WO2022213949A1 - 弹性成像方法、装置、电子设备及存储介质 - Google Patents

弹性成像方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022213949A1
WO2022213949A1 PCT/CN2022/085155 CN2022085155W WO2022213949A1 WO 2022213949 A1 WO2022213949 A1 WO 2022213949A1 CN 2022085155 W CN2022085155 W CN 2022085155W WO 2022213949 A1 WO2022213949 A1 WO 2022213949A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
frequency
tissue
vibration excitation
tested
Prior art date
Application number
PCT/CN2022/085155
Other languages
English (en)
French (fr)
Inventor
何琼
邵金华
孙锦
Original Assignee
无锡海斯凯尔医学技术有限公司
北京索瑞特医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司, 北京索瑞特医学技术有限公司 filed Critical 无锡海斯凯尔医学技术有限公司
Publication of WO2022213949A1 publication Critical patent/WO2022213949A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray

Definitions

  • the present application relates to the technical field of medical equipment, and in particular, to an elastic imaging method, device, electronic device and storage medium.
  • Ultrasound imaging technology is widely used in clinical diagnosis because of its advantages of real-time, cheap, non-invasive and non-ionizing radiation. By obtaining the physiological structure information of biological tissue, it can realize the lesion detection of biological tissue. However, in the early stage of biological tissue, since its structure does not change significantly, traditional ultrasound imaging methods such as B-ultrasound are not sensitive to early lesions of biological tissue.
  • Elastography is a new type of imaging technology that has emerged in recent years. It excites biological tissue to vibrate by means of shear waves, and uses ultrasonic signals to track the deformation information of biological tissue before and after vibration to obtain the strain, shear modulus, and strain of biological tissue. Mechanical characteristics such as elastic modulus, and the state analysis of biological tissue is carried out according to the mechanical characteristics of biological tissue. Elastography technology can provide important data support for the screening of early lesions in biological tissues.
  • the tissue is deformed by vibration excitation of a fixed frequency, and the tissue changes are obtained through ultrasonic detection, so as to realize the state diagnosis of biological tissue.
  • the same single-frequency vibration is used.
  • Excitation for elastography has the problems of poor imaging effect, low precision, and difficulty in obtaining multiple viscoelastic information at the same time.
  • the present application provides an elastic imaging method, device, electronic device and storage medium, which are used to solve the problems of poor imaging effect and low precision in the existing elastic imaging.
  • the present application provides an elastography method, the method comprising:
  • Acquire preset vibration excitation parameters which include at least two different vibration frequencies; sequentially apply vibration excitations of different vibration frequencies to the tissue to be tested and perform ultrasonic detection; according to the detected ultrasonic waves corresponding to the different vibration frequencies
  • the echo signal is used to calculate the viscoelasticity information of the tissue to be measured.
  • vibration excitations of different vibration frequencies to the tissue to be tested in turn and performing ultrasonic detection, including:
  • the first group of vibration excitations including the first frequency f 1 , the second frequency f 2 , ..., the mth frequency f m to the tissue to be tested in a frequency sweep manner, and perform ultrasonic detection;
  • the second group including the m+1th frequency f m+1 , the m+2th frequency f m+2 , ..., the m+nth frequency f is applied to the tissue to be tested.
  • N is the total number of preset multiple vibration frequencies; m is a positive integer greater than or equal to 1; P is a positive integer greater than or equal to 1.
  • sequentially applying vibration excitations of different vibration frequencies to the tissue to be tested and performing ultrasonic detection comprising: generating vibration excitation timing control signals according to the vibration excitation parameters; Vibration excitation of each vibration frequency is sequentially applied to the tissue; ultrasonic detection is applied to the tissue to be tested after or at the same time as the vibration excitation of each vibration frequency is sequentially applied to the tissue to be tested.
  • calculating the viscoelasticity information of the tissue to be tested according to the detected ultrasonic echo signals corresponding to different vibration frequencies includes: filtering the ultrasonic echo signals corresponding to each of the vibration frequencies; The ultrasonic echo signal determines a motion propagation pattern diagram; performs time-frequency analysis on the motion propagation pattern diagram to determine a dispersion curve; determines phase velocities corresponding to different frequencies according to the dispersion curves; Perform function fitting to obtain the viscoelasticity information of the tissue to be tested.
  • the determining the motion propagation pattern diagram according to the filtered ultrasonic echo signal includes: calculating a tissue displacement amount or a strain amount according to the filtered ultrasonic echo signal; Propagation mode graph of the variation of the strain amount with time, one coordinate axis of the propagation mode graph represents time, the other coordinate axis represents different positions in the propagation direction of the shear wave, and the pixel value represents the displacement amount or the strain amount.
  • the generating the vibration excitation timing control signal according to the vibration excitation parameter includes: generating the vibration excitation sequence, duration, and interval duration of vibration excitation at different frequencies corresponding to each vibration frequency.
  • an elastography device including:
  • an acquisition module for acquiring preset vibration excitation parameters, where the vibration excitation parameters include at least two different vibration frequencies;
  • the detection module is used to sequentially apply vibration excitations of different vibration frequencies to the tissue to be tested and perform ultrasonic detection;
  • the calculation module is used to calculate the viscoelasticity information of the tissue to be measured according to the detected ultrasonic echo signals corresponding to different vibration frequencies.
  • the detection module is specifically used to: apply the vibration excitation of the first frequency f 1 to the tissue to be tested, and perform ultrasonic detection; after receiving the ultrasonic echo signal corresponding to the vibration excitation of the first frequency f 1 , Apply the vibration excitation of the second frequency f 2 to the tissue to be tested, and perform ultrasonic detection; and so on, whenever the ultrasonic echo signal corresponding to the vibration excitation of the m-1th frequency f m-1 is received, the ultrasonic echo signal is sent to the tissue to be tested.
  • the vibration excitation of the first frequency f 1 , the second frequency f 2 , ..., the N-th frequency f N is gradually applied in the manner of , and then ultrasonic detection is performed; wherein N is greater than or equal to 2; or, sweep the frequency to the tissue to be tested.
  • the detection module is specifically configured to: generate a vibration excitation timing control signal according to the vibration excitation parameter; apply vibration excitation of each vibration frequency to the tissue to be measured in turn according to the vibration excitation timing control signal; After or at the same time when the tissue to be tested is sequentially applied with vibration excitation of each vibration frequency, ultrasonic detection is applied to the tissue to be tested.
  • the computing module is specifically configured to: filter the ultrasonic echo signal corresponding to each vibration frequency; determine a motion propagation pattern diagram according to the filtered ultrasonic echo signal; The time-frequency analysis is performed to determine the dispersion curve; the phase velocities corresponding to different frequencies are determined according to the dispersion curves; and the phase velocities corresponding to the different frequencies are subjected to function fitting to obtain the viscoelasticity information of the tissue to be measured.
  • the calculation module determines the motion propagation pattern diagram according to the filtered ultrasonic echo signal, it is specifically used to: calculate the tissue displacement amount or the strain amount according to the filtered ultrasonic echo signal;
  • the detection module when generating the vibration excitation timing control signal according to the vibration excitation parameter, is specifically configured to: generate the vibration excitation sequence and duration corresponding to each vibration frequency, and the interval duration of vibration excitation at different frequencies.
  • the present application provides an electronic device, including: a memory, a processor, and a computer program;
  • the computer program is stored in the memory, and is configured to execute the elastography method according to any one of the first aspect of the embodiments of the present disclosure by the processor.
  • the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the The elastography method according to any one of the first aspects of the embodiments of the present disclosure.
  • the vibration excitation parameters include at least two different vibration frequencies; Vibration excitation and ultrasonic detection are performed; according to the detected ultrasonic echo signals corresponding to different vibration frequencies, the viscoelasticity information of the tissue to be tested is calculated.
  • the forced vibration response will be different.
  • mechanical vibration of different frequencies is used to excite the tissue structure inside the biological tissue, so that the frequency components are more abundant, which can make the tissue structure more abundant. Different tissue structures produce better response effects, thereby improving the imaging effect and imaging accuracy of elastography.
  • FIG. 1 is an application scenario diagram of the elastic imaging method provided by the embodiment of the present application.
  • FIG. 2 is a flowchart of the elastography method provided in Embodiment 1 of the present application;
  • Embodiment 3 is a flowchart of the elastography method provided in Embodiment 2 of the present application.
  • step S202 is a schematic diagram of cyclically applying vibration excitation to the tissue to be measured and performing ultrasonic detection in step S202;
  • FIG. 5 is a flowchart of step S202 in the embodiment shown in FIG. 3;
  • FIG. 6 is a schematic structural diagram of an ultrasonic probe having multiple ultrasonic array sources and a vibration excitation function
  • FIG. 7 is a schematic diagram of transmitting multiple sets of ultrasound signals to the tissue to be tested and receiving echo signals through multiple ultrasound array sources;
  • FIG. 8 is a flowchart of step S203 in the embodiment shown in FIG. 3;
  • 10 is a schematic diagram of cyclically applying vibration excitation to the tissue to be tested and performing ultrasonic detection in step S302;
  • FIG. 11 is a flowchart of the elastography method provided in Embodiment 4 of the present application.
  • step S402 is a schematic diagram of cyclically applying vibration excitation to the tissue to be tested and performing ultrasonic detection in step S402;
  • FIG. 13 is a schematic structural diagram of an elastic imaging device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 1 is an application scenario diagram of the elastography method provided by the embodiment of the present application.
  • the elastography method provided by the embodiment of the present application is applied to an electronic device.
  • Elastography device 11 The elastography device has a detection probe 111 that can simultaneously or sequentially apply vibration excitation and ultrasonic waves to the human body.
  • the elastography device 11 uses the elastography method provided in the embodiment of the present application to perform ultrasonic elasticity detection on the human body, and obtains the mechanics of the structure of the human internal organs 12 The characteristics of the human internal organs are then judged whether the internal organs 12 are in a healthy state, which provides important data support for the screening of early lesions.
  • the tissue is deformed by vibration excitation at a fixed frequency, and the tissue changes are obtained through ultrasonic detection, so as to realize the state analysis of biological tissue, but the structural properties of biological tissue are different, and the corresponding natural frequencies are also different.
  • Different, for example, the heart, lung, liver, intestine, fat layer, muscle tissue, etc. in the human body have different natural frequencies, which are determined by their own structural properties, that is, different biological tissues correspond to has its optimum excitation frequency. Therefore, when different biological tissues are excited by different frequencies, the resulting forced vibration responses will also be different.
  • Using a single frequency of vibration excitation for elasticity detection cannot guarantee the best excitation effect of biological tissues. The effect of ultrasound imaging is poor, which affects the accuracy of detection.
  • FIG. 2 is a flowchart of the elastography method provided by the application. As shown in FIG. 2 , the elastography method of the application includes the following steps:
  • Step S101 Acquire preset vibration excitation parameters, where the vibration excitation parameters include at least two different vibration frequencies.
  • the vibration excitation parameter may be a parameter preset by a user for controlling vibration excitation, including vibration frequency.
  • the vibration amplitude value, the interval value between two vibration excitations, etc. may also be included, which are not specifically limited here.
  • the vibration frequency is used to control the vibration frequency of the vibration excitation.
  • the vibration frequency is 10 Hz, that is, the vibration excitation generates vibration at a frequency of 10 Hz.
  • the vibration excitation parameters include at least two different vibration frequencies.
  • the vibration excitation parameters include three vibration frequencies, which are vibration frequency 1: 10 Hz, vibration frequency 2: 11 Hz, and vibration frequency 3: 12 Hz. To enable the vibration excitation to vibrate at different frequencies.
  • Step S102 sequentially applying vibration excitations of different vibration frequencies to the tissue to be tested and performing ultrasonic detection.
  • a set of shear waves transmitted from the surface of the tissue to be tested to the interior of the tissue to be tested can be generated, and the shear waves will cause tiny tiny waves to be generated inside the tissue to be tested.
  • Displacement and deformation at the same time, correspondingly, by applying ultrasonic detection to the tissue to be measured, and by transmitting ultrasonic waves and receiving echoes, the observation of the tiny displacement and deformation of the tissue to be measured can be realized.
  • the vibration frequency of the vibration excitation is changed until the preset stop condition is satisfied.
  • the response detection of the tissue to be tested under different excitation frequencies is realized.
  • vibration excitation and ultrasonic detection should be corresponding, but various implementation forms that can achieve the purpose of the application should be allowed.
  • 10 vibration excitations may be generated, and 10 ultrasonic detections may be generated accordingly, so as to detect the effects of the 10 vibration excitations on the biological tissue.
  • a series of excitations of 10 different frequencies may be performed first, and then ultrasonic detection is performed uniformly after all excitations are completed.
  • the first to third excitations with different frequencies can also be performed first, and then an ultrasonic detection is performed to obtain the ultrasonic echoes corresponding to the first to third excitations with different frequencies, and then the fourth to third excitations are performed.
  • vibration excitation is applied to the tissue to be measured, and the manner of generating and applying vibration excitation to the tissue to be measured is not limited here.
  • the frequency of the applied ultrasonic waves may be fixed or may be changed to meet different usage conditions and usage scenarios, which is not limited here.
  • the ultrasonic detection technology of applying ultrasonic waves to the tissue to be tested and receiving the echoes is the prior art commonly used in the art, and details are not described herein again.
  • Step S103 Calculate the viscoelasticity information of the tissue to be measured according to the detected ultrasonic echo signals corresponding to different vibration frequencies.
  • the step of applying ultrasonic detection to the tissue to be tested includes generating ultrasonic waves to the tissue to be tested and receiving echoes formed after the ultrasonic waves are blocked by the tissue to be tested.
  • the tissue to be tested is excited by the wave, and the tissue to be tested is slightly deformed. Therefore, the echo data of ultrasonic detection carries the deformation information of the tissue to be tested.
  • multiple sets of echo data can be obtained accordingly. Since the frequency of vibration excitation that causes the deformation and displacement of the tissue to be tested is different in each cycle, the deformation information generated by the tissue to be tested and the The displacement information is also correspondingly different, so that the multiple sets of echo data carry different deformation information and displacement information of the tissue to be measured. According to the multiple sets of echo data formed in each cycle, the optimal calculation of the viscoelasticity information can be realized. Compared with the vibration excitation of a single frequency, the information carried by the echo signal is more abundant, and it can express the response of the tissue under test to different excitation frequencies. response situation, therefore, a better viscoelasticity calculation effect can be obtained.
  • the method may further include: outputting viscoelasticity information.
  • the viscoelasticity information After obtaining the viscoelasticity information, output the viscoelasticity information, for example, to a display device to display the viscoelasticity information; or output to a storage device to store the viscoelasticity information.
  • the specific output mode of the viscoelasticity information is not limited here.
  • the vibration excitation parameters include at least two different vibration frequencies; vibration excitations of different vibration frequencies are sequentially applied to the tissue to be tested and ultrasonic detection is performed; The ultrasonic echo signal corresponding to the frequency is used to calculate the viscoelasticity information of the tissue to be tested. Since the biological tissue is not a uniform tissue structure, there are differences in structural properties. Therefore, different tissue structures are excited by different frequencies. The forced vibration response will also be different. In the viscoelastic analysis, mechanical vibration of different frequencies is used to excite the tissue structure inside the biological tissue, so that the frequency components are more abundant, which can make different tissue structures produce better response effects, thereby improving elasticity. Imaging effect and imaging accuracy of imaging.
  • FIG. 3 is a flowchart of the elastography method provided by the second embodiment of the present application. As shown in FIG. 3 , the elastography method provided by this embodiment is based on the elastography method provided by the embodiment shown in FIG. 2 . -S103 is further refined, and the elastography method provided in this embodiment includes the following steps:
  • Step S201 Acquire preset vibration excitation parameters, where the vibration excitation parameters include at least two different vibration frequencies.
  • vibration excitation parameters may include a set of vibration frequency sequences, such as ⁇ f 1 , f 2 , f 3 , ... ⁇ , as shown in Figure 4, according to the vibration frequency sequence in the vibration excitation parameters, apply vibration excitation with a vibration frequency f 1 to the tissue to be tested, and perform ultrasonic detection, wherein, specifically, the ultrasonic detection can occur in the vibration excitation At the same time or after, preferably, after or simultaneously applying vibration excitation of each vibration frequency to the tissue to be measured, ultrasonic detection is applied to the tissue to be measured.
  • ultrasonic detection is applied after the vibration excitation is applied, which can save electricity and avoid waste of electricity.
  • the vibration wave generated by vibration excitation propagates in the tissue to be tested, which will cause slight deformation inside the tissue to be tested.
  • an echo signal of ultrasonic detection will be formed.
  • the signal contains information that characterizes the tiny deformations inside the tissue to be measured, which can be used to analyze the tissue to be measured.
  • a vibration excitation of a second frequency f 2 different from the first frequency is applied to the tissue to be tested, and at the same time or thereafter, ultrasonic detection is performed to obtain an ultrasonic echo signal.
  • the above process is repeated until the vibration excitation of the tissue to be tested is completed at the last frequency f N in the vibration sequence, and the corresponding ultrasonic echo signal is received, and the process of vibration excitation and ultrasonic detection of the tissue to be tested is ended. And a plurality of ultrasonic echo signals are obtained, wherein each ultrasonic echo signal corresponds to vibration excitation of one frequency.
  • the vibration excitation parameters may include vibration parameters and stop parameters, and the above-mentioned vibration frequency sequence may be generated according to the vibration parameters and stop parameters.
  • the vibration parameters include the starting frequency, frequency step size and cycle number of vibration excitation, and the stop parameter is reaching a preset number of cycles, according to the starting frequency, frequency step size and cycle times. times, a monotonically changing vibration frequency sequence can be generated. For example, if the starting frequency is 15Hz, the frequency step size is 1Hz, and the number of cycles is 100, the monotonically changing vibration frequency sequence is generated as a vibration frequency sequence with a starting frequency of 15Hz and a cutoff frequency of 114Hz, consisting of 100 vibration frequencies. .
  • the vibration parameters include the starting frequency, frequency step and cutoff frequency of vibration excitation, and the stopping parameter is that the vibration frequency reaches a preset cutoff frequency, for example, the starting frequency is 15 Hz, and the frequency step is 15 Hz. is 1Hz and the cut-off frequency is 100Hz, then the monotonically changing vibration frequency sequence is generated as a vibration frequency sequence consisting of 86 vibration frequencies with a starting frequency of 15Hz and a cut-off frequency of 100Hz.
  • the frequency of the vibration excitation timing control signal can be a monotonic change or a non-monotonic change, and the monotonic change includes a monotonically rising change or a monotonically falling change, and the duration of each different frequency It may be continuous change or discontinuous change, which is not specifically limited here.
  • applying ultrasonic detection to the tissue to be tested in step S202 includes two specific implementation steps of steps S2021 and S2022:
  • Step S2021 transmitting multiple sets of ultrasonic signals to the tissue to be tested.
  • FIG. 6 is a schematic structural diagram of an ultrasonic probe with multiple ultrasonic array sources and a vibration excitation function.
  • the elastography method provided in this embodiment is applied to an electronic device having a detection probe 71 as shown in FIG. 6 .
  • 71 may be a composite ultrasonic probe having multiple ultrasonic array elements 711 and a vibration excitation structure 712 .
  • each ultrasonic array element 711 can transmit ultrasonic signals and receive echo signals.
  • FIG. 7 is a schematic diagram of transmitting multiple sets of ultrasonic signals to the tissue to be tested through multiple ultrasonic array sources and receiving echo signals. As shown in FIG.
  • the transmitted ultrasonic signals correspond to different positions of the tissue to be tested, and are used for different positions Ultrasonic detection is performed on the tissue to be tested.
  • the detection probe has four ultrasonic array elements 711, and ultrasonic detection is performed on four positions A, B, C, and D of the liver tissue 72 respectively.
  • Step S2022 Obtain echo data of ultrasonic detection by receiving echo signals corresponding to each group of ultrasonic signals.
  • the tissue to be tested often has an irregular structure, for example, the visceral tissue of the human body
  • only a set of ultrasonic signals is used to detect the visceral tissue of the human body, which will cause the detection result to be affected by the location factor, resulting in deviations.
  • steps of this embodiment by transmitting multiple sets of ultrasound signals to the tissue to be tested and receiving the corresponding echo signals to obtain echo data of ultrasound detection, multiple sets of ultrasound detection results are simultaneously obtained, and the detection efficiency is improved. Processing multiple sets of ultrasound detection results can effectively improve the accuracy and imaging effect of elastography.
  • Step S203 Calculate the viscoelasticity information of the tissue to be measured according to the detected ultrasonic echo signals corresponding to different vibration frequencies.
  • calculating the viscoelasticity information of the tissue to be tested includes calculating viscosity parameters and elastic parameters of the tissue to be tested.
  • the calculation of the viscosity parameter in step S203 includes five specific implementation steps from step S2031 to step S2035.
  • Step S2031 filtering the ultrasonic echo signal corresponding to each vibration frequency.
  • the ultrasonic echo signal Due to the complex ultrasonic propagation environment in which ultrasonic detection is applied to the tissue to be tested, the ultrasonic echo signal contains noise that affects the effective information in the signal. Filtering the ultrasonic echo signal can improve the signal-to-noise ratio of the ultrasonic echo signal and optimize the ultrasonic detection. Effect. Specifically, certain frequencies can be filtered, for example, low-frequency interference noise in the ultrasonic echo signal can be filtered out.
  • Step S2032 determining the motion propagation mode diagram according to the filtered ultrasonic echo signal.
  • the tissue displacement or strain is calculated according to the filtered ultrasonic echo signal; according to the propagation mode diagram of the tissue displacement or strain with time established under different frequency vibrations, one coordinate axis of the propagation mode diagram represents time, The other axis represents different positions in the direction of shear wave propagation, and the pixel values represent the amount of displacement or strain.
  • the information of the shear waves with different frequency components is completely preserved in the propagation mode graph, so the accuracy of the viscoelasticity analysis can be improved.
  • Step S2033 performing time-frequency analysis on the motion propagation pattern diagram to determine a dispersion curve.
  • Step S2034 Determine phase velocities corresponding to different frequencies according to the dispersion curve.
  • Step S2035 performing function fitting on the phase velocities corresponding to different frequencies to obtain the viscoelasticity information of the tissue to be measured.
  • the viscoelasticity detection of the tissue to be measured is realized through the single-frequency vibration excitation, the process is simple and controllable, the hardware cost is simplified, and the System complexity and reduce overall cost.
  • step S201 is the same as the implementation of step S101 in the embodiment shown in FIG. 2 of the present application, and details are not repeated here.
  • FIG. 9 is a flowchart of the elastography method provided in Embodiment 3 of the present application. As shown in FIG. 9 , the elastography method provided by this embodiment is based on the elastography method provided by the embodiment shown in FIG. -S103 is further refined, and the elastography method provided in this embodiment includes the following steps:
  • Step S301 Acquire preset vibration excitation parameters, where the vibration excitation parameters include at least two different vibration frequencies.
  • Step S302 gradually apply the vibration excitation of the first frequency f 1 , the second frequency f 2 , .
  • FIG. 10 is a schematic diagram of cyclically applying vibration excitation to the tissue to be tested and performing ultrasonic detection in step S302.
  • vibration excitation parameters may include a set of vibration frequency sequences, such as ⁇ f 1 , f 2 , f 3 , ... ⁇ , as shown in Figure 10, according to the vibration frequency sequence in the vibration excitation parameters, the vibration excitation of the vibration frequency change is gradually applied to the tissue to be tested in a frequency sweep manner, and ultrasonic detection is performed after the application is completed. Specifically, the ultrasonic detection can occur at the same time or after the application of the last group of vibration excitations is completed. Probe.
  • ultrasonic detection is applied after the vibration excitation is applied, which can save electricity and avoid waste of electricity.
  • the vibration wave generated by the vibration excitation in the form of sweep frequency propagates in the tissue to be tested, which will cause tiny deformation inside the tissue to be tested. Different frequencies of vibration excitation will produce different displacement and deformation performance. At this time, the displacement and deformation performance of the tissue to be tested will also show a certain regularity. It increases with the increase of the vibration frequency, or decreases with the increase of the vibration frequency, or an extreme point appears with the monotonous change of the vibration frequency.
  • an ultrasonic echo signal will be obtained through ultrasonic detection, and the ultrasonic echo signal will be used to calculate the viscoelasticity information of the tissue to be measured.
  • Step S303 Calculate the viscoelasticity information of the tissue to be measured according to the detected ultrasonic echo signals corresponding to different vibration frequencies.
  • step S301 and step S303 is the same as the implementation manner of step S201 and step S203 in the embodiment shown in FIG. 3 , and details are not repeated here.
  • vibration excitation is applied to the tissue to be tested in the form of sweep frequency, so that the tissue to be tested receives a large vibration excitation in a short time. It is more suitable for in-vivo testing. Due to the concentrated vibration excitation, the excitation and data collection time is short, and it is not easily affected by movements such as heartbeat and breathing, and the system has high stability.
  • FIG. 11 is a flowchart of the elastography method provided in Embodiment 4 of the present application. As shown in FIG. 11 , the elastography method provided by this embodiment is based on the elastography method provided by the embodiment shown in FIG. -S103 is further refined, and the elastography method provided in this embodiment includes the following steps:
  • Step S401 Acquire preset vibration excitation parameters, where the vibration excitation parameters include at least two different vibration frequencies.
  • Step S402 gradually apply the first group of vibration excitations including the first frequency f 1 , the second frequency f 2 , .
  • a second group including the m+1th frequency f m+1 , the m+2th frequency f m+2 , ..., the m+nth frequency is applied to the tissue to be tested.
  • FIG. 12 is a schematic diagram of cyclically applying vibration excitation to the tissue to be tested and performing ultrasonic detection in step S402.
  • the vibration excitation parameters may include multiple groups of vibration frequency sequences, such as ⁇ f 1 , f 2 , f 3 , ... ⁇ , ..., ⁇ f m+1 , f m+2 , f m+3 , ... ⁇ , ..., ⁇ f m+n+1 , f m+n+2 , f m+n+3 , ... ⁇ , as shown in Fig.
  • each group gradually applies vibration excitation with varying vibration frequencies to the tissue to be tested in a sweeping manner, and in each group of vibration frequency sequences
  • ultrasonic detection is performed to obtain corresponding ultrasonic detection information.
  • the following group of vibration frequency sequences are used to perform sweep vibration excitation and obtain corresponding ultrasonic detection information.
  • the ultrasonic detection can occur at the same time or after the application of each group of vibration excitations is completed, preferably, after the application of each group of vibration excitations is completed, ultrasonic detection is applied to the tissue to be measured.
  • ultrasonic detection is applied after the vibration excitation is applied, which can save electricity and avoid waste of electricity.
  • the vibration wave generated by the vibration excitation in the form of sweep frequency propagates in the tissue to be tested, which will cause tiny deformation inside the tissue to be tested. Different frequencies of vibration excitation will produce different displacement and deformation performance. At this time, the displacement and deformation performance of the tissue to be tested will also show a certain regularity. Grouping for vibration excitation and ultrasonic detection can make the application of vibration energy more concentrated. On the tissue to be tested, the detection effect is improved, the excitation and data collection time is short, and it is not easily affected by movements such as heartbeat and breathing, and the system has high stability.
  • Step S403 Calculate the viscoelasticity information of the tissue to be measured according to the detected ultrasonic echo signals corresponding to different vibration frequencies.
  • step S401 and step S403 is the same as the implementation manner of step S201 and step S203 in the embodiment shown in FIG. 3 , and details are not repeated here.
  • step S205 the viscosity parameter is calculated according to the echo data detected by ultrasound in each cycle.
  • FIG. 13 is a schematic structural diagram of an elastography device provided by an embodiment of the present application. As shown in FIG. 13 , the elastography device 5 provided in this embodiment includes:
  • the acquisition module 51 is used to acquire preset vibration excitation parameters, and the vibration excitation parameters include at least two different vibration frequencies;
  • the detection module 52 is used to sequentially apply vibration excitations of different vibration frequencies to the tissue to be tested and perform ultrasonic detection;
  • the calculation module 53 is configured to calculate the viscoelasticity information of the tissue to be measured according to the detected ultrasonic echo signals corresponding to different vibration frequencies.
  • the detection module 52 is specifically used to: apply the vibration excitation of the first frequency f1 to the tissue to be tested, and perform ultrasonic detection; after receiving the ultrasonic echo signal corresponding to the vibration excitation of the first frequency f1, send it to the tissue to be tested.
  • the tissue to be tested applies the vibration excitation of the second frequency f 2 , and performs ultrasonic detection; and so on, whenever the ultrasonic echo signal corresponding to the vibration excitation of the m-1th frequency f m-1 is received, the tissue to be tested is sent to the tissue to be tested.
  • N is the total number of preset multiple vibration frequencies; m is a positive integer greater than or equal to 1; P is a positive integer greater than or equal to 1.
  • the detection module 52 is specifically used to: generate a vibration excitation timing control signal according to the vibration excitation parameter; according to the vibration excitation timing control signal, sequentially apply the vibration excitation of each vibration frequency to the tissue to be tested; Following or concurrently with the vibration excitation of each vibration frequency, ultrasonic probing is applied to the tissue to be tested.
  • the calculation module 53 is specifically configured to: filter the ultrasonic echo signal corresponding to each vibration frequency; determine a motion propagation pattern diagram according to the filtered ultrasonic echo signal; perform a time-frequency analysis on the motion propagation pattern diagram to determine Dispersion curve; determine the phase velocity corresponding to different frequencies according to the dispersion curve; perform function fitting on the phase velocity corresponding to different frequencies to obtain the viscoelasticity information of the tissue to be measured.
  • the calculation module 53 is specifically used to: calculate the tissue displacement amount or the strain amount according to the filtered ultrasonic echo signal; Propagation mode graph of displacement or strain as a function of time.
  • One axis of the propagation mode graph represents time, the other axis represents different positions in the direction of shear wave propagation, and pixel values represent displacement or strain.
  • the detection module 52 when generating the vibration excitation timing control signal according to the vibration excitation parameters, is specifically configured to: generate the vibration excitation sequence and duration corresponding to each vibration frequency, and the interval duration between vibration excitations of different frequencies.
  • the acquisition module 51 , the detection module 52 , and the calculation module 53 are electrically connected in sequence.
  • the elastic imaging device 5 provided in this embodiment can implement the technical solutions of the method embodiments shown in FIG. 2 to FIG. 11 , and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • FIG. 14 is a schematic diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 12 , the electronic device provided by this embodiment includes: a memory 61 , a processor 62 and a computer program.
  • the computer program is stored in the memory 61 and configured to be executed by the processor 62 to implement the elastography method provided by any one of the embodiments corresponding to FIG. 2 to FIG. 10 of the present application.
  • the memory 61 and the processor 62 are connected through a bus 63 .
  • An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the elastography provided by any of the embodiments corresponding to FIG. 2 to FIG. 12 of the present application method.
  • the computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division.
  • there may be other division methods for example, multiple modules or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种弹性成像方法、装置、电子设备及存储介质,通过获取预设的振动激励参数,振动激励参数中包括至少两个不同的振动频率(S101);向待测组织依次施加不同振动频率的振动激励并进行超声探测(S102);根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息(S103),由于生物组织内部并非均匀组织结构,存在结构属性上的差异,因此,不同的组织结构在受到不同频率的激励后,所产生的受迫振动响应也会不同,在粘弹性分析时,利用不同频率的机械振动去激励生物组织内部的组织结构,使频率成分更丰富,可以使不同组织结构产生更好的响应效果,进而提高弹性成像效果和成像精度。

Description

弹性成像方法、装置、电子设备及存储介质 技术领域
本申请涉及医疗设备技术领域,尤其涉及一种弹性成像方法、装置、电子设备及存储介质。
背景技术
超声成像技术因其具有实时、廉价、非侵入性和非电离辐射等优点而广泛地用于临床诊断,通过获取生物组织的生理结构信息,能够实现对于生物组织的病变检测。但是,在生物组织的早期病变期,由于其结构并不会发生明显变化,因此,传统的B超等超声成像方法,对于生物组织的早期病变并不敏感。
弹性成像技术是近年来兴起的新型成像技术,通过剪切波等方式激发生物组织振动,并通过超声波信号来跟踪生物组织振动受力前后的形变信息,得到生物组织的应变、剪切模量以及弹性模量等力学特征,并根据生物组织的力学特征进行生物组织的状态分析。弹性成像技术可以为生物组织早期病变的筛查提供重要数据支持。
现有技术中,是通过固定频率的振动激励使组织形变,并通过超声检测来获取组织变化的情况,以实现生物组织的状态诊断,在检测不同的生物组织时,使用相同的单一频率的振动激励进行弹性成像,存在成像效果差、精度低、难以同时获取多个粘弹性信息的问题。
发明内容
本申请提供一种弹性成像方法、装置、电子设备及存储介质,用以解决现有的弹性成像时,成像效果差、精度低的问题。
根据本公开实施例的第一方面,本申请提供了一种弹性成像方法,所述方法包括:
获取预设的振动激励参数,所述振动激励参数中包括至少两个不同的振动频率;向待测组织依次施加不同振动频率的振动激励并进行超声探测;根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息。
可选地,所述向待测组织依次施加不同振动频率的振动激励并进行超声探测,包括:
向待测组织施加第一频率f 1的振动激励,并进行超声探测;收到第一频率f 1的振动激励对应的超声回波信号后,向待测组织施加第二频率f 2的振动激励,并进行超声探测;以此类推,每当收到第m-1频率f m-1的振动激励对应的超声回波信号后,向待测组织施加第m频率f m的振动激励,并进行超声探测,直至m=N,其中N为预设的多个振动频率的总个数,N大于等于2;或者;
向待测组织以扫频的方式逐渐施加第一频率f 1、第二频率f 2,……,第N频率f N的振动激励,然后进行超声探测;其中N大于等于2;或者;
向待测组织以扫频的方式逐渐施加第一组包括第一频率f 1、第二频率f 2,……, 第m频率f m的振动激励,并进行超声探测;收到所述第一组的振动激励对应的超声回波信号后,向待测组织施加第二组包括第m+1频率f m+1、第m+2频率f m+2,……,第m+n频率f m+n的振动激励,并进行超声探测;以此类推,每当收到第P组包括第q频率f q、第q+1频率f q+1、……,第q+s频率f q+s,直至q+s=N,N为预设的多个振动频率的总个数;m为大于或等于1的正整数;P为大于或等于1的正整数。
可选地,所述向待测组织依次施加不同振动频率的振动激励并进行超声探测,包括:根据所述振动激励参数生成振动激励时序控制信号;根据所述振动激励时序控制信号,向待测组织依次施加各振动频率的振动激励;在向待测组织依次施加每一振动频率的振动激励之后或同时,向待测组织施加超声探测。
可选地,所述根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息,包括:对每一所述振动频率对应的超声回波信号进行滤波;根据滤波后超声回波信号确定运动传播模式图;对所述运动传播模式图进行时频分析,确定频散曲线;根据所述频散曲线确定不同频率对应的相速度;对所述不同频率对应的相速度进行函数拟合,得到待测组织的粘弹性信息。
可选地,所述根据滤波后超声回波信号确定运动传播模式图,包括:根据滤波后的超声回波信号计算组织位移量或应变量;根据不同频率振动下建立的所述组织位移量或应变量随时间变化的传播模式图,所述传播模式图的一个坐标轴表示时间,另一个坐标轴表剪切波传播方向上的不同位置,像素值代表位移量或应变量。
可选地,所述根据所述振动激励参数生成振动激励时序控制信号,包括:生成各振动频率对应的振动激励次序、持续时长,以及不同频率振动激励的间隔时长。
根据本公开实施例的第二方面,本申请提供了一种弹性成像装置,包括:
获取模块,用于获取预设的振动激励参数,所述振动激励参数中包括至少两个不同的振动频率;
探测模块,用于向待测组织依次施加不同振动频率的振动激励并进行超声探测;
计算模块,用于根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息。
可选地,所述探测模块,具体用于:向待测组织施加第一频率f 1的振动激励,并进行超声探测;收到第一频率f 1的振动激励对应的超声回波信号后,向待测组织施加第二频率f 2的振动激励,并进行超声探测;以此类推,每当收到第m-1频率f m-1的振动激励对应的超声回波信号后,向待测组织施加第m频率f m的振动激励,并进行超声探测,直至m=N,其中N为预设的多个振动频率的总个数,N大于等于2;或者,向待测组织以扫频的方式逐渐施加第一频率f 1、第二频率f 2,……,第N频率f N的振动激励,然后进行超声探测;其中N大于等于2;或者,向待测组织以扫频的方式逐渐施加第一组包括第一频率f 1、第二频率f 2,……,第m频率f m的振动激励,并进行超声探测;收到所述第一组的振动激励对应的超声回波信号后,向待测组织施加第二组包括第m+1频率f m+1、第m+2频率f m+2,……,第m+n频率f m+n的振动激励,并进行超声探测;以此类推,每当收到第P组包括第q频率f q、第q+1频率f q+1、……,第q+s频率f q+s,直至q+s=N,N为预设的多个振动频率的总个数;m为大于或等于1的正整数;P为大于或等于1的正整数。
可选地,所述探测模块,具体用于:根据所述振动激励参数生成振动激励时序 控制信号;根据所述振动激励时序控制信号,向待测组织依次施加各振动频率的振动激励;在向待测组织依次施加每一振动频率的振动激励之后或同时,向待测组织施加超声探测。
可选地,所述计算模块,具体用于:对每一所述振动频率对应的超声回波信号进行滤波;根据滤波后超声回波信号确定运动传播模式图;对所述运动传播模式图进行时频分析,确定频散曲线;根据所述频散曲线确定不同频率对应的相速度;对所述不同频率对应的相速度进行函数拟合,得到待测组织的粘弹性信息。
可选地,所述计算模块在根据滤波后超声回波信号确定运动传播模式图时,具体用于:根据滤波后的超声回波信号计算组织位移量或应变量;根据不同频率振动下建立的所述组织位移量或应变量随时间变化的传播模式图,所述传播模式图的一个坐标轴表示时间,另一个坐标轴表示剪切波传播方向上的不同位置,像素值代表位移量或应变量。
可选地,所述探测模块在根据所述振动激励参数生成振动激励时序控制信号时,具体用于:生成各振动频率对应的振动激励次序、持续时长,以及不同频率振动激励的间隔时长。
根据本公开实施例的第三方面,本申请提供了一种电子设备,包括:存储器,处理器以及计算机程序;
其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行如本公开实施例第一方面任一项所述的弹性成像方法。
根据本公开实施例的第四方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如本公开实施例第一方面任一项所述的弹性成像方法。
本申请提供的弹性成像方法、装置、电子设备及存储介质,通过获取预设的振动激励参数,所述振动激励参数中包括至少两个不同的振动频率;向待测组织依次施加不同振动频率的振动激励并进行超声探测;根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息,由于生物组织内部并非均匀组织结构,存在结构属性上的差异,因此,不同的组织结构在受到不同频率的激励后,所产生的受迫振动响应也会不同,在粘弹性分析时,利用不同频率的机械振动去激励生物组织内部的组织结构,使频率成分更丰富,可以使不同组织结构产生更好的响应效果,进而提高弹性成像的成像效果和成像精度。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本申请实施例提供的弹性成像方法的一种应用场景图;
图2为本申请实施例一提供的弹性成像方法的流程图;
图3为本申请实施例二提供的弹性成像方法的流程图;
图4为步骤S202中向待测组织循环施加振动激励并进行超声探测的示意图;
图5为图3所示实施例中步骤S202的流程图;
图6为具有多超声波阵源并具有振动激励功能的超声探头的结构示意图;
图7为通过多个超声波阵源向待测组织发射多组超声信号并接收回波信号的示意图;
图8为图3所示实施例中步骤S203的流程图;
图9为本申请实施例三提供的弹性成像方法的流程图;
图10为步骤S302中向待测组织循环施加振动激励并进行超声探测的示意图;
图11为本申请实施例四提供的弹性成像方法的流程图;
图12为步骤S402中向待测组织循环施加振动激励并进行超声探测的示意图;
图13为本申请一个实施例提供的弹性成像装置的结构示意图;
图14为本申请一个实施例提供的电子设备的示意图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
下面对本申请实施例的应用场景进行解释:
图1为本申请实施例提供的弹性成像方法的一种应用场景图,如图1所示,本申请实施例提供的弹性成像方法应用于电子设备,具体地,例如一种可应用于临床的弹性成像设备11。弹性成像设备具有检测探头111,能够同时或依次向人体施加振动激励和超声波,该弹性成像设备11通过本申请实施例提供的弹性成像方法对人体进行超声弹性检测,获得人体内脏组织12结构的力学特征,进而判断人体内脏组织12是否处于健康状态,为早期病变的筛查提供重要数据支持。
现有技术中,是通过固定频率的振动激励使组织形变,并通过超声检测来获取组织变化的情况,以实现生物组织的状态分析,但生物组织的结构属性不同,其相对应的固有频率也不相同,例如,人体内脏中的心脏、肺、肝脏、肠道、脂肪层、肌肉组织等,具有不同的固有频率,这是由其本身的结构属性所决定的,即,不同生物组织均对应有其最佳激励频率。因此,在不同生物组织受到不同频率的激励时,所产生的受迫振动响应也会不同,使用单一频率的振动激励进行弹性检测,无法保证生物组织所受到的激励效果最佳,因此,导致后续超声成像的效果较差,影响检测的精度。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为本申请提供的弹性成像方法的流程图,如图2所示,本申请弹性成像方法包括以下几个步骤:
步骤S101,获取预设的振动激励参数,振动激励参数中包括至少两个不同的振动频率。
具体地,振动激励参数可以为用户预先设置的用于控制振动激励的参数,其中包括振动频率。可选地,还可以包括振动幅值、两次振动激励之间的间隔值等,此处不做具体限定。其中,振动频率用于控制振动激励的振动频率,例如振动频率为10Hz,即振动激励以10Hz的频率产生振动。振动激励参数中包括至少两个不同的振动频率,例如,振动激励参数中包括3个振动频率,分别为振动频率1:10Hz;振动频率2:11Hz;振动频率3:12Hz。以使振动激励能够以不同的频率进行振动。
步骤S102,向待测组织依次施加不同振动频率的振动激励并进行超声探测。
示例性地,在一次循环中,通过向待测组织施加振动激励,可以产生一组从待测组织表面向待测组织内部传递的剪切波,该剪切波会使待测组织内部产生微小位移和形变,与此同时,再对应的通过向待测组织施加超声探测,通过发射超声波并接收回波,以实现对待测组织产生的微小位移和形变的观测。
通过循环上述过程,并在每次循环过程中,改变振动激励的振动频率,直至满足预设停止条件。以使待测组织内部产生不同频率的剪切波,并通过在每次振动激励后,对应向待测组织施加超声探测,以实现在不同激励频率下对待测组织所产生的响应检测。
其中,振动激励和超声探测应是对应的,但可以实现本申请目的的各种实现形式均应允许。例如可以是产生10次振动激励,相应产生10次超声探测,以对该10次振动激励对生物组织产生的影响进行检测。再例如,也可以是先进行一系列10个不同频率的激励,完成全部激励后再统一进行超声探测。又例如,也可以是先进行第1个至第3个不同频率的激励,然后进行一次超声波探测,获取第1个至第3个不同频率的激励对应的超声回波,接着对第4个至第6个不同频率的激励,然后再进行一次超声波探测,获取第4个至第6个不同频率的激励对应的超声回波,最后对第7个至第10个不同频率的激励,然后再进行一次超声波探测,获取第7个至第10个不同频率的激励对应的超声回波。产生并向待测组织施加振动激励的方式有多种,例如,通过振荡器、振动探头,或者其他能够产生振动并在待测组织内部形成剪切波的设备,通过与待测组织接触而向待测组织施加振动激励,此处不对产生并向待测组织施加振动激励的方式进行限定。
可选地,超声探测过程中,施加的超声波的频率可以是固定的,也可以是变化的,以满足不同的使用工况和使用场景,此处不做限定。另外,对待测组织施加超声波并接收回波的超声探测技术为本领域常用的现有技术,此处不再赘述。
步骤S103,根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息。
向待测组织施加超声探测的步骤包括向待测组织发生超声波和接收超声波被待测组织阻挡后形成的回波,在每次振动激励-超声探测的循环过程中,由于机械振动形成的剪切波对待测组织产生了激励,待测组织产生了微小形变,因此,超声探测的回波数据中携带了待测组织的形变信息。
通过循环施加振动激励和超声探测,可以相应的获得多组回波数据,由于每次循环中使待测组织产生形变和位移的振动激励的频率不同,因此,待测组织所产生的形变信息和位移信息也对应不同,进而,使多组回波数据中携带了不同的待测组织的形变信息和位移信息。根据每次循环形成的多组回波数据,可以实现对粘弹性信息的优化计算,相比单频率的振动激励,回波信号所携带的信息更加丰富,能够表现待测组织对不同激励频率的响应情况,因此,可以获得更好的粘弹性计算效果。
较佳地,在步骤S103之后,还可以包括:输出粘弹性信息。
获得粘弹性信息后,将粘弹性信息进行输出,例如输出至显示装置,对粘弹性信息进行显示;或者输出至存储设备,对粘弹性信息进行存储。此处不对粘弹性信息具体的输出方式进行限定。
本实施例中,通过获取预设的振动激励参数,振动激励参数中包括至少两个不同的振动频率;向待测组织依次施加不同振动频率的振动激励并进行超声探测;根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息,由于生物组织内部并非均匀组织结构,存在结构属性上的差异,因此,不同的组织结构在受到不同频率的激励后,所产生的受迫振动响应也会不同,在粘弹性分析时,利用不同频率的机械振动去激励生物组织内部的组织结构,使频率成分更丰富,可以使不同组织结构产生更好的响应效果,进而提高弹性成像的成像效果和成像精度。
图3为本申请实施例二提供的弹性成像方法的流程图,如图3所示,本实施例提供的弹性成像方法在图2所示实施例提供的弹性成像方法的基础上,对步骤S102-S103进一步细化,则本实施例提供的弹性成像方法包括以下几个步骤:
步骤S201,获取预设的振动激励参数,振动激励参数中包括至少两个不同的振动频率。
步骤S202,向待测组织施加第一频率f 1的振动激励,并进行超声探测;收到第一频率f 1的振动激励对应的超声回波信号后,向待测组织施加第二频率f 2的振动激励,并进行超声探测;以此类推,每当收到第m-1频率f m-1的振动激励对应的超声回波信号后,向待测组织施加第m频率f m的振动激励,并进行超声探测,直至m=N,其中N为预设的多个振动频率的总个数,N大于等于2。
图4为步骤S202中向待测组织循环施加振动激励并进行超声探测的示意图,示例性地,振动激励参数中可以包括一组振动频率序列,例如{f 1,f 2,f 3,……},如图4所示,根据振动激励参数中的振动频率序列,向待测组织施加振动频率为f 1的振动激励,并进行超声探测,其中,具体地,该超声探测可以发生在振动激励的同时或之后,优选的,在向待测组织依次施加每一振动频率的振动激励之后或同时,向待测组织施加超声探测。由于振动激励作用于待测组织需要一段时间,因此在振动激励施加后,再施加超声探测,可以节约电能,避免电能浪费。振动激励产生的振动波在待测组织内传播,会使待测组织内部形成微小变形,超声探测发出的超声波在待测组织内部传播和反射后,会形成超声探测回波信号,该超声回波信号中包含有表征待测组织内部的微小变形的信息,可用于对待测组织进行分析。而后,根据振动频率序列,向待测组织施加不同于第一频率的第二频率f 2的振动激励,并同时或之后,进行超声探测,获得超声回波信号。重复上述过程,直至以振动序列中的最后一个频率f N完成对待测组织的振动激励,并收到对应的超声回波信号,结束对待测组织的振动激励和超声探测过程。并得到多个超声回波信号,其中,每个超声回波信号,对应一个频率的振动激励。
在另一种可能的实现方式中,振动激励参数中可以包括振动参数和停止参数,根据振动参数和停止参数,可以生成上述的振动频率序列。更具体地,在一种可能的实现方式中,振动参数中包括振动激励的起始频率、频率步长和循环次数,停止参数为达到预设循环次数,根据起始频率、频率步长和循环次数,能够生成单调变化的振动频率序列。例如,起始频率为15Hz,频率步长为1Hz,循环次数为100次,则生成单调变化 的振动频率序列为起始频率为15Hz,截止频率为114Hz,由100个振动频率组成的振动频率序列。
在另一种可能的实现方式中,振动参数中包括振动激励的起始频率、频率步长和截止频率,停止参数为振动频率达到预设截止频率,例如,起始频率为15Hz,频率步长为1Hz,截止频率为100Hz,则生成单调变化的振动频率序列为起始频率为15Hz,截止频率为100Hz,由86个振动频率组成的振动频率序列。
可选地,振动激励时序控制信号的频率可以为单调变化或非单调变化,单调变化包括单调上升变化或单调下降变化,每个不同频率持续的时间可根据需要具体进行设置,各个不同频率之间可以为连续变化,也可以为非连续变化,此处不做具体限定。
可选地,如图5所示,步骤S202中向待测组织施加超声探测包括步骤S2021、S2022两个具体的实现步骤:
步骤S2021,向待测组织发射多组超声信号。
可选地,图6为具有多超声波阵源并具有振动激励功能的超声探头的结构示意图,本实施例提供的弹性成像方法,应用于具有如图6所示检测探头71的电子设备,检测探头71可以为具有多超声波阵元711并具有振动激励结构712的复合超声探头。其中,每个超声波阵元711可以发射超声波信号,并接收回波信号。图7为通过多个超声波阵源向待测组织发射多组超声信号并接收回波信号的示意图,如图7所示,发射的超声信号对应于待测组织的不同位置,用于对不同位置的待测组织进行超声探测,例如,检测探头具有4个超声波阵元711,分别对肝脏组织72的A、B、C、D四个位置进行超声检测。
步骤S2022,通过接收各组超声信号对应的回波信号,以获得超声探测的回波数据。
由于待测组织往往具有不规则的结构形态,例如,人体的内脏组织,仅通过一组超声信号进行对人体内脏组织进行探测,会使探测结果受到位置因素的影响,而产生偏差。本实施例步骤中,通过向待测组织发射多组超声信号,并接受对应的回波信号,以获得超声探测的回波数据,实现同时获得多组超声探测结果,提高探测效率,并且通过对多组超声探测结果进行处理,能够有效提高弹性成像的准确性和成像效果。
步骤S203,根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息。
具体地,计算待测组织的粘弹性信息包括计算待测组织的粘性参数和弹性参数。可选地,如图8所示,步骤S203中计算粘性参数的包括步骤S2031-步骤S2035五个具体的实现步骤。
步骤S2031,对每一振动频率对应的超声回波信号进行滤波。
由于对待测组织施加超声探测的超声传播环境复杂,超声回波信号中包含有影响信号中有效信息的噪声,对超声回波信号进行滤波,可以提高超声回波信号的信噪比,优化超声探测效果。具体地,可以对特定频率进行滤波,例如滤除超声回波信号中的低频干扰噪声。
步骤S2032,根据滤波后超声回波信号确定运动传播模式图。
具体地,根据滤波后的超声回波信号计算组织位移量或应变量;根据不同频率振动下建立的组织位移量或应变量随时间变化的传播模式图,传播模式图的一个坐标轴 表示时间,另一个坐标轴表剪切波传播方向上的不同位置,像素值代表位移量或应变量。
本实施例步骤中,传播模式图中完整的保留了不同频率成分剪切波的信息,因此能够提高粘弹性分析的准确性。
步骤S2033,对运动传播模式图进行时频分析,确定频散曲线。
步骤S2034,根据频散曲线确定不同频率对应的相速度。
步骤S2035,对不同频率对应的相速度进行函数拟合,得到待测组织的粘弹性信息。
其中,对不同传播速率对应的相速度进行拟合,以获得粘性参数的方法,为本领域人员知晓的现有技术,此处不再赘述。
本申请实施例中,通过在每次振动激励的施加过程中,施加一个单频的激振,通过单频的振动激励实现待测组织的粘弹性检测,过程简单可控,简化硬件成本,降低系统复杂度,降低综合成本。
本实施例中,步骤S201的实现方式与本申请图2所示实施例中的步骤S101的实现方式相同,在此不再一一赘述。
图9为本申请实施例三提供的弹性成像方法的流程图,如图9所示,本实施例提供的弹性成像方法在图2所示实施例提供的弹性成像方法的基础上,对步骤S102-S103进一步细化,则本实施例提供的弹性成像方法包括以下几个步骤:
步骤S301,获取预设的振动激励参数,振动激励参数中包括至少两个不同的振动频率。
步骤S302,向待测组织以扫频的方式逐渐施加第一频率f 1、第二频率f 2,……,第N频率f N的振动激励,然后进行超声探测;其中N大于等于2。
图10为步骤S302中向待测组织循环施加振动激励并进行超声探测的示意图,示例性地,振动激励参数中可以包括一组振动频率序列,例如{f 1,f 2,f 3,……},如图10所示,根据振动激励参数中的振动频率序列,以扫频的方式逐渐向待测组织施加振动频率变化的振动激励,在施加完成后,进行超声探测。其中,具体地,该超声探测可以发生在最后一组振动激励施加完成的同时或之后,优选的,在向待测组织依次施加完所有振动频率的振动激励之后或同时,向待测组织施加超声探测。由于振动激励作用于待测组织需要一段时间,因此在振动激励施加后,再施加超声探测,可以节约电能,避免电能浪费。扫频形式的振动激励产生的振动波在待测组织内传播,会使待测组织内部形成微小变形,当待测组织受到振动激励时,由于不同待测组织本身的固有频率不同,因此,受到不同频率的振动激励,会产生不同的位移和形变表现,此时,待测组织产生的位移和形变表现也会表现出一定的规律性,例如,待测组织的位移和形变随着振动频率的升高而升高,或随着振动频率的升高而降低,或随着振动频率的单调变化而出现极值点。在振动激励停止后,经超声探测将得到一个超声回波信号,该超声回波信号用于计算待测组织的粘弹性信息。
步骤S303,根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息。
其中,步骤S301和步骤S303的实现方式,与图3所示实施例中的步骤S201和步骤S203的实现方式相同,此处不再进行赘述。
本实施例中,通过扫频形式向待测组织施加振动激励,使待测组织在短时间内 接受较大的振动激励。更加适用于在体测试中,由于振动激励集中,激励、数据采集的时间短,不易受心跳、呼吸等运动带来的影响,系统稳定性高。
图11为本申请实施例四提供的弹性成像方法的流程图,如图11所示,本实施例提供的弹性成像方法在图2所示实施例提供的弹性成像方法的基础上,对步骤S102-S103进一步细化,则本实施例提供的弹性成像方法包括以下几个步骤:
步骤S401,获取预设的振动激励参数,振动激励参数中包括至少两个不同的振动频率。
步骤S402,向待测组织以扫频的方式逐渐施加第一组包括第一频率f 1、第二频率f 2,……,第m频率f m的振动激励,并进行超声探测;收到第一组的振动激励对应的超声回波信号后,向待测组织施加第二组包括第m+1频率f m+1、第m+2频率f m+2,……,第m+n频率f m+n的振动激励,并进行超声探测;以此类推,每当收到第P组包括第q频率f q、第q+1频率f q+1、……,第q+s频率f q+s,直至q+s=N,N为预设的多个振动频率的总个数;m为大于或等于1的正整数;P为大于或等于1的正整数。
图12为步骤S402中向待测组织循环施加振动激励并进行超声探测的示意图,示例性地,振动激励参数中可以包括多组振动频率序列,例如{f 1,f 2,f 3,……},……,{f m+1,f m+2,f m+3,……},……,{f m+n+1,f m+n+2,f m+n+3,……},如图12所示,根据振动激励参数中的多组振动频率序列,每一组以扫频的方式逐渐向待测组织施加振动频率变化的振动激励,在每一组振动频率序列施加完成后,进行超声探测,获得对应的超声探测信息。之后,以下一组振动频率序列进行扫频振动激励和获取对应的超声探测信息。直至各组振动频率序列结束。其中,具体地,该超声探测可以发生在每一组振动激励施加完成的同时或之后,优选的,在每一组振动激励施加完成之后,向待测组织施加超声探测。由于振动激励作用于待测组织需要一段时间,因此在振动激励施加后,再施加超声探测,可以节约电能,避免电能浪费。扫频形式的振动激励产生的振动波在待测组织内传播,会使待测组织内部形成微小变形,当待测组织受到振动激励时,由于不同待测组织本身的固有频率不同,因此,受到不同频率的振动激励,会产生不同的位移和形变表现,此时,待测组织产生的位移和形变表现也会表现出一定的规律分组进行振动激励和超声探测,能够使振动能量较为集中的施加在待测组织上,提高探测效果,激励、数据采集的时间短,不易受心跳、呼吸等运动带来的影响,系统稳定性高。
步骤S403,根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息。
其中,步骤S401和步骤S403的实现方式,与图3所示实施例中的步骤S201和步骤S203的实现方式相同,此处不再进行赘述。
步骤S205,根据每次循环内超声探测的回波数据,计算粘性参数。
图13为本申请一个实施例提供的弹性成像装置的结构示意图,如图13所示,本实施例提供的弹性成像装置5包括:
获取模块51,用于获取预设的振动激励参数,振动激励参数中包括至少两个不同的振动频率;
探测模块52,用于向待测组织依次施加不同振动频率的振动激励并进行超声探测;
计算模块53,用于根据探测到的不同振动频率对应的超声回波信号,计算待 测组织的粘弹性信息。
可选地,探测模块52,具体用于:向待测组织施加第一频率f 1的振动激励,并进行超声探测;收到第一频率f 1的振动激励对应的超声回波信号后,向待测组织施加第二频率f 2的振动激励,并进行超声探测;以此类推,每当收到第m-1频率f m-1的振动激励对应的超声回波信号后,向待测组织施加第m频率f m的振动激励,并进行超声探测,直至m=N,其中N为预设的多个振动频率的总个数,N大于等于2;或者,向待测组织以扫频的方式逐渐施加第一频率f 1、第二频率f 2,……,第N频率f N的振动激励,然后进行超声探测;其中N大于等于2;或者,向待测组织以扫频的方式逐渐施加第一组包括第一频率f 1、第二频率f 2,……,第m频率f m的振动激励,并进行超声探测;收到所述第一组的振动激励对应的超声回波信号后,向待测组织施加第二组包括第m+1频率f m+1、第m+2频率f m+2,……,第m+n频率f m+n的振动激励,并进行超声探测;以此类推,每当收到第P组包括第q频率f q、第q+1频率f q+1、……,第q+s频率f q+s,直至q+s=N,N为预设的多个振动频率的总个数;m为大于或等于1的正整数;P为大于或等于1的正整数。
可选地,探测模块52,具体用于:根据振动激励参数生成振动激励时序控制信号;根据振动激励时序控制信号,向待测组织依次施加各振动频率的振动激励;在向待测组织依次施加每一振动频率的振动激励之后或同时,向待测组织施加超声探测。
可选地,计算模块53,具体用于:对每一振动频率对应的超声回波信号进行滤波;根据滤波后超声回波信号确定运动传播模式图;对运动传播模式图进行时频分析,确定频散曲线;根据频散曲线确定不同频率对应的相速度;对不同频率对应的相速度进行函数拟合,得到待测组织的粘弹性信息。
可选地,计算模块53在根据滤波后超声回波信号确定运动传播模式图时,具体用于:根据滤波后的超声回波信号计算组织位移量或应变量;根据不同频率振动下建立的组织位移量或应变量随时间变化的传播模式图,传播模式图的一个坐标轴表示时间,另一个坐标轴表剪切波传播方向上的不同位置,像素值代表位移量或应变量。
可选地,探测模块52在根据振动激励参数生成振动激励时序控制信号时,具体用于:生成各振动频率对应的振动激励次序、持续时长,以及不同频率振动激励的间隔时长。
其中,获取模块51、探测模块52、计算模块53依次电连接。本实施例提供的弹性成像装置5可以执行如图2-图11所示的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图14为本申请一个实施例提供的电子设备的示意图,如图12所示,本实施例提供的电子设备包括:存储器61,处理器62以及计算机程序。
其中,计算机程序存储在存储器61中,并被配置为由处理器62执行以实现本申请图2-图10所对应的实施例中任一实施例提供的弹性成像方法。
其中,存储器61和处理器62通过总线63连接。
相关说明可以对应参见图2-图12所对应的实施例中任一实施例提供的弹性成像方法的步骤所对应的相关描述和效果进行理解,此处不做过多赘述。
本申请一个实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行以实现本申请图2-图12所对应的实施例中任一实施例提供的弹 性成像方法。
其中,计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (14)

  1. 一种弹性成像方法,其特征在于,所述方法包括:
    获取预设的振动激励参数,所述振动激励参数中包括至少两个不同的振动频率;
    向待测组织依次施加不同振动频率的振动激励并进行超声探测;
    根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息。
  2. 根据权利要求1所述的方法,其特征在于,向待测组织依次施加不同振动频率的振动激励并进行超声探测,包括:
    向待测组织施加第一频率f 1的振动激励,并进行超声探测;收到第一频率f 1的振动激励对应的超声回波信号后,向待测组织施加第二频率f 2的振动激励,并进行超声探测;以此类推,每当收到第m-1频率f m-1的振动激励对应的超声回波信号后,向待测组织施加第m频率f m的振动激励,并进行超声探测,直至m=N,其中N为预设的多个振动频率的总个数,N大于等于2;或者,
    向待测组织以扫频的方式逐渐施加第一频率f 1、第二频率f 2,……,第N频率f N的振动激励,然后进行超声探测;其中N大于等于2;或者,
    向待测组织以扫频的方式逐渐施加第一组包括第一频率f 1、第二频率f 2,……,第m频率f m的振动激励,并进行超声探测;收到所述第一组的振动激励对应的超声回波信号后,向待测组织施加第二组包括第m+1频率f m+1、第m+2频率f m+2,……,第m+n频率f m+n的振动激励,并进行超声探测;以此类推,每当收到第P组包括第q频率f q、第q+1频率f q+1、……,第q+s频率f q+s,直至q+s=N,N为预设的多个振动频率的总个数;m为大于或等于1的正整数;P为大于或等于1的正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述向待测组织依次施加不同振动频率的振动激励并进行超声探测,包括:
    根据所述振动激励参数生成振动激励时序控制信号;
    根据所述振动激励时序控制信号,向待测组织依次施加各振动频率的振动激励;
    在向待测组织依次施加每一振动频率的振动激励之后或同时,向待测组织施加超声探测。
  4. 根据权利要求1所述的方法,其特征在于,所述根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息,包括:
    对每一所述振动频率对应的超声回波信号进行滤波;
    根据滤波后超声回波信号确定运动传播模式图;
    对所述运动传播模式图进行时频分析,确定频散曲线;
    根据所述频散曲线确定不同频率对应的相速度;
    对所述不同频率对应的相速度进行函数拟合,得到待测组织的粘弹性信息。
  5. 根据权利要求4所述的方法,其特征在于,所述根据滤波后超声回波信号确定运动传播模式图,包括:
    根据滤波后的超声回波信号计算组织位移量或应变量;
    根据不同频率振动下建立的所述组织位移量或应变量随时间变化的传播模式图,所述传播模式图的一个坐标轴表示时间,另一个坐标轴表剪切波传播方向上的不同位置,像素值代表位移量或应变量。
  6. 根据权利要求3所述的方法,其特征在于,所述根据所述振动激励参数生成振动 激励时序控制信号,包括:
    生成各振动频率对应的振动激励次序、持续时长,以及不同频率振动激励的间隔时长。
  7. 一种弹性成像装置,其特征在于,所述装置包括:
    获取模块,用于获取预设的振动激励参数,所述振动激励参数中包括至少两个不同的振动频率;
    探测模块,用于向待测组织依次施加不同振动频率的振动激励并进行超声探测;
    计算模块,用于根据探测到的不同振动频率对应的超声回波信号,计算待测组织的粘弹性信息。
  8. 根据权利要求7所述的装置,其特征在于,所述探测模块,具体用于:
    向待测组织施加第一频率f 1的振动激励,并进行超声探测;收到第一频率f 1的振动激励对应的超声回波信号后,向待测组织施加第二频率f 2的振动激励,并进行超声探测;以此类推,每当收到第m-1频率f m-1的振动激励对应的超声回波信号后,向待测组织施加第m频率f m的振动激励,并进行超声探测,直至m=N,其中N为预设的多个振动频率的总个数,N大于等于2;或者,
    向待测组织以扫频的方式逐渐施加第一频率f 1、第二频率f 2,……,第N频率f N的振动激励,然后进行超声探测;其中N大于等于2;或者,
    向待测组织以扫频的方式逐渐施加第一组包括第一频率f 1、第二频率f 2,……,第m频率f m的振动激励,并进行超声探测;收到所述第一组的振动激励对应的超声回波信号后,向待测组织施加第二组包括第m+1频率f m+1、第m+2频率f m+2,……,第m+n频率f m+n的振动激励,并进行超声探测;以此类推,每当收到第P组包括第q频率f q、第q+1频率f q+1、……,第q+s频率f q+s,直至q+s=N,N为预设的多个振动频率的总个数;m为大于或等于1的正整数;P为大于或等于1的正整数;q为大于或等于1的正整数。
  9. 根据权利要求7或8所述的装置,其特征在于,所述探测模块,具体用于:
    根据所述振动激励参数生成振动激励时序控制信号;
    根据所述振动激励时序控制信号,向待测组织依次施加各振动频率的振动激励;
    在向待测组织依次施加每一振动频率的振动激励之后或同时,向待测组织施加超声探测。
  10. 根据权利要求7所述的装置,其特征在于,所述计算模块,具体用于:
    对每一所述振动频率对应的超声回波信号进行滤波;
    根据滤波后超声回波信号确定运动传播模式图;
    对所述运动传播模式图进行时频分析,确定频散曲线;
    根据所述频散曲线确定不同频率对应的相速度;
    对所述不同频率对应的相速度进行函数拟合,得到待测组织的粘弹性信息。
  11. 根据权利要求10所述的装置,其特征在于,所述计算模块在根据滤波后超声回波信号确定运动传播模式图时,具体用于:
    根据滤波后的超声回波信号计算组织位移量或应变量;
    根据不同频率振动下建立的所述组织位移量或应变量随时间变化的传播模式图,所述传播模式图的一个坐标轴表示时间,另一个坐标轴表剪切波传播方向上的不同位置, 像素值代表位移量或应变量。
  12. 根据权利要求9所述的装置,其特征在于,所述探测模块在根据所述振动激励参数生成振动激励时序控制信号时,具体用于:
    生成各振动频率对应的振动激励次序、持续时长,以及不同频率振动激励的间隔时长。
  13. 一种电子设备,其特征在于,包括:存储器,处理器以及计算机程序;
    其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如权利要求1-6中任一项所述的弹性成像方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如权利要求1-6中任一项所述的弹性成像方法。
PCT/CN2022/085155 2021-04-06 2022-04-02 弹性成像方法、装置、电子设备及存储介质 WO2022213949A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110368523.1A CN113081039B (zh) 2021-04-06 2021-04-06 弹性成像方法、装置、电子设备及存储介质
CN202110368523.1 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213949A1 true WO2022213949A1 (zh) 2022-10-13

Family

ID=76674414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085155 WO2022213949A1 (zh) 2021-04-06 2022-04-02 弹性成像方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113081039B (zh)
WO (1) WO2022213949A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113081039B (zh) * 2021-04-06 2024-02-13 无锡海斯凯尔医学技术有限公司 弹性成像方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121170A1 (zh) * 2016-01-11 2017-07-20 无锡海斯凯尔医学技术有限公司 组织参数检测方法和系统
CN107049360A (zh) * 2017-01-26 2017-08-18 清华大学 剪切波弹性成像方法和装置
CN109171814A (zh) * 2018-07-26 2019-01-11 清华大学 血管超声弹性成像的方法及装置
US20210059643A1 (en) * 2019-09-04 2021-03-04 GE Precision Healthcare LLC Method and system for shear wave elastography and medium storing corresponding program
CN113081039A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 弹性成像方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121170A1 (zh) * 2016-01-11 2017-07-20 无锡海斯凯尔医学技术有限公司 组织参数检测方法和系统
CN107049360A (zh) * 2017-01-26 2017-08-18 清华大学 剪切波弹性成像方法和装置
CN109171814A (zh) * 2018-07-26 2019-01-11 清华大学 血管超声弹性成像的方法及装置
US20210059643A1 (en) * 2019-09-04 2021-03-04 GE Precision Healthcare LLC Method and system for shear wave elastography and medium storing corresponding program
CN113081039A (zh) * 2021-04-06 2021-07-09 无锡海斯凯尔医学技术有限公司 弹性成像方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113081039A (zh) 2021-07-09
CN113081039B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
Palmeri et al. Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation
CN106999162B (zh) 超声波诊断装置以及弹性评价方法
KR101598930B1 (ko) 심근 수축력을 측정하는 방법 및 장치
US10172527B2 (en) Method and apparatus for measuring a physical parameter in mammal soft tissues by propagating shear waves
CN107550458B (zh) 基于声电效应与声辐射力的生物组织多特性成像方法
CN103026257B (zh) 使用剪切波成像的方法和装置
RU2688294C1 (ru) Способ и устройство для определения эластичности
CN101529241B (zh) 使用超声波换能器对生物组织粘弹特性测量的方法
Sahani et al. Automated system for imageless evaluation of arterial compliance
JP6502367B2 (ja) 異方性柔軟媒体を特性評価するための方法及び超音波デバイス、並びにそのような特性評価デバイス用の超音波プローブのセット
US20140187940A1 (en) Method of calculating displacement of shear wave, method of calculating mechanical modulus of body, and system using the methods
WO2022213949A1 (zh) 弹性成像方法、装置、电子设备及存储介质
Chen et al. Characterization of hand tendons through high-frequency ultrasound elastography
CN112022215B (zh) 超声弹性成像角膜检测方法、装置、系统和存储介质
CN111110275A (zh) 血管力学性能的测量方法、装置、系统及存储介质
CN109717904A (zh) 弹性成像系统
CN109875608A (zh) 弹性成像方法
JP7354632B2 (ja) 超音波診断装置、および、超音波診断装置の制御方法
JP7466573B2 (ja) 剪断波発生の方法及び装置
Dai et al. Controllable Angle Shear Wavefront Reconstruction Based on Image Fusion Method for Shear Wave Elasticity Imaging
Xu et al. Visualization of Human Hand Tendon Mechanical Anisotropy in 3D Using High-Frequency Dual-Direction Shear Wave Imaging
CN1791361A (zh) 超声波诊断装置
CN201341897Y (zh) 手持式心脏超声检测仪
RU2794039C2 (ru) Способ гибридной эластографии, зонд и устройство для гибридной эластографии
WO2022141631A1 (zh) 粘弹性测量方法和超声成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784015

Country of ref document: EP

Kind code of ref document: A1