WO2022213976A1 - 一种电极立体交互堆叠的电力人工肌肉 - Google Patents

一种电极立体交互堆叠的电力人工肌肉 Download PDF

Info

Publication number
WO2022213976A1
WO2022213976A1 PCT/CN2022/085298 CN2022085298W WO2022213976A1 WO 2022213976 A1 WO2022213976 A1 WO 2022213976A1 CN 2022085298 W CN2022085298 W CN 2022085298W WO 2022213976 A1 WO2022213976 A1 WO 2022213976A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
electrodes
alternately stacked
artificial muscle
flexible conductive
Prior art date
Application number
PCT/CN2022/085298
Other languages
English (en)
French (fr)
Inventor
关春东
Original Assignee
关春东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 关春东 filed Critical 关春东
Priority to US18/277,957 priority Critical patent/US20240141928A1/en
Publication of WO2022213976A1 publication Critical patent/WO2022213976A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/088Characterised by the construction of the motor unit the motor using combined actuation, e.g. electric and fluid actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1075Programme-controlled manipulators characterised by positioning means for manipulator elements with muscles or tendons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/06Use of special fluids, e.g. liquid metal; Special adaptations of fluid-pressure systems, or control of elements therefor, to the use of such fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • H01G5/013Dielectrics
    • H01G5/0132Liquid dielectrics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors

Definitions

  • the present invention relates to an artificial muscle, in particular, to an electric artificial muscle with three-dimensionally stacked electrodes.
  • Existing artificial muscles typically include ionic polymer metal complexes, pneumatic artificial muscles and other types.
  • an electro-hydraulic artificial muscle technology such as the HASEL artificial muscle, has emerged in the field.
  • the purpose of the present invention is to improve the existing electro-hydraulic artificial muscle technology, improve the output displacement and energy conversion efficiency of the existing electro-hydraulic artificial muscle, and further combine the electric field force with the fluid pressure based on the existing technology, so that the The invention can be widely used in the fields of bionic robots and wearable devices such as flexible exoskeletons.
  • it includes: stacking the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a alternately, and the ends of the alternately stacked flexible conductive electrodes 002a wrapped by the flexible insulating material 001a are connected to the inner side of the flexible sealing outer layer 003a. Both ends are immersed in the fluid dielectric 05 wrapped by the flexible sealing outer layer 003a, and the flexible conductive electrodes are led out from the flexible sealing outer layer and connected to the external power source.
  • the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a Under the action of the applied electric field, break down the fluid dielectric and approach each other, and at the same time extrude the flexible conductive electrode 002a wrapped by the flexible insulating material 001a.
  • the fluid dielectric 05 between the conductive electrodes 002a that is, under the combined action of the electric field force and the fluid pressure generated by the electric field force, realizes the contraction and expansion of the flexible sealing outer layer 003a in a specific direction.
  • the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a are stacked alternately in a spiral alternate stacking manner.
  • the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a may be stacked alternately by folding.
  • the fluid dielectric 05 is a Newtonian fluid.
  • the fluid dielectric 05 may also be a non-Newtonian fluid.
  • the electric artificial muscle with three-dimensionally stacked electrodes can also be made into muscle fibers that can be assembled into bundles.
  • a flexible conductive layer 2a may also be attached to the outside of the flexible sealing outer layer 003a.
  • the electric artificial muscle with three-dimensionally stacked electrodes can be controlled to expand and contract by controlling the magnitude of the voltage between the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a.
  • the degree of expansion and contraction of the electric artificial muscle with three-dimensionally alternately stacked electrodes can be determined by measuring the electrical parameters between the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a.
  • the degree of expansion and contraction of the electric artificial muscle of the three-dimensionally alternately stacked electrodes can be determined according to the measurement of electrical parameters between a plurality of the flexible conductive layers 2a attached to the outside of the flexible sealing outer layer 003a.
  • FIG. 1 is a schematic diagram of the principle of an existing electro-hydraulic artificial muscle.
  • FIG. 2 is a schematic diagram of a conventional electro-hydraulic artificial muscle using electrodes in a two-dimensional layout.
  • FIG. 3 is a cross-sectional structural diagram of a flexible conductive electrode 002a wrapped by a flexible insulating material 001a according to the present invention.
  • FIG. 4 is a schematic diagram of the structural relationship of the two flexible conductive electrodes 002a wrapped by a flexible insulating material 001a that are helically and alternately stacked in an embodiment of the present invention.
  • FIG. 5 is a cross-sectional structural view of two flexible conductive electrodes 002a wrapped by flexible insulating materials 001a attached to two sides of a flexible insulating substrate 07, respectively, in an embodiment of the present invention.
  • FIG. 6 is another schematic diagram of the structural relationship in which the flexible insulating material 001a is used to wrap two flexible conductive electrodes 002a and the flexible insulating substrate 07 together, and the single-spiral electrodes are alternately stacked, according to an embodiment of the present invention. .
  • FIG. 7 is a schematic diagram of the steps of folding and stacking the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the steps of folding and stacking the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the steps of folding and stacking the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the steps of folding and alternately stacking the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a in an embodiment of the invention.
  • FIG. 11 is a schematic diagram of the steps of folding and stacking the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a in an embodiment of the invention.
  • FIG. 12 is a schematic three-dimensional structural diagram of the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a after being folded and stacked alternately according to an embodiment of the present invention.
  • Figure 13 is an embodiment of the present invention.
  • Figure 14 is a schematic diagram of an embodiment of the present invention contracting and expanding in a specific direction after power is turned on.
  • FIG. 15 is a schematic diagram of an electric artificial muscle with three-dimensionally alternately stacked electrodes described in an embodiment of the present invention being fabricated into muscle fibers that can be assembled into bundles.
  • FIG. 1 shows a schematic diagram of an existing electro-hydraulic artificial muscle.
  • This electro-hydraulic artificial muscle encapsulates the liquid dielectric 02 in the flexible sealing outer layer 03 while partially attaching the flexible conductive electrodes 01 outside the flexible sealing outer layer 03 .
  • the liquid dielectric 02 in the flexible sealing outer layer 03 is broken down by the electric field E formed by the two flexible conductive electrodes 01, where V1 ⁇ V2 ⁇ V3.
  • the two flexible conductive electrodes 01 approach each other under the action of the electric field force until the liquid dielectric 02 that is broken down therebetween is completely squeezed out and flows to the side of the flexible sealing outer layer 03 .
  • the liquid dielectric 02 will flow to one end of the flexible sealing outer layer 03 due to the liquid pressure P, thereby causing the flexible sealing outer layer 03 to contract as a whole, realizing the contraction function required by the artificial muscle.
  • the volume of liquid electrolyte 02 in the flexible sealing outer layer 03 should be smaller than the maximum volume of the flexible sealing outer layer 03, and the flexible sealing outer layer 03 should adopt a low extension A flexible material that is flexible, otherwise it will not be able to achieve the required shrinkage function.
  • the two flexible conductive electrodes 01 will not conduct to form a loop due to the barrier of the flexible sealing outer layer 03 .
  • Figure 2 is a schematic diagram of the electrode structure of an electro-hydraulic artificial muscle driven by a two-dimensional tooth-shaped arrangement of flexible conductive electrodes with elasticity.
  • this electrode arrangement can also squeeze the liquid electrolyte between the electrodes to make it
  • due to the area limitation of the two electrodes it is difficult to efficiently use the electric field force to drive the artificial muscle to contract. Therefore, a more efficient electrode arrangement is obviously beneficial, which is also the main technical problem solved by the present invention.
  • FIG. 3 is a cross-sectional structure of a flexible conductive electrode 002a wrapped by a flexible insulating material 001a according to some embodiments of the present invention. This wrapping structure is applicable to both the spirally stacked and folded alternately stacked electrode structures.
  • FIG. 4 is a specific manner in which the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a are arranged in a spiral alternate stack according to some embodiments of the present invention.
  • the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a adopt this arrangement, for any one of the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a, most of the surface area can be the same.
  • the area of the other flexible conductive electrode 002a wrapped by the flexible insulating material 001a corresponds to most of the area. As shown in FIG. 13 and FIG.
  • the two ends of the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a after alternate stacking are connected to the two ends inside the flexible sealing outer layer 003a and immersed in the flexible sealing outer layer 003a.
  • a flexible conductive electrode 002a is drawn out from the flexible sealing outer layer and connected to an external power source.
  • the spirally stacked structure can achieve the purpose of driving the flexible sealing outer layer 003a to shrink as a whole; at the same time, the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a The fluid dielectric 05 that is broken down by the electric field will move to the periphery of the flexible conductive electrode 002a wrapped by the flexible insulating material 001a in the direction of the arrow shown in FIG.
  • the electric artificial muscle shown in the example realizes the contraction in the direction of the arrow shown in 06 under the action of the electric field force and the fluid pressure generated by the electric field force.
  • the degree of contraction of the electric artificial muscle of the present invention can be controlled more precisely.
  • a pulsed voltage can be used to measure the degree of contraction of the electrically powered artificial muscle of the present invention.
  • the electrical parameters between the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a can also be measured, such as voltage, capacitance, etc. to measure instantaneous parameters, and then according to the measured electrical parameters parameters to judge the degree of contraction of the electric artificial muscle of the present invention.
  • the fluid dielectric 05 described in this embodiment can be either gaseous or liquid.
  • the fluid dielectric 05 is a gaseous Newtonian fluid
  • the fluid pressure generated by the electric field force contributes less force to the contraction of the electric artificial muscle of the present invention.
  • gaseous dielectrics makes sense in some applications, such as robotic arms for aerospace equipment, where weight is more sensitive.
  • the sum of the volume of the flexible conductive electrodes 002a wrapped by the flexible insulating material 001a after alternate stacking and the volume of the fluid dielectric 05 should be smaller than the volume of the flexible sealing outer layer 003a Maximum volume so that it can contract and relax. It should be emphasized that the flexible sealing outer layer 003a employed at this time should also be a flexible material with low extensibility.
  • the function of the fluid dielectric 05 at this time is the same as that of the liquid dielectric in the existing electro-hydraulic artificial muscle technology.
  • the fluid dielectric 05 is a non-Newtonian fluid, such as a non-Newtonian fluid formed by a fluid dielectric doped with high dielectric constant particles
  • the function of this non-Newtonian fluid dielectric not only has the advantages of existing electro-hydraulic artificial muscle technology
  • the liquid dielectric function for some special applications, such as flexible exoskeletons used in the military, can also play a certain degree of bulletproof due to the physical properties of non-Newtonian fluids.
  • FIG. 5 and FIG. 6 show a simplified helical alternating stacking structure.
  • the insulating base material 07 is also wrapped by the flexible insulating material 001a.
  • FIG. 6 is a schematic diagram of the alternate stacking structure of single-spiral electrodes based on the cross-sectional structure shown in FIG.
  • the helical alternating stacking of electrodes is realized in the form of a single helix.
  • most of the surface area can be the same as most of the area of the other flexible conductive electrode 002a wrapped by the flexible insulating material 001a. correspond. That is, the object of the present invention can also be achieved by adopting this single-helix structure at this time.
  • FIGS. 7 to 11 show another schematic diagram of steps to achieve the purpose of the present invention based on two flexible conductive electrodes 002a wrapped by flexible insulating materials 001a shown in FIG. 3 in a folded and alternately stacked manner.
  • the two flexible conductive electrodes 002a wrapped by the flexible insulating material 001a in FIGS. 7 to 11 are respectively represented as electrode 1E and electrode 2E.
  • the electrode 2E is folded at a 90° angle and fixed on the surface of the electrode 1E, and the electrode 1E is folded 180° along the line segment AB in the direction shown by the arrow in the figure; further, as shown in FIG. 8 As shown, the electrode 2E is folded 180° along the line segment AC in the direction shown by the arrow in the figure; then, as shown in FIG. 9 , the electrode 1E is folded 180° along the line segment CD in the direction shown by the arrow in the figure; further Ground, as shown in FIG. 10 , the electrode 2E is folded 180° along the line segment DB′ in the direction indicated by the arrow in the figure; as shown in FIG. 11 , the electrode 1E is folded again along the line segment AB′ by 180°.
  • the three-dimensional stacked structure of electrodes as shown in FIG. 12 can be obtained.
  • the number of such folds is only related to the specification of the target design, and the number of folds given in the figure is only an illustration.
  • the ends of the electrode 1E and the electrode 2E should be fixed together on the premise of mutual insulation to avoid the loosening and failure of the folded and alternately stacked structure.
  • Both ends of the interior of the flexible sealing outer layer 003a are connected.
  • a rotation vector that is approximately perpendicular to the expansion and contraction direction is generated, as shown by the double arrow in FIG. 12 .
  • this folded and alternately stacked structure has obvious advantages in some applications that require artificial muscles to have a twisting function while expanding and contracting.
  • Figure 15 shows yet another embodiment of the present invention.
  • a plurality of electric artificial muscles 1a with electrodes three-dimensionally alternately stacked according to the present invention are bound into bundles to form artificial muscle bundles 4a.
  • a flexible conductive layer 2a is attached to the outside of the flexible sealing outer layer 003a of the electric powered artificial muscle 1a of the present invention.
  • the degree of expansion and contraction of the electric artificial muscles 1a of the present invention can be determined .
  • the filled medium 3a should be a flexible or fluid or plastic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Prostheses (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种电极立体交互堆叠的电力人工肌肉,包括:由柔性绝缘材料包裹的至少两个柔性导电电极,所述的由柔性绝缘材料包裹的柔性导电电极交互堆叠浸没于流体电介质中并被柔性密封外层包裹且柔性导电电极的两端从柔性密封外层引出同外部电源相连;所述的由柔性绝缘材料包裹的柔性导电电极立体交互堆叠后的两端与柔性密封外层相接,所述的由柔性绝缘材料包裹的柔性导电电极在外加电场的作用下,击穿流体电介质并相互接近,同时挤出所述的由柔性绝缘材料包裹的柔性导电电极之间的流体电介质。这一过程即实现所述的柔性密封外层在特定方向上收缩和膨胀的功能。

Description

一种电极立体交互堆叠的电力人工肌肉 技术领域
本发明涉及一种人工肌肉,具体的说,涉及一种电极立体交互堆叠的电力人工肌肉。
背景技术
现有的人工肌肉,典型的有离子聚合金属复合物、气动人工肌肉等类型。近年来,在本领域出现了一种电力液压人工肌肉的技术,比如HASEL人工肌肉。
而这类电力液压人工肌肉,由于其构造过于简易,输出位移远不如气动人工肌肉。这一技术问题限制了相关技术的普及应用。因此,如何设计一种具有实用价值,尤其是在期望获得更大的输出位移,更大的能量转化效率等方面,实为本领域相关技术人员所关注的焦点。
发明内容
本发明的目的,是为了改进现有的电力液压人工肌肉技术,提升现有电力液压人工肌肉的输出位移和能量转化效率,并基于现有技术进一步地将电场力同流体压力结合应用,使本发明能够广泛地应用于仿生机器人及可穿戴设备比如柔性外骨骼等领域。
在一实施例中,包括:将由柔性绝缘材料001a包裹的柔性导电电极002a交互堆叠,所述柔性绝缘材料001a包裹的柔性导电电极002a交互堆叠后的两端相接于柔性密封外层003a内部的两端并浸没于由柔性密封外层003a包裹的流体电介质05中,柔性导电电极从所述柔性密封外层引出与外部电源相接。当外部电源供电时,所述的由柔性绝缘材料001a包裹的柔性导电电极002a,在外加电场的作用下,击穿流体电介质并相互接近,同时挤出所述的由柔性绝缘材料001a包裹的柔性导电电极002a之间的流体电介质05,即在电场力和因电场力产生的流体压力的共同作用下,实现带动所述的柔性密封外层003a在特定方向上收缩和膨胀。
在一实施例中,所述的由柔性绝缘材料001a包裹的柔性导电电极002a交互堆叠方式为螺旋交互堆叠。
在一实施例中,所述的由柔性绝缘材料001a包裹的柔性导电电极002a交互堆叠方式还可以为翻折交互堆叠。
在一实施例中,所述的流体电介质05为牛顿流体。
在一实施例中,所述的流体电介质05还可以为非牛顿流体。
在一实施例中,所述的一种电极立体交互堆叠的电力人工肌肉还可以被制作成能够 集合成束的肌肉纤维。
在一实施例中,所述的柔性密封外层003a的外部,还可以附着有柔性导电层2a。
在一实施例中,所述的一种电极立体交互堆叠的电力人工肌肉可以通过控制所述由柔性绝缘材料001a包裹的柔性导电电极002a间的电压大小来控制伸缩。
在一实施例中,可以通过测量所述由柔性绝缘材料001a包裹的柔性导电电极002a之间的电气参数来判定所述的一种电极立体交互堆叠的电力人工肌肉的伸缩程度。
在一实施例中,可以根据测量多个所述附着于柔性密封外层003a的外部的柔性导电层2a之间的电气参数来判定所述电极立体交互堆叠的电力人工肌肉的伸缩程度。
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并非对本发明所要求保护内容的限制。
附图说明
图1是一种现有的电力液压人工肌肉原理示意图。
图2是一种现有的电力液压人工肌肉采用二维布局的电极的示意图。
图3是本发明中所述由柔性绝缘材料001a包裹的柔性导电电极002a的横断面结构图。
图4是本发明的一个实施例中,所述两个由柔性绝缘材料001a包裹的柔性导电电极002a螺旋交互堆叠的结构关系原理图。
图5是本发明的一个实施例中,所述的两个由柔性绝缘材料001a包裹的柔性导电电极002a分别附着于一柔性绝缘基材07的两面时的横断面结构图。
图6是本发明的一个实施例中,所述的另一种用柔性绝缘材料001a将两个柔性导电电极002a和柔性绝缘基材07包裹在一起并采用单螺旋电极交互堆叠的结构关系原理图。
图7是本发明的一个实施例中,所述两个由柔性绝缘材料001a包裹的柔性导电电极002a翻折交互堆叠的步骤原理图。
图8是本发明的一个实施例中,所述两个由柔性绝缘材料001a包裹的柔性导电电极002a翻折交互堆叠的步骤原理图。
图9是本发明的一个实施例中,所述两个由柔性绝缘材料001a包裹的柔性导电电极002a翻折交互堆叠的步骤原理图。
图10是发明的一个实施例中,所述两个由柔性绝缘材料001a包裹的柔性导电电极002a翻折交互堆叠的步骤原理图。
图11是发明的一个实施例中,所述两个由柔性绝缘材料001a包裹的柔性导电电极002a翻折交互堆叠的步骤原理图。
图12是本发明的一个实施例中,所述两个由柔性绝缘材料001a包裹的柔性导电电极002a翻折交互堆叠后的立体结构示意图。
图13是本发明的一个实施例。
图14是本发明的一个实施例在电源接通后在特定方向上收缩和膨胀的原理图。
图15是本发明的一个实施例中所述的一种电极立体交互堆叠的电力人工肌肉被制作成能够集合成束的肌肉纤维的原理图。
附图说明
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
图1示出了一种现有的电力液压人工肌肉原理图。这种电力液压人工肌肉将液体电介质02封装于柔性密封外层03中,同时在柔性密封外层03的外部部分地附着柔性导电电极01。两个柔性导电电极01接入外部电源后,柔性密封外层03中的液体电介质02被两柔性导电电极01所形成的电场E击穿,其中V1<V2≤V3。之后两个柔性导电电极01在电场力的作用下相互接近直至完全挤出其间被击穿的液体电介质02使其向柔性密封外层03的一侧流动。在这一过程中,根据帕斯卡定律,液体电介质02将由于液体压力P流动集中至柔性密封外层03的一端,进而使得柔性密封外层03整体呈收缩趋势,实现人工肌肉所需的收缩功能。应当注意的是,在这种现有的电力液压人工肌肉中,其中柔性密封外层03内的液体电解质02体积应当小于柔性密封外层03的最大容积,并且柔性密封外层03应当采用低延伸性的柔性材料,否则将不能实现所需的收缩功能。同时两个柔性导电电极01由于柔性密封外层03的阻隔,并不会导通形成回路。
图2是一种具有弹性的柔性导电电极以二维齿形排布的方式驱动电力液压人工肌肉的电极结构示意图,然而这种电极排布方式虽然能同样挤压位于电极间的液体电解质使其流动,但由于两电极的面积限制,难以高效地利用电场力驱动人工肌肉使其收缩。因此,更为高效的电极排布显然是有益的,这也是本发明主要解决的技术问题。
如图3所示是根据本发明的一些实施例中所述的由柔性绝缘材料001a包裹的柔性导电电极002a的横断面结构。这种包裹结构在螺旋交互堆叠及翻折交互堆叠的电极结构中均是适用的。
图4是根据本发明的一些实施例中所述由柔性绝缘材料001a包裹的柔性导电电极002a以螺旋交互堆叠布置的具体方式。两个所述由柔性绝缘材料001a包裹的柔性导电电极002a采用该布置方式时,对于其中任意一个由柔性绝缘材料001a包裹的柔性导电电极002a 而言,其表面的绝大部分面积,都能同另一由柔性绝缘材料001a包裹的柔性导电电极002a的绝大部分面积相对应。如图13、图14所示,所述柔性绝缘材料001a包裹的柔性导电电极002a交互堆叠后的两端相接于柔性密封外层003a内部的两端并浸没于由柔性密封外层003a包裹的流体电介质05中,柔性导电电极002a从所述柔性密封外层引出与外部电源相接。当在两个所述柔性导电电极002a因接通外部电源而存在电势差V时(所述的电势差V应当根据两个由所述柔性绝缘材料001a包裹的柔性导电电极002a的相对距离、相对应的表面积、流体电介质05的介电常数以及设计期望获得的收缩能力来确定,以满足能够使得两个由柔性绝缘材料001a包裹的柔性导电电极002a能够在电场力的作用下击穿流体电介质05并能够相互吸引为基本条件),所述的螺旋交互堆叠的结构能够从整体上实现带动所述柔性密封外层003a收缩的目的;同时,两个所述由柔性绝缘材料001a包裹的柔性导电电极002a之间被电场击穿的流体电介质05会在电场力的作用下以图14中的所示的箭头方向,向所述的由柔性绝缘材料001a包裹的柔性导电电极002a的外围运动,进而使得该实施例所示的电力人工肌肉在电场力和因电场力产生流体压力的作用下实现06所示箭头方向的收缩。通过主动控制电势差V,能够较为精确的控制本发明所述电力人工肌肉的收缩程度。例如可以使用脉冲电压来为本发明所述的电力人工肌肉的收缩程度。在两脉冲电压的时间间隙,还可以测量两个由所述由柔性绝缘材料001a包裹的柔性导电电极002a之间的电气参数,如电压,电容等进行瞬时参数的测量,进而根据测量得到的电气参数来判断本发明所述电力人工肌肉的收缩程度。
值得注意是,本实施例中所述的流体电介质05既可以是气态也可以是液态。当所述的流体电介质05是气态的牛顿流体时,因电场力产生的流体压力对于本发明所述的电力人工肌肉的收缩所贡献的力较小。然而使用气态电介质在某些应用场合下是有意义的,如航天设备的机械臂等对于重量比较敏感的应用场合。
当所述的流体电介质05时液态时,所述的由柔性绝缘材料001a包裹的柔性导电电极002a交互堆叠后的体积同所述流体电介质05的体积之和应当小于所述柔性密封外层003a的最大容积以便于其能够收缩舒张。应当强调的是,此时所采用的柔性密封外层003a也应当是低延伸性的柔性材料。
当所述的流体电介质05是液态的牛顿流体时,此时的流体电介质05的功能同现有电力液压人工肌肉技术中的液体电介质功能相同。
当所述的流体电介质05是非牛顿流体时,比如掺杂有高介电常数颗粒的流体电介质所形成的非牛顿流体,这种非牛顿流体电介质的功能不仅拥有现有电力液压人工肌肉技术中 的液体电介质功能,对于一些特殊的应用场合,比如军事上使用的柔性外骨骼来说,由于非牛顿流体的物理性质,还能起到一定程度的防弹作用。
结合上述一些实施例的叙述,本领域的技术人员还应当想到的是,所述的由柔性绝缘材料001a包裹的柔性导电电极002a以螺旋交互堆叠布置时,采用更多个偶数数量的由柔性绝缘材料001a包裹的柔性导电电极002a交替连接外部电源的两个电极同样是可行的,这里不做赘述。
基于上述电极螺旋交互堆叠的一些实施例,特别的,图5、图6给出了一种简化的螺旋交互堆叠结构。如图5所示的横断面结构,其中07为柔性绝缘基材,所述的两个柔性导电电极002a附着于所述柔性绝缘基材07的两面,所述的柔性导电电极002a同所述柔性绝缘基材07一同被所述柔性绝缘材料001a包裹。图6给出了基于图5所示的横断面结构的单螺旋电极交互堆叠结构示意图,即由所述柔性绝缘材料001a包裹的附着于所述柔性绝缘基材07的两面的两个柔性导电电极002a,以单螺旋的形式实现电极的螺旋交互堆叠。在这种结构中,同样的,对于其中任意一个柔性导电电极002a而言,其表面的绝大部分面积,都能同另一由柔性绝缘材料001a包裹的柔性导电电极002a的绝大部分面积相对应。即此时采用这种单螺旋结构同样可实现本发明的目的。
图7~图11给出了又一种基于图3所示的两个由柔性绝缘材料001a包裹的柔性导电电极002a以翻折交互堆叠的方式实现本发明目的的步骤原理图。为便于说明,图7~图11中的两个由柔性绝缘材料001a包裹的柔性导电电极002a分别以电极1E和电极2E表述。
如图7所示,此时电极2E呈90°角叠落并固定于在电极1E表面,电极1E沿着线段AB,以图中箭头所示方向翻折180°;进一步的,如图8所示,电极2E沿着线段AC,以图中箭头所示方向翻折180°;之后,如图9所示,电极1E沿着线段CD,以图中箭头所示方向翻折180°;更进一步地,如图10所示,电极2E沿着线段DB’,以图中箭头所示方向再翻折180°;如图11所示,接下来电极1E再次沿着线段AB’翻折180°。
多次重复上述过程,可得到如图12所示的电极立体堆叠结构。应当注意的是,这种翻折的次数仅与目标设计的规格有关,图中给出的翻折数量仅为示例性说明。在翻折次数达到设计目的时,电极1E和电极2E的端部应当以相互绝缘为前提固定在一起避免翻折交互堆叠结构松散失效,最终形成的电极立体堆叠结构的两端,也应当同所述的柔性密封外层003a的内部的两端相接。同时,这种翻折交互堆叠结构在伸缩的过程当中,会产生一个大致垂直于其伸缩方向的旋转矢量,如图12中双箭头所示。对于本发明而言,这种翻折交互堆叠结构在某些需要人工肌肉在伸缩的同时具有扭转功能的应用场合有着显而易见的优势。
图15给出了本发明的又一种实施例。在该实施例中,多个本发明所述的一种电极立体交互堆叠的电力人工肌肉1a被束缚成束形成人工肌肉束4a。同时,在本发明所述电力人工肌肉1a的柔性密封外层003a的外部附着有柔性导电层2a。通过测量多个本发明所述人工肌肉1a在伸缩过程中,其柔性密封外层003a上附着的柔性导电层2a之间的电气参数变化,可以判定本发明所述的电力人工肌肉1a的伸缩程度。为了提升所述人工肌肉束4a的强度,显而易见的是在多个本发明所述电力人工肌肉1a的间填充介质3a是必要的。所填充的介质3a应当是柔性的或者是流体或者是可塑性的材料。

Claims (10)

  1. 一种电极立体交互堆叠的电力人工肌肉,其特征在于:包括:由柔性绝缘材料包裹的至少两个柔性导电电极,所述的由柔性绝缘材料包裹的柔性导电电极交互堆叠浸没于流体电介质中;柔性密封外层,所述的由柔性绝缘材料包裹的柔性导电电极和流体电介质被柔性密封外层包裹,并且,所述的由柔性绝缘材料包裹的柔性导电电极立体交互堆叠后的两端与柔性密封外层内部的两端相接;所述的柔性导电电极从柔性密封外层引出,连接外部电源的两极;当外部电源供电时,所述的由柔性绝缘材料包裹的柔性导电电极,在外加电场的作用下,击穿流体电介质并相互接近,同时挤出所述的由柔性绝缘材料包裹的柔性导电电极之间的流体电介质,即在电场力和因电场力产生的流体压力的共同作用下,实现带动所述的柔性密封外层在特定方向上收缩和膨胀的功能。
  2. 如权利要求1所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:其中所述的柔性导电电极交互堆叠方式为螺旋交互堆叠。
  3. 如权利要求1所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:其中所述的柔性导电电极交互堆叠方式为翻折交互堆叠。
  4. 如权利要求1所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:其中所述的流体电介质为牛顿流体。
  5. 如权利要求1所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:其中所述的流体电介质为非牛顿流体。
  6. 如权利要求1所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:所述的一种电极立体交互堆叠的电力人工肌肉可以被制作成能够集合成束的肌肉纤维。
  7. 如权利要求1所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:所述的柔性密封外层的外部,附着有柔性导电层。
  8. 如权利要求1所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:所述的电极立体交互堆叠的电力人工肌肉可以通过控制所述柔性导电电极间的电压大小来控制伸缩。
  9. 如权利要求1所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:可以通过测量所述由柔性绝缘材料包裹的柔性导电电极间的电气参数来判定所述电极立体交互堆叠的电力人工肌肉的伸缩程度。
  10. 如权利要求7所述的一种电极立体交互堆叠的电力人工肌肉,其特征在于:所述的附着于柔性密封外层的外部的柔性导电层的作用是可以根据测量多个所述附着于柔性密封外层的外部的柔性导电层之间的电气参数来判定所述电极立体交互堆叠的电力人工肌肉的伸缩程度。
PCT/CN2022/085298 2021-04-08 2022-04-06 一种电极立体交互堆叠的电力人工肌肉 WO2022213976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/277,957 US20240141928A1 (en) 2021-04-08 2022-06-04 Electro-hydraulic artificial muscle with three-dimensional interactive stacked electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110379210.6 2021-04-08
CN202110379210 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022213976A1 true WO2022213976A1 (zh) 2022-10-13

Family

ID=76777304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085298 WO2022213976A1 (zh) 2021-04-08 2022-04-06 一种电极立体交互堆叠的电力人工肌肉

Country Status (3)

Country Link
US (1) US20240141928A1 (zh)
CN (1) CN113119088B (zh)
WO (1) WO2022213976A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119088B (zh) * 2021-04-08 2021-10-01 关春东 一种电极立体交互堆叠的电力人工肌肉
CN114227661A (zh) * 2021-10-30 2022-03-25 关春东 一种基于电力人工肌肉的多用途机械臂
CN114246977A (zh) * 2021-12-20 2022-03-29 华南理工大学 一种电学自修复人工肌肉纤维及其制备方法
CN115890643B (zh) * 2022-12-15 2023-09-05 之江实验室 一种双向线性应变的电驱动人工肌肉纤维及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107582214A (zh) * 2017-09-04 2018-01-16 云南靖创液态金属热控技术研发有限公司 一种人造肌纤维及人造肌肉
CN109489539A (zh) * 2018-08-29 2019-03-19 北京邮电大学 柔性应变传感器的制备方法及柔性应变传感器
CN110757434A (zh) * 2019-11-06 2020-02-07 中国科学院宁波材料技术与工程研究所 基于介电弹性体与可调刚度智能流体的人工肌肉及其制法
CN113119088A (zh) * 2021-04-08 2021-07-16 关春东 一种电极立体交互堆叠的电力人工肌肉

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575503B2 (ja) * 2010-02-19 2014-08-20 国立大学法人東京工業大学 静電アクチュエータおよびその製造方法
WO2014111327A1 (de) * 2013-01-16 2014-07-24 Bayer Material Science Ag Verfahren zum herstellen eines mehrschichtigen elektromechanischen wandlers
JP2014217238A (ja) * 2013-04-26 2014-11-17 バンドー化学株式会社 アクチュエータ
JP2014220949A (ja) * 2013-05-09 2014-11-20 バンドー化学株式会社 アクチュエータ素子、アクチュエータ、可撓性シート及びアクチュエータ素子の製造方法
CN111129283A (zh) * 2019-12-27 2020-05-08 中国科学院宁波材料技术与工程研究所 驱动装置、介电弹性体致动器及其制作方法
CN111152210B (zh) * 2020-01-17 2021-05-07 浙江大学 一种柔性电流体动力学驱动器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107582214A (zh) * 2017-09-04 2018-01-16 云南靖创液态金属热控技术研发有限公司 一种人造肌纤维及人造肌肉
CN109489539A (zh) * 2018-08-29 2019-03-19 北京邮电大学 柔性应变传感器的制备方法及柔性应变传感器
CN110757434A (zh) * 2019-11-06 2020-02-07 中国科学院宁波材料技术与工程研究所 基于介电弹性体与可调刚度智能流体的人工肌肉及其制法
CN113119088A (zh) * 2021-04-08 2021-07-16 关春东 一种电极立体交互堆叠的电力人工肌肉

Also Published As

Publication number Publication date
US20240141928A1 (en) 2024-05-02
CN113119088B (zh) 2021-10-01
CN113119088A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2022213976A1 (zh) 一种电极立体交互堆叠的电力人工肌肉
US7834527B2 (en) Dielectric elastomer fiber transducers
CN111152210B (zh) 一种柔性电流体动力学驱动器
Lee et al. Electrochemically powered, energy‐conserving carbon nanotube artificial muscles
Aziz et al. Torsional artificial muscles
Mirfakhrai et al. Polymer artificial muscles
JP5679733B2 (ja) アクチュエータ
US11486421B2 (en) Hydraulically amplified self-healing electrostatic transducers harnessing zipping mechanism
Shi et al. A liquid PEDOT: PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source
RU2705647C2 (ru) Исполнительное или сенсорное устройство на основе электроактивного полимера
US20160065091A1 (en) Triboelectric nanogenerator
JP2020513864A5 (zh)
CN107924989A (zh) 基于电活性聚合物或光活性聚合物的致动器设备
US11088316B2 (en) Helical dielectric elastomer actuator
JP2011152031A (ja) 高分子アクチュエータ
Shi et al. Three-dimensional polypyrrole induced high-performance flexible piezoelectric nanogenerators for mechanical energy harvesting
TW201710063A (zh) 多成分層狀介電質膜及其用途
CN107453644A (zh) 一种柔性海洋能采集装置
CN112201744B (zh) 一种电致收缩的螺旋型人工肌肉及其制备和应用
Anderson et al. A dielectric elastomer actuator thin membrane rotary motor
JP2008211885A (ja) トランスデューサとその製造方法
US8970087B2 (en) Ion conducting actuator
US11611293B2 (en) Artificial muscles having a reciprocating electrode stack
US11522469B2 (en) Electric machines as motors and power generators
US6936955B1 (en) Conjugated polymer actuator responsive to electrical stimulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18277957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784042

Country of ref document: EP

Kind code of ref document: A1