WO2022214104A1 - 用于膝关节置换手术的压力测量系统和压力测量方法 - Google Patents

用于膝关节置换手术的压力测量系统和压力测量方法 Download PDF

Info

Publication number
WO2022214104A1
WO2022214104A1 PCT/CN2022/090078 CN2022090078W WO2022214104A1 WO 2022214104 A1 WO2022214104 A1 WO 2022214104A1 CN 2022090078 W CN2022090078 W CN 2022090078W WO 2022214104 A1 WO2022214104 A1 WO 2022214104A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
knee joint
sensor array
pressure sensor
patella
Prior art date
Application number
PCT/CN2022/090078
Other languages
English (en)
French (fr)
Inventor
孟李艾俐
周越
Original Assignee
骨圣元化机器人(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 骨圣元化机器人(深圳)有限公司 filed Critical 骨圣元化机器人(深圳)有限公司
Publication of WO2022214104A1 publication Critical patent/WO2022214104A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device

Definitions

  • the application belongs to the technical field of medical devices, and in particular relates to a pressure measurement system and a pressure measurement method for knee replacement surgery.
  • Knee replacement surgery is highly complex. It is necessary to ensure accurate osteotomy in three-dimensional space and accurate matching with the prosthesis, as well as to pay attention to the balance of soft tissue. Therefore, it requires extremely high surgical skills and experience for doctors.
  • the embodiments of the present application provide a pressure measurement system and a pressure measurement method for knee replacement surgery, so as to solve the problem that it is difficult to obtain a good knee joint gap balance and patella trajectory in the prior art.
  • embodiments of the present application provide a pressure measurement system for knee replacement surgery
  • the pressure measurement system includes a first pressure sensor array, a second pressure sensor array and a pressure display
  • the first pressure sensor The array is arranged on the femoral condyle surface of the knee joint
  • the second pressure sensor array is arranged on the femoral trochlear surface of the knee joint
  • the first pressure sensor array and the second pressure sensor array are respectively connected with the pressure display ;
  • the first pressure sensor array for collecting knee joint space pressure and transmitting the knee joint space pressure to the pressure display
  • the second pressure sensor array for collecting the patella pressure of the knee joint and transmitting the patella pressure to the pressure display
  • the pressure display is used for displaying the knee joint space pressure and the patella pressure.
  • embodiments of the present application provide a pressure measurement method for knee replacement surgery, which is applied to a pressure measurement system, where the pressure measurement system includes a first pressure sensor array, a second pressure sensor array, and a pressure display,
  • the first pressure sensor array is arranged on the femoral condyle surface of the knee joint
  • the second pressure sensor array is arranged on the femoral trochlear surface of the knee joint
  • the first pressure sensor array and the second pressure sensor array are respectively Connected with the pressure display
  • the pressure measurement method includes:
  • the first pressure sensor array collects knee joint space pressure, and transmits the knee joint space pressure to the pressure display;
  • the second pressure sensor array collects the patellar pressure of the knee joint and transmits the patellar pressure to the pressure display;
  • the pressure display displays the knee joint space pressure and the patella pressure.
  • the pressure measurement system for knee replacement surgery includes a first pressure sensor array, a second pressure sensor array and a pressure display.
  • the first pressure sensor array is arranged on the surface of the femoral condyle of the knee joint for Collect the knee joint space pressure and transmit the knee joint space pressure to the pressure display
  • the second pressure sensor array is arranged on the surface of the femoral trochlear of the knee joint, and is used to collect the patellar pressure of the knee joint and transmit the patellar pressure to the pressure display
  • the pressure display can display the received pressure. to the knee joint space pressure and patella pressure.
  • the doctor can more accurately adjust the balance of the knee joint space, so as to ensure a good knee joint space balance in the knee replacement surgery.
  • the pressure of the patella displayed on the pressure monitor the pressure of the patella can reflect the trajectory of the patella
  • the doctor can more accurately adjust the trajectory of the patella, thereby ensuring a good trajectory of the patella during knee replacement surgery.
  • FIG. 1 is a schematic structural diagram of a pressure measurement system for knee replacement surgery provided in Embodiment 1 of the present application;
  • Fig. 2 is the setting example diagram of the pressure sensor array
  • 3a is an example diagram of the first gap filler filling the knee joint space
  • 3b is an example diagram of the third gap filler and the fourth gap filler filling the knee joint space
  • Fig. 4 is another arrangement example diagram of the pressure sensor array
  • Figure 5 is a display example diagram of a pressure display
  • FIG. 6 is a schematic flowchart of the implementation of the pressure measurement method for knee replacement surgery provided in the second embodiment of the present application.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 1 it is a schematic structural diagram of a pressure measurement system for knee replacement surgery provided in Embodiment 1 of the present application. For convenience of description, only the parts related to the embodiments of the present application are shown.
  • the above-mentioned pressure measurement system includes a first pressure sensor array 11 , a second pressure sensor array 12 and a pressure display 13 , and the first pressure sensor array 11 and the second pressure sensor array 12 are respectively connected to the pressure display 13 .
  • the first pressure sensor array 11 can establish a connection with the pressure display 13 through wireless communication or wired communication. After the connection is established, data transmission can be performed between the first pressure sensor array 11 and the pressure display 13 .
  • the second pressure sensor array 12 can establish a connection with the pressure display 13 through wireless communication or wired communication. After the connection is established, data transmission can be performed between the second pressure sensor array 12 and the pressure display 13 .
  • the above-mentioned wireless communication methods include but are not limited to wireless fidelity (wireless fidelity, WiFi), Bluetooth, third-generation mobile communication technology, fourth-generation mobile communication technology, fifth-generation mobile communication technology, and the like.
  • the above-mentioned wired communication methods include, but are not limited to, electric wires, audio cables, universal serial buses, and the like.
  • the first pressure sensor array 11 is disposed on the surface of the femoral condyle of the knee joint, and is used to collect the knee joint space pressure and transmit the knee joint space pressure to the pressure display 13 .
  • the second pressure sensor array 12 is disposed on the surface of the femoral trochlear of the knee joint, and is used to collect the patellar pressure of the knee joint and transmit the patellar pressure to the pressure display 13 .
  • the pressure indicator 13 is used to display the knee joint space pressure and the patella pressure.
  • FIG. 2 shows an example of the setup of the pressure sensor array.
  • the interstitial pressure measurement area in FIG. 2 is the area where the first pressure sensor array 11 is disposed, that is, the surface of the femoral condyle.
  • the patella pressure measurement area in FIG. 2 is the area where the second pressure sensor array 12 is disposed, that is, the surface of the femoral trochlea.
  • the first pressure sensor array 11 may transmit the collected knee joint space pressure to the pressure display 13 under the condition of receiving the first pressure transmission instruction sent by the pressure display 13 , or may transmit the collected knee joint space pressure to the pressure display 13 . After the pressure is applied, the collected knee joint space pressure is automatically transmitted to the pressure display 13, which is not limited herein.
  • the above-mentioned first pressure transmission instruction is used to instruct the first pressure sensor array 11 to transmit the knee joint gap pressure to the pressure display 13 .
  • the second pressure sensor array 12 may transmit the collected patellar pressure to the pressure display 13 under the condition of receiving the second pressure transmission instruction sent by the pressure display 13, or may automatically transmit the collected patellar pressure after collecting the patellar pressure.
  • the acquired patellar pressure is transmitted to the pressure display 13, which is not limited here.
  • the above-mentioned second pressure transmission instruction is used to instruct the second pressure sensor array 12 to transmit the pressure of the patella to the pressure display 13 .
  • the pressure display 13 may display the pressure when receiving the pressure transmitted by any of the pressure sensor arrays (ie, any one of the first pressure sensor array 11 and the second pressure sensor array 12 ), that is, The knee joint space pressure and the patella pressure may not be displayed simultaneously on the pressure display 13 .
  • the pressure display 13 can also display the knee joint space pressure and the patella pressure simultaneously after receiving the knee joint space pressure transmitted by the first pressure sensor array 11 and the patella pressure transmitted by the second pressure sensor array 12 .
  • the knee joint space is the space between the femoral condyle of the knee joint and the tibial plateau.
  • the knee joint space can be divided according to the knee joint angle. For example, when the knee joint angle is 90°, the knee joint space can be referred to as the flexion gap; when the knee joint angle is 180°, the knee joint space can be referred to as the extension gap. With the patient's leg in flexion, the knee angle is 90°. When the patient's leg is in the straight position, the knee angle is 180°.
  • the flexion gap is the space between the posterior femoral condyle of the knee joint and the tibial plateau, that is, when the patient's leg is in flexion, the femoral condyle can be called the posterior femoral condyle.
  • the extension gap is the gap between the distal femur of the knee joint and the tibial plateau, ie when the patient's leg is in extension, the femoral condyle may be referred to as the distal femur.
  • the knee joint space includes the medial knee joint space and the lateral knee joint space.
  • the medial knee space is the space between the medial femoral condyle and the tibial plateau.
  • the lateral knee space is the space between the lateral femoral condyle and the tibial plateau.
  • the knee joint space pressure may include the knee joint medial space pressure and the knee joint lateral space pressure.
  • Medial knee space pressure may refer to the pressure between the medial femoral condyle and the tibial plateau.
  • the lateral knee space pressure may refer to the pressure between the lateral condyle of the femur and the tibial plateau.
  • Patellar pressure includes medial patellar pressure and lateral patellar pressure.
  • Medial patella pressure may refer to the pressure between the medial side of the patella and the femoral trochlea.
  • Lateral patellar pressure may refer to the pressure between the lateral side of the patella and the femoral trochlea.
  • the above-mentioned first pressure sensor array 11 includes at least two pressure sensors, which can respectively collect the pressure in the medial space of the knee joint and the space pressure at the lateral side of the knee joint.
  • the above-mentioned first pressure sensor array 11 includes two pressure sensors, which may be referred to as pressure sensor 1 and pressure sensor 2 respectively. pressure.
  • the above-mentioned second pressure sensor array 12 includes at least two pressure sensors, which can respectively collect the pressure on the medial side of the patella and the pressure on the lateral side of the patella.
  • the above-mentioned second pressure sensor array 12 includes two pressure sensors, which may be referred to as pressure sensor 3 and pressure sensor 4 respectively.
  • knee replacement surgery can be divided into three stages: the stage where neither the tibial plateau nor the femur is osteotomy, the stage where the tibial plateau is osteotomy and the femur is not osteotomy, and Both the tibial plateau and the femur are in the osteotomy stage.
  • the knee joint space pressure and the patella pressure in the above three stages can be measured, and the knee joint space pressure and the patella pressure in each of the above three stages can be obtained.
  • the doctor can perform the incision exposure according to the conventional approach.
  • the knee joint can be placed in a flexed position, the first pressure sensor array 11 can be placed on the surface of the femoral condyle, and then the knee joint can be placed in a straight position, so that the first pressure sensor array 11 Inserted into the knee joint space to capture the space pressure (i.e. knee joint space pressure) during the target movement of the knee joint.
  • the above-mentioned target movement includes, but is not limited to, knee joint varus movement, knee joint flexion and extension movement, and the like.
  • the gap between the femoral condyle and the tibial plateau is large, which affects the first pressure sensor array 11 to collect the knee joint gap pressure.
  • the knee joint space may be filled with a gap filling sheet, so that the first pressure sensor array 11 more closely fits the surface of the femoral condyle.
  • gap fillers can be printed by 3D printing technology.
  • the above-mentioned gap filling sheet includes the shape of the gap in the whole process of the target movement.
  • the gap filler is used to fill the knee joint space, which is the gap between the femoral condyle and the tibial plateau
  • the upper surface morphology of the gap filler matches that of the femoral condyle surface.
  • the shape of the inferior surface of the tibial plateau matches the shape of the tibial plateau to ensure that the gap filler can properly fill the knee joint space.
  • the gap filler used in the stage where neither the tibial plateau nor the femur is osteotomized is different from that in the stage where the tibial plateau is osteotomy and the femur is not osteotomy.
  • the bottom surface morphology of the gap filler used is different.
  • the gap filler used in the stage where neither the tibial plateau nor the femur is osteotomized can be called the first gap filler.
  • the gap filler used in the non-osteotomy stage is called the second gap filler.
  • Fig. 3a is an example of filling the knee joint space with the first gap filler.
  • the first gap filler in Fig. 3a is used to fill the knee joint space when neither the tibial plateau nor the femur is osteotomy.
  • Different knee replacement surgeries may have different thicknesses of the tibial plateau osteotomy, so the knee joint space is also different. Therefore, at least two different types of gap fillers can be used when the tibial plateau has been osteotomy and the femur has not been osteotomy. Fill the knee joint space so that the gap filler can be used for different knee joint spaces.
  • the tibial plateau has been osteotomy and the femur has not been osteotomy
  • two different types of gap fillers are used to fill the knee joint space
  • these two different types of gap fillers can be called third gap fillers respectively and the fourth gap filler
  • the upper surface morphology of the third gap filler matches the morphology of the femoral condyle surface
  • the third gap filler The inferior surface morphology of the fourth gap filler matches the superior surface morphology of the fourth gap filler
  • the inferior surface morphology of the fourth gap filler matches the morphology of the tibial plateau after osteotomy.
  • the third gap filler is combined with at least one fourth gap filler to fill different knee joint spaces.
  • the lower surface of the third gap-filling sheet and the upper surface of the fourth gap-filling sheet may be flat surfaces.
  • Figure 3b is an example of filling the knee joint space with the third and fourth gap fillers.
  • the third and fourth gap fillers in Figure 3b are used to fill the tibial plateau and the femur Knee joint space in the non-osteotomy stage.
  • the gap filler can be determined based on a three-dimensional model of the knee joint. Specifically, the three-dimensional model of the knee joint can be obtained; according to the three-dimensional model of the knee joint, the three-dimensional model of the femoral condyle, the three-dimensional model of the tibial plateau and the three-dimensional model of the femoral trochlear are determined; Three-dimensional model of the femoral trochlea, with gap fillers identified.
  • the 3D model of the femur can be determined. Since the upper surface of the gap filler is in contact with the femur, the upper surface morphology of the gap filler can be determined according to the 3D model of the femur. Since the lower surface of the gap filler is in contact with the tibial plateau, the shape of the lower surface of the gap filler can be determined according to the three-dimensional model of the tibia.
  • the above three-dimensional model of the knee joint may be obtained from other devices, or may be obtained by a terminal device according to an electronic computed tomography image of the knee joint, which is not limited herein.
  • the terminal device may send a model acquiring instruction to other devices, and after receiving the acquiring instruction, the other device transmits the above-mentioned three-dimensional model of the knee joint stored by itself to the terminal device.
  • the obtaining instruction instructs other devices to send the three-dimensional model of the knee joint to the terminal device.
  • the terminal device can acquire an electronic computed tomography image of the knee joint, and reconstruct a three-dimensional model of the knee joint according to the electronic computed tomography image.
  • the above-mentioned electronic computed tomography image may be acquired by the terminal device from other devices, or may be acquired from its own memory, which is not limited herein.
  • the doctor can install the femoral prosthesis trial model and the tibial prosthesis trial model for the patient.
  • the first pressure sensor array 11 can be arranged on the femur of the femoral prosthesis trial.
  • the surface of the condyle is used to collect the knee joint space pressure during the varus movement or flexion and extension movement of the knee joint.
  • the second pressure sensor array 12 is arranged on the surface of the femoral trochlear of the femoral prosthesis trial model, and the process of the target movement of the knee joint can be collected. Patellar pressure in.
  • the femoral prosthesis trial described above is used to select a matching femoral prosthesis for the patient.
  • the tibial prosthesis trial described above is used to select a matching tibial prosthesis for the patient.
  • FIG. 4 is a diagram showing another example of the arrangement of the pressure sensor array.
  • the grid in Figure 4 is a distributed array of pressure sensors that measure pressure at the locations of forces (ie, the inside and outside of the knee joint space and the inside and outside of the patella), while supporting multipoint readings.
  • the anchor point in FIG. 4 is used to fix the pressure sensor array on the femoral prosthesis trial model, specifically, the pressure sensor array can be fixed on the femoral condyle surface and the femoral trochlear surface of the femoral prosthesis trial model.
  • the transmission interface in FIG. 4 is used to realize data transmission between the pressure sensor array and the pressure display 13 , for example, the pressure collected by the pressure sensor array is transmitted to the pressure display 13 through the transmission interface.
  • the above-mentioned first pressure sensor array 11 and second pressure sensor array 12 may be capacitive pressure sensors. Since the thickness of the capacitive pressure sensor is small (usually 0.1 mm), the first pressure sensor array 11 and the second pressure sensor array 12 in the present application can be applied to any brand of femoral prosthesis model.
  • the pressure display can also be used to:
  • the first pressure sensor array 11 can collect the knee joint space pressure at intervals of a first preset time, and transmit the knee joint space pressure to the pressure display 13, and the pressure display 13 can obtain the target All the knee joint space pressures during the exercise can be determined according to all the above knee joint space pressures to determine the change curve of the knee joint space pressure.
  • the pressure display 13 may also send all the above knee joint space pressures to other devices after obtaining all the above knee joint space pressures, and the other devices determine the knee joint space pressure according to all the above knee joint space pressures.
  • the change curve of the knee joint space pressure is sent to the pressure display 13 .
  • the second pressure sensor array 12 can collect the patellar pressure at intervals of a second preset time, and transmit the patellar pressure to the pressure display 13, and the pressure display 13 can obtain the patellar pressure during the target movement. All patellar pressures, according to all of the above patellar pressures, the change curve of the patellar pressure can be determined.
  • the pressure monitor may also send all the above patellar pressures to other devices after obtaining all the above-mentioned patellar pressures. The curve is sent to the pressure display 13 .
  • the first preset time and the second preset time may be the same or different, which are not limited herein.
  • the pressure display 13 is also used to:
  • the change curve of the patella pressure is obtained, and the change curve of the patella pressure is displayed.
  • the above-mentioned gap mode option is used to instruct the pressure display 13 to display the change curve of the knee joint gap pressure.
  • the above-mentioned patella mode option is used to instruct the pressure display 13 to display the change curve of the patella pressure.
  • the pressure monitor 13 displays the knee joint space pressure and/or the change curve of the knee joint space pressure, which can evaluate the preoperative knee joint space balance and assist the doctor to accurately adjust the knee joint space balance , improve the surgical plan.
  • the knee joint space pressure and/or the change curve of the knee joint space pressure is displayed on the pressure display 13, and the knee joint can be evaluated during the operation. Gap balance, assist doctors to accurately adjust the knee joint gap balance.
  • the pressure monitor 13 displays the patella pressure and the change curve of the patella pressure, which can assist the doctor to accurately adjust the patella trajectory and evaluate the recovery of the patella trajectory after surgery.
  • the pressure monitor 13 displays the change curve of the patellar pressure and the patellar pressure, which can evaluate the patella trajectory during the operation and assist the doctor to adjust accurately. Patellar trajectory.
  • the above selection operation may be any one of multiple operations such as single click, double click, slide, click, etc., which is not limited herein.
  • the pressure display 13 may determine the change curve of the knee joint space pressure and display the change curve of the knee joint space pressure when detecting the click operation on the clearance mode option.
  • the change curve of the knee joint space pressure and the change curve of the patella pressure can be displayed on the pressure display 13 at the same time, or one of two transformation curves can be displayed, which is not limited here.
  • FIG. 5 is a display example diagram of the pressure display, and the unit of the pressure in FIG. 5 may be MPa.
  • the pressure display 13 in FIG. 5 may display medial knee space pressure, lateral knee space pressure, medial patella pressure, lateral patella pressure, lateral pressure change curve, medial pressure change curve, clearance mode options and patella mode options.
  • the abscissa of the change curve of lateral pressure and the change curve of medial pressure is the knee joint angle, and the ordinate is the pressure.
  • the transmission interface in FIG. 5 is used to realize data transmission between the pressure sensor array and the pressure display 13 , for example, the pressure transmitted by the pressure sensor array is received through the transmission interface.
  • the clearance mode in FIG. 5 it can be determined that the variation curve of the lateral pressure in FIG. 5 is the variation curve of the knee lateral clearance pressure, and the variation curve of the medial pressure in FIG. 5 is the variation curve of the medial knee clearance pressure.
  • the change curve of the lateral pressure in FIG. 5 is the change curve of the lateral pressure of the patella
  • the change curve of the medial pressure in FIG. 5 is the change curve of the medial pressure of the patella.
  • the above-mentioned pressure measurement system may further include a polyester film, and the polyester film is used to wrap the first pressure sensor array 11 and/or the second pressure sensor array 12 .
  • the mylar can change shape according to the shape of the femoral condyle and wrap the pressure sensor array.
  • the first pressure sensor array 11 is wrapped with polyester film and then arranged on the surface of the femoral condyle, which can not only seal and protect the first pressure sensor array 11, but also make the first pressure sensor array 11 better fit on the surface of the femoral condyle. .
  • the second pressure sensor array 12 is wrapped with polyester film and then disposed on the surface of the femoral trochlear, which can not only seal and protect the second pressure sensor array 12, but also make the second pressure sensor array 12 better fit on the surface of the femoral trochlear .
  • the pressure measurement system for knee replacement surgery includes a first pressure sensor array 11, a second pressure sensor array 12 and a pressure display 13, the first pressure sensor array 11 is disposed on the surface of the femoral condyle of the knee joint, For collecting the knee joint space pressure and transmitting the knee joint space pressure to the pressure display 13, the second pressure sensor array 12 is arranged on the surface of the femoral trochlear of the knee joint for collecting the patellar pressure of the knee joint and transmitting the patellar pressure to the pressure display 13, The pressure display 13 may display the received knee space pressure and patella pressure.
  • the doctor can more accurately adjust the knee joint space balance, thereby ensuring a good knee joint space balance in the knee replacement surgery.
  • the doctor can more accurately adjust the trajectory of the patella, thereby ensuring a good trajectory of the patella in the knee replacement surgery.
  • FIG. 6 it is a schematic diagram of the implementation flow of the pressure measurement method for knee replacement surgery provided in the second embodiment of the present application.
  • the pressure measurement method is applied to the pressure measurement system in the first embodiment of the present application, and the pressure measurement system includes a first A pressure sensor array, a second pressure sensor array and a pressure display, the first pressure sensor array is arranged on the femoral condyle surface of the knee joint, the second pressure sensor array is arranged on the femoral trochlear surface of the knee joint, the first pressure sensor array and the second pressure sensor array
  • the sensor arrays are respectively connected with the pressure displays.
  • the pressure measurement method may include the following steps:
  • Step 601 the first pressure sensor array collects the knee joint space pressure, and transmits the knee joint space pressure to the pressure display.
  • Step 602 the second pressure sensor array collects the patellar pressure of the knee joint, and transmits the patellar pressure to the pressure display.
  • step 603 the pressure monitor displays the knee joint space pressure and the patella pressure.
  • the pressure measurement system further includes a gap filler when the knee replacement surgery is in a stage where neither the tibial plateau nor the femur is osteotomy, or the tibial plateau has been osteotomy and the femur is not osteotomy;
  • Gap fillers fill the knee joint space.
  • the pressure measurement system further includes a terminal device
  • the terminal device obtains the three-dimensional model of the knee joint; according to the three-dimensional model of the knee joint, the three-dimensional model of the femoral condyle, the three-dimensional model of the tibial plateau and the three-dimensional model of the femoral trochlear are determined; according to the three-dimensional model of the femoral condyle, the three-dimensional model of the tibial plateau and the femoral trochlear The 3D model of the gap filler was identified.
  • the terminal device acquires an electronic computed tomography image of the knee joint, and reconstructs a three-dimensional model of the knee joint according to the electronic computed tomography image.
  • the pressure display acquires the change curve of the knee joint space pressure during the target movement of the knee joint, and displays the change curve of the knee joint space pressure; obtains the change of the patella pressure during the target movement of the knee joint curve, and shows the change curve of patellar pressure.
  • the pressure display displays the clearance mode option and the patella mode option; when detecting the selection operation of the clearance mode option, acquires the change curve of the knee joint space pressure, and displays the change curve of the knee joint space pressure; When the patella mode option is selected, the change curve of the patella pressure is obtained, and the change curve of the patella pressure is displayed.
  • the pressure measurement system further includes a polyester film wrapping the first pressure sensor array and/or the second pressure sensor array.
  • the femoral condyle surface refers to the femoral condyle surface of the femoral prosthesis trial
  • the femoral trochlear surface refers to the femur of the femoral prosthesis trial. pulley surface.
  • the pressure sensors in the first pressure sensor array and the second pressure sensor array are capacitive pressure sensors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)

Abstract

一种用于膝关节置换手术的压力测量系统和压力测量方法,其中压力测量系统包括第一压力传感器阵列(11)、第二压力传感器阵列(12)和压力显示器(13),第一压力传感器阵列(11)设置在膝关节的股骨髁表面,第二压力传感器阵列(12)设置在膝关节的股骨滑车表面,第一压力传感器阵列(11)和第二压力传感器阵列(12)分别与压力显示器(13)连接;第一压力传感器阵列(11)采集膝关节间隙压力并向压力显示器(13)传输膝关节间隙压力;第二压力传感器阵列(12)采集膝关节的髌骨压力并向压力显示器(13)传输髌骨压力;压力显示器(13)在接收到膝关节间隙压力和髌骨压力后,显示膝关节间隙压力和髌骨压力。压力测量系统可解决现有技术难以获得良好的膝关节间隙平衡和髌骨轨迹的问题。

Description

用于膝关节置换手术的压力测量系统和压力测量方法
本申请要求于2021年4月6日在中国专利局提交的、申请号为202110365979.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于医疗器械技术领域,尤其涉及一种用于膝关节置换手术的压力测量系统和压力测量方法。
背景技术
随着人均寿命延长、人口老龄化进程加快以及生活压力增加,骨科手术,尤其是膝关节置换手术的需求量逐年上升。膝关节置换手术复杂度高,既要保证三维空间的准确截骨及与假体的准确匹配,又要注意软组织平衡,所以对医生的手术技巧及经验均有极高的要求。
膝关节置换手术成功的关键环节之一是获得良好的膝关节间隙平衡和髌骨轨迹。传统的膝关节置换手术是医生根据自身经验对膝关节间隙和髌骨轨迹进行调整,难以获得良好的膝关节间隙平衡和髌骨轨迹。
技术问题
本申请实施例提供了一种用于膝关节置换手术的压力测量系统和压力测量方法,以解决现有技术难以获得良好的膝关节间隙平衡和髌骨轨迹的问题。
技术解决方案
第一方面,本申请实施例提供了一种用于膝关节置换手术的压力测量系统,所述压力测量系统包括第一压力传感器阵列、第二压力传感器阵列和压力显示器,所述第一压力传感器阵列设置在膝关节的股骨髁表面,所述第二压力传感器阵列设置在所述膝关节的股骨滑车表面,所述第一压力传感器阵列和所述第二压力传感器阵列分别与所述压力显示器连接;
所述第一压力传感器阵列,用于采集膝关节间隙压力,并向所述压力显示器传输所述膝关节间隙压力;
所述第二压力传感器阵列,用于采集所述膝关节的髌骨压力,并向所述压力显示器传输所述髌骨压力;
所述压力显示器,用于显示所述膝关节间隙压力和所述髌骨压力。
第二方面,本申请实施例提供了一种用于膝关节置换手术的压力测量方法,应用于压力测量系统,所述压力测量系统包括第一压力传感器阵列、第二压力传感器阵列和压力显示器,所述第一压力传感器阵列设置在膝关节的股骨髁表面,所述第二压力传感器阵列设置在所述膝关节的股骨滑车表面,所述第一压力传感器阵列和所述第二压力传感器阵列分别与所述压力显示器连接,所述压力测量方法包括:
所述第一压力传感器阵列采集膝关节间隙压力,并向所述压力显示器传输所述膝关节间隙压力;
所述第二压力传感器阵列采集所述膝关节的髌骨压力,并向所述压力显示器传输所述髌骨压力;
所述压力显示器显示所述膝关节间隙压力和所述髌骨压力。
由上可见,本申请提供的用于膝关节置换手术的压力测量系统包括第一压力传感器阵列、第二压力传感器阵列和压力显示器,第一压力传感器阵列设置在膝关节的股骨髁表面,用于采集膝关节间隙压力并向压力显示器传输膝关节间隙压力,第二压力传感器阵列设置在膝关节的股骨滑车表面,用于采集膝关节的髌骨压力并向压力显示器传输髌骨压力,压力显示器可以显示接收到的膝关节间隙压力和髌骨压力。医生根据压力显示器显示的膝关节间隙压力,能够较为准确地调整膝关节间隙平衡,从而确保膝关节置换手术获得良好的膝关节间隙平衡。医生根据压力显示器显示的髌骨压力(髌骨压力能够反映髌骨轨迹),能够较为准确地调整髌骨轨迹,从而确保膝关节置换手术获得良好的髌骨轨迹。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的用于膝关节置换手术的压力测量系统的结构示意图;
图2是压力传感器阵列的设置示例图;
图3a是第一间隙填充片填充膝关节间隙的示例图;3b是第三间隙填充片和第四间隙填充片填充膝关节间隙的示例图;
图4是压力传感器阵列的另一设置示例图;
图5是压力显示器的显示示例图;
图6是本申请实施例二提供的用于膝关节置换手术的压力测量方法的实现流程示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”、“第四”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
参见图1,是本申请实施例一提供的用于膝关节置换手术的压力测量系统的结构示意图,为了便于说明,仅示出了与本申请实施例相关的部分。
上述压力测量系统包括第一压力传感器阵列11、第二压力传感器阵列12和压力显示器13,第一压力传感器阵列11和第二压力传感器阵列12分别与压力显示器13连接。
其中,第一压力传感器阵列11可以通过无线通信方式或者有线通信方式与压力显示器13建立连接,建立连接后,第一压力传感器阵列11与压力显示器13之间可以进行数据传输。第二压力传感器阵列12可以通过无线通信方式或者有线通信方式与压力显示器13建立连接,建立连接后,第二压力传感器阵列12与压力显示器13之间可以进行数据传输。上述无线通信方式包括但不限于无线保真(wireless fidelity,WiFi)、蓝牙、第三代移动通信技术、第四代移动通信技术、第五代移动通信技术等。上述有线通信方式包括但不限于电线、音频线、通用串行总线等。
第一压力传感器阵列11设置在膝关节的股骨髁表面,用于采集膝关节间隙压力,并向压力显示器13传输膝关节间隙压力。
第二压力传感器阵列12设置在膝关节的股骨滑车表面,用于采集膝关节的髌骨压力,并向压力显示器13传输髌骨压力。
压力显示器13,用于显示膝关节间隙压力和髌骨压力。
如图2所示是压力传感器阵列的设置示例图。图2中的间隙压力测量区域为设置第一压力传感器阵列11的区域,即股骨髁表面。图2中的髌骨压力测量区域为设置第二压力传感器阵列12的区域,即股骨滑车表面。
在一实施例中,第一压力传感器阵列11可以在接收到压力显示器13发送的第一压力传输指令的情况下,向压力显示器13传输所采集的膝关节间隙压力,也可以在采集膝关节间隙压力之后,自动向压力显示器13传输所采集的膝关节间隙压力,在此不做限定。其中,上述第一压力传输指令用于指示第一压力传感器阵列11向压力显示器13传输膝关节间隙压力。
在一实施例中,第二压力传感器阵列12可以在接收到压力显示器13发送的第二压力传输指令的情况下,向压力显示器13传输所采集的髌骨压力,也可以在采集髌骨压力之后,自动向压力显示器13传输所采集的髌骨压力,在此不做限定。其中,上述第二压力传输指令用于指示第二压力传感器阵列12向压力显示器13传输髌骨压力。
在一实施例中,压力显示器13可以在接收到任一压力传感器阵列(即第一压力传感器阵列11和第二压力传感器阵列12中的任一压力传感器阵列)传输的压力时显示该压力,即在压力显示器13上可以不同时显示膝关节间隙压力和髌骨压力。压力显示器13也可以在接收到第一压力传感器阵列11传输的膝关节间隙压力和第二压力传感器阵列12传输的髌骨压力之后,同时显示膝关节间隙压力和髌骨压力。
膝关节间隙是指膝关节的股骨髁与胫骨平台之间的间隙。根据膝关节角度可以对膝关节间隙进行划分。例如在膝关节角度为90°时,膝关节间隙可以称之为屈曲间隙;在膝关节角度为180°时,膝关节间隙可以称之为伸直间隙。在患者的腿部位于屈曲位时,其膝关节角度为90°。在患者的腿部位于伸直位时,其膝关节角度为180°。屈曲间隙是指膝关节的股骨后髁与胫骨平台之间的间隙,即在患者的腿部位于屈曲位时,股骨髁可以称之为股骨后髁。伸直间隙是指膝关节的股骨远端与胫骨平台之间的间隙,即在患者的腿部位于伸直位时,股骨髁可以称之为股骨远端。
膝关节间隙包括膝关节内侧间隙和膝关节外侧间隙。膝关节内侧间隙是指股骨内侧髁与胫骨平台之间的间隙。膝关节外侧间隙是指股骨外侧髁与胫骨平台之间的间隙。
由于膝关节间隙包括膝关节内侧间隙和膝关节外侧间隙,故膝关节间隙压力可以包括膝关节内侧间隙压力和膝关节外侧间隙压力。膝关节内侧间隙压力可以是指股骨内侧髁与胫骨平台之间的压力。膝关节外侧间隙压力可以是指股骨外侧髁与胫骨平台之间的压力。
髌骨压力包括髌骨内侧压力和髌骨外侧压力。髌骨内侧压力可以是指髌骨内侧与股骨滑车之间的压力。髌骨外侧压力可以是指髌骨外侧与股骨滑车之间的压力。
上述第一压力传感器阵列11包括至少两个压力传感器,能够分别对膝关节内侧间隙压力和膝关节外侧间隙压力进行采集。例如,上述第一压力传感器阵列11包括两个压力传感器,可以分别称之为压力传感器1和压力传感器2,压力传感器1用于采集膝关节内侧间隙压力,压力传感器2用于采集膝关节外侧间隙压力。
上述第二压力传感器阵列12包括至少两个压力传感器,能够分别对髌骨内侧压力和髌骨外侧压力进行采集。例如,上述第二压力传感器阵列12包括两个压力传感器,可以分别称之为压力传感器3和压力传感器4,压力传感器3用于采集髌骨内侧压力,压力传感器4用于采集髌骨外侧压力。
按照膝关节置换手术对胫骨平台和股骨的处理情况,可以将膝关节置换手术划分为三个阶段,分别为胫骨平台和股骨均未截骨阶段、胫骨平台已截骨且股骨未截骨阶段以及胫骨平台和股骨均已截骨阶段。通过本申请可对上述三个阶段的膝关节间隙压力和髌骨压力进行测量,得到上述三个阶段各自的膝关节间隙压力和髌骨压力。
在胫骨平台和股骨均未截骨阶段,医生可以按照常规入路进行切口显露。在显露出关节腔之后,可以先将膝关节置于屈曲位,此时可以将第一压力传感器阵列11设置在股骨髁表面,然后将膝关节置于伸直位,使第一压力传感器阵列11塞入膝关节间隙,以采集膝关节进行目标运动时的间隙压力(即膝关节间隙压力)。上述目标运动包括但不限于膝关节内外翻运动、膝关节屈伸运动等。
在胫骨平台和股骨均未截骨阶段以及胫骨平台已截骨且股骨未截骨阶段,由于股骨髁与胫骨平台之间的间隙较大,影响第一压力传感器阵列11采集膝关节间隙压力,故为了使得第一压力传感器阵列11较为准确地采集到膝关节间隙压力,可以通过间隙填充片,填充膝关节间隙,使得第一压力传感器阵列11更紧密地贴合股骨髁表面。可选地,可以通过3D打印技术打印出间隙填充片。
在一实施例中,为了使间隙填充片适用膝关节在目标运动的整个过程的间隙,上述间隙填充片包含了目标运动的整个过程的间隙形状。
需要说明的是,由于间隙填充片用于填充膝关节间隙,膝关节间隙是股骨髁与胫骨平台之间的间隙,故间隙填充片的上表面形态与股骨髁表面的形态相匹配,间隙填充片的下表面形态与胫骨平台的形态相匹配,以确保间隙填充片能够较好地填充膝关节间隙。
由于截骨前的胫骨平台的形态与截骨后的胫骨平台的形态不同,故在胫骨平台和股骨均未截骨阶段所使用的间隙填充片与在胫骨平台已截骨且股骨未截骨阶段所使用的间隙填充片的下表面形态不同。为了便于区分上述两个阶段所使用的间隙填充片,可以将在胫骨平台和股骨均未截骨阶段所使用的间隙填充片称之为第一间隙填充片,将在胫骨平台已截骨且股骨未截骨阶段所使用的间隙填充片称之为第二间隙填充片。如图3a所示是第一间隙填充片填充膝关节间隙的示例图,图3a中的第一间隙填充片用于填充胫骨平台和股骨均未截骨阶段的膝关节间隙。
不同的膝关节置换手术,其对胫骨平台截骨的厚度可能不同,那么膝关节间隙也不同,故在胫骨平台已截骨且股骨未截骨阶段,可以使用至少两种不同类型的间隙填充片对膝关节间隙进行填充,以使得间隙填充片适用不同的膝关节间隙。
例如,在胫骨平台已截骨且股骨未截骨阶段,使用两种不同类型的间隙填充片对膝关节间隙进行填充,这两种不同类型的间隙填充片可以分别称之为第三间隙填充片和第四间隙填充片(即第二间隙填充片包括第三间隙填充片和第四间隙填充片),第三间隙填充片的上表面形态与股骨髁表面的形态相匹配,第三间隙填充片的下表面形态与第四间隙填充片的上表面形态相匹配,第四间隙填充片的下表面形态与截骨后的胫骨平台的形态相匹配。第三间隙填充片与至少一个第四间隙填充片进行组合,可以对不同的膝关节间隙进行填充。其中,第三间隙填充片的下表面和第四间隙填充片的上表面可以为平面。
如图3b所示是第三间隙填充片和第四间隙填充片填充膝关节间隙的示例图,图3b中的第三间隙填充片和第四间隙填充片用于填充胫骨平台已截骨且股骨未截骨阶段的膝关节间隙。
在一实施例中,可以根据膝关节的三维模型,确定间隙填充片。具体可以是:获取膝关节的三维模型;根据膝关节的三维模型,确定股骨髁的三维模型、胫骨平台的三维模型和股骨滑车的三维模型;根据股骨髁的三维模型、胫骨平台的三维模型和股骨滑车的三维模型,确定间隙填充片。
根据股骨髁的三维模型和股骨滑车的三维模型,可以确定股骨的三维模型,由于间隙填充片的上表面与股骨接触,故根据股骨的三维模型可以确定间隙填充片的上表面形态。由于间隙填充片的下表面与胫骨平台接触,故根据胫骨的三维模型可以确定间隙填充片的下表面形态。
其中,上述膝关节的三维模型可以从其他设备中获取,也可以是终端设备根据膝关节的电子计算机断层扫描图像得到,在此不做限定。
具体地,终端设备可以向其他设备发送模型获取指令,其他设备在接收到该获取指令之后,将自身存储的上述膝关节的三维模型发送至终端设备。上述获取指令指示其他设备向终端设备发送上述膝关节的三维模型。
终端设备可以获取膝关节的电子计算机断层扫描图像,根据电子计算机断层扫描图像,重建膝关节的三维模型。
其中,上述电子计算机断层扫描图像可以是终端设备从其他设备中获取的,也可以是从自身的存储器中获取的,在此不做限定。
在胫骨平台和股骨均已截骨阶段,医生可以为患者安装股骨假体试模和胫骨假体试模,在安装过程中,可以将第一压力传感器阵列11设置在股骨假体试模的股骨髁表面,以采集膝关节进行内外翻运动或者屈伸运动的过程中膝关节间隙压力,将第二压力传感器阵列12设置在股骨假体试模的股骨滑车表面,可以采集膝关节进行目标运动的过程中的髌骨压力。
上述股骨假体试模用于为患者选择匹配的股骨假体。上述胫骨假体试模用于为患者选择匹配的胫骨假体。
如图4是压力传感器阵列的另一设置示例图。图4中的网格为分散的压力传感器阵列,用于测量受力位置(即膝关节内外间隙和髌骨内外侧)的压力,同时支持多点读数。图4中的锚点用于将压力传感器阵列固定在股骨假体试模上,具体可以是将压力传感器阵列固定在股骨假体试模的股骨髁表面和股骨滑车表面。图4中的传输接口用于实现压力传感器阵列与压力显示器13之间的数据传输,例如通过传输接口将压力传感器阵列采集的压力传输给压力显示器13。
在一实施例中,上述第一压力传感器阵列11和第二压力传感器阵列12可以为电容式压力传感器。由于电容式压力传感器的厚度较小(通常为0.1毫米),故本申请中的第一压力传感器阵列11和第二压力传感器阵列12可以适用于任何品牌的股骨假体试模。
在一实施例中,压力显示器还可以用于:
获取在膝关节进行目标运动的过程中膝关节间隙压力的变化曲线,并显示膝关节间隙压力的变化曲线;
获取在膝关节进行目标运动的过程中髌骨压力的变化曲线,并显示髌骨压力的变化曲线。
在膝关节进行目标运动的过程中,第一压力传感器阵列11可以以第一预设时间为间隔采集膝关节间隙压力,并向压力显示器13传输该膝关节间隙压力,压力显示器13可以得到在目标运动的过程中所有的膝关节间隙压力,可以根据上述所有的膝关节间隙压力,确定膝关节间隙压力的变化曲线。可选地,压力显示器13也可以在得到上述所有的膝关节间隙压力之后,将上述所有的膝关节间隙压力发送至其他设备,其他设备根据上述所有的膝关节间隙压力,确定膝关节间隙压力的变化曲线,并将该膝关节间隙压力的变化曲线发送至压力显示器13。
在膝关节进行目标运动的过程中,第二压力传感器阵列12可以以第二预设时间为间隔采集髌骨压力,并向压力显示器13传输该髌骨压力,压力显示器13可以得到在目标运动的过程中所有的髌骨压力,根据上述所有的髌骨压力,可以确定髌骨压力的变化曲线。可选地,压力显示器也可以在得到上述所有的髌骨压力之后,将上述所有的髌骨压力发送至其他设备,其他设备根据上述所有的髌骨压力,确定髌骨压力的变化曲线,并将该髌骨压力的变化曲线发送至压力显示器13。
上述第一预设时间与第二预设时间可以相同,也可以不同,在此不做限定。
在一实施例中,压力显示器13还用于:
显示间隙模式选项和髌骨模式选项;
在检测到对间隙模式选项的选择操作时,获取膝关节间隙压力的变化曲线,并显示膝关节间隙压力的变化曲线;
在检测到对髌骨模式选项的选择操作时,获取髌骨压力的变化曲线,并显示髌骨压力的变化曲线。
其中,上述间隙模式选项用于指示压力显示器13显示膝关节间隙压力的变化曲线。上述髌骨模式选项用于指示压力显示器13显示髌骨压力的变化曲线。
在胫骨平台和股骨均未截骨阶段,在压力显示器13上显示膝关节间隙压力和/或膝关节间隙压力的变化曲线,可以评估术前膝关节间隙平衡,辅助医生准确地调整膝关节间隙平衡,完善手术方案。
在胫骨平台已截骨和股骨未截骨阶段以及胫骨平台和股骨均已截骨阶段,在压力显示器13上显示膝关节间隙压力和/或膝关节间隙压力的变化曲线,可以评估术中膝关节间隙平衡,辅助医生准确地调整膝关节间隙平衡。
在胫骨平台和股骨均未截骨阶段,在压力显示器13上显示髌骨压力和髌骨压力的变化曲线,可以辅助医生准确地调整髌骨轨迹,评估术后髌骨轨迹的恢复情况。
在胫骨平台已截骨和股骨未截骨阶段以及胫骨平台和股骨均已截骨阶段,在压力显示器13上显示髌骨压力和髌骨压力的变化曲线,可以评估术中髌骨轨迹,辅助医生准确地调整髌骨轨迹。
上述选择操作可以为单击、双击、滑动、点击等多种操作中的任一种操作,在此不做限定。例如,压力显示器13在检测到对间隙模式选项的点击操作时,可以确定膝关节间隙压力的变化曲线,并显示该膝关节间隙压力的变化曲线。
需要说明的是,上述膝关节间隙压力的变化曲线和髌骨压力的变化曲线可以在压力显示器13上同时显示,也可以显示两种变换曲线中的一种,在此不做限定。
如图5所示是压力显示器的显示示例图,图5中压力的单位可以为兆帕。图5中的压力显示器13可以显示膝关节内侧间隙压力、膝关节外侧间隙压力、髌骨内侧压力、髌骨外侧压力、外侧压力的变化曲线、内侧压力的变化曲线、间隙模式选项和髌骨模式选项。外侧压力的变化曲线和内侧压力的变化曲线的横坐标是膝关节角度,纵坐标是压力。图5中的传输接口用于实现压力传感器阵列与压力显示器13之间的数据传输,例如通过传输接口接收压力传感器阵列传输的压力。
在选择图5中的间隙模式时,可以确定图5中的外侧压力的变化曲线为膝关节外侧间隙压力的变化曲线,图5中内侧压力的变化曲线为膝关节内侧间隙压力的变化曲线。在选择图5中的髌骨模式时,可以确定图5中的外侧压力的变化曲线为髌骨外侧压力的变化曲线,图5中内侧压力的变化曲线为髌骨内侧压力的变化曲线。
在一实施例中,上述压力测量系统还可以包括聚酯薄膜,聚酯薄膜用于包裹第一压力传感器阵列11和/或第二压力传感器阵列12。聚酯薄膜根据股骨髁形状可以改变自身形状并对压力传感器阵列进行包裹。第一压力传感器阵列11使用聚酯薄膜包裹后再设置在股骨髁表面,既可以对第一压力传感器阵列11进行密封保护,又可以使得第一压力传感器阵列11更好地贴合在股骨髁表面。第二压力传感器阵列12使用聚酯薄膜包裹后再设置在股骨滑车表面,既可以对第二压力传感器阵列12进行密封保护,又可以使得第二压力传感器阵列12更好地贴合在股骨滑车表面。
本申请实施例提供的用于膝关节置换手术的压力测量系统包括第一压力传感器阵列11、第二压力传感器阵列12和压力显示器13,第一压力传感器阵列11设置在膝关节的股骨髁表面,用于采集膝关节间隙压力并向压力显示器13传输膝关节间隙压力,第二压力传感器阵列12设置在膝关节的股骨滑车表面,用于采集膝关节的髌骨压力并向压力显示器13传输髌骨压力,压力显示器13可以显示接收到的膝关节间隙压力和髌骨压力。医生根据压力显示器13显示的膝关节间隙压力,能够较为准确地调整膝关节间隙平衡,从而确保膝关节置换手术获得良好的膝关节间隙平衡。医生根据压力显示器13显示的髌骨压力,能够较为准确地调整髌骨轨迹,从而确保膝关节置换手术获得良好的髌骨轨迹。
参见图6,是本申请实施例二提供的用于膝关节置换手术的压力测量方法的实现流程示意图,该压力测量方法应用于本申请实施例一中的压力测量系统,压力测量系统包括第一压力传感器阵列、第二压力传感器阵列和压力显示器,第一压力传感器阵列设置在膝关节的股骨髁表面,第二压力传感器阵列设置在膝关节的股骨滑车表面,第一压力传感器阵列和第二压力传感器阵列分别与压力显示器连接。如图6所示,该压力测量方法可以包括以下步骤:
步骤601,第一压力传感器阵列采集膝关节间隙压力,并向压力显示器传输膝关节间隙压力。
步骤602,第二压力传感器阵列采集膝关节的髌骨压力,并向压力显示器传输髌骨压力。
步骤603,压力显示器显示膝关节间隙压力和髌骨压力。
在一实施例中,在膝关节置换手术处于胫骨平台和股骨均未截骨阶段,或者胫骨平台已截骨且股骨未截骨阶段时,压力测量系统还包括间隙填充片;
间隙填充片填充膝关节间隙。
在一实施例中,压力测量系统还包括终端设备;
终端设备获取膝关节的三维模型;根据膝关节的三维模型,确定股骨髁的三维模型、胫骨平台的三维模型和股骨滑车的三维模型;根据股骨髁的三维模型、胫骨平台的三维模型和股骨滑车的三维模型,确定间隙填充片。
在一实施例中,终端设备获取膝关节的电子计算机断层扫描图像,并根据电子计算机断层扫描图像,重建膝关节的三维模型。
在一实施例中,压力显示器获取在膝关节进行目标运动的过程中膝关节间隙压力的变化曲线,并显示膝关节间隙压力的变化曲线;获取在膝关节进行目标运动的过程中髌骨压力的变化曲线,并显示髌骨压力的变化曲线。
在一实施例中,压力显示器显示间隙模式选项和髌骨模式选项;在检测到对间隙模式选项的选择操作时,获取膝关节间隙压力的变化曲线,并显示膝关节间隙压力的变化曲线;在检测到对髌骨模式选项的选择操作时,获取髌骨压力的变化曲线,并显示髌骨压力的变化曲线。
在一实施例中,压力测量系统还包括聚酯薄膜,聚酯薄膜包裹第一压力传感器阵列和/或第二压力传感器阵列。
在一实施例中,在膝关节置换手术处于胫骨平台和股骨均已截骨阶段时,股骨髁表面是指股骨假体试模的股骨髁表面,股骨滑车表面是指股骨假体试模的股骨滑车表面。
在一实施例中,第一压力传感器阵列和第二压力传感器阵列中的压力传感器为电容式压力传感器。
本申请实施例提供的压力测量方法可以应用在前述实施例一中,详情参见上述实施例一的描述,在此不再赘述。
应理解,本实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (8)

  1. 一种用于膝关节置换手术的压力测量系统,其特征在于,所述压力测量系统包括第一压力传感器阵列、第二压力传感器阵列和压力显示器,所述第一压力传感器阵列设置在膝关节的股骨髁表面,所述第二压力传感器阵列设置在所述膝关节的股骨滑车表面,所述第一压力传感器阵列和所述第二压力传感器阵列分别与所述压力显示器连接;
    所述第一压力传感器阵列,用于采集膝关节间隙压力,并向所述压力显示器传输所述膝关节间隙压力;
    所述第二压力传感器阵列,用于采集所述膝关节的髌骨压力,并向所述压力显示器传输所述髌骨压力;
    所述压力显示器,用于显示所述膝关节间隙压力和所述髌骨压力;
    所述压力测量系统用于膝关节置换手术过程中对胫骨平台和股骨均未截骨阶段、胫骨平台已截骨且股骨未截骨阶段以及胫骨平台和股骨均已截骨阶段的膝关节间隙压力和髌骨压力进行测量;
    在所述膝关节置换手术处于胫骨平台和股骨均未截骨阶段,或者所述胫骨平台已截骨且所述股骨未截骨阶段时,所述压力测量系统还包括间隙填充片;
    所述间隙填充片,用于填充膝关节间隙。
  2. 如权利要求1所述的压力测量系统,其特征在于,所述压力测量系统还包括终端设备;
    所述终端设备,用于获取所述膝关节的三维模型;根据所述膝关节的三维模型,确定股骨髁的三维模型、所述胫骨平台的三维模型和股骨滑车的三维模型;根据所述股骨髁的三维模型、所述胫骨平台的三维模型和所述股骨滑车的三维模型,确定所述间隙填充片。
  3. 如权利要求2所述的压力测量系统,其特征在于,所述终端设备具体用于:
    获取所述膝关节的电子计算机断层扫描图像,并根据所述电子计算机断层扫描图像,重建所述膝关节的三维模型。
  4. 如权利要求1所述的压力测量系统,其特征在于,所述压力显示器还用于:
    获取在所述膝关节进行目标运动的过程中所述膝关节间隙压力的变化曲线,并显示所述膝关节间隙压力的变化曲线;
    获取在所述膝关节进行所述目标运动的过程中所述髌骨压力的变化曲线,并显示所述髌骨压力的变化曲线。
  5. 如权利要求4所述的压力测量系统,其特征在于,所述压力显示器还用于:
    显示间隙模式选项和髌骨模式选项;
    在检测到对所述间隙模式选项的选择操作时,获取所述膝关节间隙压力的变化曲线,并显示所述膝关节间隙压力的变化曲线;
    在检测到对所述髌骨模式选项的选择操作时,获取所述髌骨压力的变化曲线,并显示所述髌骨压力的变化曲线。
  6. 如权利要求1所述的压力测量系统,其特征在于,所述压力测量系统还包括聚酯薄膜,所述聚酯薄膜用于包裹所述第一压力传感器阵列和/或所述第二压力传感器阵列。
  7. 如权利要求1所述的压力测量系统,其特征在于,在所述膝关节置换手术处于胫骨平台和股骨均已截骨阶段时,所述股骨髁表面是指股骨假体试模的股骨髁表面,所述股骨滑车表面是指所述股骨假体试模的股骨滑车表面。
  8. 如权利要求1至7任一项所述的压力测量系统,其特征在于,所述第一压力传感器阵列和所述第二压力传感器阵列中的压力传感器为电容式压力传感器。
PCT/CN2022/090078 2021-04-06 2022-04-28 用于膝关节置换手术的压力测量系统和压力测量方法 WO2022214104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110365979.2 2021-04-06
CN202110365979.2A CN113116353B (zh) 2021-04-06 2021-04-06 用于膝关节置换手术的压力测量系统和压力测量方法

Publications (1)

Publication Number Publication Date
WO2022214104A1 true WO2022214104A1 (zh) 2022-10-13

Family

ID=76774910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090078 WO2022214104A1 (zh) 2021-04-06 2022-04-28 用于膝关节置换手术的压力测量系统和压力测量方法

Country Status (2)

Country Link
CN (1) CN113116353B (zh)
WO (1) WO2022214104A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113116353B (zh) * 2021-04-06 2022-03-22 骨圣元化机器人(深圳)有限公司 用于膝关节置换手术的压力测量系统和压力测量方法
CN116269951A (zh) * 2021-12-14 2023-06-23 北京天智航医疗科技股份有限公司 用于膝关节置换手术的手术上位机及膝关节置换手术系统
CN114693602B (zh) * 2022-03-02 2023-04-18 北京长木谷医疗科技有限公司 膝关节动张力平衡态评估方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254103A (zh) * 2006-11-07 2008-09-03 通用电气公司 测量在膝置换手术期间使用的膝的临床参数的系统和方法
US20100217156A1 (en) * 2008-08-20 2010-08-26 Synvasive Technology, Inc. Sensing force during partial and total knee replacement surgery
CN101884542A (zh) * 2010-01-18 2010-11-17 清华大学 一种人工膝关节置换术压力平衡测量系统
CN110731838A (zh) * 2013-06-23 2020-01-31 威廉·L·亨特 用于监测膝部置换物的装置、系统及方法
CN112370218A (zh) * 2020-12-02 2021-02-19 爱乔(上海)医疗科技有限公司 一种用于髌骨置换术的压力测量装置、系统和方法
CN113116353A (zh) * 2021-04-06 2021-07-16 元化智能科技(深圳)有限公司 用于膝关节置换手术的压力测量系统和压力测量方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9427336B2 (en) * 2013-08-23 2016-08-30 Stryker Corporation Intraoperative dynamic trialing
CN105193475B (zh) * 2015-08-18 2017-07-07 长沙市第三医院 个体化截骨导板套件及其设计方法
CN205163327U (zh) * 2015-11-30 2016-04-20 北京爱康宜诚医疗器材股份有限公司 膝关节假体受力检测系统
CN107280818B (zh) * 2016-03-31 2024-02-27 杨晨 人工膝关节置换用股骨侧假体和胫骨侧假体
US10485553B2 (en) * 2016-09-29 2019-11-26 Biomet Manufacturing, Llc Knee resection and gap balancing instruments and techniques
CN107242920A (zh) * 2017-07-26 2017-10-13 北京易迈医疗科技有限公司 膝关节单髁姿态测量装置及系统
KR102019889B1 (ko) * 2017-08-24 2019-09-10 주식회사 코렌텍 스마트 인공관절 치환술용 수술기기
US20190240045A1 (en) * 2018-02-02 2019-08-08 Orthosoft, Inc. Soft tissue balancing in robotic knee surgery
CN210056355U (zh) * 2018-08-08 2020-02-14 武汉拓思瑞医疗科技有限公司 膝关节旋转力线测量装置
WO2020037380A1 (en) * 2018-08-24 2020-02-27 Q L Spacer Blocks Pty Ltd A surgical device
CN109157310A (zh) * 2018-10-29 2019-01-08 北京大学第三医院 一种膝关节假体表面压力测量系统及方法
CN110638476A (zh) * 2019-10-28 2020-01-03 上海交通大学医学院附属第九人民医院 一种间隙可调的全膝关节置换术膝关节压力测量装置
CN111419253A (zh) * 2020-03-20 2020-07-17 爱乔(上海)医疗科技有限公司 膝关节软组织压力测量装置、测量系统和测量方法
CN112075995B (zh) * 2020-08-05 2021-06-18 昆明医科大学第一附属医院 一种内侧髌股韧带重建股骨隧道定位器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254103A (zh) * 2006-11-07 2008-09-03 通用电气公司 测量在膝置换手术期间使用的膝的临床参数的系统和方法
US20100217156A1 (en) * 2008-08-20 2010-08-26 Synvasive Technology, Inc. Sensing force during partial and total knee replacement surgery
CN101884542A (zh) * 2010-01-18 2010-11-17 清华大学 一种人工膝关节置换术压力平衡测量系统
CN110731838A (zh) * 2013-06-23 2020-01-31 威廉·L·亨特 用于监测膝部置换物的装置、系统及方法
CN112370218A (zh) * 2020-12-02 2021-02-19 爱乔(上海)医疗科技有限公司 一种用于髌骨置换术的压力测量装置、系统和方法
CN113116353A (zh) * 2021-04-06 2021-07-16 元化智能科技(深圳)有限公司 用于膝关节置换手术的压力测量系统和压力测量方法

Also Published As

Publication number Publication date
CN113116353B (zh) 2022-03-22
CN113116353A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2022214104A1 (zh) 用于膝关节置换手术的压力测量系统和压力测量方法
Schmaranzer et al. Differences in femoral torsion among various measurement methods increase in hips with excessive femoral torsion
US10772641B2 (en) Surgical apparatus having a frame and moving support structure and method therefore
US9011448B2 (en) Orthopedic navigation system with sensorized devices
US9955983B2 (en) Systems and methods for providing alignment in total knee arthroplasty
Catterall A method of assessment of the clubfoot deformity
US20210007864A1 (en) Orthopedic leg alignment system and method
Boyer et al. Anatomic tilt x-rays of the distal radius: an ex vivo analysis of surgical fixation
Matsumoto et al. Joint gap kinematics in posterior-stabilized total knee arthroplasty measured by a new tensor with the navigation system
US7412897B2 (en) Device for measuring tibio-femoral force amplitudes and force locations in total knee arthroplasty
Verdonk et al. Soft tissue balancing in varus total knee arthroplasty: an algorithmic approach
Karia et al. Robotic assistance enables inexperienced surgeons to perform unicompartmental knee arthroplasties on dry bone models with accuracy superior to conventional methods
Wilharm et al. Use of Tekscan K‐scan sensors for retropatellar pressure measurement avoiding errors during implantation and the effects of shear forces on the measurement precision
WO2020119683A1 (zh) 膝关节假体垫片三维力传感器及其接触应力测量方法
Claassen et al. The geometrical axis of the talocrural joint—suggestions for a new measurement of the talocrural joint axis
Smith et al. An in vivo study of the effect of distal femoral resection on passive knee extension
Nishikawa et al. Accuracy of proximal tibial bone cut using anterior border of tibia as bony landmark in total knee arthroplasty
Lee et al. Effect of distance between the feet on knee joint line orientation after total knee arthroplasty in standing full‐limb radiographs
Tuecking et al. 3D-surface scan based validated new measurement technique of femoral joint line reconstruction in total knee arthroplasty
Monaco et al. Instrumented measurements of knee laxity: KT-1000 versus navigation
JP2020508840A (ja) 手術装置
US10980647B2 (en) Knee ligament balancer
CN113303906B (zh) 一种基于Mimics的计算机模拟双楔形截骨方法
Rhee et al. Comparison of precision between optical and electromagnetic navigation systems in total knee arthroplasty
Klos Computer-assisted anterior cruciate ligament reconstruction. Four generations of development and usage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784170

Country of ref document: EP

Kind code of ref document: A1