WO2022214717A1 - Biomarcador en líquido cefalorraquídeo para enfermedad de alzheimer - Google Patents

Biomarcador en líquido cefalorraquídeo para enfermedad de alzheimer Download PDF

Info

Publication number
WO2022214717A1
WO2022214717A1 PCT/ES2022/070137 ES2022070137W WO2022214717A1 WO 2022214717 A1 WO2022214717 A1 WO 2022214717A1 ES 2022070137 W ES2022070137 W ES 2022070137W WO 2022214717 A1 WO2022214717 A1 WO 2022214717A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmp
mci
disease
biomarker
tau
Prior art date
Application number
PCT/ES2022/070137
Other languages
English (en)
French (fr)
Inventor
Agustín RUIZ LAZA
Adelina Orellana del Río
Pamela Victoria Martino Adami
Alfredo Ramirez
Original Assignee
Fundació Ace. Institut Català De Neurociències Aplicades
Universität Zu Köln
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundació Ace. Institut Català De Neurociències Aplicades, Universität Zu Köln filed Critical Fundació Ace. Institut Català De Neurociències Aplicades
Publication of WO2022214717A1 publication Critical patent/WO2022214717A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/81Protease inhibitors
    • G01N2333/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • G01N2333/8146Metalloprotease (E.C. 3.4.24) inhibitors, e.g. tissue inhibitor of metallo proteinase, TIMP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • G01N2800/2821Alzheimer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to biomarkers in biological fluids for Alzheimer's disease (AD).
  • AD Alzheimer's disease
  • the present invention relates to the MMP-10 biomarker for determining the progression from MCI (mild cognitive impairment) to AD.
  • the present invention relates to improving prognostic value in MCI patients by including MMP-10 in existing markers for AD. DESCRIPTION OF THE PREVIOUS TECHNIQUE
  • AD Alzheimer's disease
  • AD is a neurodegenerative disease characterized by memory loss and results in a progressive loss of cognitive function and dementia that affects one in eight people by the time they reach the age of 65.
  • Several pathways contribute to the pathology leading to neurodegeneration, cognitive impairment, and ultimately dementia.
  • Biomarkers provide information about individual pathological pathways. Currently established biomarkers reflect the histopathological features of the disease following the amyloid cascade hypothesis, i.e. brain amyloid deposition and tau-related neurodegeneration. As far as biomarkers for AD are concerned, amyloid beta and tau proteins are probably the best characterized.
  • CSF cerebrospinal fluid
  • AD pathology/neurodegeneration amyloid/tau pathology/neurodegeneration
  • CSF cerebrospinal fluid
  • P-tau phosphorylated tau
  • T the level of total tau
  • N neuronal injury
  • amyloid-specific therapies suggest that additional pathways are involved in AD and that its progression is not covered by existing biomarkers.
  • AE has a prolonged asymptomatic phase that offers a considerable time margin for intervention.
  • the use of this time frame will require biomarkers for early diagnosis and prognosis that detect AD pathology in pre-dementia stages, thus allowing the identification of patients who will most likely progress to AD dementia (DEA) and will benefit from therapies specific disease modifiers.
  • DEA AD dementia
  • biomarkers for AD that cover different pathogenic routes will lead to a better etiological diagnosis, especially in the early stages of the disease.
  • it will have the potential to improve the prediction of disease progression, as well as to follow the effects of new therapeutic approaches in clinical trials.
  • most research has focused on defining biomarkers capable of describing a specific clinical picture of prevalence, less research has been devoted to defining whether biomarkers are also capable of predicting disease progression throughout the clinical stage of AD. , including the preclinical stage of subjective cognitive impairment (SCI), the prodromal stage of mild cognitive impairment (MCI) and, finally, the clinical stage of dementia.
  • SCI subjective cognitive impairment
  • MCI prodromal stage of mild cognitive impairment
  • diagnostic and prognostic biomarkers are required to detect AD pathology, either in the prodromal or preclinical stages of disease or to delineate additional pathological pathways related to neurobiological processes that potentially modulate progression through the stages.
  • biomarkers in biological fluids are necessary.
  • the present invention provides a biomarker for predicting the risk of Alzheimer's disease (AD) in a mammal, or for aiding in the diagnosis of AD and related disorders, comprising metalloproteinase 10 (MMP-10).
  • AD Alzheimer's disease
  • MMP-10 metalloproteinase 10
  • the invention discloses a method for predicting the risk of Alzheimer's disease (AD) in a mammal, or to aid in the diagnosis of AD and related disorders, the method comprising determining the levels of matrix metalloproteinase 10 ( MMP-10), wherein said amount is indicative of the presence, risk, or progression of said disease.
  • AD Alzheimer's disease
  • MMP-10 matrix metalloproteinase 10
  • MMP-10 is used in combination with the existing classification scheme for biomarkers of AD pathology, ie, [A/T/(N)j (amyloid/tau pathology/neurodegeneration).
  • the mammal is preferably a human and an amyloid-positive/tau-negative mild cognitive impairment (MCI) patient.
  • MCI mild cognitive impairment
  • the biomarkers are obtained from a biological fluid sample, where the biological fluid sample is cerebrospinal fluid (CSF), blood, serum, or plasma.
  • CSF cerebrospinal fluid
  • MMP-10 levels predict the progression of the disease in the predementia stage of Alzheimer's disease (AD) and also improve the value prognosis in patients with mild cognitive impairment (MCI) who are amyloid positive/tau negative.
  • AD Alzheimer's disease
  • MCI mild cognitive impairment
  • MMP-10 predicts disease progression from mild cognitive impairment (MCI) to overt dementia.
  • MMP-10 levels predict progression from MCI to Alzheimer's disease dementia (DEA).
  • the present invention relates to a kit comprising the biomarker comprising MMP-10, wherein the kit is used to determine the presence or risk of AD in a mammal, or to aid in the diagnosis of AD and related disorders.
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. All occurrences of the term “in one embodiment” in different places in the specification do not necessarily refer to the same embodiment, nor are they separate or mutually exclusive alternative embodiments of other embodiments. Furthermore, herein, the terms “a”, “an” and “one” do not indicate a limitation of quantity, but rather indicate the presence of at least one of the referred points. In addition, various features are described that some embodiments may exhibit and not others. Embodiments are described herein for illustrative purposes and are subject to numerous variations. It is understood that various omissions and substitutions of equivalents as circumstances may suggest or make desirable are contemplated, but the application or implementation is intended to be included without departing from the spirit or scope of the present disclosure.
  • predict refers to making a finding with an especially high probability of developing AD or related diseases.
  • mammal is preferably a human. Mammals include, but are not limited to, humans, primates, farm animals, sporting animals, rodents, and pets. It is further considered that the terms “mammal”, “subject”, “patient” may be used interchangeably to refer to the same test subject being examined or tested for the presence of biomarkers and assessed for neurological disease status, such as EA.
  • methods to "assist in diagnosis” or “assist in diagnosis” both refer to methods that assist in making a clinical determination regarding the presence or progression of AD or related diseases, and may or may not be conclusive with respect to to the definitive diagnosis.
  • patient with mild cognitive impairment or “patient with MCI” refer to an individual who has been diagnosed with or has MCI or who has been given a probable diagnosis of MCI.
  • stable mild cognitive impairment MCI without progression to AED during the observation period.
  • Progressive Mild Cognitive Impairment pMCI refers to MCI with progression to ASD at any follow-up examination.
  • biological fluid sample includes a variety of types of fluid samples obtained from an individual and may be used in a diagnostic assay. The definition includes, for example, blood, cerebrospinal fluid (CSF), serum, or plasma and other liquid samples of biological origin.
  • CSF cerebrospinal fluid
  • biomarkers in CSF have been particularly well documented: neuronal chain protein, tau (total; T-tau and various phosphorylated forms; P-tau), and derivatives of amyloid precursor protein (APP) including Ab40 and Ab42 .
  • the 2018 NIA-AA Research Framework guidelines group AD biomarkers into those related to b-amyloid deposition, pathologic tau, and neurodegeneration [A/T/(N)j.
  • the research framework indicated that new biomarkers describing different pathological processes could be added to the [A/T/(N)j scheme proposed in 2016 with the notation [A/T/X/(N)j, where X is the new biomarker.
  • the present invention shows that the addition of MMP-10 to the markers already present in the scheme, with the notation "[A/T/M/(N)]", considerably improved the prognostic value in patients with MCI with abnormal Ab42, but normal P-tau181 and T-tau.
  • MCI patients with abnormal Ab42 and MMP-10 but normal P-tau181 and T-tau progressed to dementia with a median of one year
  • MCI patients with abnormal Ab42 but P-tau181, MMP-10 , and normal T-tau progressed to dementia with a median of two years.
  • the present invention discloses MMP-10 as a biomarker that predicts disease progression from MCI to DEA, targeting pathways beyond those covered by current leading AD biomarkers.
  • MCI subjects with increased CSF MMP-10 level show a higher probability of progression to AED.
  • the present invention discloses a biomarker comprising matrix metalloproteinase 10 (MMP-10) biomarker for determining the presence or risk of AD in a mammal, or to aid in the diagnosis of AD and related disorders.
  • MMP-10 matrix metalloproteinase 10
  • the present invention discloses a [A/T/M/(N)] biomarker scheme comprising matrix metalloproteinase 10 (MMP-10) in combination with the classification scheme (amyloid/tau pathology/neurodegeneration) of AD pathology biomarkers.
  • MMP-10 (also known as stromelysin-2) is a zinc-dependent enzyme that belongs to the ubiquitous superfamily of matrix metalloproteinases (MMPs), with more than 20 family members that are primarily secreted. In the extracellular space, this family of proteases degrades extracellular matrix proteins involved in tissue remodeling and contributes to the cleavage of cell adhesion molecules, cytokines, and growth factors. Numerous MMPs are expressed in the brain on astrocytes and microglia, although several are expressed only under very specific physiological and/or pathological conditions. In AD, research has shown that the expression of MMPs is induced by Ab and they are also capable of degrading Ab.
  • MMPs matrix metalloproteinases
  • MMP-10 prevalence studies have shown that the CSF level of MMP-10 is increased in both AD and MCI patients who showed Ab42 pathology.
  • the present invention reflects previous observations in MCI, and also supports the independent role of MMP-10 as a biomarker for disease progression, and not just as a downstream epiphenomenon related to amyloid pathology.
  • MMP-10 only influences the risk of progression to dementia of the Alzheimer type as does Ab42.
  • the invention discloses that MMP-10 poses a risk that is independent of amyloid pathology. P-tau181 and T-tau levels in CSF are highly correlated, suggesting that these two biomarkers provide information on overlapping pathways in AD. In contrast, MMP-10 exhibits a moderate correlation with major AD biomarkers, thereby adding additional value.
  • the present invention discloses a method for predicting the progression from mild cognitive impairment (MCI) to Alzheimer's disease dementia (DEA) in a mammal, wherein the method comprises determining cerebrospinal fluid (CSF) levels of matrix metalloproteinase 10 (MMP-10).
  • the invention is applicable to any mammal, preferably human beings.
  • the invention reveals that the level of MMP-10 protein marks aging-related pathways, since the level of MMP-10 in CSF increases steadily with age, and the correlation profiles between MMP-10 protein and age are highly associated.
  • the correlation between MMP-10 and age indicates the amyloid-independent potential role of MMP-10 in dementia and its added value in our classification [A/T/M/(N)j is related to aging.
  • MMP-10 expression has been found to be increased in a model of dermal aging, and also increased after tissue damage in the context of age-related diseases, such as diabetes and atherosclerosis. As in these chronic diseases, age is by far the greatest risk factor for dementia and ASD.
  • MMP-10 levels have been associated with the progression of Parkinson's disease, another age-related neurodegenerative disease, further supporting the general effect of MMP-10 on neurodegeneration.
  • SASP senescence-associated secretory phenotype
  • microglia constitute a first line of defense showing rapid activation and recruitment to damaged sites to phagocytize dead cells and debris
  • astrocytes become activated after the microglial reaction.
  • Activation of microglia leads, among other things, to changes in the expression profile of MMPs, including an increase in MMP-10 mRNA, and activated astrocytes release inflammatory mediators that signal back to microglia and can recruit hematogenous cells. infiltrants including macrophages.
  • synoptic dysfunction and amyloid pathology could activate microglia and astrocytes, leading to a state of heightened neuroinflammation that in turn enhances neuronal damage. Therefore, senescence and neurodegeneration could act in concert, enhancing neuroinflammation, leading to a worsening of the patient's prognosis, with MMP-10 serving as a marker of this interaction.
  • FIG. 1 CSF levels of MMP-10 and major AD biomarkers in relation to diagnosis in a FACE cohort. Volcano plots show the differential expression pattern (mean difference) of the 137 proteins from ProSeek® Multiplex panels in the CSF of stable MCI (A) and progressive MCI (B) versus SCI subjects. Light blue, p-value corrected for false discovery rate (FDR) significant (q-value); orange, nominally significant (p-value); purple, not significant.
  • the box graphics show CSF level of MMP-10 (C), log2-transformed Ab42 (D), log2-transformed P-tau181 (E), and log2-transformed T-tau (F) in DCS diagnostic groups, stable MCI and progressive MCI. DCS, subjective cognitive impairment; MCI, stable mild cognitive impairment; pMCI, progressive mild cognitive impairment. ** p ⁇ 0.01, *** p ⁇ 0.001.
  • FIG. 2 Association between CSF levels of MMP-10 and major AD biomarkers with progression from MCI to DEA in FACE cohort.
  • Kaplan-Meier curves show the association of CSF levels of MMP-10 (A), log2-transformed Ab42 (B), log2-transformed P-tau181 (C), and log2-transformed T-tau (D). of subjects with MCI with the probability of not progressing DEA.
  • Protein levels were divided into tertiles with a similar number of subjects. Yellow, first tertile (lowest protein level); blue, second tertile (median protein level); gray, third tertile (higher protein level). Each vertical line represents a censored event.
  • DEA dementia of the Alzheimer's disease type.
  • Figure 3 Risk stratification with A/T/M/(N) scheme for subjects with MCI in the FACE cohort.
  • the Kaplan-Meier curves show the association of the categories A-/T-/M-/(N)-, A-/T-/M+/(N)-, A+/T-/M-/(N) - Y
  • Dashed lines represent median survival. Each vertical line represents a censored event.
  • DEA dementia of the Alzheimer's disease type.
  • FIG. 4 Clustering Correlations of Aging, MMP-10, Ab42, P-tau, and T-tau with ProSeek® Multiplex Panel Proteins in FACE Cohort.
  • the heat map shows the hierarchical clustering between proteins from ProSeek® Multiplex panels (rows) and age, MMP-10, Ab42, P-tau and T-tau (columns).
  • the scale indicates Pearson's correlation distance (1 - Pearson's correlation coefficient).
  • FIG. 5 Correlation between CSF levels of MMP-10 and major AD biomarkers from SCD and MCI subjects from a FACE cohort.
  • the Correlation matrix shows the degree of correlation between MMP-10 (z-transformed), Ab42 (z-log2-transformed), P-tau (z-log 2 -transformed), and T-tau (z-log 2 -transformed), being gray a negative correlation, and blue a positive correlation. Pearson's correlation coefficients (p) for each pair are also provided.
  • FIG. 6 Association between CSF levels of MMP-10 and major AD biomarkers with progression from MCI to DEA in a DCN cohort.
  • Kaplan-Meier curves show the association of levels of MMP-10 (A), log 2 transformed Ab42 (B), log 2 transformed P-tau181 (C), and log 2 transformed T-tau (D ) of subjects with MCI with the probability of not progressing DEA.
  • Protein levels were divided into tertiles with a similar number of subjects. Yellow, first tertile (lowest protein level); blue, second tertile (median protein level); gray, third tertile (higher protein level). Each vertical line represents a censored event.
  • DEA dementia of the Alzheimer's disease type.
  • Figure 7 Predictive value of MMP-10 and major AD biomarkers in CSF for progression from MCI to DEA.
  • Forest plots show the odds ratio (95% confidence interval) for each indicator in a model that includes zlog2-transformed CSF levels of Ab42 , P-tau181, and T-tau, plus age, sex and presence of the AROE-e4 allele (A, upper panel), or in a second model including the z-transformed CSF level of MMP-10 (A, lower panel) for MCI subjects from a FACE cohort (set of training).
  • the receiver operating characteristic (ROC) curves with their respective areas under the curve (AUC) present the diagnostic capacity of each model in the base populations FACE (training set) (B) and DCN (test set) (C ).
  • the absence of the AROE-e4 allele and male sex were used as reference variables.
  • FIG. 8 CSF levels of MMP-10 and major AD biomarkers in relation to age and conversion status in FACE cohort. Box plots show the CSF level of MMP-10, Ab42 (transformed into log2), P-tau181 (log2-transformed), and T-tau (log2-transformed) in non-converters (subjects with subjective cognitive impairment and stable mild cognitive impairment) (AD), and in converters (subjects with progressive mild cognitive impairment ) (HD), further classified into age groups (less than 60 years, 60-70 years, 71-80 years, and more than 80 years).
  • the FACE cohort comprised a) patients with MCI (mild cognitive impairment) who were consecutively evaluated in the FACE Memory Clinic, and b) healthy individuals with subjective cognitive impairment (SCI), participants in the healthy brain initiative of the Fundació ACE (Fundació ACE Healthy Brain Initiative, FACEFIBI).
  • MCI patients satisfied Petersen's diagnostic criteria for MCI, which include subjective memory complaints, impairment of normal general cognition, preserved performance in activities of daily living, absence of dementia, and moderate impairment in one or more cognitive functions. , with or without deficits in other cognitive domains (amnestic MCI: single domain, or non-amnestic MCI: multiple domain) and had a CDR of 0.5.
  • DCS refers to perceived memory problems or other cognitive problems without impairment on standardized cognitive tests.
  • Cerebrospinal fluid was obtained by lumbar puncture. After applying local subcutaneous anesthesia (1% mepivacaine), CSF was obtained by puncture in the L3-L4 intervertebral space. The fluid was passively collected in two 10 ml polypropylene tubes (Sarstedt Ref. 62,610,018). The first tube was analyzed externally for basic biochemical analyzes (glucose, total protein, proteinogram, cell types, and cell count). The second tube was centrifuged (2000 x g 10 min at 4 °C), and the CSF was divided into 0.325 ml aliquots in polypropylene tubes (Sarstedt Ref.
  • Protein concentration was quantified using the validated immunoassay, highly sensitive and specific ProSeek® Multiplex, developed by Olink Proteomics (Uppsala, Sweden). Two commercially available ProSeek® Multiplex panels (inflammation and neurology) were used to measure concentrations of 184 proteins in CSF samples from FACE and DCN. Protein amounts are shown as normalized protein expression (NPX) values (log2-transformed).
  • the association of protein expression with diagnosis in FACE was assessed using multiple linear regressions using the Im function of R, where diagnosis was the indicator of interest and CSF protein level the outcome measure. Age and sex were included as covariates. For this analysis, the following diagnostic groups were considered: subjective cognitive impairment (SCI), stable mild cognitive impairment (MCI, i.e. MCI without progression to AED during the observation time), and progressive mild cognitive impairment (pMCI, i.e. that is, with progression to AED at any follow-up exam). DCS was used as the reference category.
  • SCI subjective cognitive impairment
  • MCI stable mild cognitive impairment
  • pMCI progressive mild cognitive impairment
  • CSF levels of MMP-10 and major AD biomarkers were measured by different techniques in each cohort, they were z-transformed using the scaling function of R to allow comparison. of estimates.
  • the impact of protein level on the risk of conversion to dementia was evaluated using Kaplan-Meier curves. (protein concentration divided into tertiles) and Cox proportional hazards regressions (continuous data) using the survfit and coxph functions, respectively, from the R survival package. Age and gender were included as covariates in the Cox regressions.
  • Subjects in each cohort were classified according to the [A/T/(N)j or [A/T/M/N] scheme by conversion of CSF levels of Ab42 (A), P-tau181 (T), MMP- 10 (M) and T-tau (N) in binary variables (abnormal, +; normal, -) using surrogate cutoff values.
  • Surrogate cut-off values were obtained by plotting receiver operating characteristic (ROC) curves (CSF biomarker level as indicator and conversion as outcome) and calculating the Youden index, i.e., the threshold value that provided the best trade-off between sensitivity and specificity, using the roe and coords functions of the pROC package of R.
  • ROC receiver operating characteristic
  • A/T/M/(N) [A-/T-/M-/(N )-], [A-/T-/M+/(N)-j, [A+/T-/M-/(N)-j, [A+/T+/M-/(N)-j, [A+/T+/M+/(N)-j, [A+/T+/M+/(N)-j,
  • CSF level of MMP-10 is increased in subjects with both stable and progressive MCI:
  • multiplicity 92 panels of commercially available proteins were selected based on in its implication in pathogenic processes previously related to DEA, including neurobiological processes, neurodegenerative diseases, inflammation, and immune response.
  • the demographic and clinical characteristics of the cohort are shown below in Table 1.
  • E2e2 and E2e3 were classified into E2, E3 and E4 strata as follows: E2, e2e2 and e2e3; E3, e3e3; E4, e2e4, e3e4, and e4e4.
  • DCS subjective cognitive impairment
  • MCI stable mild cognitive impairment
  • pMCI progressive mild cognitive impairment
  • FU follow-up.
  • SE standard error
  • p-value nominal p-value
  • q-value rate-adjusted p-value false discovery
  • DCS subjective cognitive impairment
  • MCI stable mild cognitive impairment
  • pMCI progressive mild cognitive impairment
  • CSF level of MMP-10 is associated with progression from MCI to AED
  • Biomarker data were z-transformed to allow comparison. All regressions were adjusted for age and sex. HR, hazard ratio; CI, confidence interval.
  • AROE genotypes were classified into E2, E3 and E4 strata as follows: E2, e2e2 and e2e3; E3, e3e3; E4, e2e4, e3e4, and e4e4.
  • MCI stable mild cognitive impairment
  • pMCI progressive mild cognitive impairment
  • FU follow-up.
  • DCN the effect of CSF level of MMP-10 was replicated in the progression from MCI to DEA previously observed in FACE samples (log rank assay, p ⁇ 1 x 10 4 ).
  • Biomarker data were z-transformed to allow comparison. All regressions were adjusted for age and sex. HR, hazard ratio; CI, confidence interval.
  • Models were trained including all subjects in the training set or including only subjects with a minimum follow-up of 10 months. Precision, sensitivity, and specificity were calculated using the Youden index. Ab42, P-tau and T-tau values were z log transformed, and MMP-10 was z transformed. FU, follow-up; AUC, area under the curve; CI, confidence interval. CSF level of MMP-10 provides complementary information to stratify the risk of progression to AED in subjects with pathological change of AD
  • MMP-10 is produced in microglia and astroglia due to an inflammatory response, and microglial/astroglial pathogenic processes are not covered by the [A/T/(N)j classification, it was hypothesized that evaluating biomarkers of Major EAs in conjunction with MMP-10 would provide clinicians with a complementary neuroinflammation status for better risk stratification and prognostic assessment of MCI patients.
  • the combination of Ab42, P-tau181, MMP-10, and T-tau was evaluated in a "[A/T/M/N]" classification, with "M” representing the CSF level of MMP-10. as a surrogate for microglia/astrocyte associated dysfunction.
  • ROC curves were estimated and the Youden index was used as an indicator for cut-off as reported previously.
  • the demographic and clinical characteristics of each group are shown in Table 7.
  • CSF biomarkers (pg/ml, median (IQR) 970 533 532 414 553.5 4 595
  • MMP-10 (NPX, median 3.81 4.51 3.81 4.49 3.80 4.03 4.74 (IQR)) (0.46) (0.37) (0.41) (0, 38) (0.08) 4, / (0.33) (0.52)
  • E2e2 and E2e3 were classified into E2, E3 and E4 strata as follows: E2, e2e2 and e2e3; E3, e3e3; E4, e2e4, e3e4, and e4e4.
  • FU follow-up;
  • NPX normalized protein expression.
  • A-/T-/M-/(N)-, A+/T-/M-/(N)-, and A+/T+/M-/(N)+ were used as reference categories. All regressions were adjusted for age and sex. HR, hazard ratio; CI, confidence interval.
  • MMP-10 (NPX, median 3.10 3.92 3.23 3.72 3.53 4.16 (IQR)) (0.61) (0.41) (0.48) (0.48) ( 0.10) (0.48)
  • E2e2 and E2e3 were classified into E2, E3 and E4 strata as follows: E2, e2e2 and e2e3; E3, e3e3; E4, e2e4, e3e4, and e4e4.
  • FU follow-up;
  • NPX normalized protein expression.
  • CSF level of MMP-10 provides an additional dimension that may be associated with aging
  • MMP-10 is increased in MCI when compared to patients with DCS. It was also shown that a higher level of MMP-10 is associated with an increased risk of progression to AD dementia in both cohorts. Furthermore, MMP-10 has a moderate correlation with P-tau181 and T-tau, and a low negative relationship with Ab42, indicating that it targets pathogenic pathways independent, at least in part, of those marked by AD biomarkers. main. In addition, it is shown that the addition of the CSF level of MMP-10 to the markers already included in the scheme [A/T/(N)j, with the notation [A/T/M/(N)j, considerably improved prognostic value in MCI patients with abnormal Ab42, but normal P-tau181 and T-tau. Finally, the data suggest that the level of MMP-10 in CSF could reflect convergence with the pathways of aging and neuroinflammation.
  • Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Glia 2007. D0l:10.1002/glia.20478.
  • MMP-9 Matrix metalloproteinase-9 is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-b peptide (1-40). J Neurosci 1996; 16: 7910-9.
  • MMP-10 is Increased in Early Stage Diabetic Kidney Disease and can be Reduced by Renin-Angiotensin System Blockade. SelRep 2020; 10:1-12.
  • Astrocyte senescence may drive alterations in GFAPa, CDKN2A p14 ARF, and TAU3 transcript expression and contribute to cognitive decline. GeroScience 2019; 41: 561-73.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención se refiere a nuevos biomarcadores para el diagnóstico de enfermedad de Alzheimer (EA). Más específicamente, la presente invención se refiere a la detección predictiva de enfermedad de Alzheimer (EA) en un mamífero. Los biomarcadores, métodos y kits proporcionados permiten la predicción de progresión de deterioro cognitivo leve (DCL) a EA mediante la medición de biomarcadores en fluidos biológicos que proporcionará una indicación de si es probable que el sujeto desarrolle una enfermedad neurológica, tal como enfermedad de Alzheimer (EA).

Description

DESCRIPCIÓN
BIOMARCADOR EN LÍQUIDO CEFALORRAQUÍDEO PARA ENFERMEDAD
DE ALZHEIMER
CAMPO DE LA INVENCIÓN
La presente invención se refiere a los biomarcadores en fluidos biológicos para enfermedad de Alzheimer (EA). En particular, la presente invención se refiere al biomarcador MMP-10 para determinar la progresión de DCL (deterioro cognitivo leve) a EA. Más particularmente, la presente invención se refiere a mejorar el valor pronóstico en pacientes con DCL por inclusión de MMP-10 en los marcadores existentes para EA. DESCRIPCIÓN DE LA TÉCNICA ANTERIOR
Existen más de 70 afecciones que producen demencia clínica en seres humanos, de las cuales la enfermedad de Alzheimer (EA) es la más común. La enfermedad de Alzheimer (EA) es una enfermedad neurodegenerativa caracterizada por pérdida de memoria y da como resultado una pérdida progresiva de la función cognitiva y demencia que afecta a una de cada ocho personas en el momento en que alcanzan los 65 años. Varias rutas contribuyen a la patología conduciendo a neurodegeneración, deterioro cognitivo y finalmente demencia. Los biomarcadores proporcionan información sobre las rutas patológicas individuales. Los biomarcadores establecidos actualmente reflejan las características histopatológicas de la enfermedad siguiendo la hipótesis de la cascada de amiloide, es decir, depósito de amiloide cerebral y neurodegeneración relacionada con tau. En lo que respecta a los biomarcadores para EA, las proteínas beta amiloide y tau son probablemente las mejor caracterizadas. La investigación ha mostrado que las muestras de líquido cefalorraquídeo ("LCR") de pacientes con EA contienen cantidades de tau mayores de lo normal, que se libera a medida que las neuronas degeneran, y cantidades menores de lo normal de beta amiloide, supuestamente porque queda atrapado en el cerebro en forma de placas de amiloide. Dado que estos biomarcadores se liberan en el LCR, se requiere una punción lumbar (o "punción espinal") para obtener una muestra de ensayo. Además, el esquema de clasificación de diagnóstico actual [A/T/(N)] (amiloide/patología de tau/neurodegeneración) de la patología de EA considera que la disminución de niveles en líquido cefalorraquídeo (LCR) de amiloide b-42 (Ab42) refleja patología amiloidea (A), el aumento de la concentración de tau fosforilada (P-tau) como marcador de patología de tau específica de EA (T), y que el nivel de tau total (T-tau) indica lesión neuronal (N). Sin embargo, los resultados de las terapias específicas para amiloide sugieren que están involucradas rutas adicionales en EA y que su progresión no queda cubierta por los biomarcadores existentes.
EA tiene una fase asintomática prolongada que ofrece un margen temporal considerable para intervención. La utilización de este margen temporal requerirá biomarcadores de diagnóstico precoz y pronóstico que detecten la patología de EA en estadios de predemencia, permitiendo de este modo la identificación de pacientes que progresarán con la mayor probabilidad a demencia por EA (DEA) y se beneficiarán de terapias modificadoras de la enfermedad específicas.
Desde una perspectiva clínica, la definición de un buen conjunto de biomarcadores para EA que cubran diferentes rutas patogénicas conducirá a un mejor diagnóstico etiológico, en especial en los estadios precoces de la enfermedad. Además, tendrá el potencial de mejorar la predicción de la progresión de la enfermedad, así como seguir los efectos de nuevos enfoques terapéuticos en ensayos clínicos. Aunque la mayoría de la investigación se ha centrado en definir biomarcadores capaces de describir un cuadro clínico específico de prevalencia, se ha dedicado menos investigación a definir si los biomarcadores también son capaces de predecir la progresión de la enfermedad a lo largo del estadio clínico de EA, incluyendo el estadio preclínico de deterioro cognitivo subjetivo (DCS), el estadio prodrómico de deterioro cognitivo leve (DCL) y, finalmente, el estadio clínico de demencia. Por lo tanto, se requieren biomarcadores de diagnóstico y pronóstico para detectar patología de EA, ya sea en los estadios prodrómico o preclínico de enfermedad o para delinear rutas patológicas adicionales relacionadas con procesos neurobiológicos que, potencialmente, modulan la progresión a lo largo de los estadios clínicos, por ejemplo, son necesarios biomarcadores en fluidos biológicos.
RESUMEN DE LA INVENCIÓN
La presente invención proporciona un biomarcador para predecir el riesgo de enfermedad de Alzheimer (EA) en un mamífero, o para ayudar en el diagnóstico de EA y trastornos relacionados, que comprende metaloproteinasa 10 (MMP-10).
En una de las realizaciones, la invención desvela un método para predecir el riesgo de enfermedad de Alzheimer (EA) en un mamífero, o para ayudar en el diagnóstico de EA y trastornos relacionados, comprendiendo el método determinar los niveles de metaloproteinasa 10 de matriz (MMP-10), en donde dicha cantidad es indicativa de presencia, riesgo, o progresión de dicha enfermedad.
En otra realización, la MMP-10 se usa en combinación con el esquema de clasificación existente de biomarcadores de patología de EA, es decir, [A/T/(N)j (amiloide/patología de tau/neurodegeneración).
El mamífero es preferentemente un ser humano y un paciente con deterioro cognitivo leve (DCL) con amiloide positivo/tau negativa.
Los biomarcadores se obtienen de una muestra de fluido biológico, en donde la muestra de fluido biológico es líquido cefalorraquídeo (LCR), sangre, suero, o plasma.
Los niveles de MMP-10 predicen la progresión de la enfermedad en el estadio de predemencia de enfermedad de Alzheimer (EA) y además mejoran el valor pronóstico en pacientes con deterioro cognitivo leve (DCL) con amiloide positivo/tau negativa.
La MMP-10 predice la progresión de la enfermedad de deterioro cognitivo leve (DCL) a demencia manifiesta.
Los niveles de MMP-10 predicen la progresión de DCL a demencia por enfermedad de Alzheimer (DEA).
En otra realización, la presente invención se refiere a un kit que comprende el biomarcador que comprende MMP-10, en donde el kit se usa para determinar la presencia o el riesgo de EA en un mamífero, o para ayudar en el diagnóstico de EA y trastornos relacionados.
DESCRIPCIÓN DETALLADA
En la siguiente descripción, con fines explicativos, se perfilan numerosos detalles específicos para proporcionar una comprensión exhaustiva de la presente divulgación. Sin embargo, para el experto en la materia será evidente que la presente divulgación puede ponerse en práctica sin estos detalles específicos.
La referencia en la presente memoria descriptiva a "una realización" significa que un rasgo, estructura, o característica particular descrita en relación con la realización se incluye en al menos una realización de la presente divulgación. Todas las apariciones de la expresión "en una realización" en distintos lugares de la memoria descriptiva no se refieren necesariamente a la misma realización, ni son realizaciones separadas o alternativas mutuamente excluyentes de otras realizaciones. Además, en el presente documento, los términos "un", "una" y "uno" no indican una limitación de cantidad, sino que indican la presencia de al menos uno de los puntos referidos. Además, se describen diversos rasgos que pueden exhibir algunas realizaciones y no otras. Las realizaciones se describen en el presente documento con fines ilustrativos y están sujetas a numerosas variaciones. Se entiende que se contemplan diversas omisiones y sustituciones de equivalentes que las circunstancias puedan sugerir o hacer convenientes, pero se pretende incluir la aplicación o implementación sin apartarse del espíritu o alcance de la presente divulgación.
Los siguientes términos usados en la memoria descriptiva tienen los siguientes significados:
El término "predecir" se refiere a realizar un descubrimiento con una probabilidad especialmente elevada de desarrollar EA o enfermedades relacionadas.
El término "mamífero" es preferentemente un ser humano. Los mamíferos incluyen, pero no se limitan a, seres humanos, primates, animales de granja, animales deportivos, roedores y mascotas. Se considera además que los términos "mamífero", "sujeto", "paciente" pueden usarse indistintamente para referirse al mismo sujeto de ensayo en el que se examina o analiza la presencia de biomarcadores y se evalúa la determinación del estado de una enfermedad neurológica, tal como EA.
Las expresiones métodos para "ayudar al diagnóstico" o "ayudar en el diagnóstico" se refieren ambas a métodos que ayudan a realizar una determinación clínica con respecto a la presencia o progresión de EA o enfermedades relacionadas, y pueden ser o no ser concluyentes con respecto al diagnóstico definitivo.
Las expresiones "paciente con deterioro cognitivo leve" o "paciente con DCL" se refieren a un individuo que ha sido diagnosticado o padece DCL o al que se le ha dado un diagnóstico probable de DCL. Además, deterioro cognitivo leve estable (DCLe) se refiere a DCL sin progresión a DEA durante el periodo de observación. Deterioro cognitivo leve progresivo (DCLp) se refiere a DCL con progresión a DEA en cualquier examen de seguimiento. La expresión "muestra de fluido biológico" incluye una diversidad de tipos de muestra de fluidos obtenidos de un individuo y pueden usarse en un ensayo diagnóstico. La definición incluye, por ejemplo, sangre, líquido cefalorraquídeo (LCR), suero, o plasma y otras muestras líquidas de origen biológico.
Se han documentado particularmente bien tres biomarcadores diferentes en LCR: proteína de la cadena neuronal, tau (total; T-tau y diversas formas fosforiladas; P-tau), y derivados de la proteína precursora de amiloide (PPA) que incluyen Ab40 y Ab42. Las directrices de 2018 del Marco de Investigación de NIA-AA agrupan los biomarcadores de EA en los relacionados con deposición de b-amiloide, tau patológica, y neurodegeneración [A/T/(N)j. Sin embargo, el marco de investigación indicó que podrían añadirse nuevos biomarcadores que describen diferentes procesos patológicos al esquema [A/T/(N)j propuesto en 2016 con la notación [A/T/X/(N)j, donde X es el nuevo biomarcador. La presente invención muestra que la adición de MMP-10 a los marcadores ya presentes en el esquema, con la notación "[A/T/M/(N)]", mejoró considerablemente el valor pronóstico en pacientes con DCL con Ab42 anómala, pero P-tau181 y T-tau normales. Los pacientes con DCL con Ab42 y MMP-10 anómalas, pero P-tau181 y T-tau normales, progresaron a demencia con una mediana de un año, mientras que los pacientes con DCL con Ab42 anómala, pero P-tau181, MMP-10, y T-tau normales, progresaron a demencia con una mediana de dos años. La presente invención desvela MMP-10 como biomarcador que predice la progresión de la enfermedad de DCL a DEA, centrándose en rutas más allá de las cubiertas por los biomarcadores principales de EA actuales. Los sujetos con DCL con aumento del nivel de MMP-10 en LCR muestran una mayor probabilidad de progresión a DEA.
En una de las realizaciones, la presente invención desvela un biomarcador que comprende el biomarcador metaloproteinasa 10 de matriz (MMP-10) para determinar la presencia o riesgo de EA en un mamífero, o para ayudar en el diagnóstico de EA y trastornos relacionados. En otra realización, la presente invención desvela un esquema de biomarcadores [A/T/M/(N)] que comprende metaloproteinasa 10 de matriz (MMP-10) en combinación con el esquema de clasificación (amiloide/patología de tau/neurodegeneración) de biomarcadores de patología de EA.
MMP-10 (también conocida como estromelisina-2) es una enzima dependiente de cinc que pertenece a la superfamilia omnipresente de metaloproteinasas de matriz (MMP), con más de 20 miembros de la familia que se secretan principalmente. En el espacio extracelular, esta familia de proteasas degrada las proteínas de la matriz extracelular que participan en la remodelación tisular y contribuye a la escisión de moléculas de adhesión celular, citoquinas, y factores de crecimiento. Numerosas MMP se expresan en el cerebro en astrocitos y microglía, aunque varias se expresan solo en condiciones fisiológicas y/o patológicas muy específicas. En EA, la investigación ha mostrado que la expresión de las MMP está inducida por Ab y también son capaces de degradar Ab. En el caso de MMP-10, los estudios de prevalencia han mostrado que el nivel en LCR de MMP-10 aumenta en pacientes tanto con EA como con DCL que mostraron patología de Ab42. La presente invención refleja las observaciones previas en DCL, y también apoya el papel independiente de MMP-10 como biomarcador para la progresión de la enfermedad, y no solo como un epifenómeno corriente abajo relacionado con la patología de amiloide.
En otra realización, MMP-10 solo influye en el riesgo de progresión a demencia de tipo Alzheimer al igual que Ab42. La invención desvela que MMP-10 supone un riesgo que es independiente de la patología de amiloide. Los niveles de P-tau181 y T-tau en LCR están altamente correlacionados, lo que sugiere que estos dos biomarcadores proporcionan información de rutas superpuestas en EA. Por el contrario, MMP-10 exhibe una correlación moderada con los biomarcadores de EA principales, añadiendo de ese modo un valor adicional. En una realización adicional, la presente invención desvela un método para predecir la progresión de deterioro cognitivo leve (DCL) a demencia por enfermedad de Alzheimer (DEA) en un mamífero, en donde el método comprende determinar los niveles en líquido cefalorraquídeo (LCR) de metaloproteinasa 10 de matriz (MMP-10).
La invención es aplicable a cualquier mamífero, preferentemente a seres humanos.
En otra realización, la invención desvela que el nivel de proteína MMP-10 marca las rutas relacionadas con el envejecimiento, dado que el nivel de MMP-10 en LCR aumenta ininterrumpidamente con la edad, y los perfiles de correlación entre proteína MMP-10 y edad están altamente asociados. La correlación entre MMP-10 y edad indica que el papel potencial independiente de amiloide de MMP-10 en la demencia y su valor añadido en nuestra clasificación [A/T/M/(N)j está relacionado con el envejecimiento. De hecho, se ha descubierto que la expresión de MMP-10 aumentó en un modelo de envejecimiento dérmico, y también aumentó después de daño tisular en el contexto de enfermedades relacionadas con la edad, tales como diabetes y aterosclerosis. Como en estas enfermedades crónicas, la edad es, con diferencia, el mayor factor de riesgo de demencia y DEA. Además, los niveles de MMP-10 se han asociado a la progresión de enfermedad de Parkinson, otra enfermedad neurodegenerativa relacionada con la edad, lo que apoya aún más el efecto general de MMP-10 en la neurodegeneración.
El envejecimiento es un proceso complejo que implica vahos cambios biológicos que conducen a estrés celular crónico e inflamación tisular estéril. Durante este proceso, algunas células se vuelven senescentes y comienzan a producir un perfil secretor único, denominado fenotipo secretor asociado a senescencia (SASP), que incluye un aumento de mediadores inflamatorios, tales como IL-6, TNF-b, ligandos de la familia TGFp, MIF, YKL-40, y también proteasas. Como otros tipos celulares, microglía y astrocitos, la fuente principal de MMP-10 en el cerebro, se vuelven senescentes como resultado del envejecimiento y la neurodegeneración. De forma interesante, se ha observado SASP en el LCR de pacientes con DEA, y niveles aumentados de expresión de astrocitos senescentes de MMP-3 y MMP-10 como parte de su SASP.
Además de su papel en el envejecimiento, la neuroinflamación desencadenada por microglía y astrocitos desempeña un papel principal en la patogénesis de EA. Aunque la microglía constituye una primera línea de defensa mostrando activación y reclutamiento rápido en sitios dañados para fagocitar células muertas y residuos, los astrocitos se activan después de la reacción microglial. La activación de la microglía conduce, entre otras cosas, a cambios en el perfil de expresión de las MMP, incluyendo un aumento de ARNm de MMP-10, y los astrocitos activados liberan mediadores inflamatorios que señalizan nuevamente hacia la microglía y pueden reclutar células hematógenas infiltrantes que incluyen macrófagos. Durante la progresión de EA, la disfunción sinóptica y la patología de amiloide podrían activar microglía y astrocitos, conduciendo a un estado de neuroinflamación elevada que a su vez potencia el daño neuronal. Por lo tanto, senescencia y neurodegeneración podrían actuar en concierto potenciando la neuroinflamación conduciendo a un empeoramiento del pronóstico del paciente, sirviendo MMP-10 como marcador de esta interacción.
Otros rasgos y ventajas de la presente invención se volverán evidentes tras la lectura de los siguientes ejemplos, que se han de considerar ilustrativos y no limitantes.
DESCRIPCIÓN DE LA FIGURAS
Figura 1 : niveles en LCR de MMP-10 y biomarcadores de EA principales en relación con el diagnóstico en una cohorte de FACE. Los gráficos de volcán muestran el patrón de expresión diferencial (diferencia media) de las 137 proteínas de paneles ProSeek® Multiplex en el LCR de DCL estable (A) y DCL progresiva (B) frente a sujetos con DCS. Azul claro, valor p corregido por tasa de descubrimiento falso (FDR) significativo (valor q); naranja, nominalmente significativo (valor p); violeta, no significativo. Los gráficos en recuadros muestran el nivel en LCR de MMP-10 (C), Ab42 transformado en log2 (D), P-tau181 transformada en log2 (E), y T-tau transformada en log2 (F) en grupos de diagnóstico de DCS, DCL estable y DCL progresivo. DCS, deterioro cognitivo subjetivo; DCLe, deterioro cognitivo leve estable; DCLp, deterioro cognitivo leve progresivo. **p < 0,01 , ***p < 0,001.
Figura 2: asociación entre niveles en LCR de MMP-10 y biomarcadores de EA principales con progresión de DCL a DEA en cohorte de FACE. Las curvas de Kaplan-Meier muestran la asociación de los niveles en LCR de MMP-10 (A), Ab42 transformado en log2 (B), P-tau181 transformada en log2 (C), y T-tau transformada en log2 (D) de sujetos con DCL con la probabilidad de no progresara DEA. Los niveles proteicos se dividieron en terciles con un número similar de sujetos. Amarillo, primer tercil (menor nivel proteico); azul, segundo tercil (nivel proteico medio); gris, tercer tercil (mayor nivel proteico). Cada línea vertical representa un suceso censurado. DEA, demencia de tipo enfermedad de Alzheimer.
Figura 3: estratificación del riesgo con esquema A/T/M/(N) para sujetos con DCL en cohorte de FACE. Las curvas de Kaplan-Meier muestran la asociación de las categorías A-/T-/M-/(N)-, A-/T-/M+/(N)-, A+/T-/M-/(N)- y
A+/T-/M+/(N)- (A) o A-/T-/M-/(N)-, A+/T+/M-/(N)+ y A+/T+/M+/(N)+ (B) con la probabilidad de no progresar a DEA. Las líneas discontinuas representan la supervivencia mediana. Cada línea vertical representa un suceso censurado. DEA, demencia de tipo enfermedad de Alzheimer.
Figura 4: agrupamiento de correlaciones de envejecimiento, MMP-10, Ab42, P-tau y T-tau con proteínas de paneles ProSeek® Multiplex en cohorte de FACE. El mapa térmico muestra el agrupamiento jerárquico entre proteínas de paneles ProSeek® Multiplex (filas) y edad, MMP-10, Ab42, P-tau y T-tau (columnas). La escala indica distancia de correlación de Pearson (1 - coeficiente de correlación de Pearson).
Figura 5: correlación entre los niveles en LCR de MMP-10 y biomarcadores de EA principales de sujetos con DCS y DCL de una cohorte de FACE. La matriz de correlación muestra el grado de correlación entre MMP-10 (transformado en z), Ab42 (transformado en z log2), P-tau (transformada en z log2), y T-tau (transformada en z log2), siendo gris una correlación negativa, y azul una correlación positiva. También se proporcionan los coeficientes de correlación de Pearson (p) para cada pareja.
Figura 6: asociación entre niveles en LCR de MMP-10 y biomarcadores de EA principales con progresión de DCL a DEA en una cohorte de DCN. Las curvas de Kaplan-Meier muestran la asociación de los niveles de MMP-10 (A), Ab42 transformado en log2 (B), P-tau181 transformada en log2 (C), y T-tau transformada en log2 (D) de sujetos con DCL con la probabilidad de no progresara DEA. Los niveles proteicos se dividieron en terciles con un número similar de sujetos. Amarillo, primer tercil (menor nivel proteico); azul, segundo tercil (nivel proteico medio); gris, tercer tercil (mayor nivel proteico). Cada línea vertical representa un suceso censurado. DEA, demencia de tipo enfermedad de Alzheimer.
Figura 7: valor predictivo de MMP-10 y biomarcadores de EA principales en LCR para la progresión de DCL a DEA. Los gráficos de Forest muestran la razón de probabilidades (intervalo de confianza del 95 %) de cada indicador en un modelo que incluye los niveles en LCR transformados en z log2 de Ab42, P-tau181 , y T-tau, más edad, sexo y presencia del alelo AROE-e4 (A, panel superior), o en un segundo modelo que incluye el nivel en LCR transformado en z de MMP-10 (A, panel inferior) para sujetos con DCL de una cohorte de FACE (conjunto de entrenamiento). Las curvas de característica operativa del receptor (ROC) con sus respectivas áreas bajo la curva (AUC) presentan la capacidad de diagnóstico de cada modelo en las poblaciones base FACE (conjunto de entrenamiento) (B) y DCN (conjunto de ensayo) (C). La ausencia del alelo AROE-e4 y el sexo masculino se usaron como variables de referencia. *p < 0,05, **p < 0,01 , ***p < 0,001 .
Figura 8: niveles en LCR de MMP-10 y biomarcadores de EA principales en relación con edad y estado de conversión en cohorte de FACE. Los gráficos en recuadros muestran el nivel en LCR de MMP-10, Ab42 (transformado en log2), P-tau181 (transformada en log2), y T-tau (transformada en log2) en no conversores (sujetos con deterioro cognitivo subjetivo y deterioro cognitivo leve estable) (A-D), y en conversores (sujetos con deterioro cognitivo leve progresivo) (E-H), clasificados además en grupos de edad (menos de 60 años, 60-70 años, 71 -80 años, y más de 80 años). *p < 0,05, **p < 0,01 , ***p < 0,001 .
EJEMPLOS
Métodos de evaluación
A. Estudio de participantes
Se realizó un estudio observacional con el objetivo de identificar biomarcadores de sujetos con EA preclínica. Los participantes se obtuvieron de dos cohortes clínicas de memoria longitudinal, la Fundació ACE española (FACE, pacientes con deterioro cognitivo subjetivo [DCS] y deterioro cognitivo leve [DCL]), y la red de competencia de demencia alemana (DCN, pacientes con DCL). La cohorte de FACE comprendió a) pacientes con DCL (deterioro cognitivo leve) que se evaluaron consecutivamente en la FACE Memory Clinic, y b) individuos sanos con deterioro cognitivo subjetivo (DCS), participantes en la iniciativa de cerebro sano de la Fundació ACE ( Fundació ACE Healthy Brain Initiative, FACEFIBI). Todos los participantes se evaluaron con un protocolo neuropsicológico exhaustivo de la Fundació ACE (NBACE), y se examinaron con la versión española del examen de estado Mini-Mental ( Mini-Mental State Examination, MMSE), la escala de isquemia de Flachinski, y la clasificación de demencia clínica ( Clinical Dementia Rating, CDR). Los pacientes con DCL satisficieron los criterios diagnósticos de Petersen para DCL, que incluyen quejas subjetivas de memoria, deterioro de la cognición general normal, rendimiento preservado en actividades de la vida diaria, ausencia de demencia, y un deterioro medióle en una o más funciones cognitivas, con o sin déficit en otros dominios cognitivos (DCL amnésica: dominio individual, o DCL no amnésica: dominio múltiple) y tuvieron una CDR de 0,5. DCS se refiere a la percepción de problemas de memoria u otros problemas cognitivos sin deterioro en ensayos cognitivos estandarizados. Específicamente, los individuos con DCS tenían una CDR de 0, un rendimiento preservado (puntuación > 27) en el MMSE, una puntuación > 8 en el cuestionario modificado español de fallos de memoria diarios ( Spanish Modified Questionnaire of Memory Failures in Everyday, MFE-30), y un rendimiento estrictamente normal en el NBACE. Se realizaron evaluaciones de seguimiento de DCL en un intervalo aproximadamente anual.
B. Punciones lumbares y medición de biomarcadores de EA principales
El líquido cefalorraquídeo (LCR) se obtuvo mediante punciones lumbares. Después de aplicar anestesia local subcutánea (mepivacaína al 1 %), se obtuvo LCR por punción en el espacio intervertebral L3-L4. El fluido se recogió pasivamente en dos tubos de polipropileno de 10 mi (Ref. de Sarstedt 62.610.018). El primer tubo se analizó externamente para análisis bioquímicos básicos (glucosa, proteínas totales, proteinograma, tipos celulares y recuento celular). El segundo tubo se centrifugó (2000 x g 10 min a 4 °C), y el LCR se dividió en alícuotas de 0,325 mi en tubos de polipropileno (Ref. de Sarstedt 72.694.007) y se almacenaron a -80 °C hasta análisis posterior. El tiempo de retraso entre la recogida de LCR y el almacenamiento fue inferior a 2 horas. El día del análisis, se descongeló una alícuota de LCR y se midieron simultáneamente los niveles de Ab42, P-tau181 y T-tau mediante inmunoensayos ELISA convencionales.
En las muestras de DCN, se realizaron punciones lumbares en la región intervertebral L3/L4 o L4/L5. Las muestras de LCR se mantuvieron en hielo durante un máximo de 1 h y a continuación se centrifugaron durante 10 min (2000 g a 4 °C). Las muestras se alicuotaron a 0,25 mi y se almacenaron en tubos de polipropileno a -80 °C hasta su análisis y se cualificaron los niveles de Ab42, P-tau fosforilada en la posición 181 (P-tau181 ) y T-tau usando inmunoensayos ELISA disponibles en el mercado.
C. Proteómica dirigida
La concentración proteica se cuantificó usando el inmunoensayo validado, altamente sensible y específico ProSeek® Multiplex, desarrollado por Olink Proteomics (Uppsala, Suecia). Se usaron dos paneles de ProSeek® Multiplex disponibles en el mercado (inflamación y neurología) para medir las concentraciones de 184 proteínas en muestras de LCR de FACE y DCN. Las cantidades proteicas se muestran como valores normalizados de expresión proteica (NPX) (transformados en log2).
D. Análisis estadístico.
Todos los análisis estadísticos se realizaron usando R versión 3.6.0. Los ensayos múltiples se corrigieron para tasa de descubrimiento falso (FDR) y un umbral de valor p ajustado por FDR (es decir, valor q) de 0,05, usando la función de ajuste p de R. Los niveles en LCR de Ab42, P-tau181 y T-tau se transformaron en log2 en datos normalizados.
E. Nivel proteico en LCR en relación con el diagnóstico.
La asociación de la expresión proteica con el diagnóstico en FACE se evaluó usando regresiones lineales múltiples usando la función Im de R, donde el diagnóstico fue el indicador de interés y el nivel proteico en LCR la medida de resultado. Se incluyeron edad y sexo como covariables. Para este análisis, se consideraron los siguientes grupos de diagnóstico: deterioro cognitivo subjetivo (DCS), deterioro cognitivo leve estable (DCLe, es decir, DCL sin progresión a DEA durante el tiempo de observación), y deterioro cognitivo leve progresivo (DCLp, es decir, con progresión a DEA en cualquier examen de seguimiento). DCS se empleó como categoría de referencia.
F. Análisis de progresión de DCL a DEA.
Dado que los niveles en LCR de MMP-10 y biomarcadores de EA principales (Ab42, P-tau181 y T-tau) se midieron mediante diferentes técnicas en cada cohorte, se transformaron en z usando la función de escala de R para permitir la comparación de estimaciones. El impacto del nivel proteico en el riesgo de conversión en demencia se evaluó usando curvas de Kaplan-Meier (concentración proteica dividida en terciles) y regresiones de riesgos proporcionales de Cox (datos continuos) usando las funciones survfit y coxph, respectivamente, del paquete de supervivencia de R. Se incluyeron edad y sexo como covariables en las regresiones de Cox.
G. Estratificación del riesgo.
Los sujetos de cada cohorte se clasificaron en el esquema [A/T/(N)j o [A/T/M/N] por conversión de los niveles en LCR de Ab42 (A), P-tau181 (T), MMP-10 (M) y T-tau (N) en variables binarias (anormal, +; normal, -) usando valores de corte sustitutos. Los valores de corte sustitutos se obtuvieron representando curvas de la característica operativa del receptor (ROC) (nivel de biomarcador en LCR como indicador y conversión como resultado) y calculando el índice de Youden, es decir, el valor umbral que proporcionó la mejor compensación entre sensibilidad y especificidad, usando las funciones roe y coords del paquete pROC de R. De ese modo, los sujetos se clasificaron en las siguientes categorías A/T/M/(N): [A-/T-/M-/(N)-], [A-/T-/M+/(N)-j, [A+/T-/M-/(N)-j, [A+/T-/M+/(N)-j, [A+/T+/M-/(N)-j, [A+/T+/M+/(N)-j,
[A+/T+/M-/(N)+], y [A+/T+/M+/(N)+]
H. Predicción de progresión de DCL a DEA.
Para comparar la capacidad de una combinación de biomarcadores para predecir la conversión a demencia, se construyeron dos modelos diferentes usando los valores del conjunto de datos de entrenamiento (FACE) y se sometieron a ensayo en un conjunto de datos independientes (DCN).
I. Correlaciones y agrupamiento.
Se calcularon los perfiles de correlación de Pearson de envejecimiento, y niveles en LCR de MMP-10, Ab42 transformado en log2, P-tau181 transformada en log2 y T-tau transformada en log2 con proteínas de paneles de ProSeek® Multiplex usando las funciones cor.test y cor de R. Después del ensayo de correlación, todos los valores se transformaron en z de Fisher usando la función FisherZ del paquete DescTools de R. Se realizó el agrupamiento jerárquico de perfiles de correlación con la función pheatmap del paquete pheatmap de R usando la distancia de correlación de Pearson. RESULTADOS
El nivel en LCR de MMP-10 aumenta en sujetos con DCL tanto estable como progresiva: En una primera etapa, para identificar nuevos marcadores para la progresión de DCL a demencia y DEA, se seleccionaron paneles de multiplicidad 92 de proteínas disponibles en el mercado basándose en su implicación en procesos patogénicos relacionados previamente con DEA, incluyendo procesos neurobiológicos, enfermedades neurodegenerativas, inflamación, y respuesta inmunitaria. De ese modo, se cualificaron 184 proteínas en 365 sujetos procedentes de la cohorte de la Fundado ACE (FACE) en diferentes estadios clínicos de EA (deterioro cognitivo subjetivo [DCS] = 50, DCL estable [DCLe] = 201, DCL progresivo [DCLp] = 114). Las características demográficas y clínicas de la cohorte se muestran a continuación en la Tabla 1.
Tabla 1. Características demográficas y clínicas de la cohorte de FACE.
Grupo
DCS DCLe DCLp
Características
N = 50 N = 196 N = 114
Sexo (%)
Masculino 50 47,5 42,1
Femenino 50 52,6 57,9
Estratos de APOE (%)
E2 22 7,7 7
E3 46 63,8 47,4
E4 32 28,5 45,6
Edad en punción lumbar (años, mediana (IQR)) 68 (8,75) 72,5 (11) 76 (9)
Puntuación MMSE (mediana (IQR)) 30 (1) 27 (4) 24 (5)
Tiempo para conversión/último FU (meses, mediana (IQR)) 14,04 (10,02) 12,24 (4,8)
Biomarcadores de LCR (pg/ml, mediana (IQR)) Ab42 1025 (463,75) 833 (429,25) 595,5 (233)
P-tau 46,5 (20) 56 (27,15) 72 (49,75)
T-tau 239 (130,25) 313 (207,25) 460 (397,25)
Notaciones: los genotipos de APOE se clasificaron en los estratos E2, E3 y E4 como sigue a continuación: E2, e2e2 and e2e3; E3, e3e3; E4, e2e4, e3e4, y e4e4. DCS, deterioro cognitivo subjetivo; DCLe, deterioro cognitivo leve estable; DCLp deterioro cognitivo leve progresivo; FU, seguimiento.
Después de excluir 47 proteínas debido a una tasa de detección baja, 137 entraron en el proceso de análisis. Para identificar las proteínas que perfilan los pacientes con DCL en diferentes estadios clínicos, se compararon pacientes con DCS frente a grupos de DCLe o DCLp. Este análisis identificó diez proteínas que se expresaron diferencialmente en DCLp en comparación con DCS, mientras solo cinco proteínas mostraron una expresión diferencial en la comparación con DCLe. Después de corrección por tasa de descubrimiento falso (FDR), solo MMP-10 permaneció significativa en la comparación de DCLp frente a DCS (p = 1 ,53 x 109, q = 2, 11 x 107). De forma interesante, MMP-10 también aumentó en el grupo de DCLe, aunque de forma nominalmente significativa (p = 0,007, q = 0,49) (Figuras 1A-C, Tabla 2).
Tabla 2. Asociación de niveles proteicos en LCR y grupos de diagnóstico en cohorte de FACE. Proteína Diferencia media EE Valor p Valor q
DCLe (Categoría de referencia: DCS)
TQRb1 -0,21 0,06 9,14 x 104 0,13
MMP-10 0,22 0,08 0,007 0,49
CCL-19 -0,30 0,12 0,01 0,64
CCL-28 0,10 0,04 0,02 0,70
CLEC-1 b 0,16 0,05 0,02 0,73
DCLp (Categoría de referencia: DCS)
MMP-10 0,57 0,09 1 ,53 x 109 2,11 x 10-7
MAPT 0,49 0,16 0,003 0,17
CCL-19 -0,40 0,14 0,004 0,17
SMOC-2 0,26 0,09 0,006 0,20
TQRb1 -0,17 0,07 0,01 0,40
CD8a -0,23 0,10 0,03 0,62
MCP-1 0,14 0,06 0,03 0,63
CCL-28 0,10 0,05 0,04 0,63
STAMBP 0,08 0,04 0,04 0,63
CCL-3 0,07 0,05 0,66
Notaciones: EE, error estándar; valor p, valor p nominal; valor q, valor p ajustado por tasa de descubrimiento falso; DCS, deterioro cognitivo subjetivo; DCLe, deterioro cognitivo leve estable; DCLp, deterioro cognitivo leve progresivo.
A continuación, se realizaron las mismas comparaciones que con MMP-10, pero usando biomarcadores de EA bien establecidos. Se observa que los niveles en LCR de Ab42, P-tau181 y T-tau transformados en log2 aumentaron significativamente solo en el grupo de DCLp (Figuras 1 D-F). Por lo tanto, los niveles en LCR de MMP-10 parecieron aumentar a lo largo de los estadios clínicos de forma similar a los biomarcadores de EA principales, en paralelo a neuropatología en alza. Se ha de observar que P-tau181 y T-tau exhibieron una fuerte correlación (p Spearman = 0,97, p = 2,81 x 10-216, Figura 5), que sugiere que subyacen rutas patogénicas similares a ambos biomarcadores. Por otra parte, MMP-10 mostró una correlación moderada con P-tau181 (p Spearman = 0,50, p = 1 ,95 x 10-24, Figura 5) y T-tau (p Spearman = 0,54, p = 1 ,57 x 10-28, Figura 5), y una relación negativa baja con Ab42 (p Spearman = -0,23, p = 8,74 x 10-6, Figura 5), que sugiere fuertemente que MMP-10 puede servir como biomarcador de EA adicional que se dirige a rutas patogénicas independientemente, al menos en parte, de las marcadas por Ab42, P-tau181 , y T-tau (Figura 5).
El nivel en LCR de MMP-10 está asociado a progresión de DCL a DEA
Basándose en las observaciones de que el nivel en LCR de MMP-10 aumentó a lo largo de los estadios clínicos de EA con el mayor nivel en el grupo de DCLp, se exploró si MMP-10 también mostraba una asociación con la progresión de DCL a DEA. Para este fin, todas las muestras de DCL de FACE se dividieron en terciles dependiendo del nivel en LCR de MMP-10, y se analizaron usando curvas de supervivencia. Este análisis mostró que niveles mayores de MMP-10 se asociaron a progresión sintomática (ensayo de clasificación logarítmica, p < 1 x 10-4), similares a P-tau181 (ensayo de clasificación logarítmica, p < 1 x 10-4) y T-tau (ensayo de clasificación logarítmica, p < 1 x 10-4), y opuestos a Ab42 dado que niveles menores de Ab42 se asociaron a progresión a DEA (ensayo de clasificación logarítmica, p < 1 x 104) (Figura 2). En línea con estos resultados, el análisis de regresión de Cox ajustado para edad y sexo mostró que niveles elevados de MMP-10 (HR = 1 ,79, p = 3,64 x 109), P-tau181 (HR = 1 ,58, p = 9,78 x 106) y T-tau (HR = 1 ,72, p = 3,76 x 108), así como niveles bajos de Ab42 (HR = 0,57, p = 2,34 x 10-8) se asociaron significativamente a riesgo aumentado (Tabla 3).
Tabla 3. Asociación de los niveles en LCR de MMP-10 y biomarcadores de EA principales con el riesgo de progresión de DCL a DEA en cohorte de FACE.
Proteína HR IC 95 % valor p
MMP-10 1 ,79 1 ,47 - 2,17 3,64 x 109 log2 Ab42 0,57 0,47 - 0,70 2,34 x 108 log2 P-tau 1 ,58 1 ,29 - 1 ,93 9,78 x 106 log2 T-tau 1 ,72 1 ,42 - 2,08 3,76 x 108
Notaciones: los datos de biomarcadores se transformaron en z para permitir la comparación. Todas las regresiones se ajustaron para edad y sexo. HR, relación de riesgo; IC, intervalo de confianza.
Este resultado motivó la repetición del análisis usando una muestra independiente de sujetos con DCL con información de seguimiento, obtenida de la cohorte longitudinal de DCN. Las características demográficas y clínicas de esta cohorte se muestran a continuación en la Tabla 4.
Tabla 4. Características demográficas y clínicas de la cohorte de DCN.
Grupo
DCLe DCLp
Características
N = 66 N = 27
Sexo (%)
Masculino 68,2 48.2
Femenino 31 ,8 51 ,8
Estratos de AROE (%)
E2 9,1 3,7
E3 50 55,6
E4 40,9 40,7
Edad en punción lumbar (años, mediana (IQR)) 67 (13,75) 70 (13,5)
Puntuación MMSE (mediana (IQR)) 28 (3) 26 (4)
Tiempo para conversión/último FU (meses, mediana (IQR)) 28,05 (20,13) 26,7 (13,15)
Biomarcadores de LCR (pg/ml, mediana (IQR))
Ab42 797,5 (481 ,75) 516 (165,5)
P-tau 48,5 (29) 85 (49,5)
T-tau 290, 5 (219,75) 536 (356,5)
Notaciones: los genotipos de AROE se clasificaron en los estratos E2, E3 y E4 como sigue a continuación: E2, e2e2 and e2e3; E3, e3e3; E4, e2e4, e3e4, y e4e4. DCLe, deterioro cognitivo leve estable; DCLp deterioro cognitivo leve progresivo; FU, seguimiento. En DCN, el efecto del nivel en LCR de MMP-10 se replicó en la progresión de DCL a DEA observada previamente en las muestras de FACE (ensayo de clasificación logarítmica, p < 1 x 104). Los biomarcadores de EA principales mostraron el mismo efecto que en FACE, tanto en curvas de supervivencia (Ab42: ensayo de clasificación logarítmica, p = 0,002, P-tau181: ensayo de clasificación logarítmica, p = 7 x 10-4, T-tau: ensayo de clasificación logarítmica, p < 1 x 104, Figura 6), como en análisis de regresión de Cox ajustado para edad y sexo (Tabla 5).
Tabla 5. Asociación de los niveles en LCR de MMP-10 y biomarcadores de EA principales con el riesgo de progresión de DCL a DEA en cohorte de DCN.
Proteína HR IC 95 % valor p
MMP-10 2,27 1 ,43 - 3,62 5,57 x 104 log2 Ab42 0,54 0,37 - 0,81 0,002 log2 P-tau 1 ,71 1 ,11 - 2,64 0,02 log2 T-tau 1 ,99 1 ,26 - 3,13 0,003
Notaciones: los datos de biomarcadores se transformaron en z para permitir la comparación. Todas las regresiones se ajustaron para edad y sexo. HR, relación de riesgo; IC, intervalo de confianza.
Basándose en estos descubrimientos, se exploró MMP-10 para comprobar si podría ayudar a mejorar la capacidad de predecir los pacientes de DCL que progresarían a DEA. Por consiguiente, se generó un modelo que contenía Ab42, P-tau181, y T-tau juntos con edad, sexo, y presencia de alelo AROE-e4, que se comparó con un modelo alternativo que añadía MMP-10. Aunque ambos modelos no difirieron estadísticamente entre sí, mostraron una tendencia a la asociación (ensayo de DeLong, p = 0,12) (Figura 7A-B, Tabla 6). Se observó una tendencia similar a la asociación cuando ambos modelos predictivos se compararon con la cohorte independiente de DCN (ensayo de DeLong, p = 0,09) (Figura 7C, Tabla 6). Debido a las diferencias de intervalos de seguimiento observadas para algunos individuos entre DCN y FACE, el análisis se repitió excluyendo 65 sujetos de FACE que tenían un seguimiento de menos de 10 meses, que es el intervalo de seguimiento mínimo en DCN. Los resultados de este análisis permanecieron sin cambios en comparación con la muestra completa (Tabla 6). Tabla 6. Valor predictivo de combinaciones de los niveles en LCR de MMP-10 y biomarcadores de EA principales tanto en el conjunto de entrenamiento (cohorte de FACE) como en el conjunto de ensayo (cohorte de DCN).
Figure imgf000023_0001
Todos los sujetos
MMP-10, d, sexo, 0 0,70 0,63 eda ,7
6 0,8 0,72 0,68 0,75 0,74 - 0,8 0,61 0,93 0,48 APOE-S4 1 4
0,7 0,72 0,66 edad, sexo, 7 0,8 0,66 0,96 0,53 0,76 - 0,8 0,66 0,96 0,53 AROE-e4 3 5 log P-tau, 0, 0,66 0,60 edad, sexo, 7
2 - 0,7 0,66 0,82 0,56 0,71 - 0,8 0,67 0,85 0,59 AROE-e4 8 3 log T-tau, 0,7 0,68 0,62 edad, sexo, 4 0,8 0,67 0,81 0,59 0,73 - 0,8 0,69 0,85 0,62 APOE-S4 0 4 log P-tau, -tau, 0, 0,75 0,68 log T 8
0 0,8 0,74 0,77 0,72 0,78 - 0,8 0,67 0,96 0,55 edad, sexo, 5 7 APOE-S4 log P-tau, MMP-10, 0,8 0,77 0,72 T-tau, edad, 2 0,8 0,78 0,81 0,76 0,81 - 0,8 0,67 1 0,56 sexo, 6 9 AROE-e4 edad, sexo, 0,6 0,63 0,50 APOE-S4 9 - 0,7 0,62 0,83 0,50 0,62 - 0,7 0,59 0,67 0,56
5 4
Sujetos con FU > 10 meses log P-tau, 0,74 0,66 log T-tau, 0,8
0 0,8 0,75 0,77 0,74 0,76 0,8 0,72 0,85 0,67 edad, sexo, 6 6 APOE-S4 log P-tau, MMP-10, 0,8 0,77 0,71 T-tau, edad, 3 - 0,8 0,79 0,79 0,79 0,80 0,8 0,78 0,70 0,82 sexo, 8 9 APOE-S4
Notación: los modelos se entrenaron incluyendo todos los sujetos del conjunto de entrenamiento o incluyendo solo los sujetos con un seguimiento mínimo de 10 meses. La precisión, sensibilidad y especificidad se calcularon con el índice de Youden. Los valores de Ab42, P-tau y T-tau se transformaron en z log , y MMP-10 se transformó en z. FU, seguimiento; AUC, área bajo la curva; IC, intervalo de confianza. El nivel en LCR de MMP-10 proporciona información complementaria para estratificar el riesgo de progresión a DEA en sujetos con cambio patológico de EA
Los datos mostraron que un modelo que incluye MMP-10 no mejora de forma importante (si acaso solo mínimamente) su valor predictivo en comparación con un modelo sin MMP-10 cuando se aplica a la población con DCL completa. Esto es probablemente porque la mayoría de los pacientes con DCL ya tienen niveles anormales de todos los biomarcadores de EA principales. De ese modo, ya han allanado el camino a la demencia, y añadir cualquier marcador adicional no mejorará la predicción. Por esta razón, se decidió investigar si MMP-10 podría funcionar mejor en ciertos subgrupos del continuo de EA. Por consiguiente, se incluyó MMP-10 en los marcadores ya presentes en la clasificación [A/T/(N)j. Dado que MMP-10 se produce en microglía y astroglía debido a una respuesta inflamatoria, y los procesos patogénicos microglial/astroglial no están cubiertos por la clasificación [A/T/(N)j, se realizó la hipótesis de que evaluar los biomarcadores de EA principales junto con MMP-10 proporcionaría a los médicos clínicos un estado de neuroinflamación complementaria para realizar una mejor estratificación de riesgo y evaluación de pronóstico de los pacientes con DCL. De ese modo, se evaluó la combinación de Ab42, P-tau181 , MMP-10, y T-tau en una clasificación "[A/T/M/N]", representando "M" el nivel en LCR de MMP-10 como sustituto de disfunción asociado a microglía/astrocitos. Para dicotomizar los niveles en LCR de cada proteína en FACE en normal/anormal, se estimaron las curvas de ROC y se usó el índice de Youden como indicador para el corte como se informó anteriormente. El valor de corte indicador para Ab42 fue 678 pg/ml (sensibilidad = 74,6 %, especificidad = 67,3 %), 68 pg/ml (sensibilidad = 57,9 %, especificidad = 73,5 %) para P-tau181 , 406 pg/ml (sensibilidad = 59,6 %, especificidad = 74,0 %) para T-tau, y 4,23 NPX (sensibilidad = 72,81 %, especificidad = 60,61 %) para MMP-10. Los sujetos con DCL se estratificaron a continuación en los siguientes grupos: [A-/T-/M-/(N)-] (N = 85), [A-/T-/M+/(N)-j (N = 38), [A+/T-/M-/(N)-j (N = 26), [A+/T-/M+/(N)-] (N = 29), [A+/T+/M-/(N)-j (N = 4), [A+/T+/M+/(N)-j (N = 1 ), [A+/T+/M-/(N)+] (N = 17) y [A+/T+/M+(N)+] (N = 56). Las características demográficas y clínicas de cada grupo se muestran en la Tabla 7.
Tabla 7. Características demográficas y clínicas de cada grupo de A/T/M/(N) en la cohorte de
FACE.
Grupo de A/T/M/(N) Características
Figure imgf000025_0001
N = 85 N = 38 N = 26 N = 29 N = 4 N = 1 N = 17 N = 56
Sexo (%)
Masculino 58,8 65,8 57,7 55,2 75 100 29,4 39,3
Femenino 41.2 34,2 42,3 44,8 25 0 70,6 60,7
Estratos de APOE (%) E2 9,4 15,8 11 ,5 3,4 0 0 0 7,1 E3 75.3 73,7 42,3 48,3 25 100 29,4 48,2 E4 15.3 10,5 46,2 48,3 75 0 70,6 44,6
Edad en punción lumbar 70 75,5 73 77 74,5 (años, mediana (IQR)) 80 73,5 76
(11) (9,75) (5,75) (11) (1 ,75) (13,5) (8,25)
Puntuación MMSE (mediana 27 ( 26,5 (IQR)) 4) 26 (5) (3 5) 24 (5) (3,25) 21 26 (3) 24 (6)
Tasa de conversión (%) 5,9 21 ,1 34,7 65,5 25 100 58,9 66,1
Tiempo para 15 13 32 conversión/último FU (meses, .. . c , ’ 13,86 12,24 21 ,42 12,24 12,18 mediana (IQR)) (8,97) (12,18) (4,56) (12,15) 26,9 (6,84) (3,66)
Biomarcadores de LCR (pg/ml, mediana (IQR)) 970 533 532 414 553,5 4 595
(184) (166,2
5)
Figure imgf000025_0002
100 102,5
(23) (20,8) (22,5) (13) (4,5) (28) (44) 231 695
T-tau 300,5 229,5 298 373,5 .... 643
(129) (123,5) (98) (113) (38,75) (144) (341 ,7 5)
MMP-10 (NPX, mediana 3,81 4,51 3,81 4,49 3,80 4,03 4,74 (IQR)) (0,46) (0,37) (0,41) (0,38) (0,08) 4, / (0,33) (0,52)
Notaciones: los genotipos de APOE se clasificaron en los estratos E2, E3 y E4 como sigue a continuación: E2, e2e2 and e2e3; E3, e3e3; E4, e2e4, e3e4, and e4e4. FU, seguimiento; NPX, expresión proteica normalizada.
Los grupos [A+/T+/M-/(N)-] y [A+/T+/M+/(N)-] se excluyeron del análisis debido a su muy pequeño tamaño de muestra. Después de la "hipótesis de cascada de amiloide", se exploró en primer lugar el valor añadido de MMP-10 a la progresión de enfermedad en los pacientes con DCL que mostraron solo patología de amiloide [A+/T-/(N)-]. Se descubrió que los pacientes con DCL A+ con un nivel anormal de MMP-10 [A+/T-/M+/(N)-] tuvieron mayor riesgo de progresión a DEA en comparación con los del grupo M- ([A+/T-/M-/(N)-], tiempo de supervivencia mediana = 26,6 meses; [A+/T-/M+/(N)-], tiempo de supervivencia mediana = 13,4 meses; ensayo de clasificación logarítmica, p = 0,01) (Figura 4A). El análisis de regresión de Cox ajustado para edad y sexo confirmó el resultado, planteando el grupo A+ un riesgo ~3 veces mayor de progresión a DEA cuando MMP-10 también mostró niveles anormales ([A+/T-/M+/(N)-], HR = 2,96, p = 0,01) (Tabla 5). De forma interesante, se observó que la sola presencia de nivel anormal en LCR de MMP-10 [A-/T-/M+-/(N)-j aumentó el riesgo de progresión a demencia cuando se comparó con A-/T-/M-/(N)-, a un nivel que fue similar al de Ab42 solo ([A-/T-/M+/(N)-j, HR = 4,24, p = 0,01; [A+/T-/M-/(N)-], HR = 5,60, p = 0,002) (Figura 4A, Tabla 4 anterior). Por el contrario, no se observó ninguna diferencia significativa entre los grupos de MMP-10 cuando se incluyeron P-tau181 y T-tau ([A+/T+/M-/(N)+] frente a [A+/T+/M+/(N)+]) en el análisis, ambos marcadores corriente abajo de la patología de EA (Figura 3B, Tabla 8).
Tabla 8. Asociación de A/T/M/(N) al riesgo de progresión de DCL a DEA en la cohorte de FACE. Grupo HR IC 95 % valor p
Referencia: A-/T-/M-/(N)- A+/T-/M-/(N)- 5,60 1 ,86 - 16,86 0,002 A-GG -/M+/(N)- 4,24 1 ,37 - 13,15 0,01 A+/T-/M+/(N)- 14,09 5,05 - 39,30 4,31 x 107 A+/T+/M-/(N)+ 12,65 4,16 - 38,42 7,59 x 10-6 A+/T+/M+/(N)+ 17,59 6,65 - 46,48 7,38 x 109 Referencia: A+/T-/M-/(N)- A+/T-/M+/(N)- 2,96 1 ,28 - 6,84 0,01 Referencia: A+/T+/M-/(N)+ A+/T+/M+/(N)+ 1 ,31 0,61 - 2,83 0,39
Notación: A-/T-/M-/(N)-, A+/T-/M-/(N)-, y A+/T+/M-/(N)+ se usaron como categorías de referencia. Todas las regresiones se ajustaron para edad y sexo. HR, relación de riesgo; IC, intervalo de confianza.
Los descubrimientos sugieren que la adición de MMP-10 a los marcadores ya presentes en el marco de investigación actual fue capaz de mejorar el valor pronóstico para los individuos con patología de amiloide pero no patología de tau y/o neurodegeneración. Basándose en estos resultados, se decidió estratificar la cohorte de DCN independiente con la clasificación [A/T/M/N] (Tabla 9). Tabla 9. Características demográficas y clínicas de cada grupo de A/T/M/(N) en la cohorte de
DCN.
Grupo de A/T/M/(N)
A-/T -/ A-/T-/ A+/T -/ A+/T-/ A+/T+/ A+/T+/ A+/T+/ A+/T+/
M-/(N) M+/(N) M-/(N) M+/(N) M-/(N) M+/(N) M-/(N) M+/(N)
Características +
N = 24 N = 6 N = 20 N = 3 N = 0 N = 0 N = 4 N = 21
Sexo (%)
Masculino 62.5 83,3 60 66,7 50 52,4
Femenino 37.5 16,7 30 33,3 50 47,6
Estratos de APOE (%) E2 16,7 0 0 0 0 4,8 E3 50 83,3 55 66,7 25 38,1 E4 33,3 16,7 45 33,3 75 57,1
Edad en punción lumbar 61 64,5 75 68,5 75 os, mediana (IQR)) ( 67 (9) (añ 8.25) (9.25) (7,5) (6,25) (15)
Puntuación MMSE (mediana 29 27 28 29 (IQR)) (2.25) (3,5) (1 .25) (2,5)
Figure imgf000027_0001
Tasa de conversión (%) 4,2 16,7 15 33,3 50 71 ,4
Tiempo para conversión/último FU (meses 35,65 30,6 25,9 38,7 27,4 26
(12,93) (18,33) (18,75) (13,95) (1 ,78) (12,6) mediana (IQR))
Biomarcadores de LCR (pg/ml, mediana (IQR))
1064
Ab42 (389,2 11 17,5 547,5
( 297 455,5 582
(167,5) 271 ,2 (209,5) (42) (158)
5) 5)
P-tau 44 49,5 45 37 97,5 100
(13,8) (23,75) (19,25) (14,5) (19,5) (42) 233,5 319 267,5 390 555
T-tau (161 ,7 (207,2 (238, 727
(73,3) (74,5) 2 (3,8)
5) 5) 5)
MMP-10 (NPX, mediana 3,10 3,92 3,23 3,72 3,53 4,16 (IQR)) (0,61) (0,41) (0,48) (0,48) (0,10) (0,48)
Notaciones: los genotipos de APOE se clasificaron en los estratos E2, E3 y E4 como sigue a continuación: E2, e2e2 and e2e3; E3, e3e3; E4, e2e4, e3e4, y e4e4. FU, seguimiento; NPX, expresión proteica normalizada.
El nivel en LCR de MMP-10 proporciona una dimensión complementaria que puede asociarse al envejecimiento
Para ganar cierta percepción del valor añadido de MMP-10 en el esquema [A/T/M/(N)], se usaron todas las proteínas restantes en los paneles de
ProSeek® Multiplex y se calculó la correlación de estas proteínas con edad, MMP-10, Ab42, P-tau181 o T-tau en los mismos pacientes para analizar sistemáticamente proteínas relacionadas con el diagnóstico (DCS, DCLe, y DCLp). A continuación, se realizó un agrupamiento de correlación y se observó que, mientras que los perfiles de correlación correspondientes a edad y MMP-10 se agruparon conjuntamente, Ab42, P-tau181 y T-tau formaron una agrupación diferente (Figura 4). Finalmente, nuestra muestra se estratificó en grupos de 10 años de edad y estado de conversión (DCS más DCLe frente a DCLp). Se observó que el nivel de MMP-10 aumentó ininterrumpidamente con la edad en pacientes con DCS y DCLe, mientras que P-tau181 y T-tau exhibieron un efecto de meseta a partir de los 60 años de edad (Figura 8). De forma interesante, el nivel de MMP-10 en DCLe para una edad superior a 80 años mostró un nivel similar al de DCLp inferior a 60 años de edad.
Observaciones
Se confirmó que MMP-10 aumenta en DCL cuando se compara con pacientes con DCS. También se probó que un mayor nivel de MMP-10 está asociado a un aumento de riesgo de progresión a demencia por EA en ambas cohortes. Además, MMP-10 tiene una correlación moderada con P-tau181 y T-tau, y una relación negativa baja con Ab42, lo que indica que se dirige a rutas patogénicas independientes, al menos en parte, de las marcadas por los biomarcadores de EA principales. Además, se demuestra que la adición del nivel en LCR de MMP-10 a los marcadores ya incluidos en el esquema [A/T/(N)j, con la notación [A/T/M/(N)j, mejoró considerablemente el valor pronóstico en pacientes con DCL con Ab42 anormal, pero P-tau181 y T-tau normales. Finalmente, los datos sugieren que el nivel de MMP-10 en LCR podría reflejar convergencia con las rutas de envejecimiento y neuroinflamación.
Se enumeran posteriormente las citas y referencias usadas por el inventor con el fin de describir con mayor detalle el estado de la técnica a la que pertenece la presente invención.
La invención se ha descrito de forma ilustrativa, y se ha de entender que la terminología que se ha usado pretende ser de naturaleza descriptiva en lugar de limitante. Obviamente, son posibles numerosas modificaciones y variaciones de la presente invención a la luz de las enseñanzas anteriores. Por lo tanto, se ha de entender que, dentro del alcance de las reivindicaciones anexas, la invención se puede poner en práctica de otro modo que el descrito específicamente.
Referencias - Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework:
Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement 2018; 14: 535-62.
- Hampel H, O’Bryant SE, Molinuevo JL, et al. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol 2018; 14: 639-52.
- Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies. Mol. Psychiatry. 2020; : 1-13.
- Nuttall RK, Silva C, Hader W, et al. Metalloproteinases are enriched in microglia compared with leukocytes and they regúlate cytokine levels in activated microglia. Glia 2007. D0l:10.1002/glia.20478.
- Thorns V, Walter GF, Thorns C. Expression of MMP-2, MMP-7, MMP-9, MMP-10 and MMP-11 in Fluman Astrocytic and Oligodendroglial Gliomas. Anticancer Res 2003.
- Palmqvist S, Hertze J, Minthon L, et al. Comparison of brief cognitive tests and csf biomarkers in predicting alzheimer’s disease in mild cognitive impairment: Six-year follow-up study. PLoS One 2012.
DOI: 10.1371/journal. pone.0038639.
- Jack CR, Hampel HJ, Universities S, Cu M, Petersen RC. A new classification system for AD, independent of cognition A / T / N : An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016.
- van Maurik IS, Vos SJ, Bos I, et al. Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study. Lancet Neurol 2019; 18: 1034-44.
- Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E. tau protein in cerebrospinal fluid - A biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 1995. D0l:10.1007/BF02815140.
- Sternlicht MD, Werb Z. How rnatrix metalloproteinases regúlate cell behavior. In: Annual Review of Cell and Developmental Biology. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA, 2001 : 463-516.
- Backstrom JR, Lim GP, Cullen MJ, Tókés ZA. Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-b peptide (1-40). J Neurosci 1996; 16: 7910-9.
- Yan P, Hu X, Song H, et al. Matrix metalloproteinase-9 degrades amyloid-b fibrils in vitro and compact plaques in situ. J Biol Chem 2006; 281 : 24566-74.
- Bjerke M, Zetterberg H, Edman A, Blennow K, Wallin A, Andreasson U. Cerebrospinal fluid rnatrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer’s disease. J Alzheimer’s Dis 2011. DOI: 10.3233/JAD-2011 -110566.
- Craig-Schapiro R, Kuhn M, Xiong C, et al. Multiplexed immunoassay panel identifies novel CSF biomarkers for alzheimer’s disease diagnosis and prognosis. PLoS One 2011. DOI:10.1371/journal. pone.0018850.
- Duits FH, Flernandez-Guillamon M, Montaner J, et al. Matrix Metalloproteinases in Alzheimer’s Disease and Concurrent Cerebral Microbleeds. J Alzheimer’s Dls 2015; 48: 711-20.
- Whelan CD, Mattsson N, Nagle MW, et al. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol Commun 2019. DOI: 10.1186/s40478-019-0795-2.
- Lago JC, Puzzi MB. The effect of aging in primary human dermal fibroblasts. PLoS One 2019; 14: e0219165.
- Mora-Gutiérrez JM, Rodríguez JA, Fernández-Seara MA, et al. MMP-10 is Increased in Early Stage Diabetic Kidney Disease and can be Reduced by Renin-Angiotensin System Blockade. Sel Rep 2020; 10: 1-12.
- Montero I, Orbe J, Varo N, et al. C-reactive protein induces matrix metalloproteinase-1 and -10 in human endothelial cells: Implications for clinical and subclinical atherosclerosis. J Am Coll Cardlol 2006; 47: 1369-78. - Santaella A, Kuiperij HB, Van Rumund A, et al. Inflammation biomarker discovery in Parkinson’s disease and atypical parkinsonisms. BMC Neurol 2020; 20: 26.
- Tchkonia T, Zhu Y, Van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J. Clin. Invest. 2013; 123: 966-72.
- Lye JJ, Latorre E, Lee BP, et al. Astrocyte senescence may drive alterations in GFAPa, CDKN2A p14 ARF, and TAU3 transcript expression and contribute to cognitive decline. GeroScience 2019; 41: 561-73.
- Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 2018; 19: 610-21.
- Tan FCC, Hutchison ER, Eitan E, Mattson MP. Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology. 2014; 15: 643-60.
- Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. 2020; 11: 1024.
- Hanisch UK, Kettenmann H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007. DOI: 10.1038/nn1997.
- De Strooper B, Karran E. The Cellular Phase of Alzheimer’s Disease. Cell. 2016; 164: 603-15.
- Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M. Role of Astrocytes in Brain Function and Disease. Toxicol Pathol 2011 ; 39: 115-23.
- Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell. Mol. Life Sci. 2019; 76: 3207-28.

Claims

REIVINDICACIONES
1. Un biomarcador para predecir la presencia o riesgo de enfermedad de Alzheimer (EA) en un mamífero, o para ayudar en el diagnóstico de EA y trastornos relacionados, que comprende el biomarcador metaloproteinasa 10 (MMP-10), en donde niveles aumentados de MMP-10 son indicativos de la presencia, riesgo, progresión o gravedad de EA.
2. Un biomarcador de la reivindicación 1, en donde dicha MMP-10 se usa en combinación con el esquema de clasificación [A/T/(N)] (amiloide/patología de tau/neurodegeneración) de patología de EA.
3. El biomarcador de la reivindicación 1, en donde la muestra de fluido biológico es líquido cefalorraquídeo (LCR), sangre, suero, o plasma.
4. El biomarcador de la reivindicación 3, en donde la muestra de fluido biológico es líquido cefalorraquídeo (LCR).
5. El biomarcador de la reivindicación 1, en donde el mamífero es un ser humano.
6. El biomarcador de la reivindicación 1 , en donde el mamífero es un paciente con deterioro cognitivo leve (DCL).
7. El biomarcador de la reivindicación 1, en donde dicha MMP-10 predice la progresión de enfermedad en el estadio de predemencia de enfermedad de Alzheimer (EA).
8. El biomarcador de la reivindicación 1, en donde dicha MMP-10 predice la progresión de enfermedad de deterioro cognitivo leve (DCL) a demencia manifiesta.
9. El biomarcador de la reivindicación 1, en donde dicha MMP-10 predice la progresión de enfermedad de deterioro cognitivo leve (DCL) a demencia por enfermedad de Alzheimer (DEA).
10. El biomarcador de la reivindicación 1, mejora el valor pronóstico en pacientes con deterioro cognitivo leve (DCL) con amiloide positivo/tau negativa.
11. Un método para predecir la presencia o riesgo de enfermedad de Alzheimer (EA) en un mamífero, o para ayudar en el diagnóstico de EA y trastornos relacionados, comprendiendo el método determinar la cantidad del biomarcador metaloproteinasa 10 (MMP-10); en donde niveles aumentados de la MMP-10 son indicativos de la presencia, riesgo, progresión o gravedad de EA.
12. Un método de la reivindicación 11, en donde dicha metaloproteinasa 10 (MMP-10) se usa en combinación con el esquema de clasificación [A/T/(N)j
(amiloide/patología de tau/neurodegeneración) de biomarcador de patología de EA.
13. El método de la reivindicación 11 o 12, en donde los biomarcadores se obtienen de una muestra de fluido biológico.
14. El método de la reivindicación 13, en donde la muestra de fluido biológico es líquido cefalorraquídeo (LCR), sangre, suero, o plasma.
15. El método de la reivindicación 14, en donde la muestra de fluido biológico es líquido cefalorraquídeo (LCR).
16. El método de la reivindicación 11 , en donde el mamífero es un ser humano.
17. El método de la reivindicación 11, en donde el mamífero es un paciente con deterioro cognitivo leve (DCL).
18. El método de la reivindicación 11, en donde el mamífero es un paciente con deterioro cognitivo leve (DCL) con amiloide positivo/tau negativa.
19. El método de la reivindicación 11, en donde dicha MMP-10 predice la progresión de enfermedad en el estadio de predemencia de enfermedad de Alzheimer (EA).
20. El método de la reivindicación 11, en donde dicha MMP-10 predice la progresión de enfermedad de deterioro cognitivo leve (DCL) a demencia manifiesta.
21. El método de la reivindicación 11, en donde dicha MMP-10 predice la progresión de enfermedad de deterioro cognitivo leve (DCL) a demencia por enfermedad de Alzheimer (DEA).
22. Un kit que comprende la metaloproteinasa 10 de matriz (MMP-10), en donde el kit se usa para determinar la presencia o riesgo de EA en un mamífero, o para ayudar en el diagnóstico y EA y trastornos relacionados.
23. El kit de la reivindicación 22, en donde dicha metaloproteinasa 10 de matriz (MMP-10) se usa en combinación con el esquema de clasificación [A/T/(N)] (amiloide/patología de tau/neurodegeneración) de biomarcador de patología de EA.
24. El kit de la reivindicación 22 o 23, en donde los biomarcadores se obtienen de una muestra de fluido biológico.
25. El kit de la reivindicación 24, en donde la muestra de fluido biológico es líquido cefalorraquídeo (LCR), sangre, suero, o plasma.
26. El kit de la reivindicación 1, en donde el mamífero es un paciente con deterioro cognitivo leve (DCL).
27. El kit de la reivindicación 22, en donde dicha MMP-10 predice la progresión de enfermedad en el estadio de predemencia de enfermedad de Alzheimer (EA).
28. El kit de la reivindicación 22, en donde dicha MMP-10 predice la progresión de enfermedad de deterioro cognitivo leve (DCL) a demencia manifiesta.
29. El kit de la reivindicación 22, en donde dicha MMP-10 predice la progresión de enfermedad de deterioro cognitivo leve (DCL) a demencia por enfermedad de Alzheimer (DEA).
PCT/ES2022/070137 2021-04-09 2022-03-09 Biomarcador en líquido cefalorraquídeo para enfermedad de alzheimer WO2022214717A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21382305.7A EP4071480A1 (en) 2021-04-09 2021-04-09 Cerebrospinal fluid biomarker for alzheimer's disease
EP21382305.7 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022214717A1 true WO2022214717A1 (es) 2022-10-13

Family

ID=75529959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070137 WO2022214717A1 (es) 2021-04-09 2022-03-09 Biomarcador en líquido cefalorraquídeo para enfermedad de alzheimer

Country Status (2)

Country Link
EP (1) EP4071480A1 (es)
WO (1) WO2022214717A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057138A1 (en) * 2009-11-07 2011-05-12 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2016003719A1 (en) * 2014-07-03 2016-01-07 The General Hospital Corporation Autoantigens for diagnosis of chronic inflammatory diseases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057138A1 (en) * 2009-11-07 2011-05-12 Astute Medical, Inc. Methods and compositions for diagnosis and prognosis of renal injury and renal failure
WO2016003719A1 (en) * 2014-07-03 2016-01-07 The General Hospital Corporation Autoantigens for diagnosis of chronic inflammatory diseases

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
BACKSTROM JRLIM GPCULLEN MJTÓKÉS ZA: "Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyÍoid-β peptide (1-40", J NEUROSCI, vol. 16, 1996, pages 7910 - 9
BEROUN AMITRA SMICHALUK PPIJET BSTEFANIUK MKACZMAREK L: "MMPs in learning and memory and neuropsychiatric disorders", CELL. MOL. LIFE SCI., vol. 76, 2019, pages 3207 - 28, XP036840189, DOI: 10.1007/s00018-019-03180-8
BJERKE MZETTERBERG HEDMAN ABLENNOW KWALLIN AANDREASSON U: "Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer's disease", J ALZHEIMER'S DIS, 2011
BLENNOW KWALLIN AAGREN HSPENGER CSIEGFRIED JVANMECHELEN E: "tau protein in cerebrospinal fluid - A biochemical marker for axonal degeneration in Alzheimer disease?", MOL CHEM NEUROPATHOL, 1995
BOSTRÖM G. ET AL.: "Different inflammatory signatures in Alzheimer's disease and frontotemporal dementia cerebrospinal fluid", J. ALZHEIMER'S DISEASE, vol. 81, no. 2, 1 April 2021 (2021-04-01), pages 629 - 640, XP055844582 *
CRAIG-SCHAPIRO RKUHN MXIONG C ET AL.: "Multiplexed immunoassay panel identifies novel CSF biomarkers for alzheimer's disease diagnosis and prognosis", PLOS ONE, 2011
DE STROOPER BKARRAN E: "The Cellular Phase of Alzheimer's Disease", CELL, vol. 164, 2016, pages 603 - 15
DUITS FHHERNANDEZ-GUILLAMON MMONTANER J ET AL.: "Matrix Metalloproteinases in Alzheimer's Disease and Concurrent Cerebral Microbleeds", J ALZHEIMER'S DIS, vol. 48, 2015, pages 711 - 20
HAMPEL HO'BRYANT SEMOLINUEVO JL ET AL.: "Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic", NAT REV NEUROL, vol. 14, 2018, pages 639 - 52, XP036624705, DOI: 10.1038/s41582-018-0079-7
HANISCH UKKETTENMANN H: "Microglia: Active sensor and versatile effector cells in the normal and pathologic brain", NAT. NEUROSCI., 2007
HENEKA MTMCMANUS RMLATZ E: "Inflammasome signalling in brain function and neurodegenerative disease", NAT. REV. NEUROSCI., vol. 19, 2018, pages 610 - 21, XP036699534, DOI: 10.1038/s41583-018-0055-7
JACK CRBENNETT DABLENNOW K ET AL.: "NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease", ALZHEIMER'S DEMENT, vol. 14, 2018, pages 535 - 62, XP085378277, DOI: 10.1016/j.jalz.2018.02.018
JACK CRHAMPEL HJUNIVERSITIES SCU MPETERSEN RC: "A new classification system for AD, independent of cognition A / T / N : An unbiased descriptive classification scheme for Alzheimer disease biomarkers", NEUROLOGY, 2016
LAGO JCPUZZI MB: "The effect of aging in primary human dermal fibroblasts", PLOS ONE, vol. 14, 2019, pages e0219165
LIU LRLIU JCBAO JSBAI QQWANG GQ: "Interaction of Microglia and Astrocytes in the Neurovascular Unit", FRONT. IMMUNOL., vol. 11, 2020, pages 1024
LYE JJLATORRE ELEE BP ET AL.: "Astrocyte senescence may drive alterations in GFAPa, CDKN2A p14 ARF, and TAU3 transcript expression and contribute to cognitive decline", GEROSCIENCE, vol. 41, 2019, pages 561 - 73
MONTERO IORBE JVARO N ET AL.: "C-reactive protein induces matrix metalloproteinase-1 and -10 in human endothelial cells: Implications for clinical and subclinical atherosclerosis", J AM COLL CARDIOL, vol. 47, 2006, pages 1369 - 78, XP029656254, DOI: 10.1016/j.jacc.2005.10.070
MORA-GUTIÉRREZ JMRODRÍGUEZ JAFERNÁNDEZ-SEARA MA ET AL.: "MMP-10 is Increased in Early Stage Diabetic Kidney Disease and can be Reduced by Renin-Angiotensin System Blockade", SCI REP, vol. 10, 2020, pages 1 - 12
NAZERI A. ET AL.: "Imaging proteomics for diagnosis, monitoring and prediction of Alzheimer's disease", NEUROIMAGE, vol. 102, 28 August 2014 (2014-08-28), pages 657 - 665, XP029078824 *
NUTTALL RKSILVA CHADER W ET AL.: "Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia", GLIA, 2007
PALMQVIST SHERTZE JMINTHON L ET AL.: "Comparison of brief cognitive tests and csf biomarkers in predicting alzheimer's disease in mild cognitive impairment: Six-year follow-up study", PLOS ONE, 2012
SANTAELLA AKUIPERIJ HBVAN RUMUND A ET AL.: "Inflammation biomarker discovery in Parkinson's disease and atypical parkinsonisms", BMC NEUROL, vol. 20, 2020, pages 26
SIDORYK-WEGRZYNOWICZ MWEGRZYNOWICZ MLEE EBOWMAN ABASCHNER M: "Role of Astrocytes in Brain Function and Disease", TOXICOL PATHOL, vol. 39, 2011, pages 115 - 23
STERNLICHT MDWERB Z: "How matrix metalloproteinases regulate cell behavior", ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY. ANNUAL REVIEWS
SYED A.H. ET AL.: "An ensemble-learning based application to predict the earlier stages of Alzheimer's disease (AD)", IEEE ACCESS, IEEE, USA, vol. 8, 9 December 2020 (2020-12-09), pages 222126 - 222143, XP011827111 *
TAN FCCHUTCHISON EREITAN EMATTSON MP: "Are there roles for brain cell senescence in aging and neurodegenerative disorders?", BIOGERONTOLOGY, vol. 15, 2014, pages 643 - 60, XP035410628, DOI: 10.1007/s10522-014-9532-1
TCHKONIA TZHU YVAN DEURSEN JCAMPISI JKIRKLAND JL: "Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities", J. CLIN. INVEST., vol. 123, 2013, pages 966 - 72, XP055347148, DOI: 10.1172/JCI64098
THORNS VWALTER GFTHORNS C: "Expression of MMP-2, MMP-7, MMP-9, MMP-10 and MMP-11 in Human Astrocytic and Oligodendroglial Gliomas", ANTICANCER RES, 2003
VAN MAURIK ISVOS SJBOS I ET AL.: "Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study", LANCET NEUROL, vol. 18, 2019, pages 1034 - 44, XP085855403, DOI: 10.1016/S1474-4422(19)30283-2
WHELAN CDMATTSSON NNAGLE MW ET AL.: "Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer's disease", ACTA NEUROPATHOL COMMUN, 2019
YAN PHU XSONG H ET AL.: "Matrix metalloproteinase-9 degrades amyÍoid-β fibrils in vitro and compact plaques in situ", J BIOL CHEM, vol. 281, 2006, pages 24566 - 74
ZETTERBERG HBENDLIN BB: "Biomarkers for Alzheimer's disease-preparing for a new era of disease-modifying therapies", MOL. PSYCHIATRY., 2020, pages 1 - 13

Also Published As

Publication number Publication date
EP4071480A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
Bereczki et al. Synaptic proteins predict cognitive decline in Alzheimer's disease and Lewy body dementia
Taipa et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer's disease and their correlation with cognitive decline
Carro et al. Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin
US9880165B2 (en) Detection of worsening renal disease in subjects with systemic lupus erythematosus
Thordardottir et al. The effects of different familial Alzheimer’s disease mutations on APP processing in vivo
Amadoro et al. Cerebrospinal Fluid Levels of a 20–22 kDa NH 2 Fragment of Human Tau Provide a Novel Neuronal Injury Biomarker in Alzheimer's Disease and Other Dementias
Kümmerle‐Deschner et al. Risk factors for severe Muckle‐Wells syndrome
ES2630905T3 (es) Proteínas inmunitarias innatas como biomarcadores para lesiones del SNC
Wu et al. Neutrophil activation in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis of protein markers in blood and cerebrospinal fluid
Jordanova et al. Markers of inflammation and cognitive decline in an African‐Caribbean population
CN102933966A (zh) 阿尔茨海默病的新型诊断制剂
Akingbade et al. Platelets: peripheral biomarkers of dementia?
Baldeiras et al. Cerebrospinal fluid Aβ40 is similarly reduced in patients with frontotemporal lobar degeneration and Alzheimer's disease
Shultz et al. Temporal proteomics of human cerebrospinal fluid after severe traumatic brain injury
US20110182820A1 (en) Methods for the prediction of short-term and long-term cognitive decline in alzheimer&#39;s disease patients using csf biomarkers
Tan et al. Low plasma uromodulin is a predictor of early stage chronic kidney disease progression
KR102164490B1 (ko) 알츠하이머성 치매 진단용 바이오마커 조성물 및 이의 용도
ES2400255T3 (es) Procedimiento in vitro para la diagnosis y la diagnosis precoz de enfermedades neurodegenerativas
Puig-Pijoan et al. The CORCOBIA study: cut-off points of Alzheimer’s disease CSF biomarkers in a clinical cohort
Hashimoto et al. A fragment of S38AA is a novel plasma biomarker of Alzheimer’s disease
Santangelo et al. Plasma neurofilament light chain levels and cognitive testing as predictors of fast progression in Alzheimer’s disease
WO2022214717A1 (es) Biomarcador en líquido cefalorraquídeo para enfermedad de alzheimer
Liguori et al. Biomarkers of cerebral glucose metabolism and neurodegeneration in Parkinson’s disease: A cerebrospinal fluid-based study
Kuller A new era for dementia epidemiology: Alzheimer’s disease, hardening of arteries, or just old age?
García-Escobar et al. NEURONORMA Cognitive Battery Associations with Cerebrospinal Fluid Amyloid-β and Tau Levels in the Continuum of Alzheimer’s Disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22710638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22710638

Country of ref document: EP

Kind code of ref document: A1