WO2022213937A1 - 可穿戴设备的控制方法及电子设备 - Google Patents

可穿戴设备的控制方法及电子设备 Download PDF

Info

Publication number
WO2022213937A1
WO2022213937A1 PCT/CN2022/085118 CN2022085118W WO2022213937A1 WO 2022213937 A1 WO2022213937 A1 WO 2022213937A1 CN 2022085118 W CN2022085118 W CN 2022085118W WO 2022213937 A1 WO2022213937 A1 WO 2022213937A1
Authority
WO
WIPO (PCT)
Prior art keywords
diopter
wearable device
state
optical lens
lens group
Prior art date
Application number
PCT/CN2022/085118
Other languages
English (en)
French (fr)
Inventor
何紫轩
曾以亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/553,540 priority Critical patent/US20240231038A9/en
Priority to EP22784003.0A priority patent/EP4300164A4/en
Publication of WO2022213937A1 publication Critical patent/WO2022213937A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems

Definitions

  • the embodiments of the present application relate to the field of wearable devices, and in particular, to a control method of a wearable device and an electronic device.
  • the optical imaging module in the Virtual Reality (VR) helmet device is generally composed of a display screen and an optical lens group. As shown in Figure 1, when the device is in normal use, the light emitted by the display screen (ie the screen) passes through the optical lens. After the group is refracted, it enters the human eye, so that the user can see the picture displayed on the screen in the VR headset.
  • the optical lenses in the device are exposed to the environment.
  • the optical lens group in this type of equipment has the effect of converging light
  • part of the ambient light will enter the optical imaging module through the human eye side of the optical lens group, and then focus on the display screen after passing through the lens group.
  • resulting in a large amount of energy at the focus point of the light on the screen which in turn causes damage to the screen, affects the display effect of the virtual reality helmet device, and may even cause damage to the screen, making it impossible to display the picture.
  • a method adopted in the prior art is to add a polarizing device.
  • the polarizing device is added using the polarization principle, and the polarization direction of the polarizing device is consistent with the polarization of the screen light in the virtual reality helmet device.
  • the polarizing device can only transmit light in a single polarization direction, the ambient light entering the virtual reality helmet device can be weakened, and the polarized light emitted by the screen can be passed through, so as to reduce the focus on the screen without affecting the display effect.
  • the intensity of ambient light thereby preventing sunburn in the virtual reality headset.
  • the transmittance of the polarizer to light in the same polarization direction does not exceed 90%. Therefore, the use of polarizers will reduce the display brightness of the VR headset. Moreover, if the direction of the polarizer is inconsistent with the polarization direction of the light on the screen, the display brightness will be further reduced, so this solution requires higher assembly accuracy.
  • the present application provides a control method of a wearable device and an electronic device.
  • the electronic device can adjust the diopter of the optical lens group to increase the spot size of the ambient light focused on the screen of the wearable device through the lens, thereby dispersing the energy of the light, thereby preventing the screen from being sunburned.
  • an embodiment of the present application provides a control method for a wearable device.
  • the method includes: acquiring the wearing state of the wearable device; when the wearable device changes from the wearing state to the non-wearing state, adjusting a first diopter of an optical lens group of the wearable device to a second diopter, wherein the second diopter is greater than the second diopter a diopter.
  • the electronic device can detect the wearing state of the wearable device, and in the case of detecting that the wearable device is not worn, increase the diopter of the optical lens group of the wearable device to increase the focusing of ambient light through the lens The size of the light spot on the screen of the wearable device, so as to disperse the energy of the light, thereby preventing the screen from being sunburned.
  • the electronic device may be a wearable device, or a chip in a wearable device. It can also be an external device, such as a computer, a mobile phone and other devices connected to a wearable device, or a chip of the device.
  • an external device such as a computer, a mobile phone and other devices connected to a wearable device, or a chip of the device.
  • the embodiments of the present application can implement the sun protection mode in the embodiments of the present application without changing the structure of the existing wearable device.
  • the automatic sun protection function is realized by automatically detecting the wearing state and adjusting the diopter accordingly.
  • an optical lens group may include one or more lenses.
  • the lenses are optionally optical lenses such as spherical lenses, aspherical lenses or Fresnel lenses.
  • the lens may be plastic or glass, which is not limited in this application.
  • the method further includes: acquiring the wearing state of the wearable device; and adjusting the second diopter of the optical lens group of the wearable device to the first diopter when the wearable device changes from the unworn state to the wearing state.
  • the electronic device can detect the wearing state of the wearable device, and when the wearable device returns from the unworn state to the wearing state, the wearable device can automatically restore the diopter of the optical lens group to the value before the transformation. So that when the user wears the wearable device again, the sun protection mode can be automatically released, so that the user can observe a clear picture displayed on the screen.
  • the first diopter may be set by the user during use, or may be factory-set by the wearable device.
  • the second diopter is the maximum diopter attainable by the optical lens group.
  • the electronic device can disperse the light to the screen to the greatest extent, so as to avoid the screen from being sunburned.
  • adjusting the first diopter of the optical lens group of the wearable device to the second diopter includes: When the wearable device changes from the wearing state to the non-wearing state, the first state of the focusing module of the wearable device is obtained, wherein the focusing module is used to control the first diopter of the optical lens group, and the focusing module is placed in the first state , the diopter of the optical lens group is the first diopter; the focusing module is adjusted to the second state, wherein when the focusing module is placed in the second state, the diopter of the optical lens group is the second diopter.
  • the electronic device can adjust the diopter of the optical lens group by controlling the focusing module.
  • the first state of the focusing module is the current state described in the following embodiments.
  • the second state of the focusing module is the maximum diopter state described in the following embodiments.
  • adjusting the first diopter of the optical lens group of the wearable device to the second diopter includes: When the wearable device changes from the wearing state to the non-wearing state and remains in the non-wearing state for a set period of time, the first diopter of the optical lens group of the wearable device is adjusted to the second diopter.
  • the electronic device determines that the wearable device remains in an unworn state within a set period of time before starting the subsequent sun protection mode, thereby avoiding frequent turning on and off of the sun protection mode and reducing the power consumption of the device.
  • an embodiment of the present application provides an electronic device.
  • the device includes: one or more processors; a memory; and one or more computer programs, wherein the one or more computer programs are stored on the memory and, when executed by the one or more processors, cause the electronic device to execute The following steps: obtain the wearing state of the wearable device; when the wearable device changes from the wearing state to the non-wearing state, adjust the first diopter of the optical lens group of the wearable device to the second diopter, wherein the second diopter is greater than the first diopter Diopter.
  • the computer program when executed by one or more processors, it causes the electronic device to perform the following steps: acquiring the wearing state of the wearable device; The second diopter of the optical lens group is adjusted to the first diopter.
  • the second diopter is the maximum diopter attainable by the optical lens group.
  • the electronic device when the computer program is executed by the one or more processors, the electronic device is caused to perform the following steps: when the wearable device changes from the wearing state to the non-wearing state, obtaining the first state of the focusing module of the wearable device, wherein the focusing module is used to control the first diopter of the optical lens group, and when the focusing module is placed in the first state, the diopter of the optical lens group is the first diopter; The focusing module is adjusted to the second state, wherein when the focusing module is placed in the second state, the diopter of the optical lens group is the second diopter.
  • the electronic device when the computer program is executed by the one or more processors, the electronic device is caused to perform the following steps: when the wearable device changes from the wearing state to the non-wearing state, And keep the unworn state for a set period of time, and adjust the first diopter of the optical lens group of the wearable device to the second diopter.
  • the second aspect and any implementation manner of the second aspect correspond to the first aspect and any implementation manner of the first aspect, respectively.
  • the technical effects corresponding to the second aspect and any implementation manner of the second aspect reference may be made to the technical effects corresponding to the first aspect and any implementation manner of the first aspect, which will not be repeated here.
  • embodiments of the present application provide a computer-readable medium for storing a computer program, where the computer program includes instructions for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer program, where the computer program includes instructions for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a chip, where the chip includes a processing circuit and a transceiver pin.
  • the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processing circuit executes the method in the first aspect or any possible implementation manner of the first aspect to control the receiving pin to receive a signal to Control the send pin to send the signal.
  • an embodiment of the present application provides a control system for a wearable device, where the system includes the electronic device and the wearable device involved in the second aspect.
  • FIG. 1 is a schematic structural diagram of an exemplary wearable device
  • FIG. 2 is a schematic structural diagram of an exemplary wearable device
  • FIG. 3 is a schematic diagram of a hardware structure of an exemplary electronic device
  • FIG. 4 is a schematic diagram of the software structure of the electronic device exemplarily shown
  • FIG. 5 is a schematic flowchart of a control method for a wearable device provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of an exemplary wearable device
  • FIG. 7 is a schematic diagram of the position transformation of an exemplary focusing module
  • FIG. 8 is a schematic diagram of the position transformation of an exemplary focusing module
  • FIG. 9 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of the objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than to describe a specific order of the target objects.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • multiple processing units refers to two or more processing units; multiple systems refers to two or more systems.
  • FIG. 3 shows a schematic structural diagram of the electronic device 100 .
  • the electronic device 100 shown in FIG. 3 is only an example of an electronic device, and the electronic device 100 may have more or less components than those shown in the figure, and two or more components may be combined , or can have a different component configuration.
  • the various components shown in Figure 3 may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the electronic device 100 shown in FIG. 3 may be the VR glasses in FIG. 1 , or may be the handle 1 and the handle 2 in FIG. 1 , which are not limited in this application.
  • the electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, electromagnetic module 180, 6-axis IMU module 181, key 190, indicator 191, camera 192, display screen 193, and a subscriber identification module (subscriber identification module, SIM) card interface 194 and the like.
  • SIM subscriber identification module
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • graphics processor graphics processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the processor 110, the external memory interface 120, and the internal memory 121 may also be provided in an external device.
  • wearable devices can be connected to computers, tablets, mobile phones and other devices through cables.
  • the processor 110, the external memory interface 120, and the internal memory 121 may be processors and memories in an external device. That is to say, the processor of the external device may implement the steps executed by the processor described in the embodiments of the present application.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface connection relationship between the modules illustrated in the embodiments of the present application is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142 , it can also supply power to the electronic device through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140 and supplies power to the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a separate device.
  • the modem processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (global positioning system, GPS), global navigation satellite system (global navigation satellite system, GLONASS), Beidou navigation satellite system (beidou navigation satellite system, BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • global positioning system global positioning system, GPS
  • global navigation satellite system global navigation satellite system, GLONASS
  • Beidou navigation satellite system beidou navigation satellite system, BDS
  • quasi-zenith satellite system quadsi -zenith satellite system, QZSS
  • SBAS satellite based augmentation systems
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 193 is used to display images, videos, and the like.
  • the display screen 193 includes a display panel and an optical lens group.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed
  • quantum dot light-emitting diode quantum dot light emitting diodes, QLED
  • the electronic device 100 may include one or N display screens 193 , where N is a positive integer greater than one.
  • the optical lens group includes single or multiple optical lenses such as spherical lenses, aspherical lenses or Fresnel lenses.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 192, the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used to process the data fed back by the camera 192 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193 .
  • Camera 192 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device 100 may include 1 or N cameras 192 , where N is a positive integer greater than 1.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy and so on.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos of various encoding formats, such as: Moving Picture Experts Group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG Moving Picture Experts Group
  • MPEG2 moving picture experts group
  • MPEG3 MPEG4
  • MPEG4 Moving Picture Experts Group
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100 .
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing the instructions stored in the internal memory 121 .
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the electronic device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the focusing module 180 which may also be referred to as a focusing module, includes a motor (including a motor driver and a motor body), a gear and an adjustment link.
  • the adjustment link is connected with one or more lenses in the optical lens group
  • the processor controls the motor driver to output a digital control signal
  • the motor rotates after receiving the signal, and after being driven by gears
  • the link drives the lens to move (adjust the lens spacing) , to realize the adjustment of the diopter of the optical lens group.
  • the diopter described in the embodiments of the present application refers to the magnitude of the deflection of the light in the propagation direction when the light is incident from one object to another material with different optical densities.
  • the adjustment of the diopter can be achieved by controlling a certain lens or the spacing between certain lenses.
  • the sensor 181 optionally includes, but is not limited to, an acceleration sensor, a distance sensor, a proximity light sensor, an ambient light sensor, and the like.
  • the proximity light sensor may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 100 emits infrared light to the outside through light emitting diodes.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor can also be used in holster mode, pocket mode automatically unlocks and locks the screen.
  • the proximity light sensor may also be used to detect whether the user is wearing a wearable device, such as a VR helmet.
  • the keys 190 include a power-on key, a volume key, and the like. Keys 190 may be mechanical keys. It can also be a touch key.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • the indicator 191 can be an indicator light, which can be used to indicate a charging state, a change in power, or a message, a missed call, a notification, and the like.
  • the SIM card interface 194 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the electronic device 100 by inserting into the SIM card interface 194 or pulling out from the SIM card interface 194 .
  • the electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiments of the present application take the Android system with a layered architecture as an example to illustrate the software structure of the electronic device 100.
  • the electronic device 100 may also use the Windows system or other systems, which is not limited in this application.
  • FIG. 4 is a block diagram of the software structure of the electronic device 100 according to the embodiment of the present application.
  • the layered architecture of the electronic device 100 divides the software into several layers, and each layer has a clear role and division of labor. Layers communicate with each other through software interfaces.
  • the Android system is divided into four layers, which are, from top to bottom, an application layer, an application framework layer, an Android runtime (Android runtime) and a system library, and a kernel layer.
  • the application layer can include a series of application packages.
  • the application package may include applications such as Bluetooth, games, music, calendar, and WLAN.
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • the application framework layer includes some predefined functions.
  • the application framework layer may include window managers, content providers, view systems, telephony managers, resource managers, notification managers, and the like.
  • a window manager is used to manage window programs.
  • the window manager can get the size of the display screen, determine whether there is a status bar, lock the screen, take screenshots, etc.
  • Content providers are used to store and retrieve data and make these data accessible to applications.
  • the data may include video, images, audio, calls made and received, browsing history and bookmarks, phone book, etc.
  • the view system includes visual controls, such as controls for displaying text, controls for displaying pictures, and so on. View systems can be used to build applications.
  • a display interface can consist of one or more views.
  • the display interface including the short message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide the communication function of the electronic device 100 .
  • the management of call status including connecting, hanging up, etc.).
  • the resource manager provides various resources for the application, such as localization strings, icons, pictures, layout files, video files, etc.
  • the notification manager enables applications to display notification information in the status bar, which can be used to convey notification-type messages, and can disappear automatically after a brief pause without user interaction. For example, the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also display notifications in the status bar at the top of the system in the form of graphs or scroll bar text, such as notifications of applications running in the background, and notifications on the screen in the form of dialog windows. For example, text information is prompted in the status bar, a prompt sound is issued, the electronic device vibrates, and the indicator light flashes.
  • Android Runtime includes core libraries and a virtual machine. Android runtime is responsible for scheduling and management of the Android system.
  • the core library consists of two parts: one is the function functions that the java language needs to call, and the other is the core library of Android.
  • the application layer and the application framework layer run in virtual machines.
  • the virtual machine executes the java files of the application layer and the application framework layer as binary files.
  • the virtual machine is used to perform functions such as object lifecycle management, stack management, thread management, safety and exception management, and garbage collection.
  • a system library can include multiple functional modules. For example: surface manager (surface manager), media library (Media Libraries), 3D graphics processing library (eg: OpenGL ES), 2D graphics engine (eg: SGL), etc.
  • surface manager surface manager
  • media library Media Libraries
  • 3D graphics processing library eg: OpenGL ES
  • 2D graphics engine eg: SGL
  • the Surface Manager is used to manage the display subsystem and provides a fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as still image files.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, compositing, and layer processing.
  • 2D graphics engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, camera driver, audio driver, Bluetooth driver and Wi-Fi driver.
  • the components or modules included in the application layer, application framework layer, system library and runtime layer, and kernel layer shown in FIG. 4 do not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • FIG. 5 is a schematic flowchart of a method for controlling a wearable device according to an embodiment of the present application. Please refer to Figure 5, which includes:
  • a sensor detects a wearing state of the wearable device.
  • the wearable device may include a proximity light sensor.
  • the proximity light sensor optionally includes a transmitting unit, a receiving unit and a computing unit, the transmitting unit is used to transmit detection signals (for example, the transmitting unit in the infrared proximity light sensor can transmit detection infrared rays), and the receiver unit is used to receive the reflected signal from the target object.
  • the calculation unit calculates the time difference between the signal transmitted by the transmitter unit and the signal received by the receiver, and the distance between the sensor and the target object is calculated according to the propagation speed of the signal.
  • the proximity light sensor can detect whether the user wears the wearable device based on the above principles.
  • an infrared proximity light sensor is used as an example for description. In other embodiments, it can also be implemented by other sensors that can detect the wearing condition of the wearable device, such as an ultrasonic proximity light sensor and a laser proximity light sensor. This application is not limited.
  • the proximity light sensor may detect periodically, and based on the detection signal received in the current period, it is determined that the wearable device is worn by the user.
  • the proximity light sensor may also detect the wearing condition in real time, and this application only takes periodic detection as an example for description.
  • the proximity light sensor may send a user wearing instruction to the processor for instructing the user to wear the wearable device.
  • the proximity light sensor can detect whether the wearable device is in the worn state in the previous cycle.
  • the proximity light The sensor does not need to send any indication.
  • the proximity light sensor sends a user wearing instruction to the processor. That is to say, the proximity light sensor can send the user wearing indication information to the processor only when the wearable device changes from the unworn state to the worn state, thereby reducing the number of interactions between the sensor and the processor.
  • the proximity light sensor determines that the wearable device is not worn by the user based on the detection signal received in the current period.
  • the proximity light sensor may send the user non-wearing indication information to the processor, which is used to indicate that the user is not wearing the wearable device, that is, S102 is performed.
  • the proximity light sensor can also detect whether the wearable device is in a worn state in the previous cycle.
  • the proximity light sensor does not need to send any indication. If the wearable device is in the wearing state in the previous cycle, the proximity light sensor can send an indication that the user is not wearing it to the processor. That is to say, the proximity light sensor can send the user's non-wearing indication information to the processor only when the wearable device changes from the wearing state to the non-wearing state, which can be used to reduce the number of interactions between the sensor and the processor.
  • the sensor sends an indication that the user is not wearing the device to the processor.
  • the processor records the current state of the focusing module.
  • FIG. 6 is a schematic structural diagram of an exemplary wearable device.
  • the focusing module optionally includes a motor (not shown in the figure), a gear 601 and an adjusting link 602 .
  • the motor in the embodiment of the present application is optionally a stepping motor or a servo motor.
  • the motor controls the gear 601 to achieve a specific angular displacement by receiving the digital control signal from the motor driver, wherein the stepper motor is controlled by the number and frequency of pulses of the digital control signal, and the servo motor is controlled by the pulse duration of the digital control signal.
  • the gear 601 when the processor records the current state of the focusing module, taking FIG. 6 as an example, the gear 601 is currently located at the position a of the adjustment connecting rod 602 . In the embodiment of the present application, it can be considered that the position of the motor is the position of the gear 601 .
  • the motor may also be separated from the gear 601 , that is, the positions of the motor and the gear 601 are different, which is not limited in this application.
  • the processor only needs to record the digital control signal corresponding to the position of the motor. When subsequent restoration is required, the processor may control the motor to restore the focusing module to the current state based on the recorded control signal.
  • one end of the adjustment link 602 is connected to at least one optical lens in the optical lens group, for example, connected to the optical lens 604 .
  • the motor controls the gear 601 to move on the adjusting connecting rod 602 based on the control signal output by the processor, so that the adjusting connecting rod 602 and the gear 601 can move relative to each other.
  • the movement of the adjusting link 602 can make the optical lens 604 move, so as to adjust the horizontal distance between the optical lens 604 and the optical lens 603, so as to realize the adjustment of the diopter of the optical lens group.
  • the user is currently wearing a wearable device (eg, a VR helmet or VR glasses).
  • the proximity light sensor can detect that the user is wearing the wearable device, and send the user wearing instruction to the processor.
  • the processor records the current position of the motor in response to the received user wearing instruction.
  • the position of the motor is the position corresponding to the gear 601
  • the gear 601 is located at the position a of the adjustment link 602 .
  • the distance between the optical lens 604 and the optical lens 603 is the distance a.
  • the light is focused on the screen 605 through the optical lens group to form a light spot a.
  • the position of the motor (or gear) recorded by the processor can also be understood as the relative position between the gear and the adjustment link.
  • the absolute position of the gear is unchanged, and its sawtooth rotation can drive the relative position change between the adjustment links.
  • the processor controls the focusing module to adjust to the maximum diopter state.
  • the processor may pre-configure the maximum diopter state.
  • the maximum diopter state may be understood as a state corresponding to the focusing module when the diopter of the optical lens group is the maximum that can be achieved. It can be understood that the processor is pre-configured with a designated position. When the gear rotates so that the gear is placed at the designated position on the adjustment link, the diopter of the optical lens group is the maximum value. At this time, the state of the focusing module is the maximum diopter. state.
  • FIG. 7 is an exemplary schematic diagram of position transformation of the focusing module.
  • the processor can obtain the current state of the focusing module, that is, the gear 601 is at the position a of the adjusting link 602 .
  • the processor can also obtain a pre-configured designated position, such as the position b shown in FIG. 7 , that is, the processor is pre-configured with a designated position, that is, the position b, and it is expected that the gear 601 is rotated to change the gear 601 and the adjustment link 602.
  • the processor can obtain the displacement between the two positions a and the position b based on the current state of the adjustment module and the pre-configured designated position.
  • the processor can control the rotation of the gear 601 through the control signal, so that the adjustment link moves laterally, so as to change the relative position between the gear 601 and the adjustment link until the position b is reached.
  • the processor can record the changed displacement and the corresponding number of pulse signals for subsequent recovery process.
  • the adjustment link 602 is moved laterally so that the optical lens 604 to which it is attached also moves laterally. Since the position of the optical lens 603 remains unchanged, the distance between the optical lens 604 and the optical lens 603 increases.
  • the gear 601 is located at the position b of the adjusting link 602
  • the distance between the optical lens 604 and the optical lens 603 is the distance b.
  • the distance b is greater than the distance a.
  • the diopter of the optical lens group increases.
  • the ambient light is refracted to the screen 605 through the optical lens group, and a light spot b is formed on the screen 605 due to the increase of the diopter.
  • the spot b is larger than the spot a.
  • the relative positions of the optical lenses in the optical lens group are adjusted to change the diopter of the optical lens group. After the diopter of the optical lens group is increased, the ambient light cannot be focused on the screen, so as to achieve the effect of sun protection.
  • the method of adjusting the relative positions of the lenses in the optical lens group by adjusting the connecting rods shown in FIG. 7 is only a schematic example.
  • the relative positions of the optical lenses in the optical lens group can also be adjusted in other feasible ways, so as to increase the diopter of the optical lens group and achieve the purpose of sun protection.
  • the designated positions described in the embodiments of the present application are only illustrative examples. Based on the characteristics of different optical lens groups, the relative positions corresponding to different dioptric powers thereof may be different. For example, for the optical lens group generated by manufacturer A, when the gear 601 is located on the leftmost side of the adjustment link 602, the optical lens group has the largest diopter, that is, when the gear 601 is located at the leftmost position of the adjustment link 602, it is The preset designated position corresponds to the maximum diopter state of the focusing module.
  • the optical lens group generated by manufacturer B
  • the optical lens group has the largest diopter, that is, the position when the gear 601 is located at the far right of the adjustment link 602 is the preset
  • the specified position of which corresponds to the maximum diopter state of the focusing module. Therefore, the designated location can be set according to actual needs, which is not limited in this application.
  • the processor starts a timer after receiving the non-wearing indication.
  • the time duration of the timer can be set according to actual needs, for example, it can be 1 minute, which is not limited in this application.
  • the processor may determine that the device is disabled. The processor may execute S103 and subsequent steps. Therefore, frequent opening and closing of the sun protection mode caused by the user starting and stopping the device in a short time can be avoided.
  • the processor may execute S103 and subsequent steps, that is, enable the sun protection mode.
  • the senor sends a user wearing instruction to the processor.
  • the sensor optionally detects the wearing condition of the wearable device in real time or periodically. That is to say, during the execution of the above steps, the sensor continuously detects the wearing condition of the wearable device.
  • the senor may send a user wearing instruction to the processor, which is used to instruct the user to wear the wearable device.
  • the processor may send a user wearing instruction to the processor, which is used to instruct the user to wear the wearable device.
  • the processor controls the focusing module to restore to the previous state.
  • the processor may restore the focusing module to the pre-transformation state based on the maximum diopter state of the focusing module and the pre-transformation state.
  • FIG. 8 is an exemplary schematic diagram of position transformation of the focusing module, so as to illustrate the recovery process of the focusing module.
  • the processor records the number of pulse signals corresponding to the previous movement of the gear 601 from the position a to the position b of the adjustment link.
  • the processor can control the motor to drive the gear 601 to rotate based on the number of recorded pulse signals, so that the gear 601 is restored from the position b on the adjustment link to the position a.
  • the optical lens 604 moves with the adjustment link, and the distance between the optical lens 604 and the optical lens 603 is restored from the distance b to the distance a, so as to restore the diopter of the optical lens group.
  • the ambient light passes through the optical lens group and is focused on the screen 605 to form a light spot a.
  • the wearable control method shown in FIG. 5 is implemented based on the detection of the wearing state by the sensors in the wearable device.
  • the wearable device does not include a sensor that can detect the wearing state, for example, does not include a proximity light sensor.
  • the trigger condition of the sun protection mode may be based on the switch state of the wearable device.
  • the wearable device may be provided with a switch for turning the wearable device on and off.
  • the processor detects that the switch of the wearable device is turned off, that is, the wearable device changes from an on state to an off state, the processor can perform the above S103 and S104, that is, record the current state of the focusing module, and convert the focusing module to an off state.
  • the processor when the processor detects that the wearable switch is turned on, that is, the wearable device changes from an off state to an on state, the processor can perform the above S106, that is, control the focusing module to return to the state before shutdown. That is to say, in this embodiment of the present application, turning on and off of the sun protection mode can be triggered by detecting the user's power-on and power-off operations.
  • the electronic device includes corresponding hardware and/or software modules for executing each function.
  • the present application can be implemented in hardware or in the form of a combination of hardware and computer software in conjunction with the algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functionality for each particular application in conjunction with the embodiments, but such implementations should not be considered beyond the scope of this application.
  • FIG. 9 shows a schematic block diagram of an apparatus 900 according to an embodiment of the present application.
  • the apparatus 900 may include: a processor 901 , a transceiver/transceiver pin 902 , and optionally, a memory 903 .
  • bus 904 includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • bus 904 includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the various buses are referred to as bus 904 in the figures.
  • the memory 903 may be used for instructions in the foregoing method embodiments.
  • the processor 901 can be used to execute the instructions in the memory 903, and control the receive pins to receive signals, and control the transmit pins to transmit signals.
  • the apparatus 900 may be the electronic device or the chip of the electronic device in the above method embodiments.
  • This embodiment also provides a computer storage medium, where computer instructions are stored in the computer storage medium, and when the computer instructions are executed on the electronic device, the electronic device executes the above-mentioned relevant method steps to implement the methods in the above-mentioned embodiments.
  • This embodiment also provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute the above-mentioned relevant steps, so as to implement the method in the above-mentioned embodiment.
  • the embodiments of the present application also provide an apparatus, which may specifically be a chip, a component or a module, and the apparatus may include a connected processor and a memory; wherein, the memory is used for storing computer execution instructions, and when the apparatus is running, The processor can execute the computer-executed instructions stored in the memory, so that the chip executes the methods in the foregoing method embodiments.
  • the electronic device, computer storage medium, computer program product or chip provided in this embodiment are all used to execute the corresponding method provided above. Therefore, for the beneficial effects that can be achieved, reference can be made to the corresponding provided above. The beneficial effects in the method will not be repeated here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed in multiple different places. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a readable storage medium.
  • a readable storage medium including several instructions to make a device (which may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.
  • the steps of the method or algorithm described in conjunction with the disclosure of the embodiments of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, read only memory (Read Only Memory, ROM), erasable programmable read only memory ( Erasable Programmable ROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种可穿戴设备的控制方法及电子设备(100)。方法包括:在可穿戴设备在未佩戴的情况下,通过增加可穿戴设备中的光学镜片组的屈光度,以增大光线经过光学镜片聚焦在屏幕(605)上的光斑尺寸,从而实现将光线的能量分散,进而避免屏幕(605)被晒伤。

Description

可穿戴设备的控制方法及电子设备
本申请要求于2021年04月08日提交中国国家知识产权局、申请号为202110379909.2、申请名称为“可穿戴设备的控制方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及可穿戴设备领域,尤其涉及一种可穿戴设备的控制方法及电子设备。
背景技术
虚拟现实(Virtual Reality,VR)头盔设备中的光学成像模组一般由显示屏和光学镜片组构成,如图1所示,当设备正常使用时,显示屏(即屏幕)发出的光线经过光学镜片组折射后进入人眼,进而使得用户可以看到VR头盔中的屏幕显示的画面。
当虚拟现实头盔设备停止使用后,设备中的光学镜片会暴露在环境中。如图2所示,由于这类设备中的光学镜片组对光线具有汇聚的作用,部分环境光会通过光学镜片组的人眼侧进入光学成像模组中,经过镜片组后聚焦到显示屏幕上,导致屏幕上光线聚焦点的能量大量聚集,进而对屏幕造成损伤,影响虚拟现实头盔设备的显示效果,甚至可能导致屏幕损坏,而无法显示画面。
目前,为解决环境光聚焦,对屏幕造成损伤的问题,已有技术采用的方式为增加偏振器件。其中,增加偏振器件是利用偏振原理,该偏振器件的偏振方向与虚拟现实头盔设备中屏幕光线的偏振一致。以利用偏振器件只能透过单一偏振方向光线的特性,减弱进入虚拟现实头盔设备的环境光线,同时可以让屏幕发出的偏振光线通过,实现在不影响显示效果的情况下,降低聚焦在屏幕上环境光线的强度,从而起到防止虚拟现实头盔被晒伤的作用。
但是,偏振片对同偏振方向的光线透过率不超过90%。因此,使用偏振片将会降低虚拟现实头盔的显示亮度。并且,若偏振片的方向与屏幕光线的偏振方向不一致,会进一步降低显示亮度,因此该方案对组装精度的要求较高。
发明内容
为了解决上述技术问题,本申请提供一种可穿戴设备的控制方法及电子设备。在该方法中,电子设备可通过调节光学镜片组的屈光度,以增大环境光线经过镜片聚焦在可穿戴设备的屏幕上的光斑尺寸,从而将光线的能量分散,进而避免屏幕被晒伤。
第一方面,本申请实施例提供一种可穿戴设备的控制方法。该方法包括:获取可穿戴设备的佩戴状态;当可穿戴设备从佩戴状态变为未佩戴状态,将可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度,其中,第二屈光度大于第一屈光度。
这样,电子设备可对可穿戴设备的佩戴状态进行检测,并在检测到可穿戴设备处于 未佩戴状态的情况下,增大可穿戴设备的光学镜片组的屈光度,以增大环境光线经过镜片聚焦在可穿戴设备的屏幕上的光斑尺寸,从而将光线的能量分散,进而避免屏幕被晒伤。
示例性的,电子设备可以是可穿戴设备,或者是可穿戴设备中的芯片。也可以是外接设备,例如和可穿戴设备连接的电脑、手机等设备,或设备的芯片。
示例性的,本申请实施例可以在不改变已有可穿戴设备的结构的前提下,实现本申请实施例中的防晒模式。
示例性的,通过自动检测佩戴状态,并对应调节屈光度,以实现自动防晒功能。
示例性的,光学镜片组可以包括一个或多个镜片。镜片可选地是球面镜片、非球面镜片或菲涅尔镜片等光学镜片。
示例性的,镜片可以是塑料的,也可以是玻璃的,本申请不做限定。
根据第一方面,方法还包括:获取可穿戴设备的佩戴状态;当可穿戴设备从未佩戴状态变为佩戴状态,将可穿戴设备的光学镜片组的第二屈光度调整为第一屈光度。
这样,电子设备可通过检测可穿戴设备的佩戴状态,当可穿戴设备从未佩戴状态恢复到佩戴状态时,可穿戴设备可将光学镜片组的屈光度自动恢复到变换前的数值。以使得用户重新佩戴可穿戴设备时,能够自动解除防晒模式,使得用户观测到屏幕显示的清晰的画面。
示例性的,第一屈光度可以是用户在使用过程中设置的,也可以是可穿戴设备出厂设置的。
根据第一方面,或者以上第一方面的任意一种实现方式,第二屈光度为光学镜片组可达到的屈光度最大值。
这样,电子设备可通过将可穿戴设备的屈光度调节为最大值,使得光线最大程度上分散到屏幕上,以避免屏幕被晒伤。
根据第一方面,或者以上第一方面的任意一种实现方式,当可穿戴设备从佩戴状态变为未佩戴状态,将可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度,包括:当可穿戴设备从佩戴状态变为未佩戴状态,获取可穿戴设备的调焦模块的第一状态,其中,调焦模块用于控制光学镜片组的第一屈光度,调焦模块置于第一状态时,光学镜片组的屈光度为第一屈光度;将调焦模块调整为第二状态,其中,调焦模块置于第二状态时,光学镜片组的屈光度为第二屈光度。
这样,电子设备可通过控制调焦模块,以调节光学镜片组的屈光度。
示例性的,调焦模块的第一状态为下文实施例中所述的当前状态。调焦模块的第二状态为下文实施例中所述的最大屈光度状态。
根据第一方面,或者以上第一方面的任意一种实现方式,当可穿戴设备从佩戴状态变为未佩戴状态,将可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度,包括: 当可穿戴设备从佩戴状态变为未佩戴状态,且在设定的时长内保持未佩戴状态,将可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度。
这样,电子设备在设定的时长内,确定可穿戴设备保持未佩戴状态,才启动后续的防晒模式,从而避免频繁开启和关闭防晒模式,以降低设备功耗。
第二方面,本申请实施例提供一种电子设备。该设备包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中一个或多个计算机程序存储在存储器上,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:获取可穿戴设备的佩戴状态;当可穿戴设备从佩戴状态变为未佩戴状态,将可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度,其中,第二屈光度大于第一屈光度。
根据第二方面,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:获取可穿戴设备的佩戴状态;当可穿戴设备从未佩戴状态变为佩戴状态,将可穿戴设备的光学镜片组的第二屈光度调整为第一屈光度。
根据第二方面,或者以上第二方面的任意一种实现方式,第二屈光度为光学镜片组可达到的屈光度最大值。
根据第二方面,或者以上第二方面的任意一种实现方式,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:当可穿戴设备从佩戴状态变为未佩戴状态,获取可穿戴设备的调焦模块的第一状态,其中,调焦模块用于控制光学镜片组的第一屈光度,调焦模块置于第一状态时,光学镜片组的屈光度为第一屈光度;将调焦模块调整为第二状态,其中,调焦模块置于第二状态时,光学镜片组的屈光度为第二屈光度。
根据第二方面,或者以上第二方面的任意一种实现方式,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:当可穿戴设备从佩戴状态变为未佩戴状态,且在设定的时长内保持未佩戴状态,将可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度。
第二方面以及第二方面的任意一种实现方式分别与第一方面以及第一方面的任意一种实现方式相对应。第二方面以及第二方面的任意一种实现方式所对应的技术效果可参见上述第一方面以及第一方面的任意一种实现方式所对应的技术效果,此处不再赘述。
第三方面,本申请实施例提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第四方面,本申请实施例提供了一种计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第五方面,本申请实施例提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚、和该处理电路通过内部连接通路互相通信,该处理电路执行第一方面或第一方面的任一种可能的实现方式中的方法,以控制接收管脚接收信号,以控制发送管脚发送信号。
第六方面,本申请实施例提供一种可穿戴设备的控制系统,该系统包括第二方面涉及的电子设备和可穿戴设备。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是示例性示出的可穿戴设备的结构示意图;
图2是示例性示出的可穿戴设备的结构示意图;
图3是示例性示出的电子设备的硬件结构示意图;
图4是示例性示出的电子设备的软件结构示意图;
图5是本申请实施例提供的一种可穿戴设备的控制方法的流程示意图;
图6是示例性示出的可穿戴设备的结构示意图;
图7是示例性示出的调焦模块的位置变换示意图;
图8是示例性示出的调焦模块的位置变换示意图;
图9是本申请实施例提供的一种装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。
图3示出了电子设备100的结构示意图。应该理解的是,图3所示电子设备100仅是电子设备的一个范例,并且电子设备100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图3中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。需要说明的是,图3所示电子设备100可以是图1中的VR眼镜,也可以是图1中的手柄1和手柄2,本申请不做限定。
电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,电磁模块180,6轴IMU模块181,按键190,指示器191,摄像头192,显示屏193,以及用户标识模块(subscriber identification module,SIM)卡接口194等。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
可选地,在本申请实施例中,处理器110、外部存储器接口120以及内部存储器121也可以设置于外部设备中。例如,可穿戴设备可以通过连接线与电脑、平板、手机等设备连接。相应的,处理器110、外部存储器接口120以及内部存储器121可以为外部设备中的处理器和存储器。也就是说,外部设备的处理器可实现本申请实施例中所述处理器 所执行的步骤。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理 器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏193用于显示图像,视频等。显示屏193包括显示面板和光学镜片组。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏193,N为大于1的正整数。
可选地,光学镜片组包括单片或多片的球面镜片、非球面镜片或菲涅尔镜片等光学镜片。
电子设备100可以通过ISP,摄像头192,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头192反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给 ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头192用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头192,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
调焦模块180,也可以称为调焦模组,包括电机(包含电机驱动器和电机本体)、齿轮和调节连杆。其中,调节连杆与光学镜片组中的一个或多个镜片连接,处理器控制电机驱动器输出数字控制信号,电机接收信号后进行转动,通过齿轮传动后,连杆带动镜片位移(调节镜片间距),实现光学镜片组屈光度的调节。需要说明的是,本申请实施例中所述的屈光度是指光线由一种物体射入到另一种光密度不同的物质时,其光线的传播方向产生偏折的大小。示例性的,对于特定的光学镜片组,可通过控制某一个透镜或某几个透镜之间的间距来实现屈光度的调节。
传感器181可选地包括但不限于加速度传感器、距离传感器、接近光传感器、环境光传感器等。其中,接近光传感器可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红 外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器也可用于皮套模式,口袋模式自动解锁与锁屏。在本申请实施例中,接近光传感器还可以用于检测用户是否佩戴可穿戴设备,例如VR头盔。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
指示器191可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口194用于连接SIM卡。SIM卡可以通过插入SIM卡接口194,或从SIM卡接口194拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。
电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件结构,在其他实施例中,电子设备100也可以采用Windows系统或其它系统,本申请不做限定。
图4是本申请实施例的电子设备100的软件结构框图。
电子设备100的分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图4所示,应用程序包可以包括蓝牙、游戏、音乐、日历和WLAN等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图4所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件, 视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,蓝牙驱动和Wi-Fi驱动等。
可以理解的是,图4示出的应用程序层、应用程序框架层、系统库与运行时层以及内核层包含的部件或模块,并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
图5为本申请实施例提供的一种可穿戴设备的控制方法的流程示意图。请参照图5,具体包括:
S101,传感器检测可穿戴设备的佩戴状态。
示例性的,如上文所述,可穿戴设备中可包括接近光传感器。接近光传感器可选地包括发射单元、接收单元和计算单元,发射单元用于发射探测信号(如红外线接近光传感器中的发射单元可以发射探测红外线)、接收机单元用于接收经目标物反射的探测信号,计算单元计算发射单元发射信号至接收器接收到信号的时间差,并根据信号的传播速度来计算传感器距离目标物体的距离。相应的,接近光传感器可基于上述原理,检测用户是否佩戴可穿戴设备。
需要说明的是,本申请实施例中仅以红外线接近光传感器为例进行说明。在其他实施例中,也可以通过其它可以检测可穿戴设备的佩戴情况的传感器实现,例如超声波接 近光传感器和激光接近光传感器等。本申请不做限定。
示例性的,接近光传感器可选地周期性地进行探测,并基于当前周期接收到的探测信号,确定用户佩戴可穿戴设备。可选地,接近光传感器也可以是实时探测佩戴情况,本申请仅以周期性探测为例进行说明。一个示例中,接近光传感器在检测到用户佩戴可穿戴设备后,可向处理器发送用户佩戴指示,用于指示用户佩戴可穿戴设备。另一个示例中,接近光传感器在检测到用户佩戴可穿戴设备后,可以检测上一个周期可穿戴设备是否为被佩戴状态,可选地,若上一个周期可穿戴设备为被佩戴状态,接近光传感器无需发送任何指示。若上一个周期可穿戴设备为未被佩戴状态,接近光传感器向处理器发送用户佩戴指示。也就是说,接近光传感器可以在可穿戴设备从未穿戴状态变为被佩戴状态,才向处理器发送用户佩戴指示信息,从而减少传感器与处理器之间的交互次数。
示例性的,若接近光传感器基于当前周期接收到的探测信号,确定用户未佩戴可穿戴设备。一个示例中,接近光传感器可向处理器发送用户未佩戴指示信息,用于指示用户未佩戴可穿戴设备,即执行S102。另一个示例中,接近光传感器也可以检测上一个周期可穿戴设备是否为被佩戴状态。可选地,若上一个周期可穿戴设备为未佩戴状态,接近光传感器无需发送任何指示。若上一个周期可穿戴设备为佩戴状态,接近光传感器可向处理器发送用户未佩戴指示。也就是说,接近光传感器可以在可穿戴设备从佩戴状态变为未佩戴状态,才向处理器发送用户未佩戴指示信息,可用于减少传感器与处理器之间的交互次数。
S102,传感器向处理器发送用户未佩戴指示。
具体描述参照上文,此处不再赘述。
S103,处理器记录调焦模块的当前状态。
示例性的,图6为示例性示出的可穿戴设备的结构示意图。请参照图6,如上文所述,调焦模块可选地包括电机(图中未示出)、齿轮601以及调节连杆602。
下面简单介绍调焦模块的调节原理。本申请实施例中的电机可选地为步进电机或伺服电机。电机通过接收电机驱动器的数字控制信号,控制齿轮601实现特定的角位移,其中,步进电机由数字控制信号的脉冲个数和频率来控制,伺服电机通过数字控制信号的脉冲时间长短来控制。在本申请实施例中,处理器在记录调焦模块的当前状态时,以图6为例,齿轮601当前位于调节连接杆602的位置a。在本申请实施例中,可以认为电机的位置即为齿轮601的位置。当然,电机也可以是与齿轮601分离的,即,电机与齿轮601的位置不相同,本申请不做限定。在本申请实施例中,处理器只需要记录电机所在位置对应的数字控制信号即可。在后续需要恢复时,处理器可基于记录的控制信号,控制电机将调焦模块恢复到当前的状态。
示例性的,调节连杆602的一端连接光学镜片组中的至少一个光学镜片,例如连接光学镜片604。电机基于处理器输出的控制信号,控制齿轮601在调节连接杆602上移动,可使得调节连杆602与齿轮601相对运动。调节连杆602移动,可使得光学镜片604移动,以调节光学镜片604与光学镜片603之间的水平方向的间距,从而实现光学镜片组屈光度的调节。
请继续参照图6,示例性的,用户当前佩戴可穿戴设备(例如VR头盔或VR眼镜)。 相应的,接近光传感器可检测到用户佩戴可穿戴设备,并向处理器发送用户佩戴指示。处理器响应于接收到的用户佩戴指示,记录当前电机所处位置。如图6所示,假设电机所处位置即为齿轮601对应的位置,齿轮601位于调节连杆602的位置a处。相应的,光学镜片604与光学镜片603之间的间距为间距a。在当前状态下,光线透过光学镜片组聚焦在屏幕605上,形成光斑a。需要说明的是,本申请实施例中,处理器记录的电机(或齿轮)的位置,也可以理解为齿轮与调节连杆之间的相对位置。一般情况下,齿轮的绝对位置是不变的,其锯齿转动可带动调节连杆之间的相对位置变换。
S104,处理器控制调焦模块调节到最大屈光度状态。
示例性的,处理器可预先配置最大屈光度状态,可选地,最大屈光度状态可以理解为光学镜片组的屈光度为可以达到的最大值时,调焦模块对应的状态。可以理解为,处理器预先配置有指定位置,当齿轮转动,使得齿轮置于调节连杆上的指定位置时,光学镜片组的屈光度为最大值,此时,调焦模块的状态即为最大屈光度状态。
举例说明,图7为示例性示出的调焦模块的位置变换示意图。请参照图7,示例性的,处理器可获取到调焦模块的当前状态,即,齿轮601在调节连杆602的位置a上。处理器还可以获取到预先配置的指定位置,例如图7中所示的位置b,即,处理器预先配置有指定位置,即位置b,期望通过齿轮601转动,改变齿轮601与调节连杆602之间的相对位置,以使得齿轮601处于调节连杆602的位置b上。处理器可基于调节模块的当前状态,以及预先配置的指定位置,获取到两个位置a与位置b之间的位移。处理器可通过控制信号,控制齿轮601转动,以使得调节连杆横向移动,以改变齿轮601与调节连杆之间的相对位置,直至达到位置b。处理器可记录改变的位移,以及对应的脉冲信号的个数,以用于后续的恢复过程。
仍参照图7,示例性的,调节连杆602横向移动,使得与其连接的光学镜片604同样横向移动。由于光学镜片603的位置保持不变,使得光学镜片604与光学镜片603之间的间距增大。当齿轮601位于调节连杆602的位置b时,光学镜片604与光学镜片603之间的间距为间距b。其中,间距b大于间距a。此时,光学镜片组的屈光度增加。相应的,环境光线透过光学镜片组折射到屏幕605上,由于屈光度增加,其在屏幕605上形成的光斑b。光斑b大于光斑a。可以理解为,本申请实施例中通过调节光学镜片组中的光学镜片之间的相对位置,以改变光学镜片组的屈光度。光学镜片组的屈光度增大后,使得环境光线无法聚焦在屏幕上,从而达到防晒的作用。
需要说明的是,本申请实施例中,例如图7所示的通过调节连杆调节光学镜片组中的镜片相对位置的方式仅为示意性举例。在其他实施例中,也可以通过其它可行的方式以调节光学镜片组中的光学镜片的相对位置,从而增加光学镜片组的屈光度,实现防晒目的。
进一步需要说明的是,本申请实施例中所述的指定位置仅为示意性举例。基于不同的光学镜片组的特性,其不同的屈光度对应的相对位置可以不相同。举例说明,厂家A生成的光学镜片组,当齿轮601位于调节连杆602的最左侧时,光学镜片组的屈光度最大,即,齿轮601位于调节连杆602最左侧时的位置,即为预设的指定位置,对应于调焦模块的最大屈光度状态。厂家B生成的光学镜片组,当齿轮601位于调节连杆602的 最右侧时,光学镜片组的屈光度最大,即,齿轮601位于调节连杆602的最右侧时的位置,即为预设的指定位置,对应于调焦模块的最大屈光度状态。因此,指定位置可根据实际需求设置,本申请不做限定。
进一步需要说明的是,本申请实施例中仅以将屈光度调节到最大程度为例进行说明。在其他实施例中,例如,齿轮601位于调节连杆602的最左侧时,光学镜片组的屈光度最大,调焦模块为最大屈光度状态。而当齿轮601在调节连杆602上的位置接近最左侧时,其屈光度即可使得环境光学无法聚焦在屏幕上,相应的,为提高后续的恢复效率,非最大屈光度对应的位置,同样可作为指定位置,本申请不做限定。
在一种可能的实现方式中,处理器在接收到未佩戴指示后,启动计时器。计时器的计时时长可根据实际需求设置,例如可以是1分钟,本申请不做限定。计时器计时结束后,处理器未接收到用户佩戴指示,则处理器可确定设备停用。处理器可执行S103及后续步骤。从而可避免因用户短时间的启停设备导致的防晒模式频繁的开启与关闭。
在另一种可能的实现方式中,处理器在接收到未佩戴指示后,即可执行S103及后续的步骤,即,开启防晒模式。
S105,传感器向处理器发送用户佩戴指示。
示例性的,如上文所述,传感器可选地为实时或周期性地检测可穿戴设备的佩戴情况。也就是说,在上述各步骤执行的过程中,传感器持续检测可穿戴设备的佩戴情况。
示例性的,在本申请实施例中,传感器检测到用户佩戴可穿戴设备后,可向处理器发送用户佩戴指示,用于指示用户佩戴可穿戴设备。具体描述可参照S101中的相关内容,此处不再赘述。
S106,处理器控制调焦模块恢复到之前的状态。
示例性的,如上文所述,处理器控制调焦模块的状态变换前,已记录有调焦模块变换前的状态(即S103中所记录的状态)。处理器可基于调焦模块最大屈光度状态以及变换前状态,将调焦模块恢复到变换前状态。
举例说明,图8为示例性示出的调焦模块的位置变换示意图,以示出调焦模块的恢复过程。请参照图8,示例性的,如上文所述,处理器记录有之前将齿轮601从调节连杆的位置a移动到位置b对应的脉冲信号个数。相应的,处理器可基于记录的脉冲信号个数,控制电机带动齿轮601转动,以使得齿轮601从调节连杆上的位置b恢复到位置a。相应的,光学镜片604随着调节连杆移动,光学镜片604与光学镜片603之间的间距,从间距b恢复到间距a,以恢复光学镜片组的屈光度。从而使得环境光线通过光学镜片组,在屏幕605上聚焦,形成光斑a。
可选地,图5中所示的可穿戴控制方法是基于可穿戴设备中的传感器对佩戴状态进行检测的基础上实现的。在其他实施例中,若可穿戴设备中不包括可以检测佩戴状态的传感器,例如不包括接近光传感器。在该场景下,防晒模式的触发条件可以是基于可穿戴设备的开关状态。举例说明,可穿戴设备可设置有开关,用于开启和关闭可穿戴设备。示例性的,处理器检测到可穿戴设备的开关关闭,即可穿戴设备从开启状态变为关闭状态,处理器可执行上述S103和S104,即记录调焦模块的当前状态,并将调焦模块置于指定位置。示例性的,当处理器检测到可穿戴的开关开启,即可穿戴设备从关闭状态变 为开启状态,处理器可执行上述S106,即控制调焦模块恢复到关机前的状态。也就是说,在本申请实施例中,可通过检测用户的开机和关机操作,以触发防晒模式的开启和关闭。
可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
一个示例中,图9示出了本申请实施例的一种装置900的示意性框图装置900可包括:处理器901和收发器/收发管脚902,可选地,还包括存储器903。
装置900的各个组件通过总线904耦合在一起,其中总线904除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都称为总线904。
可选地,存储器903可以用于前述方法实施例中的指令。该处理器901可用于执行存储器903中的指令,并控制接收管脚接收信号,以及控制发送管脚发送信号。
装置900可以是上述方法实施例中的电子设备或电子设备的芯片。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的方法。
本实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的方法。
其中,本实施例提供的电子设备、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或 组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请各个实施例的任意内容,以及同一实施例的任意内容,均可以自由组合。对上述内容的任意组合均在本申请的范围之内。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机 能够存取的任何可用介质。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (12)

  1. 一种可穿戴设备的控制方法,其特征在于,包括:
    获取可穿戴设备的佩戴状态;
    当所述可穿戴设备从佩戴状态变为未佩戴状态,将所述可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度,其中,所述第二屈光度大于所述第一屈光度。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述可穿戴设备的佩戴状态;
    当所述可穿戴设备从未佩戴状态变为佩戴状态,将所述可穿戴设备的光学镜片组的所述第二屈光度调整为所述第一屈光度。
  3. 根据权利要求1所述的方法,其特征在于,所述第二屈光度为所述光学镜片组可达到的屈光度最大值。
  4. 根据权利要求1所述的方法,其特征在于,所述当所述可穿戴设备从佩戴状态变为未佩戴状态,将所述可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度,包括:
    当所述可穿戴设备从佩戴状态变为未佩戴状态,获取所述可穿戴设备的调焦模块的第一状态,其中,所述调焦模块用于控制所述光学镜片组的第一屈光度,所述调焦模块置于所述第一状态时,所述光学镜片组的屈光度为所述第一屈光度;
    将所述调焦模块调整为第二状态,其中,所述调焦模块置于所述第二状态时,所述光学镜片组的屈光度为所述第二屈光度。
  5. 根据权利要求1所述的方法,其特征在于,所述当所述可穿戴设备从佩戴状态变为未佩戴状态,将所述可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度,包括:
    当所述可穿戴设备从佩戴状态变为未佩戴状态,且在设定的时长内保持未佩戴状态,将所述可穿戴设备的光学镜片组的所述第一屈光度调整为所述第二屈光度。
  6. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序存储在所述存储器上,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:
    获取可穿戴设备的佩戴状态;
    当所述可穿戴设备从佩戴状态变为未佩戴状态,将所述可穿戴设备的光学镜片组的第一屈光度调整为第二屈光度,其中,所述第二屈光度大于所述第一屈光度。
  7. 根据权利要求6所述的设备,其特征在于,当所述计算机程序被所述一个或多个处 理器执行时,使得所述电子设备执行以下步骤:
    获取所述可穿戴设备的佩戴状态;
    当所述可穿戴设备从未佩戴状态变为佩戴状态,将所述可穿戴设备的光学镜片组的所述第二屈光度调整为所述第一屈光度。
  8. 根据权利要求6所述的设备,其特征在于,所述第二屈光度为所述光学镜片组可达到的屈光度最大值。
  9. 根据权利要求6所述的设备,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:
    当所述可穿戴设备从佩戴状态变为未佩戴状态,获取所述可穿戴设备的调焦模块的第一状态,其中,所述调焦模块用于控制所述光学镜片组的第一屈光度,所述调焦模块置于所述第一状态时,所述光学镜片组的屈光度为所述第一屈光度;
    将所述调焦模块调整为第二状态,其中,所述调焦模块置于所述第二状态时,所述光学镜片组的屈光度为所述第二屈光度。
  10. 根据权利要求6所述的设备,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:
    当所述可穿戴设备从佩戴状态变为未佩戴状态,且在设定的时长内保持未佩戴状态,将所述可穿戴设备的光学镜片组的所述第一屈光度调整为第二屈光度。
  11. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-5中任意一项所述的方法。
  12. 一种芯片,其特征在于,包括一个或多个接口电路和一个或多个处理器;所述接口电路用于从电子设备的存储器接收信号,并向所述处理器发送所述信号,所述信号包括存储器中存储的计算机指令;当所述处理器执行所述计算机指令时,使得所述电子设备执行权利要求1-5中任意一项所述的方法。
PCT/CN2022/085118 2021-04-08 2022-04-02 可穿戴设备的控制方法及电子设备 WO2022213937A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/553,540 US20240231038A9 (en) 2021-04-08 2022-04-02 Control Method for Wearable Device, and Electronic Device
EP22784003.0A EP4300164A4 (en) 2021-04-08 2022-04-02 METHOD FOR CONTROLLING WEARABLE DEVICE AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110379909.2A CN115202042A (zh) 2021-04-08 2021-04-08 可穿戴设备的控制方法及电子设备
CN202110379909.2 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022213937A1 true WO2022213937A1 (zh) 2022-10-13

Family

ID=83545979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085118 WO2022213937A1 (zh) 2021-04-08 2022-04-02 可穿戴设备的控制方法及电子设备

Country Status (4)

Country Link
US (1) US20240231038A9 (zh)
EP (1) EP4300164A4 (zh)
CN (1) CN115202042A (zh)
WO (1) WO2022213937A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826250A (zh) * 2023-02-14 2023-03-21 南昌龙旗智能科技有限公司 Vr设备的镜片模组调节方法与装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766684A (en) * 1987-04-10 1988-08-30 Wah Lo Allen K Lenticular screen for outdoor display
CN208283654U (zh) * 2018-05-30 2018-12-25 潍坊歌尔电子有限公司 头戴式显示设备
CN208999665U (zh) * 2018-11-14 2019-06-18 深圳创维新世界科技有限公司 光调控装置及虚拟现实头戴显示设备
CN110727114A (zh) * 2019-10-31 2020-01-24 歌尔股份有限公司 一种头戴式显示设备
CN211786375U (zh) * 2020-04-02 2020-10-27 成都忆光年文化传播有限公司 一种近眼显示设备
CN212483983U (zh) * 2020-04-27 2021-02-05 歌尔光学科技有限公司 显示模组及虚拟现实设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180239143A1 (en) * 2017-02-20 2018-08-23 Google Llc Protecting a display from external light sources
US10444800B2 (en) * 2017-03-15 2019-10-15 Scott Sullivan System for protecting headset components from sunlight
US10859832B1 (en) * 2018-05-29 2020-12-08 Facebook Technologies, Llc Mitigating light exposure to elements of a focus adjusting head mounted display
KR20200032467A (ko) * 2018-09-18 2020-03-26 삼성전자주식회사 외부 광의 투과율을 조절할 수 있는 광학 부재를 포함하는 전자 장치 및 그의 동작 방법
CN209281076U (zh) * 2018-11-05 2019-08-20 青岛小鸟看看科技有限公司 虚拟现实设备
CN109298531A (zh) * 2018-11-14 2019-02-01 深圳创维新世界科技有限公司 光调控装置、虚拟现实头戴显示设备及光调控方法
CN111487773B (zh) * 2020-05-13 2022-08-19 歌尔科技有限公司 头戴设备调节方法、头戴设备及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766684A (en) * 1987-04-10 1988-08-30 Wah Lo Allen K Lenticular screen for outdoor display
CN208283654U (zh) * 2018-05-30 2018-12-25 潍坊歌尔电子有限公司 头戴式显示设备
CN208999665U (zh) * 2018-11-14 2019-06-18 深圳创维新世界科技有限公司 光调控装置及虚拟现实头戴显示设备
CN110727114A (zh) * 2019-10-31 2020-01-24 歌尔股份有限公司 一种头戴式显示设备
CN211786375U (zh) * 2020-04-02 2020-10-27 成都忆光年文化传播有限公司 一种近眼显示设备
CN212483983U (zh) * 2020-04-27 2021-02-05 歌尔光学科技有限公司 显示模组及虚拟现实设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4300164A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826250A (zh) * 2023-02-14 2023-03-21 南昌龙旗智能科技有限公司 Vr设备的镜片模组调节方法与装置

Also Published As

Publication number Publication date
CN115202042A (zh) 2022-10-18
EP4300164A4 (en) 2024-10-02
EP4300164A1 (en) 2024-01-03
US20240134148A1 (en) 2024-04-25
US20240231038A9 (en) 2024-07-11

Similar Documents

Publication Publication Date Title
US11831977B2 (en) Photographing and processing method and electronic device
US11595566B2 (en) Camera switching method for terminal, and terminal
CN109582141B (zh) 根据眼球焦点控制显示屏的方法和头戴电子设备
US11800221B2 (en) Time-lapse shooting method and device
KR102524498B1 (ko) 듀얼 카메라를 포함하는 전자 장치 및 듀얼 카메라의 제어 방법
US20220030105A1 (en) Screenshot Generating Method, Control Method, and Electronic Device
JP2022522453A (ja) 記録フレームレート制御方法及び関連装置
WO2020093833A1 (zh) 一种接近光传感器的控制方法及电子设备
WO2022100685A1 (zh) 一种绘制命令处理方法及其相关设备
WO2022037726A1 (zh) 分屏显示方法和电子设备
WO2022001258A1 (zh) 多屏显示方法、装置、终端设备及存储介质
WO2022170854A1 (zh) 视频通话的方法与相关设备
WO2022213937A1 (zh) 可穿戴设备的控制方法及电子设备
WO2022262291A1 (zh) 应用的图像数据调用方法、系统、电子设备及存储介质
CN117995137B (zh) 一种调节显示屏色温的方法、电子设备及相关介质
CN116069223B (zh) 一种防抖方法、防抖装置和可穿戴设备
CN116069222B (zh) 一种识别焦点视图的方法、装置和可穿戴设备
US20240111475A1 (en) Screen mirroring method, apparatus, device, and storage medium
CN116204059B (zh) 眼动追踪的帧率调整方法和装置
WO2022206659A1 (zh) 一种投屏方法及相关装置
WO2020029213A1 (zh) 通话发生srvcc切换时,接通和挂断电话的方法
CN110543305A (zh) 替换EasyUI组件的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022784003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18553540

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022784003

Country of ref document: EP

Effective date: 20230928

NENP Non-entry into the national phase

Ref country code: DE