WO2022213547A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2022213547A1
WO2022213547A1 PCT/CN2021/118209 CN2021118209W WO2022213547A1 WO 2022213547 A1 WO2022213547 A1 WO 2022213547A1 CN 2021118209 W CN2021118209 W CN 2021118209W WO 2022213547 A1 WO2022213547 A1 WO 2022213547A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
plate
swing
wind
air supply
Prior art date
Application number
PCT/CN2021/118209
Other languages
English (en)
French (fr)
Inventor
闫宝升
张守杰
韩丽丽
张升刚
张月
赵越
孙启东
Original Assignee
海信(山东)冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120716892.0U external-priority patent/CN214665471U/zh
Priority claimed from CN202110377282.7A external-priority patent/CN113915879B/zh
Priority claimed from CN202120717321.9U external-priority patent/CN214537027U/zh
Priority claimed from CN202120717322.3U external-priority patent/CN214665496U/zh
Application filed by 海信(山东)冰箱有限公司 filed Critical 海信(山东)冰箱有限公司
Publication of WO2022213547A1 publication Critical patent/WO2022213547A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation

Definitions

  • the present disclosure belongs to the technical field of household refrigerators, and particularly relates to a refrigerator.
  • the flow field distribution and temperature distribution in the refrigerating chamber of the refrigerator have an important influence on the food stored in it, and the flow field distribution and temperature distribution depend on the position of the tuyere and the internal structure of the refrigerating chamber.
  • a cooling air duct which is arranged on the box body; an evaporator is arranged in the cooling air duct to cool the air passing through the cooling air duct;
  • a directional air supply air duct which is communicated with the cooling air duct;
  • the directional air supply air duct is arranged on the rear wall of the storage compartment and is located at the bottom of the storage compartment;
  • the swing air supply air duct is arranged on the rear wall of the storage compartment, and is located above the directional air supply air duct; the swing air supply air duct is provided with a swing air component, so
  • the pendulum components include:
  • the swinging air plate moves under the action of the swinging wind driving mechanism and sweeps across the swinging air supply air duct.
  • FIG. 1 is a schematic diagram of the overall structure of a refrigerator according to some embodiments.
  • FIG. 2 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 3 is a schematic diagram of the overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 4 is a cross-sectional view of the refrigerator taken along the A-A direction of FIG. 3, according to some embodiments;
  • FIG. 5 is a schematic diagram of the overall structure of the air supply unit of a refrigerator according to some embodiments from another perspective;
  • FIG. 6 is a schematic structural diagram of an air duct panel and a damper assembly of a refrigerator according to some embodiments
  • FIG. 7 is a schematic structural diagram of a swing plate of a refrigerator according to some embodiments.
  • FIG. 8 is a schematic structural diagram of a first air guide member of a refrigerator according to some embodiments.
  • FIG. 9 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 10 is a schematic diagram of the overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 11 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 12 is a schematic diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 13 is a schematic diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 14 is a schematic structural diagram of an air duct panel of a refrigerator according to some embodiments.
  • 15 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments.
  • 16 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 17 is a schematic diagram of the overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 18 is a schematic diagram of the overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 19 is a schematic structural diagram of an air duct panel of a refrigerator according to some embodiments.
  • Figure 20 is a cross-sectional view along B-B of Figure 19;
  • 21 is a schematic structural diagram of an air duct panel of a refrigerator according to some embodiments.
  • 22 is a schematic diagram of the overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 23 is a schematic diagram of the overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 24 is a schematic diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments.
  • FIG. 1 is a schematic diagram of an overall structure of a refrigerator according to some embodiments.
  • a refrigerator includes a box body defining a thermal insulation storage compartment 103; the box body includes an inner container 101, an outer shell 102, and a thermal insulation layer disposed between the inner container 101 and the outer shell 102; wherein, the storage
  • the compartment 103 is surrounded by an inner tank 101 , and the front end of the inner tank 101 forms a pick-and-place port 104 ;
  • the inner bladder 101 includes a bladder rear wall which is directly opposite to the pick-and-place opening 104 .
  • the storage compartment 103 is provided with a main air supply air duct and a directional air supply air duct located on the lower side of the main air supply air duct near the rear wall of the bladder. Wherein, the main air supply air duct and the directional air supply air duct can be disconnected or connected.
  • the main air supply air duct includes a guide air supply air duct located at the upper part, a swing air supply air duct located at the lower part, and a micro-sensing air supply air duct located on opposite sides of the swing air supply air duct.
  • the directional air supply air duct is located on the lower side of the swing air supply air duct.
  • FIG. 2 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 3 is a schematic diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments; Cutaway view of refrigerator.
  • a plurality of vertically arranged guide air supply ports 41 are arranged in the guide air supply duct, and a first air guide member 42 is provided at the guide air supply port 41 to guide the cold air to the storage compartment. 103 to ensure cooling of the top area of the storage compartment 103.
  • a first tuyere 21 and a second tuyere 22 are formed in the swing air duct and communicate with the storage compartment 103 .
  • the first tuyere 21 and the second tuyere 22 are both wave-shaped.
  • the first tuyere 21 and the second tuyere 22 are axially symmetrical; that is, the wave crest of the first tuyere 21 corresponds to the wave trough of the second tuyere 22 , and the wave trough of the first tuyere 21 corresponds to the wave crest of the second tuyere 22 . .
  • the wave-shaped first tuyere 21 and the second tuyere 22 are axially symmetrical, so that the distance between the first tuyere 21 and the second tuyere 22 in the vertical direction is constantly changing, so that the passage of the first tuyere 21 and the second tuyere
  • the cold air entering the storage compartment 103 from the tuyere 22 influences each other by convection, which accelerates the disturbance of the airflow and accelerates the temperature uniformity in the storage compartment 103 .
  • the swing air supply air duct is provided with a swing air assembly, and the swing air assembly includes a swing air plate 23 and a swing air drive mechanism for driving the swing air plate 23 to move; under the action of the swing air drive mechanism, the swing air plate 23 It can move back and forth along the wavelength direction of the wave-shaped tuyere to control the effective air outlet area of the first tuyere 21 and the second tuyere 22, so as to swing the main space of the storage compartment 103 to supply air, and effectively speed up the airflow in the storage compartment 103 flow to achieve rapid cooling.
  • the micro-sensing air supply air duct is provided with multiple rows of micro-hole air outlets 32, so as to comb the airflow in the micro-sensing air supply air duct and send it to the storage compartment 103.
  • the micro-sensing air supply duct acts as an auxiliary air supply to the swing air supply air duct, and improves the temperature uniformity of the local area on both sides of the swing air supply air duct.
  • the directional air supply air duct is arranged on the lower side of the swing air supply air duct, and the directional air supply air duct is communicated with a specific temperature-controlled or humidity-controlled storage device such as a temperature-changing room set in the storage compartment 103, so that the Direct air supply.
  • the guiding air duct is located on the upper side of the micro-sensing air duct, and the guiding air duct and the lower end of the micro-sensing air duct are always in communication, effectively ensuring the smoothness of airflow.
  • FIG. 5 is a schematic diagram of the overall structure of the air supply unit of the refrigerator according to some embodiments from another perspective. 1-5, the main air supply air duct and the directional air supply air duct are communicated through the first communication port 11a; the swing air plate 23 in the swing air supply air duct moves to open or block the first communication port 11a.
  • a cooling air duct is arranged in the refrigerator, and an evaporator is arranged in the cooling air duct to cool the air passing through the cooling air duct.
  • the cooling air duct is provided on the rear side of the freezer compartment; for a refrigerator with two evaporative refrigeration systems, the air supply Both the air duct and the cooling air duct are arranged on the rear side of the refrigerator compartment.
  • the swing air plate 23 blocks the first communication port 11a, and when the swing air supply air duct is disconnected from the directional air supply air duct, the cooling air passing through the cooling air duct
  • the air enters the directional air supply duct, and supplies air into the storage compartment 103 through the directional air supply air duct; when the swing air plate 23 moves away from the first communication port 11a, the main air supply air duct is connected to the directional air supply air duct
  • the cold air passing through the cooling air duct enters the directional air supply air duct, part of it is supplied to the storage compartment 103 through the directional air supply air duct, and the other part enters the main air supply air duct through the first communication port 11a, and is fed by the swinging air.
  • At least one of the air supply air duct, the micro-sensing air supply air duct, and the guide air supply air duct is used to supply air to the storage compartment 103 in all directions horizontally and vertically from the rear side of
  • an air supply unit 9 is provided on the rear wall of the bladder, and the air supply unit 9 includes an air duct cover 91, an air duct plate 93 located between the air duct cover 91 and the rear wall of the bladder; A uniform temperature plate 92 is provided on the side of the 91 near the pick-and-place port 104 .
  • the air duct plate 93 is formed with a directional wind area 1 located at the bottom thereof and a main wind area located at the upper part of the directional wind area 1 .
  • the lower part of the air duct plate 93 is provided with a back plate 7 corresponding to the directional wind zone 1, and the back plate 7 cooperates with the directional wind zone 1 located at the lower part of the air duct plate 93 to define a directional air supply air duct;
  • the air area is matched with the back wall of the bladder, and together with the back wall of the bladder defines the main air supply air duct; the directional air supply air duct and the main air supply air duct are communicated through the first communication port 11a.
  • a sealing strip 94 surrounding the main wind area is arranged between the air duct plate 93 and the rear wall of the bladder, so that the air duct plate 93 is sealedly connected with the rear wall of the bladder.
  • the air duct plate 93 is configured as a foam piece, which is simple to form and has thermal insulation effect.
  • the air channel plate 93 is provided with a first partition plate 11 for separating the main wind area and the directional wind area 1 , and the first communication port 11 a is formed on the first partition plate 11 .
  • the air duct plate 93 is provided with a vertical second partition 12 and a third partition 13 in the main wind zone, and a horizontal top partition 14 connecting the upper ends of the second partition 12 and the third partition 13;
  • the second partition 12 , the third partition 13 and the top partition 14 together define the swing wind area 2 ;
  • the area between the lower ends of the second partition 12 and the third partition 13 and the first partition 11 is formed with
  • the transition area 5 and the lower end of the second partition 12 and the lower end of the third partition 13 together define a second communication port 15 .
  • the first communication port 11a and the second communication port 15 are vertically opposite to each other.
  • the second partition 12 , the third partition 13 and the top partition 14 divide the main wind area above the transition area 5 into the swing wind area 2 , and the slight wind area 3 located on opposite sides of the swing wind area 2 , and the guide wind area 4 located on the upper side of the top baffle 14 .
  • the transition area 5 is connected to the directional wind area 1 through the first communication port 11a, the transition area 5 is connected to the swing wind area 2 through the second communication port 15, and the transition area 5 is connected to the micro-wind area 3 through the third connection port 11a.
  • the communication port 16 communicates with each other.
  • the transition zone 5 is always in communication with the light wind zone 3;
  • the wave-shaped first tuyere 21 and the second tuyere 22 are disposed in the swing wind zone 2 , and the first tuyere 21 and the second tuyere 22 are axially symmetrical.
  • the first tuyere 21 and the second tuyere 22 are sinusoidal; the arrangement of the sine-shaped first tuyere 21 and the second tuyere 22 can enhance the horizontal and vertical disturbance effect on the airflow, and speed up the temperature in the storage compartment 103 homogenize.
  • the length of the first tuyere 21 and the second tuyere 22 is one wavelength of a sine wave, for example, the wave-shaped first tuyere 21 and the second tuyere 22 are both S-shaped.
  • a mounting seat 71 is formed on the top of the back plate 7 ; the swing wind driving mechanism includes the swing wind motor 24 fixed on the mounting seat 71 .
  • the pendulum motor 24 is configured as a stepping motor; the pendulum motor 24 is mounted on the mounting seat 71 on the backplane 7 .
  • the output shaft of the pendulum motor 24 is provided with a first gear 25 , a second gear 26 meshing with the first gear 25 is arranged adjacent to the first gear 25 , and a screw 27 is connected to the second gear 26 .
  • the pendulum motor 24 works and drives the first gear 25 to rotate.
  • the first gear 25 meshes with the second gear 26 and drives the second gear 26 to rotate, and the second gear 26 drives the screw 27 to rotate.
  • the rotation speed of the screw 27 can be controlled, so as to control the moving speed of the swing plate 23 .
  • FIG. 7 is a schematic structural diagram of a swing plate of a refrigerator according to some embodiments.
  • the swinging air plate 23 is installed on the screw 27, and the swinging air plate 23 is provided with a connecting screw hole 231 which is matched with the screw 27.
  • the swinging fan motor 24 works and drives the screw 27 to rotate. Under the action of the rotation of the screw 27 , the swing plate 23 moves upward or upward along the screw 27 .
  • the top baffle 14 located on the upper side of the swing wind zone 2 can effectively define the limit position of the upward movement of the swing wind plate 23 .
  • the minimum distance between the first tuyere 21 and the second partition 12 is denoted as L 1
  • the minimum distance between the first tuyere 21 and the screw 27 is L 2
  • the crest of the first tuyere 21 is close to the second partition 12
  • the trough of the first tuyere 21 is close to the screw 27
  • the distance between the crest and the second partition 12 is L 1
  • the distance between the trough and the screw 27 is L 2 .
  • the swing air plate 23 When the swing air plate 23 is at the first extreme position, it blocks the first communication port 11a, and the directional wind area 1 is disconnected from the transition area 5. At this time, the directional air supply is only carried out to the storage compartment 103 through the directional air area 1. .
  • the swinging air plate 23 moves upward under the rotation of the screw 27.
  • the directional air area 1 is connected with the transition area 5
  • the transition area 5 is connected with the micro-wind area 3.
  • the micro-wind sensing area 3 is communicated with the guiding air area 4; the cooling airflow enters the directional air area 1 from the cooling air duct, and then enters the transition area 5 through the first communication port 11a; the airflow in the transition area 5 enters through the third communication port 16
  • the micro-wind zone 3 located on the opposite sides of the swing wind zone 2 enters the guide wind zone 4 on the corresponding side from the micro-wind zone 3 .
  • the micro-sensing wind zone 3 and the directional wind zone 4 to supply air at the same time.
  • the swinging air plate 23 moves upward from the second communication port 15 under the rotation of the screw 27.
  • the swinging air plate 23 moves into the swinging air area 2
  • the first air opening 21 The effective air outlet area of the second air outlet 22 increases, and the air flow from the swing air area 2 to the storage compartment 103 increases;
  • the cooling air flow in the transition area 5 is divided into the micro-wind area 3 and the swing air area 2 And enter the guide wind area 4 by the micro-wind area 3; wherein, part of the cooling air flow enters the swing wind area 2 through the second communication port 15, and is directed to the storage compartment by the wave-shaped first tuyere 21 and the second tuyere 22 103 air supply, forming a large-area horizontal air supply effect.
  • the directional wind zone 1, the swinging wind zone 2, the micro-sensing wind zone 3, and the directional wind zone 4 supply air at the same time.
  • the air flow sent from the wave-shaped first air outlet 21 and the second air outlet 22 forms a swinging effect in the lateral direction; and drives the change of air supply in other areas to realize the storage compartment. 103 Dynamic air supply effects in the whole area.
  • guide holes 232 are provided at both lateral ends of the swinging air plate 23 , and the fixed connecting rods 28 are installed in the guiding holes 232 ; during the movement of the swinging air plate 23 , the fixed connecting rods are 28 defines and guides the swing wind plate 23 to ensure the effectiveness of the movement of the swing wind plate 23 .
  • the upper end of the fixed link 28 is fixed to the top partition 14, and the lower end of the fixed link 28 is fixedly connected to the first partition 11; the two fixed links 28 are located on both sides of the first communication port 11a.
  • one of the two fixed links 28 is located adjacent to the second partition plate 12 , and the other is located adjacent to the third partition plate 13 .
  • the fixed link 28 does not affect the connectivity between the micro-wind zone 3 and the transition zone 5 .
  • the mounting seat 71 is provided on the side of the back plate 7 close to the air duct plate 93 .
  • the airflow entering the directional air duct flows out from opposite sides of the mounting seat 71 .
  • the air duct plate 93 is provided with an air guide block 17, and the air guide block 17 is located above the first gear 25 fixed on the mounting seat 71; the cross section of the air guide block 17 gradually decreases from bottom to top, that is, the air guide block 17 The upper part is narrow and the lower part is wider, so that the air guide block 17 avoids the screw 27 to be set;
  • the cold air flows through the side wall of the mounting seat 71 and avoids the top of the mounting seat 71, so as to effectively avoid the condensed water generated above the swing fan motor 24 and dripping on the swing fan motor 24 to affect the swing wind power machine 24 performance.
  • the side surface of the air guide block 17 changes in an arc shape, which can arrange the airflow more gently.
  • the upper end surface of the air guide block 17 is coplanar with the upper end surface of the first partition plate 11 , and the air guide block 17 can cooperate with the first partition plate 11 to effectively limit the downward movement limit position of the swing air plate 23 .
  • the swinging air plate 23 blocks the first communication port 11a and disconnects the communication between the directional wind area 1 and the main air area.
  • a damper assembly is provided in the directional air duct, and the damper assembly is used to control the connection or disconnection of the directional air duct and the cooling air duct.
  • the damper assembly includes a damper 72 and a damper driver 73 that drives the damper 72 to open or close.
  • a receiving portion located on the lower side of the mounting seat 71 is formed in the directional air supply duct, and the damper drive 73 is installed in the receiving portion to make full use of the space on the lower side of the mounting seat 71; and the damper drive 73 cooperates with the mounting seat 71 to The air flow of the directional supply air duct is divided.
  • the air duct plate 93 is provided with two directional air supply ports 10 located on opposite sides of the screw 27 .
  • dampers 72 in the directional air supply duct can independently control the connection and disconnection of the directional air supply port 10 on the corresponding side and the cooling air duct, and when the air door 72 is opened, the directional air supply air duct will cool the air through the directional air supply duct.
  • the airflow is directed to the directional air supply port 10 and enters the storage compartment 103 through the directional air supply port 10 .
  • FIG. 6 is a schematic structural diagram of an air duct panel and a damper assembly of a refrigerator according to some embodiments.
  • an airflow channel 31 is provided in the micro-wind zone 3 .
  • the airflow channel 31 is arranged vertically; the area corresponding to the airflow channel 31 on the air channel cover 91 is provided with a plurality of rows of micro-hole air outlets 32, so that the airflow passing through the airflow channel 31 is discharged from the micro-hole air outlet. 32 flows out into the storage compartment 103 .
  • the airflow channel 31 is gradually expanded;
  • the airflow is gathered in the airflow channel 31, and then combs the airflow through the micro-hole air outlet 32 on the air duct cover 91, and part of the air flow in the micro-sensing area 3 enters the storage compartment 103 through the micro-hole air outlet 32, and its air volume is small, And the wind speed is low, but it has a certain cooling capacity, which can maintain a constant temperature in the local area.
  • the cross section of the airflow channel 31 is in the shape of a truncated cone, and the dimension of the end close to the pick-and-place port 104 is smaller than the dimension of the end close to the back wall of the bladder.
  • the guide air supply area 4 is provided with a vertically arranged guide air supply port 41 , and a detachable first air guide member 42 is arranged at the guide air supply port 41 to guide the airflow entering the storage compartment 103 from the guide air area 4 .
  • a first air supply port 41a and a second air supply port 41b are provided on opposite sides of the guide air region 4 on the straight line where the screw 27 is located. And the first air supply port 41a is located on the side of the adjacent second air supply port 41b away from the straight line where the screw 27 is located.
  • the vertical length of the first air outlet 41a is denoted as L 3
  • the vertical length of the second air outlet 41b is denoted as L 4 .
  • L 4 : L 3 [0.6, 1].
  • the first air supply ports 41a located on opposite sides of the straight line where the screw 27 is located form axial symmetry
  • the two second air supply ports 41b also form axial symmetry.
  • FIG. 8 is a schematic structural diagram of a first air guide member of a refrigerator according to some embodiments.
  • the first air guide member 42 includes a frame 43 having the same shape as the guide air supply port 41 where it is located, and the frame 43 is provided with air guide blades 44 ; the air guide blades 44 are connected to opposite sides of the frame 43 , and The plurality of wind guide vanes 44 are distributed along the vertical interval of the wind guide frame.
  • the first air supply port 41a is provided with three air guide vanes 44, and the three air guide vanes 44 are arranged at the middle position of the first air supply port 41a or an area above the middle position.
  • the second air supply port 41b is provided with two air guide vanes 44, and the two air guide vanes 44 are distributed along the vertical direction of the second air supply port 41b and equally divide the vertical length of the second air supply port 41b. Specifically, the upper end of the first air supply port 41a is flush with the upper end of the second air supply port 41b; the two air guide vanes 44 located on the upper side in the first air supply port 41a and the two air guide blades in the second air supply port 41b The positions of the vanes 44 correspond.
  • the lowermost air guide vane 44 in the first air supply port 41a is flush with the lower end of the second air supply port 41b; Ensure the air supply volume sent to the storage compartment 103 from the guide air supply port 41, so that the air flow is directly sent to each position of the storage compartment to reduce the blind area of air supply and reduce the risk of condensation; on the other hand, through the first air supply port 41a and The air flow of the second air supply port 41b is guided and combed by the air guide blades 44 in a consistent manner, which effectively reduces the disturbance of the air flow and improves the fluidity of the air flow.
  • the air guide vanes 44 are inclined upward to guide the airflow to the top area of the storage compartment 103 .
  • the wind guide vanes 44 are configured as airfoil blades; that is, the cross section of the wind guide vanes 44 is an airfoil.
  • the inlet angle of the wind guide vane 44 is denoted as ⁇ , and the outlet angle is denoted as ⁇ , where ⁇ [15°, 30°]; ⁇ [40°, 70°].
  • the airfoil blades provided above can effectively guide the airflow and reduce the airflow loss caused by the structural resistance, thereby increasing the overall air supply volume.
  • the cross-sectional dimension of the guide air supply port 41 is unchanged, and the frame 43 of the first air guide member 42 is installed in the guide air supply port 41 .
  • the guide air supply port 41 is provided as a stepped hole.
  • the guide air supply port 41 includes a first through hole and a second through hole with different diameters but connected; wherein, the first through hole is located on the side of the second through hole close to the inner wall of the bladder, and the size of the first through hole is larger than the size of the second through hole.
  • the cross-sections of the first through hole and the second through-hole are concentric, and the cross-sections of the first through-hole and the second through-hole are rectangular.
  • the frame 43 of the first air guide 42 is set in a stepped type; the frame 43 includes a main frame and a ring frame arranged at one end of the main frame; the ring frame surrounds the outside of the main frame, and the ring frame and the main frame share the same end surface .
  • the main frame is installed in the second through hole and matched with the second through hole; the ring frame is installed in the first through hole and matched with the first through hole.
  • the thickness of the ring frame is denoted as S 1
  • the thickness of the main frame is denoted as S 2
  • the embodiments of the present disclosure can realize the air supply in different regions, and can accurately supply air to each air supply area.
  • the guiding air area 4 can realize upward air supply from a large angle, effectively eliminate the blind area of air supply, and reduce the risk of condensation in local areas (such as the top wall of the inner tank 101).
  • the setting of the swing air area 2 can greatly increase the air supply range and effectively cover In most areas of the storage compartment 103, the local temperature difference is reduced; the soft wind in the micro-wind zone 3 is beneficial to supplement the air supply system of the refrigerator, balance the temperature of the local area, and make the temperature of the storage compartment 103 more balanced.
  • the directional air supply area can quickly adjust the air volume and speed, which is convenient for the adjustment of the dry and wet area, and realizes the rapid temperature and humidity regulation of the storage device with specific temperature control or humidity control.
  • the air outlet forms are arranged in different regions, so as to provide precise air supply and comprehensive air supply to the storage compartment 103 , and effectively improve the temperature uniformity of the storage compartment 103 .
  • FIG. 9 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 10 is a schematic diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments. As shown in FIG. 9-FIG.
  • a slit-shaped jet outlet 18 is provided, the width of the jet outlet 18 is denoted as d 2 , the distance between two adjacent jet outlets 18 is s 2 , and d 2 ⁇ [1 , 1.5], s 2 ⁇ [1, 1.5], unit: mm.
  • the airflow channel 31 is gradually expanding; the micro-wind zone 3 cooperates with the airflow channel 31 to form a Laval-like nozzle structure that contracts first and then expands.
  • the jet outlet 18 enters the storage compartment 103, and under the action of the jet flow, the air flows from each slit-shaped jet outlet 18 are mixed with each other, so that the regional temperature can be quickly balanced.
  • the area corresponding to the airflow channel 31 is provided with three wave-shaped jet outlets 18 , and the wave-shaped outlet is sinusoidal.
  • the total length of a sinusoidal wave tuyere is twice its sinusoidal wavelength.
  • the first tuyere 21 is consistent with the wave shape trend of the jet outflow tuyere 18 on the adjacent side; the second tuyere 22 is consistent with the wave shape trend of the third tuyere 55 on the adjacent side.
  • the third tuyere ports 55 located on opposite sides of the swing wind area 2 are arranged axially symmetrically.
  • FIGS. 2-8 Compared with the embodiments shown in FIGS. 2-8 , other embodiments of the present disclosure only provide a swing wind zone 2 , a slight wind zone 3 and a directional wind zone 1 . And the setting in the swing wind zone 2 is different from the setting in the swing wind zone in Figure 2-8.
  • FIG. 11 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 12 is a schematic diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 13 is a schematic diagram of an air supply unit of a refrigerator according to some embodiments. Schematic diagram of the overall structure
  • FIG. 14 is a schematic diagram of the structure of an air duct panel of a refrigerator according to some embodiments.
  • the air channel plate 93 includes a directional wind area 1 located at the bottom and a main wind area located at the upper part of the directional wind area 1 .
  • the lower part of the air duct plate 93 is provided with a back plate 7 corresponding to the directional wind area 1, and the back plate 7 cooperates with the lower part of the air duct plate 93 to define a directional air supply air duct;
  • the walls are matched with each other, and together with the rear wall of the bladder define the main air supply air duct; the directional air supply air duct and the main air supply air duct communicate with each other through the first communication port 11a.
  • the directional wind area 1 is always communicated with the main wind area through the first communication port 11a.
  • a sealing strip 94 surrounding the main wind area is arranged between the air duct plate 93 and the rear wall of the bladder, so that the air duct plate 93 is sealedly connected with the rear wall of the bladder.
  • the air duct panel 93 is configured as a foam piece, which is simple to form and has thermal insulation effect.
  • a uniform temperature plate 92 is provided on the side of the air duct cover plate 91 close to the pick-and-place port 104 .
  • the air channel plate 93 is provided with a first partition plate 11 for separating the main wind area and the directional wind area 1 , and the first communication port 11 a is formed on the first partition plate 11 .
  • the air duct plate 93 is provided with an air guide block 17 , the air guide block 17 is arranged at the first communication port 11 a , and the upper end surface of the air guide block 17 is coplanar with the upper end surface of the first partition plate 11 .
  • the shape of the air guide block 17 is the same as the structure in the embodiment shown in FIG. 2 to FIG. 5 , and details are not repeated here. Wherein, the parts of the first partition plate 11 on both sides of the first communication port 11a are respectively denoted as the first sub-board and the second sub-board.
  • the air duct plate 93 is formed with a longitudinally extending dividing bar 20, and the dividing bar 20 divides the main air area into a first air area 2a and a second air area 2b on opposite sides thereof, wherein the first air area 2a and the second air area 2b are separated.
  • the first sub-panel is located on the same side of the dividing bar 20
  • the second wind region 2 b and the second sub-panel are situated on the same side of the dividing bar 20 .
  • the wave-shaped first tuyere 21 is arranged in the first wind zone 2a
  • the wave-shaped second tuyere 22 is arranged in the second wind zone 2b
  • the first tuyere 21 and the second tuyere 22 are axially symmetrical.
  • Both the first wind zone 2a and the second wind zone 2b are provided with swing wind components.
  • the swing wind drive mechanism of the swing air assembly located in the first wind zone 2a is fixed on the first sub-board, one end of the fixed link 28 located in the first wind zone 2a is connected to the top wall of the air duct plate 93, and the other end is connected to the top wall of the air duct plate 93. connected to the first sub-board.
  • the swing wind drive mechanism of the swing air assembly located in the second wind zone 2b is fixed on the second sub-board, and one end of the fixed link 28 located in the second wind zone 2b is connected to the top wall of the air duct plate 93, The other end is connected with the second sub-board.
  • the distance between the crest of the first tuyere 21 or the second tuyere 22 and the screw 27 in the corresponding wind zone is denoted as D 1
  • the distance between the wave trough of the first tuyere 21 or the second tuyere 22 and the screw 27 in the corresponding wind zone is denoted as D 1 .
  • D 2 the distance between the wave trough of the first tuyere 21 or the second tuyere 22 and the screw 27 in the corresponding wind zone.
  • the structure of the swing wind assembly disposed in the first wind zone 2a or the second wind zone 2b in this embodiment is the same as the structure of the swing wind assembly in FIGS. 2-8 , and will not be repeated here.
  • two groups of swinging air components are provided to swing the air in the first wind zone 2a or the second wind zone 2b where they are located.
  • the swing wind drive mechanism of the swing wind assembly in this embodiment is arranged on the first partition plate 11 .
  • the wave-shaped first tuyere 21 and the second tuyere 22 are sinusoidal; the height of the main wind area is denoted as H 0 , and the width is denoted as W 0 ; the wavelengths of the sinusoidal first tuyere 21 and the second tuyere 22 are denoted as ⁇ ,
  • the wave height is recorded as H b .
  • the above arrangement makes full use of the space of the main air area, reduces the blind area of air supply, and provides air supply to the main space of the storage compartment 103 in an all-round way.
  • the area between the first air outlet 21 and the second air outlet 22 on the main air area is provided with a plurality of air flow channels 31
  • the area of the air channel cover plate 91 that overlaps with the air flow channel 31 is provided with a plurality of air flow channels 31 .
  • Row the micro-hole air outlet 32 .
  • the cross-section of the airflow channel 31 is fan-shaped, and the micro-hole air outlets 32 are distributed in concentric circles.
  • the main wind area is provided with a first channel, a second channel, a third channel and a fourth channel; wherein, the first channel and the second channel are on the same circumference, and the first channel and the second channel form center symmetry;
  • the third channel and the fourth channel are on the same circle, and the third channel and the fourth channel form center symmetry; the radius of the circle where the third channel is located is larger than the radius of the circle where the first channel is located, and the circle where the third channel is located is the same as the circle where the first channel is located.
  • the circumferences are concentric circles.
  • the third channel and the first channel correspond to the same central angle.
  • the first channel is located directly above the second channel.
  • the first air outlet 21 and the second air outlet 22 are provided with a second air guide member 29, the shape of the second air guide member 29 is consistent with the first air outlet 21 or the second air outlet 22, and it is detachable It is installed in the first tuyere 21 and the second tuyere 22.
  • the second air guide member 29 is in a wave shape.
  • the swing wind motor 24 works to drive the corresponding screw 27 to rotate, and the screw 27 drives the corresponding swing wind plate 23 to move up and down, so that the airflow in the wind zone changes continuously.
  • the swinging air plate 23 moves to the lower end, the air volume in the area below the wind zone where it is located is relatively large, and the directional air supply air volume is relatively large.
  • the wind deflector moves upward, the air outlet volume of the wave-shaped first tuyere 21 or the second tuyere 22 gradually increases, and the air volume of the airflow channel 31 between the first tuyere 21 and the second tuyere 22 also increases.
  • the wind blowing condition of the wave-shaped first air outlet 21 or the second air outlet 22 can be continuously changed vertically and horizontally, and a swinging effect is formed in the storage compartment 103 .
  • a pendulum wind and micro-sensing composite wind zone 30 are arranged between the directional wind zone 1 and the guiding wind zone 4, and the pendulum wind and micro-sensing composite wind zone 30 are arranged and the pendulum wind located therein.
  • the components differ from the embodiment shown in Figures 2-8.
  • FIG. 15 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 16 is a schematic diagram of an exploded structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 17 is a schematic diagram of an air supply unit of a refrigerator according to some embodiments.
  • Schematic diagram of the overall structure
  • FIG. 18 is a schematic diagram of the overall structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 19 is a schematic diagram of the structure of an air duct plate of a refrigerator according to some embodiments
  • FIG. 20 is a cross-sectional view of FIG. 19 along B-B
  • 21 is a schematic structural diagram of an air duct panel of a refrigerator according to some embodiments
  • FIG. 22 is a schematic structural diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments.
  • the directional wind zone 1, the transition zone 5, the swing wind and micro-sensing composite wind zone 30, and the guide wind zone 4 are arranged in sequence.
  • the pendulum wind and micro-sensing composite wind zone 30 is provided with a pendulum wind component.
  • the setting of the guide wind area 4 , the directional wind area 1 and the transition area 5 is the same as that of the first embodiment, and will not be repeated here.
  • the swing wind assembly includes a swing wind drive mechanism and a swing wind plate 23 .
  • the pendulum drive mechanism includes a pendulum motor 24, a first gear 25 mounted on the output shaft of the pendulum motor 24, a ring gear 60 co-rotating with the first gear 25, and simultaneously with the first gear 25. 25 and the second gear 26 meshing with the ring gear 60 .
  • the swing wind plate 23 is located outside the inner gear ring 60 and is arranged along the radial direction of the inner gear ring 60 .
  • the swing wind plate 23 includes a first wind plate 61 and a second wind plate 62 .
  • the included angle between the first wind panel 61 and the second wind panel 62 is 90°.
  • the rotation center of the ring gear 60 (the rotation center of the output shaft of the swing fan motor 24 ) is denoted as O
  • the end of the first air plate 61 away from the output shaft of the swing fan motor 24 is denoted as the first free end B 1
  • the second fan plate 61 is denoted as the first free end B 1 .
  • the end of the plate 62 away from the output shaft of the pendulum motor 24 is denoted as the second free end B 2 ; the outer diameter of the ring gear 60 is R 0 .
  • the size setting of the ring gear 60 can meet the driving requirements on the one hand, and ensure the effective driving of the swing wind frame by the swing wind drive mechanism; on the other hand, it can reduce its blocking effect on the airflow.
  • the first gear 25 drives the second gear 26 to rotate
  • the second gear 26 drives the ring gear 60 to rotate with the output shaft of the swing motor 24 as the rotation axis
  • the ring gear 60 drives the ring gear 60 to rotate.
  • the first wind plate 61 and the second wind plate 62 rotate to sweep across the swing wind area 2 .
  • a first end plate 30a and a second end plate 30b are provided at the upper end of the swing and micro-sensing composite wind zone 30
  • a third end plate 30c and a fourth end plate 30d are provided at the lower end of the swing and micro-sensing composite wind zone 30
  • the first end plate 30a and the second end plate 30b are respectively located on opposite sides of the vertical plane of the output shaft of the over-swing wind motor 24
  • the third end plate 30c and the fourth end plate 30d are respectively located at the over-swing wind motor 24 on opposite sides of the vertical plane of the output shaft.
  • the first end plate 30a, the second end plate 30b, the third end plate 30c and the fourth end plate 30d are respectively connected to the side walls of the air duct plates 93 on the corresponding sides thereof.
  • the first end plate 30a, the second end plate 30b, the third end plate 30c and the fourth end plate 30d are distributed in the counterclockwise direction from the side of the back wall of the bladder facing the air duct plate 93.
  • the ends of the first end plate 30a, the second end plate 30b, the third end plate 30c and the fourth end plate 30d close to the swing fan motor 24 are marked as the first end A 1 , the second end A 2 , and the third end A 3 in sequence and the fourth end A 4 ; wherein the first end A 1 and the second end A 2 jointly define a fourth communication port 33 that communicates with the guide wind region 4 and the swing wind and micro-sensing composite wind region 30 ; the third end A 3 and The fourth end A 4 jointly defines a fifth communication port 34 that communicates the transition zone 5 and the swing wind and micro-sensing composite wind zone 30 .
  • the transition area 5 is not provided, and the swing wind and micro-sensing composite wind area 30 is directly communicated with the directional wind area 1 through the first communication port 11a. That is, the first partition plate 11 is located on both sides of the first communication port 11a to form the first end A1 and the second end A2. This embodiment and the following parts are described by taking the transition region 5 as an example for description.
  • the first end A 1 and the third end A 3 are centrally symmetric with respect to O, and the second end A 2 and the fourth end A 4 are centrally symmetric with respect to O.
  • the end faces of the first end A 1 , the second end A 2 , the third end A 3 and the fourth end A 4 for matching with the first free end B 1 or the second free end B 2 are arc-shaped;
  • the arc-shaped end surfaces of one end A 1 , the second end A 2 , the third end A 3 and the fourth end A 4 are co-circular.
  • the circle where the arc-shaped end faces of the first end A 1 , the second end A 2 , the third end A 3 and the fourth end A 4 are located is the same as the movement track circle of the end faces of the first free end B 1 or the second free end B 2 A circle to ensure the rotational movement of the first free end B 1 or the second free end B 2 and any one of the first end A 1 , the second end A 2 , the third end A 3 and the fourth end A 4 Cooperate.
  • the area corresponding to ⁇ A 1 OA 2 in the swing wind and micro-sensing compound wind area 30 is marked as the first area 51 ;
  • the area corresponding to ⁇ A 2 OA 3 in the swing wind and micro-sensing compound wind area 30 is marked as It is the second area 52;
  • the area corresponding to ⁇ A 3 OA 4 in the swing wind and micro - sensing compound wind area 30 is recorded as the third area 53 ;
  • the corresponding area is denoted as the fourth area 54
  • the first area 51 communicates with the guide wind area 4 through the fourth communication port 33
  • the third area 53 and the transition area 5 communicate with each other through the fifth communication port 34 .
  • the first area 51 , the second area 52 , the third area 53 and the fourth area 54 are all provided with air flow channels 31 ; the overlapping area of the air channel cover plate 91 with the air flow channel 31 is provided with multiple rows of micro-holes Air outlet 32.
  • the cross-section of the airflow channel 31 is fan-shaped, and the microporous air outlets 32 are distributed in concentric circles.
  • the cross section of the airflow channel 31 increases from small to large along the airflow direction.
  • the airflow channel 31 includes a first air outlet 31a and a second air outlet 31b with different diameters but connected; wherein, the first air outlet 31a is located on the side of the second air outlet 31b away from the rear wall of the bladder, and the first air outlet 31a The size of the first air outlet 31a is larger than that of the second air outlet 31b.
  • the cross sections of the first air outlet 31a and the second air outlet 31b are concentric. The airflow enters the airflow channel 31, gathers in the first air outlet 31a with a larger space, and then enters the storage compartment 103 through the micro-hole air outlet 32 to form a micro-sensing air supply effect.
  • the hole depth of the first air outlet 31a is denoted as H 1
  • the hole depth of the second air outlet 31b is denoted as H 2
  • H 1 : H 2 ⁇ [0.2, 0.4]; exemplarily, H 1 : H 2 1/3.
  • the airflow channel 31 is fan-shaped, and the airflow channel 31 includes a first micro-sensing channel 5 a and a fifth micro-sensing channel 5 e located in the first area 51 , and a micro-sensing channel 5 e located in the second area 52 .
  • the first micro-sensing channel 5a, the second micro-sensing channel 5b, the third micro-sensing channel 5c, and the fourth micro-sensing channel 5d are located on the same circumference with O as the center.
  • the fifth micro-sensing channel 5e is located on the side of the first micro-sensing channel 5a away from O, and the fifth micro-sensing channel 5e and the first micro-sensing channel 5a have a concentric angle;
  • the sixth micro-sensing channel 5f is located in the third micro-sensing channel 5c On the side away from O, the sixth micro-sensing channel 5f and the third micro-sensing channel 5c share a central angle.
  • the second area 52 is provided with a fan-shaped third tuyere 55 located on the side of the second micro-sensing channel 5b away from O
  • the fourth area 54 is provided with a fan-shaped ring located on the side of the fourth micro-sensing channel 5d away from O
  • the fourth tuyere 56 The second micro-sensing channel 5b and the third tuyere 55 share a central angle, and the fourth micro-sensing channel 5d and the fourth tuyere 56 share a central angle.
  • the third tuyere 55 and the fourth tuyere 56 along the airflow direction remain unchanged; and the air duct cover 91 is provided with openings corresponding to the third tuyere 55 and the fourth tuyere 56 .
  • the fifth micro-sensing channel 5e, the third tuyere 55, the sixth micro-sensing channel 5f, and the fourth tuyere 56 are located on the same circumference with O as the center.
  • the four tuyere ports 56 are all located in the circumferential area with the center of O and the radius of A 1 O where the first end A 1 , the second end A 2 , the third end A 3 and the fourth end A 4 are located. In order to ensure that the first air plate 61 and the second air plate 62 can effectively sweep the above micro-sensing channels when rotating.
  • the pendulum motor 24 drives the first air plate 61 and the second air plate 62 to rotate to the second position
  • the first free end B1 is matched with the first end A1
  • the second free end B2 is connected to the third end A. 4
  • the first area 51, the second area 52, and the third area 53 are connected, and the fourth communication port 33 and the fifth communication port 34 are opened;
  • the cold air of the cooling air duct enters the directional air area 1, and a part of the The airflow is sent into the storage compartment 103 from the directional air supply ports 10 on both sides;
  • the other part of the cold air passes through the first communication port 11a, the transition area 5, the fifth communication port 34, the third area 53, the second area 52, the first area 51, the fourth communication port 33, the leading wind area 4, and pass through the third micro-sensing channel 5c, the sixth micro-sensing channel 5f, the second micro-sensing channel 5b, the third air port 55, the first micro-sensing channel 5a,
  • the third area 53, the second area 52, the first area 51 and the guiding wind area 4 in the directional wind area 1, the swing wind and the micro-sensing composite wind area 30 are supplied with air at the same time, and the simultaneous directional air supply and local air supply are realized.
  • the pendulum motor 24 drives the first air plate 61 and the second air plate 62 to rotate to the third position
  • the first free end B1 is matched with the fourth end A2
  • the second free end B2 is connected to the third end A. 1
  • the second area 52, the third area 53, and the fourth area 54 are connected, the fourth communication port 33 is in a blocked state, and the fifth communication port 34 is opened;
  • the cold air of the cooling air duct enters the directional air area 1 , a part of the air flow is sent into the storage compartment 103 from the directional air supply ports 10 on both sides;
  • the other part of the cold air passes through the first communication port 11a, the transition area 5, the fifth communication port 34, and the third area 53 in turn, and then branched to the first communication port 11a, transition area 5, fifth communication port 34, and third area 53
  • the second area 52, the fourth area 54 through the third micro-sensing channel 5c, the sixth micro-sensing channel 5f, the second micro-sensing
  • the pendulum motor 24 drives the first air plate 61 and the second air plate 62 to rotate to the fourth position
  • the first free end B1 is matched with the fourth end A3, and the second free end B2 is connected to the third end A. 2
  • the third area 53, the fourth area 54, and the first area 51 are connected, and the fourth communication port 33 and the fifth communication port 34 are opened;
  • the cold air of the cooling air duct enters the directional air area 1, and a part of the The airflow is sent into the storage compartment 103 from the directional air supply ports 10 on both sides;
  • the other part of the cold air passes through the first communication port 11a, the transition zone 5, the fifth communication port 34, the third zone 53, the fourth zone 54, the first area 51, the fourth communication port 33, the guide wind area 4, and pass through the third micro-sensing channel 5c, the sixth micro-sensing channel 5f, the fourth micro-sensing channel 5d, the fourth air port 56, the first micro-sensing channel 5a, the
  • the third area 53 , the fourth area 54 , the first area 51 and the guiding wind area 4 in the directional wind area 1 , the swing wind and the micro-sensing composite wind area 30 simultaneously supply air into the storage compartment 103 .
  • the effects of simultaneous directional air supply, micro-sensing air supply, directional air supply and arc air outlet are realized.
  • the airflow flows through the inner gear ring, it flows along the arc-shaped outer wall surface of the inner gear ring to guide the airflow.
  • the air volume and wind speed of each wind zone are different, and under the combined action, a differentiated air supply effect is formed.
  • the swinging air and the micro-sensing composite wind area 30 form the effect of swinging air and micro-sensing air supply; and drive the change of the air supply in other areas, so as to realize the completeness of the storage compartment 103. Dynamic air supply effect for the area.
  • FIG. 15 to FIG. 22 Other embodiments of the present disclosure have the same principles as the embodiments shown in FIG. 15 to FIG. 22 , and the main difference is that only the swing wind area 2 and the directional wind area 1 are provided.
  • FIG. 23 is a schematic diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments
  • FIG. 24 is a schematic diagram of an overall structure of an air supply unit of a refrigerator according to some embodiments.
  • a swing wind assembly is provided in the swing wind area 2, and its structure is the same as that of the swing air assembly in the fourth embodiment, and the air flow is controlled by rotation, which will not be repeated here.
  • the main reason is that the air flow channels in the swing wind zone 2 are set differently.
  • the rotating area of the swing air assembly is provided with a plurality of air flow channels, one end of each air flow channel is communicated with the rotating area of the swing air assembly, and the other end is communicated with the storage compartment 103; the swing air plate of the swing air assembly rotates to The airflow is supplied to each airflow channel that communicates with it.
  • this embodiment is described on the basis of the embodiment shown in FIGS. 15-22 , and its essence is not limited to the setting of the swing wind assembly in the embodiment shown in FIGS. 2- The swing air assembly in the embodiment shown in FIG. 21 .
  • the main wind area is only set as the swing wind area 2 .
  • a first distribution plate 81 , a second distribution plate 82 , a third distribution plate 83 , a fourth distribution plate 84 , a fifth distribution plate 85 and a sixth distribution plate 86 are provided in the swing wind area 2 .
  • the first dividing plate 81, the second dividing plate 82, the third dividing plate 83, the fourth dividing plate 84, the fifth dividing plate 85 and the sixth dividing plate 86 are arranged clockwise cloth.
  • the plane perpendicular to the air duct plate 93 and over-swinging the output shaft of the fan motor 24 is denoted as the longitudinal center plane M;
  • the fourth dividing plate 84 , the fifth dividing plate 85 and the sixth dividing plate 86 are located on the other side of the longitudinal center plane M.
  • the first distribution plate 81 , the second distribution plate 82 and the third distribution plate 83 and the sixth distribution plate 86 , the fifth distribution plate 85 and the fourth distribution plate 84 form axial symmetry with respect to the longitudinal center plane M in sequence.
  • the end of the first distribution plate 81 , the second distribution plate 82 , the third distribution plate 83 , the fourth distribution plate 84 , the fifth distribution plate 85 and the sixth distribution plate 86 which are close to the output shaft of the pendulum motor 24 are sequentially marked as the first The shunt end K 1 , the second shunt end K 2 , the third shunt end K 3 , the fourth shunt end K 4 , the fifth shunt end K 5 and the sixth shunt end K 6 .
  • the first split end K 1 , the second split end K 2 , the third split end K 3 , the fourth split end K 4 , the fifth split end K 5 and the sixth split end K 6 are all on the same circle with O as the center superior.
  • the first distribution plate 81, the second distribution plate 82 extend upward
  • the third distribution plate 83 extends downward.
  • the area corresponding to ⁇ K 1 OK 2 in the swing wind and micro-sensing composite wind zone 30 is denoted as the first flow channel 8a; the area corresponding to ⁇ K 2 OK 3 in the swing wind and micro-sensing composite wind zone 30 Denoted as the second flow channel 8b; the area corresponding to ⁇ K 3 OK 4 in the swing wind and micro-sensing composite wind zone 30 is denoted as the third flow channel 8c ;
  • the area corresponding to OK 5 is denoted as the fourth flow channel 8d;
  • the area corresponding to ⁇ K 5 OK 6 in the swing wind and micro-sensing composite wind zone 30 is denoted as the fifth flow channel 8e; the swing wind and micro-sensing composite wind zone
  • the area corresponding to ⁇ K 6 OK 1 within 30 is denoted as the sixth channel 8f.
  • the first flow channel 8a, the second flow channel 8b, the fourth flow channel 8d, the fifth flow channel 8e, and the sixth flow channel 8f are arranged around the movement area of the swinging air plate 23 and communicate with it; the first air plate 61 When rotating with the second air plate 62, the airflow is introduced into the above flow passages.
  • the sixth flow channel 8f extends upward from the bottom, and the first flow channel 8a and the fifth flow channel 8e are located on opposite sides of the sixth flow channel 8f and extend upward.
  • the third flow channel 8c extends downward, and the second flow channel 8b and the fourth flow channel 8d are located on opposite sides of the third flow channel 8c.
  • the first flow channel 8a, the second flow channel 8b, the third flow channel 8c, the fourth flow channel 8d, the fifth flow channel 8e and the sixth flow channel 8f are distributed clockwise.
  • the first flow channel 8a, the second flow channel 8b, the fourth flow channel 8d and the fifth flow channel 8e are all provided with a guide plate 87.
  • the guide vane 87 is set as an airfoil, and the inlet angle of the guide vane 87 is the airflow direction; the outlet angle ⁇ of the guide vane 87 is set upward or downward; in this embodiment, ⁇ [30°, 50°].
  • both the first flow channel 8a and the fifth flow channel 8e are provided with two guide vanes 87, and the two guide vanes 87 are arranged upward; both the second flow channel 8b and the fourth flow channel 8d are provided with
  • the arrangement of the deflector 87 can increase the side air outlet area, so that the air flow can enter the storage compartment 103 more uniformly.
  • the guide pieces 87 in the first flow channel 8a, the second flow channel 8b, the fourth flow channel 8d, and the fifth flow channel 8e are all disposed at positions close to the air outlet end of the air flow channel where they are located.
  • the first diverter plate 81 extends upward toward the side wall of the adjacent air duct plate 93.
  • a first air outlet 80a is formed between the air outlet end of the first diverter plate 81 and the top wall of the air duct plate 93.
  • the first air outlet The length of 80a is denoted as L ⁇ 1 ;
  • the air outlet end of the second dividing plate 82 and the air outlet end of the first dividing plate 81 form a second air outlet 80b, and the length of the second air outlet 80b is denoted as L ⁇ 2 ;
  • a third air outlet 80c is formed between the air outlet end of the dividing plate 82 and the air outlet end of the third dividing plate 83, and the length of the third air outlet 80c is denoted as L ⁇ 3 ;
  • a fourth air outlet 80d is formed between the partition plates, and its length is denoted as L' 4 .
  • L ⁇ 2 L ⁇ 1 ⁇ [1.5, 2.5], L ⁇ 2 : L ⁇ 4 ⁇ [1.5, 2.5]; L ⁇ 3 : L ⁇ 1 ⁇ [1.5, 2.5], L ⁇ 3 : L ⁇ 4 ⁇ [1.5, 2.5].
  • the end of the first air plate 61 away from the output shaft of the swing wind motor 24 is denoted as the first free end B 1
  • the end of the second air plate 62 away from the output shaft of the swing air motor 24 is denoted as the second free end B 2 ;
  • first free end B 1 or the second free end B 2 can communicate with the first split end K 1 , the second split end K 2 , the third split end K 3 , the fourth split end K 4 , and the fifth split end K 5 and any one of the sixth split ends K 6 are butt-fitted, so as to effectively send the airflow into the flow channel through which the first swing plate 61 and the second swing plate 62 rotate during the rotation.
  • the first shunt end K 1 , the second shunt end K 2 , the third shunt end K 3 , the fourth shunt end K 4 , the fifth shunt end K 5 and the sixth shunt end K 6 are used to communicate with the The matched end faces of a free end B1 or a second free end B2 are all set as arcs; and the first split end K 1 , the second split end K 2 , the third split end K 3 , and the fourth split end K 4 , the arc-shaped end faces of the fifth split end K 5 and the sixth split end K 6 are co-circular; the first split end K 1 , the second split end K 2 , the third split end K 3 , the fourth split end K 4 , the third split end K 4 , the The circle where the arc-shaped end faces of the fifth split end K 5 and the sixth split end K 6 are located is the same circle as the running track circle of the end face of the first free end B 1 or the second free end B 2 to ensure that the first
  • the air volume and wind speed of each wind area are different, and under the combined action, a differentiated air supply effect is formed.
  • the swinging air plate 23 With the rotational movement of the swinging air plate 23 , the swinging air and the micro-sensing composite air area 30 form a swinging air effect, so as to achieve a dynamic air supply effect in the entire area of the storage compartment 103 .
  • ⁇ B 1 OB 2 ⁇ 180°.
  • the plurality of storage compartments 103 in the refrigerator include refrigerating compartments
  • the storage compartments 103 in the above implementation are refrigerating compartments
  • the air blowing unit 9 is provided on the rear wall of the refrigerating compartment.
  • a plurality of air supply air ducts of different forms are provided, and various frontal air outlets are provided.
  • the air outlet for supplying air to the storage compartment 103 is set in a straight line or arc shape of unequal length, and the air supply air duct is provided with different air outlet forms in different regions, which increases the capacity of the storage compartment 103.
  • the air outlet area reduces the dead angle of the air outlet.
  • a plurality of micro-hole air outlets 32 are also provided, so as to realize micro-hole air outlet and supplement the air ducts for air outlet.
  • a movable swing air component is arranged, which reciprocates under the action of the swing air drive mechanism, and cooperates with the air outlet structure to realize horizontal and vertical (up, down, left and right) swing air and directional air supply.
  • the present disclosure performs partitioned air supply, thereby performing differentiated and targeted air supply, facilitating the adjustment of air volume and wind direction, and realizing refined storage; and solves the problem of a single air supply method in traditional refrigerators; the present disclosure realizes partitioned air supply, Diversified air supply methods such as directional air supply, micro-hole air supply, and swing air can achieve the user experience goals of separate distribution, separate storage of dry and wet, and precise temperature and humidity control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱,包括:限定出隔热的储藏间室(103)的箱体、其内设有蒸发器的冷却风道、与冷却风道相连通的定向送风风道、设于储藏间室(103)的后壁上的摆风送风风道;定向送风风道设于储藏间室(103)的后壁上并位于储藏间室(103)的底部;摆风送风风道位于定向送风风道的上方;摆风送风风道内设有摆风组件,摆风组件包括:摆风板(23)、与摆风板(23)相连接的摆风驱动机构;当摆风驱动机构工作时,所述摆风板(23)在摆风驱动机构的作用下运动并扫过摆风送风风道。

Description

冰箱
相关申请的交叉引用
本公开要求在2021年4月8日提交中国专利局、申请号为202110377282.7,发明名称为冰箱;在2021年4月8日提交中国专利局、申请号为202120717322.3,发明名称为冰箱;在2021年4月8日提交中国专利局、申请号为202120716892.0,发明名称为冰箱;在2021年4月8日提交中国专利局、申请号为202120717321.9,发明名称为冰箱的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于家用电冰箱的技术领域,尤其涉及一种冰箱。
背景技术
冰箱的冷藏室内的流场分布及温度分布对储存在其内的食品有着重要影响,而流场分布及温度分布取决于冷藏室风口位置及内部结构。
发明内容
本公开一些实施例提供冰箱,包括:
箱体,其限定出隔热的储藏间室;
冷却风道,其设于所述箱体上;所述冷却风道内设有蒸发器,以对经过所述冷却风道的空气进行降温;
定向送风风道,其与所述冷却风道相连通;所述定向送风风道设于所述储藏间室的后壁上并位于所述储藏间室的底部;
摆风送风风道,设于所述于所述储藏间室的后壁上,并位于所述定向送风风道的上方;所述摆风送风风道内设有摆风组件,所述摆风组件包括:
摆风板;
摆风驱动机构,其与所述摆风板相连接;
所述摆风驱动机构工作时,所述摆风板在所述摆风驱动机构的作用下运动并扫过所述摆风送风风道。
附图说明
图1为根据一些实施例的冰箱的整体结构示意图;
图2为根据一些实施例的冰箱的送风单元的分解结构示意图;
图3为根据一些实施例的冰箱的送风单元的整体结构示意图;
图4为根据一些实施例的图3沿A-A方向的冰箱剖视图;
图5为根据一些实施例的冰箱的送风单元另一视角的整体结构示意图;
图6为根据一些实施例的冰箱的风道板及风门组件的结构示意图;
图7为根据一些实施例的冰箱的摆风板的结构示意图;
图8为根据一些实施例的冰箱的第一导风件的结构示意图;
图9为根据一些实施例的冰箱的送风单元的分解结构示意图;
图10为根据一些实施例的冰箱的送风单元整体结构示意图;
图11为根据一些实施例的冰箱的送风单元的分解结构示意图;
图12为根据一些实施例的冰箱的送风单元的整体结构示意图;
图13为根据一些实施例的冰箱的送风单元的整体结构示意图;
图14为根据一些实施例的冰箱的风道板的结构示意图;
图15为根据一些实施例的冰箱的送风单元的分解结构示意图;
图16为根据一些实施例的冰箱的送风单元的分解结构示意图;
图17为根据一些实施例的冰箱的送风单元的整体结构示意图;
图18为根据一些实施例的冰箱的送风单元的整体结构示意图;
图19为根据一些实施例的冰箱的风道板的结构示意图;
图20为图19沿B-B的剖视图;
图21为根据一些实施例的冰箱的风道板的结构示意图;
图22为根据一些实施例的冰箱的送风单元的整体结构示意图;
图23为根据一些实施例的冰箱的送风单元的整体结构示意图;
图24为根据一些实施例的冰箱的送风单元的整体结构示意图。
以上图中:内胆101;外壳102;储藏间室103;取放口104;送风单元9;风道盖板91;匀温板92;风道板93;密封条94;第一隔板11;第一连通口11a;第二隔板12;第三隔板13;顶隔板14;第二连通口15;第三连通口16;导风块17;过渡区5;背板7;安装座71;风门72;风门驱动73;定向风区1;定向送风口10;摆风风区2;第一风口21;第二风口22;摆风板23;连接螺孔231;导向孔232;摆风电机24;第一齿轮25;第二齿轮26;螺杆27;固定连杆28;微感风区3;气流通道31;微孔出风口32;导向风区4;导向送风口41;第一送风口41a;第二送风口41b;第一导风件42;边框43;导风叶片44;射流出风口18;分隔条20;第一风区2a;第二风区2b;第二导风件29;摆风及微感复合风区30;内齿圈60;第一风板61;第二风板62;第一端板30a;第二端板30b;第三端板30c;第四端板30d;第四连通口33;第五连通口34;第一区51;第二区52;第三区53;第四区54;第一出风孔31a;第二出风孔31b;第一微感通道5a;第二微感通道5b;第三微感通道5c;第四微感通道5d;第五微感通道5e;第六微感通道5f;第三风口55;第四风口56;第一分流板81;第二分流板82;第三分流板83;第四分流板84;第五分流板85;第一流道8a;第二流道8b;第三流道8c;第四流道8d;第五流道8e;第六流道8f;导流片87;第一出风口80a;第二出风口80b;第三出风口80c;第四出风口80d。
具体实施方式
下面结合具体实施例对本公开作进一步说明,以使本领域的技术人员可以更好的理解本公开并能予以实施,但本公开所要求保护的范围并不局限于具体实施方式中所描述的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
需要说明的是,在本公开中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本公开要求的保护范围之内。
图1为根据一些实施例的冰箱的整体结构示意图。如图1所示,一种冰箱,包括限定出隔热储藏间室103的箱体;箱体包括内胆101、外壳102及设于内胆101与外壳102之间的保温层;其中,储藏间室103由内胆101围成,内胆101的前端形成取放口104;箱体上设有箱门,以打开或关闭取放口104。内胆101包括与取放口104正对设置的胆后壁。
储藏间室103靠近胆后壁设有主送风风道及位于主送风风道下侧的定向送风风道。其中,主送风风道与定向送风风道能够断开或连通。主送风风道包括位于其上部的导向送风风道、位于其下部的摆风送风风道、位于摆风送风风道的相对两侧的微感送风风道。定向送风风道位于摆风送风风道的下侧。
图2为根据一些实施例的冰箱的送风单元的分解结构示意图;图3为根据一些实施例的冰箱的送风单元的整体结构示意图;图4为根据一些实施例的图3沿A-A方向的冰箱剖视图。如图2所示,导向送风风道内设有多个竖向设置的导向送风口41,导向送风口41处设有第一导风件42,以将冷空气导向送风至储藏间室103顶部,以确保储藏间室103顶部区域的冷却。
摆风送风风道内形成有连通摆风送风风道与储藏间室103的第一风口21及第二风口22。其中,第一风口21与第二风口22均呈波浪型。在一些实施方式中,第一风口21与第二风口22轴对称;即第一风口21的波峰与第二风口22的波谷相对应,第一风口21的波谷与第二风口22的波峰相对应。以上波浪型的第一风口21与第二风口22形成轴对称的设置,使沿竖直方向第一风口21与第二风口22之间的距离不断变化,从而使通过第一风口21与第二风口22进入储藏间室103内的冷空气相互对流影响,加快气流扰动,加快储藏间室103内的温度均匀化。摆风送风风道内设有具有摆风组件,摆风组件包括摆风板23及用于驱动摆风板23移动的摆风驱动机构;在摆风驱动机构的作用下,摆风板23能够沿波浪型风口的波长方向往复移动,控制第一风口21与第二风口22的有效出风面积,以对储藏间室103的主体空间进行摆动送风,有效加快储藏间室103内的气流流动,实现迅速降温。
微感送风风道内设有多排的微孔出风口32,以将微感送风风道内的气流 梳理后送入储藏间室103。微感送风风道对摆风送风风道起辅助送风作用,并改善摆风送风风道两侧局部区域的温度均匀性。
定向送风风道设于摆风送风风道的下侧,且定向送风风道与设于储藏间室103内的变温室等特定控温或控湿的储藏装置相连通,以对其进行定向送风。
本公开的一些实施例,导向送风风道位于微感送风风道上侧,且导向送风风道与微感送风风道的下端始终保持连通,有效确保气流流动的流畅性。通过将主送风风道分为多个送风区,以进行区域差别化送风,并确保送风流畅。
图5为根据一些实施例的冰箱的送风单元另一视角的整体结构示意图。参考图1-图5所示,主送风风道与定向送风风道通过第一连通口11a相连通;摆风送风风道内的摆风板23移动以打开或封堵第一连通口11a。
具体的,冰箱内设有冷却风道,冷却风道内设有蒸发器,以对经过冷却风道的空气进行降温。需要说明的是,对于现有具有冷藏室与冷冻室的冰箱,对于单个蒸发式制冷系统的冰箱,冷却风道设于冷冻室的后侧;对于具有两个蒸发式制冷系统的冰箱,送风风道及冷却风道均设于冷藏室的后侧。
当摆风板23移动至第一连通口11a的位置时,摆风板23封堵第一连通口11a,摆风送风风道与定向送风风道断开时,经过冷却风道的冷空气进入定向送风风道,并通过定向送风风道向储藏间室103内送风;当摆风板23移动离开第一连通口11a时,主送风风道与定向送风风道相连通,经过冷却风道的冷空气进入定向送风风道,一部分通过定向送风风道向储藏间室103送风,另一部分通过第一连通口11a进入主送风风道,并由摆风送风风道、微感送风风道、导向送风风道其中至少一个由储藏间室103的后侧对储藏间室103进行横向与纵向的全方位送风。
在一些实施方式汇总,胆后壁上设有送风单元9,送风单元9包括风道盖板91、位于风道盖板91与胆后壁之间的风道板93;风道盖板91靠近取放口104一侧设有匀温板92。
其中,风道板93上形成有位于其底部的定向风区1、位于定向风区1上部的主风区。风道板93下部设有与定向风区1相对应的背板7,背板7与位于风道板93下部的定向风区1配合共同限定出定向送风风道;风道板93的主风区与胆后壁相配合,并与胆后壁共同限定出主送风风道;定向送风风道与主送风风道通过第一连通口11a相连通。其中,风道板93与胆后壁之间设有环绕主风区的密封条94,以使风道板93与胆后壁密封连接。在一些可能的实施方式中,风道板93设置为泡沫件,其成型简单,且具有保温效果。
具体的,风道板93上设有用于分隔主风区与定向风区1的第一隔板11,第一连通口11a形成于第一隔板11上。
风道板93上于主风区内设有竖向的第二隔板12及第三隔板13、横向的连接第二隔板12与第三隔板13的上端部的顶隔板14;第二隔板12、第三隔板13、顶隔板14共同限定出摆风风区2;第二隔板12与第三隔板13的下端 与第一隔板11之间的区域形成有过渡区5,且第二隔板12的下端部与第三隔板13的下端部共同限定出第二连通口15。其中,第一连通口11a与第二连通口15在竖向正对设置。第二隔板12、第三隔板13及顶隔板14将主风区位于过渡区5以上的区域分隔为摆风风区2、位于摆风风区2相对两侧的微感风区3,及位于顶隔板14上侧的导向风区4。
其中,过渡区5与定向风区1通过第一连通口11a相连通,且过渡区5与摆风风区2通过第二连通口15相连通,过渡区5与微感风区3通过第三连通口16相连通。在一些实施方式中,过渡区5与微感风区3始终相连通;
波浪型的第一风口21及第二风口22设于摆风风区2内,且第一风口21与第二风口22轴对称。本实施例中,第一风口21与第二风口22呈正弦型;正弦型的第一风口21与第二风口22设置能够增强对气流横向和纵向的扰动效果,加快储藏间室103内的温度均匀化。另外,在一些实施方式中设置的第一风口21与第二风口22长度为正弦波的一个波长,例如波浪型的第一风口21及第二风口22均呈S型。
参考图2和图5所示,背板7的顶部形成有安装座71;摆风驱动机构包括固定于安装座71上的摆风电机24。在一些实施方式中,摆风电机24设置为步进电机;摆风电机24安装于背板7上的安装座71上。摆风电机24的输出轴上设有第一齿轮25,第一齿轮25相邻位置设有与之相啮合的第二齿轮26,第二齿轮26连接有螺杆27。摆风电机24工作,并带动第一齿轮25转动,第一齿轮25与第二齿轮26相啮合,并带动第二齿轮26轮动,第二齿轮26带动螺杆27旋转。通过设置第一齿轮25与第二齿轮26的传动比,能够控制螺杆27的转动快慢,从而控制摆风板23的移动速度。
图7为根据一些实施例的冰箱的摆风板的结构示意图。参考图2和图7所示,摆风板23安装于螺杆27上,且摆风板23上设有与螺杆27相配合的连接螺孔231,摆风电机24工作并带动螺杆27旋转运动,在螺杆27的旋转作用下,摆风板23沿螺杆27向上或向上移动。位于摆风风区2上侧的顶隔板14能够有效限定摆风板23的上移极限位置。
在一些实施例中,第一风口21与第二隔板12的最小距离记为L 1,第一风口21与螺杆27的最小距离为L 2,L 1∈[5,10],L 2∈[5,10],单位:mm。记第一风口21的波峰靠近第二隔板12,第一风口21的波谷靠近螺杆27,波峰与第二隔板12的距离为L 1,波谷与螺杆27的距离记为L 2
以摆风板23封堵第一连通口11a的位置记为第一极限位置进行送风说明;具体如下:
摆风板23在第一极限位置时,其封堵第一连通口11a,定向风区1与过渡区5相断开,此时仅通过定向风区1向储藏间室103内进行定向送风。
摆风板23在螺杆27的旋转作用下向上移动,摆风板23移动至第二连通口15时,定向风区1与过渡区5相连通,过渡区5与微感风区3相连通,微感风区3与导向风区4相连通;冷却气流由冷却风道进入定向风区1,然后通过第一连通口11a进入过渡区5;过渡区5内的气流通过第三连通口16进入 位于摆风风区2相对两侧的微感风区3,再由微感风区3进入对应侧的导向风区4。以实现定向风区1、微感风区3及导向风区4同时送风。
摆风板23在螺杆27的旋转作用下由第二连通口15向上移动,摆风板23移动至摆风风区2内时,随着摆风板23向上移动的距离增加,第一风口21与第二风口22的有效出风面积增大,摆风风区2向储藏间室103送入的气流量增加;过渡区5内的冷却气流分流进入微感风区3、摆风风区2;并由微感风区3进入导向风区4;其中,部分冷却气流通过第二连通口15进入摆风风区2,并由波浪型的第一风口21和第二风口22向储藏间室103送风,形成大面积的横向送风效果。此时,定向风区1、摆风风区2、微感风区3、导向风区4同时送风。另外,随着摆风板23的纵向往复移动,由波浪型的第一风口21与第二风口22送出的气流在横向形成摆风效果;并带动其它区域送风的变化,以实现储藏间室103全区域的动态送风效果。
在一些实施例中,如图7所示,摆风板23的横向两端部设有导向孔232,导向孔232内安装有固定连杆28;在摆风板23移动过程中,固定连杆28对摆风板23进行限定和导向,以确保摆风板23运动的有效性。具体的,固定连杆28的上端与顶隔板14固定,固定连杆28的下端与第一隔板11固定连接;两个固定连杆28分居于第一连通口11a的两侧。本实施例中,两个固定连杆28其中之一位于第二隔板12的相邻位置,另一个位于第三隔板13的相邻位置。且固定连杆28不影响微感风区3与过渡区5的连通性。
在一些实施例中,安装座71设于背板7靠近风道板93的一侧。进入定向风道内的气流由安装座71的相对两侧流出。风道板93上设有导风块17,导风块17位于固定于安装座71上的第一齿轮25的上方;导风块17的横截面由下向上逐渐减小,即导风块17呈上窄下宽的样式,以使导风块17避让螺杆27设置;导风块17一方面能够有效遮挡第一齿轮25及摆风电机24,使由定向风道向上流动经过安装座71的空气沿导风块17的侧面流动,对经过安装座71的气流进行整理,然后再汇聚,有效避免经过安装座71后的气流紊乱;并确保由定向风区1进入主风区内的气流稳定性。另一方面,使冷空气由安装座71的侧壁流过,而避开安装座71的上方,有效避免在摆风电机24上方产生冷凝水并滴落于摆风电机24上而影响摆风电机24的性能。导风块17的侧面呈弧形变化,能够更为舒缓地对气流进行整理。
另外,导风块17的上端面与第一隔板11的上端面共面,导风块17能够配合第一隔板11有效限定摆风板23的下移极限位置,在摆风板23与导风块17相抵接时,摆风板23封堵第一连通口11a,断开了定向风区1与主风区的连通。
在一些实施例中,定向送风风道内设有风门组件,风门组件用于控制定向送风风道与冷却风道的连通或断开。其中,风门组件包括风门72及驱动风门72打开或关闭的风门驱动73。具体的,定向送风风道内形成有位于安装座71下侧的收容部,风门驱动73安装于收容部内,以充分利用安装座71的下侧空间;且风门驱动73与安装座71相配合将定向送风风道的气流分流。气 流从风门驱动73和安装座71的侧面流过时,将风门驱动73及摆风驱动机构所产生的热量携带走,确保风门驱动73及摆风驱动机构保持高性能工作,并延长其作用寿命。在一些实施方式中,风道板93设有分居于螺杆27的相对两侧的两个定向送风口10。定向送风风道内设有两个独立控制的风门72,能够单独控制相应侧的定向送风口10与冷却风道的连通与断开,并在风门72打开时通过定向送风风道将冷却气流导向定向送风口10,并通过定向送风口10进入储藏间室103。
图6为根据一些实施例的冰箱的风道板及风门组件的结构示意图。如图6所示,微感风区3内设有气流通道31。在一些实施例中,气流通道31竖向设置;风道盖板91上与气流通道31相对应的区域设有多排微孔出风口32,以使通过气流通道31的气流由微孔出风口32流出进入储藏间室103。具体的,由胆后壁向取放口104的方向,即气流方向,气流通道31呈渐扩式;渐扩式的微感送风风道能够将微感风区3位于气流通道31周围的气流聚集于气流通道31内,然后通过风道盖板91上的微孔出风口32梳理气流,微感风区3内的部分气流通过微孔出风口32进入储藏间室103,其风量小,且风速较低,但具有一定的冷量,能够维持局部区域的温度恒定。在一些实施方式中,气流通道31的横截面呈锥台状,且其靠近取放口104一端的尺寸小于其靠近胆后壁一端的尺寸。风道盖板91上的微孔出风口32的孔径d 1∈[3,5],单位:mm;相邻两微孔出风口32的间距s 1∈[15,20],单位:mm。
导向风区4内设有竖向设置的导向送风口41,导向送风口41处设有可拆卸的第一导风件42,以对由导向风区4进入储藏间室103的气流进行导向。
在一些实施例中,导向风区4位于螺杆27所在直线的相对两侧均设有第一送风口41a和第二送风口41b。且第一送风口41a位于与之相邻的第二送风口41b的远离螺杆27所在直线的一侧。第一送风口41a的竖向长度记为L 3,第二送风口41b的竖向长度记为L 4。其中,L 4:L 3=[0.6,1]。在一些实施方式中,位于螺杆27所在直线相对两侧的第一送风口41a形成轴对称,两个第二送风口41b亦形成轴对称。
图8为根据一些实施例的冰箱的第一导风件的结构示意图。如图8所示,第一导风件42包括与其所在的导向送风口41形状相一致的边框43,边框43内设有导风叶片44;导风叶片44连接边框43的相对两侧,且多个导风叶片44沿导风框的竖向间距分布。作为一种可实施的方式,第一送风口41a内设有三个导风叶片44,且三个导风叶片44设置于第一送风口41a的中间位置或中间位置以上的区域。第二送风口41b内设有两个导风叶片44,两个导风叶片44沿第二送风口41b的竖向分布,并平分第二送风口41b的竖向长度。具体的,第一送风口41a的上端与第二送风口41b的上端相平齐;第一送风口41a内位于上侧的两个导风叶片44与第二送风口41b内的两个导风叶片44位置相对应。其中,第一送风口41a内最靠下侧的导风叶片44与第二送风口41b的下端相平齐;以上两个竖向的导向送风口41及导风叶片44的位置设置一方面能够确保由导向送风口41送往储藏间室103的送风量,使气流直接送至 储间室的各位置以减少送风盲区,降低凝露风险;另一方面,通过第一送风口41a与第二送风口41b的气流受导风叶片44的导向与梳理具有一致性,有效减小气流紊乱,改善气流流动性。
沿由胆后壁向取放口104的方向,导风叶片44向上倾斜,以将气流导向储藏间室103的顶部区域。在一些实施例中,导风叶片44设置为翼型叶片;即导风叶片44的截面呈翼型。导风叶片44的入口角记为ɑ,出口角记为β,其中,ɑ∈[15°,30°];β∈[40°,70°]。以上设置的翼型叶片能够有效引导气流,并减少因结构阻力造成的气流损失,从而增加整体送风量。
作为一种可实施的方式,导向送风口41的截面尺寸不变,第一导风件42的边框43安装于导向送风口41内。
作为另一种可实施的方式,导向送风口41设置为台阶孔。具体的,导向送风口41包括孔径不等但相连通的第一通孔和第二通孔;其中,第一通孔位于第二通孔靠近胆内壁的一侧,且第一通孔的尺寸大于第二通孔的尺寸。在一些实施例中,第一通孔与第二通孔的截面共中心轴,且第一通孔与第二通孔的截面呈矩形。相应的,第一导风件42的边框43设置为台阶式;边框43包括主框、设于主框的一端的环框;环框环绕于主框的外侧,且环框与主框共端面。主框安装于第二通孔内,并与第二通孔相配合;环框安装于第一通孔内,并与第一通孔相配合。其中,沿由胆后壁向取放口104的方向,环框厚度记为S 1,主框的厚度记为S 2,S 1:S 2=[0.2,0.5];本实施例中,S 1:S 2=1/3。以上导向送风口41与第一导风件42的设置,能够快速安装到位,对第一导风件42进行有效固定。
本公开实施例能够实现分区送风,并能够对各送风风区进行精准送风。导向风区4能够实现大角度向上送风,有效消除送风盲区,减小局部区域(如内胆101顶壁)凝露风险;摆风风区2的设置能够大幅增加送风范围,有效覆盖储藏间室103的大部分区域,减小局部温差;微感风区3的柔风对冰箱送风系统进行有益补充,平衡局部区域温度,使储藏间室103的温度更为均衡。定向送风区能够快速调节风量、风速,方便干湿区的调整,实现特定控温或控湿的储藏装置的快速温湿调控。本公开分区域布局出风形式,以对储藏间室103进行精准送风和全面送风,有效改善储藏间室103的温度均匀性。
在本公开的另一些实施例中风道盖板91上与气流通道31相重叠的区域设有多列并排设置的狭缝状的射流出风口18,以使通过气流通道31的气流由狭缝状的射流出风口18流出进入储藏间室103。图9为根据一些实施例的冰箱的送风单元的分解结构示意图;图10为根据一些实施例的冰箱的送风单元整体结构示意图。如图9-图10所示,设置有狭缝状的射流出风口18,射流出风口18的宽度记为d 2,相邻两个射流出风口18的间距为s 2,d 2∈[1,1.5],s 2∈[1,1.5],单位:mm。
气流通道31为呈渐扩式;微感风区3配合气流通道31形成先收缩再扩张的类拉瓦尔喷管结构,微感风区3内气流先聚集形成高压区,然后通过狭缝状的射流出风口18进入储藏间室103,在射流效应作用下,各狭缝状的射 流出风口18气流相互掺混,可使区域温度迅速平衡。
在一些实施例中,气流通道31相对应的区域设有三个波浪型的射流出风口18,且波浪风口为正弦型。另外,正弦型的波浪风口的总长度为其正弦波长的两倍。
其中,第一风口21与与之相邻侧的射流出风口18的波浪形态趋势相一致;第二风口22与与之相邻侧的第三风口55的波浪形态趋势相一致。另外,分居于摆风风区2相对两侧的第三风口55呈轴对称设置。
本公开另一些实施例与图2-8所示实施例相比仅设置摆风风区2、微感风区3及定向风区1。且其摆风风区2内的设置与图2-8中摆风风区的设置不同。
图11为根据一些实施例的冰箱的送风单元的分解结构示意图;图12为根据一些实施例的冰箱的送风单元的整体结构示意图;图13为根据一些实施例的冰箱的送风单元的整体结构示意图;图14为根据一些实施例的冰箱的风道板的结构示意图。如图11-图14所示,风道板93包括位于底部的定向风区1、位于定向风区1上部的主风区。
风道板93下部设有与定向风区1相对应的背板7,背板7与风道板93的下部配合共同限定出定向送风风道;风道板93的主风区与胆后壁相配合,并与胆后壁共同限定出主送风风道;定向送风风道与主送风风道通过第一连通口11a相连通。在一些实施方式中,定向风区1与主风区始终通过第一连通口11a相连通。其中,风道板93与胆后壁之间设有环绕主风区的密封条94,以使风道板93与胆后壁密封连接。在一些实施方式中,风道板93设置为泡沫件,其成型简单,且具有保温效果。另外,风道盖板91靠近取放口104一侧设有匀温板92。
风道板93上设有用于分隔主风区与定向风区1的第一隔板11,第一连通口11a形成于第一隔板11上。风道板93上设有导风块17,导风块17设于第一连通口11a处,且导风块17的上端面与第一隔板11的上端面共面。导风块17的形状与图2-图5所示实施例中结构相同,在此不再赘述。其中,第一隔板11分居于第一连通口11a两侧的部分分别记为第一分板和第二分板。
风道板93上形成有沿纵向延伸的分隔条20,分隔条20将主风区分隔为分居于其相对两侧的第一风区2a和第二风区2b,其中第一风区2a与第一分板位于分隔条20的同一侧,第二风区2b与第二分板位于分隔条20的同一侧。波浪型的第一风口21设于第一风区2a内,波浪型的第二风口22设于第二风区2b内,且第一风口21与第二风口22形成轴对称。
第一风区2a与第二风区2b内均设有摆风组件。位于第一风区2a内的摆风组件的摆风驱动机构固定于第一分板上,位于第一风区2a内的固定连杆28一端与风道板93的顶壁相连接,另一端与第一分板相连接。同样,位于第二风区2b内的摆风组件的摆风驱动机构固定于第二分板上,位于第二风区2b内的固定连杆28一端与风道板93的顶壁相连接,另一端与第二分板相连接。其中,第一风口21或第二风口22的波峰与对应风区内的螺杆27的距离记为D 1,第一风口21或第二风口22的波谷与对应风区内的螺杆27的距离记为 D 2,D 1=D 2
本实施例中的设于第一风区2a或第二风区2b内的摆风组件结构与图2-图8中的摆风组件结构相同,在此不再赘述。本实施例中设置两组摆风组件,分别对其所在的第一风区2a或第二风区2b进行摆风。且本实施例中的摆风组件的摆风驱动机构设于第一隔板11上。
波浪型的第一风口21和第二风口22呈正弦型;主风区的高度记为H 0,宽度记为W 0;正弦型的第一风口21和第二风口22的波长记为λ,波高记为H b。其中,2λ:H 0∈[0.8,1),H b:H 0∈[0.3,0.5);本实施例中,2λ:H 0=9/10;H b:H 0=2/5。以上设置充分利用主风区的空间,减小送风盲区,对储藏间室103的主体空间进行全面送风。
本公开实施例中,主风区上位于第一风口21与第二风口22之间的区域设有多个气流通道31,风道盖板91上与气流通道31的相重叠的区域设有多排微孔出风口32。本实施例中,气流通道31的截面呈扇环状,微孔出风口32呈同心圆分布。其中,主风区设有第一通道、第二通道、第三通道及第四通道;其中,第一通道与第二通道在同一圆周上,且第一通道与第二通道形成中心对称;第三通道与第四通道在同一圆周上,且第三通道与第四通道形成中心对称;第三通道所在圆周的半径大于第一通道所在圆周的半径,且第三通道所在圆周与第一通道所在圆周为同心圆。另外,本实施例中,第三通道与第一通道对应同一个圆心角。另外,第一通道位于第二通道的正上方。另外,本实施例中,第一风口21与第二风口22处设有第二导风件29,第二导风件29的形状与第一风口21或第二风口22相一致,其可拆卸地安装于第一风口21和第二风口22内。本实施例中,第二导风件29呈波浪型。
摆风电机24工作,带动对应螺杆27旋转,螺杆27带动与之相配合的摆风板23上下运动,使其所在风区内的气流不断发生变化。当摆风板23移动至下端时,其所在风区下方区域内的风量较大,定向送风风量较多。随着导风板向上运行,波浪型的第一风口21或第二风口22的出风量逐渐增加,位于第一风口21与第二风口22之间的气流通道31的风量也增加。随着摆风板23周期性的上下往复运动,可使波浪型的第一风口21或第二风口22的出风情况在纵向和横向不断变化,在储藏间室103内形成摆风效果。
本公开另一些实施例中,定向风区1与导向风区4之间设置摆风及微感复合风区30,且摆风及微感复合风区30内的设置及位于其内的摆风组件与图2-图8所示实施例有所不同。
图15为根据一些实施例的冰箱的送风单元的分解结构示意图;图16为根据一些实施例的冰箱的送风单元的分解结构示意图;图17为根据一些实施例的冰箱的送风单元的整体结构示意图;图18为根据一些实施例的冰箱的送风单元的整体结构示意图;图19为根据一些实施例的冰箱的风道板的结构示意图;图20为图19沿B-B的剖视图;图21为根据一些实施例的冰箱的风道板的结构示意图;图22为根据一些实施例的冰箱的送风单元的整体结构示意图。
如图15-图22所示,由下向上,定向风区1、过渡区5、摆风及微感复合风区30、导向风区4依次设置。其中,摆风及微感复合风区30内设有摆风组件。本实施例中,导向风区4、定向风区1及过渡区5的设置同实施例一,在此不再赘述。
摆风组件包括摆风驱动机构及摆风板23。在一些实施方式中摆风驱动机构包括摆风电机24、安装于摆风电机24的输出轴上的第一齿轮25、与第一齿轮25共旋转轴的内齿圈60、同时与第一齿轮25与内齿圈60相啮合的第二齿轮26。
,摆风板23位于内齿圈60外侧,且沿内齿圈60的径向设置。摆风板23包括第一风板61和第二风板62。第一风板61和第二风板62之间的夹角为90°。内齿圈60的转动中心(摆风电机24的输出轴的旋转中心)记为O,第一风板61远离摆风电机24的输出轴的一端记为第一自由端B 1,第二风板62远离摆风电机24的输出轴的一端记为第二自由端B 2;内齿圈60的外径为R 0。其中,OB 1=OB 2,R 0:OB 1∈[0.1,0.3];例如,R 0:OB 1=1/4。综上,内齿圈60的尺寸设置一方面可以满足驱动要求,确保摆风驱动机构对摆风架的有效驱动;另一方面,可以减少其对气流的阻挡作用。
在摆风电机24的作用下,第一齿轮25带动第二齿轮26转动,第二齿轮26带动内齿圈60以摆风电机24的输出轴为旋转轴作旋转运动,内齿圈60带动第一风板61和第二风板62旋转运动以扫过摆风风区2。
摆风及微感复合风区30的上端设有第一端板30a和第二端板30b,摆风及微感复合风区30的下端设有第三端板30c及第四端板30d。其中,第一端板30a和第二端板30b分别位于过摆风电机24的输出轴的竖向平面的相对两侧;第三端板30c及第四端板30d分别位于过摆风电机24的输出轴的竖向平面的相对两侧。且第一端板30a、第二端板30b、第三端板30c及第四端板30d各自与其相应侧的风道板93的侧壁相连接。
由胆后壁一侧面向风道板93,第一端板30a、第二端板30b、第三端板30c及第四端板30d沿逆时针方向分布。第一端板30a、第二端板30b、第三端板30c及第四端板30d靠近摆风电机24的一端依次标记为第一端A 1、第二端A 2、第三端A 3及第四端A 4;其中第一端A 1与第二端A 2共同限定出连通导向风区4与摆风及微感复合风区30的第四连通口33;第三端A 3及第四端A 4共同限定出连通过渡区5与摆风及微感复合风区30的第五连通口34。在另一种可能的实施方式中,不设置过渡区5,摆风及微感复合风区30与定向风区1直接通过第一连通口11a相连通。即第一隔板11位于第一连通口11a的两侧部分形成第一端A 1与第二端A 2。本实施例及以下部分均以设置有过渡区5为例进行说明。
在垂直于摆风电机24的输出轴的平面内,摆风电机24的输出轴的旋转中心记为O;其中,OA 1=OA 2=OA 3=OA 4。即第一端A 1、第二端A 2、第三端A 3及第四端A 4位于以O圆心,以A 1O为半径的圆周上,且∠A 1OA 2=∠A 2OA 3=∠A 3OA 4=∠A 4OA 1=90°。其中,第一端A 1、第三端A 3关于O呈中心对称, 第二端A 2及第四端A 4关于O呈中心对称。第一风板61的第一自由端为B1,第二风板62的第二自由端为B 2;其中,OB 1=OB 2=OA 1。以使第一自由端B 1或第二自由端B 2能够与第一端A 1、第二端A 2、第三端A 3及第四端A 4中任意一个对接配合。第一端A 1、第二端A 2、第三端A 3及第四端A 4用于与第一自由端B 1或第二自由端B 2相配合的端面均呈弧形;且第一端A 1、第二端A 2、第三端A 3及第四端A 4的弧形端面共圆。第一端A 1、第二端A 2、第三端A 3及第四端A 4的弧形端面所在圆周与第一自由端B 1或第二自由端B 2的端面运动轨迹圆为同一个圆,以确保第一自由端B 1或第二自由端B 2的旋转运动及其与第一端A 1、第二端A 2、第三端A 3及第四端A 4其中任意一个配合。另外,风道板93的相对侧壁之间的距离记为D,2OB 1=D,以确保第一风板61与第二风板62最大限定地扫过摆风及微感复合风区30。
其中,摆风及微感复合风区30内与∠A 1OA 2相对应的区域记为第一区51;摆风及微感复合风区30内与∠A 2OA 3相对应的区域记为第二区52;摆风及微感复合风区30内与∠A 3OA 4相对应的区域记为第三区53;摆风及微感复合风区30内与∠A 4OA 1相对应的区域记为第四区54,第一区51与导向风区4通过第四连通口33相连通,第三区53与过渡区5通过第五连通口34相连通。
其中,第一区51、第二区52、第三区53及第四区54内均设有气流通道31;风道盖板91上与气流通道31的相重叠的区域设有多排微孔出风口32。在一些实施方式中,气流通道31的截面呈扇环状,微孔出风口32呈同心圆分布。
气流通道31的截面沿气流流动方向由小变大。气流通道31包括孔径不等但相连通的第一出风孔31a和第二出风孔31b;其中,第一出风孔31a位于第二出风孔31b远离胆后壁的一侧,且第一出风孔31a的尺寸大于第二出风孔31b的尺寸。在可能的实施方式中,第一出风孔31a与第二出风孔31b的截面共中心。气流进入气流通道31内,聚集在空间较大的第一出风孔31a内,然后经微孔出风口32进入储藏间室103,形成微感送风效果。第一出风孔31a的孔深记为H 1,第二出风孔31b的孔深记为H 2,H 1:H 2∈[0.2,0.4];示例性的,H 1:H 2=1/3。
作为一种可实施的方式,气流通道31呈扇环状,且气流通道31包括设于第一区51内的第一微感通道5a和第五微感通道5e、位于第二区52内的第二微感通道5b、位于第三区53内的第三微感通道5c及第六微感通道5f、位于第四区54内的第四微感通道5d。其中,第一微感通道5a、第二微感通道5b、第三微感通道5c、第四微感通道5d位于以O为圆心的同一个圆周上。第五微感通道5e位于第一微感通道5a远离O的一侧,且第五微感通道5e与第一微感通道5a共圆心角;第六微感通道5f位于第三微感通道5c远离O的一侧,且第六微感通道5f与第三微感通道5c共圆心角。
第二区52内设有位于第二微感通道5b远离O一侧的扇环状的第三风口55,第四区54内设有位于第四微感通道5d远离O一侧的扇环状的第四风口56。第二微感通道5b与第三风口55共圆心角,第四微感通道5d与第四风口 56共圆心角。第三风口55与第四风口56沿气流方向的截面尺寸保持不变;且风道盖板91上设置有与第三风口55和第四风口56相对应的开口。在一种可能的实施方式中,第五微感通道5e、第三风口55、第六微感通道5f、第四风口56位于以O为圆心的同一个圆周上。
另外,第一微感通道5a、第二微感通道5b、第三微感通道5c、第四微感通道5d、第五微感通道5e、第六微感通道5f、第三风口55及第四风口56均位于第一端A 1、第二端A 2、第三端A 3及第四端A 4所在的以O圆心,以A 1O为半径的圆周区域内。以确保第一风板61与第二风板62旋转时能够有效扫过以上微感通道。
摆风电机24带动第一风板61和第二风板62旋转移动至第一位置时,第一自由端B 1与第四端A 4相配合,第二自由端B 2与第三端A 3相配合时,经过冷却风道的冷空气一部分进入定向风区1后由两侧的定向送风口10送入储藏间室103;另一部分经过过渡区5后通过第五连通口34进入第三区53内,并通过第三微感通道5c及第六微感通道5f进入储藏间室103内。此时,仅第三区53与定向风区1向储藏间室103内送风。实现定向出风、微感送风和弧形送风的综合送风效果。
摆风电机24带动第一风板61和第二风板62旋转移动至第二位置时,第一自由端B 1与第一端A 1相配合,第二自由端B 2所第三端A 4相配合时,第一区51、第二区52、第三区53相连通,且第四连通口33与第五连通口34打开;冷却风道的冷空气进入定向风区1,其中一部分气流由两侧的定向送风口10送入储藏间室103;另一部分冷空气依次经过第一连通口11a、过渡区5、第五连通口34、第三区53、第二区52、第一区51、第四连通口33、导向风区4,并通过第三微感通道5c、第六微感通道5f、第二微感通道5b、第三风口55、第一微感通道5a、第五微感通道5e、第一送风口41a及第二送风口41b同时向储藏间室103内送风。此时,定向风区1、摆风及微感复合风区30中的第三区53、第二区52、第一区51及导向风区4同时送风,实现了同时定向送风、局部微感送风、弧形送风、顶部向上送风的综合送风效果。在此过程中,气流流经内齿环时,沿内齿环的弧形外壁面流动,对气流进行导流。
摆风电机24带动第一风板61和第二风板62旋转移动至第三位置时,第一自由端B 1与第四端A 2相配合,第二自由端B 2所第三端A 1相配合时,第二区52、第三区53、第四区54相连通,第四连通口33处于封堵状态,第五连通口34打开;冷却风道的冷空气进入定向风区1,其中一部分气流由两侧的定向送风口10送入储藏间室103;另一部分冷空气依次经过第一连通口11a、过渡区5、第五连通口34、第三区53,然后分流至第二区52、第四区54;通过第三微感通道5c、第六微感通道5f、第二微感通道5b、第三风口55、第四微感通道5d、第四风口56同时向储藏间室103内送风。此时,定向风区1、摆风及微感复合风区30中的第二区52、第三区53、第四区54同时向储藏间室103内送风。
摆风电机24带动第一风板61和第二风板62旋转移动至第四位置时,第 一自由端B 1与第四端A 3相配合,第二自由端B 2所第三端A 2相配合时,第三区53、第四区54、第一区51相连通,且第四连通口33与第五连通口34打开;冷却风道的冷空气进入定向风区1,其中一部分气流由两侧的定向送风口10送入储藏间室103;另一部分冷空气依次经过第一连通口11a、过渡区5、第五连通口34、第三区53、第四区54、第一区51、第四连通口33、导向风区4,并通过第三微感通道5c、第六微感通道5f、第四微感通道5d、第四风口56、第一微感通道5a、第五微感通道5e、第一送风口41a及第二送风口41b同时向储藏间室103内送风。此时,定向风区1、摆风及微感复合风区30中的第三区53、第四区54、第一区51及导向风区4同时向储藏间室103内送风。实现了同时定向送风、微感送风、导向送风及弧形出风的效果。在此过程中,气流流经内齿环时,沿内齿环的弧形外壁面流动,对气流进行导流。
以上随着导风板的位置不同,各风区的出风量和风速不同,联合作用下,形成差异化送风效果。在使用过程中,随着摆风板23的旋转运动,摆风及微感复合风区30形成摆风及微感送风效果;并带动其它区域送风的变化,以实现储藏间室103全区域的动态送风效果。
本公开另一些实施例与图15-图22所示实施例原理相同,其主要区别在于:仅设置摆风风区2、定向风区1。
图23为根据一些实施例的冰箱的送风单元的整体结构示意图;图24为根据一些实施例的冰箱的送风单元的整体结构示意图。
如图23-图24所示,摆风风区2内设有摆风组件,其结构与实施例四中的摆风组件结构相同,通过旋转对气流进行控制,在此不再赘述。其主要在于摆风风区2内的气流流道设置不同。摆风组件的旋转区域设有多个气流流道,各气流流道一端与摆风组件的旋转区域相连通,另一端与储藏间室103相连通;摆风组件的摆风板旋转运动以将气流送风至与其相连通的各个气流流道。需要说明的是,本实施例以图15-图22所示的实施例为基础进行说明,其实质不局限于图15-图22所示的实施例的摆风组件设置,其亦可选用图2-图21所示实施例中的摆风组件。
具体的,主风区仅设置为摆风风区2。摆风风区2内设有第一分流板81、第二分流板82、第三分流板83、第四分流板84、第五分流板85及第六分流板86。由胆后壁一侧面向风道板93,第一分流板81、第二分流板82、第三分流板83、第四分流板84、第五分流板85及第六分流板86顺时针排布。垂直于风道板93且过摆风电机24输出轴的平面记为纵向中心面M;第一分流板81、第二分流板82及第三分流板83位于纵向中心面M的一侧,第四分流板84、第五分流板85及第六分流板86位于纵向中心面M的另一侧。且第一分流板81、第二分流板82及第三分流板83依次与第六分流板86、第五分流板85及第四分流板84关于纵向中心面M形成轴对称。
第一分流板81、第二分流板82、第三分流板83、第四分流板84、第五分流板85及第六分流板86各自靠近摆风电机24输出轴的一端依次记为第一分流端K 1、第二分流端K 2、第三分流端K 3、第四分流端K 4、第五分流端K 5 及第六分流端K 6。第一分流端K 1、第二分流端K 2、第三分流端K 3、第四分流端K 4、第五分流端K 5及第六分流端K 6均在以O为圆心的同一圆周上。其中,第一分流板81、第二分流板82向上延伸、第三分流板83向下延伸。
对应的,摆风及微感复合风区30内与∠K 1OK 2相对应的区域记为第一流道8a;摆风及微感复合风区30内与∠K 2OK 3相对应的区域记为第二流道8b;摆风及微感复合风区30内与∠K 3OK 4相对应的区域记为第三流道8c;摆风及微感复合风区30内与∠K 4OK 5相对应的区域记为第四流道8d;摆风及微感复合风区30内与∠K 5OK 6相对应的区域记为第五流道8e;摆风及微感复合风区30内与∠K 6OK 1相对应的区域记为第六流道8f。以上第一流道8a、第二流道8b、第四流道8d、第五流道8e、第六流道8f环绕摆风板23的运动区域设置,并与之相连通;第一风板61与第二风板62旋转时,将气流导入以上各流道。
其中,第六流道8f由下向上延伸,第一流道8a与第五流道8e分居于第六流道8f的相对两侧,并向上延伸。第三流道8c向下延伸,第二流道8b与第四流道8d分居于第三流道8c的相对两侧。由胆后壁一侧面向风道板93,第一流道8a、第二流道8b、第三流道8c、第四流道8d、第五流道8e及第六流道8f顺时针分布。其中,第一流道8a、第二流道8b、第四流道8d及第五流道8e内均设有导流片87。导流片87设置为翼型,导流片87的入口角为气流方向;导流片87的出口角θ向上或向下设置;本实施例中,θ∈[30°,50°]。具体的,第一流道8a与第五流道8e内均设置有两个导流片87,且两个导流片87均向上设置;第二流道8b与第四流道8d内均设置有两个导流片87,且其中一个导流片87向上设置,另一个导流片87向下设置。导流片87的设置能够增加侧面出风面积,使气流更均匀地进入储藏间室103。本实施例中,第一流道8a、第二流道8b、第四流道8d及第五流道8e内的导流片87均设于其所在气流流道的靠近出风端的位置。
第一分流板81向上并向其邻近的风道板93的侧壁延伸,第一分流板81的出风端与风道板93的顶壁之间形成第一出风口80a,第一出风口80a的长度记为L` 1;第二分流板82的出风端与第一分流板81的出风端的形成第二出风口80b,第二出风口80b的长度记为L` 2;第二分流板82的出风端与第三分流板83的出风端之间形成第三出风口80c,第三出风口80c长度记为L` 3;第三分流板83的出风端与第一分隔板之间形成第四出风口80d,其长度记为L` 4。L` 2:L` 1∈[1.5,2.5],L` 2:L` 4∈[1.5,2.5];L` 3:L` 1∈[1.5,2.5],L` 3:L` 4∈[1.5,2.5]。本实施例中,设置L` 3=L` 2=2L` 1=2L` 4。以上设置合理分布流道,能够合理分配储藏间室103内的气流。
第一风板61远离摆风电机24的输出轴的一端记为第一自由端B 1,第二风板62远离摆风电机24的输出轴的一端记为第二自由端B 2;其中,OB 1=OB 2=OK 1=OK 2=OK 3=OK 4=OK 5=OK 6。以使第一自由端B 1或第二自由端B 2能够与第一分流端K 1、第二分流端K 2、第三分流端K 3、第四分流端K 4、第五分流端K 5及第六分流端K 6其中任意一个对接配合,以在第一摆风板61和第二摆风板62旋转过程中,有效地将气流送往其所经过的流道内。
本实施例中,第一分流端K 1、第二分流端K 2、第三分流端K 3、第四分流端K 4、第五分流端K 5及第六分流端K 6用于与第一自由端B 1或第二自由端B 2相配合的端面均设置为弧形;且第一分流端K 1、第二分流端K 2、第三分流端K 3、第四分流端K 4、第五分流端K 5及第六分流端K 6的弧形端面共圆;第一分流端K 1、第二分流端K 2、第三分流端K 3、第四分流端K 4、第五分流端K 5及第六分流端K 6的弧形端面所在圆周与第一自由端B 1或第二自由端B 2的端面运行轨迹圆为同一个圆,以确保第一自由端B 1或第二自由端B 2的旋转运动及其与第一分流端K 1、第二分流端K 2、第三分流端K 3、第四分流端K 4、第五分流端K 5及第六分流端K 6其中任意一个配合。
以上随着摆风组件的导风板所在位置不同,各风区的出风量和风速不同,联合作用下,形成差异化送风效果。在使用过程中,随着摆风板23的旋转运动,摆风及微感复合风区30形成摆风效果,以实现储藏间室103全区域的动态送风效果。
作为另一种可实施的方式,沿第一摆风板61的旋转区域设置有m个流道,则设置m个流道所对应的圆心角为360°/m;对应的∠B 1OB 2=n*(360°/m),n整数。其中,∠B 1OB 2≤180°。以上设置,在第一风板61和第二风板62在旋转至其自由端与分流端相配合时,能够封堵或打开流道,从而控制气流所流经的流道。其原理与图15-图22所示的实施例的原理相同,在此不再赘述。例如,设置六个流道,且∠K 1OK 2=∠K 2OK 3=∠K 3OK 4=∠K 4OK 5=∠K 5OK 6=∠K 6OK 1=60°,∠B 1OB 2=n*60°,n=1或2或3;第一风板61和第二风板62在旋转至其自由端与分流端相配合时,部分流道被打开通入气流,部分流道被封堵。
需要说明的是,冰箱内的多个储藏间室103包括冷藏室,以上实施中的储藏间室103为冷藏室,送风单元9设于冷藏室的后壁上。
本公开设置多个不同形式的送风风道,并设置多样化的正面出风口。在以上多个实施例中,向储藏间室103送风的出风口设置为不等长直线型或弧形,且送风风道分区域设置不同的出风口形式,增加了储藏间室103的出风面积,减少出风死角。另外,还设置有多个微孔出风口32,实现微孔出风,出风的风道补充。在主送风风道内,设置移动的摆风组件,在摆风驱动机构作用下往复运动,配合出风口结构,实现横向和纵向(上下、左右)摆风以及定向送风。通过本公开的结构设计,减小储藏间室103的温度波动,改善储藏间室103的温度均匀性,还可根据需要在储藏间室103内设置干区或湿区,满足多样化的用户需求。本公开进行分区送风,从而进行差异化和针对性的送风,便于风量和风向的调节,实现精细化存储;并解决了传统冰箱送风方式单一的问题;本公开实现了分区送风、定向送风、微孔送风、摆风等多样化送风方式,达成分区分送、干湿分储、温湿精控的用户体验目标。
以上所述,仅是本公开的较佳实施例而已,并非是对本公开作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本公开技 术方案内容,依据本公开的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本公开技术方案的保护范围。

Claims (40)

  1. 冰箱,其包括:
    箱体,其限定出隔热的储藏间室;
    冷却风道,其设于所述箱体上;所述冷却风道内设有蒸发器,以对经过所述冷却风道的空气进行降温;
    定向送风风道,其与所述冷却风道相连通;所述定向送风风道设于所述储藏间室的后壁上并位于所述储藏间室的底部;
    摆风送风风道,设于所述于所述储藏间室的后壁上,并位于所述定向送风风道的上方;所述摆风送风风道内设有摆风组件,所述摆风组件包括:
    摆风板;
    摆风驱动机构,其与所述摆风板相连接;
    所述摆风驱动机构工作时,所述摆风板在所述摆风驱动机构的作用下运动并扫过所述摆风送风风道。
  2. 根据权利要求1所述的冰箱,其特征在于:所述摆风送风风道的上方设有导向送风风道,所述导向送风风道内设有纵向的导向送风口;所述导向送风风口连通所述储藏间室与所述导向送风风道。
  3. 根据权利要求2所述的冰箱,其特征在于:所述导向送风口处设有可拆卸的第一导风件,所述第一导风件包括与其所在的导向送风口相配合的边框,所述边框内设有导风叶片;沿气流流动方向,所述导风叶片向靠近所述储藏间室顶部的方向倾斜。
  4. 根据权利要求2或3所述的冰箱,其特征在于:所述摆风送风风道的相对两侧设有微感送风风道,所述微感送风风道内设有连通所述摆风送风风道与所述储藏间室的气流通道,且所述气流通道靠近所述储藏间的一侧设有多个微孔出风口。
  5. 根据权利要求4所述的冰箱,其特征在于:所述微感送风风道的上端与所述导向送风风道的下端相连通。
  6. 根据权利要求1或2或3所述的冰箱,其特征在于:所述摆风送风风道内设有连通所述摆风送风风道与所述储藏间室的气流通道,且所述气流通道靠近所述储藏间的一侧设有多个微孔出风口;所述摆风板运动时扫过所述气流通道。
  7. 根据权利要求6所述的冰箱,其特征在于:所述气流通道的截面呈扇环状。
  8. 根据权利要求1所述的冰箱,其特征在于:环绕所述摆风板的运动区域设有多个流道,所述流道一端所与所述摆风板的运动区域相连通,另一端与所述储藏间室相连通。
  9. 根据权利要求1或2或3或5或7或8所述的冰箱,其特征在于:所述储藏间室的后壁上设风道板;
    所述风道板上形成有位于其底部的定向风区;
    所述风道板下部设有与所述定向风区相对应的背板,所述背板与所述定向风区配合共同限定出定向送风风道。
  10. 根据权利要求9所述的冰箱,其特征在于:所述风道板上形成有位于所述定向风区上部的摆风风区;所述风道板的摆风风区与所述储藏间室的后壁相配合,并与所述储藏间室的后壁共同限定出所述摆风送风风道。
  11. 冰箱,包括:
    箱体,其限定出隔热的储藏间室;
    冷却风道,其设于所述箱体上;所述冷却风道内设有蒸发器,以对经过所述冷却风道的空气进行降温;
    摆风送风风道,设于所述于所述储藏间室的后壁上;所述摆风送风风道内设有摆风组件,所述摆风组件包括:
    摆风板;
    摆风驱动机构,其与所述摆风板相连接;
    所述摆风驱动机构工作时,所述摆风板在所述摆风驱动机构的作用下运动并扫过所述摆风送风风道。
    气流流道,多个所述气流流道环绕所述摆风板的移动区域设置,且所述气流流道一端与所述摆风板的移动区域相连通,另一端与所述储藏间室相连通。
  12. 根据权利要求11所述的冰箱,其特征在于:所述摆风驱动机构包括摆风电机、与所述摆风电机的输出轴相连接的第一齿轮、内齿圈、同时与所述第一齿轮和所述内齿圈相啮合的第二齿轮;所述摆风板设于所述内齿圈上;
    所述摆风电机工作并带动所述第一齿轮旋转,所述第一齿轮通过第二齿轮带动所述内齿圈旋转,所述内齿圈带动所述摆风板旋转运动,所述摆风板旋转扫过所述摆风送风风道。
  13. 根据权利要求12所述的冰箱,其特征在于:所述储藏间室的后壁上设有风道板,所述风道板上形成有摆风风区;所述摆风风区与所述储藏间室的后壁相配合,并与所述储藏间室的后壁共同限定出所述摆风送风风道;
    所述摆风风区内设有环绕所述摆风板旋转区域分布的第一分流板、第二分流板、……、第m分流板;所述第一分流板、第二分流板、……、第m分流板靠近所述摆风电机的输出轴的一端依次记为第一分流端K 1、第二分流端K 2、……第m分流端K m;所述内齿圈的转动中心记为O;
    其中,OK 1=OK 2=……=OK m
  14. 根据权利要求13所述的冰箱,其特征在于:其中,∠K 2OK 3=∠K 3OK 4=……=∠K mOK 1=360°/m,∠B 1OB 2=n*(360°/m),n整数。
  15. 根据权利要求14所述的冰箱,其特征在于:m=6;由所述储藏间室的后壁一侧面向所述风道板,所述第一分流板、第二分流板、第三分流板、第四分流板、第五分流板及第六分流板顺时针分布;且所述第一分流板、第二分流板及第三分流板依次与第六分流板、第五分流板及第四分流板形成轴对称。
  16. 根据权利要求15所述的冰箱,其特征在于:所述第一分流板向上并向其远离所述第六分流板的一侧延伸,所述第一分流板的出风端与所述风道板的顶壁之间形成第一出风口;
    所述第二分流板的出风端与所述第一分流板的出风端的形成第二出风口;所述第二分流板的出风端与所述第三分流板的出风端之间形成第三出风口;所述第三分流板的出风端与所述摆风风区的底壁之间形成第四出风口;所述第一出风口、第二出风口、第三出风口、第四出风口的长度依次记为L` 1、L` 2、L` 3、L` 4
    其中,L` 2:L` 1∈[1.5,2.5],L` 2:L` 4∈[1.5,2.5];L` 3:L` 1∈[1.5,2.5],L` 3:L` 4∈[1.5,2.5]。
  17. 根据权利要求16所述的冰箱,其特征在于:L` 3=L` 2=2L` 1=2L` 4
  18. 根据权利要求11-17其中任意一项所述的冰箱,其特征在于:所述气流流道内设有导流片,所述导流片呈翼型。
  19. 根据权利要求18所述的冰箱,其特征在于:所述导流片均设于其所在气流流道的靠近出风端的位置。
  20. 根据权利要求19所述的冰箱,其特征在于:所述导流片的入口角为其所在气流流道内的气流方向;所述导流片的出口角为θ,θ∈[30°,50°]。
  21. 冰箱,包括:
    箱体,其限定出隔热的储藏间室;
    冷却风道,其设于所述箱体上;所述冷却风道内设有蒸发器,以对经过所述冷却风道的空气进行降温;
    摆风送风风道,设于所述于所述储藏间室的后壁上;所述摆风送风风道与所述冷却风道相连通,且所述摆风送风风道内设有摆风组件,所述摆风组件包括:
    摆风电机;
    摆风板,其与所述摆风电机相连接;
    所述摆风电机工作,并带动所述摆风板旋转运动,所述摆风板旋转扫过所述摆风送风风道。
  22. 根据权利要求21所述的冰箱,其特征在于:所述摆风电机的输出轴上连接有第一齿轮;所述摆风组件包括内齿圈及第二齿轮,所述第二齿轮同时与所述第一齿轮和所述内齿圈相啮合;所述摆风板设于所述内齿圈上;
    所述摆风电机工作并带动所述第一齿轮旋转,所述第一齿轮通过第二齿轮带动所述内齿圈旋转,所述内齿圈带动所述摆风板旋转运动,所述摆风板旋转扫过所述摆风送风风道。
  23. 根据权利要求22所述的冰箱,其特征在于:所述摆风板沿内齿圈的径向设置。
  24. 根据权利要求22或23所述的冰箱,其特征在于:所述内齿圈外设有多个所述摆风板,多个所述摆风板包括第一风板和第二风板。
  25. 根据权利要求24所述的冰箱,其特征在于:所述内齿圈的转动中心记为O,外径记为R 0,所述第一风板远离所述内齿圈的端部记为第一自由端B 1,所述第二风板远离所述内齿圈的端部记为第二自由端B 2;OB 1=OB 2,R 0:OB 1∈[0.1,0.3]。
  26. 根据权利要求24所述的冰箱,其特征在于:R 0:OB 1=1/4。
  27. 根据权利要求24所述的冰箱,其特征在于:所述第一风板和所述第二风板之间的夹角为90°。
  28. 根据权利要求27所述的冰箱,其特征在于:所述储藏间室的后壁上设风道板,所述风道板上形成有摆风风区;所述风道板的摆风风区与所述储藏间室的后壁相配合,并与所述储藏间室的后壁共同限定出所述摆风送风风道;
    所述摆风风区内设有环绕所述摆风板旋转区域分布的第一端板、第二端板、第三端板及第四端板,所述第一端板、第二端板、第三端板及第四端板靠近所述摆风电机的输出轴的一端依次记为第一端A 1、第二端A 2、第三端A 3及第四端A 4;OB 1=OB 2=OA 1=OA 2=OA 3=OA 4
  29. 根据权利要求28所述的冰箱,其特征在于:所述第一端A 1、第二端A 2、第三端A 3及第四端A 4各自与第一自由端B 1或第二自由端B 2相配合的端面均呈弧形;且所述第一端A 1、第二端A 2、第三端A 3及第四端A 4的弧形端面共圆。
  30. 根据权利要求29所述的冰箱,其特征在于:所述摆风风区内设有多个扇环状的气流通道,所述气流通道位于所述摆风板的旋转区域内,且连通所述摆风送风风道与所述储藏间室。
  31. 根据权利要求21所述的冰箱,其特征在于:所述摆风组件还包括:
    螺杆,其与所述摆风电机相连接;
    所述摆风板上设有连接螺孔;所述摆风板通过所述连接螺孔与所述螺杆相连接;
    所述摆风电机工作,并带动所述螺杆旋转运动,在所述螺杆的旋转作用下,所述摆风板沿所述螺杆移动,并扫过所述摆风送风风道。
  32. 根据权利要求31所述的冰箱,其特征在于:所述摆风电机的输出轴上连接有第一齿轮;所述摆风组件包括与所述第一齿轮相啮合的第二齿轮,所述第二齿轮与所述螺杆相连接;
    所述摆风电机工作并带动所述第一齿轮旋转,所述第一齿轮通过第二齿轮带动所述螺杆旋转运动,在所述螺杆的旋转作用下,所述摆风板沿所述螺杆移动,并扫过所述摆风送风风道。
  33. 根据权利要求32所述的冰箱,其特征在于:所述摆风板的横向两端部设有导向孔,所述导向孔内安装有固定连杆;在摆风板在摆风电机的作用下沿所述固定连杆移动。
  34. 根据权利要求31或32或33所述的冰箱,其特征在于:所述摆风送风风道内形成有连通所述摆风送风风道与所述储藏间室的第一风口及第二风口;所述第一风口与第二风口均呈波浪型。
  35. 根据权利要求34所述的冰箱,其特征在于:所述第一风口与所述第二风口形成轴对称。
  36. 根据权利要求34所述的冰箱,其特征在于:所述第一风口与所述第二风口呈正弦型。
  37. 根据权利要求36所述的冰箱,其特征在于:所述第一风口与第二风口长度为正弦波的一个波长。
  38. 根据权利要求35或36或37所述的冰箱,其特征在于:所述第一风口与与之相邻的摆风送风风道的风道壁的最小距离记为L 1,第一风口与所述螺杆的最小距离为L 2,L 1∈[5,10],L 2∈[5,10],单位:mm。
  39. 根据权利要求31或32或33所述的冰箱,其特征在于:所述储藏间室的后壁上设风道板;所述风道板上形成有位于其底部的定向风区;
    所述风道板下部设有与所述定向风区相对应的背板,所述背板与所述定向风区配合共同限定出定向送风风道;所述定向送风风道位于所述摆风送风风道的下侧,并与之相连通。
  40. 据权利要求39所述的冰箱,其特征在于:所述背板的顶部形成有安装座;所述摆风电机固定于安装座上。
PCT/CN2021/118209 2021-04-08 2021-09-14 冰箱 WO2022213547A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202120716892.0U CN214665471U (zh) 2021-04-08 2021-04-08 冰箱
CN202120716892.0 2021-04-08
CN202110377282.7A CN113915879B (zh) 2021-04-08 2021-04-08 冰箱
CN202120717322.3 2021-04-08
CN202120717321.9U CN214537027U (zh) 2021-04-08 2021-04-08 冰箱
CN202120717321.9 2021-04-08
CN202120717322.3U CN214665496U (zh) 2021-04-08 2021-04-08 冰箱
CN202110377282.7 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022213547A1 true WO2022213547A1 (zh) 2022-10-13

Family

ID=83544957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118209 WO2022213547A1 (zh) 2021-04-08 2021-09-14 冰箱

Country Status (1)

Country Link
WO (1) WO2022213547A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201251338Y (zh) * 2008-07-04 2009-06-03 海信科龙电器股份有限公司 一种风门装置
CN106546056A (zh) * 2016-10-11 2017-03-29 青岛海尔股份有限公司 风冷冰箱
CN208794834U (zh) * 2018-09-10 2019-04-26 海信(山东)冰箱有限公司 一种冰箱抽屉进风调节机构及冰箱
CN109869836A (zh) * 2017-12-01 2019-06-11 青岛海尔股份有限公司 一种冰箱空调一体机的送风装置
CN110186242A (zh) * 2019-06-17 2019-08-30 青岛海尔电冰箱有限公司 冷藏冷冻装置的风路分配器及冷藏冷冻装置
CN209672684U (zh) * 2019-02-28 2019-11-22 合肥华凌股份有限公司 冰箱及其风道结构
CN212566459U (zh) * 2020-06-08 2021-02-19 青岛中天电子科技有限公司 一种冰箱风道盖板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201251338Y (zh) * 2008-07-04 2009-06-03 海信科龙电器股份有限公司 一种风门装置
CN106546056A (zh) * 2016-10-11 2017-03-29 青岛海尔股份有限公司 风冷冰箱
CN109869836A (zh) * 2017-12-01 2019-06-11 青岛海尔股份有限公司 一种冰箱空调一体机的送风装置
CN208794834U (zh) * 2018-09-10 2019-04-26 海信(山东)冰箱有限公司 一种冰箱抽屉进风调节机构及冰箱
CN209672684U (zh) * 2019-02-28 2019-11-22 合肥华凌股份有限公司 冰箱及其风道结构
CN110186242A (zh) * 2019-06-17 2019-08-30 青岛海尔电冰箱有限公司 冷藏冷冻装置的风路分配器及冷藏冷冻装置
CN212566459U (zh) * 2020-06-08 2021-02-19 青岛中天电子科技有限公司 一种冰箱风道盖板

Similar Documents

Publication Publication Date Title
KR100811488B1 (ko) 냉장고
CN212227472U (zh) 一种对开三门冰箱的风路系统
WO2017166442A1 (zh) 冷藏冷冻装置
WO2017166443A1 (zh) 冷藏冷冻装置
CN112113276A (zh) 壁挂式空调室内机
KR20020009436A (ko) 전기냉장고
CN104654705B (zh) 冰箱及其风道组件
WO2017166575A1 (zh) 冷藏冷冻装置
KR101203975B1 (ko) 냉장고
WO2022213547A1 (zh) 冰箱
CN114623498B (zh) 空调室内机和空调器
KR20150117590A (ko) 자동차용 에어 컨디셔닝 시스템의 공기 디플렉터 장치
CN211575272U (zh) 空调室内机及具有其的空调器
CN214537027U (zh) 冰箱
CN214665471U (zh) 冰箱
CN214665496U (zh) 冰箱
CN113915879B (zh) 冰箱
US12085288B2 (en) Air conditioner indoor unit and air conditioner
KR20070071094A (ko) 냉장고
KR20130059550A (ko) 리버스 리턴형 환기장치
CN211290288U (zh) 空气调节装置
KR20200122942A (ko) 모듈형 실내기
CN111520959A (zh) 一种风道结构和具有其的风冷冰箱
CN217685372U (zh) 空调室内机
CN220818186U (zh) 冷藏室和冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935766

Country of ref document: EP

Kind code of ref document: A1