WO2022213642A1 - 一种带宽部分的激活方法和配置方法及电子设备 - Google Patents

一种带宽部分的激活方法和配置方法及电子设备 Download PDF

Info

Publication number
WO2022213642A1
WO2022213642A1 PCT/CN2021/136144 CN2021136144W WO2022213642A1 WO 2022213642 A1 WO2022213642 A1 WO 2022213642A1 CN 2021136144 W CN2021136144 W CN 2021136144W WO 2022213642 A1 WO2022213642 A1 WO 2022213642A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth part
reconfigured
downlink
msg4
determining
Prior art date
Application number
PCT/CN2021/136144
Other languages
English (en)
French (fr)
Inventor
周化雨
王苗
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US18/552,919 priority Critical patent/US20240172210A1/en
Priority to EP21935859.5A priority patent/EP4322444A1/en
Publication of WO2022213642A1 publication Critical patent/WO2022213642A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present application relates to the technical field of terminals, and in particular, to a method for activating and configuring a bandwidth part, and an electronic device.
  • next-generation wireless communication system only supports non-narrowband user equipment (user equipment, UE), for example, a UE with a bandwidth of 100 MHz.
  • UE user equipment
  • Narrowband UE Reduced Capability UE, or RedCap UE
  • MTC Machine Type Communication
  • IoT Internet of Things
  • the narrowband UE In the existing protocol or standard, there are only non-narrowband UEs in the default cell of the base station, that is, UEs with a bandwidth of 100 MHz.
  • the narrowband UE obtains the MIB (Master Information Block), then obtains the frequency position of the initial downlink bandwidth part (Initial DL Bandwidth Part), and then obtains the SIB1.
  • the narrowband UE obtains the reconfigured frequency position of the initial downlink bandwidth part according to the SIB1. Further, the narrowband UE obtains the frequency position of the initial uplink bandwidth part (Initial UL Bandwidth Part).
  • the reconfigured bandwidth of the initial downlink bandwidth part may be larger than the downlink bandwidth of the narrowband UE, and the reconfigured bandwidth of the initial uplink bandwidth part may also be larger than the uplink bandwidth of the narrowband UE (because the base station does not know that the narrowband UE exists in the cell), so As a result, the narrowband UE cannot access the network.
  • a first aspect provides a method for activating a bandwidth part, which is applied to a UE, and the method includes:
  • the first bandwidth part includes a first downlink bandwidth part and/or a first uplink bandwidth part
  • the second bandwidth part includes a second downlink bandwidth part and/or a second uplink bandwidth part
  • the determining to use the reconfigured first bandwidth portion, or determining to use the second bandwidth portion includes:
  • the determining to use the reconfigured first bandwidth part includes:
  • a hybrid automatic retransmission request-acknowledgment feedback Msg4-HARQ-ACK of message 3Msg3 or message 4 is sent.
  • the determining to use the second bandwidth portion includes:
  • the Msg3 or Msg4-HARQ-ACK is sent within the second uplink bandwidth portion.
  • the reconfigured first uplink bandwidth portion and the reconfigured first downlink bandwidth portion are activated or used after Msg1 is sent.
  • the second uplink bandwidth part and the second downlink bandwidth part are activated or used after the Msg1 is sent.
  • the determining to use the reconfigured first bandwidth part includes:
  • the messages 1Msg1, Msg3 or Msg4-HARQ-ACK are sent within the reconfigured first uplink bandwidth portion.
  • the determining to use the second bandwidth portion includes:
  • the reconfigured first downlink bandwidth portion is activated or used after the Msg1 is sent.
  • the second downlink bandwidth portion is activated or used after the Msg1 is sent.
  • the determining to use the reconfigured first bandwidth part includes:
  • the determining to use the second bandwidth portion includes:
  • the Msg3 or Msg4-HARQ-ACK is sent within the second uplink bandwidth portion.
  • the reconfigured first uplink bandwidth portion is activated or used after Msg1 is sent.
  • the second uplink bandwidth portion is activated or used after the Msg1 is sent.
  • the first type of message includes at least one of SIB1, OSI, or Paging.
  • the present application provides a method for configuring a bandwidth part, which is applied to a UE, including:
  • the configuration of the first downlink bandwidth part is determined, and/or the configuration of the resources in the first uplink bandwidth part and/or the first downlink bandwidth part is determined.
  • the determining the configuration of the first downlink bandwidth part includes:
  • the determining that the reconfigured frequency location does not take effect includes:
  • the use of the frequency position of CORESET0 as the frequency position of the downlink bandwidth part includes:
  • the frequency position of CORESET0 is used as the frequency position of the downstream bandwidth part.
  • the determining of the configuration of resources in the first uplink bandwidth part and/or the first downlink bandwidth part includes:
  • Msg3's resources are not expected to be outside of CORESET0.
  • the determining of the configuration of resources in the first uplink bandwidth part and/or the first downlink bandwidth part includes:
  • Msg1 carries the first indication, the configuration of resources in the first uplink bandwidth part.
  • the first indication is an indication that the UE is a narrowband UE.
  • the determining of the configuration of resources in the first uplink bandwidth part and/or the first downlink bandwidth part includes:
  • the resources for Msg4-HARQ-ACK are not expected to be outside CORESET0.
  • the determining of the configuration of resources in the first uplink bandwidth part and/or the first downlink bandwidth part includes:
  • Msg1 or Msg3 carries the second indication, determine the configuration of resources in the first uplink bandwidth part.
  • the second indication is an indication that the UE is a narrowband UE.
  • the determining of the configuration of resources in the first uplink bandwidth part and/or the first downlink bandwidth part includes:
  • the determining of the configuration of resources in the first uplink bandwidth part and/or the first downlink bandwidth part includes:
  • an apparatus for activating a bandwidth part comprising a determining module configured to determine to use the reconfigured first bandwidth part, or to determine to use the second bandwidth part.
  • an apparatus for configuring a bandwidth portion includes a determining module configured to determine the configuration of the first downlink bandwidth portion, and/or, determine the first uplink bandwidth portion and/or the resource in the first downlink bandwidth portion. configuration.
  • a chip module comprising the activation device of claim 31 .
  • a chip module comprising the configuration device of claim 32 .
  • an electronic device in a seventh aspect, is provided, the electronic device further includes a processor and a storage device, the storage device stores an application program or a program instruction, and the application program or the program instruction is executed by the processor At the time, the electronic device is caused to execute the activation method described in the first aspect.
  • an electronic device further includes a processor and a storage device, the storage device stores application programs or program instructions, and the application programs or the program instructions are executed by the processor At the time, the electronic device is caused to execute the configuration method described in the second aspect. Based on the solution shown in this application, resource segmentation can be avoided and radio frequency adjustment can be reduced.
  • FIG. 1 provides a flowchart of a method for activating a bandwidth part according to an embodiment of the present application
  • FIG. 2 provides a flowchart of a method for configuring a bandwidth part according to an embodiment of the present application
  • FIG. 3 provides a schematic structural diagram of a UE according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the bandwidth part is a segment of continuous frequency resources on the cell carrier, and the network device can configure bandwidth parts with different bandwidth sizes for different UEs.
  • the bandwidth part is called the active bandwidth part, and the data and control information sent by the UE in uplink or the data and control information received in downlink will be limited within the active bandwidth section.
  • the bandwidth part when a bandwidth part is activated, it can also be said that the UE switches to the bandwidth part.
  • a UE is a UE that supports a bandwidth of 100 MHz.
  • the UE blindly detects the PSS/SSS/PBCH in the synchronization signal block, and obtains the MIB and time index information carried in the PBCH.
  • the UE obtains the configuration of the CORESET (may be called CORESET0) and its search space set (may be called search space set 0) of the scheduling system information block 1 (System Information Block 1, SIB1) through the information in the MIB, and further, the UE can monitor Schedule Type0-PDCCH carrying PDSCH of SIB1, and decode SIB1.
  • the maximum bandwidth of CORESET0 is implicitly defined in the protocol. Further, the protocol stipulates that the frequency domain resources of the PDSCH carrying SIB1 are within the bandwidth (PRBs) of CORESET0, so the maximum bandwidth of the PDSCH carrying SIB1 is also implicitly defined in the protocol.
  • the UE works in the initial active downlink bandwidth part (Initial Active Downlink Bandwidth Part), the frequency domain position of the initial active downlink bandwidth part is the same as the frequency domain position of CORESET0 by default (non-default, the initial active).
  • the frequency domain position of the downlink bandwidth part can be modified to cover the frequency domain position of CORESET0 through signaling), so the maximum bandwidth of the initially activated downlink bandwidth part is implicitly defined in the protocol.
  • the UE receives SIB1, other system information (Other System Information, OSI), paging, etc. within the initially activated downlink bandwidth part.
  • Narrowband UE reduced capability UE, or RedCap UE
  • MTC Machine Type Communication
  • IoT Internet of Things
  • MIB configures its frequency position through 4 bits (equivalent to the frequency position of CORESET0), and SIB1 can reconfigure its frequency position (also including control and data channels) configuration), the frequency location configured by SIB1 (configured through the high-level parameter LocationAndBandwidth) takes effect only after Msg4 (message 4).
  • SIB1 configures its frequency location (including the configuration of control and data channels), and the frequency location configured by SIB1 (configured through the high-level parameter LocationAndBandwidth) can take effect immediately , for Msg1 (message 1), Msg3 (message 3) and their subsequent operations.
  • Scheme 1 a solution based on the independent initial activation of the downlink bandwidth part and the initial activation of the uplink bandwidth part: Specifically, the base station broadcasts the configuration of the initial activation downlink bandwidth part and the initial activation uplink bandwidth part specially used for narrowband UEs in SIB1 (including Frequency location), the bandwidth part dedicated to narrowband UE is also called independent initial activation downlink bandwidth part and initial activation uplink bandwidth part, narrowband UE defaults to configure its own initial The downstream bandwidth part is activated and the upstream bandwidth part is initially activated.
  • SIB1 including Frequency location
  • Solution 1 can simplify UE implementation, but requires the network to configure independent initial activation downlink bandwidth parts and initial activation uplink bandwidth parts, which complicates network implementation and causes resource fragmentation.
  • the narrowband UE still configures its initial activation according to the original (for non-narrowband UE) initial activation downlink bandwidth part and initial activation uplink bandwidth part
  • the narrowband UE needs to perform radio frequency adjustment (RF retuning), that is, if the current channel/signal resource (such as the current time slot) falls outside the bandwidth of the narrowband UE, the narrowband UE adjusts the center frequency of the radio frequency to cover the current channel/signal resources.
  • RF retuning radio frequency adjustment
  • the narrowband UE uses an independent resource configuration (mainly in the frequency domain), that is, the frequency resource position of the channel/signal configured by the base station for the narrowband UE falls within the bandwidth of the narrowband UE.
  • Base station configuration that is, the base station configures the same narrowband initially activated downlink bandwidth part and narrowband initially activated uplink bandwidth part for the narrowband UE and the non-narrowband UE.
  • Radio frequency adjustment requires the UE to frequently adjust the center frequency of the radio frequency, which is not friendly to the implementation and power consumption of the UE.
  • radio frequency adjustment requires a certain time gap (time gap), which makes the behavior of narrowband UE and non-narrowband UE inconsistent, and it is difficult to coexist.
  • Narrowband UEs use independent resource configuration (mainly in the frequency domain), and the effect achieved in the frequency domain is similar to the independent initial activation downlink bandwidth part and the initial activation uplink bandwidth part, and there will be independent initial activation downlink bandwidth part and initial activation uplink bandwidth part
  • the bandwidth part has similar problems, and the flexibility of time domain resources is less.
  • Base station configuration which will affect non-narrowband UEs, and non-narrowband UEs cannot utilize more resources.
  • BWP Bandwidth Part
  • Step 102 the narrowband UE determines to use the reconfigured first bandwidth part, or determines to use the second bandwidth part.
  • the reconfigured first bandwidth portion may be the narrowband UE using the reconfigured first bandwidth portion, or the narrowband UE considers the reconfigured first bandwidth portion to be activated (activated) or active (active), or the first bandwidth portion to be reconfigured by the narrowband UE.
  • the reconfiguration of the bandwidth part is effective or available or applicable, or the narrowband UE applies the reconfiguration of the first bandwidth part.
  • the bandwidth portion being activated may be equivalent to the UE using the bandwidth portion.
  • the use of the second bandwidth portion may be that the narrowband UE uses the second bandwidth portion, or the narrowband UE considers the second bandwidth portion to be activated or active.
  • the first bandwidth part includes a first downlink bandwidth part (Downlink Bandwidth Part, DL BWP) and/or a first uplink bandwidth part (Uplink Bandwidth Part, UL BWP), and the second bandwidth part includes a first Two downstream bandwidth parts and/or second upstream bandwidth parts.
  • DL BWP Downlink Bandwidth Part
  • UL BWP Uplink Bandwidth Part
  • the first bandwidth portion includes a first initially activated downlink bandwidth portion and/or a first initially activated uplink bandwidth portion
  • the second bandwidth portion includes a second initially activated downlink bandwidth portion and/or a second initially activated uplink bandwidth portion Bandwidth section.
  • the first initial activation downlink bandwidth part may be referred to as the first initial downlink bandwidth part (Initial Downlink Bandwidth Part, Initial DL BWP)
  • the first initial activation uplink bandwidth part may be referred to as the first initial uplink bandwidth part (Initial Uplink Bandwidth Part).
  • the second initial activation downlink bandwidth part may also be referred to as the second initial downlink bandwidth part
  • the second initial activation uplink bandwidth part is also referred to as the second initial uplink bandwidth part.
  • the following description does not distinguish the first downlink bandwidth part, the first initial activation downlink bandwidth part and the first initial downlink bandwidth part, and does not distinguish the first uplink bandwidth part, the first initial activation uplink bandwidth part and the first initial uplink bandwidth part , the second downlink bandwidth part, the second initially activated downlink bandwidth part and the second initial downlink bandwidth part are not distinguished, and the second uplink bandwidth part, the second initially activated uplink bandwidth part and the second initial uplink bandwidth part are not distinguished.
  • the configurations of the first downlink bandwidth part and the first uplink bandwidth part are obtained by the UE after acquiring System Information Block 1 (SIB1), and are activated by default.
  • SIB1 System Information Block 1
  • the first downlink bandwidth portion and/or the first uplink bandwidth portion may be reconfigured, and at a certain moment, the reconfigured first downlink bandwidth portion and/or the first uplink bandwidth portion may be narrowbanded UE uses; alternatively, the base station can configure the second downlink bandwidth part and/or the second uplink bandwidth part, and at a certain moment, the second downlink bandwidth part and/or the second uplink bandwidth part can be activated, or the first The second downlink bandwidth portion and/or the second uplink bandwidth portion may be used by narrowband UEs.
  • the narrowband UE in step 102 determines to use the reconfigured first bandwidth part, or determines to use the second bandwidth part, which can be determined according to higher layer parameters, such as RRC parameters.
  • the narrowband UE determines to use the reconfigured first downlink bandwidth part and/or the first uplink bandwidth part according to the high layer parameters.
  • the narrowband UE determines to use the second downlink bandwidth part and/or the second uplink bandwidth part according to the high layer parameters.
  • the first bandwidth part (the first downlink bandwidth part and the first uplink bandwidth part) is equivalent to the bandwidth part shared by the narrowband UE and the non-narrowband UE before reconfiguration.
  • the reconfigured first bandwidth portion is equivalent to the aforementioned bandwidth portion dedicated to the independent (use) of the narrowband UE.
  • the second bandwidth portion can be understood as a bandwidth portion independently (used) by the narrowband UE, that is, not shared with the narrowband UE, that is, the second downlink bandwidth portion and the second uplink bandwidth portion are independent (used) bandwidth portions.
  • Embodiment 1 in step 102, determining to use the reconfigured first bandwidth part, or determining to use the second bandwidth part, includes:
  • the narrowband UE receives the first type of message from the base station in the first downlink bandwidth part before reconfiguration, and the first type of message includes SIB1, OSI, paging and the like.
  • the narrowband UE receives SIB1, OSI, and paging in the first downlink bandwidth part (sharing) before reconfiguration.
  • SIB1, OSI, and paging the narrowband UE and the non-narrowband UE can share the same resources, and the resources are avoided as much as possible. segmentation.
  • the base station cannot know the existence of the non-narrowband UE before receiving the message 1 (Msg1), so it is reasonable for the narrowband UE to use the first downlink bandwidth part (shared) before Msg1. The advantage of this is to avoid resources segmentation.
  • the message 1 (Message 1, Msg1) shown in the context of the specification may be a random access preamble (Random access preamble) or a Physical Random Access Channel (PRACH) or a random access preamble transmission ( Random access preamble transmission);
  • Message 2 (Message 2, Msg2) can be random access feedback (Random Access Response, RAR) or random access response reception (Random access response reception);
  • Message 3 (Message 2, Msg3) can be The Physical Uplink Share Channel (PUSCH) of the RAR uplink scheduling;
  • Message 4 (Message 4, Msg4) can be the Physical Downlink Share Channel (PDSCH) with the UE contention resolution identifier;
  • the mixed message 4 Automatic repeat request-acknowledgment feedback (Message 4 Hybrid Automatic Repeat request-acknowledgement, Msg4-HARQ-ACK) can be a HARQ-ACK for message 4, or a physical uplink control channel (Physical Uplink Control Channel, PUCCH).
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • the first step is for the UE to send a Physical Random Access Channel (PRACH), also known as message 1;
  • PRACH Physical Random Access Channel
  • the second step is for the base station to send a Random Access Response (RAR) , also known as message 2;
  • RAR Random Access Response
  • the third step is that the user equipment sends message 3, which can carry the high-level message of the RRCSetupRequest;
  • the fourth step is that the base station 110 sends message 4, and the user equipment can confirm the successful access competition by receiving message 4, that is The base station confirms to accept the random access request of the user equipment (with the user equipment identification code), and the message 4 may carry the high-level message of RRCSetup.
  • PRACH Physical Random Access Channel
  • RAR Random Access Response
  • the fourth step is that the base station 110 sends message 4 and the user equipment can confirm the successful access competition by receiving message 4, that is The base station confirms to accept the random access request of the user equipment (with the user equipment identification code), and the message 4 may carry
  • the narrowband UE After receiving the first type of message, the narrowband UE sends Msg1 through the first uplink bandwidth part (shared).
  • the base station cannot know the existence of the non-narrowband UE when it is receiving Msg1, so it is reasonable to use the first uplink bandwidth part (shared) for Msg1, which has the advantage of avoiding resource division.
  • the narrowband UE starts to use the reconfigured first downlink bandwidth portion, or the narrowband UE starts to use the second downlink bandwidth portion, that is, the second downlink bandwidth portion is activated.
  • MSG1 refers to that after the narrowband UE sends Msg1 to the network side device, the network side device includes a base station.
  • the narrowband UE may receive Msg2 and/or Msg4 from the network side device within the reconfigured first downlink bandwidth portion or the second downlink bandwidth portion, and the narrowband UE may receive Msg2 and/or Msg4 from the reconfigured first uplink bandwidth portion.
  • the bandwidth part or the second downlink bandwidth part sends Msg3 and/or Msg4-HARQ-ACK to the network side device.
  • the second upstream bandwidth portion is activated.
  • the narrowband UE receives Msg2 and/or Msg4 in the reconfigured first downlink bandwidth portion (standalone) or the (activated) second downlink bandwidth portion (standalone), and receives Msg2 and/or Msg4 in the reconfigured first uplink bandwidth portion (standalone) or
  • the (activated) second uplink bandwidth part (independent) sends subsequent Msg3 and/or Msg4-HARQ-ACK in the uplink bandwidth part, so that subsequent operations after Msg1 are all in the independent downlink bandwidth part and uplink bandwidth part (this
  • the two bandwidth parts can be aligned with the center frequency points, and neither is larger than the bandwidth of the narrowband UE), which reduces the number of possible radio frequency adjustments.
  • radio frequency adjustment from the shared downlink bandwidth part to the shared uplink bandwidth part such as when the shared downlink bandwidth part is not aligned with the center frequency of the random access opportunity (RACH Occasion, RO) frequency resource; from the shared uplink bandwidth part
  • RACH Occasion, RO random access opportunity
  • There may be one radio frequency adjustment from the part to the independent downlink bandwidth part for example, when the RO frequency resource is not aligned with the center frequency of the independent downlink bandwidth part; there are two radio frequency adjustments in total. This is actually the time point when Msg1 is activated as an independent downstream bandwidth part and upstream bandwidth part.
  • Embodiment 2 in step 102, determining to use the reconfigured first bandwidth part, or determining to use the second bandwidth part, includes:
  • the narrowband UE receives the first type of messages, such as SIB1, OSI and paging, from the base station within the first downlink bandwidth portion (shared).
  • SIB1 SIB1
  • OSI OSI
  • paging the first type of messages
  • the narrowband UE can send Msg1 in the reconfigured first uplink bandwidth part (independent), or send Msg1 in the second uplink bandwidth part (independent), that is, the narrowband UE Msg1 is sent in a separate upstream bandwidth section.
  • the base station In order for the narrowband UE to use an independent uplink bandwidth part to send Msg1, the base station needs to configure the RO resource of the narrowband UE in the reconfigured first uplink bandwidth part or the second uplink bandwidth part, which is also reasonable.
  • the advantage of this is that the base station can Narrowband UEs and non-narrowband UEs are distinguished by RO resources within different uplink bandwidth parts.
  • the narrowband UE starts to use the reconfigured first downlink bandwidth portion, or the narrowband UE starts to use the second downlink bandwidth portion, that is, the reconfigured first downlink bandwidth portion or the second uplink bandwidth portion Activated.
  • the reconfigured first upstream bandwidth part or the second upstream bandwidth part is equivalent to being activated after SIB1 is configured. It can be understood that after the Msg1, the narrowband UE sends the Msg1 to the network side device.
  • the narrowband UE receives Msg2 and/or Msg4 within the reconfigured first downlink bandwidth portion (standalone) or within the (activated) second downlink bandwidth portion (standalone) and receives Msg2 and/or Msg4 within the reconfigured first uplink bandwidth portion (standalone).
  • Msg3 and/or Msg4-HARQ-ACK are sent within the bandwidth part (independent) or the second uplink bandwidth part (independent).
  • the subsequent operations of Msg1 are in the independent downlink bandwidth part and uplink bandwidth part (the two bandwidth parts can be aligned with the center frequency, and neither is larger than the bandwidth of the narrowband UE), which reduces the number of possible radio frequency adjustments.
  • the embodiment Second there is one less RF adjustment. This is actually the time point when Msg1 is activated as an independent initial activation downlink bandwidth part.
  • Embodiment 3 in step 102, determining to use the reconfigured first bandwidth part, or determining to use the second bandwidth part, includes:
  • the narrowband UE receives the first type of messages, such as SIB1, OSI and paging, from the base station within the reconfigured first downlink bandwidth portion (independent) or the second downlink bandwidth portion (independent).
  • the narrowband UE can use completely independent SIB1, OSI, and paging resources, and has high flexibility.
  • Msg1 is sent within the first upstream bandwidth portion.
  • the narrowband UE sends Msg1 in the first uplink bandwidth part (shared), and the base station cannot know the existence of the non-narrowband UE when it is receiving Msg1, so it is reasonable to use the shared initial uplink bandwidth part for Msg1, The benefit of this is to avoid resource partitioning.
  • the narrowband UE After the narrowband UE sends Msg1 to the network side device, the narrowband UE starts to use the reconfigured first uplink bandwidth part, or starts to use the second uplink bandwidth part, that is, the reconfigured first uplink bandwidth part or the second uplink bandwidth
  • the bandwidth section is activated.
  • SIB1 For the second upstream bandwidth part, it is activated after SIB1 is configured.
  • the narrowband UE receives Msg2 and/or Msg4 within the reconfigured first downlink bandwidth portion (standalone) or within the (activated) second downlink bandwidth portion (standalone) and receives Msg2 and/or Msg4 within the reconfigured first downlink bandwidth portion (standalone).
  • the Msg3 and/or Msg4-HARQ-ACK is sent within the upstream bandwidth portion (independent) or within the (active) second upstream bandwidth portion (independent).
  • the subsequent operations of Msg1 are all within the independent downlink bandwidth part and the uplink bandwidth part (the second downlink bandwidth part and the second uplink bandwidth part may be aligned with the center frequency, and neither is larger than the bandwidth of the narrowband UE. ), reducing the number of possible RF adjustments.
  • radio frequency adjustment from the independent downlink bandwidth part to the shared uplink bandwidth part such as when the shared downlink bandwidth part is not aligned with the center frequency of the random access opportunity (RACH Occasion, RO) frequency resource; from the shared uplink bandwidth part
  • RACH Occasion, RO random access opportunity
  • There may be one radio frequency adjustment from the part to the independent downlink bandwidth part for example, when the RO frequency resource is not aligned with the center frequency of the independent downlink bandwidth part; there are two radio frequency adjustments in total. This is actually the point in time when Msg1 is activated as an independent upstream bandwidth part.
  • the base station configures the same narrowband downlink bandwidth part and narrowband uplink bandwidth part for the narrowband UE and the non-narrowband UE.
  • scheme 2 adopts the method of the shared downlink bandwidth part (the first downlink bandwidth part)
  • the frequency position of the shared downlink bandwidth part of the reconfiguration (via SIB1) will take effect after Msg4, which will lead to narrowband bandwidth after Msg4.
  • the UE will operate within a bandwidth portion larger than the narrowband UE bandwidth. It can be understood that after the Msg4, the UE receives the Msg4 from the network side device, wherein the network side device includes a base station.
  • an embodiment of the present application also provides a method for configuring a bandwidth part, including:
  • Step 202 the narrowband UE determines the configuration of the first downlink bandwidth part, and/or determines the configuration of the first uplink bandwidth part and/or the resources in the first downlink bandwidth part.
  • the first downlink bandwidth portion and the first uplink bandwidth portion shown in this embodiment belong to the shared bandwidth portion.
  • Determining the configuration of the first downlink bandwidth portion shown in step 202 may include at least one of the solutions shown in the following embodiments:
  • the narrowband UE determines that the frequency location of the reconfigured first downlink bandwidth portion (indicated by the high-layer parameter LocationAndBandwidth) does not take effect, that is, the narrowband UE does not use the reconfigured first downlink bandwidth portion of the frequency location. frequency location.
  • the narrowband UE determines to continue to use the frequency position of control resource set 0 (Control Resource Set 0, CORESET0) as the frequency position of the first downlink bandwidth part.
  • the narrowband UE determines that the frequency position of the downlink bandwidth part of the dedicated RRC configuration includes CORESET0, or the frequency position of the downlink bandwidth part of the dedicated RRC configuration is equal to CORESET0. It can be understood that after the narrowband UE enters the connected state, the narrowband UE uses the downlink bandwidth part including CORESET0, so that the narrowband UE can use the same resources as in the idle state.
  • the restriction on the shared downlink bandwidth part can be realized at the same time, so as to avoid that the narrowband UE will work in a downlink bandwidth part larger than the narrowband UE bandwidth.
  • the Msg1 sent by the UE to the network-side device carries the first indication
  • the network-side device eg, the base station
  • the network-side device can determine whether the UE is a narrowband UE based on the first indication.
  • the first indication is used for a network side device (eg, a base station) to be able to identify the narrowband UE in advance (before the UE capability is reported), and may be referred to as an early identification indication.
  • the base station When the first indication (the base station identifies the narrowband UE) is carried by Msg1, then the base station confirms that the UE sending Msg3 may be a narrowband UE before sending Msg2, so in the resource scheduling (Uplink grant) of Msg3 in Msg2, the resource indicating Msg3 is The center frequency point is aligned with the resources of CORESET0, so that the narrowband UE does not need to perform radio frequency adjustment after Msg3. That is to say, when the first indication is carried by Msg1, the UE can determine that the resources of Msg3 are limited in CORESET0, so as to realize the restriction of resources in the downlink bandwidth part
  • the configuration of resources in the first uplink bandwidth portion determined in step 202 may at least include at least one of the solutions shown in the following embodiments:
  • the UE determines that the resources of Msg3 are limited in CORESET0.
  • the UE assumes that the resources of Msg3 are limited in CORESET0.
  • the UE does not expect the resources of Msg3 to be outside CORESET0.
  • the UE confirms that access is blocked.
  • the network side device when the above-mentioned first indication is carried by Msg1 or Msg3, the network side device (such as the base station) can use the PUCCH resource of Msg4-HARQ-ACK as the resource whose center frequency is aligned with CORESET0, so that the narrowband UE is in Msg4 No RF adjustment is required afterwards.
  • the configuration of determining resources in the first uplink bandwidth portion shown in step 202 may at least include at least one of the solutions shown in the following embodiments:
  • the UE assumes that the resources of Msg4-HARQ-ACK are limited in CORESET0;
  • the UE does not expect the resources of the Msg4-HARQ-ACK to be outside CORESET0;
  • the UE determines that the resources for the Msg4-HARQ-ACK are limited in CORESET0.
  • the UE acknowledges that access is blocked.
  • the frequency position of the downlink bandwidth part of the reconfiguration (which can be reconfigured through SIB1) will take effect after Msg4, which will cause the narrowband UE to work in a bandwidth part larger than the bandwidth of the narrowband UE after Msg4.
  • the resources in the row bandwidth section are limited.
  • determining the configuration of resources in the first downlink bandwidth portion shown in step 202 may include:
  • the narrowband UE determines that the PDSCH scheduled by downlink control information format 1-0 (Downlink Control Information format 1-0, DCI format 1-0) is within CORESET0.
  • DCI format 1-0 Downlink Control Information format 1-0, DCI format 1-0
  • PDSCH frequency domain resource allocation of Type 1 is used, and the frequency range of PDSCH can be adjusted by factor K, changing the frequency resource unit from 1
  • the PRBs are updated to K PRBs.
  • the narrowband UE determines that the frequency resource unit factor of the PDSCH scheduled by DCI format 1-0 is 1. It can be understood that after the Msg4 refers to after the UE receives the Msg4 from the network side device (eg, the base station).
  • FIG. 3 is a schematic diagram showing the configuration of a narrowband UE according to the present embodiment.
  • the narrowband UE is configured to include a radio transmission/reception unit 10 and an upper layer processing unit 14 .
  • the wireless transceiver unit 10 includes an antenna unit 11 , an RF (Radio Frequency) unit 12 , and a baseband unit 13 .
  • the upper layer processing unit 14 is configured to include a medium access control layer processing unit 15 and a radio resource control layer processing unit 16 .
  • the wireless transceiver unit 10 is also referred to as a transmission unit, a reception unit, a monitoring unit, or a physical layer processing unit.
  • the upper processing unit 14 is also referred to as a measurement unit, a selection unit, or a control unit 14 .
  • the upper layer processing unit 14 outputs the uplink data (which may also be referred to as a transport block) generated by a user's operation or the like to the wireless transmission/reception unit 10 .
  • the upper layer processing unit 14 performs the medium access control (Medium Access Control, MAC) layer, the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control (Radio Link Control, RLC) layer and the Radio Resource Control (Radio Resource Control) layer. Part or all of the processing in the Resource Control, RRC) layer.
  • the medium access control layer processing unit 15 included in the upper layer processing unit 14 performs processing of the MAC layer.
  • the medium access control layer processing unit 15 controls the transmission of the scheduling request based on various configuration information and parameters managed by the radio resource control layer processing unit 16 .
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the RRC layer (Radio Resource Control layer).
  • the radio resource control layer processing unit 16 manages various configuration information and parameters of the device itself.
  • the radio resource control layer processing unit 16 sets various setting information/parameters based on the upper layer signal received from the network side device (eg, base station). That is, the radio resource control layer processing unit 16 sets various configuration information/parameters based on information representing various configuration information/parameters received from a network-side device (eg, a base station).
  • the radio resource control layer processing unit 16 controls (determines) resource allocation based on downlink control information received from a network-side device (eg, a base station).
  • the wireless transceiver unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the wireless transceiver unit 10 separates, demodulates, and decodes the signal received from the network-side device (eg, base station), and outputs the decoded information to the upper-layer processing unit 14 .
  • the wireless transceiver 10 modulates and encodes data to generate a transmission signal, and transmits it to a network-side device (eg, a base station).
  • the radio transceiver 10 may have a function of receiving one or more reference signals in a certain cell.
  • the wireless transceiver unit 10 may have a function of transmitting a random access preamble at the PRACH opportunity determined by the upper layer processing unit 14, and the RF unit 12 may convert (down-convert, down covert) the signal received via the antenna unit 11 by quadrature demodulation. For baseband signals, unwanted frequency components are removed.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts the analog signal input from the RF unit 12 into a digital signal.
  • the baseband part 13 removes the part equivalent to CP (Cyclic Prefix, cyclic prefix) from the converted digital signal, performs fast Fourier transform (Fast Fourier Transform, FFT) on the signal after removing the CP, and extracts the signal in the frequency domain .
  • the baseband part 13 performs inverse fast Fourier transform (Inverse Fast Fourier Transform, IFFT) on the data, generates an OFDM symbol, adds a CP to the generated OFDM symbol to generate a baseband digital signal, and converts the baseband digital signal into an analog signal .
  • the baseband unit 13 outputs the converted analog signal to the RF unit 12 .
  • the RF unit 12 uses a low-pass filter to remove unnecessary frequency components from the analog signal input from the baseband unit 13 , up-converts the analog signal to a carrier frequency, and transmits it via the antenna unit 11 .
  • the RF unit 12 amplifies power.
  • the RF unit 12 may have a function of specifying the transmission power of the uplink signal and/or the uplink channel to be transmitted in the cell within the area.
  • the RF unit 12 is also referred to as a transmission power control unit.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that, the division of modules in the embodiment of the present invention is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • Each functional unit in each of the embodiments of the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: flash memory, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种带宽部分的激活方法,应用于UE,所述方法包括:确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分,通过本申请所示方法,可避免资源分割,减少射频调整。

Description

一种带宽部分的激活方法和配置方法及电子设备
本申请要求于2021年04月06日提交中国专利局、申请号为202110369312.X、申请名称为“一种带宽部分的激活方法和配置方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种带宽部分的激活方法和配置方法及电子设备。
背景技术
目前,下一代无线通信系统(nextradio,NR)仅支持非窄带带用户设备(user equipment,UE),例如,带宽为100MHz的UE。窄带UE(缩减能力的UE,或称RedCap UE),即带宽小于100MHz的UE,可以用于物联网通信(Machine Type Communication,MTC)或者万物互联(Internet of Thing,IoT),具有成本低和功耗低的优势。
现有协议或标准中,基站默认小区中只有非窄带UE,即带宽为100MHz的UE。当有窄带UE进入该小区中时,该窄带UE获取MIB(Master Information Block),然后获得初始下行带宽部分(Initial DL Bandwidth Part)的频率位置,再获取SIB1。该窄带UE根据SIB1,获得初始下行带宽部分的重配置的频率位置。进一步地,该窄带UE获得初始上行带宽部分(Initial UL Bandwidth Part)的频率位置。然而,初始下行带宽部分的重配置的带宽可能大于窄带UE的下行带宽,初始上行带宽部分的重配置的带宽也可能大于窄带UE的上行带宽(因为基站不知道该小区中存在窄带UE),从而导致窄带UE无法接入网络。
如何优化初始下行带宽部分和初始上行带宽部分的配置来解决窄带UE接入是亟待解决的问题。
发明内容
第一方面提供了一种带宽部分的激活方法,应用于UE,所述方法包括:
确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分。
在本申请的一个实施例中,第一带宽部分包括第一下行带宽部分和/或第一上行带宽部分,第二带宽部分包括第二下行带宽部分和/或第二上行带宽部分。
在本申请的一个实施例中,所述确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分,包括:
根据高层参数,确定使用重配置的第一下行带宽部分和/或第一上行带宽部分;或者,
根据高层参数,确定使用第二下行带宽部分和/或第二上行带宽部分。
在本申请的一个实施例中,所述确定使用重配置的第一带宽部分,包括:
在所述重配置的第一下行带宽部分内接收消息2Msg2或消息4Msg4;和/或,
在所述重配置的第一上行带宽部分内发送消息3Msg3或消息4的混合自动重传申请-确认反馈Msg4-HARQ-ACK。
在本申请的一个实施例中,所述确定使用第二带宽部分,包括:
在所述第二下行带宽部分内接收Msg2或Msg4;和/或,
在所述第二上行带宽部分内发送Msg3或Msg4-HARQ-ACK。
在本申请的一个实施例中,包括:
所述重配置的第一上行带宽部分和所述重配置的第一下行带宽部分在Msg1发送之后被激活或使用。
在本申请的一个实施例中,包括:
所述第二上行带宽部分和所述第二下行带宽部分在Msg1发送之后被激活或使用。
在本申请的一个实施例中,所述确定使用重配置的第一带宽部分,包括:
在所述重配置的第一下行带宽部分内接收Msg2或Msg4;或者,
在所述重配置的第一上行带宽部分内发送消息1Msg1、Msg3或Msg4-HARQ-ACK。
在本申请的一个实施例中,所述确定使用第二带宽部分,包括:
在所述第二下行带宽部分内接收Msg2或Msg4;或者,
在所述第二上行带宽部分内发送Msg1、Msg3或Msg4-HARQ-ACK。
在本申请的一个实施例中,包括:
所述重配置的第一下行带宽部分在Msg1发送之后被激活或使用。
在本申请的一个实施例中,包括:
所述第二下行带宽部分在Msg1发送之后被激活或使用。
在本申请的一个实施例中,所述确定使用重配置的第一带宽部分,包括:
在所述重配置的第一下行带宽部分内接收第一类消息、Msg2或Msg4;和/或,
在所述重配置的第一上行带宽部分内发送Msg3或Msg4-HARQ-ACK。
在本申请的一个实施例中,所述确定使用第二带宽部分,包括:
在所述第二下行带宽部分内接收第一类消息、Msg2或Msg4;和/或,
在所述第二上行带宽部分内发送Msg3或Msg4-HARQ-ACK。
在本申请的一个实施例中,包括:
所述重配置的第一上行带宽部分在Msg1发送之后被激活或使用。
在本申请的一个实施例中,包括:
所述第二上行带宽部分在Msg1发送之后被激活或使用。
在本申请的一个实施例中,所述第一类消息包括SIB1或OSI或Paging中的至少一个。
第二方面,本申请提供了一种带宽部分的配置方法,应用于UE,包括:
确定第一下行带宽部分的配置,和/或,确定第一上行带宽部分和/或第一下行带宽部分内资源的配置。
在本申请的一个实施例中,所述确定第一下行带宽部分的配置,包括:
确定重配置的频率位置不生效;或者,
使用控制资源集合0CORESET0的频率位置作为下行带宽部分的频率位置;或者,
确定专用RRC配置的下行带宽部分的频率位置包含CORESET0。
在本申请的一个实施例中,所述确定重配置的频率位置不生效,包括:
在Msg4接收之后,确定重配置的频率位置不生效。
在本申请的一个实施例中,所述使用CORESET0的频率位置作为下行带宽部分的频率位置,包括:
在Msg4接收之后,使用CORESET0的频率位置作为下行带宽部分的频率位置。
在本申请的一个实施例中,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
确定Msg3的资源限制在CORESET0中;或者,
假设Msg3的资源限制在CORESET0中;或者,
不期望Msg3的资源在CORESET0之外。
在本申请的一个实施例中,还包括:
若所述Msg3的资源在CORESET0之外,则确认被阻止接入。
在本申请的一个实施例中,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
若Msg1携带第一指示,则第一上行带宽部分内资源的配置。
在本申请的一个实施例中,所述第一指示为所述UE为窄带UE的指示。
在本申请的一个实施例中,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
确定Msg4-HARQ-ACK的PUCCH资源限制在CORESET0中;或者,
假设Msg4-HARQ-ACK的资源限制在CORESET0中;或者,
不期望Msg4-HARQ-ACK的资源在CORESET0之外。
在本申请的一个实施例中,还包括:
若所述Msg4-HARQ-ACK的资源在CORESET0之外,则确认被阻止接入。
在本申请的一个实施例中,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
若Msg1或Msg3携带第二指示,确定第一上行带宽部分内资源的配置。
在本申请的一个实施例中,所述第二指示为所述UE为窄带UE的指示。
在本申请的一个实施例中,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
确定下行控制信息格式1-0DCI format 1-0调度的PDSCH在CORESET0内。
在本申请的一个实施例中,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
在Msg4接收之后,确定DCI format 1-0调度的PDSCH的频率资源单位因子为1。
第三方面,提供了一种带宽部分的激活装置,包括确定模块,用于确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分。
第四方面,一种带宽部分的配置装置,包括确定模块,用于确定第一下行带宽部分的配置,和/或,确定第一上行带宽部分和/或第一下行带宽部分内资源的配置。
第五方面,提供了一种芯片模组,包括权利要求31所述的激活装置。
第六方面,提供了一种芯片模组,包括权利要求32所述的配置装置。
第七方面,提供了一种电子设备,所述电子设备还包括处理器和存储设备,所述存储设备存有应用程序或者程序指令,所述应用程序或所述程序指令由所述处理器运行时,使得所述电子设备执行第一方面所述的激活方法。
第八方面,提供了一种电子设备,所述电子设备还包括处理器和存储设备,所述存储设备存有应用程序或者程序指令,所述应用程序或所述程序指令由所述处理器运行时,使得所述电子设备执行第二方面所述的配置方法。基于本申请所示方案,可避免资源分割,减少射频调整。
附图说明
图1为本申请实施例提供一种带宽部分的激活方法的流程图;
图2为本申请实施例提供一种带宽部分的配置方法的流程图;
图3为本申请实施例提供一种UE的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B 可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面,对现有LTE和NR中的技术进行解释和说明:
关于带宽部分:
在NR中,引入了带宽部分的概念。带宽部分是小区载波上的一段连续频率资源,网络设备可以给不同的UE配置不同的带宽大小的带宽部分。对于一个UE,当一个带宽部分被配置并且激活(activated)后,这个带宽部分被称为激活的(active)带宽部分,UE上行发送的数据和控制信息或者下行接收的数据和控制信息都将限制在激活的带宽部分内。对于一个UE,当一个带宽部分被激活后,也可以说UE切换(switch)到该带宽部分。
进一步地,介绍NR的初始接入:
在NR中,一般地,UE是支持100MHz带宽的UE。UE在初始接入时,盲检同步信号块中的PSS/SSS/PBCH,获得PBCH内携带的MIB和时间索引信息。UE通过MIB中的信息获得调度系统信息块一(System Information Block 1,SIB1)的CORESET(可以称为CORESET0)及其search space set(可以称为search space set 0)的配置,进而,UE可以监测调度承载SIB1的PDSCH的Type0-PDCCH,并解码出SIB1。由于PBCH内通过表格来设置CORESET0的带宽,所以CORESET0的最大带宽在协议中被隐式地定义了。进一步来说,协议规定承载SIB1的PDSCH的频域资源在CORESET0的带宽(PRBs)内,因此承载SIB1的PDSCH的最大带宽在协议中也被隐式地定义了。实际上,在空闲态,UE工作在初始激活下行带宽部分(Initial Active Downlink Bandwidth Part)内,该初始激活下行带宽部分的频域位置默认地与CORESET0的频域位置相同(非默认地,初始激活下行带宽部分的频域位置可以通过信令修改为覆盖CORESET0的频域位置),因此初始激活下行带宽部分的最大带宽在协议中被隐式地定义了。一般地,UE在初始激活下行带宽部分内接收SIB1、其他系统信息(Other System Information,OSI)和寻呼(paging)等。
窄带UE(缩减能力的UE,或称RedCap UE),例如带宽小于100MHz的UE,可以用于物联网通信(Machine Type Communication,MTC)或者万物互联(Internet of Thing,IoT)。窄带UE的初始接入是一个需要解决的问题。
对于初始激活下行带宽部分(Initial Active Downlink Bandwidth Part,Initial Active DL BWP),MIB通过4比特配置其频率位置(等同于CORESET0的频率位置),SIB1可以重配置其频率位置(还包括控制和数据信道的配置),SIB1配置的频率位置(通过高层参数LocationAndBandwidth配置)只在Msg4(消息4)之后生效。
对于初始激活上行带宽部分(Initial Active Uplink Bandwidth Part,Initial Active UL BWP),SIB1配置其频率位置(还包括控制和数据信道的配置),SIB1配置的频率位置(通过高层参数LocationAndBandwidth配置)可以立即生效,用于Msg1(消息1)、Msg3(消息3)及其后续操作。
为了解决上述技术问题,提出了两种解决方案:
方案一,基于独立的初始激活下行带宽部分和初始激活上行带宽部分解决方案:具体地,基站在SIB1中,广播专门用于窄带UE的初始激活下行带宽部分和初始激活上行带宽部分的配置(包括频率位置),专用于窄带UE的带宽部分又称为独立的初始激活下行带宽部分和初始激活上行带宽部分,窄带UE默认按照独立的初始激活下行带宽部分和初始激活上行带宽部分来配置自己的初始激活下行带宽部分和初始激活上行带宽部分。
方案一,可以简化UE实现,但是,需要网络配置独立的初始激活下行带宽部分和初始激活上行带宽部分,将网络实现复杂化,并且资源会分割(fragmentation)。
方案二,基于共享的初始激活下行带宽部分和初始激活上行带宽部分解决方案:窄带UE仍然按照原来的(对于非窄带UE的)初始激活下行带宽部分和初始激活上行带宽部分来配置自己的初始激活下行带宽部分和初始激活上行带宽部分的频率位置,而为了避免当前的(如本时隙的)信道/信号资源落在窄带UE的带宽外,进而可以采用如下方式:
(1)窄带UE需要进行射频调整(RF retuning),即如果当前的(如本时隙的)信道/信号资源落在窄带UE的带宽外时,窄带UE调整射频的中心频点来覆盖当前的信道/信号资源。
(2)窄带UE使用独立的资源配置(主要是频域),即基站为窄带UE配置的信道/信号的频率资源位置落在窄带UE的带宽内。
(3)基站配置,即基站为窄带UE和非窄带UE配置相同的窄带初始激活下行带宽部分和窄带初始激活上行带宽部分。
方案二中,虽然不需要网络配置独立的初始激活下行带宽部分和初始激活上行带宽部分,但有如下问题:
射频调整需要UE频繁的调整射频的中心频点,对UE的实现和功耗都不友好。并且射频调整需要一定的时间间隔(time gap),会窄带UE和非窄带UE的行为不一致,难以共存。
窄带UE使用独立的资源配置(主要是频域),在频域上达到的效果类似独立的初始激活下行带宽部分和初始激活上行带宽部分,会有与独立的初始激活下行带宽部分和初始激活上行带宽部分类似的问题,并且时域资源上灵活性较差。
基站配置,这将会对非窄带UE造成影响,非窄带UE不能利用更多的资源。
为了克服方案一和方案二中的问题,本申请一个实施例中,提出了一种带宽部分(Bandwidth Part,BWP)的激活方法,该方法可应用于上述窄带UE。
步骤102,窄带UE确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分。
所述使用重配置的第一带宽部分可以是窄带UE使用重配置的第一带宽部分,或者窄带UE认为重配置的第一带宽部分被激活(activated)或是激活的(active),或者第一带宽部分的重配置生效(effective)或有效(available或applicable),或者窄带UE应用第一带宽部分的重配置。带宽部分被激活可以等同于UE使用该带宽部分。
所述使用第二带宽部分可以是窄带UE使用第二带宽部分,或者窄带UE认为第二带宽部分被激活(activated)或是激活的(active)。
在一个实施例中,该第一带宽部分包括第一下行带宽部分(Downlink Bandwidth Part,DL BWP)和/或第一上行带宽部分(Uplink Bandwidth Part,UL BWP),该第二带宽部分包括第二下行带宽部分和/或第二上行带宽部分。
对于初始接入,该第一带宽部分包括第一初始激活下行带宽部分和/或第一初始激活上行带宽部分,该第二带宽部分包括第二初始激活下行带宽部分和/或第二初始激活上行带宽部分。第一初始激活下行带宽部分又可以简称为第一初始下行带宽部分(Initial Downlink Bandwidth Part,Initial DL BWP),第一初始激活上行带宽部分又可以简称为第一初始上行带宽部分(Initial Uplink Bandwidth Part,Initial UL BWP),第二初始激活下行带宽部分又可以简称为第二初始下行带宽部分,第二初始激活上行带宽部分又称为第二初始上行带宽部分。下述描述,不区分第一下行带宽部分、第一初始激活下行带宽部分和第一初始下行带宽部分,不区分第一上行带宽部分、第一初始激活上行带宽部分和第一初始上行带宽部分,不区分第二下行带宽部分、第二初始激活下行带宽部分和第二初始下行带宽部分,不区分第二上行带宽部分、第二初始激活上行带宽部分和第二初始上行带宽部分。
一般来说,第一下行带宽部分和第一上行带宽部分的配置是UE在获取系统 信息一(System Information Block 1,SIB1)后获得的,并且默认激活的。针对窄带UE,第一下行带宽部分和/或第一上行带宽部分可以被重配置,并在某个时刻,该重配置的第一下行带宽部分和/或第一上行带宽部分可以被窄带UE使用;或者,基站可以配置第二下行带宽部分和/或第二上行带宽部分,并在某个时刻,该第二下行带宽部分和/或第二上行带宽部分可以被激活,或者说该第二下行带宽部分和/或第二上行带宽部分可以被窄带UE使用。
在一个实施例中,步骤102的所述窄带UE确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分,皆可以根据高层参数来确定,例如由RRC参数。
示例性地,窄带UE根据高层参数,确定使用重配置的第一下行带宽部分和/或第一上行带宽部分。窄带UE根据高层参数,确定使用第二下行带宽部分和/或第二上行带宽部分。
上述实施例中,第一带宽部分(第一下行带宽部分和第一上行带宽部分)在重配置前,相当于窄带UE和非窄带UE共享的带宽部分。重配置后的第一带宽部分相当于上述专用于窄带UE独立(使用)的带宽部分。第二带宽部分可理解为窄带UE独立(使用)的带宽部分,即不与窄带UE共享,即第二下行带宽部分、第二上行带宽部分属于独立(使用)的带宽部分。
实施例一,步骤102的所示确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分,包括:
首先,窄带UE在重配置之前的第一下行带宽部分内,从基站接收第一类消息,第一类消息包括SIB1、OSI和paging等。
具体地,窄带UE在重配置之前的第一下行带宽部分(共享)内接收SIB1、OSI和paging,对于SIB1、OSI和paging,窄带UE和非窄带UE可以共享相同的资源,尽量避免了资源分割。一般来说,基站在接收消息1(Msg1)前是无法知道非窄带UE的存在的,因此在Msg1之前窄带UE使用第一下行带宽部分(共享)是有合理的,这样的好处是避免资源的分割。
需要说明的是,说明书上下文所示的消息1(Message 1,Msg1)可以是随机接入前导(Random access preamble)或者物理随机接入信道(Physical Random Access Channel,PRACH)或者随机接入前导发送(Random access preamble transmission);消息2(Message 2,Msg2)可以是随机接入反馈(Random Access Response,RAR)或者随机接入反馈接收(Random access response reception);消息3(Message 2,Msg3)可以是RAR上行调度的物理上行共享信道(Physical Uplink Share Channel,PUSCH);消息4(Message 4,Msg4)可以是带UE竞争解决标识 的物理下行共享信道(Physical Downlink Share Channel,PDSCH);消息4的混合自动重传申请-确认反馈(Message 4 Hybrid Automatic Repeat request-acknowledgement,Msg4-HARQ-ACK)可以是针对消息4的HARQ-ACK,也可以是承载消息4的HARQ-ACK的物理上行控制信道(Physical Uplink Control Channel,PUCCH)。一般地,对于随机接入信道(Random Access Channel,RACH)过程,一般需要4个步骤(4步随机接入)。对于4步随机接入,第一步是UE发送物理随机接入信道(Physical Random Access Channel,PRACH),又称为消息1;第二步是基站发送随机接入响应(Random Access Response,RAR),又称为消息2;第三步是用户设备发送消息3,消息3可以携带RRCSetupRequest的高层消息;第四步是基站110发送消息4,用户设备可以通过接收消息4确认竞争接入成功,即基站确认接纳该用户设备(带用户设备识别码)的随机接入请求,消息4可以携带RRCSetup的高层消息。这些消息在相关协议或标准内皆有规定,本申请对此不进行赘述。
其次,窄带UE在接收到第一类消息后,通过第一上行带宽部分(共享)发送Msg1。一般来说,基站在正在接收Msg1时刻是无法知道非窄带UE的存在的,因此对于Msg1使用第一上行带宽部分(共享)是有合理的,这样的好处是避免资源分割。
在一个示例中,Msg1之后,窄带UE开始使用重配置的第一下行带宽部分,或者,窄带UE开始使用第二下行带宽部分,即第二下行带宽部分被激活。可以理解,MSG1之后是指窄带UE在向网络侧设备发送Msg1后,该网络侧设备包括基站。
在一个示例中,Msg1之后,窄带UE可在重配置的第一下行带宽部分或第二下行带宽部分内,从网络侧设备接收Msg2和/或Msg4,窄带UE可在重配置的第一上行带宽部分或第二下行带宽部分内向网络侧设备发送Msg3和/或Msg4-HARQ-ACK。
在一个示例中,Msg1之后,第二上行带宽部分被激活。
窄带UE在重配置的第一下行带宽部分(独立)或(激活的)第二下行带宽部分(独立)内接收Msg2和/或Msg4,并在重配置的第一上行带宽部分(独立)或(激活的)第二上行带宽部分(独立)上行带宽部分内发送后续的Msg3和/或Msg4-HARQ-ACK,这样Msg1之后的后续的操作都在独立的下行带宽部分和上行带宽部分内(这个两个带宽部分可以是中心频点对齐的,并且都不大于窄带UE的带宽),减少了可能的射频调整次数。从共享的下行带宽部分到共享的上行带宽部分可能有一次射频调整,如共享的下行带宽部分与随机接入时机(RACH Occasion,RO)频率资源的中心频点不对齐时;从共享的上行带宽部分到独立的 下行带宽部分可能有一次射频调整,如RO频率资源与独立的下行带宽部分的中心频点不对齐时;共有两次射频调整。这实际上是以Msg1作为独立的下行带宽部分和上行带宽部分被激活的时间点。
实施例二,步骤102的所示确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分,包括:
首先,窄带UE在第一下行带宽部分(共享)内从基站接收第一类消息,如SIB1、OSI和paging。
其次,在窄带UE在接收到第一类消息后,窄带UE可以在重配置的第一上行带宽部分(独立)内发送Msg1,或者在第二上行带宽部分(独立)内发送Msg1,即窄带UE在独立的上行带宽部分内发送Msg1。
为了窄带UE能够使用独立的上行带宽部分发送Msg1,基站需要将窄带UE的RO资源配置在重配置的第一上行带宽部分或者第二上行带宽部分中,这也是合理的,这样的好处是基站可以通过不同上行带宽部分内的RO资源来区分窄带UE和非窄带UE。
需要说明的是,在Msg1之后,窄带UE开始使用重配置的第一下行带宽部分,或者窄带UE开始使用第二下行带宽部分,即重配置的第一下行带宽部分或第二上行带宽部分被激活。对于独立的上行带宽部分,由于从Msg1就是用独立的上行带宽部分发送,因此,重配置的第一上行带宽部分或第二上行带宽部分相当于在SIB1配置后就被激活。可以理解,在Msg1之后为窄带UE向网络侧设备发送Msg1之后。
在一个示例中,窄带UE在重配置的第一下行带宽部分(独立)内或(激活的)第二下行带宽部分(独立)内接收Msg2和/或Msg4,并在重配置的第一上行带宽部分(独立)或第二上行带宽部分(独立)内发送Msg3和/或Msg4-HARQ-ACK。
这样Msg1后续的操作都在独立的下行带宽部分和上行带宽部分内(这个两个带宽部分可以是中心频点对齐的,并且都不大于窄带UE的带宽),减少了可能的射频调整次数。从共享的上行带宽部分到独立的下行带宽部分有一次射频调整,如RO频率资源与独立的下行带宽部分的中心频点不对齐时,即共有一次射频调整,相比于实施例一,实施例二少了一次射频调整。这实际上是以Msg1作为独立的初始激活下行带宽部分被激活的时间点。
实施例三,步骤102的所示确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分,包括:
首先,窄带UE在重配置的第一下行带宽部分(独立)或第二下行带宽部分(独立)内从基站接收第一类消息,如SIB1、OSI和paging。这样窄带UE可以使用完全独立的SIB1、OSI、paging资源,有较高灵活性。
其次,在第一上行带宽部分内发送Msg1。一般来说,窄带UE在第一上行带宽部分(共享)内发送Msg1,基站在正在接收Msg1时刻是无法知道非窄带UE的存在的,因此对于Msg1使用共享的初始上行带宽部分是有合理的,这样的好处是避免资源分割。
也就是说,在窄带UE向网络侧设备发送Msg1之后,窄带UE开始使用重配置的第一上行带宽部分,或开始使用第二上行带宽部分,即重配置的第一上行带宽部分或者第二上行带宽部分被激活。对于第二上行带宽部分,在SIB1配置后被激活。
在一个实施例中,窄带UE在重配置的第一下行带宽部分(独立)内或(激活的)第二下行带宽部分(独立)内接收Msg2和/或Msg4,并在重配置的第一上行带宽部分(独立)内或(激活的)第二上行带宽部分(独立)内发送Msg3和/或Msg4-HARQ-ACK。
在该实施例中,Msg1后续的操作都在独立的下行带宽部分和上行带宽部分内(第二下行带宽部分和第二上行带宽部分可以是中心频点对齐的,并且都不大于窄带UE的带宽),减少了可能的射频调整次数。从独立的下行带宽部分到共享的上行带宽部分可能有一次射频调整,如共享的下行带宽部分与随机接入时机(RACH Occasion,RO)频率资源的中心频点不对齐时;从共享的上行带宽部分到独立的下行带宽部分可能有一次射频调整,如RO频率资源与独立的下行带宽部分的中心频点不对齐时;共有两次射频调整。这实际上是以Msg1作为独立的上行带宽部分被激活的时间点。
上文所示相关技术方案二中,基站为窄带UE和非窄带UE配置相同的窄带下行带宽部分和窄带上行带宽部分。但是,方案二采用共享的下行带宽部分(第一下行带宽部分)的方式时,重配置(通过SIB1)的共享的下行带宽部分的频率位置将在Msg4之后生效,这将导致Msg4之后,窄带UE将工作在一个大于窄带UE带宽的带宽部分内。可以理解,Msg4之后为UE从网络侧设备接收Msg4之后,其中,网络侧设备包括基站。
因此,采用共享的下行带宽部分的方式,需要对下行带宽部分进行限制和/或采用共享的下行带宽部分时,需要对下行带宽部分内资源的限制。
基于此,本申请实施例还提供了一种带宽部分的配置方法,包括:
步骤202,窄带UE确定第一下行带宽部分的配置,和/或确定第一上行带宽部分和/或第一下行带宽部分内资源的配置。
该实施例中所示第一下行带宽部分和第一上行带宽部分属于共享的带宽部分。
步骤202中所示确定第一下行带宽部分的配置,可以至少包括如下实施例所示方案中的至少一个:
在一个实施例中,在Msg4之后,窄带UE确定重配置的第一下行带宽部分的频率位置(通过高层参数LocationAndBandwidth指示)不生效,即窄带UE不使用重配置的第一下行带宽部分的频率位置。
在一个实施例中,在Msg4之后,窄带UE确定继续使用控制资源集0(Control Resource Set 0,CORESET0)的频率位置作为第一下行带宽部分的频率位置。
在一个实施例中,窄带UE确定专用RRC配置的下行带宽部分的频率位置包含CORESET0,或专用RRC配置的下行带宽部分的频率位置等于CORESET0。可以理解,窄带UE进入连接态后,窄带UE使用包含CORESET0的下行带宽部分,这样可以窄带UE使用与空闲态相同的资源。
通过上述实施例,可以实现采用共享的下行带宽部分时,同时实现对共享的下行带宽部分的限制,避免窄带UE将工作在一个大于窄带UE带宽的下行带宽部分内。
在一个实施例,UE向网络侧设备(如基站)发送的Msg1中携带第一指示,网络侧设备(如基站)可以基于该第一指示判断UE是否为窄带UE。本领域中该第一指示用于网络侧设备(如基站)能够提前识别窄带UE(在UE能力上报之前),可以被称为提前识别指示。
当第一指示(基站识别窄带UE)由Msg1携带,那么基站在发送Msg2前确认发送Msg3的UE可能是窄带UE,从而在Msg2中的Msg3的资源调度(Uplink grant)中,指示Msg3的资源为中心频点对齐CORESET0的资源,这样窄带UE在Msg3后不需要进行射频调整。也就是说,当第一指示由Msg1携带时,UE可确定Msg3的资源限制在CORESET0中,从而实现下行带宽部分内资源的限制
进一步地,当第一指示由Msg1携带时,步骤202中所示确定第一上行带宽部分内资源的配置可以至少包括如下实施例所示方案中的至少一个:
在一个实施例中,UE确定Msg3的资源限制在CORESET0中。
在一个实施例中,UE假设Msg3的资源限制在CORESET0中。
在一个实施例中,UE不期望Msg3的资源在CORESET0之外。
在一个实施例中,如果Msg3的资源在CORESET0之外,那么UE确认被阻止接入。
在另一实施例中,上述第一指示,由Msg1或Msg3携带时,网络侧设备(如基站)可以将Msg4-HARQ-ACK的PUCCH资源为中心频点对齐CORESET0的资源,这样窄带UE在Msg4后不需要进行射频调整。
进一步地,当第一指示由Msg1或Msg3携带时,步骤202中所示确定第一上行带宽部分内资源的配置可以至少包括如下实施例所示方案中的至少一个:
在一个实施例中,UE假设Msg4-HARQ-ACK的资源限制在CORESET0中;
在一个实施例中,UE不期望Msg4-HARQ-ACK的资源在CORESET0之外;
在一个实施例中,UE确定Msg4-HARQ-ACK的资源限制在CORESET0中。
在一个实施例中,如果Msg4-HARQ-ACK的资源在CORESET0之外,UE确认被阻止接入。
重配置(可通过SIB1重配置)的下行带宽部分的频率位置将在Msg4之后生效,这将导致Msg4之后,窄带UE将工作在一个大于窄带UE带宽的带宽部分内,因此,需要对第一下行带宽部分内资源进行限制。
在一个实施例中,步骤202中所示确定第一下行带宽部分内资源的配置,可包括:
在Msg4之后,窄带UE确定下行控制信息格式1-0(Downlink Control Information format 1-0,DCI format 1-0)调度的PDSCH在CORESET0内。在相关协议或标准中,DCI format 1-0用于USS(UE specific Search Space)时,使用Type1的PDSCH频域资源分配,并且PDSCH的频率范围可以由因子K来调整,将频率资源单位从1个PRB更新为K个PRB。
因此,如果要将PDSCH限制在CORESET0内,只需要限制:在Msg4之后,窄带UE确定DCI format 1-0调度的PDSCH的频率资源单位因子为1。可以理解,在Msg4之后是指UE从网络侧设备(如基站)接收Msg4之后。
图3是表示本实施方式的窄带UE的结构示意图。如图所示,窄带UE构成为包括无线收发部10和上层处理部14。无线收发部10构成为包括天线部11、RF(Radio Frequency,射频)部12以及基带部13。上层处理部14构成为包括媒体接入控制层处理部15和无线资源控制层处理部16。也将无线收发部10称为发送部、接收部、监测部或物理层处理部。也将上层处理部14称为测量部、选择部或控制部14。上层处理部14将通过用户的操作等生成的上行链路数据(也可以被称为传输块)输出至无线收发部10。
上层处理部14进行媒体接入控制(Medium Access Control,MAC)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路控制(Radio Link Control,RLC)层以及无线资源控制(Radio Resource Control,RRC)层中的一部分或全部的处理。上层处理部14所具备的媒体接入控制层处理部15进行MAC层的处理。媒体接入控制层处理部15基于由无线资源控制层处理部16管理的各种设定信息/参数进行调度请求的传输的控制。上层处理部14所具备的无线资源控制层处理部16进行RRC层(无线资源控制层)的处理。无线资源控制层处理部16进行装置自身的各种设定信息/参数的管理。
无线资源控制层处理部16基于从网络侧设备(如基站)接收到的上层的信号来设定各种设定信息/参数。即,无线资源控制层处理部16基于从网络侧设备(如基站)接收到的表示各种设定信息/参数的信息来设定各种设定信息/参数。无线资源控制层处理部16基于从网络侧设备(如基站)接收到的下行链路控制信息来控制(确定)资源分配。无线收发部10进行调制、解调、编码、解码等物理层的处理。无线收发部10对从网络侧设备(如基站)接收到的信号进行分离、解调、解码,将解码后的信息输出至上层处理部14。无线收发部10通过对数据进行调制、编码来生成发送信号,发送至网络侧设备(如基站)。
无线收发部10可以具有接收某个小区中的一个或多个参考信号的功能。无线收发部10也可以具有通过由上层处理部14确定的PRACH机会发送随机接入前导的功能,RF部12通过正交解调将经由天线部11接收到的信号转换(下变频,down covert)为基带信号,去除不需要的频率分量。RF部12将进行处理后的模拟信号输出至基带部。基带部13将从RF部12输入的模拟信号转换为数字信号。基带部13从转换后的数字信号中去除相当于CP(Cyclic Prefix,循环前缀)的部分,对去除CP后的信号进行快速傅里叶变换(Fast Fourier Transform,FFT),并提取频域的信号。基带部13对数据进行快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT),生成OFDM符号,并对生成的OFDM符号附加CP来生成基带的数字信号,并将基带的数字信号转换为模拟信号。基带部13将转换后的模拟信号输出至RF部12。RF部12使用低通滤波器来将多余的频率分量从由基带部13输入的模拟信号中去除,将模拟信号上变频(up convert)为载波频率,经由天线部11发送。此外,RF部12将功率放大。此外,RF部12也可以具备确定在区内小区中发送的上行链路信号和/或上行链路信道的发送功率的功能。也将RF部12称为发送功率控制部。
本申请实施例可以根据上述方法示例对上述电子设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以 采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种带宽部分的激活方法,其特征在于,应用于UE,所述方法包括:
    确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分。
  2. 根据权利要求1所述的方法,其特征在于,第一带宽部分包括第一下行带宽部分和/或第一上行带宽部分,第二带宽部分包括第二下行带宽部分和/或第二上行带宽部分。
  3. 根据权利要求2所述的方法,其特征在于,所述确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分,包括:
    根据高层参数,确定使用重配置的第一下行带宽部分和/或第一上行带宽部分;或者,
    根据高层参数,确定使用第二下行带宽部分和/或第二上行带宽部分。
  4. 根据权利要求2所述的方法,其特征在于,所述确定使用重配置的第一带宽部分,包括:
    在所述重配置的第一下行带宽部分内接收消息2 Msg2或消息4 Msg4;和/或,
    在所述重配置的第一上行带宽部分内发送消息3 Msg3或消息4的混合自动重传申请-确认反馈Msg4-HARQ-ACK。
  5. 根据权利要求2所述的方法,其特征在于,所述确定使用第二带宽部分,包括:
    在所述第二下行带宽部分内接收Msg2或Msg4;和/或,
    在所述第二上行带宽部分内发送Msg3或Msg4-HARQ-ACK。
  6. 根据权利要求2所述的方法,其特征在于,包括:
    所述重配置的第一上行带宽部分和所述重配置的第一下行带宽部分在Msg1发送之后被激活或使用。
  7. 根据权利要求2所述的方法,其特征在于,包括:
    所述第二上行带宽部分和所述第二下行带宽部分在Msg1发送之后被激活或使用。
  8. 根据权利要求2所述的方法,其特征在于,所述确定使用重配置的第一带宽部分,包括:
    在所述重配置的第一下行带宽部分内接收Msg2或Msg4;或者,
    在所述重配置的第一上行带宽部分内发送消息1 Msg1、Msg3或Msg4-HARQ-ACK。
  9. 根据权利要求2所述的方法,其特征在于,所述确定使用第二带宽部分,包括:
    在所述第二下行带宽部分内接收Msg2或Msg4;或者,
    在所述第二上行带宽部分内发送Msg1、Msg3或Msg4-HARQ-ACK。
  10. 根据权利要求2所述的方法,其特征在于,包括:
    所述重配置的第一下行带宽部分在Msg1发送之后被激活或使用。
  11. 根据权利要求2所述的方法,其特征在于,包括:
    所述第二下行带宽部分在Msg1发送之后被激活或使用。
  12. 根据权利要求2所述的方法,其特征在于,所述确定使用重配置的第一带宽部分,包括:
    在所述重配置的第一下行带宽部分内接收第一类消息、Msg2或Msg4;和/或,
    在所述重配置的第一上行带宽部分内发送Msg3或Msg4-HARQ-ACK。
  13. 根据权利要求2所述的方法,其特征在于,所述确定使用第二带宽部分,包括:
    在所述第二下行带宽部分内接收第一类消息、Msg2或Msg4;和/或,
    在所述第二上行带宽部分内发送Msg3或Msg4-HARQ-ACK。
  14. 根据权利要求2所述的方法,其特征在于,包括:
    所述重配置的第一上行带宽部分在Msg1发送之后被激活或使用。
  15. 根据权利要求2所述的方法,其特征在于,包括:
    所述第二上行带宽部分在Msg1发送之后被激活或使用。
  16. 根据权利要求12或13所述的方法,其特征在于,所述第一类消息包括SIB1或OSI或Paging中的至少一个。
  17. 一种带宽部分的配置方法,其特征在于,应用于UE,包括:
    确定第一下行带宽部分的配置,和/或,确定第一上行带宽部分和/或第一下行带宽部分内资源的配置。
  18. 根据权利要求17所述的方法,其特征在于,所述确定第一下行带宽部分的配置,包括:
    确定重配置的频率位置不生效;或者,
    使用控制资源集合0 CORESET0的频率位置作为下行带宽部分的频率位置;或者,
    确定专用RRC配置的下行带宽部分的频率位置包含CORESET0。
  19. 根据权利要求18所述的方法,其特征在于,所述确定重配置的频率位置不生效,包括:
    在Msg4接收之后,确定重配置的频率位置不生效。
  20. 根据权利要求18所述的方法,其特征在于,所述使用CORESET0 的频率位置作为下行带宽部分的频率位置,包括:
    在Msg4接收之后,使用CORESET0的频率位置作为下行带宽部分的频率位置。
  21. 根据权利要求17所述的方法,其特征在于,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
    确定Msg3的资源限制在CORESET0中;或者,
    假设Msg3的资源限制在CORESET0中;或者,
    不期望Msg3的资源在CORESET0之外。
  22. 根据权利要求21所述的方法,还包括:
    若所述Msg3的资源在CORESET0之外,则确认被阻止接入。
  23. 根据权利要求17所述的方法,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
    若Msg1携带第一指示,则第一上行带宽部分内资源的配置。
  24. 根据权利要求23所述的方法,所述第一指示为所述UE为窄带UE的指示。
  25. 根据权利要求17所述的方法,其特征在于,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
    确定Msg4-HARQ-ACK的PUCCH资源限制在CORESET0中;或者,
    假设Msg4-HARQ-ACK的资源限制在CORESET0中;或者,
    不期望Msg4-HARQ-ACK的资源在CORESET0之外。
  26. 根据权利要求25所述的方法,还包括:
    若所述Msg4-HARQ-ACK的资源在CORESET0之外,则确认被阻止接入。
  27. 根据权利要求17所述的方法,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
    若Msg1或Msg3携带第二指示,确定第一上行带宽部分内资源的配置。
  28. 根据权利要求27所述的方法,所述第二指示为所述UE为窄带UE的指示。
  29. 根据权利要求17所述的方法,所述确定第一上行带宽部分和/或第一下行带宽部分内资源的配置,包括:
    确定下行控制信息格式1-0 DCI format 1-0调度的PDSCH在CORESET0内。
  30. 根据权利要求17所述的方法,所述确定第一上行带宽部分和/或第 一下行带宽部分内资源的配置,包括:
    在Msg4接收之后,确定DCI format 1-0调度的PDSCH的频率资源单位因子为1。
  31. 一种带宽部分的激活装置,包括确定模块,用于确定使用重配置的第一带宽部分,或者,确定使用第二带宽部分。
  32. 一种带宽部分的配置装置,包括确定模块,用于确定第一下行带宽部分的配置,和/或,确定第一上行带宽部分和/或第一下行带宽部分内资源的配置。
  33. 一种芯片模组,包括权利要求31所述的激活装置。
  34. 一种芯片模组,包括权利要求32所述的配置装置。
  35. 一种电子设备,其特征在于,所述电子设备还包括处理器和存储设备,所述存储设备存有应用程序或者程序指令,所述应用程序或所述程序指令由所述处理器运行时,使得所述电子设备执行权利要求1-16任一项所述的激活方法。
  36. 一种电子设备,其特征在于,所述电子设备还包括处理器和存储设备,所述存储设备存有应用程序或者程序指令,所述应用程序或所述程序指令由所述处理器运行时,使得所述电子设备执行权利要求17-30任一项所述的配置方法。
PCT/CN2021/136144 2021-04-06 2021-12-07 一种带宽部分的激活方法和配置方法及电子设备 WO2022213642A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/552,919 US20240172210A1 (en) 2021-04-06 2021-12-07 Method for activating bandwidth part, method for configuring bandwidth part, and electronic device
EP21935859.5A EP4322444A1 (en) 2021-04-06 2021-12-07 Bandwidth part activation method and configuration method, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369312.XA CN115189847A (zh) 2021-04-06 2021-04-06 一种带宽部分的激活方法和配置方法及电子设备
CN202110369312.X 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213642A1 true WO2022213642A1 (zh) 2022-10-13

Family

ID=83512061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136144 WO2022213642A1 (zh) 2021-04-06 2021-12-07 一种带宽部分的激活方法和配置方法及电子设备

Country Status (4)

Country Link
US (1) US20240172210A1 (zh)
EP (1) EP4322444A1 (zh)
CN (1) CN115189847A (zh)
WO (1) WO2022213642A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064634A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 频段重配置系统和方法
US20190045419A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Systems, methods, and apparatuses for providing and obtaining scheduling information for sib1-br during handover
WO2021038920A1 (ja) * 2019-08-30 2021-03-04 株式会社Nttドコモ 端末、基地局及び通信方法
CN112567803A (zh) * 2018-08-09 2021-03-26 高通股份有限公司 无线通信中的带宽配置技术

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803422B (zh) * 2017-11-17 2020-05-15 展讯通信(上海)有限公司 一种资源激活的方法及相关设备
CN110475361B (zh) * 2019-08-16 2022-06-10 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064634A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 频段重配置系统和方法
US20190045419A1 (en) * 2017-09-28 2019-02-07 Intel IP Corporation Systems, methods, and apparatuses for providing and obtaining scheduling information for sib1-br during handover
CN112567803A (zh) * 2018-08-09 2021-03-26 高通股份有限公司 无线通信中的带宽配置技术
WO2021038920A1 (ja) * 2019-08-30 2021-03-04 株式会社Nttドコモ 端末、基地局及び通信方法

Also Published As

Publication number Publication date
US20240172210A1 (en) 2024-05-23
CN115189847A (zh) 2022-10-14
EP4322444A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
US11382029B2 (en) Method and user equipment (UE) for provisioning minimum system information (MSI) in wireless communication system
US11936459B2 (en) Resource management for beam failure recovery procedures
KR102363247B1 (ko) 무선 장치 성능에 기초한 통신
US11089585B2 (en) Transmission structure and access for a radio system
US20200229241A1 (en) Access Procedures In Wireless Communications
US20200221504A1 (en) Access procedures in wireless communications
KR101588152B1 (ko) 장치내 공존 간섭 회피를 위한 액세스 절차
US9408211B2 (en) Method and apparatus for resource management, low-bandwidth user equipment, and user equipment
EP3217730A1 (en) Unit shift register circuit, shift register circuit, control method for unit shift register circuit, and display device
EP3357181B1 (en) Multiplexed messaging in wireless network
CN112449424B (zh) 一种数据的传输方法及装置
EP3534627B1 (en) Bandwidth resource configuration method, apparatus, and system
CN111699722B (zh) 在空闲模式下操作的方法和使用该方法的设备
EP4142363A1 (en) Handover method and apparatus
RU2752005C2 (ru) Терминальное устройство, устройство базовой станции, способ связи и интегральная схема
KR102536947B1 (ko) 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치
EP3565327B1 (en) Communication method, access network device and terminal
WO2022206346A1 (zh) 一种随机接入方法及装置
EP3636019B1 (en) Communication device and method for indicating a preference based on the device power consumption or on performance of carriers
US20150207603A1 (en) Apparatus for transmission on lte device to device communication
JP2018170621A (ja) 無線通信装置および無線通信方法
WO2022213642A1 (zh) 一种带宽部分的激活方法和配置方法及电子设备
EP3487240B1 (en) Efficient wireless communication with reduced overhead signaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552919

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021935859

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021935859

Country of ref document: EP

Effective date: 20231106