WO2022213991A1 - 一种空心电机轴的成形加工方法 - Google Patents

一种空心电机轴的成形加工方法 Download PDF

Info

Publication number
WO2022213991A1
WO2022213991A1 PCT/CN2022/085346 CN2022085346W WO2022213991A1 WO 2022213991 A1 WO2022213991 A1 WO 2022213991A1 CN 2022085346 W CN2022085346 W CN 2022085346W WO 2022213991 A1 WO2022213991 A1 WO 2022213991A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank
rotor shaft
hollow
hollow rotor
forming
Prior art date
Application number
PCT/CN2022/085346
Other languages
English (en)
French (fr)
Inventor
杨向东
乔艳艳
潘智承
戴泽华
Original Assignee
江苏太平洋精锻科技股份有限公司
江苏太平洋齿轮传动有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏太平洋精锻科技股份有限公司, 江苏太平洋齿轮传动有限公司 filed Critical 江苏太平洋精锻科技股份有限公司
Publication of WO2022213991A1 publication Critical patent/WO2022213991A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/063Making machine elements axles or shafts hollow

Definitions

  • the invention belongs to the technical field of precision transmission parts processing, and in particular relates to a forming processing method for a hollow motor shaft.
  • New energy electric vehicles are the current and future development direction of the automobile industry, and the development momentum is strong, but the problem of cruising range is one of the factors restricting the development of electric vehicles.
  • the conventional cruising range is 550 kilometers.
  • the lightweight of the car is one of the key technologies to improve the cruising range. Therefore, the motor and deceleration mechanism of the electric vehicle need to be designed with compact structure and weight reduction to reduce the weight of the whole vehicle. Because the torque of the shaft transmission is on the surface, major OEMs have designed hollow motor shafts.
  • the material of the hollow shaft is carburized steel or medium carbon steel, such as 20MnCr5, 42CrMo4, and 45 steel.
  • the raw material when processing a hollow motor shaft, the raw material is first cold-extruded to form a tube blank.
  • the process of forming the tube blank in order to achieve the characteristics of uniform wall thickness and consistent streamline, it is often necessary to perform multiple cold extrusion processes. , to achieve a tube blank with an aspect ratio of ⁇ 2.5. If you want to make a hollow tube with an aspect ratio of ⁇ 4 and a cross-section ratio of ⁇ 55%, the traditional back extrusion and diameter reduction and drawing methods are used. There are many steps, long processing cycle and high cost for heat treatment, surface treatment and lubrication treatment. In addition, due to the limitation of equipment and forming limit, there are certain constraints on the size of the tube blank.
  • the section ratio of the tube blank to be used is less than 55%, that is, the wall thickness is relatively large, and then the tube wall is processed so that the section ratio of the semi-finished product of the hollow motor shaft satisfies more than 55%, so that the final shape can meet the requirements. Hollow motor shaft.
  • the section ratio of the tube blank used in processing is less than 55%, so when the tube blank is converted into the weight of the hollow tube with the same size, the length-diameter ratio of the inner hole of the hollow tube is relatively smaller, that is, the wall thickness is relatively thicker, and further,
  • the hollow motor shaft formed by using this material has a relatively low material utilization rate.
  • the hollow rotor shaft with variable diameter and multiple steps is used in the traditional process, it can only be obtained by solid forging blanks, which are obtained by machining. This method not only wastes materials, but also requires very high machining, and the overall processing cost is high. , low competitiveness.
  • the purpose of the present invention is to provide a method for forming a hollow motor shaft, which can process and manufacture a hollow motor shaft that meets the requirements. It reduces the processing procedures of parts, improves processing efficiency, saves processing costs, shortens processing cycles, and at the same time improves the utilization rate of related materials, saves processing costs, and improves product competitiveness.
  • a method for forming a hollow motor shaft comprising the following steps:
  • Step S1 obtaining a bar that meets the needs of the part
  • Step S2 making the bar into a tube blank
  • Step S3 performing initial heat treatment on the tube blank, and obtaining the tube material of the required length;
  • Step S4 pre-processing the outer circle of the pipe material
  • Step S5 performing rotary forging on the tube material to obtain a hollow rotor shaft blank with variable diameter and multiple steps;
  • Step S6 machining the hollow rotor shaft blank once
  • Step S7 performing secondary heat treatment on the hollow rotor shaft blank
  • Step S8 performing secondary machining on the hollow rotor shaft blank to form the hollow rotor shaft;
  • Step S9 performing finished product detection on the hollow rotor shaft.
  • the step of making the bar into a tube blank includes performing hot piercing and cold drawing processing on the bar to form a tube blank with uniform wall thickness, consistent streamline and dense organization, and The section ratio of the tube blank is greater than or equal to 55%.
  • the heat treatment adopts an isothermal normalizing or annealing process, and the obtained tube blank hardness is less than or equal to 220HB.
  • the step of swaging the pipe material includes controlling the temperature to be normal temperature, and controlling the swaging machine to swivel the pipe material to form a plurality of variable diameter steps; the pipe material moves along the axial direction , the feed speed is 2-3mm/s, the rotational speed of the swaging die of the swaging machine is 100-300 rpm, and the blowing force of the swaging die is 200KN-400KN.
  • the step of pre-processing the outer circumference of the pipe material includes turning processing or cylindrical grinding processing, and processing the pipe material with the inner hole of the pipe material as a machining reference
  • the outer circle, and the dimensional tolerance is ⁇ 0.1, and the shape and position tolerance value is less than or equal to 0.2 relative to the inner hole.
  • the step of machining the hollow rotor shaft blank includes machining an outer circle, steps, undercuts or/and splines on the hollow rotor shaft blank.
  • the step of performing secondary heat treatment on the hollow rotor shaft blank includes: judging that the hollow rotor shaft blank is carburized steel, medium carbon steel or medium carbon alloy steel; When the blank is carburized steel, carburize the spline part or the bearing diameter part of the hollow rotor shaft blank; when the hollow rotor shaft blank is medium carbon steel or medium carbon alloy steel, the hollow rotor shaft The surface of the spline part of the blank or the surface of the bearing diameter part is induction hardened.
  • the step of performing secondary machining on the hollow rotor shaft blank includes grinding the hollow rotor shaft blank on the bearing diameter and the part where the coil is installed.
  • the finished product detection includes dynamic balance, flaw detection detection and/or physical and chemical detection.
  • the invention provides a method for forming a hollow motor shaft, which has the following advantages:
  • the hollow motor shaft that meets the requirements can be processed and manufactured, that is, the wall thickness and section ratio of the tube embryo meet the requirements of the hollow motor shaft, and the above process is compared with the traditional processing technology, which greatly reduces the number of parts during processing. It can improve the processing efficiency and shorten the processing cycle. At the same time, it improves the utilization rate of related materials, saves processing costs and improves product competitiveness.
  • the existing part of the hollow motor shaft has thin wall thickness and large length-diameter ratio, and the length-diameter ratio is about 6-10.
  • a stepped hollow shaft with variable diameter and thickness can be obtained, which can meet the requirements of the part for wall thickness and diameter, and can further improve the microstructure and properties of the processing site. Due to factors such as mandrel, uniform axial forming, small impact force, single-lobe mold force less than 70 tons, multiple small deformations, etc., the inner hole and outer circle of the formed part have high shape and position accuracy. All inner holes required for assembly can be left unprocessed, which greatly saves machining costs and improves product competitiveness.
  • FIG. 1 is a schematic diagram of a process flow of a method for forming a hollow motor shaft according to the present invention
  • FIG. 2 is a schematic diagram of a hollow motor shaft of the present invention
  • Fig. 3 is the schematic diagram of the hollow tube when calculating the aspect ratio in the present invention.
  • FIG. 4 is a schematic diagram of the hollow tube when the cross-sectional ratio is calculated in the present invention.
  • L the tube length behind the hollow tube
  • d the inner diameter behind the hollow tube
  • S1 the area of the inner hole
  • S2 the area of the outer circle.
  • the present invention provides a method for forming a hollow motor shaft, referring to FIG. 1 to FIG. 4 , including the following steps:
  • Step S1 obtaining a bar that meets the requirements of the part.
  • Step S2 making the bar into a tube blank
  • Step S3 performing initial heat treatment on the tube blank, and obtaining the tube material of the required length;
  • Step S4 pre-processing the outer circle of the pipe material
  • Step S5 performing rotary forging on the tube material to obtain a hollow rotor shaft blank with variable diameter and multiple steps;
  • Step S6 machining the hollow rotor shaft blank once
  • Step S7 performing secondary heat treatment on the hollow rotor shaft blank
  • Step S8 performing secondary machining on the hollow rotor shaft blank to form the hollow rotor shaft;
  • Step S9 performing finished product detection on the hollow rotor shaft.
  • step S1 the step of obtaining a bar that meets the requirements of the part includes inspection of the chemical composition, structure, mechanical properties and defects of the material, verifying whether the material meets the requirements of the part, and selecting the required bar according to the verification result. material.
  • step S2 the bar is made into a tube blank.
  • the specific steps include hot perforating and cold drawing processing of the bar, forming a tube blank with uniform wall thickness, consistent streamline and dense organization, and the section ratio of the tube blank is greater than or equal to 55%.
  • the tube blank obtained in this way compared with using the traditional process to form the tube blank, the use of this process to manufacture the tube blank avoids the multiple heat treatment, surface treatment and lubrication treatment of the blank, the process is more concise, and the cost is relatively lower.
  • hot piercing can effectively improve the constraints of the thermoplastic forming limit, high-efficiency tube making, and improve the wall thickness, inner hole and
  • the shape and position tolerance of the outer circle can obtain a high-precision tube blank, which is prepared for the subsequent non-processing of the inner hole of the finished product.
  • step S3 the initial heat treatment is performed on the tube blank, and the tube material of the required length is obtained; wherein, the heat treatment adopts an isothermal normalizing or annealing process, which is mainly used to improve the plasticity and structure of the tube blank, so that it can meet the performance of rotary forging Require.
  • the tube embryo structure after heat treatment is ferrite and pearlite, and the tube embryo hardness is less than or equal to 220HB.
  • the tube blank can be cut off by using a circular saw or a band saw or other methods to obtain a tube of the desired length.
  • preprocessing is performed on the outer circle of the pipe material. Specifically, it includes turning or cylindrical grinding.
  • the inner hole of the pipe material is used as the processing benchmark, and the outer circle of the pipe material is processed.
  • the dimensional tolerance is ⁇ 0.1, and the shape and position tolerance value is less than or equal to 0.2 relative to the inner hole runout.
  • step S5 the pipe material is swaging
  • the specific steps include: first, controlling the temperature to be normal temperature, and controlling the swaging machine to swivel the pipe material to form a plurality of variable diameter steps.
  • the tube material moves along the axial direction, the feed rate is 2-3mm/s, the rotational speed of the swaging die of the swaging machine is 100-300 rpm, and the blowing force of the swaging die is 200KN-400KN.
  • the swaging die of the segment selection machine performs swaging processing on the tube material by means of high frequency and small feed, and hits the hollow blank, which can make the wall thickness of 4-10mm and the section ratio greater than or equal to 55.
  • the inner hole and outer circle of the formed hollow rotor shaft blank have high shape and position accuracy. All inner holes can be processed without additional processing, which greatly saves machining costs and improves product competitiveness.
  • the hollow rotor shaft with variable diameter and multiple steps can only be obtained by solid forging blanks, which can be obtained by machining.
  • This method not only wastes materials, but also requires very high machining requirements.
  • the overall processing cost is high and the competitiveness is low.
  • the rotary forging method has the characteristics of improving the compactness of the structure, making the metal streamlines distributed along the axial direction, and the inner hole and the outer circle have the characteristics of high precision, high efficiency and cost saving, and has a significant competitive advantage.
  • step S6 one machining process is performed on the hollow rotor shaft blank, which specifically includes machining an outer circle, a step, an undercut or/and a spline on the hollow rotor shaft blank.
  • step S7 secondary heat treatment is performed on the hollow rotor shaft blank, including the following steps:
  • the hollow rotor shaft blank is carburized steel, medium carbon steel or medium carbon alloy steel, and choose different processing methods according to different materials.
  • the hollow rotor shaft blank is carburized steel, carburize the spline part or the bearing diameter part of the hollow rotor shaft blank; when the hollow rotor shaft blank is medium carbon steel or medium carbon alloy steel, the hollow rotor shaft blank The surface of the spline part of the rotor shaft blank or the surface of the bearing diameter part is induction hardened.
  • the processed hollow rotor shaft blanks can meet the performance requirements of the parts.
  • step S8 secondary machining is performed on the hollow rotor shaft blank, which specifically includes grinding the hollow rotor shaft blank on the bearing diameter and the part where the coil is installed.
  • the bearing parts and the installation coil parts have high precision, so that they can meet the size requirements of the parts.
  • the finished product inspection includes dynamic balance, flaw detection inspection, and/or physical and chemical inspection, etc., and it is judged whether it meets the requirements of the part by detecting the key characteristics of the part.
  • the invention provides a method for forming a hollow motor shaft, which has the following advantages:
  • the hollow motor shaft that meets the requirements can be processed and manufactured, that is, the wall thickness and section ratio of the tube embryo meet the requirements of the hollow motor shaft, and the above process is compared with the traditional processing technology, which greatly reduces the number of parts during processing. It improves the processing efficiency, shortens the processing cycle, and at the same time improves the utilization rate of related materials, saves processing costs, and improves product competitiveness.
  • the existing part of the hollow motor shaft has thin wall thickness and large length-diameter ratio, and the length-diameter ratio is about 6-10.
  • a stepped hollow shaft with variable diameter and thickness can be obtained, which can meet the requirements of the part for wall thickness and diameter, and can further improve the microstructure and properties of the processing site. Due to factors such as mandrel, uniform axial forming, small impact force, single-lobe mold force less than 70 tons, multiple small deformations, etc., the inner hole and outer circle of the formed part have high shape and position accuracy. All inner holes required for assembly can be left unprocessed, which greatly saves machining costs and improves product competitiveness.
  • the hollow motor shaft 100 in the prior art has a hollow hole 110 in the hollow motor shaft, and several steps 120 with different diameters are formed on the inner side.
  • the aspect ratio recorded in the document is equal to L/d, where L refers to the length of the hollow shaft after the weight of the hollow shaft is converted into a hollow tube with the same size as the middle part, and d refers to the The inner diameter of the hollow tube with the same size as the middle part.
  • the cross-sectional ratio described in the document is the ratio of the inner hole area S1 to the outer circle area S2, that is, S1/S2.
  • connection or the integral connection, may be a mechanical connection, an electrical connection, a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two elements.
  • connection or the integral connection
  • the specific meanings of the above terms in the present invention can be understood in specific situations. Embodiments of the invention and features of the embodiments may be combined with each other without conflict.

Abstract

一种空心电机轴的成形加工方法,包括以下步骤:步骤S1,获取满足零件需要的棒材;步骤S2,将棒材制成管胚;步骤S3,对管胚进行初次热处理,并获取所需长度的管料;步骤S4,对管料外圆进行预加工处理;步骤S5,对管料进行旋锻,获取变径多台阶的空心转子轴胚件;步骤S6,对空心转子轴胚件进行一次机加工;步骤S7,对空心转子轴胚件进行二次热处理;步骤S8,对空心转子轴胚件进行二次机加工,形成空心转子轴;步骤S9,对空心转子轴进行成品检测。空心电机轴的成形加工方法可以加工制造符合要求的空心电机轴,缩短了零件的加工工序,提高了加工效率,节约了成本,提高了材料利用率。

Description

一种空心电机轴的成形加工方法 技术领域
本发明属于精密传动零件加工技术领域,具体涉及一种空心电机轴的成形加工方法。
背景技术
新能源电动车是汽车行业现在与未来的发展方向,发展势头强劲,但是续航里程问题是制约电动车发展的因素之一,常规的续航里程在550公里。为了提高续航里程,汽车轻量化是改善续航里程的关键技术之一。因此电动车的电机及减速机构需要进行结构紧凑和减重设计,来减少整车的重量。因为轴传动的扭矩在表层,各大OEM设计了空心电机轴,一般空心轴的材料为渗碳钢或者中碳钢,如20MnCr5、42CrMo4、45钢。该种空心电机轴结构的典型特点为中间粗两头小(中间直径大,两头直径小),一般中间部位壁厚4-8mm,且该处截面的截面比(内孔面积与外圆面积比)S1/S2≥55%,如果将空心轴的重量折合成同中间部位尺寸一致的空心管的重量的话,那么空心管内孔长径比L/d≥4,如图3和图4所示。
现有技术在加工空心电机轴时,首先对原材料进行冷挤压成形管胚,在成形管胚过程中,为了能够达到壁厚均匀、流线一致等特点,常常需要进行多次冷挤压工艺,达成长径比≥2.5的管胚,如果要制得长径比≥4,截面比≥55%的空心管,采用传统的反挤压和减径拔长成形方式,需要对毛坯进行多次的热处理、表面处理、润滑处理,步骤繁多,加工周期长,成本高,另外由于设备和成形极限限制,对管坯的尺寸有一定约束。
对最终成形的管胚加工成形空心电机轴时,现有技术在对管胚进行多次小变形塑形成形过程中,对于壁厚4-8mm,截面比大于55%的管胚,并不能够直接加工,首选需要使用的管胚截面比小于55%,即壁厚相对较大,之后在对管壁进行加工,使得空心电机轴半成品的截面比满足大于55%,才能够最终成形满足要求的空心电机轴。同时,在加工时所使用的管胚截面比小于55%,所以将管胚折算为尺寸一致的空心管的重量时,空心管内孔长径比相对更小,即壁 厚相对更厚,进而,使用该材料加工成形的空心电机轴,材料利用率相对较低。其次,在加工时,变径多台阶的空心转子轴如果采用传统工艺只能采用实心锻坯,通过机加工的方式获得,该种方式不仅浪费材料、对机加工要求非常高,总体加工成本高,竞争力低。
发明内容
针对上述现有技术中存在的问题,本发明的目的在于提供一种空心电机轴的成形加工方法,可以加工制造符合要求的空心电机轴,且工序相比于传统的加工工艺,在加工时大大减少零件的加工工序,提高了加工效率,节约了加工成本,缩短了加工周期,同时提高了相关材料的利用率,节约加工成本,提高产品竞争力。
为了实现上述发明目的,本发明提供的一个技术方案如下:
一种空心电机轴的成形加工方法,包括以下步骤:
步骤S1、获取满足零件需要的棒材;
步骤S2、将所述棒材制成管胚;
步骤S3、对管胚进行初次热处理,并获取所需长度的管料;
步骤S4、对所述管料外圆进行预加工处理;
步骤S5、对管料进行旋锻,获取变径多台阶的空心转子轴胚件;
步骤S6、对空心转子轴胚件进行一次机加工;
步骤S7、对空心转子轴胚件进行二次热处理;
步骤S8、对空心转子轴胚件进行二次机加工,成形空心转子轴;
步骤S9、对所述空心转子轴进行成品检测。
优选的,所述步骤S2中,将所述棒材制成管胚的步骤,包括对棒材进行热穿孔和冷拉拔加工,成形壁厚均匀、流线一致和组织致密的管坯,且所述管胚的截面比大于或等于55%。
优选的,所述步骤S3中,热处理采用等温正火或退火工艺,获取的所述管胚硬度小于或等于220HB。
优选的,所述步骤S5中,对管料进行旋锻的步骤,包括控制温度为常温,控制旋锻机对管料进行旋锻,形成多个变直径台阶;所述管料沿轴向运动,进给速度为2-3mm/s,所述旋锻机的旋锻模具的转速为100-300转每分钟,所述旋 锻模具打击力为200KN-400KN。
优选的,所述步骤S4中,对所述管料外圆进行预加工处理的步骤,包括车削加工或外圆磨削加工,且以所述管料内孔为加工基准,加工所述管料外圆,且尺寸公差为±0.1,形位公差值相对于所述内孔跳动小于等于0.2。
优选的,所述步骤S6中,对空心转子轴胚件进行机加工的步骤,包括对空心转子轴胚件加工外圆、台阶、退刀槽或/和花键。
优选的,所述步骤S7中,对空心转子轴胚件进行二次热处理的步骤,包括:判断空心转子轴胚件为渗碳钢、中碳钢或中碳合金钢;当所述空心转子轴胚件为渗碳钢时,对空心转子轴胚件的花键部位或者轴承径部位进行渗碳处理;当所述空心转子轴胚件为中碳钢或中碳合金钢时,对空心转子轴胚件的花键部位或者轴承径部位表面感应淬火。
优选的,所述步骤S8中,对空心转子轴胚件进行二次机加工的步骤,包括对所述空心转子轴胚件上且位于轴承径及安装线圈的部位进行磨削加工。
优选的,所述步骤S9中,所述成品检测包括包含动平衡、探伤检测和/或理化检测。
本发明提供了一种空心电机轴的成形加工方法,通过采用棒料制管和旋锻组合加工的方式,使其具有以下优点:
1、通过采用上述工艺步骤,可以加工制造符合要求的空心电机轴,即管胚壁厚和截面比均符合空心电机轴要求,且上述工序相比于传统的加工工艺,在加工时大大减少零件的加工工序,提供加工效率,缩短加工周期,同时,提高了相关材料的利用率,节约加工成本,提高产品竞争力。
2、现有部分空心电机轴壁厚较薄且长径比较大,长径比大约在6~10。通过采用上述工艺能够制得与采用传统冷/温反挤压、减径拔长等方式性能一致的管坯,且通过本工艺所制造的管胚不局限于传统的锻压设备能力的管坯尺寸,本申请涉及的工艺所制造的空心电机轴,能够满足现有大部分空心电机轴壁厚的要求。
3、通过初步加工后进行旋锻,可以得到变直径、变厚度的台阶空心轴,满足零件对壁厚和直径的要求,并且可进一步提高加工处的组织性能。由于芯棒、轴向均匀成形、打击力小单瓣模具力小于70吨、多次小变形等因素,成形后的零件内孔和外圆有很高的形位精度,成形后内孔除有装配要求的内孔可全部不 加工,大大节约机加工成本,提高产品竞争力。
4、采用该工艺不仅可以节约原材料、提高加工效率,而且得到的零件金属流线沿轴向分布可以大大提高零件的力学性能,满足空心电机轴承受高转速、交变载荷的能力。
附图说明
图1为本发明一种空心电机轴的成形加工方法的工艺流程示意图;
图2为本发明一种空心电机轴的示意图;
图3为本发明中计算长径比时空心管的示意图;
图4为本发明中计算截面比时空心管的示意图。
图中附图标记:100、空心电机轴;110、空心孔;120、台阶;
L、空心管后的管长;d、空心管后的内直径;S1、内孔面积;S2、外圆面积。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明做进一步说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本发明提供了一种空心电机轴的成形加工方法,参见图1-图4,包括以下步骤:
步骤S1、获取满足零件需要的棒材。
步骤S2、将所述棒材制成管胚;
步骤S3、对管胚进行初次热处理,并获取所需长度的管料;
步骤S4、对所述管料外圆进行预加工处理;
步骤S5、对管料进行旋锻,获取变径多台阶的空心转子轴胚件;
步骤S6、对空心转子轴胚件进行一次机加工;
步骤S7、对空心转子轴胚件进行二次热处理;
步骤S8、对空心转子轴胚件进行二次机加工,成形空心转子轴;
步骤S9、对所述空心转子轴进行成品检测。
具体的,在步骤S1中,获取满足零件需要的棒材的步骤,包括对材料的化学成分、组织、力学性能以及缺陷的检验,验证该材料是否满足零件需求,根据验证结果选择所需要的棒材。
在步骤S2中,将棒材制成管胚。具体步骤包括对棒材进行热穿孔和冷拉拔加工,成形壁厚均匀、流线一致和组织致密的管坯,且管胚的截面比大于或等于55%。通过该方式获得的管胚,相比于使用传统工艺成形管胚,使用该工艺进行制造管胚,避免了毛胚的多次热处理、表面处理、润滑处理,工序更加的简洁,成本相对更低,另外通过本工艺加工制得的管胚,热穿管成形可以有效改善热塑性成形极限的约束,高效率制管,通过穿芯棒冷拉拔成形的方式改善管坯的壁厚、内孔和外圆的形位公差,得到高精度的管坯,为后续成品内孔不加工做准备。
在步骤S3中,对管胚进行初次热处理,并获取所需长度的管料;其中,热处理采用等温正火或退火工艺,主要用于改善管胚的塑性和组织,使其满足旋锻的性能要求。具体的,热处理后的管胚组织为铁素体和珠光体,且管胚硬度小于或等于220HB。之后可以通过使用圆盘锯或者带锯或者其他方式将管胚截断,获取所需长度的管料。
在步骤S4中,对管料外圆进行预加工处理。具体包括车削加工或外圆磨削加工。在加工时,以管料内孔为加工基准,加工管料外圆,加工后尺寸公差为±0.1,形位公差值为相对于内孔跳动小于等于0.2。通过采用上述工艺步骤,可以优化管料精度,为后续旋锻时,内孔不加工做铺垫。一般情况下电机轴内孔会有多个变直径台阶,内孔的加工对设备和刀具要求高,加工效率低。因此采用该种加工方式为后续内孔不加工做准备。
在步骤S5中,对管料进行旋锻,具体步骤包括:首先控制温度为常温,控制旋锻机对管料进行旋锻,形成多个变直径台阶。具体加工时,管料沿轴向运动,进给速度为2-3mm/s,旋锻机的旋锻模具的转速为100-300转每分钟,旋锻模具打击力为200KN-400KN。在加工时,选段机的旋锻模具通过高频率、小进给的方式对管料进行旋锻加工,对空心胚料进行击打,能够对壁厚为4-10mm,截面比大于或等于55%的胚料进行加工,且能够得到变直径、变厚度的台阶,满足零件对壁厚和直径的要求,与此同时,通过旋锻可进一步提高加工处的组 织性能。其次,由于胚料均匀成形、且前工序辅助加工,成形后的空心转子轴胚件内孔和外圆有很高的形位精度,成形后空心转子轴胚件的内孔除有装配要求的内孔可全部不额外加工,大大节约机加工成本,提高产品竞争力。
变径多台阶的空心转子轴如果采用传统工艺只能采用实心锻坯,通过机加工的方式获得,该种方式不仅浪费材料、对机加工要求非常高,总体加工成本高,竞争力低。而通过旋锻加工方式,具有提高组织致密性、使金属流线沿轴向分布且内孔与外圆具有高精度、效率高和节约成本的特点,具有显著的竞争优势。
在步骤S6中,对空心转子轴胚件进行一次机加工,具体包括对空心转子轴胚件加工外圆、台阶、退刀槽或/和花键。
在步骤S7中,对空心转子轴胚件进行二次热处理,包括如下步骤:
首先判断空心转子轴胚件为渗碳钢、中碳钢或中碳合金钢,根据不同的材质选择不同的加工方式。当空心转子轴胚件为渗碳钢时,对空心转子轴胚件的花键部位或者轴承径部位进行渗碳处理;当空心转子轴胚件为中碳钢或中碳合金钢时,对空心转子轴胚件的花键部位或者轴承径部位表面感应淬火。加工后的空心转子轴胚件能够满足零件的性能要求。
在步骤S8中,对空心转子轴胚件进行二次机加工,具体包括对空心转子轴胚件上且位于轴承径及安装线圈的部位进行磨削加工。通过磨削技工,使得轴承经部位和安装线圈部分具有较高的精度,使其满足零件的尺寸要求。
在步骤S9中,成品检测包括包含动平衡、探伤检测和/或理化检测等,通过检测零件关键特性判断其是否满足零件要求。
本发明提供了一种空心电机轴的成形加工方法,通过采用棒料制管和旋锻组合加工的方式,使其具有以下优点:
1、通过采用上述工艺步骤,可以加工制造符合要求的空心电机轴,即管胚壁厚和截面比均符合空心电机轴要求,且上述工序相比于传统的加工工艺,在加工时大大减少零件的加工工序,提高了加工效率,缩短加工周期,同时,提高了相关材料的利用率,节约加工成本,提高产品竞争力。
2、现有部分空心电机轴壁厚较薄且长径比较大,长径比大约在6~10。通过采用上述工艺能够制得与采用传统冷/温反挤压、减径拔长等方式性能一致的管坯,且通过本工艺所制造的管胚不局限于传统的锻压设备能力的管坯尺寸, 本申请涉及的工艺所制造的空心电机轴,能够满足现有大部分空心电机轴壁厚的要求。
3、通过初步加工后进行旋锻,可以得到变直径、变厚度的台阶空心轴,满足零件对壁厚和直径的要求,并且可进一步提高加工处的组织性能。由于芯棒、轴向均匀成形、打击力小单瓣模具力小于70吨、多次小变形等因素,成形后的零件内孔和外圆有很高的形位精度,成形后内孔除有装配要求的内孔可全部不加工,大大节约机加工成本,提高产品竞争力。
4、采用该工艺不仅可以节约原材料、提高加工效率,而且得到的零件金属流线沿轴向分布可以大大提高零件的力学性能,满足空心电机轴承受高转速、交变载荷的能力。
为了能够更好的了解本发明,现有技术的空心电机轴100,如图2所述,空心电机轴内为空心孔110,在内侧形成有若干直径不同的台阶120。
如图3所述,文件中所记载的长径比等于L/d,其中,L指的是空心轴的重量折合成同中间部位尺寸一致的空心管后的管长,d指的是折合成同中间部位尺寸一致的空心管后的内直径。
如图4所述,文件中所记载的截面比为内孔面积S1与外圆面积S2的比值,即S1/S2。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接、可以是机械连接,也可以是电连接、可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但 并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种空心电机轴的成形加工方法,其特征在于:包括以下步骤:
    步骤S1、获取满足零件需求的棒材;
    步骤S2、将所述棒材制成管胚;
    步骤S3、对管胚进行初次热处理,并获取所需长度的管料;
    步骤S4、对所述管料外圆进行预加工处理;
    步骤S5、对管料进行旋锻,获取变径多台阶的空心转子轴胚件;
    步骤S6、对空心转子轴胚件进行一次机加工;
    步骤S7、对空心转子轴胚件进行二次热处理;
    步骤S8、对空心转子轴胚件进行二次机加工,成形空心转子轴;
    步骤S9、对所述空心转子轴进行成品检测。
  2. 根据权利要求1所述的空心电机轴的成形加工方法,其特征在于:所述步骤S2中,将所述棒材制成管胚的步骤,包括对棒材进行热穿孔和冷拉拔加工,成形壁厚均匀、流线一致和组织致密的管坯,且所述管胚的截面比大于或等于55%。
  3. 根据权利要求1所述的空心电机轴的成形加工方法,其特征在于:所述步骤S3中,热处理采用等温正火或退火工艺,获取的所述管胚硬度小于或等于220HB。
  4. 根据权利要求1所述的空心电机轴的成形加工方法,其特征在于:所述步骤S5中,对管料进行旋锻的步骤,包括控制温度为常温,控制旋锻机对管料进行旋锻,形成多个变直径台阶;所述管料沿轴向运动,进给速度为2-3mm/s,所述旋锻机的旋锻模具的转速为100-300转每分钟,所述旋锻模具打击力为200KN-400KN。
  5. 根据权利要求1所述的空心电机轴的成形加工方法,其特征在于:所述步骤S4中,对所述管料外圆进行预加工处理的步骤,包括车削加工或外圆磨削加工,且以所述管料内孔为加工基准,加工所述管料外圆,且尺寸公差为±0.1,形位公差值相对于所述内孔跳动小于或等于0.2。
  6. 根据权利要求1所述的空心电机轴的成形加工方法,其特征在于:所述 步骤S6中,对空心转子轴胚件进行机加工的步骤,包括对空心转子轴胚件加工外圆、台阶、退刀槽或/和花键。
  7. 根据权利要求1所述的空心电机轴的成形加工方法,其特征在于:所述步骤S7中,对空心转子轴胚件进行二次热处理的步骤,包括:
    判断空心转子轴胚件为渗碳钢、中碳钢或中碳合金钢;
    当所述空心转子轴胚件为渗碳钢时,对空心转子轴胚件的花键部位或者轴承径部位进行渗碳处理;
    当所述空心转子轴胚件为中碳钢或中碳合金钢时,对空心转子轴胚件的花键部位或者轴承径部位表面感应淬火。
  8. 根据权利要求1所述的空心电机轴的成形加工方法,其特征在于:所述步骤S8中,对空心转子轴胚件进行二次机加工的步骤,包括对所述空心转子轴胚件上且位于轴承径及安装线圈的部位进行磨削加工。
  9. 根据权利要求1所述的空心电机轴的成形加工方法,其特征在于:所述步骤S9中,所述成品检测包括包含动平衡检测、探伤检测和/或理化检测。
PCT/CN2022/085346 2021-04-06 2022-04-06 一种空心电机轴的成形加工方法 WO2022213991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110365191.1A CN113477857B (zh) 2021-04-06 2021-04-06 一种空心电机轴的成形加工方法
CN202110365191.1 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213991A1 true WO2022213991A1 (zh) 2022-10-13

Family

ID=77932722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085346 WO2022213991A1 (zh) 2021-04-06 2022-04-06 一种空心电机轴的成形加工方法

Country Status (2)

Country Link
CN (1) CN113477857B (zh)
WO (1) WO2022213991A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477857B (zh) * 2021-04-06 2022-11-08 江苏太平洋精锻科技股份有限公司 一种空心电机轴的成形加工方法
CN114101570A (zh) * 2021-12-02 2022-03-01 江苏攀森智能科技有限公司 一种电机转轴的加工方法
CN114713751A (zh) * 2022-05-06 2022-07-08 重庆理工大学 一种半空心电机轴的挤压和旋锻复合成型工艺
DE102022118352A1 (de) * 2022-07-22 2024-01-25 Thyssenkrupp Steel Europe Ag Gewichts- und belastungsoptimierte Rotorhohlwelle und Verfahren zu seiner Herstellung
CN117182483B (zh) * 2023-11-02 2024-01-23 中山迈雷特数控技术有限公司 一种中空轴类零件的平衡工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015221842A1 (de) * 2015-11-06 2017-05-11 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Getriebewelle
CN110900122A (zh) * 2019-11-12 2020-03-24 武汉科技大学 一种轻量化电机轴成型方法
CN111318863A (zh) * 2020-03-05 2020-06-23 湖北隐冠轴业有限公司 一种驱动电机空心转轴的加工方法
CN112238205A (zh) * 2020-09-17 2021-01-19 东风商用车有限公司 一种重载汽车空心半轴的制造方法及空心半轴
CN113084467A (zh) * 2021-04-06 2021-07-09 江苏太平洋精锻科技股份有限公司 一种盲孔空心电机轴的成形加工方法
CN113477857A (zh) * 2021-04-06 2021-10-08 江苏太平洋精锻科技股份有限公司 一种空心电机轴的成形加工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699102B (zh) * 2012-06-07 2015-06-03 重庆钢铁(集团)有限责任公司 锅炉用小口径冷拔无缝钢管的生产工艺方法
DE102013219310A1 (de) * 2013-09-25 2015-03-26 Gfm Gmbh Verfahren zum Warmschmieden eines nahtlosen Hohlkörpers aus schwer umformbarem Werkstoff, insbesondere aus Stahl
CN103587350B (zh) * 2013-11-26 2015-12-30 上海纳铁福传动系统有限公司 一种汽车驱动轴
CN109622849B (zh) * 2018-12-28 2021-04-09 山东泰和能源股份有限公司 一种轴类件盲孔径向旋锻精锻工艺及径向旋锻装置
CN111037244A (zh) * 2019-12-10 2020-04-21 江苏森威精锻有限公司 一种空心轴及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015221842A1 (de) * 2015-11-06 2017-05-11 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Getriebewelle
CN110900122A (zh) * 2019-11-12 2020-03-24 武汉科技大学 一种轻量化电机轴成型方法
CN111318863A (zh) * 2020-03-05 2020-06-23 湖北隐冠轴业有限公司 一种驱动电机空心转轴的加工方法
CN112238205A (zh) * 2020-09-17 2021-01-19 东风商用车有限公司 一种重载汽车空心半轴的制造方法及空心半轴
CN113084467A (zh) * 2021-04-06 2021-07-09 江苏太平洋精锻科技股份有限公司 一种盲孔空心电机轴的成形加工方法
CN113477857A (zh) * 2021-04-06 2021-10-08 江苏太平洋精锻科技股份有限公司 一种空心电机轴的成形加工方法

Also Published As

Publication number Publication date
CN113477857B (zh) 2022-11-08
CN113477857A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2022213991A1 (zh) 一种空心电机轴的成形加工方法
CN102836895B (zh) 一种异型无缝钢管的制造方法
CN105537449B (zh) 铝合金薄壁回转体旋压加工方法
CN101576125B (zh) 一种圆锥滚子轴承的外圈的制造方法
CN113084467A (zh) 一种盲孔空心电机轴的成形加工方法
US8356506B2 (en) Method of forming industrial housings
CN103624482B (zh) 一种汽车驱动桥整体桥壳的成型方法
CN105107915A (zh) 一种大尺寸镁合金薄壁筒形件精密旋压成形工艺方法
CN106270354A (zh) 一种轴承套圈精密锻件的加工方法
EP2754564A1 (en) Lightweight hub unit with integrated bearing rings and process for its manufacture
CN105710273A (zh) 轿车等速万向传动轴旋锻周向进给工艺参数确定方法
CN106734839B (zh) 一种预防变截面变壁厚中间轴旋锻过程中出现缺陷的方法
JP2020525695A (ja) 中空バルブの製造方法
CN106734481A (zh) 一种小锥度筒形件复合旋压加工方法
CN110961515A (zh) 一种钛合金薄壁筒体成形方法
WO2015188543A1 (zh) 高镁铝合金商用车轮毂的制造方法
RU2538792C1 (ru) Способ ротационной вытяжки тонкостенных оболочек с утолщениями
US20170021401A1 (en) Method for Forming an End Part of a Tube, Respective Device for Performing the Method, Rolling Body, and Flange on an End Part of a Tube Formed with the Method
CN108311622A (zh) 汽车发动机内真空发生器转子成型方法
US20210370376A1 (en) Method for producing a hollow valve for internal combustion engines
CN104833331A (zh) 轿车等速万向传动中间旋锻轴毛坯的内外径尺寸确定方法
CN113399961A (zh) 一种车用多阶轴杆复杂外花键零件的挤压成形方法
US11524330B2 (en) Method for producing a hollow valve for internal combustion engines
CN113770666A (zh) 空心转轴制造方法和汽车驱动电机空心转轴
JPH06155287A (ja) 高疲労強度アルミニウム合金コンロッドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784057

Country of ref document: EP

Kind code of ref document: A1