じであり、前記第3の時間範囲と前記第4の時間範囲の間隔は、前記第1の時間範囲と前記第2の時間範囲の間隔よりも短い。
また、本発明の心拍検出方法の1構成例において、前記第6のステップは、前記第1のサンプリング時刻よりも前の前記第1の指標値に対して前記第1のサンプリング時刻における前記第1の指標値が増加し、かつ前記第1のサンプリング時刻における前記第2の指標値と前記第2のサンプリング時刻における前記第1の指標値とが所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とするステップを含むことを特徴とするものである。
また、本発明の心拍検出方法の1構成例において、前記第3の時間範囲と前記第4の時間範囲の間隔は、20msから30msの範囲である。 In one configuration example of the heartbeat detection method of the present invention, the timing of the leading edge of the third time range with respect to the sampling time to be processed is the same as the timing of the leading edge of the first time range, The timing of the trailing edge of the fourth time range with respect to the sampling time to be processed is the same as the timing of the trailing edge of the second time range, and the timing of the trailing edge of the third time range and the fourth time range The interval is shorter than the interval between the first time range and the second time range.
Further, in one configuration example of the heartbeat detection method of the present invention, the sixth step includes the step of calculating the first index value at the first sampling time with respect to the first index value before the first sampling time. increases, and when the second index value at the first sampling time and the first index value at the second sampling time satisfy a predetermined condition, the first sampling The method is characterized by including a step of setting the time as the heartbeat time.
In one configuration example of the heartbeat detection method of the present invention, the interval between the third time range and the fourth time range ranges from 20 ms to 30 ms.
また、本発明の心拍検出方法の1構成例において、前記第6のステップは、前記第1のサンプリング時刻よりも前の前記第1の指標値に対して前記第1のサンプリング時刻における前記第1の指標値が増加し、かつ前記第1のサンプリング時刻における前記第2の指標値と前記第2のサンプリング時刻における前記第1の指標値とが所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とするステップを含むことを特徴とするものである。
また、本発明の心拍検出方法の1構成例において、前記第3の時間範囲と前記第4の時間範囲の間隔は、20msから30msの範囲である。 In one configuration example of the heartbeat detection method of the present invention, the timing of the leading edge of the third time range with respect to the sampling time to be processed is the same as the timing of the leading edge of the first time range, The timing of the trailing edge of the fourth time range with respect to the sampling time to be processed is the same as the timing of the trailing edge of the second time range, and the timing of the trailing edge of the third time range and the fourth time range The interval is shorter than the interval between the first time range and the second time range.
Further, in one configuration example of the heartbeat detection method of the present invention, the sixth step includes the step of calculating the first index value at the first sampling time with respect to the first index value before the first sampling time. increases, and when the second index value at the first sampling time and the first index value at the second sampling time satisfy a predetermined condition, the first sampling The method is characterized by including a step of setting the time as the heartbeat time.
In one configuration example of the heartbeat detection method of the present invention, the interval between the third time range and the fourth time range ranges from 20 ms to 30 ms.
また、本発明の心拍検出装置は、生体の心電図波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出するように構成された正負反転値算出部と、処理対象のサンプリング時刻よりも前の第1の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の第2の時間範囲の前記正負反転値のうちの第1の最大値をサンプリング時刻ごとに検出するように構成された第1の最大値検出部と、前記処理対象のサンプリング時刻よりも前の第3の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の第4の時間範囲の前記正負反転値のうちの第2の最大値をサンプリング時刻ごとに検出するように構成された第2の最大値検出部と、前記処理対象のサンプリング時刻の前記正負反転値から前記第1の最大値を引いた減算値を第1の指標値としてサンプリング時刻ごとに算出するように構成された第1の指標値算出部と、前記処理対象のサンプリング時刻の前記正負反転値から前記第2の最大値を引いた減算値を第2の指標値としてサンプリング時刻ごとに算出するように構成された第2の指標値算出部と、前記第1の指標値が所定の閾値を超えた第1のサンプリング時刻における前記第2の指標値と、前記第1のサンプリング時刻と所定の関係にある第2のサンプリング時刻における前記第1の指標値とが、所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とするように構成された心拍時刻決定部とを備えることを特徴とするものである。
Further, the heartbeat detection apparatus of the present invention includes a positive/negative inversion value calculation unit configured to calculate, at each sampling time, a positive/negative inversion value of a time difference of sampling data from a sampled data string of an electrocardiogram waveform of a living body; a first maximum value of the positive/negative inverted value in the first time range before the sampling time and the positive/negative inverted value in the second time range after the sampling time to be processed at each sampling time; a first maximum value detection unit configured to detect, the positive/negative inversion value in a third time range before the sampling time to be processed, and a fourth maximum value after the sampling time to be processed a second maximum value detection unit configured to detect a second maximum value of the positive/negative inverted values of the time range at each sampling time; a first index value calculator configured to calculate a subtraction value obtained by subtracting the maximum value of 1 as a first index value at each sampling time; a second index value calculation unit configured to calculate a subtraction value obtained by subtracting the maximum value of 2 as a second index value at each sampling time; When the second index value at one sampling time and the first index value at a second sampling time having a predetermined relationship with the first sampling time satisfy a predetermined condition, the first and a heartbeat time determination unit configured to determine one sampling time as a heartbeat time.
また、本発明の心拍検出装置の1構成例において、前記処理対象のサンプリング時刻に対する前記第3の時間範囲の前縁のタイミングは、前記第1の時間範囲の前縁のタイミングと同じであり、前記処理対象のサンプリング時刻に対する前記第4の時間範囲の後縁のタイミングは、前記第2の時間範囲の後縁のタイミングと同じであり、前記第3の時間範囲と前記第4の時間範囲の間隔は、前記第1の時間範囲と前記第2の時間範囲の間隔よりも短い。
また、本発明の心拍検出装置の1構成例において、前記心拍時刻決定部は、前記第1のサンプリング時刻よりも前の前記第1の指標値に対して前記第1のサンプリング時刻における前記第1の指標値が増加し、かつ前記第1のサンプリング時刻における前記第2の指標値と前記第2のサンプリング時刻における前記第1の指標値とが所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とすることを特徴とするものである。
また、本発明の心拍検出装置の1構成例において、前記第3の時間範囲と前記第4の時間範囲の間隔は、20msから30msの範囲である。 In one configuration example of the heartbeat detection device of the present invention, the timing of the leading edge of the third time range with respect to the sampling time to be processed is the same as the timing of the leading edge of the first time range, The timing of the trailing edge of the fourth time range with respect to the sampling time to be processed is the same as the timing of the trailing edge of the second time range, and the timing of the trailing edge of the third time range and the fourth time range The interval is shorter than the interval between the first time range and the second time range.
Further, in one configuration example of the heartbeat detection device of the present invention, the heartbeat time determination unit may determine the first index value before the first sampling time at the first sampling time. increases, and when the second index value at the first sampling time and the first index value at the second sampling time satisfy a predetermined condition, the first sampling It is characterized in that the time is the heartbeat time.
In one configuration example of the heartbeat detection device of the present invention, the interval between the third time range and the fourth time range is in the range of 20 ms to 30 ms.
また、本発明の心拍検出装置の1構成例において、前記心拍時刻決定部は、前記第1のサンプリング時刻よりも前の前記第1の指標値に対して前記第1のサンプリング時刻における前記第1の指標値が増加し、かつ前記第1のサンプリング時刻における前記第2の指標値と前記第2のサンプリング時刻における前記第1の指標値とが所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とすることを特徴とするものである。
また、本発明の心拍検出装置の1構成例において、前記第3の時間範囲と前記第4の時間範囲の間隔は、20msから30msの範囲である。 In one configuration example of the heartbeat detection device of the present invention, the timing of the leading edge of the third time range with respect to the sampling time to be processed is the same as the timing of the leading edge of the first time range, The timing of the trailing edge of the fourth time range with respect to the sampling time to be processed is the same as the timing of the trailing edge of the second time range, and the timing of the trailing edge of the third time range and the fourth time range The interval is shorter than the interval between the first time range and the second time range.
Further, in one configuration example of the heartbeat detection device of the present invention, the heartbeat time determination unit may determine the first index value before the first sampling time at the first sampling time. increases, and when the second index value at the first sampling time and the first index value at the second sampling time satisfy a predetermined condition, the first sampling It is characterized in that the time is the heartbeat time.
In one configuration example of the heartbeat detection device of the present invention, the interval between the third time range and the fourth time range is in the range of 20 ms to 30 ms.
本発明によれば、処理対象のサンプリング時刻の時間差分正負反転値から、前後の第1、第2の時間範囲における時間差分正負反転値の最大値を減じた第1の指標値と、処理対象のサンプリング時刻の時間差分正負反転値から、前後の第3、第4の時間範囲における時間差分正負反転値の最大値を減じた第2の指標値とを算出し、第1の指標値が閾値を超えた第1のサンプリング時刻における第2の指標値と、第1のサンプリング時刻と所定の関係にある第2のサンプリング時刻における第1の指標値とが、所定の条件を満たすときに、第1のサンプリング時刻を心拍時刻とする。これにより、本発明では、R波として尤もらしい指標値のピークを検出するとともに、R波としての信憑性が低い、時間幅が短過ぎる指標値のピークを除外することができ、的確に心拍検出を行うことができる。
According to the present invention, the first index value obtained by subtracting the maximum value of the time difference positive/negative inversion values in the first and second time ranges before and after the time difference positive/negative inversion value at the sampling time to be processed; and a second index value obtained by subtracting the maximum value of the time difference positive/negative inversion values in the preceding and succeeding third and fourth time ranges from the time difference positive/negative inversion value at the sampling time, and the first index value is the threshold and the first index value at a second sampling time having a predetermined relationship with the first sampling time satisfy a predetermined condition. Let the sampling time of 1 be the heartbeat time. As a result, in the present invention, it is possible to detect peaks of index values that are likely to be R waves, and to exclude peaks of index values that are less credible as R waves and whose duration is too short, thereby accurately detecting heartbeats. It can be performed.
[発明の原理]
図1に、図15と同じECG波形の時間差分正負反転値を示す。図15との違いは、第2の時間範囲C,Dを併記したことである。処理対象のサンプリング時刻(図1の例ではt)に対する時間範囲Cの前縁のタイミングは、時間範囲Aの前縁のタイミングと同じである。また、処理対象のサンプリング時刻に対する時間範囲Dの後縁のタイミングは、時間範囲Bの後縁のタイミングと同じである。一方、時間範囲CとDの間隔は、時間範囲AとBの間隔よりも短い。以下の図2~図4の例では、時間範囲CとDの間隔を24msとしている。 [Principle of Invention]
FIG. 1 shows time difference positive/negative inversion values of the same ECG waveform as in FIG. The difference from FIG. 15 is that the second time ranges C and D are shown together. The timing of the leading edge of time range C with respect to the sampling time to be processed (t in the example of FIG. 1) is the same as the timing of the leading edge of time range A. FIG. Also, the timing of the trailing edge of the time range D with respect to the sampling time to be processed is the same as the timing of the trailing edge of the time range B. FIG. On the other hand, the interval between time ranges C and D is shorter than the interval between time ranges A and B. In the examples of FIGS. 2 to 4 below, the interval between time ranges C and D is 24 ms.
図1に、図15と同じECG波形の時間差分正負反転値を示す。図15との違いは、第2の時間範囲C,Dを併記したことである。処理対象のサンプリング時刻(図1の例ではt)に対する時間範囲Cの前縁のタイミングは、時間範囲Aの前縁のタイミングと同じである。また、処理対象のサンプリング時刻に対する時間範囲Dの後縁のタイミングは、時間範囲Bの後縁のタイミングと同じである。一方、時間範囲CとDの間隔は、時間範囲AとBの間隔よりも短い。以下の図2~図4の例では、時間範囲CとDの間隔を24msとしている。 [Principle of Invention]
FIG. 1 shows time difference positive/negative inversion values of the same ECG waveform as in FIG. The difference from FIG. 15 is that the second time ranges C and D are shown together. The timing of the leading edge of time range C with respect to the sampling time to be processed (t in the example of FIG. 1) is the same as the timing of the leading edge of time range A. FIG. Also, the timing of the trailing edge of the time range D with respect to the sampling time to be processed is the same as the timing of the trailing edge of the time range B. FIG. On the other hand, the interval between time ranges C and D is shorter than the interval between time ranges A and B. In the examples of FIGS. 2 to 4 below, the interval between time ranges C and D is 24 ms.
ECG波形の時間差分正負反転値をサンプリング時刻ごとに算出する。そして、処理対象のサンプリング時刻よりも前の時間範囲Aの時間差分正負反転値と処理対象のサンプリング時刻よりも後の時間範囲Bの時間差分正負反転値のうちの最大値M1を、処理対象のサンプリング時刻の時間差分正負反転値から引いた値を、処理対象のサンプリング時刻の第1の指標値xとする。また、処理対象のサンプリング時刻よりも前の時間範囲Cの時間差分正負反転値と処理対象のサンプリング時刻よりも後の時間範囲Dの時間差分正負反転値のうちの最大値M2を、処理対象のサンプリング時刻の時間差分正負反転値から引いた値を、処理対象のサンプリング時刻の第2の指標値yとする。
The time difference positive/negative inversion value of the ECG waveform is calculated for each sampling time. Then, the maximum value M1 of the time difference positive/negative inversion value in the time range A before the sampling time to be processed and the time difference positive/negative inversion value in the time range B after the sampling time to be processed is A value obtained by subtracting the time difference positive/negative inversion value of the sampling time is set as the first index value x of the sampling time to be processed. Further, the maximum value M2 of the time difference positive/negative inversion value in the time range C before the sampling time to be processed and the time difference positive/negative inversion value in the time range D after the sampling time to be processed is A value obtained by subtracting the time difference positive/negative inversion value of the sampling time is set as the second index value y of the sampling time to be processed.
図2は、図14のECG波形の第1の指標値xと第2の指標値yの時系列データをプロットした図である。第2の指標値yのピークは、第1の指標値xのピークよりも細くなっていることが分かる。
FIG. 2 is a diagram plotting time-series data of the first index value x and the second index value y of the ECG waveform of FIG. It can be seen that the peak of the second index value y is thinner than the peak of the first index value x.
図3は、図2のR波由来のピークの付近を拡大して示したものである。図3では、サンプリング間隔1ms毎の値をプロットしている。第1の指標値xと第2の指標値yは、ピークの頂点から離れるにしたがって乖離していく様子が見て取れる。第1の指標値xと第2の指標値yが乖離する理由は、時刻がピークの中心からずれてくると、時間範囲Cの後縁と時間範囲Dの前縁がECG波形の時間差分正負反転値のピークと干渉することで、時間範囲C,Dにおける最大値M2が上昇し、第2の指標値yのピークの裾野の傾斜が急になるためである。
FIG. 3 is an enlarged view of the vicinity of the peak derived from the R wave in FIG. In FIG. 3, values are plotted at sampling intervals of 1 ms. It can be seen that the first index value x and the second index value y diverge from the apex of the peak. The reason for the difference between the first index value x and the second index value y is that when the time shifts from the center of the peak, the trailing edge of the time range C and the leading edge of the time range D become positive or negative in the time difference of the ECG waveform. This is because interference with the peak of the inversion value increases the maximum value M2 in the time ranges C and D, and the slope of the base of the peak of the second index value y becomes steeper.
一方、図4は、ECG波形を模した疑似波形の例を示す図である。図4に示した波形は、Q波、R波、S波の時間幅を半分程度に短くしたものであり、R波として検出すべきでない例を示している。
On the other hand, FIG. 4 is a diagram showing an example of a pseudo waveform imitating an ECG waveform. The waveforms shown in FIG. 4 are obtained by shortening the time widths of the Q wave, R wave, and S wave by about half, and show an example that should not be detected as the R wave.
図5は、図4の波形について、図3と同様なプロットを示したものである。図3に比べ、第1の指標値xと第2の指標値yの乖離が少ない。第1の指標値xと第2の指標値yの乖離が少ない理由は、時間範囲CとDの間隔に対してピークの幅が狭く、時間範囲C,Dとピーク波形の干渉の度合いが少なく、図3の場合のような最大値M2の上昇が起こり難いためである。
FIG. 5 shows plots similar to those in FIG. 3 for the waveforms in FIG. Compared to FIG. 3, the difference between the first index value x and the second index value y is small. The reason why the difference between the first index value x and the second index value y is small is that the width of the peak is narrow with respect to the interval between the time ranges C and D, and the degree of interference between the time ranges C and D and the peak waveform is small. This is because the increase in the maximum value M2 as in the case of FIG. 3 is unlikely to occur.
図3と図5を比較すると、図3ではピークから離れるに従って第1の指標値xと第2の指標値yの差が徐々に広がり、図5では図3と比べて第1の指標値xと第2指標値yの差が少ない。このような第1の指標値xと第2の指標値yの関係をR波検出に利用するには、ある時点の第2の指標値yと少し離れた時点の第1の指標値xとの関係に着目するとよい。
Comparing FIG. 3 and FIG. 5, in FIG. 3, the difference between the first index value x and the second index value y gradually widens as the distance from the peak increases. and the second index value y is small. In order to use such a relationship between the first index value x and the second index value y for R-wave detection, the second index value y at a certain time and the first index value x at a slightly distant time are It is good to pay attention to the relationship between
図3では、時刻t3で第1の指標値x=x3が閾値THを超えている。例えば、同じ時刻t3での第2の指標値y=y3と、その2サンプリング前の時刻における第1の指標値x=x1が、(x1-y3)>a(aは所定の正の値)という条件を満たす場合に、時刻t3を心拍時刻とすればよい。すなわち、時刻t3の直後に出現する上向きのピークをR波由来のピークとして検出できる。
In FIG. 3, the first index value x=x3 exceeds the threshold TH at time t3. For example, the second index value y=y3 at the same time t3 and the first index value x=x1 at the time two samplings before, (x1−y3)>a (a is a predetermined positive value) If the above condition is satisfied, the time t3 may be set as the heartbeat time. That is, an upward peak that appears immediately after time t3 can be detected as a peak derived from the R wave.
同じ条件で、図5の場合、第1の指標値x=x3が第2の指標値y=y1を下回っており、時刻t3が心拍時刻として検出されることはなく、図5のピークがR波由来のピークとして検出されることはない。
Under the same conditions, in the case of FIG. 5, the first index value x=x3 is lower than the second index value y=y1, the time t3 is not detected as the heartbeat time, and the peak in FIG. It is not detected as a wave-derived peak.
なお、第1の指標値xと第2の指標値yがピークの頂点を過ぎて下降する局面で上記の条件を満たしてしまう場合がある。このように第1の指標値xと第2の指標値yが下降する局面での条件成立を防止するため、時刻t3で第1の指標値xが増加している(x3>x2)という条件をさらに課すことで、図5のようなピークをR波由来のピークとして検出しないようにすることができる。
It should be noted that the above condition may be satisfied in a phase where the first index value x and the second index value y pass the peak and then fall. In order to prevent the condition from being satisfied in the phase where the first index value x and the second index value y decrease in this way, the condition that the first index value x increases at time t3 (x3>x2) is further imposed, it is possible not to detect peaks such as those shown in FIG. 5 as peaks derived from R waves.
図6A~図6Cは、図14のECG波形の第1の指標値xと第2の指標値yの時系列データをプロットした図である。図7A~図7Cは、図4の疑似波形の第1の指標値xと第2の指標値yの時系列データをプロットした図である。図6A、図7Aは時間範囲CとDの間隔が20msの場合、図6B、図7Bは時間範囲CとDの間隔が24msの場合、図6C、図7Cは時間範囲CとDの間隔が30msの場合を示している。時間範囲AとBの間隔は50msである。
FIGS. 6A to 6C are diagrams plotting time-series data of the first index value x and the second index value y of the ECG waveform of FIG. 7A to 7C are diagrams plotting time-series data of the first index value x and the second index value y of the pseudo-waveform of FIG. 6A and 7A show the case where the interval between time ranges C and D is 20 ms, FIGS. 6B and 7B show the case where the interval between time ranges C and D is 24 ms, and FIGS. A case of 30 ms is shown. The interval between time ranges A and B is 50 ms.
図7Aに示すように時間範囲CとDの間隔が短くなると、R波として検出すべきでない疑似波形の場合でも第1の指標値xと第2の指標値yが乖離する。一方、図6Cに示すように時間範囲CとDの間隔が長くなると、ECG波形の場合でも第1の指標値xと第2の指標値yが接近する。ECG波形と疑似波形を区別するための、時間範囲CとDの間隔は、20msから30msの範囲で設定することが好ましい。
As shown in FIG. 7A, when the interval between the time ranges C and D becomes shorter, the first index value x and the second index value y diverge even in the case of pseudo waveforms that should not be detected as R waves. On the other hand, as shown in FIG. 6C, when the interval between the time ranges C and D becomes longer, the first index value x and the second index value y approach each other even in the case of the ECG waveform. The interval between the time ranges C and D for distinguishing between the ECG waveform and the pseudo waveform is preferably set in the range of 20 ms to 30 ms.
[実施例]
以下、本発明の実施例について図面を参照して説明する。図8は本発明の実施例に係る心拍検出装置の構成を示すブロック図である。心拍検出装置は、ECG波形のサンプリングデータ列を出力する心電計1と、ECG波形のサンプリングデータ列とサンプリング時刻の情報とを記憶する記憶部2と、ECG波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出する正負反転値算出部3と、処理対象のサンプリング時刻よりも前の時間範囲Aの時間差分正負反転値と処理対象のサンプリング時刻よりも後の時間範囲Bの時間差分正負反転値のうちの最大値M1をサンプリング時刻ごとに検出する最大値検出部4と、処理対象のサンプリング時刻の時間差分正負反転値から最大値M1を引いた第1の指標値xをサンプリング時刻ごとに算出する指標値算出部5と、第1の指標値xを入力とする指標値記憶部6とを備えている。 [Example]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram showing the configuration of a heartbeat detection device according to an embodiment of the present invention. The heartbeat detection apparatus includes anelectrocardiograph 1 for outputting an ECG waveform sampling data string, a storage unit 2 for storing an ECG waveform sampling data string and sampling time information, and sampling data from the ECG waveform sampling data string. A positive/negative inverted value calculation unit 3 that calculates the positive/negative inverted value of the time difference for each sampling time, the positive/negative inverted value of the time difference in the time range A before the sampling time to be processed, and the time after the sampling time to be processed. A maximum value detection unit 4 for detecting the maximum value M1 of the time difference positive/negative inversion values in the range B at each sampling time, and a first index obtained by subtracting the maximum value M1 from the time difference positive/negative inversion value at the sampling time to be processed. It has an index value calculation unit 5 that calculates the value x at each sampling time, and an index value storage unit 6 that receives the first index value x.
以下、本発明の実施例について図面を参照して説明する。図8は本発明の実施例に係る心拍検出装置の構成を示すブロック図である。心拍検出装置は、ECG波形のサンプリングデータ列を出力する心電計1と、ECG波形のサンプリングデータ列とサンプリング時刻の情報とを記憶する記憶部2と、ECG波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出する正負反転値算出部3と、処理対象のサンプリング時刻よりも前の時間範囲Aの時間差分正負反転値と処理対象のサンプリング時刻よりも後の時間範囲Bの時間差分正負反転値のうちの最大値M1をサンプリング時刻ごとに検出する最大値検出部4と、処理対象のサンプリング時刻の時間差分正負反転値から最大値M1を引いた第1の指標値xをサンプリング時刻ごとに算出する指標値算出部5と、第1の指標値xを入力とする指標値記憶部6とを備えている。 [Example]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram showing the configuration of a heartbeat detection device according to an embodiment of the present invention. The heartbeat detection apparatus includes an
さらに、心拍検出装置は、処理対象のサンプリング時刻よりも前の時間範囲Cの時間差分正負反転値と処理対象のサンプリング時刻よりも後の時間範囲Dの時間差分正負反転値のうちの最大値M2をサンプリング時刻ごとに検出する最大値検出部7と、処理対象のサンプリング時刻の時間差分正負反転値から最大値M2を引いた第2の指標値yをサンプリング時刻ごとに算出する指標値算出部8と、第2の指標値yを入力とする指標値記憶部9と、第1の指標値xが閾値THを超えた第1のサンプリング時刻における第2の指標値yと、第1のサンプリング時刻と所定の関係にある第2のサンプリング時刻における第1の指標値xとが、所定の条件を満たすときに、第1のサンプリング時刻を心拍時刻とする心拍時刻決定部10とを備えている。
Furthermore, the heartbeat detection device detects the maximum value M2 of the time difference positive/negative inversion value in the time range C before the sampling time to be processed and the time difference positive/negative inversion value in the time range D after the sampling time to be processed. and an index value calculator 8 that calculates, at each sampling time, a second index value y obtained by subtracting the maximum value M2 from the time difference positive/negative inversion value at the sampling time to be processed. , the index value storage unit 9 that receives the second index value y, the second index value y at the first sampling time when the first index value x exceeds the threshold TH, and the first sampling time and a heartbeat time determination unit 10 that sets the first sampling time as the heartbeat time when the first index value x at the second sampling time having a predetermined relationship with the first index value x satisfies a predetermined condition.
図9は最大値検出部4,7と指標値算出部5,8と指標値記憶部6,9の構成例を示すブロック図である。
最大値検出部4は、正負反転値算出部3によって算出された時間差分正負反転値を入力とするFIFOバッファ(First In,First Out)40と、FIFOバッファ40の出力値を入力とするFIFOバッファ41と、FIFOバッファ41の出力値を入力とするFIFOバッファ42と、FIFOバッファ40に格納された時間差分正負反転値およびFIFOバッファ42に格納された時間差分正負反転値のうちの最大値M1をサンプリング時刻ごとに検出する検出処理部43とから構成される。 FIG. 9 is a block diagram showing a configuration example of the maximumvalue detection units 4 and 7, the index value calculation units 5 and 8, and the index value storage units 6 and 9. As shown in FIG.
The maximumvalue detection unit 4 includes a FIFO buffer (First In, First Out) 40 to which the time difference positive/negative inversion value calculated by the positive/negative inversion value calculation unit 3 is input, and a FIFO buffer to which the output value of the FIFO buffer 40 is input. 41, a FIFO buffer 42 to which the output value of the FIFO buffer 41 is input, and the maximum value M1 of the positive/negative inverted value of the time difference stored in the FIFO buffer 40 and the inverted positive/negative value of the time difference stored in the FIFO buffer 42. and a detection processing unit 43 that performs detection at each sampling time.
最大値検出部4は、正負反転値算出部3によって算出された時間差分正負反転値を入力とするFIFOバッファ(First In,First Out)40と、FIFOバッファ40の出力値を入力とするFIFOバッファ41と、FIFOバッファ41の出力値を入力とするFIFOバッファ42と、FIFOバッファ40に格納された時間差分正負反転値およびFIFOバッファ42に格納された時間差分正負反転値のうちの最大値M1をサンプリング時刻ごとに検出する検出処理部43とから構成される。 FIG. 9 is a block diagram showing a configuration example of the maximum
The maximum
指標値算出部5は、正負反転値算出部3によって算出された時間差分正負反転値を入力とするFIFOバッファ50と、FIFOバッファ50の出力値から、最大値検出部4によって検出された最大値M1を引いた第1の指標値xをサンプリング時刻ごとに算出する減算処理部51とから構成される。
指標値記憶部6は、減算処理部51によって算出された第1の指標値xを入力とするFIFOバッファ60から構成される。 The indexvalue calculation unit 5 detects the maximum value detected by the maximum value detection unit 4 from the FIFO buffer 50 to which the time difference positive/negative inversion value calculated by the positive/negative value calculation unit 3 is input, and the output value of the FIFO buffer 50. and a subtraction processing unit 51 that calculates the first index value x obtained by subtracting M1 at each sampling time.
The indexvalue storage unit 6 is composed of a FIFO buffer 60 to which the first index value x calculated by the subtraction processing unit 51 is input.
指標値記憶部6は、減算処理部51によって算出された第1の指標値xを入力とするFIFOバッファ60から構成される。 The index
The index
最大値検出部7は、正負反転値算出部3によって算出された時間差分正負反転値を入力とするFIFOバッファ70と、FIFOバッファ70の出力値を入力とするFIFOバッファ71と、FIFOバッファ71の出力値を入力とするFIFOバッファ72と、FIFOバッファ70に格納された時間差分正負反転値およびFIFOバッファ72に格納された時間差分正負反転値のうちの最大値M2をサンプリング時刻ごとに検出する検出処理部73とから構成される。
The maximum value detection unit 7 includes a FIFO buffer 70 to which the time difference positive/negative inversion value calculated by the positive/negative inversion value calculation unit 3 is input, a FIFO buffer 71 to which the output value of the FIFO buffer 70 is input, and a FIFO buffer 71. A FIFO buffer 72 to which an output value is input, and a detection that detects the maximum value M2 of the time difference positive/negative inversion value stored in the FIFO buffer 70 and the time difference positive/negative inversion value stored in the FIFO buffer 72 at each sampling time. and a processing unit 73 .
指標値算出部8は、正負反転値算出部3によって算出された時間差分正負反転値を入力とするFIFOバッファ80と、FIFOバッファ80の出力値から、最大値検出部7によって検出された最大値M2を引いた第2の指標値yをサンプリング時刻ごとに算出する減算処理部81とから構成される。
指標値記憶部9は、減算処理部81によって算出された第2の指標値yを入力とするFIFOバッファ90から構成される。 The indexvalue calculation unit 8 detects the maximum value detected by the maximum value detection unit 7 from the FIFO buffer 80 to which the time difference positive/negative inversion value calculated by the positive/negative value calculation unit 3 is input, and the output value of the FIFO buffer 80. and a subtraction processing unit 81 that calculates a second index value y obtained by subtracting M2 at each sampling time.
The indexvalue storage unit 9 is composed of a FIFO buffer 90 to which the second index value y calculated by the subtraction processing unit 81 is input.
指標値記憶部9は、減算処理部81によって算出された第2の指標値yを入力とするFIFOバッファ90から構成される。 The index
The index
以下、本実施例の心拍検出方法を図10~図12を用いて説明する。ここでは、1つの心拍を検出し、その心拍時刻を得るまでの手順を説明する。このような心拍時刻の算出をECG波形データの期間にわたって繰り返すことによって、心拍時刻の時系列データが得られる。
The heartbeat detection method of this embodiment will be described below with reference to FIGS. 10 to 12. FIG. Here, the procedure from detecting one heartbeat to obtaining the heartbeat time will be described. Time-series data of heartbeat times is obtained by repeating such calculation of heartbeat times over the period of the ECG waveform data.
本実施例では、ECG波形をサンプリングしたデータ列をD(i)とする。i(i=1,2,…)は1サンプリングのデータに付与される番号である。番号iが大きくなる程、サンプリング時刻が後になることは言うまでもない。
In this embodiment, D(i) is the data string obtained by sampling the ECG waveform. i (i=1, 2, . . . ) is a number given to data of one sampling. Needless to say, the larger the number i, the later the sampling time.
心電計1は、図示しない生体(人体)のECG波形を測定し、ECG波形のサンプリングデータ列D(i)を出力する。このとき、心電計1は、各サンプリングデータにサンプリング時刻の情報を付加して出力する。なお、ECG波形の具体的な測定方法は周知の技術であるので、詳細な説明は省略する。
記憶部2は、心電計1から出力されたECG波形のサンプリングデータ列D(i)とサンプリング時刻の情報とを記憶する。 Theelectrocardiograph 1 measures an ECG waveform of a living body (human body) (not shown) and outputs a sampling data string D(i) of the ECG waveform. At this time, the electrocardiograph 1 adds sampling time information to each sampling data and outputs the data. Since the specific method of measuring the ECG waveform is a well-known technique, detailed description thereof will be omitted.
Thestorage unit 2 stores the sampling data sequence D(i) of the ECG waveform output from the electrocardiograph 1 and the information on the sampling time.
記憶部2は、心電計1から出力されたECG波形のサンプリングデータ列D(i)とサンプリング時刻の情報とを記憶する。 The
The
正負反転値算出部3は、サンプリングデータD(i)の時間差分正負反転値Y(i)を算出するため、サンプリングデータD(i)の1サンプリング後のデータD(i+1)と1サンプリング前のデータD(i-1)とを記憶部2から取得する(図10ステップS1)。そして、正負反転値算出部3は、サンプリングデータD(i)の時間差分正負反転値Y(i)を次式のようにサンプリング時刻ごとに算出する(図10ステップS2)。
Y(i)=-{D(i+1)-D(i-1)} ・・・(1) In order to calculate the time difference positive/negative inversion value Y(i) of the sampling data D(i), the positive/negative inversionvalue calculation unit 3 calculates the data D(i+1) after one sampling of the sampling data D(i) and the data D(i+1) one sampling before. Data D(i-1) are obtained from the storage unit 2 (step S1 in FIG. 10). Then, the positive/negative inversion value calculator 3 calculates the time difference positive/negative inversion value Y(i) of the sampling data D(i) for each sampling time as shown in the following equation (step S2 in FIG. 10).
Y(i)=-{D(i+1)-D(i-1)} (1)
Y(i)=-{D(i+1)-D(i-1)} ・・・(1) In order to calculate the time difference positive/negative inversion value Y(i) of the sampling data D(i), the positive/negative inversion
Y(i)=-{D(i+1)-D(i-1)} (1)
最大値検出部4と指標値算出部5とによって第1の指標値xが算出される(図10ステップS3)。具体的には、正負反転値算出部3は、算出した時間差分正負反転値Y(i)をサンプリング時刻ごとにFIFOバッファ50に入力する(図11ステップS100)。入力された値は、FIFOバッファ50内に保持され、FIFOバッファ50の大きさに相当する時間(時間差分正負反転値がFIFOバッファ50に入力されてから出力されるまでの遅延時間)の後、減算処理に用いられることになる。
A first index value x is calculated by the maximum value detection unit 4 and the index value calculation unit 5 (step S3 in FIG. 10). Specifically, the positive/negative inversion value calculator 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 50 at each sampling time (step S100 in FIG. 11). The input value is held in the FIFO buffer 50, and after a time corresponding to the size of the FIFO buffer 50 (the delay time from when the positive/negative time difference value is input to the FIFO buffer 50 until it is output), It will be used for subtraction processing.
また、正負反転値算出部3は、算出した時間差分正負反転値Y(i)をサンプリング時刻ごとにFIFOバッファ40に入力する(図11ステップS101)。FIFOバッファ40の出力はFIFOバッファ41に入力され(図11ステップS102)、FIFOバッファ41の出力はFIFOバッファ42に入力される(図11ステップS103)。FIFOバッファ40~42は、時間範囲A,Bでの時間差分正負反転値の最大値を求めるためのものである。
In addition, the positive/negative inversion value calculation unit 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 40 at each sampling time (step S101 in FIG. 11). The output of FIFO buffer 40 is input to FIFO buffer 41 (step S102 in FIG. 11), and the output of FIFO buffer 41 is input to FIFO buffer 42 (step S103 in FIG. 11). The FIFO buffers 40 to 42 are for obtaining the maximum value of the time difference positive/negative inversion values in the time ranges A and B. FIG.
FIFOバッファ41の長さに相当する時間間隔L3(時間差分正負反転値がFIFOバッファ41に入力されてから出力されるまでの遅延時間)は、R波由来のピークの幅(概ね10ms程度である)に対して十分広くしておく必要があり、50ms程度が好ましい。この間隔L3が時間範囲AとBの間隔になる。また、FIFOバッファ40の長さに相当する時間間隔L2(時間差分正負反転値がFIFOバッファ40に入力されてから出力されるまでの遅延時間)、およびFIFOバッファ42の長さに相当する時間間隔L4(時間差分正負反転値がFIFOバッファ42に入力されてから出力されるまでの遅延時間で、L2=L4)は、100ms程度が適当である。
The time interval L3 corresponding to the length of the FIFO buffer 41 (the delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 41 until it is output) is the width of the peak derived from the R wave (approximately 10 ms). ), preferably about 50 ms. This interval L3 becomes the interval between the time ranges A and B. Also, a time interval L2 corresponding to the length of the FIFO buffer 40 (a delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 40 until it is output), and a time interval corresponding to the length of the FIFO buffer 42 L4 (the delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 42 until it is output, L2=L4) is appropriately about 100 ms.
また、FIFOバッファ50の長さに相当する時間間隔L1は、L1=L2+L3/2とすればよい。したがって、上記の数値例で言えば、L1は125msとなる。L1=L2+L3/2かつL2=L4とすることにより、FIFOバッファ50の出力値bの時刻(処理対象のサンプリング時刻)に対して、-(L2+L3/2)~-(L3/2)の範囲と(L3/2)~(L2+L3/2)の範囲について最大値M1を求めることができ、出力値bから最大値M1を減算することが可能となる。
Also, the time interval L1 corresponding to the length of the FIFO buffer 50 should be L1=L2+L3/2. Therefore, in the above numerical example, L1 is 125 ms. By setting L1=L2+L3/2 and L2=L4, the time (sampling time to be processed) of the output value b of the FIFO buffer 50 is in the range of -(L2+L3/2) to -(L3/2). The maximum value M1 can be obtained for the range from (L3/2) to (L2+L3/2), and the maximum value M1 can be subtracted from the output value b.
検出処理部43は、FIFOバッファ40に格納された時間差分正負反転値およびFIFOバッファ42に格納された時間差分正負反転値のうちの最大値M1をサンプリング時刻ごとに検出する(図11ステップS104)。
減算処理部51は、FIFOバッファ50の出力値bから最大値M1を引いた第1の指標値x(i)=b-M1をサンプリング時刻ごとに算出する(図11ステップS105)。 Thedetection processing unit 43 detects the maximum value M1 of the time difference positive/negative inversion value stored in the FIFO buffer 40 and the time difference positive/negative inversion value stored in the FIFO buffer 42 at each sampling time (step S104 in FIG. 11). .
Thesubtraction processing unit 51 calculates a first index value x(i)=b−M1 by subtracting the maximum value M1 from the output value b of the FIFO buffer 50 at each sampling time (step S105 in FIG. 11).
減算処理部51は、FIFOバッファ50の出力値bから最大値M1を引いた第1の指標値x(i)=b-M1をサンプリング時刻ごとに算出する(図11ステップS105)。 The
The
こうして、最大値検出部4と指標値算出部5とによってステップS3の処理が行われ、同時に最大値検出部7と指標値算出部8とによって第2の指標値yが算出される(図10ステップS4)。
Thus, the processing of step S3 is performed by the maximum value detection unit 4 and the index value calculation unit 5, and at the same time the second index value y is calculated by the maximum value detection unit 7 and the index value calculation unit 8 (see FIG. 10). step S4).
具体的には、正負反転値算出部3は、算出した時間差分正負反転値Y(i)をサンプリング時刻ごとにFIFOバッファ80に入力する(図12ステップS200)。また、正負反転値算出部3は、算出した時間差分正負反転値Y(i)をサンプリング時刻ごとにFIFOバッファ70に入力する(図12ステップS201)。FIFOバッファ70の出力はFIFOバッファ71に入力され(図12ステップS202)、FIFOバッファ71の出力はFIFOバッファ72に入力される(図12ステップS203)。FIFOバッファ70~72は、時間範囲C,Dでの時間差分正負反転値の最大値を求めるためのものである。
Specifically, the positive/negative inversion value calculator 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 80 at each sampling time (step S200 in FIG. 12). Further, the positive/negative inversion value calculator 3 inputs the calculated time difference positive/negative inversion value Y(i) to the FIFO buffer 70 at each sampling time (step S201 in FIG. 12). The output of FIFO buffer 70 is input to FIFO buffer 71 (step S202 in FIG. 12), and the output of FIFO buffer 71 is input to FIFO buffer 72 (step S203 in FIG. 12). The FIFO buffers 70-72 are for obtaining the maximum value of the time difference positive/negative inversion values in the time ranges C and D. FIG.
FIFOバッファ71の長さに相当する時間間隔L7(時間差分正負反転値がFIFOバッファ71に入力されてから出力されるまでの遅延時間)は、上記の例では例えば24msである。この間隔L7が時間範囲CとDの間隔になる。また、FIFOバッファ70の長さに相当する時間間隔L6(時間差分正負反転値がFIFOバッファ70に入力されてから出力されるまでの遅延時間)、およびFIFOバッファ72の長さに相当する時間間隔L8(時間差分正負反転値がFIFOバッファ72に入力されてから出力されるまでの遅延時間で、L6=L8)は、113ms程度が適当である。上記の説明から明らかなように、L2+L3+L4=L6+L7+L8となる。
A time interval L7 corresponding to the length of the FIFO buffer 71 (a delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 71 until it is output) is 24 ms in the above example. This interval L7 becomes the interval between the time ranges C and D. Also, a time interval L6 corresponding to the length of the FIFO buffer 70 (a delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 70 until it is output), and a time interval corresponding to the length of the FIFO buffer 72 L8 (the delay time from when the time difference positive/negative inversion value is input to the FIFO buffer 72 until it is output, L6=L8) is appropriately about 113 ms. As is clear from the above description, L2+L3+L4=L6+L7+L8.
また、FIFOバッファ80の長さに相当する時間間隔L5は、L5=L6+L7/2とすればよい。したがって、上記の数値例で言えば、L5は125msとなる。この値はFIFOバッファ50の長さL1と同じである。L5=L6+L7/2かつL6=L8とすることにより、FIFOバッファ80の出力値cの時刻(処理対象のサンプリング時刻)に対して、-(L6+L7/2)~-(L7/2)の範囲と(L7/2)~(L6+L7/2)の範囲について最大値M2を求めることができ、出力値cから最大値M2を減算することが可能となる。
Also, the time interval L5 corresponding to the length of the FIFO buffer 80 should be L5=L6+L7/2. Therefore, in the above numerical example, L5 is 125 ms. This value is the same as the FIFO buffer 50 length L1. By setting L5=L6+L7/2 and L6=L8, the time (sampling time to be processed) of the output value c of the FIFO buffer 80 is in the range of -(L6+L7/2) to -(L7/2). The maximum value M2 can be obtained for the range from (L7/2) to (L6+L7/2), and the maximum value M2 can be subtracted from the output value c.
検出処理部73は、FIFOバッファ70に格納された時間差分正負反転値およびFIFOバッファ72に格納された時間差分正負反転値のうちの最大値M2をサンプリング時刻ごとに検出する(図12ステップS204)。
減算処理部81は、FIFOバッファ80の出力値cから最大値M2を引いた第2の指標値y(i)=c-M2をサンプリング時刻ごとに算出する(図12ステップS205)。こうして、最大値検出部7と指標値算出部8とによってステップS4の処理が行われる。 Thedetection processing unit 73 detects the maximum value M2 of the time difference positive/negative inversion value stored in the FIFO buffer 70 and the time difference positive/negative inversion value stored in the FIFO buffer 72 at each sampling time (step S204 in FIG. 12). .
Thesubtraction processing unit 81 calculates a second index value y(i)=c−M2 by subtracting the maximum value M2 from the output value c of the FIFO buffer 80 at each sampling time (step S205 in FIG. 12). Thus, the processing of step S4 is performed by the maximum value detection unit 7 and the index value calculation unit 8. FIG.
減算処理部81は、FIFOバッファ80の出力値cから最大値M2を引いた第2の指標値y(i)=c-M2をサンプリング時刻ごとに算出する(図12ステップS205)。こうして、最大値検出部7と指標値算出部8とによってステップS4の処理が行われる。 The
The
減算処理部51は、算出した第1の指標値x(i)をサンプリング時刻ごとにFIFOバッファ60に入力する(図10ステップS5)。同時に、減算処理部81は、算出した第2の指標値y(i)をサンプリング時刻ごとにFIFOバッファ90に入力する(図10ステップS6)。
The subtraction processing unit 51 inputs the calculated first index value x(i) to the FIFO buffer 60 at each sampling time (step S5 in FIG. 10). At the same time, the subtraction processing unit 81 inputs the calculated second index value y(i) to the FIFO buffer 90 at each sampling time (step S6 in FIG. 10).
心拍時刻決定部10は、FIFOバッファ60,90の第1の位置に格納されている第1の指標値x(i)=x3、第2の指標値y(i)=y3を取得する。また、心拍時刻決定部10は、FIFOバッファ60の第2の位置に格納されている、第1の指標値x(i)=x3よりも1サンプリング(1ms)だけ過去の第1の指標値x(i-1)=x2を取得する。さらに、心拍時刻決定部10は、FIFOバッファ60の第3の位置に格納されている、第1の指標値x(i)=x3よりも2サンプリング(2ms)だけ過去の第1の指標値x(i-2)=x1を取得する。
The heartbeat time determination unit 10 acquires the first index value x(i)=x3 and the second index value y(i)=y3 stored in the first positions of the FIFO buffers 60 and 90 . In addition, the heartbeat time determining unit 10 stores the first index value x (1 ms) past the first index value x(i)=x3 stored in the second position of the FIFO buffer 60 by one sampling (1 ms). Get (i−1)=x2. Further, the heartbeat time determining unit 10 determines the first index value x (2 ms) past the first index value x(i)=x3 stored in the third position of the FIFO buffer 60 by two samplings (2 ms). Get (i-2)=x1.
心拍時刻決定部10は、第1の指標値x(i)=x3が閾値THを超え(図10ステップS7においてYES)、かつ1サンプリング前の第1の指標値x(i-1)=x2に対して第1の指標値x(i)=x3が増加しているときに(図10ステップS8においてYES)、第1の指標値x(i)=x3と同時刻における第2の指標値y(i)=y3と2サンプリング前の第1の指標値x(i-2)=x1とが(x1-y3)>aという条件を満たす場合(図10ステップS9においてYES)、第1の指標値x(i)=x3のサンプリング時刻を心拍時刻とする(図10ステップS10)。
The heartbeat time determining unit 10 determines that the first index value x(i)=x3 exceeds the threshold TH (YES in step S7 in FIG. 10) and the first index value x(i−1)=x2 one sampling before. when the first index value x(i)=x3 is increasing (YES in step S8 in FIG. 10), the second index value at the same time as the first index value x(i)=x3 If y(i)=y3 and the first index value x(i−2)=x1 two samplings before satisfy the condition that (x1−y3)>a (YES in step S9 in FIG. 10), the first The sampling time of the index value x(i)=x3 is set as the heartbeat time (step S10 in FIG. 10).
上記のとおり、サンプリングデータD(i)から時間差分正負反転値Y(i)が算出され、時間差分正負反転値Y(i)から第1の指標値x(i)が算出される。したがって、第1の指標値x(i)のサンプリング時刻とは、時間差分正負反転値Y(i)のサンプリング時刻(データD(i)のサンプリング時刻)のことであり、記憶部2から取得することが可能である。
こうして、ステップS1~S10の処理をサンプリング周期ごとに繰り返し実行することで、心拍時刻の時系列データが得られる。 As described above, the time difference positive/negative inversion value Y(i) is calculated from the sampling data D(i), and the first index value x(i) is calculated from the time difference positive/negative inversion value Y(i). Therefore, the sampling time of the first index value x(i) is the sampling time of the time difference positive/negative inversion value Y(i) (the sampling time of the data D(i)). Is possible.
In this way, by repeatedly executing the processing of steps S1 to S10 for each sampling period, time-series data of heartbeat times can be obtained.
こうして、ステップS1~S10の処理をサンプリング周期ごとに繰り返し実行することで、心拍時刻の時系列データが得られる。 As described above, the time difference positive/negative inversion value Y(i) is calculated from the sampling data D(i), and the first index value x(i) is calculated from the time difference positive/negative inversion value Y(i). Therefore, the sampling time of the first index value x(i) is the sampling time of the time difference positive/negative inversion value Y(i) (the sampling time of the data D(i)). Is possible.
In this way, by repeatedly executing the processing of steps S1 to S10 for each sampling period, time-series data of heartbeat times can be obtained.
なお、本実施例では、第1の指標値x(i)=x3が閾値THを超えた第1のサンプリング時刻(図3の例ではt3)における第2の指標値y(i)=y3と、第1のサンプリング時刻と所定の関係にある第2のサンプリング時刻(図3の例ではt1)における第1の指標値x(i-2)=x1とが条件を満たすかどうかを判定しているが、第2のサンプリング時刻は、第1のサンプリング時刻に対して所定の時間だけ過去の時刻であればよく、2サンプリング(2ms)前でなくてもよい。
In this embodiment, the second index value y(i)=y3 at the first sampling time (t3 in the example of FIG. 3) when the first index value x(i)=x3 exceeds the threshold TH , a first index value x(i−2)=x1 at a second sampling time (t1 in the example of FIG. 3) having a predetermined relationship with the first sampling time satisfies the condition. However, the second sampling time may be a time that is a predetermined time past the first sampling time, and does not have to be two samplings (2 ms) earlier.
本実施例で説明した心拍検出装置の記憶部2と正負反転値算出部3と最大値検出部4,7と指標値算出部5,8と指標値記憶部6,9と心拍時刻決定部10とは、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。このコンピュータの構成例を図13に示す。
Storage unit 2, positive/negative inversion value calculation unit 3, maximum value detection units 4 and 7, index value calculation units 5 and 8, index value storage units 6 and 9, and heartbeat time determination unit 10 of the heartbeat detection device described in this embodiment can be realized by a computer having a CPU (Central Processing Unit), a storage device and an interface, and a program controlling these hardware resources. A configuration example of this computer is shown in FIG.
コンピュータは、CPU100と、記憶装置101と、インタフェース装置(I/F)102とを備えている。I/F102には、心電計1などが接続される。本発明の心拍検出方法を実現させるためのプログラムは記憶装置101に格納される。CPU100は、記憶装置101に格納されたプログラムに従って本実施例で説明した処理を実行する。
The computer includes a CPU 100, a storage device 101, and an interface device (I/F) 102. The I/F 102 is connected with the electrocardiograph 1 and the like. A program for implementing the heartbeat detection method of the present invention is stored in the storage device 101 . The CPU 100 executes the processing described in this embodiment according to the programs stored in the storage device 101 .
本発明は、生体の心拍を検出する技術に適用することができる。
The present invention can be applied to technology for detecting the heartbeat of a living body.
1…心電計、2…記憶部、3…正負反転値算出部、4,7…最大値検出部、5,8…指標値算出部、6,9…指標値記憶部、10…心拍時刻決定部、40~42,50,60,70~72,80,90…FIFOバッファ、43,73…検出処理部、51,81…減算処理部。
DESCRIPTION OF SYMBOLS 1... electrocardiograph, 2... storage part, 3... positive/negative value calculation part, 4, 7... maximum value detection part, 5, 8... index value calculation part, 6, 9... index value storage part, 10... heartbeat time Determination section 40 to 42, 50, 60, 70 to 72, 80, 90... FIFO buffer, 43, 73... Detection processing section, 51, 81... Subtraction processing section.
Claims (8)
- 生体の心電図波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出する第1のステップと、
処理対象のサンプリング時刻よりも前の第1の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の第2の時間範囲の前記正負反転値のうちの第1の最大値をサンプリング時刻ごとに検出する第2のステップと、
前記処理対象のサンプリング時刻よりも前の第3の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の第4の時間範囲の前記正負反転値のうちの第2の最大値をサンプリング時刻ごとに検出する第3のステップと、
前記処理対象のサンプリング時刻の前記正負反転値から前記第1の最大値を引いた減算値を第1の指標値としてサンプリング時刻ごとに算出する第4のステップと、
前記処理対象のサンプリング時刻の前記正負反転値から前記第2の最大値を引いた減算値を第2の指標値としてサンプリング時刻ごとに算出する第5のステップと、
前記第1の指標値が所定の閾値を超えた第1のサンプリング時刻における前記第2の指標値と、前記第1のサンプリング時刻と所定の関係にある第2のサンプリング時刻における前記第1の指標値とが、所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とする第6のステップとを含むことを特徴とする心拍検出方法。 a first step of calculating, at each sampling time, a positive/negative inversion value of a time difference of sampling data from a sampling data string of an electrocardiogram waveform of a living body;
sampling a first maximum value of the positive/negative inverted value in a first time range before the sampling time to be processed and the positive/negative inverted value in a second time range after the sampling time to be processed; a second step of detecting for each time;
a second maximum value of the positive/negative inverted value in a third time range before the sampling time to be processed and the positive/negative inverted value in a fourth time range after the sampling time to be processed; a third step of detecting at each sampling time;
a fourth step of calculating a subtraction value obtained by subtracting the first maximum value from the positive/negative inverted value of the sampling time to be processed as a first index value for each sampling time;
a fifth step of calculating a subtraction value obtained by subtracting the second maximum value from the positive/negative inverted value of the sampling time to be processed as a second index value for each sampling time;
The second index value at a first sampling time when the first index value exceeds a predetermined threshold, and the first index at a second sampling time having a predetermined relationship with the first sampling time. and a sixth step of setting the first sampling time as a heartbeat time when the value satisfies a predetermined condition. - 請求項1記載の心拍検出方法において、
前記処理対象のサンプリング時刻に対する前記第3の時間範囲の前縁のタイミングは、前記第1の時間範囲の前縁のタイミングと同じであり、
前記処理対象のサンプリング時刻に対する前記第4の時間範囲の後縁のタイミングは、前記第2の時間範囲の後縁のタイミングと同じであり、
前記第3の時間範囲と前記第4の時間範囲の間隔は、前記第1の時間範囲と前記第2の時間範囲の間隔よりも短いことを特徴とする心拍検出方法。 The heart rate detection method of claim 1, wherein
The timing of the leading edge of the third time range with respect to the sampling time to be processed is the same as the timing of the leading edge of the first time range,
The timing of the trailing edge of the fourth time range with respect to the sampling time to be processed is the same as the timing of the trailing edge of the second time range,
The heartbeat detection method, wherein the interval between the third time range and the fourth time range is shorter than the interval between the first time range and the second time range. - 請求項1または2記載の心拍検出方法において、
前記第6のステップは、前記第1のサンプリング時刻よりも前の前記第1の指標値に対して前記第1のサンプリング時刻における前記第1の指標値が増加し、かつ前記第1のサンプリング時刻における前記第2の指標値と前記第2のサンプリング時刻における前記第1の指標値とが所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とするステップを含むことを特徴とする心拍検出方法。 The heartbeat detection method according to claim 1 or 2,
The sixth step increases the first index value at the first sampling time with respect to the first index value before the first sampling time, and when the second index value at the second sampling time and the first index value at the second sampling time satisfy a predetermined condition, the first sampling time is set to the heartbeat time. Heart rate detection method. - 請求項1乃至3のいずれか1項に記載の心拍検出方法において、
前記第3の時間範囲と前記第4の時間範囲の間隔は、20msから30msの範囲であることを特徴とする心拍検出方法。 The heartbeat detection method according to any one of claims 1 to 3,
A heartbeat detection method, wherein the interval between the third time range and the fourth time range is in the range of 20 ms to 30 ms. - 生体の心電図波形のサンプリングデータ列からサンプリングデータの時間差分の正負反転値をサンプリング時刻ごとに算出するように構成された正負反転値算出部と、
処理対象のサンプリング時刻よりも前の第1の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の第2の時間範囲の前記正負反転値のうちの第1の最大値をサンプリング時刻ごとに検出するように構成された第1の最大値検出部と、
前記処理対象のサンプリング時刻よりも前の第3の時間範囲の前記正負反転値と前記処理対象のサンプリング時刻よりも後の第4の時間範囲の前記正負反転値のうちの第2の最大値をサンプリング時刻ごとに検出するように構成された第2の最大値検出部と、
前記処理対象のサンプリング時刻の前記正負反転値から前記第1の最大値を引いた減算値を第1の指標値としてサンプリング時刻ごとに算出するように構成された第1の指標値算出部と、
前記処理対象のサンプリング時刻の前記正負反転値から前記第2の最大値を引いた減算値を第2の指標値としてサンプリング時刻ごとに算出するように構成された第2の指標値算出部と、
前記第1の指標値が所定の閾値を超えた第1のサンプリング時刻における前記第2の指標値と、前記第1のサンプリング時刻と所定の関係にある第2のサンプリング時刻における前記第1の指標値とが、所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とするように構成された心拍時刻決定部とを備えることを特徴とする心拍検出装置。 a positive/negative inversion value calculation unit configured to calculate, at each sampling time, a positive/negative inversion value of the time difference of the sampling data from the sampling data string of the electrocardiogram waveform of the living body;
sampling a first maximum value of the positive/negative inverted value in a first time range before the sampling time to be processed and the positive/negative inverted value in a second time range after the sampling time to be processed; a first maximum value detection unit configured to detect for each time;
a second maximum value of the positive/negative inverted value in a third time range before the sampling time to be processed and the positive/negative inverted value in a fourth time range after the sampling time to be processed; a second maximum value detection unit configured to detect at each sampling time;
a first index value calculation unit configured to calculate a subtraction value obtained by subtracting the first maximum value from the positive/negative inverted value of the sampling time to be processed as a first index value at each sampling time;
a second index value calculation unit configured to calculate a subtraction value obtained by subtracting the second maximum value from the positive/negative inverted value of the sampling time to be processed as a second index value at each sampling time;
The second index value at a first sampling time when the first index value exceeds a predetermined threshold, and the first index at a second sampling time having a predetermined relationship with the first sampling time. a heartbeat time determination unit configured to determine the first sampling time as a heartbeat time when the value of the heartbeat satisfies a predetermined condition. - 請求項5記載の心拍検出装置において、
前記処理対象のサンプリング時刻に対する前記第3の時間範囲の前縁のタイミングは、前記第1の時間範囲の前縁のタイミングと同じであり、
前記処理対象のサンプリング時刻に対する前記第4の時間範囲の後縁のタイミングは、前記第2の時間範囲の後縁のタイミングと同じであり、
前記第3の時間範囲と前記第4の時間範囲の間隔は、前記第1の時間範囲と前記第2の時間範囲の間隔よりも短いことを特徴とする心拍検出装置。 The heartbeat detection device of claim 5, wherein
The timing of the leading edge of the third time range with respect to the sampling time to be processed is the same as the timing of the leading edge of the first time range,
The timing of the trailing edge of the fourth time range with respect to the sampling time to be processed is the same as the timing of the trailing edge of the second time range,
The heartbeat detection device, wherein the interval between the third time range and the fourth time range is shorter than the interval between the first time range and the second time range. - 請求項5または6記載の心拍検出装置において、
前記心拍時刻決定部は、前記第1のサンプリング時刻よりも前の前記第1の指標値に対して前記第1のサンプリング時刻における前記第1の指標値が増加し、かつ前記第1のサンプリング時刻における前記第2の指標値と前記第2のサンプリング時刻における前記第1の指標値とが所定の条件を満たすときに、前記第1のサンプリング時刻を心拍時刻とすることを特徴とする心拍検出装置。 The heartbeat detection device according to claim 5 or 6,
The heartbeat time determining unit increases the first index value at the first sampling time with respect to the first index value before the first sampling time, and and the first index value at the second sampling time satisfies a predetermined condition, the first sampling time is set as the heartbeat time. . - 請求項5乃至7のいずれか1項に記載の心拍検出装置において、
前記第3の時間範囲と前記第4の時間範囲の間隔は、20msから30msの範囲であることを特徴とする心拍検出装置。 A heartbeat detection device according to any one of claims 5 to 7,
The heartbeat detection device, wherein the interval between the third time range and the fourth time range is in the range of 20 ms to 30 ms.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/032266 WO2023032119A1 (en) | 2021-09-02 | 2021-09-02 | Heartbeat detection method and heartbeat detection device |
JP2023544908A JPWO2023032119A1 (en) | 2021-09-02 | 2021-09-02 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/032266 WO2023032119A1 (en) | 2021-09-02 | 2021-09-02 | Heartbeat detection method and heartbeat detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032119A1 true WO2023032119A1 (en) | 2023-03-09 |
Family
ID=85411754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/032266 WO2023032119A1 (en) | 2021-09-02 | 2021-09-02 | Heartbeat detection method and heartbeat detection device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023032119A1 (en) |
WO (1) | WO2023032119A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017029628A (en) * | 2015-08-06 | 2017-02-09 | 日本電信電話株式会社 | Heart beat detection method and heart beat detection device |
JP2017042388A (en) * | 2015-08-27 | 2017-03-02 | 日本電信電話株式会社 | Heart beat detection method and heart beat detection device |
WO2017150156A1 (en) * | 2016-02-29 | 2017-09-08 | 日本電信電話株式会社 | Heartbeat detecting method and heartbeat detecting device |
JP2018175152A (en) * | 2017-04-07 | 2018-11-15 | 日本電信電話株式会社 | Heart rate detection method and heart rate detection device |
-
2021
- 2021-09-02 JP JP2023544908A patent/JPWO2023032119A1/ja active Pending
- 2021-09-02 WO PCT/JP2021/032266 patent/WO2023032119A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017029628A (en) * | 2015-08-06 | 2017-02-09 | 日本電信電話株式会社 | Heart beat detection method and heart beat detection device |
JP2017042388A (en) * | 2015-08-27 | 2017-03-02 | 日本電信電話株式会社 | Heart beat detection method and heart beat detection device |
WO2017150156A1 (en) * | 2016-02-29 | 2017-09-08 | 日本電信電話株式会社 | Heartbeat detecting method and heartbeat detecting device |
JP2018175152A (en) * | 2017-04-07 | 2018-11-15 | 日本電信電話株式会社 | Heart rate detection method and heart rate detection device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023032119A1 (en) | 2023-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6645926B2 (en) | Biological signal processing method and apparatus | |
CN109843165B (en) | Heartbeat detection method and heartbeat detection device | |
US20150150515A1 (en) | Respiration rate extraction from cardiac signals | |
US10172531B2 (en) | Heartbeat detection method and heartbeat detection device | |
US10945623B2 (en) | Heartbeat detection method and heartbeat detection device | |
JP2018175152A (en) | Heart rate detection method and heart rate detection device | |
JP3729143B2 (en) | Pulse wave measuring device | |
WO2023032119A1 (en) | Heartbeat detection method and heartbeat detection device | |
US20220095981A1 (en) | Apparatus and method for detecting r peak of ecg signal using adaptive median filter | |
KR101235215B1 (en) | Apparatus and method for eliminating noise | |
US10750969B2 (en) | Heartbeat detection method and heartbeat detection device | |
CN113616217B (en) | Method and device for generating baseline drift curve | |
JP7491466B2 (en) | Heart rate detection method and heart rate detection device | |
WO2023032120A1 (en) | Heartbeat detection method and heartbeat detection device | |
WO2024171330A1 (en) | Heartbeat detection method and heartbeat detection device | |
WO2022215190A1 (en) | Heartbeat detection method and heartbeat detection device | |
JP2015217060A (en) | Heartbeat detection method and heartbeat detector | |
JP7149175B2 (en) | ECG peak detector | |
JP6603584B2 (en) | Periodic wave detection device, periodic wave detection method and program | |
CN113171107B (en) | Non-contact extraction method and system for heart rate variability signals | |
JPH08336502A (en) | Method and device for heartbeat interval detection | |
WO2020090606A1 (en) | Heart rate detection method, heart rate detection device and program | |
WO2022149382A1 (en) | Signal analysis device, signal analysis method, and program | |
CN109009059B (en) | Heart rate calculation method based on heart sounds | |
WO2019198704A1 (en) | Exercise intensity estimation method, exercise intensity estimation device, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21956008 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023544908 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21956008 Country of ref document: EP Kind code of ref document: A1 |