WO2022213386A1 - 准共址关系指示方法、设备及存储介质 - Google Patents

准共址关系指示方法、设备及存储介质 Download PDF

Info

Publication number
WO2022213386A1
WO2022213386A1 PCT/CN2021/086259 CN2021086259W WO2022213386A1 WO 2022213386 A1 WO2022213386 A1 WO 2022213386A1 CN 2021086259 W CN2021086259 W CN 2021086259W WO 2022213386 A1 WO2022213386 A1 WO 2022213386A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
tci
downlink
uplink
quasi
Prior art date
Application number
PCT/CN2021/086259
Other languages
English (en)
French (fr)
Inventor
黄钧蔚
杜冬阳
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to PCT/CN2021/086259 priority Critical patent/WO2022213386A1/zh
Priority to CN202180096493.1A priority patent/CN117083828A/zh
Publication of WO2022213386A1 publication Critical patent/WO2022213386A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to communication technologies, and in particular, to a method, device and storage medium for indicating a quasi-co-location relationship.
  • TCI Transmission Configuration Indicator
  • QCL Quasi Co-Location
  • the 5G protocol specifies various types of quasi-co-location relationships, which represent different types of channel parameters. For example, if the type of quasi-colocation used is type-D, it means that one data or control channel and another reference signal are transmitted using the same beam. In order to realize the function of quasi-co-location configuration of different channels, some implementations need to configure TCI lists in the configuration parameters of different channels, which not only increases the redundancy of information configuration, but also increases the complexity of indication configuration.
  • the present application provides a method, device and storage medium for indicating a quasi-co-location relationship, so as to solve the problem that the information configuration of the quasi-co-location relationship is relatively redundant and complicated.
  • an embodiment of the present application provides a method for indicating a quasi-co-location relationship, which is applied to a network device, and the method includes:
  • the TCI pool send TCI indication information, where the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • the data includes uplink data and/or downlink data
  • the reference signal includes an uplink reference signal and/or a downlink reference signal
  • the beam set of the uplink reference signal includes all uplink transmit beams and/or uplink receive beams during beam scanning;
  • the beam set of the downlink reference signal includes all downlink transmit beams and/or downlink receive beams during beam scanning.
  • the TCI pool is determined according to the beam set of uplink reference signals and/or downlink reference signals, including:
  • the TCI pool is determined according to all pairs of transmit beams and receive beams in the beam set of the uplink reference signal and/or the downlink reference signal.
  • send TCI indication information including:
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal The uplink indicator bit; and/or, the downlink indicator bit set corresponding to the identifier of the downlink reference signal;
  • the corresponding reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship, and the corresponding reference signal combination is determined according to the corresponding reference signal combination.
  • the identification of the reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship.
  • the TCI pool includes information of at least one beam pair.
  • the beam pair includes a network device side beam and a terminal device side beam;
  • the information of the beam pair includes at least one of an identifier of a network device side beam in the beam pair, an identifier of a terminal device side beam, and a measurement result corresponding to the beam pair.
  • send TCI indication information including:
  • the TCI indication information is sent according to the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship.
  • determining the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool including:
  • the method further includes: for any beam pair, acquiring, from the terminal device, a measurement result of the signal transmitted by the network device side beam detected by the terminal device side beam;
  • the method further includes: for any beam pair, detecting a measurement result corresponding to the signal transmitted by the terminal device side beam through the network device side beam.
  • selecting an uplink beam pair and/or a downlink beam pair from the TCI pool including:
  • an uplink beam pair and/or a downlink beam pair is selected from the TCI pool.
  • the number of beam pairs is equal to the product of the number of beams on the side of the network device and the number of beams on the side of the terminal device; and/or,
  • the number of beam pairs is equal to a preset multiple of the product of the number of network equipment side beams and the number of terminal equipment side beams, preferably, the preset multiple is 2 times.
  • the method further includes:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • an embodiment of the present application provides a method for indicating a quasi-co-location relationship, which is applied to a terminal device, and the method includes:
  • TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals
  • Downlink data reception and/or uplink data transmission are performed according to the quasi-co-location relationship.
  • the data includes uplink data and/or downlink data
  • the reference signals include uplink reference signals and/or downlink reference signals.
  • obtain TCI indication information including:
  • the downlink control information is acquired through the physical downlink control channel, where the downlink control information includes TCI indication information.
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • receiving downlink data and/or sending uplink data according to the quasi-co-location relationship includes:
  • the transmission of the channel indicated by the TCI indication information is performed.
  • the method further includes:
  • the measurement result includes power information and/or interference noise information.
  • the method further includes:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • an embodiment of the present application provides a method for indicating a quasi-co-location relationship, which is applied to a terminal device, and the method includes:
  • Downlink data is received and/or uplink data is sent according to the connection configuration information and the TCI indication information.
  • the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • connection configuration information includes at least one of the following: primary cell information; secondary cell information.
  • connection configuration information includes at least one of the following: primary cell information of the primary node; secondary cell information of the primary node; primary cell information of the secondary node; secondary cell information of the secondary node.
  • connection configuration information is configured by radio resource control signaling.
  • the radio resource control signaling further includes a TCI pool.
  • the method before the step of receiving downlink data and/or sending uplink data according to the connection configuration information and the TCI indication information, the method further includes:
  • the time sequence of acquiring the connection configuration information and acquiring the TCI indication information may be any of the following:
  • connection configuration information First obtain the connection configuration information, and then obtain the TCI indication information
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the receiving of downlink data and/or the sending of uplink data according to the connection configuration information and the TCI indication information includes:
  • the transmission of the channel indicated by the TCI indication information is performed according to the carrier indicated by the connection configuration information and the quasi-co-location relationship indicated by the TCI indication information.
  • the method further includes:
  • the measurement result includes power information and/or interference noise information.
  • the method further includes:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • an embodiment of the present application provides a method for indicating a quasi-co-location relationship, which is applied to a network device, and the method includes:
  • the downlink data is sent and/or the uplink data is received according to the connection configuration information and the TCI indication information; optionally, the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • the method further includes:
  • connection configuration information includes at least one of the following: primary cell information; secondary cell information.
  • connection configuration information includes at least one of the following: primary cell information of the primary node; secondary cell information of the primary node; primary cell information of the secondary node; secondary cell information of the secondary node.
  • connection configuration information is configured by radio resource control signaling.
  • the radio resource control signaling further includes a TCI pool.
  • the method before sending downlink data and/or receiving uplink data according to the connection configuration information and the TCI indication information, the method further includes:
  • the time sequence of sending the connection configuration information and sending the TCI indication information can be any of the following:
  • connection configuration information and the TCI indication information are sent at the same time.
  • the data includes uplink data and/or downlink data.
  • the reference signals include uplink reference signals and/or downlink reference signals.
  • the beam set of the uplink reference signal includes all uplink transmit beams and/or uplink receive beams during beam scanning.
  • the beam set of the downlink reference signal includes all downlink transmit beams and/or downlink receive beams during beam scanning.
  • the TCI pool is determined according to the beam set of uplink reference signals and/or downlink reference signals, including:
  • the TCI pool is determined according to all pairs of transmit beams and receive beams in the beam set of the uplink reference signal and/or the downlink reference signal.
  • send TCI indication information including:
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the corresponding reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship, and the corresponding reference signal combination is determined according to the corresponding reference signal combination.
  • the identification of the reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship.
  • the TCI pool includes information of at least one beam pair.
  • the beam pair includes a network device side beam and a terminal device side beam.
  • the information of the beam pair includes at least one of an identifier of a network device side beam in the beam pair, an identifier of a terminal device side beam, and a measurement result corresponding to the beam pair.
  • send TCI indication information including:
  • the TCI indication information is sent according to the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship.
  • determining the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool including:
  • the measurement result of the signal transmitted by the network device side beam detected by the terminal device side beam is obtained from the terminal device.
  • the measurement result corresponding to the signal transmitted by the terminal device side beam is detected by the network device side beam.
  • selecting an uplink beam pair and/or a downlink beam pair from the TCI pool including:
  • an uplink beam pair and/or a downlink beam pair is selected from the TCI pool.
  • the number of beam pairs is equal to the product of the number of beams on the side of the network device and the number of beams on the side of the terminal device; and/or,
  • the number of beam pairs is equal to a preset multiple of the product of the number of beams on the network device side and the number of beams on the terminal device side.
  • the method further includes:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • an embodiment of the present application provides a quasi-co-location relationship indicating device, which is applied to a network device, and the device includes:
  • a first determining module configured to determine the TCI pool according to the beam set of the uplink reference signal and/or the downlink reference signal
  • a sending module configured to send TCI indication information according to the TCI pool, where the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • the data includes uplink data and/or downlink data
  • the reference signal includes an uplink reference signal and/or a downlink reference signal
  • the beam set of the uplink reference signal includes all uplink transmit beams and/or uplink receive beams during beam scanning;
  • the beam set of the downlink reference signal includes all downlink transmit beams and/or downlink receive beams during beam scanning.
  • the first determining module is specifically configured to:
  • the TCI pool is determined according to all pairs of transmit beams and receive beams in the beam set of the uplink reference signal and/or the downlink reference signal.
  • the sending module sends the TCI indication information, it is specifically used for:
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal The uplink indicator bit; and/or, the downlink indicator bit set corresponding to the identifier of the downlink reference signal;
  • the corresponding reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship, and the corresponding reference signal combination is determined according to the corresponding reference signal combination.
  • the identification of the reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship.
  • the TCI pool includes information of at least one beam pair.
  • the beam pair includes a network device side beam and a terminal device side beam;
  • the information of the beam pair includes at least one of an identifier of a network device side beam in the beam pair, an identifier of a terminal device side beam, and a measurement result corresponding to the beam pair.
  • the sending module when sending the TCI indication information according to the TCI pool, is specifically configured to:
  • the TCI indication information is sent according to the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship.
  • the sending module when determining the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool, is specifically configured to:
  • the determining module is further configured to: for any beam pair, obtain from the terminal device a measurement result of the signal transmitted by the network device side beam detected by the terminal device side beam;
  • the first determining module is further configured to: for any beam pair, use the network device side beam to detect the measurement result corresponding to the signal transmitted by the terminal device side beam.
  • the sending module when selecting an uplink beam pair and/or a downlink beam pair from the TCI pool according to measurement results corresponding to each beam pair in the TCI pool, the sending module is specifically used for:
  • an uplink beam pair and/or a downlink beam pair is selected from the TCI pool.
  • the number of beam pairs is equal to the product of the number of beams on the side of the network device and the number of beams on the side of the terminal device; and/or,
  • the number of beam pairs is equal to a preset multiple of the product of the number of network equipment side beams and the number of terminal equipment side beams, preferably, the preset multiple is 2 times.
  • the first determining module is also used for:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • an embodiment of the present application provides a quasi-co-location relationship indicating device, which is applied to a terminal device, and the device includes:
  • a first acquisition module configured to acquire TCI indication information, where the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals;
  • a first transmission module configured to receive downlink data and/or transmit uplink data according to the quasi-co-location relationship.
  • the data includes uplink data and/or downlink data
  • the reference signals include uplink reference signals and/or downlink reference signals.
  • the first obtaining module obtains the TCI indication information, it is specifically used for:
  • the downlink control information is acquired through the physical downlink control channel, where the downlink control information includes TCI indication information.
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the first transmission module is specifically used for:
  • the transmission of the channel indicated by the TCI indication information is performed.
  • the first obtaining module is also used for:
  • the measurement result includes power information and/or interference noise information.
  • the first obtaining module is also used for:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • an embodiment of the present application provides an apparatus for indicating a quasi-co-location relationship, which is applied to a terminal device, and the apparatus includes:
  • the second obtaining module is used to obtain connection configuration information
  • a second transmission module configured to receive downlink data and/or send uplink data according to the connection configuration information and the TCI indication information, optionally, the TCI indication information is used to indicate quasi-co-location of data and reference signals relation.
  • connection configuration information includes at least one of the following: primary cell information; secondary cell information.
  • connection configuration information includes at least one of the following: primary cell information of the primary node; secondary cell information of the primary node; primary cell information of the secondary node; secondary cell information of the secondary node.
  • connection configuration information is configured by radio resource control signaling.
  • the radio resource control signaling further includes a TCI pool.
  • the second obtaining module is also used for:
  • the TCI indication information is acquired.
  • the time sequence of acquiring the connection configuration information and acquiring the TCI indication information may be any of the following: acquire the connection configuration information first, and then acquire the TCI indication information; acquire the TCI indication information first , and then obtain the connection configuration information; and obtain the connection configuration information and the TCI indication information at the same time.
  • the TCI indication information includes at least one of the following: an identifier of an uplink reference signal in the quasi-co-location relationship; an identifier of a downlink reference signal in the quasi-co-location relationship; an identifier of a reference signal combination; a channel Instructions.
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the second transmission module is specifically configured to: transmit the channel indicated by the TCI indication information according to the carrier indicated by the connection configuration information and the quasi-co-location relationship indicated by the TCI indication information.
  • the second obtaining module is further configured to: detect the measurement result of the signal transmitted by the beam on the side of the network device through the beam on the side of the terminal device; and send the detected measurement result to the network device.
  • the measurement result includes power information and/or interference noise information.
  • the second obtaining module is further configured to: configure the TCI indication information for at least one of the following items through the radio resource control layer and/or the medium access control layer: physical uplink control channel, physical uplink shared channel, physical uplink Downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • an embodiment of the present application provides a quasi-co-location relationship indicating device, which is applied to a network device, and the device includes:
  • a second determining module configured to determine connection configuration information
  • a third transmission module configured to send downlink data and/or receive uplink data according to the connection configuration information and the TCI indication information; optionally, the TCI indication information is used to indicate quasi-co-location of data and reference signals relation.
  • the third transmission module is further configured to: determine a TCI pool according to a beam set of uplink reference signals and/or downlink reference signals; and send TCI indication information according to the TCI pool.
  • connection configuration information includes at least one of the following: primary cell information; secondary cell information.
  • connection configuration information includes at least one of the following: primary cell information of the primary node; secondary cell information of the primary node; primary cell information of the secondary node; secondary cell information of the secondary node.
  • connection configuration information is configured by radio resource control signaling.
  • the radio resource control signaling further includes a TCI pool.
  • the third transmission module is further configured to: send connection configuration information.
  • the time sequence of sending the connection configuration information and sending the TCI indication information may be any of the following: the connection configuration information is sent first, and then the TCI indication information is sent; the TCI indication information is sent first, and then the TCI indication information is sent. and send the connection configuration information and the TCI indication information at the same time.
  • the data includes uplink data and/or downlink data
  • the reference signal includes an uplink reference signal and/or a downlink reference signal
  • the beam set of the uplink reference signal includes all uplink transmit beams and/or during beam scanning Uplink receiving beam
  • the beam set of the downlink reference signal includes all downlink transmit beams and/or downlink receive beams during beam scanning.
  • the third transmission module is specifically configured to: according to the beam set of the uplink reference signal and/or the downlink reference signal , all pairs of transmit and receive beams determine the TCI pool.
  • the third transmission module is specifically configured to: send downlink control information through a physical downlink control channel, where the downlink control information includes TCI indication information.
  • the TCI indication information includes at least one of the following: an identifier of an uplink reference signal in the quasi-co-location relationship; an identifier of a downlink reference signal in the quasi-co-location relationship; an identifier of a reference signal combination; a channel Instructions.
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, the downlink indicator bit set corresponding to the identifier of the downlink reference signal; when the TCI indication information includes the identifier of the reference signal combination, according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship , determine the corresponding reference signal combination, and determine the identifier of the reference signal combination according to the corresponding reference signal combination.
  • the TCI pool includes information of at least one beam pair.
  • the beam pair includes a network equipment side beam and a terminal equipment side beam; the information of the beam pair includes an identifier of the network equipment side beam in the beam pair, the identifier of the terminal equipment side beam, and the beam pair. at least one of the corresponding measurement results.
  • the third transmission module when sending the TCI indication information according to the TCI pool, is specifically configured to: determine the uplink in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool reference signal and/or downlink reference signal; send TCI indication information according to the uplink reference signal and/or downlink reference signal in the quasi-co-location relationship.
  • the third transmission module is specifically configured to: The measurement result corresponding to each beam pair in the TCI pool, select an uplink beam pair and/or a downlink beam pair from the TCI pool; According to the selected uplink beam pair and/or the downlink beam pair, determine the quasi-common The uplink reference signal and/or the downlink reference signal in the address relationship.
  • the third transmission module is further configured to perform at least one of the following: for any beam pair, obtain, from the terminal device, a measurement result of the signal transmitted by the network device side beam detected by the terminal device side beam; for For any beam pair, the measurement result corresponding to the signal transmitted by the beam on the side of the terminal equipment is detected by the beam on the side of the network equipment.
  • the third transmission module is specifically configured to: according to each beam pair For the corresponding power information and/or interference noise information, select an uplink beam pair and/or a downlink beam pair from the TCI pool.
  • the number of beam pairs is equal to the product of the number of beams on the network device side and the number of beams on the terminal device side; and/or, in the FDD mode, the number of beam pairs is equal to the network device.
  • the third transmission module is further configured to configure the TCI indication information for at least one of the following items through the radio resource control layer and/or the medium access control layer: physical uplink control channel, physical uplink shared channel, physical uplink Downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • an embodiment of the present application provides a communication device, including a processor and a memory;
  • the memory stores computer-executable instructions
  • the computer-executable instructions when executed by the processor, implement the method of any one of the first to fourth aspects.
  • the communication device of the ninth aspect may be a terminal device or a network device, or may be a chip of a terminal device or a chip of a network device.
  • embodiments of the present application provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the first aspect to the sixth The method of any one of the four aspects.
  • an embodiment of the present application provides a computer program product, including a computer program, which implements the method described in any one of the first to fourth aspects when the computer program is executed by a processor.
  • the quasi-co-location relationship indication method, device, and storage medium provided in the embodiments of the present application can determine a TCI pool according to a beam set of uplink reference signals and/or downlink reference signals, and send TCI indication information according to the TCI pool, and the The TCI indication information is used to indicate the quasi-co-location relationship between data and reference signals, so that the indication of the quasi-co-location relationship can be quickly and accurately achieved by adding the TCI indication information to the TCI pool.
  • the redundancy and complexity of information configuration improves system efficiency.
  • FIG. 1 is a schematic diagram of a hardware structure of a mobile terminal implementing various embodiments of the present application
  • FIG. 2 is an architecture diagram of a communication network system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the principle of quasi-co-location of a channel and a reference signal according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for indicating a quasi-co-location relationship provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of a beam of a network device and a terminal device according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of the principle of beam-based data transmission according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another method for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another method for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of still another method for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a device for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another device for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another quasi-co-location relationship indicating device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of still another quasi-co-location relationship indicating device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • first, second, third, etc. may be used herein to describe various information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, second information may also be referred to as first information, without departing from the scope of this document.
  • the word “if” as used herein can be interpreted as “at the time of” or “when” or “in response to determining”, depending on the context.
  • the singular forms "a,” “an,” and “the” are intended to include the plural forms as well, unless the context dictates otherwise.
  • A, B, C means “any of the following: A; B; C; A and B; A and C; B and C; A and B and C", for example, " A, B or C” or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A and B and C". Exceptions to this definition arise only when combinations of elements, functions, steps, or operations are inherently mutually exclusive in some way.
  • step codes such as 501 and 502 are used for the purpose of expressing the corresponding content more clearly and briefly, and do not constitute a substantial limitation on the sequence. Those skilled in the art may 502 will be executed first and then 501, etc., but these should all fall within the protection scope of this application.
  • the apparatus may be implemented in various forms.
  • the devices described in this application may include devices such as cell phones, tablets, laptops, PDAs, Personal Digital Assistants (PDAs), Portable Media Players (PMPs), navigation devices, Mobile terminals such as wearable devices, smart bracelets, and pedometers, as well as stationary terminals such as digital TVs and desktop computers.
  • PDAs Personal Digital Assistants
  • PMPs Portable Media Players
  • Mobile terminals such as wearable devices, smart bracelets, and pedometers
  • stationary terminals such as digital TVs and desktop computers.
  • a mobile terminal will be used as an example, and those skilled in the art will understand that, in addition to elements specially used for mobile purposes, the configurations according to the embodiments of the present application can also be applied to stationary type terminals.
  • FIG. 1 is a schematic diagram of the hardware structure of a mobile terminal implementing various embodiments of the present application.
  • the mobile terminal 100 may include: an RF (Radio Frequency, radio frequency) unit 101, a WiFi module 102, an audio output unit 103, A/V (audio/video) input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, and power supply 111 and other components.
  • RF Radio Frequency, radio frequency
  • the radio frequency unit 101 can be used for receiving and sending signals during sending and receiving of information or during a call.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication, Global System for Mobile Communication), GPRS (General Packet Radio Service, General Packet Radio Service), CDMA2000 (Code Division Multiple Access 2000 , Code Division Multiple Access 2000), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access), FDD-LTE (Frequency Division Duplexing-Long Term Evolution, frequency division duplexing long term evolution) and TDD-LTE (Time Division Duplexing-Long Term Evolution, time division duplexing long term evolution) and so on.
  • GSM Global System of Mobile communication, Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA2000 Code Division Multiple Access 2000
  • Code Division Multiple Access 2000 Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-S
  • WiFi is a short-distance wireless transmission technology
  • the mobile terminal can help users to send and receive emails, browse web pages, access streaming media, etc. through the WiFi module 102, which provides users with wireless broadband Internet access.
  • FIG. 1 shows the WiFi module 102, it can be understood that it is not a necessary component of the mobile terminal, and can be completely omitted as required within the scope of not changing the essence of the invention.
  • the audio output unit 103 can store the data received by the radio frequency unit 101 or the WiFi module 102 or stored in the memory 109.
  • the audio data is converted into audio signal and output as sound.
  • the audio output unit 103 may also provide audio output related to a specific function performed by the mobile terminal 100 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 may include a speaker, a buzzer, and the like.
  • the A/V input unit 104 is used to receive audio or video signals.
  • the A/V input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processor 1041 responds to still pictures or images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the image data of the video is processed.
  • the processed image frames may be displayed on the display unit 106 .
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or transmitted via the radio frequency unit 101 or the WiFi module 102 .
  • the microphone 1042 can receive sound (audio data) via the microphone 1042 in a telephone call mode, a recording mode, a voice recognition mode, etc.
  • the processed audio (voice) data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 101 for output in the case of a telephone call mode.
  • the microphone 1042 may implement various types of noise cancellation (or suppression) algorithms to remove (or suppress) noise or interference generated in the process of receiving and transmitting audio signals.
  • the mobile terminal 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light, and the proximity sensor can turn off the display when the mobile terminal 100 is moved to the ear. Panel 1061 and/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a Liquid Crystal Display (LCD), an Organic Light-Emitting Diode (OLED), or the like.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the user input unit 107 may be used to receive input numerical or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 107 may include a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 also referred to as a touch screen, can collect the user's touch operations on or near it (such as the user's finger, stylus, etc., any suitable object or attachment on or near the touch panel 1071). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device and converts it into contact coordinates , and then send it to the processor 110, and can receive the command sent by the processor 110 and execute it.
  • the touch panel 1071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 107 may also include other input devices 1072 .
  • other input devices 1072 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, etc., which are not specifically described here. limited.
  • the touch panel 1071 may cover the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it transmits it to the processor 110 to determine the type of the touch event, and then the processor 110 determines the type of the touch event according to the touch event.
  • the type provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to realize the input and output functions of the mobile terminal, but in some embodiments, the touch panel 1071 and the display panel 1061 may be integrated
  • the input and output functions of the mobile terminal are implemented, which is not specifically limited here.
  • the interface unit 108 serves as an interface through which at least one external device can be connected to the mobile terminal 100 .
  • external devices may include wired or wireless headset ports, external power (or battery charger) ports, wired or wireless data ports, memory card ports, ports for connecting devices with identification modules, audio input/output (I/O) ports, video I/O ports, headphone ports, and more.
  • the interface unit 108 may be used to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more elements within the mobile terminal 100 or may be used between the mobile terminal 100 and the external Transfer data between devices.
  • the memory 109 may be used to store software programs as well as various data.
  • the memory 109 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.;
  • the storage data area may Stores data (such as audio data, phonebook, etc.) created according to the use of the mobile phone, and the like.
  • memory 109 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 110 is the control center of the mobile terminal, uses various interfaces and lines to connect various parts of the entire mobile terminal, runs or executes the software programs and/or modules stored in the memory 109, and calls the data stored in the memory 109. , perform various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor.
  • the demodulation processor mainly handles wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 110 .
  • the mobile terminal 100 may also include a power supply 111 (such as a battery) for supplying power to various components.
  • a power supply 111 (such as a battery) for supplying power to various components.
  • the power supply 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system and other functions.
  • the mobile terminal 100 may also include a Bluetooth module, etc., which will not be described herein again.
  • FIG. 2 is an architecture diagram of a communication network system provided by an embodiment of the application.
  • the communication network system is an LTE system of universal mobile communication technology.
  • 201 E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core) 203 and the operator's IP service 204.
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core
  • the UE 201 may be the above-mentioned terminal 100, which will not be repeated here.
  • E-UTRAN 202 includes eNodeB 2021 and other eNodeB 2022 and the like.
  • the eNodeB 2021 can be connected with other eNodeB 2022 through a backhaul (eg X2 interface), the eNodeB 2021 is connected to the EPC 203 , and the eNodeB 2021 can provide access from the UE 201 to the EPC 203 .
  • a backhaul eg X2 interface
  • EPC 203 may include MME (Mobility Management Entity, Mobility Management Entity) 2031, HSS (Home Subscriber Server, Home Subscriber Server) 2032, other MME 2033, SGW (Serving Gate Way, Serving Gateway) 2034, PGW (PDN Gate Way, packet data network gateway) 2035 and PCRF (Policy and Charging Rules Function, policy and charging functional entity) 2036 and so on.
  • MME 2031 is a control node that handles signaling between UE 201 and EPC 203, and provides bearer and connection management.
  • the HSS2032 is used to provide some registers to manage functions such as the home location register (not shown in the figure), and to store some user-specific information about service characteristics, data rates, etc.
  • PCRF2036 is the policy and charging control policy decision point of service data flow and IP bearer resources, it is the policy and charging execution function A unit (not shown) selects and provides available policy and charging control decisions.
  • the IP service 204 may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) or other IP services.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • FIG. 3 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • wireless communication can be performed between the network device 301 and the terminal device 302 to realize data transmission.
  • the terminal device 302 may be the mobile terminal in FIG. 1 or the UE in FIG. 2 ;
  • the network device 301 may be other devices other than the UE in FIG. 2 , such as a base station eNodeB.
  • NR refers to a new generation of wireless access network technology
  • future evolution networks such as the 5th Generation Mobile Communication (5G) system
  • WIFI Wireless Fidelity
  • LTE Long Term Evolution
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • TCI can indicate the quasi-co-location relationship between data and reference signals.
  • the reference signal may include a Synchronization Signal and PBCH block (Synchronization Signal and PBCH block, Synchronization Signal and PBCH block), etc., which are jointly formed by a Synchronization Signal (Synchronization Signal, SS) and a Physical Broadcasting Channel (Physical Broadcasting Channel, PBCH).
  • the synchronization signal may include a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and the like.
  • the quasi-co-location relationship includes various types, which can be divided into four types: Type-A QCL, Type-B QCL, Type-C QCL, and Type-D QCL, which are used to represent Doppler shift (Doppler Shift), multiple Different combinations or selections of Doppler Spread, Average Delay, Delay Spread and Spatial Rx Parameter.
  • Type-A QCL Type-B QCL
  • Type-C QCL Type-C QCL
  • Type-D QCL which are used to represent Doppler shift (Doppler Shift), multiple Different combinations or selections of Doppler Spread, Average Delay, Delay Spread and Spatial Rx Parameter.
  • Type-D quasi-co-location indicates that the data and the reference signal can be transmitted using the same beam, and the receiving end can use the corresponding receiving filter. Therefore, the beam pairing relationship corresponding to the data and the reference signal can be indicated by configuring the TCI.
  • Physical Downlink Control Channel (PDCCH), Physical Downlink Share Channel (PDSCH), Physical Uplink Control Channel (PUCCH), Physical Uplink Shared Channel (Physical Uplink Share Channel, PDSCH) Uplink Share Channel, PUSCH) and adopt their own TCI indication structure respectively, used to indicate the TCI state list (TCI-state list) of QCI, respectively placed in PDCCH configuration (PDCCH-configure), PDSCH configuration (PDSCH-configure), PUCCH Configuration (PUCCH-configure), PUSCH configuration (PUSCH-configure).
  • the TCI state can be configured for PDCCH, PDSCH, PUCCH, PUSCH, etc. through higher layer signaling.
  • FIG. 4 is a schematic diagram of the principle of quasi-co-location of a channel and a reference signal according to an embodiment of the present application.
  • both the PDCCH configuration and the PDSCH configuration may include a TCI state list.
  • the multiple TCI state IDs: ni, nj, and nk in the PDCCH configuration are mapped to the TCI state IDs: ni, nj, and nk in the PDSCH configuration, and have a corresponding relationship with the multiple reference signals Si, Sj, and Sk .
  • ni corresponds to quasi-co-location with reference signal Si
  • nj corresponds to quasi-co-location with reference signal Sj
  • nk corresponds to quasi-co-location with reference signal Sk.
  • Which TCI state ID to use, ie, quasi-co-located with which reference signal, can be indicated by higher layer configuration.
  • the PDCCH or PDSCH can be transmitted through the beam corresponding to the reference signal.
  • the beam corresponding to the reference signal Si can be used to transmit the PDCCH or the PDSCH.
  • the TCI state lists of different channels are configured in their respective configuration parameters.
  • the configuration of each channel needs to be changed, which will increase the complexity of the indication configuration in the beam management process, making the System efficiency is low. Therefore, in order to simplify the beam management process, a TCI architecture needs to be designed to uniformly manage the TCI indications of all channels.
  • an embodiment of the present application provides a method for indicating a quasi-co-location relationship, which can determine a unified TCI pool according to a beam set of uplink reference signals and/or downlink reference signals, and indicate quasi-co-location according to the TCI pool There is no need to configure the corresponding TCI state list in each channel, which simplifies the configuration complexity and improves the system efficiency.
  • FIG. 5 is a schematic flowchart of a method for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • the execution body of the method in this embodiment may be a network device. As shown in Figure 5, the method may include:
  • Step 501 Determine the TCI pool according to the beam set of the uplink reference signal and/or the downlink reference signal.
  • the TCI pool may be called a TCI Configure Pool, which is used to save the beam set corresponding to the reference signal.
  • the reference signals may include uplink reference signals and/or downlink reference signals.
  • the uplink may refer to the terminal device sending to the network device
  • the downlink may refer to the network device sending to the terminal device
  • the uplink reference signal may refer to the reference signal sent by the terminal device to the network device
  • the downlink reference signal may refer to the reference signal sent by the network device to the terminal device.
  • the transmission and reception of signals can be implemented based on beams. Different reference signals can be transmitted based on different beams. When there are multiple reference signals, beams corresponding to the multiple reference signals can form a beam set, and the TCI pool can be determined through the beam set.
  • the TCI pool may include at least one beam set of uplink reference signals, or may include at least one beam set of downlink reference signals, or may also include at least one beam set of uplink reference signals and at least one downlink reference signal.
  • a set of beams for reference signals may include at least one beam set of uplink reference signals, or may include at least one beam set of downlink reference signals, or may also include at least one beam set of uplink reference signals and at least one downlink reference signal.
  • Step 502 Send TCI indication information according to the TCI pool, where the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • the data may include uplink data and/or downlink data.
  • the uplink data may be data sent by the terminal device to the network device
  • the downlink data may be data sent by the network device to the terminal device.
  • the uplink data may include at least one of PUCCH and PUSCH, and the downlink data may include at least one of PDCCH and PDSCH.
  • the TCI indication information may be used to indicate a quasi-co-location relationship between at least one of the PUCCH, PUSCH, PDCCH and PDSCH and the reference signal.
  • a TCI pool can be configured on the network device side.
  • the TCI pool stores the beam set corresponding to the reference signal.
  • an appropriate beam can be selected from the TCI pool.
  • the beam can determine its corresponding reference signal, and then send the TCI indication information, indicating that the data can be quasi-co-located with the reference signal, so that the terminal device can determine which reference to use according to the quasi-co-location relationship indicated by the TCI indication information.
  • the beam corresponding to the signal is used to receive or transmit data.
  • the quasi-co-location relationship can be indicated by adding the TCI indication information to the TCI pool. It is not necessary to configure the TCI state list in each channel. When the beam set changes, the TCI pool can be modified directly, without the need for each channel. The configuration is modified separately.
  • a TCI pool can be determined according to a beam set of uplink reference signals and/or downlink reference signals, and TCI indication information is sent according to the TCI pool, where the TCI indication information is used to indicate The quasi-co-location relationship between data and reference signals, so that the indication of the quasi-co-location relationship can be quickly and accurately realized by adding TCI indication information to the TCI pool. It is not necessary to configure the TCI list in each channel separately, which effectively reduces the redundancy of information configuration. and complexity, improving system efficiency.
  • the TCI pool may be determined according to a beam set of uplink reference signals and/or downlink reference signals.
  • the beam set of the uplink reference signal may include all uplink transmit beams and/or uplink receive beams during beam scanning;
  • the beam set of the downlink reference signal may include all downlink transmit beams and/or downlink receive beams during beam scanning beam.
  • the beam set of the uplink reference signal may include all uplink transmit beams during beam scanning, or may include all uplink receive beams during beam scanning, or may include all uplink transmit beams and all downlink beams during beam scanning transmit beam.
  • the beam set of the downlink reference signal may include all downlink transmit beams during beam scanning, or may include all downlink receive beams during beam scanning, or may include all downlink transmit beams and all downlink transmit beams during beam scanning .
  • all transmit and/or receive beams during beam scanning are taken into account, expanding the scope of the quasi-co-location relationship.
  • determining the TCI pool according to the beam set of the uplink reference signal and/or the downlink reference signal may include: according to the beam set of the uplink reference signal and/or the downlink reference signal, all of the transmitting beam and the receiving beam are Pairing determines the TCI pool.
  • the beam pairing has a corresponding relationship with the reference signal. After the TCI pool is determined through the beam pairing, the reference signal in the quasi-co-location relationship can be quickly and accurately determined through the TCI pool, thereby improving the processing efficiency and accuracy of the quasi-co-location relationship.
  • the TCI pool can be determined jointly according to the beam set of the uplink reference signal and the beam set of the downlink reference signal, or the TCI pool can be determined only according to the beam set of the uplink reference signal, or only according to the beam set of the downlink reference signal. . They are described below.
  • the TCI pool may be determined according to a beam set of uplink reference signals and a beam set of downlink reference signals, and the beam set of uplink reference signals may include all uplink transmit beams and all uplink transmission beams during beam scanning
  • the beam set of the downlink reference signal may include all downlink transmit beams and all downlink receive beams during beam scanning.
  • FIG. 6 is a schematic diagram of a beam of a network device and a terminal device according to an embodiment of the present application.
  • the network equipment side has beams #1 to #8.
  • the network equipment side can form beams with different widths according to specific conditions; the terminal equipment side has beams *1 to *4, and the terminal equipment side can also be based on specific conditions. Beams with different widths are formed.
  • reference signals can be transmitted and received based on the beams shown in the figure.
  • Uplink reference signals can be transmitted using any beam on the terminal equipment side and received using any beam on the network equipment side, and downlink reference signals can be transmitted using any beam on the network equipment side and received using any beam on the terminal equipment side.
  • the terminal device can feed back the measurement results of each downlink beam to the network device, and the network device side also has the measurement results of each uplink beam, so the network device side has the ability to know the pairing information of all beams.
  • the terminal device side can measure the quality of each transmit beam on the network device side, obtain and feed back the measurement results, and the network device side can measure the quality of each terminal device side transmit beam to obtain corresponding measurement results.
  • the TCI pool may be determined according to all pairs of transmit beams and receive beams in the beam set of the uplink reference signal and the downlink reference signal, so as to improve the applicability of the quasi-co-location relationship.
  • all beam pairing modes may be traversed to obtain the corresponding TCI pool, such as Table 1.
  • all connected beams can be configured as one TCI pool on the network device side.
  • the network device can use beams #1 to #8 as transmit beams, and the terminal device can use beams *1 to *4 as receive beams; when going up, the terminal device can use beams *1 to *4 as transmit beams, and the network device can use beams *1 to *4 as transmit beams.
  • Beams #1 to #8 can be used as receive beams.
  • Different reference signals may correspond to different transmit and receive beams.
  • reference signal 1 is transmitted using beam*1 on the terminal equipment side, and received by beam #1 on the network equipment side
  • reference signal 2 is transmitted using beam*1 on the terminal equipment side, and received by beam #2 on the network equipment side
  • the reference signal 33 is transmitted using beam #1 on the network equipment side, and received by beam*1 on the terminal equipment side;
  • the reference signal 34 is transmitted using beam #1 on the network equipment side, and received by beam*2 on the terminal equipment side;
  • the number of beam pairs is equal to the product of the number of beams on the network device side and the number of beams on the terminal device side.
  • the uplink and downlink are equal, the uplink transmit beam and the downlink receive beam are the same, and the uplink receive beam and the downlink transmit beam are the same.
  • the beam #1 of the network device transmits, and the beam*2 of the terminal device receives; then in the uplink, the beam*2 of the terminal device transmits, and the beam #1 of the network device receives, so that the network device 8 beams on the side and 4 beams on the terminal device side, a total of 32 beams are paired.
  • the network device can form a TCI pool with 32 beam pairs similar to the left or right half of Table 1, and all uplink and downlink channels can select beam pairs from the TCI pool.
  • the number of beam pairs is equal to a preset multiple of the product of the number of beams on the network device side and the number of beams on the terminal device side, preferably, the The preset magnification is 2 times.
  • different beam pairs may be used for uplink and downlink.
  • beam #1 of the network equipment transmits, and beam*2 of the terminal equipment receives
  • beam*3 of the terminal equipment transmits, and beam #4 of the network equipment receives, so that the 8 beams on the network equipment side and the terminal equipment 4 beams on the device side, a total of 64 beams are paired.
  • the network device can form a TCI pool with 64 beam pairs similar to Table 1, and all uplink and downlink channels can select beam pairs from the TCI pool.
  • a part of all beam pairing modes may also be selected to generate a TCI pool. For example, some beams are only used for transmission but not for reception, or, only for reception and not for transmission, then the pairing relationship can be reduced in Table 1 accordingly.
  • the TCI pool may include information of at least one beam pair.
  • the beam pair may include a network device side beam and a terminal device side beam.
  • the information of the beam pair may include at least one of an identifier of a network device side beam in the beam pair, an identifier of a terminal device side beam, and a measurement result corresponding to the beam pair.
  • the TCI pool may include the identification of the network equipment side beam, the identification of the terminal equipment side beam and the corresponding measurement result of the beam pair, specifically referring to Table 1, the identification of the network equipment side beam and the identification of the terminal equipment side beam. Begin with # and * respectively, and on this basis, add the measurement results corresponding to each beam pair.
  • sending the TCI indication information may include: determining the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool; The TCI indication information is sent according to the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship.
  • the most suitable beam pair can be selected from at least one beam pair in the TCI pool to transmit data, and according to the selected beam pair, the corresponding reference signal can be obtained, so that TCI indication information can be sent, indicating The data has a quasi-co-located relationship with the corresponding reference signal.
  • determining the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool includes: according to the measurement corresponding to each beam pair in the TCI pool As a result, selecting an uplink beam pair and/or a downlink beam pair from the TCI pool; determining an uplink reference signal and/or an uplink reference signal in the quasi-co-location relationship according to the selected uplink beam pair and/or the downlink beam pair Downlink reference signal.
  • the measurement result of the beam pair may be used as a consideration factor, so that the beam pair with the best quality can be selected from the TCI pool, thereby improving the efficiency and accuracy of data transmission.
  • the TCI pool may include the identifier of the beam on the network device side and the identifier of the beam on the terminal device side, but does not necessarily include the measurement result corresponding to the beam pair, and the measurement result corresponding to each beam pair can be stored in other locations. When necessary, the measurement results corresponding to each beam pair can be obtained from the other positions and used to reduce the length of information required by the TCI pool.
  • the measurement result of the signal transmitted by the network device side beam detected by the terminal device side beam can be obtained from the terminal device, and/or, for any beam pair, the network device side beam can be obtained through the network device side beam.
  • the measurement result corresponding to the signal transmitted by the beam on the side of the terminal device is detected.
  • the terminal device can receive the signal transmitted by the network device side beam through its own beam, thereby determining the measurement result of the corresponding beam pair.
  • the measurement result obtained by measuring the signal is the measurement result of the beam pair formed by the downlink beam #8 and beam*1.
  • the terminal device feeds back the measurement results of each downlink beam pair to the network device, and the network device can update the TCI pool accordingly.
  • the network equipment side beam can detect the measurement result corresponding to the signal transmitted by the terminal equipment side beam.
  • the network equipment side beam #2 receives the signal transmitted by the terminal equipment side beam*3, and the measurement result obtained by measuring the signal is The measurement result of the beam pair formed by the uplink beam*3 and beam#2. In this way, the measurement results corresponding to each beam pair can be quickly and accurately detected through the network equipment side beam and the terminal equipment side beam, thereby providing a basis for beam selection and improving the accuracy of beam selection.
  • the measurement result corresponding to the beam pair may include power information and/or interference noise information.
  • selecting an uplink beam pair and/or a downlink beam pair from the TCI pool according to the measurement results corresponding to each beam pair in the TCI pool may include: according to the corresponding power information and/or interference noise of each beam pair information, select an uplink beam pair and/or a downlink beam pair from the TCI pool.
  • the beam pair with the maximum power information or the minimum interference noise information may be selected, or the two may be weighted and summed, and a most suitable beam pair may be selected according to the obtained result, thereby determining the corresponding reference signal.
  • the uplink reference signal When determining the reference signal in the quasi-co-location relationship, only the uplink reference signal may be determined, indicating that a certain uplink data has a quasi-co-location relationship with the uplink reference signal.
  • beam*2 and beam#3 constitute The quality of the beam pair is the best, and the beam pair corresponds to the uplink reference signal 11, that is, the reference signal 11 is transmitted by beam*2 and received by beam #3, then it can be indicated that the uplink data such as PUCCH and/or PUSCH and the uplink reference signal 11 have The quasi-co-location relationship, so that the terminal device can know that the uplink data needs to be transmitted through the beam*2 according to the quasi-co-location relationship.
  • only the downlink reference signal may be determined, indicating that a certain downlink data has a quasi-co-location relationship with the downlink reference signal, for example, in the TCI pool, beam #1 and beam*
  • the quality of the beam pair formed by 4 is the best, and the beam pair corresponds to the downlink reference signal 36, that is, the reference signal 36 is transmitted by beam #1 and received by beam *4, then it can indicate downlink data such as PDCCH and/or PDSCH and downlink reference signal 36 has a quasi-co-location relationship, so that the terminal device can know that it needs to receive downlink data through beam*4 according to the quasi-co-location relationship.
  • both the uplink reference signal and the downlink reference signal may be determined.
  • the uplink data and the uplink reference signal 11 have a quasi-co-location relationship
  • the downlink data and the downlink reference signal 36 have a quasi-co-location relationship, so that the terminal device can know the need according to the quasi-co-location relationship.
  • Uplink data is transmitted through beam*2, and downlink data is received through beam*4.
  • FIG. 7 is a schematic diagram of the principle of beam-based data transmission according to an embodiment of the present application. As shown in Fig. 7, when it is determined that the data has a quasi-co-located relationship with a certain reference signal, the beam pair corresponding to the reference signal can be used for data transmission.
  • the TCI indication information indicates that the PDSCH has a quasi-co-location relationship with a certain downlink reference signal, and the beam pair corresponding to the downlink reference signal is: beam #4 on the network device side and beam*1 on the terminal device side, then the network device side can use the beam #4 transmits PDSCH, and the terminal device side uses beam*1 to receive PDSCH.
  • network equipment and terminal equipment can perform beam scanning first, that is, traverse all beam pairing methods to transmit and receive reference signals, and save the beam pair measurement results obtained during the beam scanning process. Or when downlinking data, the beam pair with the best measurement result can be selected from the TCI pool, and the alignment and co-location relationship can be indicated through the TCI indication information.
  • the TCI pool can be determined according to the beam set of the uplink reference signal and the beam set of the downlink reference signal, so that the indication of the quasi-co-location relationship between the uplink data and the downlink data can be realized, Meet various data transmission requirements.
  • the TCI pool may be determined according to a beam set of uplink reference signals.
  • the beam set of the uplink reference signal may include all uplink transmit beams and/or uplink receive beams during beam scanning.
  • determining the TCI pool according to the beam set of the uplink reference signal may include: determining the TCI pool according to all pairs of transmit beams and receive beams in the beam set of the uplink reference signal.
  • the specific expression form of the TCI pool may refer to the right half of Table 1.
  • an appropriate beam pair can be selected for the uplink data, thereby indicating the quasi-co-location relationship between the uplink data and the uplink reference signal.
  • the quasi-co-location relationship between the downlink data and the uplink reference signal may also be indicated, that is, the downlink data is transmitted and received through two beams corresponding to the uplink reference signal. For example, if the PDCCH is quasi-co-located with the uplink reference signal 11, and the uplink reference signal 11 corresponds to beam*2 and beam#3, the PDCCH can be transmitted and received using beam*2 and beam#3, but the transmit beam and the receive beam are exactly the same as the uplink.
  • the reference signal 11 is the opposite.
  • the TCI pool may be determined according to a beam set of downlink reference signals.
  • the beam set of the downlink reference signal may include all downlink transmit beams and/or downlink receive beams during beam scanning.
  • determining the TCI pool according to the downlink reference signal beam set may include: determining the TCI pool according to all pairs of transmit beams and receive beams in the downlink reference signal beam set.
  • the specific expression form of the TCI pool may refer to the left half of Table 1.
  • an appropriate beam pair can be selected for the downlink data, thereby indicating the quasi-co-location relationship between the downlink data and the downlink reference signal.
  • the quasi-co-location relationship between the uplink data and the downlink reference signal may also be indicated, that is, the uplink data is transmitted and received through two beams corresponding to the downlink reference signal.
  • the PUCCH is quasi-co-located with the downlink reference signal 36, and the downlink reference signal 36 corresponds to beam #1 and beam*4
  • the PUCCH can use beam #1 and beam*4 for transmission and reception, but the transmit beam and the receive beam are exactly the same as the downlink reference signal.
  • the reference signal 36 is the opposite.
  • the scheme of determining the TCI pool only according to the beam set of the uplink reference signal or only according to the beam set of the downlink reference signal is given, and other places that are not described can be referred to The first optional implementation manner will not be repeated here.
  • the TCI pool is determined only according to the beam set of the uplink reference signal or only according to the beam set of the downlink reference signal, which can effectively simplify the TCI pool and reduce the information length of the TCI pool, so that the content of the TCI pool can be determined according to actual needs. Meet application requirements in different scenarios.
  • sending the TCI indication information includes: sending downlink control information (Downlink Control Information, DCI) through the PDCCH, where the DCI includes the TCI indication information.
  • DCI Downlink Control Information
  • the quasi-co-location relationship indicated in the DCI can include both the uplink quasi-co-location relationship and the downlink quasi-co-location relationship, so that the uplink and downlink can be simultaneously indicated through the DCI, and there is no need to separately indicate the quasi-co-location relationship in each channel. address relationship and improve the flexibility of TCI indication.
  • the TCI indication information may include at least one of the following: an identifier of an uplink reference signal in the quasi-co-location relationship; an identifier of a downlink reference signal in the quasi-co-location relationship; an identifier of a reference signal combination; Channel indication information.
  • the TCI indication information may include the identifier of the uplink reference signal in the quasi-co-location relationship, and/or the identifier of the downlink reference signal in the quasi-co-location relationship.
  • the quasi-co-location relationship is directly indicated by the identifier of the reference signal, which can effectively improve the efficiency and accuracy of the terminal device in determining the quasi-co-location relationship.
  • the TCI indicator information may further include: corresponding to the identifier of the uplink reference signal. the set uplink indicator bit; and/or, the downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the uplink indication bit may be used to indicate that the correspondingly set identifier is the identifier of the uplink reference signal
  • the downlink indicator bit may be used to indicate that the correspondingly set identifier is the identifier of the downlink reference signal
  • Table 2 An example of TCI indication information provided by the embodiment of the present application
  • the uplink indication bit can be TCI-0, which is used to indicate that the correspondingly set identifier 11 is the identifier of the uplink reference signal, that is, the reference signal in the quasi-co-location relationship includes the uplink reference signal 11; similarly, the downlink indication The bit may be TCI-1, which is used to indicate that the correspondingly set identifier 36 is the identifier of the downlink reference signal, that is, the reference signal in the quasi-co-location relationship includes the uplink reference signal 36 .
  • the TCI indication information may also only indicate an uplink quasi-co-location relationship or only a downlink quasi-co-location relationship.
  • only an uplink indication bit or a downlink indication bit may be set in the TCI indication information.
  • the terminal equipment can maintain the corresponding relationship between the reference signal and the beam. After receiving the TCI indication information, the terminal device can determine the reference signal in the quasi-co-location relationship according to the TCI indication information, and then can determine the beam corresponding to the reference signal.
  • the terminal device may store the transmit beam corresponding to the uplink reference signal, and/or the receive beam corresponding to the downlink reference signal. It is assumed that the corresponding transmit beam and receive beam can be determined according to the uplink reference signal 11 and the downlink reference signal 36, respectively. For *2 and *1, then you can transmit uplink data through beam*2, and receive downlink data through beam*1.
  • the TCI indication information may include an identifier of a reference signal combination.
  • the reference signal combination includes an uplink reference signal and a downlink reference signal in the quasi-co-location relationship.
  • the uplink reference signal and the downlink reference signal in the quasi-co-location relationship can be represented by the identifier of one reference signal combination.
  • n optional uplink reference signals and m optional downlink reference signals there are n ⁇ m combinations in total, including any combination of an uplink reference signal and any downlink reference signal.
  • the network device can first select a suitable beam according to the beam measurement result and determine the corresponding uplink reference signal and downlink reference signal, and then according to the uplink reference signal and downlink reference signal. For reference signals, a corresponding reference signal combination is determined, and an identifier of the reference signal combination is determined according to the corresponding reference signal combination.
  • the terminal device may maintain the corresponding relationship between the identifier of the reference signal combination, the uplink reference signal and the downlink reference signal.
  • the identifier of the reference signal combination can accurately indicate the uplink reference signal and the downlink reference signal, and it is beneficial to save the length of the transmitted information.
  • the TCI indication information may include channel indication information.
  • the channel indication information is used to indicate a channel using the quasi-co-location relationship.
  • the channel indication information may be used to indicate that any one or more of PDCCH, PDSCH, PUCCH, and PUSCH use the quasi-co-location relationship.
  • the terminal device can determine which channels need to use the quasi-co-location relationship indicated in the TCI indication information according to the channel indication information, thereby improving the accuracy of the TCI indication.
  • the quasi-co-location relationship between each channel and the reference signal may be time-limited. After the reference signal is determined, the channel and the reference signal may be quasi-co-located within a period of time, thereby improving the real-time performance of the quasi-co-location relationship. sex.
  • a radio resource control layer (Radio Resource Control, RRC) and/or a media access control layer (Media Access Control Element, MAC CE) can also be used for the following
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • higher layer signaling can configure which channel or channels use TCI indication information.
  • DCI can directly send TCI indication information to indicate a quasi-co-location relationship. In this way, after acquiring the DCI, the terminal device can know which channel the quasi-co-location relationship indicated therein can be applied to, thereby reducing the complexity of the DCI.
  • the quasi-co-location relationship When the quasi-co-location relationship is changed, it can be directly changed in the DCI.
  • the channel indication information When the channel indication information is carried in the DCI, and the channel indication information conflicts with the information configured by the high-level signaling, the channel indication information carried in the DCI can prevail, so that the terminal equipment can be quickly notified when the quasi-co-location changes, and the information can be improved. transmission efficiency.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • the terminal device may transmit signals through multiple beams, and/or the network device may receive signals through multiple beams; the quasi-co-location relationship includes multiple uplink reference signals.
  • the network device may transmit signals through multiple beams, and/or the terminal device may receive signals through multiple beams. In this way, signals can be transmitted or received through multiple beams, thereby improving the accuracy of signal transmission.
  • FIG. 8 is a schematic flowchart of another method for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • the execution subject of the method in this embodiment may be a terminal device. As shown in Figure 8, the illustrated method includes:
  • Step 801 Acquire TCI indication information, where the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • Step 802 Receive downlink data and/or transmit uplink data according to the quasi-co-location relationship.
  • the quasi-co-location relationship indication method provided in this embodiment can acquire TCI indication information, where the TCI indication information is used to indicate the quasi-co-location relationship between data and reference signals, and performs downlink data reception and transmission according to the quasi-co-location relationship. / or the transmission of uplink data, so that the quasi-co-location relationship can be quickly determined according to the TCI indication information, and there is no need to configure the TCI list in each channel, which effectively reduces the redundancy and complexity of information configuration and improves system efficiency.
  • the data includes uplink data and/or downlink data
  • the reference signals include uplink reference signals and/or downlink reference signals.
  • obtain TCI indication information including:
  • the downlink control information is acquired through the physical downlink control channel, where the downlink control information includes TCI indication information.
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • receiving downlink data and/or sending uplink data according to the quasi-co-location relationship includes:
  • the transmission of the channel indicated by the TCI indication information is performed.
  • the method further includes:
  • the measurement result includes power information and/or interference noise information.
  • the method further includes:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • FIG. 9 is a schematic flowchart of still another method for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • the execution subject of the method in this embodiment may be a terminal device. As shown in Figure 9, the illustrated method includes:
  • Step 901 Acquire connection configuration information.
  • connection configuration information may be any information used to implement the connection configuration between the network device and the terminal device, for example, the connection configuration information may include carrier information for communication connection between the network device and the terminal device.
  • connection configuration information may be obtained from a network device, or may be obtained in other ways, for example, connection configuration information stored in a memory may be obtained.
  • Step 902 Receive downlink data and/or send uplink data according to the connection configuration information and the TCI indication information.
  • the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • the terminal device may determine, according to the quasi-co-location relationship indicated by the TCI indication information, which beam corresponding to the reference signal is used to receive downlink data and/or transmit uplink data. From the connection configuration information, the terminal device may also determine how to use the quasi-co-location relationship based on the carrier.
  • the terminal device may determine, based on the connection configuration information, to execute the quasi-co-location relationship indicated by the TCI indication information on the corresponding carrier.
  • the terminal device may perform the quasi-co-location relationship indicated by the TCI indication information on carrier A, that is, the terminal device uses carrier A to receive the carrier A from the network device.
  • the beam corresponding to the relevant reference signal may be used to receive or send the data.
  • connection configuration information may be used to instruct the terminal device not to perform the quasi-co-location relationship on the corresponding carrier.
  • the terminal device may not perform the quasi-co-location relationship indicated by the TCI indication information on carrier B.
  • the terminal device may perform the quasi-co-location relationship on a carrier other than the carrier indicated by the connection configuration information.
  • connection configuration information may be used to indicate whether the terminal device performs the quasi-co-location relationship on two or more carriers.
  • the terminal device may simultaneously perform the quasi-co-location relationship on at least two carriers indicated by the connection configuration information; or, the terminal device may perform the quasi-co-location relationship on at least two carriers indicated by the connection configuration information
  • the quasi-co-location relationship is not performed on all of the above; or, the terminal device may perform the quasi-co-location relationship on some of the at least two carriers indicated by the connection configuration information, and do not perform all the quasi-co-location relationships on the remaining carriers. Describe the quasi-co-location relationship.
  • the terminal device may use the quasi-co-location relationship indicated by the TCI indication information on some carriers indicated by the connection configuration information, and use other carriers other than the quasi-co-location relationship indicated by the TCI indication information on other carriers. Quasi-colocation relationship.
  • the terminal device can pre-configure the quasi-co-location relationship on different carriers to improve the flexibility of the system.
  • the network device may configure TCI pools based on the connection configuration information, and different connection configuration information may correspond to the same or different TCI pools, and the TCI pools may be used to save the beam set corresponding to the reference signal, and the quasi-co-location relationship. It can be determined based on the TCI pool.
  • the quasi-co-location relationship indication method provided in this embodiment can acquire connection configuration information, and perform downlink data reception and/or uplink data transmission according to the connection configuration information and the TCI indication information.
  • the TCI indication information It is used to indicate the quasi-co-location relationship between data and reference signals, so that the quasi-co-location relationship can be indicated quickly and accurately by adding TCI indication information to the connection configuration information. It is not necessary to configure the TCI list in each channel separately, which effectively reduces the information configuration.
  • the redundancy and complexity of the system improves the efficiency of the system, and can also indicate the quasi-co-location relationship of different carriers, which improves the flexibility of the system.
  • connection configuration information includes at least one of the following: primary cell information; and secondary cell information.
  • the connection configuration information may include primary cell information and/or secondary cell information.
  • the primary cell information/secondary cell information may be any information that can indicate the primary cell/secondary cell, for example, the identity, name, and corresponding carrier information of the primary cell/secondary cell.
  • the primary carrier can be determined according to the primary cell
  • the secondary carrier can be determined according to the secondary cell
  • at least one of the primary carrier and the secondary carrier can be determined according to at least one of the primary cell and the secondary cell, so that the primary carrier and the secondary carrier can be identified.
  • the configuration of the quasi-co-location relationship in the carrier aggregation scenario realizes the quasi-co-location relationship configuration in the carrier aggregation scenario, and improves the system flexibility in the carrier aggregation scenario.
  • connection configuration information includes at least one of the following: primary cell information of the primary node; secondary cell information of the primary node; primary cell information of the secondary node; Secondary cell information of the secondary node.
  • the DC can contain a master node (Master Node, MN) and a secondary node (Secondary Node SN), where each node can have its own CA combination.
  • the connection configuration information may be used to indicate the primary cell and/or the secondary cell in the primary node and/or the secondary node.
  • the primary cell information/secondary cell information may be the identification, name, and corresponding carrier information of the primary cell/secondary cell.
  • connection configuration information may be used to indicate any one of the primary cell of the primary node, the secondary cell of the primary node, the primary cell of the secondary node, and the secondary cell of the secondary node.
  • the terminal device may be pre-configured to execute or not execute the quasi-co-location relationship indicated by the TCI indication information on the carrier corresponding to the primary cell of the master node.
  • connection configuration information may be used to indicate at least two of the primary cell of the primary node, the secondary cell of the primary node, the primary cell of the secondary node, and the secondary cell of the secondary node.
  • the terminal device may configure a quasi-co-location relationship for the carrier corresponding to the primary cell of the primary node and the carrier corresponding to the secondary cell of the secondary node.
  • connection configuration information to indicate at least one of the primary cell of the primary node, the secondary cell of the primary node, the primary cell of the secondary node, and the secondary cell of the secondary node can effectively implement the quasi-co-location relationship configuration in the dual-link scenario, and improve the dual-link configuration. System flexibility in linked scenarios.
  • the connection configuration information is configured by radio resource control signaling.
  • the radio resource control instruction Through the radio resource control instruction, the quasi-co-location relationship can be configured for the carriers in advance, so as to improve the processing efficiency of the terminal device.
  • the radio resource control signaling further includes a TCI pool.
  • the TCI pool may be in the form of a list, such as Table 1 or a similar form.
  • the terminal device can obtain the TCI pool based on the radio resource control signaling, and can subsequently directly determine which item in the TCI pool is used to transmit and receive data according to the TCI indication information, which can effectively simplify the indication of alignment and co-location relationship, Reduce signaling overhead.
  • the method further includes: acquiring TCI indication information.
  • the TCI indication information may be acquired from a network device, or may also be acquired from a memory or other device. By acquiring the TCI indication information before transmitting uplink data and downlink data based on the connection configuration information and the TCI indication information, the TCI indication information corresponding to this data transmission can be determined in real time, thereby improving the efficiency and accuracy of data transmission.
  • the time sequence of acquiring the connection configuration information and acquiring the TCI indication information may be any of the following: acquire the connection configuration information first, and then acquire the TCI indication information; acquire the TCI indication information first , and then obtain the connection configuration information; and obtain the connection configuration information and the TCI indication information at the same time.
  • connection configuration information may be acquired first, and then the TCI indication information may be acquired.
  • the connection configuration information can be obtained through radio resource control signaling, and the TCI indication information can be obtained through DCI, so that the terminal device can pre-determine which carriers need to perform the quasi-co-location relationship indicated by the TCI indication information, and then according to the TCI indication
  • the information determines which quasi-co-location relationship to use in real time, improving the flexibility of quasi-co-location relationship indication.
  • the TCI indication information may be acquired first, and then the connection configuration information may be acquired.
  • the connection configuration information can be obtained through DCI, and the TCI indication information can be obtained through radio resource control signaling, so that the terminal device can determine which quasi-co-location relationship to use according to the TCI indication information in advance, and then according to the connection configuration information It is determined in real time which specific carriers need to use the quasi-co-location relationship, and the flexibility of configuring the quasi-co-location relationship for the carriers is improved.
  • connection configuration information and the TCI indication information may be acquired at the same time.
  • both the connection configuration information and the TCI indication information can be obtained through radio resource control signaling or DCI, so that the terminal device can synchronously learn how to select a quasi-co-location relationship and configure which carriers use the quasi-co-location relationship, thereby improving The processing efficiency of the terminal device.
  • the TCI indication information includes at least one of the following: an identifier of an uplink reference signal in the quasi-co-location relationship; an identifier of a downlink reference signal in the quasi-co-location relationship; an identifier of a reference signal combination; a channel Instructions.
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the receiving of downlink data and/or the sending of uplink data according to the connection configuration information and the TCI indication information further includes: according to the carrier indicated by the connection configuration information and the standard indicated by the TCI indication information.
  • the co-location relationship is used to transmit the channel indicated by the TCI indication information.
  • the terminal device may determine whether to execute the quasi-co-location relationship on the carrier according to the carrier indicated by the connection configuration information and the quasi-co-location relationship indicated by the TCI indication information, and then may perform channel transmission according to the determined information.
  • the TCI indication information may include channel indication information.
  • the channel indication information is used to indicate a channel using the quasi-co-location relationship.
  • the channel indication information may be used to indicate that any one or more of PDCCH, PDSCH, PUCCH, and PUSCH use the quasi-co-location relationship. In this way, the terminal device can determine which channels need to use the quasi-co-location relationship indicated in the TCI indication information according to the channel indication information, thereby improving the accuracy of the TCI indication.
  • the method further includes: detecting the measurement result of the signal transmitted by the beam on the side of the network device through the beam on the side of the terminal device; and sending the detected measurement result to the network device.
  • network equipment and terminal equipment can perform beam scanning first, that is, traverse all beam pairing methods to transmit and receive reference signals, and save the beam pair measurement results obtained during the beam scanning process. Or when downlinking data, the beam pair with the best measurement result can be selected from the TCI pool, and the alignment and co-location relationship can be indicated through the TCI indication information.
  • the measurement results corresponding to each beam pair can be quickly and accurately detected through the network equipment side beam and the terminal equipment side beam, thereby providing a basis for beam selection and improving the accuracy of beam selection.
  • the measurement result includes power information and/or interference noise information.
  • the network device may select an uplink beam pair and/or a downlink beam pair from the TCI pool according to the power information and/or interference noise information corresponding to each beam pair, so as to determine the corresponding reference signal and improve the accuracy of determining the reference signal.
  • the method further includes: configuring the TCI indication information for at least one of the following items through the radio resource control layer and/or the medium access control layer: physical uplink control channel, physical uplink shared channel, physical downlink control channel, Physical downlink shared channel.
  • the higher layer signaling can configure which channel or channels use the TCI indication information.
  • DCI can directly send TCI indication information to indicate a quasi-co-location relationship. In this way, after acquiring the DCI, the terminal device can know which channel the quasi-co-location relationship indicated therein can be applied to, thereby reducing the complexity of the DCI.
  • the quasi-co-location relationship When the quasi-co-location relationship is changed, it can be directly changed in the DCI.
  • the channel indication information When the channel indication information is carried in the DCI, and the channel indication information conflicts with the information configured by the high-level signaling, the channel indication information carried in the DCI can prevail, so that the terminal equipment can be quickly notified when the quasi-co-location changes, and the information can be improved. transmission efficiency.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • the terminal device may transmit signals through multiple beams, and/or the network device may receive signals through multiple beams; multiple downlink reference signals are included in the quasi-co-location relationship , the network device may transmit signals through multiple beams, and/or the terminal device may receive signals through multiple beams. In this way, signals can be transmitted or received through multiple beams, thereby improving the accuracy of signal transmission.
  • FIG. 10 is a schematic flowchart of still another method for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • the execution body of the method in this embodiment may be a network device. As shown in Figure 10, the illustrated method includes:
  • Step 1001 Determine connection configuration information.
  • connection configuration information may be any information used to implement the connection configuration between the network device and the terminal device, for example, the connection configuration information may include carrier information for the communication connection between the network device and the terminal device.
  • Step 1002 Send downlink data and/or receive uplink data according to the connection configuration information and the TCI indication information.
  • the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • the quasi-co-location relationship indicated by the TCI indication information it may be determined which beam corresponding to the reference signal is used to receive downlink data and/or transmit uplink data. How to use the quasi-co-location relationship based on the carrier may also be determined according to the connection configuration information.
  • whether to execute the quasi-co-location relationship indicated by the TCI indication information on the corresponding carrier may be determined based on the connection configuration information.
  • connection configuration information For a specific implementation method, reference may be made to the foregoing embodiments, which will not be repeated here.
  • the network device may configure TCI pools based on the connection configuration information, and different connection configuration information may correspond to the same or different TCI pools, and the TCI pools may be used to save the beam set corresponding to the reference signal, and the quasi-co-location relationship. It can be determined based on the TCI pool.
  • the quasi-co-location relationship indication method provided in this embodiment can determine connection configuration information, and send downlink data and/or receive uplink data according to the connection configuration information and TCI indication information.
  • the TCI indication The information is used to indicate the quasi-co-location relationship between the data and the reference signal, so that the quasi-co-location relationship can be quickly and accurately implemented by adding the connection configuration information and the TCI indication information.
  • the redundancy and complexity improve the system efficiency, and can also indicate the quasi-co-location relationship of different carriers, which improves the flexibility of the system.
  • the method further includes: determining a TCI pool according to a beam set of uplink reference signals and/or downlink reference signals; and sending TCI indication information according to the TCI pool.
  • a TCI pool can be configured on the network device side.
  • the TCI pool stores the beam set corresponding to the reference signal.
  • an appropriate beam can be selected from the TCI pool.
  • the beam can determine its corresponding reference signal, and then send the TCI indication information, indicating that the data can be quasi-co-located with the reference signal, so that the terminal device can determine which reference signal to use according to the quasi-co-location relationship indicated by the TCI indication information. beams to receive or transmit data.
  • the indication of the quasi-co-location relationship can be realized by adding the TCI indication information to the TCI pool. It is not necessary to configure the TCI state list in each channel. When the beam set changes, the TCI pool can be directly modified, which improves the quasi-co-location relationship Efficiency of address relationship configuration.
  • connection configuration information includes at least one of the following: primary cell information; secondary cell information.
  • connection configuration information includes at least one of the following: primary cell information of the primary node; secondary cell information of the primary node; primary cell information of the secondary node; secondary cell information of the secondary node.
  • the quasi-co-location relationship configuration in the CA and DC scenarios can be implemented respectively, and the specific implementation can refer to the foregoing embodiments, which will not be repeated here.
  • connection configuration information is configured by radio resource control signaling.
  • the quasi-co-location relationship can be configured for the carriers in advance, so as to improve the processing efficiency of the terminal device.
  • the radio resource control signaling further includes a TCI pool.
  • the terminal device can obtain the TCI pool based on the radio resource control signaling, and can subsequently directly determine which item in the TCI pool is used to transmit and receive data according to the TCI indication information, which can effectively simplify the indication of alignment and co-location relationship, Reduce signaling overhead.
  • the method before sending downlink data and/or receiving uplink data according to the connection configuration information and the TCI indication information, the method further includes: sending connection configuration information.
  • sending connection configuration information By sending the TCI indication information before transmitting the uplink data and downlink data based on the connection configuration information and the TCI indication information, the terminal device can timely determine the TCI indication information corresponding to this data transmission, and improve the efficiency and accuracy of data transmission .
  • the time sequence of sending the connection configuration information and sending the TCI indication information may be any of the following: the connection configuration information is sent first, and then the TCI indication information is sent; the TCI indication information is sent first, and then the TCI indication information is sent. and send the connection configuration information and the TCI indication information at the same time.
  • connection configuration information may be sent first, and then the TCI indication information may be sent, so that the terminal device can pre-determine which carriers need to perform the quasi-co-location relationship indicated by the TCI indication information, and then according to the TCI
  • the indication information determines in real time which quasi-co-location relationship to use, improving the flexibility of quasi-co-location relationship indication.
  • the TCI indication information may be acquired first, and then the connection configuration information may be acquired, so that the terminal device can determine which quasi-co-location relationship to use in advance according to the TCI indication information, and then acquire the quasi-co-location relationship according to the connection
  • the configuration information determines in real time which specific carriers need to use the quasi-co-location relationship, which improves the flexibility of configuring the quasi-co-location relationship for the carriers.
  • connection configuration information and the TCI indication information can be acquired at the same time, so that the terminal device can synchronously learn how to select a quasi-co-location relationship and configure which carriers use the quasi-co-location relationship, Improve the processing efficiency of terminal equipment.
  • the data includes uplink data and/or downlink data
  • the reference signal includes an uplink reference signal and/or a downlink reference signal
  • the beam set of the uplink reference signal includes all uplink transmit beams and/or during beam scanning Uplink receiving beam
  • the beam set of the downlink reference signal includes all downlink transmit beams and/or downlink receive beams during beam scanning.
  • determining the TCI pool according to the beam set of the uplink reference signal and/or the downlink reference signal includes: according to the beam set of the uplink reference signal and/or the downlink reference signal, all pairs of transmit beams and receive beams Determine the TCI pool.
  • sending the TCI indication information includes: sending downlink control information through a physical downlink control channel, where the downlink control information includes TCI indication information.
  • the TCI indication information includes at least one of the following: an identifier of an uplink reference signal in the quasi-co-location relationship; an identifier of a downlink reference signal in the quasi-co-location relationship; an identifier of a reference signal combination; a channel Instructions.
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the corresponding reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship, and the corresponding reference signal combination is determined according to the corresponding reference signal combination.
  • the identification of the reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship.
  • the TCI pool includes information of at least one beam pair.
  • the beam pair includes a network equipment side beam and a terminal equipment side beam; the information of the beam pair includes an identifier of the network equipment side beam in the beam pair, the identifier of the terminal equipment side beam, and the beam pair. at least one of the corresponding measurement results.
  • sending the TCI indication information includes: determining the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool; The uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship sends TCI indication information.
  • determining the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool includes: according to the measurement corresponding to each beam pair in the TCI pool As a result, selecting an uplink beam pair and/or a downlink beam pair from the TCI pool; determining an uplink reference signal and/or an uplink reference signal in the quasi-co-location relationship according to the selected uplink beam pair and/or the downlink beam pair Downlink reference signal.
  • the measurement result of the signal transmitted by the network device side beam detected by the terminal device side beam is obtained from the terminal device; for any beam pair, the terminal device side beam transmission is detected by the network device side beam.
  • the signal corresponding to the measurement result is obtained from the terminal device;
  • selecting an uplink beam pair and/or a downlink beam pair from the TCI pool according to the measurement results corresponding to each beam pair in the TCI pool including: according to the corresponding power information and/or interference noise of each beam pair information, select an uplink beam pair and/or a downlink beam pair from the TCI pool.
  • the number of beam pairs is equal to the product of the number of beams on the network device side and the number of beams on the terminal device side; and/or, in the FDD mode, the number of beam pairs is equal to the network device.
  • the method further includes: configuring the TCI indication information for at least one of the following items through the radio resource control layer and/or the medium access control layer: physical uplink control channel, physical uplink shared channel, physical downlink control channel, Physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • FIG. 11 is a schematic structural diagram of an apparatus for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • the quasi-co-location relationship indicating device may be applied to network equipment. As shown in FIG. 11 , the quasi-co-location relationship indicating device may include:
  • a first determining module 1101 configured to determine a TCI pool according to a beam set of uplink reference signals and/or downlink reference signals;
  • the sending module 1102 is configured to send TCI indication information according to the TCI pool, where the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals.
  • the data includes uplink data and/or downlink data
  • the reference signal includes an uplink reference signal and/or a downlink reference signal
  • the beam set of the uplink reference signal includes all uplink transmit beams and/or uplink receive beams during beam scanning;
  • the beam set of the downlink reference signal includes all downlink transmit beams and/or downlink receive beams during beam scanning.
  • the first determining module 1101 is specifically configured to:
  • the TCI pool is determined according to all pairs of transmit beams and receive beams in the beam set of the uplink reference signal and/or the downlink reference signal.
  • the sending module 1102 when the sending module 1102 sends the TCI indication information, it is specifically configured to:
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal The uplink indicator bit; and/or, the downlink indicator bit set corresponding to the identifier of the downlink reference signal;
  • the corresponding reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship, and the corresponding reference signal combination is determined according to the corresponding reference signal combination.
  • the identification of the reference signal combination is determined according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship.
  • the TCI pool includes information of at least one beam pair.
  • the beam pair includes a network device side beam and a terminal device side beam;
  • the information of the beam pair includes at least one of the identification of the network device side beam in the beam pair, the identification of the terminal device side beam, and the measurement result corresponding to the beam pair.
  • the sending module 1102 when sending the TCI indication information according to the TCI pool, is specifically configured to:
  • the TCI indication information is sent according to the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship.
  • the sending module 1102 when determining the uplink reference signal and/or the downlink reference signal in the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool, is specifically configured to:
  • the first determining module 1101 is further configured to: for any beam pair, obtain, from the terminal device, a measurement result of the signal transmitted by the network device side beam detected by the terminal device side beam;
  • the first determining module 1101 is further configured to: for any beam pair, use the network device side beam to detect the measurement result corresponding to the signal transmitted by the terminal device side beam.
  • the sending module 1102 when selecting an uplink beam pair and/or a downlink beam pair from the TCI pool according to the measurement results corresponding to each beam pair in the TCI pool, the sending module 1102 is specifically used for:
  • an uplink beam pair and/or a downlink beam pair is selected from the TCI pool.
  • the number of beam pairs is equal to the product of the number of beams on the side of the network device and the number of beams on the side of the terminal device; and/or,
  • the number of beam pairs is equal to a preset multiple of the product of the number of network equipment side beams and the number of terminal equipment side beams, preferably, the preset multiple is 2 times.
  • the first determining module 1101 is further configured to:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • the apparatus provided in this embodiment can be used to implement the technical solutions of the embodiments shown in FIG. 1 to FIG. 7 , and the implementation principles and technical effects thereof are similar, and details are not described herein again in this embodiment.
  • FIG. 12 is a schematic structural diagram of another apparatus for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • the quasi-co-location relationship indicating device may be applied to terminal equipment. As shown in FIG. 12 , the quasi-co-location relationship indicating device may include:
  • a first obtaining module 1201 configured to obtain TCI indication information, where the TCI indication information is used to indicate a quasi-co-location relationship between data and reference signals;
  • the first transmission module 1202 is configured to receive downlink data and/or transmit uplink data according to the quasi-co-location relationship.
  • the data includes uplink data and/or downlink data
  • the reference signals include uplink reference signals and/or downlink reference signals.
  • the first obtaining module 1201 obtains the TCI indication information, it is specifically used for:
  • the downlink control information is acquired through the physical downlink control channel, where the downlink control information includes TCI indication information.
  • the TCI indication information includes at least one of the following:
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the first transmission module 1202 is specifically configured to:
  • the transmission of the channel indicated by the TCI indication information is performed.
  • the first obtaining module 1201 is further configured to:
  • the measurement result includes power information and/or interference noise information.
  • the first obtaining module 1201 is further configured to:
  • the TCI indication information is configured by the radio resource control layer and/or the medium access control layer for at least one of the following: physical uplink control channel, physical uplink shared channel, physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • the apparatus provided in this embodiment can be used to implement the technical solution of the embodiment shown in FIG. 8 , and its implementation principle and technical effect are similar, and details are not described herein again in this embodiment.
  • FIG. 13 is a schematic structural diagram of another apparatus for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • the quasi-co-location relationship indicating device may be applied to terminal equipment. As shown in FIG. 13 , the quasi-co-location relationship indicating device may include:
  • the second obtaining module 1301 is used to obtain connection configuration information
  • the second transmission module 1302 is configured to receive downlink data and/or transmit uplink data according to the connection configuration information and the TCI indication information.
  • the TCI indication information is used to indicate the quasi-combination of data and reference signals. address relationship.
  • connection configuration information includes at least one of the following: primary cell information; secondary cell information.
  • connection configuration information includes at least one of the following: primary cell information of the primary node; secondary cell information of the primary node; primary cell information of the secondary node; secondary cell information of the secondary node.
  • connection configuration information is configured by radio resource control signaling.
  • the radio resource control signaling further includes a TCI pool.
  • the second obtaining module 1301 is further configured to:
  • the TCI indication information is acquired.
  • the time sequence of acquiring the connection configuration information and acquiring the TCI indication information may be any of the following: acquire the connection configuration information first, and then acquire the TCI indication information; acquire the TCI indication information first , and then obtain the connection configuration information; and obtain the connection configuration information and the TCI indication information at the same time.
  • the TCI indication information includes at least one of the following: an identifier of an uplink reference signal in the quasi-co-location relationship; an identifier of a downlink reference signal in the quasi-co-location relationship; an identifier of a reference signal combination; a channel Instructions.
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, a downlink indicator bit set corresponding to the identifier of the downlink reference signal.
  • the second transmission module 1302 is specifically configured to: transmit the channel indicated by the TCI indication information according to the carrier indicated by the connection configuration information and the quasi-co-location relationship indicated by the TCI indication information.
  • the second obtaining module 1301 is further configured to: detect the measurement result of the signal transmitted by the beam on the network device side through the terminal device side beam; and send the detected measurement result to the network device.
  • the measurement result includes power information and/or interference noise information.
  • the second obtaining module 1301 is further configured to configure the TCI indication information for at least one of the following items through the radio resource control layer and/or the medium access control layer: physical uplink control channel, physical uplink shared channel, Physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • the apparatus provided in this embodiment can be used to implement the technical solution of the embodiment shown in FIG. 9 , and its implementation principle and technical effect are similar, and details are not repeated here in this embodiment.
  • FIG. 14 is a schematic structural diagram of still another apparatus for indicating a quasi-co-location relationship provided by an embodiment of the present application.
  • the quasi-co-location relationship indicating device may be applied to network equipment. As shown in FIG. 14 , the quasi-co-location relationship indicating device may include:
  • a third transmission module 1402 configured to send downlink data and/or receive uplink data according to the connection configuration information and the TCI indication information; optionally, the TCI indication information is used to indicate the quasi-common nature of data and reference signals address relationship.
  • the third transmission module 1402 is further configured to: determine a TCI pool according to a beam set of uplink reference signals and/or downlink reference signals; and send TCI indication information according to the TCI pool.
  • connection configuration information includes at least one of the following: primary cell information; secondary cell information.
  • connection configuration information includes at least one of the following: primary cell information of the primary node; secondary cell information of the primary node; primary cell information of the secondary node; secondary cell information of the secondary node.
  • connection configuration information is configured by radio resource control signaling.
  • the radio resource control signaling further includes a TCI pool.
  • the third transmission module 1402 is further configured to: send connection configuration information.
  • the time sequence of sending the connection configuration information and sending the TCI indication information may be any of the following: the connection configuration information is sent first, and then the TCI indication information is sent; the TCI indication information is sent first, and then the TCI indication information is sent. and send the connection configuration information and the TCI indication information at the same time.
  • the data includes uplink data and/or downlink data
  • the reference signal includes an uplink reference signal and/or a downlink reference signal
  • the beam set of the uplink reference signal includes all uplink transmit beams and/or during beam scanning Uplink receiving beam
  • the beam set of the downlink reference signal includes all downlink transmit beams and/or downlink receive beams during beam scanning.
  • the third transmission module 1402 is specifically configured to: according to the beam set of the uplink reference signal and/or the downlink reference signal In a set, all pairs of transmit and receive beams determine the TCI pool.
  • the third transmission module 1402 when sending the TCI indication information, is specifically configured to: send downlink control information through a physical downlink control channel, where the downlink control information includes TCI indication information.
  • the TCI indication information includes at least one of the following: an identifier of an uplink reference signal in the quasi-co-location relationship; an identifier of a downlink reference signal in the quasi-co-location relationship; an identifier of a reference signal combination; a channel Instructions.
  • the TCI indicator information when the TCI indication information includes the identifier of the uplink reference signal and/or the identifier of the downlink reference signal in the quasi-co-location relationship, the TCI indicator information further includes: setting corresponding to the identifier of the uplink reference signal and/or, the downlink indicator bit set corresponding to the identifier of the downlink reference signal; when the TCI indication information includes the identifier of the reference signal combination, according to the uplink reference signal and the downlink reference signal in the quasi-co-location relationship , determine the corresponding reference signal combination, and determine the identifier of the reference signal combination according to the corresponding reference signal combination.
  • the TCI pool includes information of at least one beam pair.
  • the beam pair includes a network equipment side beam and a terminal equipment side beam; the information of the beam pair includes an identifier of the network equipment side beam in the beam pair, the identifier of the terminal equipment side beam, and the beam pair. at least one of the corresponding measurement results.
  • the third transmission module 1402 when sending the TCI indication information according to the TCI pool, is specifically configured to: determine the quasi-co-location relationship according to the information of at least one beam pair in the TCI pool. Uplink reference signal and/or downlink reference signal; according to the uplink reference signal and/or downlink reference signal in the quasi-co-location relationship, send TCI indication information.
  • the third transmission module 1402 is specifically configured to: according to The measurement results corresponding to each beam pair in the TCI pool, select an uplink beam pair and/or a downlink beam pair from the TCI pool; according to the selected uplink beam pair and/or the downlink beam pair, determine the standard The uplink reference signal and/or the downlink reference signal in the co-location relationship.
  • the third transmission module 1402 is further configured to perform at least one of the following: for any beam pair, obtain, from the terminal device, a measurement result of the signal transmitted by the network device side beam detected by the terminal device side beam; For any beam pair, the measurement result corresponding to the signal transmitted by the beam on the side of the terminal equipment is detected by the beam on the side of the network equipment.
  • the third transmission module 1402 is specifically configured to: Power information and/or interference noise information corresponding to the beam pair, and select an uplink beam pair and/or a downlink beam pair from the TCI pool.
  • the number of beam pairs is equal to the product of the number of beams on the network device side and the number of beams on the terminal device side; and/or, in the FDD mode, the number of beam pairs is equal to the network device.
  • the third transmission module 1402 is further configured to configure the TCI indication information for at least one of the following items through the radio resource control layer and/or the medium access control layer: physical uplink control channel, physical uplink shared channel, Physical downlink control channel, physical downlink shared channel.
  • the quasi-co-location relationship indicated by the TCI indication information includes at least one uplink reference signal and at least one downlink reference signal.
  • the apparatus provided in this embodiment can be used to implement the technical solution of the embodiment shown in FIG. 10 , and its implementation principle and technical effect are similar, and details are not described herein again in this embodiment.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device described in this embodiment may be the terminal device (or a component usable for the terminal device) or the network device (or a component usable for the network device) mentioned in the foregoing method embodiments.
  • the communication device may be used to implement the method corresponding to the terminal device or the network device described in the foregoing method embodiments. For details, refer to the descriptions in the foregoing method embodiments.
  • the communication device in this embodiment includes: a processor 1501 and a memory 1502 ; optionally, the memory 1502 is used to store computer-executed instructions; when the computer-executed instructions are executed by the processor 1501
  • the method for indicating a quasi-co-location relationship in any of the foregoing embodiments is implemented. For details, refer to the relevant descriptions in the foregoing method embodiments.
  • the memory 1502 may be independent or integrated with the processor 1501 .
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor executes the computer-executable instructions, the above-mentioned quasi-co-location relationship indication method is implemented .
  • Embodiments of the present application also provide a computer program product, including a computer program, which implements the methods described in the various possible implementation manners above when the computer program is executed by a processor.
  • An embodiment of the present application further provides a chip, including a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the chip is installed with the chip.
  • the communication device performs the method as described in the various possible embodiments above.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • the above-mentioned integrated modules implemented in the form of software functional modules may be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium, and include several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute the methods described in the various embodiments of the present application. some steps.
  • processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, referred to as: DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC) etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in conjunction with the invention can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as at least one magnetic disk memory, and may also be a U disk, a removable hard disk, a read-only memory, a magnetic disk or an optical disk, and the like.
  • NVM non-volatile storage
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus, or the like.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present application are not limited to only one bus or one type of bus.
  • the above-mentioned storage medium may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable except programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Abstract

本申请提供一种准共址关系指示方法、设备及存储介质。该方法包括:根据上行参考信号和/或下行参考信号的波束集合确定TCI池;根据所述TCI池,发送TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系。本申请提供的准共址关系指示方法、设备及存储介质,可以通过TCI池加TCI指示信息的方式快速准确地实现准共址关系的指示,无需在各个信道里分别配置TCI列表,有效减少了信息配置的冗余度和复杂程度,提高了系统效率。

Description

准共址关系指示方法、设备及存储介质 技术领域
本申请涉及通信技术,尤其涉及一种准共址关系指示方法、设备及存储介质。
背景技术
在5G新空口(New Radio,NR)中,增加了传输配置指示(Transmission Configuration Indicator,TCI)的架构设计,用以指示一个数据或控制信道的解调信号和一个或多个参考信号的准共址关系(Quasi Co-Location,QCL)。
5G协议规定了多种类型的准共址关系,分别表示不同的信道参数类型。例如,如果采用的准共址的类型为type-D,则表明一个数据或控制信道和另一个参考信号采用同一个波束发射。为了实现不同信道的准共址配置的功能,一些实现中需要在不同信道的配置(configure)参数里配置TCI列表,这不仅增加的信息配置的冗余度,同时增加了指示配置的复杂程度。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
发明内容
本申请提供一种准共址关系指示方法、设备及存储介质,以解决准共址关系的信息配置较为冗余和复杂的问题。
第一方面,本申请实施例提供一种准共址关系指示方法,应用于网络设备,所述方法包括:
根据上行参考信号和/或下行参考信号的波束集合确定TCI池;
根据所述TCI池,发送TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述数据包括上行数据和/或下行数据;
可选地,所述参考信号包括上行参考信号和/或下行参考信号;
可选地,所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束;
可选地,所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
可选地,根据上行参考信号和/或下行参考信号的波束集合确定TCI池,包括:
根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
可选地,发送TCI指示信息,包括:
通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位;
可选地,在TCI指示信息包括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
可选地,所述TCI池包括至少一个波束对的信息。
可选地,所述波束对包括网络设备侧波束和终端设备侧波束;
所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
可选地,根据所述TCI池,发送TCI指示信息,包括:
根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;
根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
可选地,根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号,包括:
根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;
根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
可选地,所述方法还包括:对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果;
可选地,所述方法还包括:对于任一波束对,通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
可选地,根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对,包括:
根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
可选地,在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,
在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍,优选地,所述预设倍为2倍。
可选地,所述方法还包括:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
第二方面,本申请实施例提供一种准共址关系指示方法,应用于终端设备,所述方法包括:
获取TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系;
根据所述准共址关系进行下行数据的接收和/或上行数据的发送。
可选地,所述数据包括上行数据和/或下行数据;
可选地,所述参考信号包括上行参考信号和/或下行参考信号。
可选地,获取TCI指示信息,包括:
通过物理下行控制信道获取下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,根据所述准共址关系进行下行数据的接收和/或上行数据的发送,包括:
根据所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
可选地,所述方法还包括:
通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;
将检测得到的测量结果发送给网络设备。
可选地,所述测量结果包括功率信息和/或干扰噪声信息。
可选地,所述方法还包括:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
第三方面,本申请实施例提供一种准共址关系指示方法,应用于终端设备,所述方法包括:
获取连接配置信息;
根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送,可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述连接配置信息包含以下至少一种:主小区信息;辅小区信息。
可选地,所述连接配置信息包含下述至少一种:主节点的主小区信息;主节点的辅小区信息;辅节点的主小区信息;辅节点的辅小区信息。
可选地,所述连接配置信息由无线资源控制信令配置。
可选地,所述无线资源控制信令还包含TCI池。
可选地,在所述根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送的步骤之前,还包括:
获取TCI指示信息。
可选地,所述获取连接配置信息和所述获取TCI指示信息的时间顺序可以为以下任一种:
先获取所述连接配置信息,后获取所述TCI指示信息;
先获取所述TCI指示信息,后获取所述连接配置信息;
同时获取所述连接配置信息和所述TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参 考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,所述根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送,包括:
根据所述连接配置信息指示的载波以及所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
可选地,所述方法还包括:
通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;
将检测得到的测量结果发送给网络设备。
可选地,所述测量结果包括功率信息和/或干扰噪声信息。
可选地,所述方法还包括:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
第四方面,本申请实施例提供一种准共址关系指示方法,应用于网络设备,所述方法包括:
确定连接配置信息;
根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收;可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述方法还包括:
根据上行参考信号和/或下行参考信号的波束集合确定TCI池;
根据所述TCI池,发送TCI指示信息。
可选地,所述连接配置信息包含以下至少一种:主小区信息;辅小区信息。
可选地,所述连接配置信息包含下述至少一种:主节点的主小区信息;主节点的辅小区信息;辅节点的主小区信息;辅节点的辅小区信息。
可选地,所述连接配置信息由无线资源控制信令配置。
可选地,所述无线资源控制信令还包含TCI池。
可选地,在根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收之前,还包括:
发送连接配置信息。
可选地,发送连接配置信息和发送TCI指示信息的时间顺序可以为以下任一种:
先发送所述连接配置信息,后发送所述TCI指示信息;
先发送所述TCI指示信息,后发送所述连接配置信息;
同时发送所述连接配置信息和所述TCI指示信息。
可选地,所述数据包括上行数据和/或下行数据。
可选地,所述参考信号包括上行参考信号和/或下行参考信号。
可选地,所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束。
可选地,所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
可选地,根据上行参考信号和/或下行参考信号的波束集合确定TCI池,包括:
根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
可选地,发送TCI指示信息,包括:
通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,在TCI指示信息包括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
可选地,所述TCI池包括至少一个波束对的信息。
可选地,所述波束对包括网络设备侧波束和终端设备侧波束。
可选地,所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
可选地,根据所述TCI池,发送TCI指示信息,包括:
根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;
根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
可选地,根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号,包括:
根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;
根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
可选地,对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果。
可选地,对于任一波束对,通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
可选地,根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对,包括:
根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
可选地,在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,
在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍。
可选地,所述方法还包括:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
第五方面,本申请实施例提供一种准共址关系指示装置,应用于网络设备,所述装置包括:
第一确定模块,用于根据上行参考信号和/或下行参考信号的波束集合确定TCI池;
发送模块,用于根据所述TCI池,发送TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述数据包括上行数据和/或下行数据;
可选地,所述参考信号包括上行参考信号和/或下行参考信号;
可选地,所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束;
可选地,所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
可选地,所述第一确定模块具体用于:
根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
可选地,所述发送模块在发送TCI指示信息时,具体用于:
通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位;
可选地,在TCI指示信息包括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
可选地,所述TCI池包括至少一个波束对的信息。
可选地,所述波束对包括网络设备侧波束和终端设备侧波束;
所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
可选地,所述发送模块在根据所述TCI池,发送TCI指示信息时,具体用于:
根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;
根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
可选地,所述发送模块在根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号时,具体用于:
根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;
根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
可选地,所述确定模块还用于:对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果;
可选地,所述第一确定模块还用于:对于任一波束对,通过网络设备侧波束检测终 端设备侧波束发射的信号对应的测量结果。
可选地,所述发送模块在根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对时,具体用于:
根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
可选地,在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,
在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍,优选地,所述预设倍为2倍。
可选地,所述第一确定模块还用于:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
第六方面,本申请实施例提供一种准共址关系指示装置,应用于终端设备,所述装置包括:
第一获取模块,用于获取TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系;
第一传输模块,用于根据所述准共址关系进行下行数据的接收和/或上行数据的发送。
可选地,所述数据包括上行数据和/或下行数据;
可选地,所述参考信号包括上行参考信号和/或下行参考信号。
可选地,所述第一获取模块在获取TCI指示信息时,具体用于:
通过物理下行控制信道获取下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,所述第一传输模块具体用于:
根据所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
可选地,所述第一获取模块还用于:
通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;
将检测得到的测量结果发送给网络设备。
可选地,所述测量结果包括功率信息和/或干扰噪声信息。
可选地,所述第一获取模块还用于:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
第七方面,本申请实施例提供一种准共址关系指示装置,应用于终端设备,所述装置包括:
第二获取模块,用于获取连接配置信息;
第二传输模块,用于根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送,可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述连接配置信息包含以下至少一种:主小区信息;辅小区信息。
可选地,所述连接配置信息包含下述至少一种:主节点的主小区信息;主节点的辅小区信息;辅节点的主小区信息;辅节点的辅小区信息。
可选地,所述连接配置信息由无线资源控制信令配置。
可选地,所述无线资源控制信令还包含TCI池。
可选地,所述第二获取模块还用于:
在所述根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送的步骤之前,获取TCI指示信息。
可选地,所述获取连接配置信息和所述获取TCI指示信息的时间顺序可以为以下任一种:先获取所述连接配置信息,后获取所述TCI指示信息;先获取所述TCI指示信息,后获取所述连接配置信息;同时获取所述连接配置信息和所述TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:所述准共址关系中的上行参考信号的标识;所述准共址关系中的下行参考信号的标识;参考信号组合的标识;信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,所述第二传输模块具体用于:根据所述连接配置信息指示的载波以及所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
可选地,所述第二获取模块还用于:通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;将检测得到的测量结果发送给网络设备。
可选地,所述测量结果包括功率信息和/或干扰噪声信息。
可选地,所述第二获取模块还用于:通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
第八方面,本申请实施例提供一种准共址关系指示装置,应用于网络设备,所述装置包括:
第二确定模块,用于确定连接配置信息;
第三传输模块,用于根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收;可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述第三传输模块还用于:根据上行参考信号和/或下行参考信号的波束集合确定TCI池;根据所述TCI池,发送TCI指示信息。
可选地,所述连接配置信息包含以下至少一种:主小区信息;辅小区信息。
可选地,所述连接配置信息包含下述至少一种:主节点的主小区信息;主节点的辅小区信息;辅节点的主小区信息;辅节点的辅小区信息。
可选地,所述连接配置信息由无线资源控制信令配置。
可选地,所述无线资源控制信令还包含TCI池。
可选地,所述第三传输模块在根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收之前,还用于:发送连接配置信息。
可选地,发送连接配置信息和发送TCI指示信息的时间顺序可以为以下任一种:先发 送所述连接配置信息,后发送所述TCI指示信息;先发送所述TCI指示信息,后发送所述连接配置信息;同时发送所述连接配置信息和所述TCI指示信息。
可选地,所述数据包括上行数据和/或下行数据;所述参考信号包括上行参考信号和/或下行参考信号;所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束;所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
可选地,所述第三传输模块在根据上行参考信号和/或下行参考信号的波束集合确定TCI池时,具体用于:根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
可选地,所述第三传输模块在发送TCI指示信息时,具体用于:通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:所述准共址关系中的上行参考信号的标识;所述准共址关系中的下行参考信号的标识;参考信号组合的标识;信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位;在TCI指示信息包括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
可选地,所述TCI池包括至少一个波束对的信息。
可选地,所述波束对包括网络设备侧波束和终端设备侧波束;所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
可选地,所述第三传输模块在根据所述TCI池,发送TCI指示信息时,具体用于:根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
可选地,所述第三传输模块在根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号时,具体用于:根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
可选地,所述第三传输模块还用于执行下述至少一项:对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果;对于任一波束对,通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
可选地,所述第三传输模块在根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对时,具体用于:根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
可选地,在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍。
可选地,所述第三传输模块还用于:通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个 下行参考信号。
第九方面,本申请实施例提供一种通信设备,包括处理器和存储器;
所述存储器存储计算机执行指令;
所述计算机执行指令被所述处理器执行时实现第一方面至第四方面任一项所述的方法。
需说明的是,第九方面的通信设备可以是终端设备或网络设备,也可以是终端设备的芯片或网络设备的芯片。
第十方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第一方面至第四方面任一项所述的方法。
第十一方面,本申请实施例提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现第一方面至第四方面任一项所述的方法。
本申请实施例提供的准共址关系指示方法、设备及存储介质,可以根据上行参考信号和/或下行参考信号的波束集合确定TCI池,并根据所述TCI池,发送TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系,从而通过TCI池加TCI指示信息的方式快速准确地实现准共址关系的指示,无需在各个信道里分别配置TCI列表,有效减少了信息配置的冗余度和复杂程度,提高了系统效率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实现本申请各个实施例的一种移动终端的硬件结构示意图;
图2为本申请实施例提供的一种通信网络系统架构图;
图3为本申请实施例提供的一种应用场景示意图;
图4为本申请实施例提供的一种信道与参考信号准共址的原理示意图;
图5为本申请实施例提供的一种准共址关系指示方法的流程示意图;
图6为本申请实施例提供的一种网络设备和终端设备的波束示意图;
图7为本申请实施例提供的一种基于波束进行数据传输的原理示意图;
图8为本申请实施例提供的另一种准共址关系指示方法的流程示意图;
图9为本申请实施例提供的又一种准共址关系指示方法的流程示意图;
图10为本申请实施例提供的再一种准共址关系指示方法的流程示意图;
图11为本申请实施例提供的一种准共址关系指示装置的结构示意图;
图12为本申请实施例提供的另一种准共址关系指示装置的结构示意图;
图13为本申请实施例提供的又一种准共址关系指示装置的结构示意图;
图14为本申请实施例提供的再一种准共址关系指示装置的结构示意图;
图15为本申请实施例提供的一种通信设备的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,可选地,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,在本文中,采用了诸如501、502等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行502后执行501等,但这些均应在本申请的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。
设备可以以各种形式来实施。例如,本申请中描述的设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等移动终端,以及诸如数字TV、台式计算机等固定终端。
后续描述中将以移动终端为例进行说明,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。
请参阅图1,图1为实现本申请各个实施例的一种移动终端的硬件结构示意图,该移动终端100可以包括:RF(Radio Frequency,射频)单元101、WiFi模块102、音频输出单元103、A/V(音频/视频)输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对移动终端的各个部件进行具体的介绍:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,可选地,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。可选地,射频单元101还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(Code Division Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工长期演进)和TDD-LTE(Time Division Duplexing-Long Term Evolution,分时双工长期演进)等。
WiFi属于短距离无线传输技术,移动终端通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于移动终端的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
音频输出单元103可以在移动终端100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与移动终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。
A/V输入单元104用于接收音频或视频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
移动终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。可选地,光传感器包括环境光传感器及接近传感器,可选地,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在移动终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、 陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。可选地,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。可选地,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。可选地,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。可选地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。
可选地,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元108用作至少一个外部装置与移动终端100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端100内的一个或多个元件或者可以用于在移动终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,可选地,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。可选地,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,可选地,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
移动终端100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,移动终端100还可以包括蓝牙模块等,在此不再赘述。
为了便于理解本申请实施例,下面对本申请的移动终端所基于的通信网络系统进行描述。
请参阅图2,图2为本申请实施例提供的一种通信网络系统架构图,该通信网络系统为通用移动通信技术的LTE系统,该LTE系统包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。
可选地,UE201可以是上述终端100,此处不再赘述。
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。可选地,eNodeB2021可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021连接到EPC203,eNodeB2021可以提供UE201到EPC203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体)2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033,SGW(Serving Gate Way,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy and Charging Rules Function,政策和资费功能实体)2036等。可选地,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035可以提供UE 201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)或其它IP业务等。
虽然上述以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本申请不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如GSM、CDMA2000、WCDMA、TD-SCDMA以及未来新的网络系统等,此处不做限定。
基于上述移动终端硬件结构以及通信网络系统,提出本申请各个实施例。
首先对本申请一种适用的应用场景进行介绍。
图3为本申请实施例提供的一种应用场景示意图。请参见图3,网络设备301和终端设备302之间可以进行无线通信,从而实现数据传输。可选地,终端设备302可以是图1中的移动终端或图2中的UE;网络设备301可以是图2中除UE以外的其它设备例如基站eNodeB。
本申请实施例的技术方案可应用于NR通信技术中,NR是指新一代无线接入网络技术,可以应用在未来演进网络,如第五代移动通信(the 5th Generation Mobile Communication,5G)系统中。本申请实施例中的方案还可以应用于无线保真(Wireless Fidelity,WIFI)和长期演进(Long Term Evolution,LTE)等其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在5G通信中,由于需要采用基于波束的传输方式,因此增加了TCI的架构设计,TCI 可以指示数据与参考信号的准共址关系。
可选地,参考信号可以包括由同步信号(Synchronization Signal,SS)和物理广播信道(Physical Broadcasting Channel,PBCH)共同构成的SSB(Synchronization Signal and PBCH block,同步信号和PBCH块)等。可选地,同步信号可以包括主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)等。
准共址关系包括多种类型,具体可以分为Type-A QCL、Type-B QCL、Type-C QCL、Type-D QCL四个类型,用于表示多普勒频移(Doppler Shift)、多普勒频散(Doppler Spread)、平均延迟时间(Average Delay)、延迟扩展(Delay Spread)与空间接收波束参数(Spatial Rx Parameter)的不同组合或选择。
可选地,Type-D类型的准共址,表明数据可以和参考信号采用同一个波束发射,接收端即可采用相应的接收滤波器。因此,可以通过配置TCI来指示数据和参考信号对应的波束配对关系。
在一些技术中,物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Share Channel,PDSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Share Channel,PUSCH)和分别采用各自的TCI指示架构,用来指示QCI的TCI状态列表(TCI-state list),分别放在PDCCH配置(PDCCH-configure)、PDSCH配置(PDSCH-configure)、PUCCH配置(PUCCH-configure)、PUSCH配置(PUSCH-configure)中。可以通过高层信令为PDCCH、PDSCH、PUCCH、PUSCH等配置TCI状态。
图4为本申请实施例提供的一种信道与参考信号准共址的原理示意图。如图4所示,以信道PDCCH、PDSCH与参考信号准共址为例,PDCCH配置和PDSCH配置中均可以包括TCI状态列表。可选地,PDCCH配置中的多个TCI状态ID:ni、nj、nk,映射到PDSCH配置中的TCI状态ID:ni、nj、nk,并与多个参考信号Si、Sj、Sk具有对应关系。
如图所示,ni对应于与参考信号Si准共址,nj对应于与参考信号Sj准共址,nk对应于参考信号Sk准共址。可以通过高层配置来指示使用哪一TCI状态ID即与哪一参考信号准共址。当指示PDCCH或PDSCH与任一参考信号准共址时,可以通过所述参考信号对应的波束进行PDCCH或PDSCH的传输。
例如,当指示PDCCH或PDSCH与参考信号Si准共址,那么,可以采用参考信号Si对应的波束进行PDCCH或PDSCH的传输。
在上述设计中,不同信道的TCI状态列表配置在各自的配置参数里,当TCI状态列表发生变化时,每个信道都需要改变配置,这会增加波束管理过程中的指示配置的复杂程度,使得系统效率较低。因此,为了简化波束管理流程,需要设计一种TCI架构用来统一管理所有信道的TCI指示。
有鉴于此,本申请实施例提供一种准共址关系指示方法,可以根据上行参考信号和/或下行参考信号的波束集合确定一个统一的TCI池,并根据所述TCI池来指示准共址关系,无需在每一个信道中均配置相应的TCI状态列表,简化配置复杂度,提高系统效率。
下面以具体的实施例对本申请实施例的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请实施例的实施例进行描述。
图5为本申请实施例提供的一种准共址关系指示方法的流程示意图。本实施例中方法的执行主体可以为网络设备。如图5所示,该方法可以包括:
步骤501、根据上行参考信号和/或下行参考信号的波束集合确定TCI池。
可选地,所述TCI池可以称为TCI Configure Pool,用于保存参考信号对应的波束集合。所述参考信号可以包括上行参考信号和/或下行参考信号。
本申请实施例中所述的上行可以是指终端设备向网络设备发送,下行可以是指网络设备向终端设备发送。对应的,上行参考信号可以是指终端设备向网络设备发送的参考信号,下行参考信号可以是指网络设备向终端设备发送的参考信号。
信号的发送和接收可以基于波束来实现。不同的参考信号可以基于不同的波束来传输,当参考信号有多个时,多个参考信号对应的波束可以形成波束集合,通过波束集合可以确定TCI池。
可选地,所述TCI池中可以包括至少一个上行参考信号的波束集合,或者,可以包括至少一个下行参考信号的波束集合,或者,也可以包括至少一个上行参考信号的波束集合和至少一个下行参考信号的波束集合。
步骤502、根据所述TCI池,发送TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述数据可以包括上行数据和/或下行数据。可选地,上行数据可以为终端设备发送给网络设备的数据,下行数据可以为网络设备发送给终端设备的数据。
可选地,所述上行数据可以包括PUCCH和PUSCH中的至少一项,所述下行数据可以包括PDCCH和PDSCH中的至少一项。基于此,所述TCI指示信息可以用于指示PUCCH、PUSCH、PDCCH和PDSCH中的至少一项与参考信号的准共址关系。
在实际应用中,可以在网络设备侧配置TCI池,TCI池中保存了参考信号对应的波束集合,当需要使用准共址关系时,可以从所述TCI池中选择合适的波束,根据所选择的波束可以确定其对应的参考信号,然后发送TCI指示信息,指示所述数据可以与所述参考信号准共址,从而使得终端设备可以根据TCI指示信息指示的准共址关系,确定使用哪个参考信号对应的波束来进行数据的接收或发送。
这样,通过TCI池加TCI指示信息的方式可以实现准共址关系的指示,无需在各个信道中配置TCI状态列表,当波束集合发生改变时,直接对TCI池进行修改即可,无需针对各个信道的配置分别进行修改。
本实施例提供的准共址关系指示方法,可以根据上行参考信号和/或下行参考信号的波束集合确定TCI池,并根据所述TCI池,发送TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系,从而通过TCI池加TCI指示信息的方式快速准确地实现准共址关系的指示,无需在各个信道里分别配置TCI列表,有效减少了信息配置的冗余度和复杂程度,提高了系统效率。
在本申请实施例中,可以根据上行参考信号和/或下行参考信号的波束集合确定TCI池。可选地,所述上行参考信号的波束集合可以包括波束扫描时所有上行发射波束和/或上行接收波束;所述下行参考信号的波束集合可以包括波束扫描时所有下行发射波束和/或下行接收波束。
例如,所述上行参考信号的波束集合可以包括波束扫描时所有的上行发射波束,或者,可以包括波束扫描时所有的上行接收波束,或者,可以包括波束扫描时所有的上行发射波束以及所有的下行发射波束。所述下行参考信号的波束集合可以包括波束扫描时所有的下行发射波束,或者,可以包括波束扫描时所有的下行接收波束,或者,可以包括波束扫描时所有的下行发射波束以及所有的下行发射波束。从而将波束扫描时的所有发射和/或接收波束纳入考量范围,扩大准共址关系的范围。
可选地,根据上行参考信号和/或下行参考信号的波束集合确定TCI池,可以包括:根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所 有配对确定TCI池。波束的配对与参考信号具有对应关系,通过波束的配对确定TCI池后,能够通过TCI池快速准确地确定准共址关系中的参考信号,提高准共址关系的处理效率和准确率。
在实际应用中,可以根据上行参考信号的波束集合和下行参考信号的波束集合共同确定TCI池,也可以只根据上行参考信号的波束集合,或者,只根据下行参考信号的波束集合来确定TCI池。下面分别说明。
在第一种可选的实现方式中,可以根据上行参考信号的波束集合和下行参考信号的波束集合确定TCI池,所述上行参考信号的波束集合可以包括波束扫描时所有上行发射波束和所有上行接收波束,所述下行参考信号的波束集合可以包括波束扫描时所有下行发射波束和所有下行接收波束。
图6为本申请实施例提供的一种网络设备和终端设备的波束示意图。如图6所示,网络设备侧具有波束#1至#8,当然网络设备侧可根据具体情况形成宽度不同的波束;终端设备侧具有波束*1至*4,终端设备侧也可以根据具体情况形成宽度不同的波束。在波束扫描时,参考信号可以基于图中所示出的波束进行发射和接收。
上行参考信号可以使用终端设备侧的任一波束发射,使用网络设备侧的任一波束接收,下行参考信号可以使用网络设备侧的任一波束发射,使用终端设备侧的任一波束接收。
由于在基于波束的通信系统中,终端设备可以反馈各个下行波束的测量结果给网络设备,网络设备侧也会有各个上行波束的测量结果,所以网络设备侧有能力知道所有波束的配对信息。
可选地,在接入过程中,终端设备侧可以测量网络设备侧各个发射波束的质量,得到并反馈测量结果,网络设备侧可以测量各个终端设备侧发射波束的质量,得到对应的测量结果。
可选地,可以根据所述上行参考信号和所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池,提高准共址关系的适用性。
在根据所述上行参考信号和所述下行参考信号的波束集合中发射波束和接收波束的所有配对确定TCI池时,可以遍历所有的波束配对方式,得到对应的TCI池,例如表1。
表1本申请实施例提供的一种TCI池的示例
Figure PCTCN2021086259-appb-000001
如表1所示,网络设备侧可配置所有连接波束为一个TCI池。下行时,网络设备可以使用波束#1至#8作为发射波束,终端设备可以使用波束*1至*4作为接收波束;上行时,终端设备可以使用波束*1至*4作为发射波束,网络设备可以使用波束#1至#8作为接收波束。
不同的参考信号可以对应于不同的发射和接收波束。例如,在上行参考信号中,参考 信号1使用终端设备侧波束*1发射,网络设备侧波束#1接收;参考信号2使用终端设备侧波束*1发射,网络设备侧波束#2接收;以此类推,在波束扫描时,遍历所有的上行配对方式,可以有4×8=32个上行参考信号,分别使用不同的网络设备侧波束和/或终端设备侧波束进行传输。
类似地,在下行参考信号中,参考信号33使用网络设备侧波束#1发射,终端设备侧波束*1接收;参考信号34使用网络设备侧波束#1发射,终端设备侧波束*2接收;以此类推,在波束扫描时,遍历所有的下行配对方式,可以有8×4=32个下行参考信号,分别使用不同的网络设备侧波束和/或终端设备侧波束进行传输。
如表1所示,任一网络设备侧波束以及任一终端设备侧波束构成一个波束对,网络设备侧的8个波束和终端设备侧的4个波束,总共可以有2×8×4=64个波束对。
可选地,在时分双工(Time Division Duplexing,TDD)模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积。
可选地,如果是TDD模式,上下行是对等的,上行的发射波束和下行的接收波束相同,上行的接收波束和下行的发射波束相同。
以图6为例,在下行时,网络设备的波束#1发射,终端设备的波束*2接收;那么在上行时,终端设备的波束*2发射,网络设备的波束#1接收,从而网络设备侧的8个波束和终端设备侧的4个波束,一共有32个波束配对。此时网络设备可形成一个与表1左半部分或右半部分类似的、有32个波束对的TCI池,上下行所有信道都可以从该TCI池中选取波束对。
可选地,在频分双工(Frequency Division Duplexing,FDD)模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍,优选地,所述预设倍为2倍。
可选地,FDD模式下,上下行可以采用不同的波束对。例如,下行时,网络设备的波束#1发射,终端设备的波束*2接收;上行时,终端设备的波束*3发射,网络设备的波束#4接收,从而网络设备侧的8个波束和终端设备侧的4个波束,一共有64波束配对。此时网络设备可形成一个与表1类似的有64个波束对的TCI池,上下行所有信道都可以从该TCI池中选取波束对。
可选地,也可以在所有波束配对方式中选择一部分生成TCI池。例如,某些波束只用于发射不用于接收,或者,只用于接收不用于发射,那么可以相应的在表1中减少配对关系。
所述TCI池的具体表现形式也可以有多种。可选地,所述TCI池可以包括至少一个波束对的信息。所述波束对可以包括网络设备侧波束和终端设备侧波束。所述波束对的信息可以包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
一个示例中,所述TCI池可以包括网络设备侧波束的标识、终端设备侧波束的标识以及波束对对应的测量结果,具体可参见表1,网络设备侧波束的标识和终端设备侧波束的标识分别以#和*开头,在此基础上,增加每个波束对对应的测量结果。
可选地,根据所述TCI池,发送TCI指示信息,可以包括:根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
可选地,可以从所述TCI池的至少一个波束对中,选择最合适的波束对用来传输数据,根据所选择的波束对,可以获知对应的参考信号,从而可以发送TCI指示信息,指示数据与对应的参考信号具有准共址关系。
可选地,根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参 考信号和/或下行参考信号,包括:根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
可选地,在选择参考信号时,可以以波束对的测量结果作为考量因素,从而能够从TCI池中选出质量最好的波束对,提高数据传输的效率和准确率。
在另一示例中,所述TCI池可以包括网络设备侧波束的标识、终端设备侧波束的标识,而不必包括波束对对应的测量结果,各个波束对对应的测量结果可以保存在其它位置,在需要时可以从所述其它位置获取各个波束对对应的测量结果并使用,减少TCI池所需的信息长度。
可选地,对于任一波束对,可以从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果,和/或,对于任一波束对,可以通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
可选地,终端设备可以通过自身的波束接收网络设备侧波束发射的信号,从而确定对应的波束对的测量结果,例如,终端设备侧波束*1接收网络设备侧波束#8发射的信号,对该信号进行测量得到的测量结果即为下行的波束#8与波束*1构成的波束对的测量结果。终端设备将各个下行的波束对的测量结果反馈给网络设备,网络设备可以据此来更新TCI池。
类似地,网络设备侧波束可以检测终端设备侧波束发射的信号对应的测量结果,例如网络设备侧波束#2接收终端设备侧波束*3发射的信号,对该信号进行测量得到的测量结果即为上行的波束*3与波束#2构成的波束对的测量结果。这样,通过网络设备侧波束和终端设备侧波束可以快速准确地检测出各个波束对对应的测量结果,从而为波束选择提供依据,提高波束选择的准确性。
可选地,所述波束对对应的测量结果可以包括功率信息和/或干扰噪声信息。相应的,根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对,可以包括:根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
可选地,可以选择功率信息最大,或者干扰噪声信息最小的波束对,或者,可以将两者加权求和,根据得到的结果选择一个最为合适的波束对,从而确定对应的参考信号。
在确定准共址关系中的参考信号时,可以仅确定上行参考信号,指示某一上行数据与所述上行参考信号具有准共址关系,例如,TCI池中,波束*2和波束#3构成的波束对的质量最好,该波束对与上行参考信号11对应,即参考信号11采用波束*2发射,波束#3接收,那么可以指示上行数据如PUCCH和/或PUSCH与上行参考信号11具有准共址关系,从而终端设备可以根据所述准共址关系知道需要通过波束*2发射上行数据。
或者,在确定准共址关系中的参考信号时,可以仅确定下行参考信号,指示某一下行数据与所述下行参考信号具有准共址关系,例如,TCI池中,波束#1和波束*4构成的波束对的质量最好,该波束对与下行参考信号36对应,即参考信号36采用波束#1发射,波束*4接收,那么可以指示下行数据如PDCCH和/或PDSCH与下行参考信号36具有准共址关系,从而终端设备可以根据所述准共址关系知道需要通过波束*4接收下行数据。
或者,在确定准共址关系中的参考信号时,可以既确定上行参考信号,又确定下行参考信号。例如,可以在TCI指示信息中,同时指示上行数据与上行参考信号11具有准共址关系,下行数据与下行参考信号36具有准共址关系,从而终端设备可以根据所述准共址关系知道需要通过波束*2发射上行数据,通过波束*4接收下行数据。
图7为本申请实施例提供的一种基于波束进行数据传输的原理示意图。如图7所示,当确定数据与某一参考信号具有准共址关系时,可以采用所述参考信号对应的波束对进行 数据传输。
例如,TCI指示信息指示PDSCH与某一下行参考信号具有准共址关系,该下行参考信号对应的波束对为:网络设备侧波束#4和终端设备侧波束*1,那么网络设备侧可以采用波束#4发射PDSCH,终端设备侧采用波束*1接收PDSCH。
在实际应用中,网络设备和终端设备可以先进行波束扫描,即遍历所有的波束配对方式进行参考信号的发射和接收,并保存波束扫描过程中得到的波束对的测量结果,当需要发送上行数据或下行数据时,可以从TCI池中选出测量结果最佳的波束对,通过TCI指示信息对准共址关系作出指示。
在以上所述的第一种可选的实现方式中,可以根据上行参考信号的波束集合和下行参考信号的波束集合确定TCI池,从而能够实现上行数据和下行数据的准共址关系的指示,满足各种数据的发送要求。
在第二种可选的实现方式中,可以根据上行参考信号的波束集合确定TCI池。可选地,所述上行参考信号的波束集合可以包括波束扫描时所有上行发射波束和/或上行接收波束。
相应的,根据上行参考信号的波束集合确定TCI池,可以包括:根据所述上行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
在这种实现方式中,可以仅考虑上行参考信号的波束集合,TCI池的具体表现形式可以参考表1的右半部分。
根据所述TCI池,可以为上行数据选择合适的波束对,从而指示上行数据和上行参考信号的准共址关系。或者,在某些实现方式中,也可以指示下行数据与上行参考信号的准共址关系,即,通过上行参考信号对应的两个波束进行下行数据的发射和接收。例如,PDCCH与上行参考信号11准共址,上行参考信号11对应波束*2和波束#3,则PDCCH可以采用波束*2和波束#3进行发射和接收,只是发射波束和接收波束正好与上行参考信号11相反。
在第三种可选的实现方式中,可以根据下行参考信号的波束集合确定TCI池。可选地,所述下行参考信号的波束集合可以包括波束扫描时所有下行发射波束和/或下行接收波束。
相应的,根据下行参考信号的波束集合确定TCI池,可以包括:根据所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
在这种实现方式中,可以仅考虑下行参考信号的波束集合,TCI池的具体表现形式可以参考表1的左半部分。
根据所述TCI池,可以为下行数据选择合适的波束对,从而指示下行数据和下行参考信号的准共址关系。或者,在某些实现方式中,也可以指示上行数据与下行参考信号的准共址关系,即,通过下行参考信号对应的两个波束进行上行数据的发射和接收。例如,PUCCH与下行参考信号36准共址,下行参考信号36对应波束#1和波束*4,则PUCCH可以采用波束#1和波束*4进行发射和接收,只是发射波束和接收波束正好与下行参考信号36相反。
在上述第二种和第三种可选的实现方式中,给出了只根据上行参考信号的波束集合或只根据下行参考的波束集合确定TCI池的方案,其它未进行说明的地方均可以参照第一种可选的实现方式,此处不再赘述。
在实际应用中,只根据上行参考信号的波束集合或只根据下行参考信号的波束集合确定TCI池,能够有效简化TCI池,减少TCI池的信息长度,从而可以根据实际需要确定TCI池的内容,满足不同场景下的应用需求。
在上述各实施例提供的技术方案的基础上,可选地,发送TCI指示信息,包括:通过 PDCCH发送下行控制信息(Downlink Control Information,DCI),所述DCI包括TCI指示信息。
DCI中指示的准共址关系既可以包括上行的准共址关系,也可以包括下行的准共址关系,从而可以通过DCI实现同时对上下行进行指示,无需在每个信道中分别指示准共址关系,提高TCI指示的灵活性。
可选地,所述TCI指示信息可以包括以下至少一种:所述准共址关系中的上行参考信号的标识;所述准共址关系中的下行参考信号的标识;参考信号组合的标识;信道指示信息。
一个示例中,所述TCI指示信息可以包括所述准共址关系中的上行参考信号的标识,和/或,所述准共址关系中的下行参考信号的标识。通过参考信号的标识直接指示准共址关系,能够有效提高终端设备确定准共址关系的效率和准确率。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还可以包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,所述上行指示位可以用于指示对应设置的标识为上行参考信号的标识,所述下行指示位可以用于指示对应设置的标识为下行参考信号的标识。
表2本申请实施例提供的一种TCI指示信息的示例
TCI-0 11 TCI-1 36
如表2所示,上行指示位可以为TCI-0,用于指示对应设置的标识11为上行参考信号的标识,即准共址关系中的参考信号包括上行参考信号11;类似地,下行指示位可以为TCI-1,用于指示对应设置的标识36为下行参考信号的标识,即准共址关系中的参考信号包括上行参考信号36。
可选地,所述TCI指示信息也可以仅指示上行的准共址关系或者仅指示下行的准共址关系,相应的,TCI指示信息中也可以仅设置上行指示位或下行指示位。通过TCI指示信息可以使终端准确获知指示的准共址关系是应用于上行还是应用于下行,进一步提高终端确定准共址关系的准确率。
终端设备可以维护有参考信号与波束的对应关系。终端设备接收到TCI指示信息后,根据TCI指示信息,可以确定准共址关系中的参考信号,进而可以确定参考信号对应的波束。
可选地,终端设备可以保存有上行参考信号对应的发射波束,和/或,下行参考信号对应的接收波束,假设根据上行参考信号11和下行参考信号36可以确定对应的发射波束和接收波束分别为*2和*1,那么可以通过波束*2发射上行数据,并通过波束*1接收下行数据。
另一示例中,所述TCI指示信息可以包括参考信号组合的标识。可选地,所述参考信号组合包括所述准共址关系中的上行参考信号和下行参考信号。
在需要同时指示上行参考信号和下行参考信号的情况下,可以通过一个参考信号组合的标识来表示准共址关系中的上行参考信号和下行参考信号。
例如,可选的上行参考信号有n个,可选的下行参考信号有m个,那么共有n×m种组合,其中包含了任意一个上行参考信号和任意一个下行参考信号的组合。
可选地,在TCI指示信息需要包括参考信号组合的标识时,网络设备可以先根据波束测量结果选择合适的波束并确定对应的上行参考信号和下行参考信号,再根据所述上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
终端设备可以维护有参考信号组合的标识与上行参考信号、下行参考信号的对应关系。 通过参考信号组合的标识可以准确指示出上行参考信号和下行参考信号,并且有利于节约传输的信息长度。
又一示例中,所述TCI指示信息可以包括信道指示信息。所述信道指示信息用于指示使用所述准共址关系的信道。可选地,所述信道指示信息可以用于指示PDCCH、PDSCH、PUCCH、PUSCH中的任意一项或多项使用所述准共址关系。
这样,终端设备可以根据所述信道指示信息,确定哪些信道需要使用TCI指示信息中指示的准共址关系,提高TCI指示的精准度。
可选地,各个信道与参考信号的准共址关系可以是有时间限制的,在确定参考信号后,可以在一段时间内使信道与该参考信号准共址,从而提高准共址关系的实时性。
在上述各实施例提供的技术方案的基础上,可选地,还可以通过无线资源控制层(Radio Resource Control,RRC)和/或媒体访问控制层(Media Access Control Control Element,MAC CE)为下述至少一项配置所述TCI指示信息:PDCCH、PDSCH、PUCCH、PUSCH。
可选地,高层信令可以配置哪个或哪些通道使用TCI指示信息。在物理层,DCI可以直接发送TCI指示信息,以指示准共址关系。这样,终端设备在获取到DCI之后,就可以知道其中指示的准共址关系可以应用于哪个通道,减少DCI的复杂度。
当准共址关系改变时,直接在DCI中改变即可。当DCI中携带信道指示信息,且信道指示信息与高层信令配置的信息有冲突时,可以以DCI中携带的信道指示信息为准,从而能够在准共址变化时快速通知终端设备,提高信息传输效率。
在上述各实施例提供的技术方案的基础上,可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
可选地,在准共址关系中包括多个上行参考信号时,终端设备可以通过多个波束发射信号,和/或,网络设备可以通过多个波束接收信号;在准共址关系中包括多个下行参考信号时,网络设备可以通过多个波束发射信号,和/或,终端设备可以通过多个波束接收信号。这样,可以通过多个波束发射或接收信号,提高信号传输的准确率。
图8为本申请实施例提供的另一种准共址关系指示方法的流程示意图。本实施例中方法的执行主体可以为终端设备。如图8所示,所示方法包括:
步骤801、获取TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系。
步骤802、根据所述准共址关系进行下行数据的接收和/或上行数据的发送。
本实施例中方法的具体实现原理和过程可以参见前述实施例,此处不再赘述。
本实施例提供的准共址关系指示方法,可以获取TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系,并根据所述准共址关系进行下行数据的接收和/或上行数据的发送,从而可以根据TCI指示信息快速确定准共址关系,无需在各个信道里分别配置TCI列表,有效减少了信息配置的冗余度和复杂程度,提高了系统效率。
可选地,所述数据包括上行数据和/或下行数据;所述参考信号包括上行参考信号和/或下行参考信号。
可选地,获取TCI指示信息,包括:
通过物理下行控制信道获取下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,根据所述准共址关系进行下行数据的接收和/或上行数据的发送,包括:
根据所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
可选地,所述方法还包括:
通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;
将检测得到的测量结果发送给网络设备。
可选地,所述测量结果包括功率信息和/或干扰噪声信息。
可选地,所述方法还包括:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
本实施例提供的方法具体实现原理和技术效果与前述各实施例类似,本实施例此处不再赘述。
图9为本申请实施例提供的又一种准共址关系指示方法的流程示意图。本实施例中方法的执行主体可以为终端设备。如图9所示,所示方法包括:
步骤901、获取连接配置信息。
可选地,所述连接配置信息可以为用于实现网络设备与终端设备之间连接配置的任意信息,例如,所述连接配置信息可以包含网络设备与终端设备之间进行通信连接的载波信息。
所述连接配置信息可以从网络设备获取,也可以通过其它方式获取,例如,可以获取存储在存储器中的连接配置信息。
步骤902、根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送。
可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,终端设备可以根据TCI指示信息指示的准共址关系,确定使用哪个参考信号对应的波束来进行下行数据的接收和/或上行数据的发送。根据连接配置信息,终端设备还可以确定如何基于载波来使用所述准共址关系。
在一种可选的实现方式中,所述终端设备可以基于所述连接配置信息确定在对应的载波上执行所述TCI指示信息指示的准共址关系。
可选地,假设所述连接配置信息指示了载波A,则所述终端设备可以在载波A上执行所述TCI指示信息指示的准共址关系,即,在终端设备使用载波A从网络设备接收数据或者向网络设备发送数据时,可以基于所述准共址关系,使用相关参考信号对应的波束来进行数据的接收或发送。
在另一种可选的实现方式中,所述连接配置信息可以用于指示终端设备在对应的载波上不执行所述准共址关系。
可选地,假设所述连接配置信息指示了载波B,则所述终端设备可以在载波B上不执行所述TCI指示信息指示的准共址关系。
可选地,所述终端设备可以在除连接配置信息指示的载波以外的其它载波上执行 所述准共址关系。
在又一种可选的实现方式中,所述连接配置信息可以用于指示所述终端设备是否在两个或者更多个载波上执行所述准共址关系。
可选地,所述终端设备可以在所述连接配置信息指示的至少两个载波上同时执行所述准共址关系;或者,所述终端设备可以在所述连接配置信息指示的至少两个载波上均不执行所述准共址关系;或者,所述终端设备可以在所述连接配置信息指示的至少两个载波中的部分载波上执行所述准共址关系,在其余载波上不执行所述准共址关系。
可选地,终端设备可以在所述连接配置信息指示的某些载波上使用TCI指示信息指示的准共址关系,而在其它载波上使用所述TCI指示信息指示的准共址关系以外的其它准共址关系。
通过连接配置信息,终端设备可以预先配置不同载波上的准共址关系,提高系统灵活度。
可选地,网络设备可以基于所述连接配置信息配置TCI池,不同的连接配置信息可以对应相同或不同的TCI池,所述TCI池可以用于保存参考信号对应的波束集合,准共址关系可以基于TCI池来确定。
本实施例提供的准共址关系指示方法,可以获取连接配置信息,根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送,可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系,从而通过连接配置信息加TCI指示信息的方式快速准确地实现准共址关系的指示,无需在各个信道里分别配置TCI列表,有效减少了信息配置的冗余度和复杂程度,提高了系统效率,还可以对不同载波的准共址关系进行指示,提高了系统的灵活度。
在上述各实施例提供的技术方案的基础上,可选地,所述连接配置信息包含以下至少一种:主小区信息;辅小区信息。
考虑载波聚合(Carrier Aggregation,CA)场景,连接配置信息可以包含主小区信息和/或辅小区信息。可选地,所述主小区信息/辅小区信息可以为能够指示主小区/辅小区的任意信息,例如:主小区/辅小区的标识、名称、对应的载波信息等。
根据主小区可以确定主载波,根据辅小区可以确定辅载波,根据主小区和辅小区中的至少一项,可以确定主载波和辅载波中的至少一项,从而可以实现针对主载波和辅载波的准共址关系配置,实现了载波聚合场景下的准共址关系配置,提升载波聚合场景下的系统灵活度。
在上述各实施例提供的技术方案的基础上,可选地,所述连接配置信息包含下述至少一种:主节点的主小区信息;主节点的辅小区信息;辅节点的主小区信息;辅节点的辅小区信息。
考虑双链接(Dual Connectivity,DC)场景,DC可以包含主节点(Master Node,MN)以及辅节点(Secondary Node SN),其中各个节点可以有自己的CA组合。所述连接配置信息可以用于指示主节点和/或辅节点中的主小区和/或辅小区。例如,所述主小区信息/辅小区信息可以为主小区/辅小区的标识、名称、对应的载波信息等。
一个示例中,所述连接配置信息可以用于指示主节点的主小区、主节点的辅小区、辅节点的主小区、辅节点的辅小区中的任意一种。例如,所述连接配置信息指示了主节点的主小区,则终端设备可以预先配置在所述主节点的主小区对应的载波上执行或者不执行所述TCI指示信息指示的准共址关系。
另一示例中,所述连接配置信息可以用于指示主节点的主小区、主节点的辅小区、辅 节点的主小区、辅节点的辅小区中的至少两种。例如,所述连接配置信息指示了主节点的主小区以及辅节点的主小区,则终端设备可以针对主节点的主小区对应的载波以及辅节点的辅小区对应的载波进行准共址关系配置。
通过连接配置信息指示主节点的主小区、主节点的辅小区、辅节点的主小区、辅节点的辅小区中的至少一种,能够有效实现双链接场景下的准共址关系配置,提升双链接场景下的系统灵活度。
在上述各实施例提供的技术方案的基础上,可选地,所述连接配置信息由无线资源控制信令配置。通过无线资源控制指令可以提前针对载波进行准共址关系的配置,提升终端设备的处理效率。
可选地,所述无线资源控制信令还包含TCI池。可选地,所述TCI池可以为列表形式,例如表1或者类似的形式。所述终端设备可以基于无线资源控制信令获取TCI池,后续可以直接根据TCI指示信息确定使用TCI池中的哪一项来进行数据的发送和接收,能够有效简化对准共址关系的指示,减少信令开销。
在上述各实施例提供的技术方案的基础上,可选地,在所述根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送的步骤之前,还包括:获取TCI指示信息。
所述TCI指示信息可以从网络设备获取,或者,也可以从存储器或者其它设备获取。通过在基于连接配置信息与TCI指示信息进行上行数据和下行数据的传输之前,先获取TCI指示信息,能够实时确定本次数据传输对应的TCI指示信息,提高数据传输的效率和准确率。
可选地,所述获取连接配置信息和所述获取TCI指示信息的时间顺序可以为以下任一种:先获取所述连接配置信息,后获取所述TCI指示信息;先获取所述TCI指示信息,后获取所述连接配置信息;同时获取所述连接配置信息和所述TCI指示信息。
在一种可选的实现方式中,可以先获取所述连接配置信息,后获取所述TCI指示信息。例如,所述连接配置信息可以通过无线资源控制信令获取,所述TCI指示信息可以通过DCI获取,使得终端设备可以预先确定哪些载波需要执行TCI指示信息指示的准共址关系,再根据TCI指示信息实时确定具体使用哪一项准共址关系,提升准共址关系指示的灵活性。
在另一种可选的实现方式中,可以先获取所述TCI指示信息,后获取所述连接配置信息。例如,所述连接配置信息可以通过DCI获取,所述TCI指示信息可以通过无线资源控制信令获取,使得终端设备可以预先根据TCI指示信息确定使用哪一项准共址关系,再根据连接配置信息实时确定具体哪些载波需要使用所述准共址关系,提升针对载波配置准共址关系的灵活性。
在又一种可选的实现方式中,可以同时获取所述连接配置信息和所述TCI指示信息。例如,所述连接配置信息和所述TCI指示信息均可以通过无线资源控制信令或DCI获取,从而终端设备可以同步了解如何选择准共址关系以及配置哪些载波使用所述准共址关系,提高终端设备的处理效率。
可选地,所述TCI指示信息包括以下至少一种:所述准共址关系中的上行参考信号的标识;所述准共址关系中的下行参考信号的标识;参考信号组合的标识;信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,所述TCI指示信息的具体实现方式可以参考表2及其上下文所述的内容,此 处不再赘述。
可选地,所述根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送,还包括:根据所述连接配置信息指示的载波以及所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
所述终端设备可以根据连接配置信息指示的载波以及TCI指示信息指示的准共址关系,确定是否在所述载波上执行所述准共址关系,进而可以根据所确定的信息进行信道的传输。
可选地,所述TCI指示信息可以包括信道指示信息。所述信道指示信息用于指示使用所述准共址关系的信道。可选地,所述信道指示信息可以用于指示PDCCH、PDSCH、PUCCH、PUSCH中的任意一项或多项使用所述准共址关系。这样,终端设备可以根据所述信道指示信息,确定哪些信道需要使用TCI指示信息中指示的准共址关系,提高TCI指示的精准度。
可选地,所述方法还包括:通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;将检测得到的测量结果发送给网络设备。
在实际应用中,网络设备和终端设备可以先进行波束扫描,即遍历所有的波束配对方式进行参考信号的发射和接收,并保存波束扫描过程中得到的波束对的测量结果,当需要发送上行数据或下行数据时,可以从TCI池中选出测量结果最佳的波束对,通过TCI指示信息对准共址关系作出指示。
通过网络设备侧波束和终端设备侧波束可以快速准确地检测出各个波束对对应的测量结果,从而为波束选择提供依据,提高波束选择的准确性。
可选地,所述测量结果包括功率信息和/或干扰噪声信息。网络设备可以根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对,从而确定对应的参考信号,提高确定参考信号的准确性。
可选地,所述方法还包括:通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
高层信令可以配置哪个或哪些通道使用TCI指示信息。在物理层,DCI可以直接发送TCI指示信息,以指示准共址关系。这样,终端设备在获取到DCI之后,就可以知道其中指示的准共址关系可以应用于哪个通道,减少DCI的复杂度。
当准共址关系改变时,直接在DCI中改变即可。当DCI中携带信道指示信息,且信道指示信息与高层信令配置的信息有冲突时,可以以DCI中携带的信道指示信息为准,从而能够在准共址变化时快速通知终端设备,提高信息传输效率。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
在准共址关系中包括多个上行参考信号时,终端设备可以通过多个波束发射信号,和/或,网络设备可以通过多个波束接收信号;在准共址关系中包括多个下行参考信号时,网络设备可以通过多个波束发射信号,和/或,终端设备可以通过多个波束接收信号。这样,可以通过多个波束发射或接收信号,提高信号传输的准确率。
图10为本申请实施例提供的再一种准共址关系指示方法的流程示意图。本实施例中方法的执行主体可以为网络设备。如图10所示,所示方法包括:
步骤1001、确定连接配置信息。
可选地,所述连接配置信息可以为用于实现网络设备与终端设备之间连接配置的任意信息,例如,所述连接配置信息可以包含网络设备与终端设备之间进行通信连接的载波信 息。
步骤1002、根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收。
可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,可以根据TCI指示信息指示的准共址关系,确定使用哪个参考信号对应的波束来进行下行数据的接收和/或上行数据的发送。还可以根据连接配置信息,确定如何基于载波来使用所述准共址关系。
例如,可以基于所述连接配置信息确定在对应的载波上是否执行所述TCI指示信息指示的准共址关系。具体的实现方法可以参见前述实施例,此处不再赘述。
可选地,网络设备可以基于所述连接配置信息配置TCI池,不同的连接配置信息可以对应相同或不同的TCI池,所述TCI池可以用于保存参考信号对应的波束集合,准共址关系可以基于TCI池来确定。
本实施例提供的准共址关系指示方法,可以确定连接配置信息,并根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收,可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系,从而通过连接配置信息加TCI指示信息的方式快速准确地执行准共址关系,无需在各个信道里分别配置TCI列表,有效减少了信息配置的冗余度和复杂程度,提高了系统效率,还可以对不同载波的准共址关系进行指示,提高了系统的灵活度。
可选地,所述方法还包括:根据上行参考信号和/或下行参考信号的波束集合确定TCI池;根据所述TCI池,发送TCI指示信息。
在实际应用中,可以在网络设备侧配置TCI池,TCI池中保存了参考信号对应的波束集合,当需要使用准共址关系时,可以从所述TCI池中选择合适的波束,根据所选择的波束可以确定其对应的参考信号,然后发送TCI指示信息,指示数据可以与所述参考信号准共址,从而使得终端设备可以根据TCI指示信息指示的准共址关系,确定使用哪个参考信号对应的波束来进行数据的接收或发送。
这样,通过TCI池加TCI指示信息的方式可以实现准共址关系的指示,无需在各个信道中配置TCI状态列表,当波束集合发生改变时,直接对TCI池进行修改即可,提高了准共址关系配置的效率。
可选地,所述连接配置信息包含以下至少一种:主小区信息;辅小区信息。
可选地,所述连接配置信息包含下述至少一种:主节点的主小区信息;主节点的辅小区信息;辅节点的主小区信息;辅节点的辅小区信息。
基于以上所述的连接配置信息,可以分别实现CA和DC场景下的准共址关系配置,具体的实现方式可以参见前述实施例,此处不再赘述。
可选地,所述连接配置信息由无线资源控制信令配置。通过无线资源控制指令可以提前针对载波进行准共址关系的配置,提升终端设备的处理效率。
可选地,所述无线资源控制信令还包含TCI池。所述终端设备可以基于无线资源控制信令获取TCI池,后续可以直接根据TCI指示信息确定使用TCI池中的哪一项来进行数据的发送和接收,能够有效简化对准共址关系的指示,减少信令开销。
可选地,在根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收之前,还包括:发送连接配置信息。通过在基于连接配置信息与TCI指示信息进行上行数据和下行数据的传输之前,先发送TCI指示信息,能够使得终端设备及时确定本次数据传输对应的TCI指示信息,提高数据传输的效率和准确率。
可选地,发送连接配置信息和发送TCI指示信息的时间顺序可以为以下任一种:先发 送所述连接配置信息,后发送所述TCI指示信息;先发送所述TCI指示信息,后发送所述连接配置信息;同时发送所述连接配置信息和所述TCI指示信息。
在一种可选的实现方式中,可以先发送所述连接配置信息,后发送所述TCI指示信息,使得终端设备可以预先确定哪些载波需要执行TCI指示信息指示的准共址关系,再根据TCI指示信息实时确定具体使用哪一项准共址关系,提升准共址关系指示的灵活性。
在另一种可选的实现方式中,可以先获取所述TCI指示信息,后获取所述连接配置信息,使得终端设备可以预先根据TCI指示信息确定使用哪一项准共址关系,再根据连接配置信息实时确定具体哪些载波需要使用所述准共址关系,提升针对载波配置准共址关系的灵活性。
在又一种可选的实现方式中,可以同时获取所述连接配置信息和所述TCI指示信息,从而终端设备可以同步了解如何选择准共址关系以及配置哪些载波使用所述准共址关系,提高终端设备的处理效率。
可选地,所述数据包括上行数据和/或下行数据;所述参考信号包括上行参考信号和/或下行参考信号;所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束;所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
可选地,根据上行参考信号和/或下行参考信号的波束集合确定TCI池,包括:根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
可选地,发送TCI指示信息,包括:通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:所述准共址关系中的上行参考信号的标识;所述准共址关系中的下行参考信号的标识;参考信号组合的标识;信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,在TCI指示信息包括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
可选地,所述TCI池包括至少一个波束对的信息。
可选地,所述波束对包括网络设备侧波束和终端设备侧波束;所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
可选地,根据所述TCI池,发送TCI指示信息,包括:根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
可选地,根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号,包括:根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
可选地,对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果;对于任一波束对,通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
可选地,根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波 束对和/或下行波束对,包括:根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
可选地,在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍。
可选地,所述方法还包括:通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
本实施例中方法的原理、过程和效果可以参见前述实施例,此处不再赘述。
图11为本申请实施例提供的一种准共址关系指示装置的结构示意图。所述准共址关系指示装置可以应用于网络设备。如图11所示,所述准共址关系指示装置可以包括:
第一确定模块1101,用于根据上行参考信号和/或下行参考信号的波束集合确定TCI池;
发送模块1102,用于根据所述TCI池,发送TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述数据包括上行数据和/或下行数据;
可选地,所述参考信号包括上行参考信号和/或下行参考信号;
可选地,所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束;
可选地,所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
可选地,所述第一确定模块1101具体用于:
根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
可选地,所述发送模块1102在发送TCI指示信息时,具体用于:
通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位;
可选地,在TCI指示信息包括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
可选地,所述TCI池包括至少一个波束对的信息。
可选地,所述波束对包括网络设备侧波束和终端设备侧波束;
所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标 识以及所述波束对对应的测量结果中的至少一种。
可选地,所述发送模块1102在根据所述TCI池,发送TCI指示信息时,具体用于:
根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;
根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
可选地,所述发送模块1102在根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号时,具体用于:
根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;
根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
可选地,所述第一确定模块1101还用于:对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果;
可选地,所述第一确定模块1101还用于:对于任一波束对,通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
可选地,所述发送模块1102在根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对时,具体用于:
根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
可选地,在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,
在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍,优选地,所述预设倍为2倍。
可选地,所述第一确定模块1101还用于:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
本实施例提供的装置,可用于执行图1至图7所示实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
图12为本申请实施例提供的另一种准共址关系指示装置的结构示意图。所述准共址关系指示装置可以应用于终端设备。如图12所示,所述准共址关系指示装置可以包括:
第一获取模块1201,用于获取TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系;
第一传输模块1202,用于根据所述准共址关系进行下行数据的接收和/或上行数据的发送。
可选地,所述数据包括上行数据和/或下行数据;
可选地,所述参考信号包括上行参考信号和/或下行参考信号。
可选地,所述第一获取模块1201在获取TCI指示信息时,具体用于:
通过物理下行控制信道获取下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:
所述准共址关系中的上行参考信号的标识;
所述准共址关系中的下行参考信号的标识;
参考信号组合的标识;
信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,所述第一传输模块1202具体用于:
根据所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
可选地,所述第一获取模块1201还用于:
通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;
将检测得到的测量结果发送给网络设备。
可选地,所述测量结果包括功率信息和/或干扰噪声信息。
可选地,所述第一获取模块1201还用于:
通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
本实施例提供的装置,可用于执行图8所示实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
图13为本申请实施例提供的又一种准共址关系指示装置的结构示意图。所述准共址关系指示装置可以应用于终端设备。如图13所示,所述准共址关系指示装置可以包括:
第二获取模块1301,用于获取连接配置信息;
第二传输模块1302,用于根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送,可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述连接配置信息包含以下至少一种:主小区信息;辅小区信息。
可选地,所述连接配置信息包含下述至少一种:主节点的主小区信息;主节点的辅小区信息;辅节点的主小区信息;辅节点的辅小区信息。
可选地,所述连接配置信息由无线资源控制信令配置。
可选地,所述无线资源控制信令还包含TCI池。
可选地,所述第二获取模块1301还用于:
在所述根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送的步骤之前,获取TCI指示信息。
可选地,所述获取连接配置信息和所述获取TCI指示信息的时间顺序可以为以下任一种:先获取所述连接配置信息,后获取所述TCI指示信息;先获取所述TCI指示信息,后获取所述连接配置信息;同时获取所述连接配置信息和所述TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:所述准共址关系中的上行参考信号的标识;所述准共址关系中的下行参考信号的标识;参考信号组合的标识;信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
可选地,所述第二传输模块1302具体用于:根据所述连接配置信息指示的载波以及所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
可选地,所述第二获取模块1301还用于:通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;将检测得到的测量结果发送给网络设备。
可选地,所述测量结果包括功率信息和/或干扰噪声信息。
可选地,所述第二获取模块1301还用于:通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
本实施例提供的装置,可用于执行图9所示实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
图14为本申请实施例提供的再一种准共址关系指示装置的结构示意图。所述准共址关系指示装置可以应用于网络设备。如图14所示,所述准共址关系指示装置可以包括:
第二确定模块1401,用于确定连接配置信息;
第三传输模块1402,用于根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收;可选地,所述TCI指示信息用于指示数据和参考信号的准共址关系。
可选地,所述第三传输模块1402还用于:根据上行参考信号和/或下行参考信号的波束集合确定TCI池;根据所述TCI池,发送TCI指示信息。
可选地,所述连接配置信息包含以下至少一种:主小区信息;辅小区信息。
可选地,所述连接配置信息包含下述至少一种:主节点的主小区信息;主节点的辅小区信息;辅节点的主小区信息;辅节点的辅小区信息。
可选地,所述连接配置信息由无线资源控制信令配置。
可选地,所述无线资源控制信令还包含TCI池。
可选地,所述第三传输模块1402在根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收之前,还用于:发送连接配置信息。
可选地,发送连接配置信息和发送TCI指示信息的时间顺序可以为以下任一种:先发送所述连接配置信息,后发送所述TCI指示信息;先发送所述TCI指示信息,后发送所述连接配置信息;同时发送所述连接配置信息和所述TCI指示信息。
可选地,所述数据包括上行数据和/或下行数据;所述参考信号包括上行参考信号和/或下行参考信号;所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束;所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
可选地,所述第三传输模块1402在根据上行参考信号和/或下行参考信号的波束集合确定TCI池时,具体用于:根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
可选地,所述第三传输模块1402在发送TCI指示信息时,具体用于:通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
可选地,所述TCI指示信息包括以下至少一种:所述准共址关系中的上行参考信号的标识;所述准共址关系中的下行参考信号的标识;参考信号组合的标识;信道指示信息。
可选地,在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位;在TCI指示信息包 括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
可选地,所述TCI池包括至少一个波束对的信息。
可选地,所述波束对包括网络设备侧波束和终端设备侧波束;所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
可选地,所述第三传输模块1402在根据所述TCI池,发送TCI指示信息时,具体用于:根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
可选地,所述第三传输模块1402在根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号时,具体用于:根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
可选地,所述第三传输模块1402还用于执行下述至少一项:对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果;对于任一波束对,通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
可选地,所述第三传输模块1402在根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对时,具体用于:根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
可选地,在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍。
可选地,所述第三传输模块1402还用于:通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
可选地,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
本实施例提供的装置,可用于执行图10所示实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
图15为本申请实施例提供的一种通信设备的结构示意图。本实施例所述的通信设备可以是前述方法实施例中提到的终端设备(或者可用于终端设备的部件)或者网络设备(或者可用于网络设备的部件)。通信设备可用于实现上述方法实施例中描述的对应于终端设备或者网络设备的方法,具体参见上述方法实施例中的说明。
如图15所示,本实施例的通信设备包括:处理器1501以及存储器1502;可选地,所述存储器1502,用于存储计算机执行指令;所述计算机执行指令被所述处理器1501执行时实现上述任一实施例中的准共址关系指示方法。具体可以参见前述方法实施例中的相关描述。
可选地,存储器1502既可以是独立的,也可以跟处理器1501集成在一起。
本申请实施例提供的通信设备的功能和效果可以参见前述实施例,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如上所述的准共址关系指示方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现如上各种可能的实施方式中所述的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得安装有所述芯片的通信设备执行如上各种可能的实施方式中所述的方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的部分步骤。
应理解,上述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称:DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (64)

  1. 一种准共址关系指示方法,其特征在于,应用于网络设备,所述方法包括:
    根据上行参考信号和/或下行参考信号的波束集合确定TCI池;
    根据所述TCI池,发送TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系。
  2. 根据权利要求1所述的方法,其特征在于,包括以下至少一种:
    所述数据包括上行数据和/或下行数据;
    所述参考信号包括上行参考信号和/或下行参考信号;
    所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束;
    所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
  3. 根据权利要求2所述的方法,其特征在于,根据上行参考信号和/或下行参考信号的波束集合确定TCI池,包括:
    根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
  4. 根据权利要求1所述的方法,其特征在于,发送TCI指示信息,包括:
    通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
  5. 根据权利要求1所述的方法,其特征在于,所述TCI指示信息包括以下至少一种:
    所述准共址关系中的上行参考信号的标识;
    所述准共址关系中的下行参考信号的标识;
    参考信号组合的标识;
    信道指示信息。
  6. 根据权利要求5所述的方法,其特征在于,包括以下至少一种:
    在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位;
    在TCI指示信息包括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述TCI池包括至少一个波束对的信息。
  8. 根据权利要求7所述的方法,其特征在于,包括以下至少一种:
    所述波束对包括网络设备侧波束和终端设备侧波束;
    所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
  9. 根据权利要求8所述的方法,其特征在于,根据所述TCI池,发送TCI指示信息, 包括:
    根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;
    根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
  10. 根据权利要求9所述的方法,其特征在于,根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号,包括:
    根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;
    根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
  11. 根据权利要求10所述的方法,其特征在于,还包括以下至少一种:
    对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果;
    对于任一波束对,通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
  12. 根据权利要求10所述的方法,其特征在于,根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对,包括:
    根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,
    在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,
    在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍。
  14. 根据权利要求1至6中任一项所述的方法,其特征在于,还包括:
    通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
  15. 根据权利要求1至6中任一项所述的方法,其特征在于,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
  16. 一种准共址关系指示方法,其特征在于,应用于终端设备,所述方法包括:
    获取TCI指示信息,所述TCI指示信息用于指示数据和参考信号的准共址关系;
    根据所述准共址关系进行下行数据的接收和/或上行数据的发送。
  17. 根据权利要求16所述的方法,其特征在于,包括以下至少一种:
    所述数据包括上行数据和/或下行数据;
    所述参考信号包括上行参考信号和/或下行参考信号。
  18. 根据权利要求16所述的方法,其特征在于,获取TCI指示信息,包括:
    通过物理下行控制信道获取下行控制信息,所述下行控制信息包括TCI指示信息。
  19. 根据权利要求16所述的方法,其特征在于,所述TCI指示信息包括以下至少一种:
    所述准共址关系中的上行参考信号的标识;
    所述准共址关系中的下行参考信号的标识;
    参考信号组合的标识;
    信道指示信息。
  20. 根据权利要求19所述的方法,其特征在于,
    在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
  21. 根据权利要求19所述的方法,其特征在于,所述根据所述准共址关系进行下行数据的接收和/或上行数据的发送,包括:
    根据所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,还包括:
    通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;
    将检测得到的测量结果发送给网络设备。
  23. 根据权利要求22所述的方法,其特征在于,所述测量结果包括功率信息和/或干扰噪声信息。
  24. 根据权利要求16至21中任一项所述的方法,其特征在于,还包括:
    通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
  25. 根据权利要求16至21中任一项所述的方法,其特征在于,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
  26. 一种准共址关系指示方法,其特征在于,应用于终端设备,所述方法包括:
    获取连接配置信息;
    根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送,其中,所述TCI指示信息用于指示数据和参考信号的准共址关系。
  27. 根据权利要求26所述的方法,其特征在于,所述连接配置信息包含以下至少一种:
    主小区信息;
    辅小区信息。
  28. 根据权利要求26所述的方法,其特征在于,所述连接配置信息包含下述至少一 种:
    主节点的主小区信息;
    主节点的辅小区信息;
    辅节点的主小区信息;
    辅节点的辅小区信息。
  29. 根据权利要求26至28中任一项所述的方法,其特征在于,所述连接配置信息由无线资源控制信令配置。
  30. 根据权利要求29所述的方法,其特征在于,所述无线资源控制信令还包含TCI池。
  31. 根据权利要求26至28中任一项所述的方法,其特征在于,在所述根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送的步骤之前,还包括:
    获取TCI指示信息。
  32. 根据权利要求31所述的方法,其特征在于,所述获取连接配置信息和所述获取TCI指示信息的时间顺序可以为以下任一种:
    先获取所述连接配置信息,后获取所述TCI指示信息;
    先获取所述TCI指示信息,后获取所述连接配置信息;
    同时获取所述连接配置信息和所述TCI指示信息。
  33. 根据权利要求26至28中任一项所述的方法,其特征在于,所述TCI指示信息包括以下至少一种:
    所述准共址关系中的上行参考信号的标识;
    所述准共址关系中的下行参考信号的标识;
    参考信号组合的标识;
    信道指示信息。
  34. 根据权利要求33所述的方法,其特征在于,
    在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位。
  35. 根据权利要求33所述的方法,其特征在于,所述根据所述连接配置信息与TCI指示信息进行下行数据的接收和/或上行数据的发送,包括:
    根据所述连接配置信息指示的载波以及所述TCI指示信息指示的准共址关系,进行所述TCI指示信息指示的信道的传输。
  36. 根据权利要求26至28中任一项所述的方法,其特征在于,还包括:
    通过终端设备侧波束检测网络设备侧波束发射的信号的测量结果;
    将检测得到的测量结果发送给网络设备。
  37. 根据权利要求36所述的方法,其特征在于,所述测量结果包括功率信息和/或干 扰噪声信息。
  38. 根据权利要求26至28中任一项所述的方法,其特征在于,还包括:
    通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
  39. 根据权利要求26至28中任一项所述的方法,其特征在于,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
  40. 一种准共址关系指示方法,其特征在于,应用于网络设备,所述方法包括:
    确定连接配置信息;
    根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收;其中,所述TCI指示信息用于指示数据和参考信号的准共址关系。
  41. 根据权利要求40所述的方法,其特征在于,还包括:
    根据上行参考信号和/或下行参考信号的波束集合确定TCI池;
    根据所述TCI池,发送TCI指示信息。
  42. 根据权利要求40所述的方法,其特征在于,所述连接配置信息包含以下至少一种:
    主小区信息;
    辅小区信息。
  43. 根据权利要求40所述的方法,其特征在于,所述连接配置信息包含下述至少一种:
    主节点的主小区信息;
    主节点的辅小区信息;
    辅节点的主小区信息;
    辅节点的辅小区信息。
  44. 根据权利要求40至43中任一项所述的方法,其特征在于,所述连接配置信息由无线资源控制信令配置。
  45. 根据权利要求44所述的方法,其特征在于,所述无线资源控制信令还包含TCI池。
  46. 根据权利要求40至43中任一项所述的方法,其特征在于,在根据所述连接配置信息与TCI指示信息进行下行数据的发送和/或上行数据的接收之前,还包括:
    发送连接配置信息。
  47. 根据权利要求46所述的方法,其特征在于,发送连接配置信息和发送TCI指示信息的时间顺序可以为以下任一种:
    先发送所述连接配置信息,后发送所述TCI指示信息;
    先发送所述TCI指示信息,后发送所述连接配置信息;
    同时发送所述连接配置信息和所述TCI指示信息。
  48. 根据权利要求40至43中任一项所述的方法,其特征在于,包括以下至少一种:
    所述数据包括上行数据和/或下行数据;
    所述参考信号包括上行参考信号和/或下行参考信号;
    所述上行参考信号的波束集合包括波束扫描时所有上行发射波束和/或上行接收波束;
    所述下行参考信号的波束集合包括波束扫描时所有下行发射波束和/或下行接收波束。
  49. 根据权利要求48所述的方法,其特征在于,根据上行参考信号和/或下行参考信号的波束集合确定TCI池,包括:
    根据所述上行参考信号和/或所述下行参考信号的波束集合中,发射波束和接收波束的所有配对确定TCI池。
  50. 根据权利要求41所述的方法,其特征在于,所述发送TCI指示信息,包括:
    通过物理下行控制信道发送下行控制信息,所述下行控制信息包括TCI指示信息。
  51. 根据权利要求40至43中任一项所述的方法,其特征在于,所述TCI指示信息包括以下至少一种:
    所述准共址关系中的上行参考信号的标识;
    所述准共址关系中的下行参考信号的标识;
    参考信号组合的标识;
    信道指示信息。
  52. 根据权利要求51所述的方法,其特征在于,包括以下至少一种:
    在TCI指示信息包括所述准共址关系中的上行参考信号的标识和/或下行参考信号的标识时,所述TCI指示信息还包括:与所述上行参考信号的标识对应设置的上行指示位;和/或,与所述下行参考信号的标识对应设置的下行指示位;
    在TCI指示信息包括参考信号组合的标识时,根据准共址关系中的上行参考信号和下行参考信号,确定对应的参考信号组合,根据所述对应的参考信号组合,确定所述参考信号组合的标识。
  53. 根据权利要求41所述的方法,其特征在于,所述TCI池包括至少一个波束对的信息。
  54. 根据权利要求53所述的方法,其特征在于,包括以下至少一种:
    所述波束对包括网络设备侧波束和终端设备侧波束;
    所述波束对的信息包括所述波束对中的网络设备侧波束的标识、终端设备侧波束的标识以及所述波束对对应的测量结果中的至少一种。
  55. 根据权利要求54所述的方法,其特征在于,所述根据所述TCI池,发送TCI指示信息,包括:
    根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号;
    根据所述准共址关系中的上行参考信号和/或下行参考信号,发送TCI指示信息。
  56. 根据权利要求55所述的方法,其特征在于,所述根据所述TCI池中至少一个波束对的信息,确定所述准共址关系中的上行参考信号和/或下行参考信号,包括:
    根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对;
    根据所选择的上行波束对和/或所述下行波束对,确定所述准共址关系中的上行参考信号和/或下行参考信号。
  57. 根据权利要求56所述的方法,其特征在于,还包括以下至少一种:
    对于任一波束对,从终端设备获取通过终端设备侧波束检测到的网络设备侧波束发射的信号的测量结果;
    对于任一波束对,通过网络设备侧波束检测终端设备侧波束发射的信号对应的测量结果。
  58. 根据权利要求56所述的方法,其特征在于,所述根据所述TCI池中各个波束对对应的测量结果,从所述TCI池中选择上行波束对和/或下行波束对,包括:
    根据各个波束对对应的功率信息和/或干扰噪声信息,从所述TCI池中选择上行波束对和/或下行波束对。
  59. 根据权利要求54至58中任一项所述的方法,其特征在于,
    在TDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积;和/或,
    在FDD模式下,所述波束对的数量等于网络设备侧波束的数量与终端设备侧波束的数量的乘积的预设倍。
  60. 根据权利要求40至43中任一项所述的方法,其特征在于,还包括:
    通过无线资源控制层和/或媒体访问控制层为下述至少一项配置所述TCI指示信息:物理上行控制信道、物理上行共享信道、物理下行控制信道、物理下行共享信道。
  61. 根据权利要求40至43中任一项所述的方法,其特征在于,所述TCI指示信息指示的准共址关系包括至少一个上行参考信号和至少一个下行参考信号。
  62. 一种通信设备,其特征在于,包括:处理器和存储器;
    所述存储器存储计算机执行指令;
    所述计算机执行指令被所述处理器执行时实现如权利要求1至61中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至61中任一项所述的方法。
  64. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至61中任一项所述的方法。
PCT/CN2021/086259 2021-04-09 2021-04-09 准共址关系指示方法、设备及存储介质 WO2022213386A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/086259 WO2022213386A1 (zh) 2021-04-09 2021-04-09 准共址关系指示方法、设备及存储介质
CN202180096493.1A CN117083828A (zh) 2021-04-09 2021-04-09 准共址关系指示方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/086259 WO2022213386A1 (zh) 2021-04-09 2021-04-09 准共址关系指示方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022213386A1 true WO2022213386A1 (zh) 2022-10-13

Family

ID=83545014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086259 WO2022213386A1 (zh) 2021-04-09 2021-04-09 准共址关系指示方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117083828A (zh)
WO (1) WO2022213386A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535609A (zh) * 2019-08-02 2019-12-03 中兴通讯股份有限公司 目标参数的确定方法、通信节点和存储介质
WO2020006277A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Multi-beam simultaneous transmissions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020006277A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Multi-beam simultaneous transmissions
CN110535609A (zh) * 2019-08-02 2019-12-03 中兴通讯股份有限公司 目标参数的确定方法、通信节点和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-2100208, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970840 *
MODERATOR (SAMSUNG): "Moderator summary#2 for multi-beam enhancement", 3GPP DRAFT; R1-2009499, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 13 November 2020 (2020-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051954355 *

Also Published As

Publication number Publication date
CN117083828A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
WO2020147823A1 (zh) 终端能力协商方法、终端设备和网络侧设备
WO2021078235A1 (zh) 测量处理方法、指示信息发送方法、终端和网络设备
WO2021093707A1 (zh) 测量配置方法、装置及系统
WO2020025015A1 (zh) 能力指示方法、终端及网络侧网元
WO2020038241A1 (zh) 功率控制方法、终端及网络设备
WO2023088485A1 (zh) 处理方法、通信设备、通信系统及存储介质
WO2019095917A1 (zh) 时隙格式指示检测方法、配置方法及装置
WO2020228537A1 (zh) 资源确定方法、资源指示方法、终端及网络侧设备
WO2020038194A1 (zh) 解调参考信号天线端口映射方法、终端设备及网络设备
WO2019242633A1 (zh) 测量间隔的处理方法、终端及网络节点
CN107608629B (zh) 一种数据迁移方法、终端及计算机可读存储介质
WO2023221831A1 (zh) 处理方法、通信设备及存储介质
WO2021027716A1 (zh) 能力协商方法、终端及网络设备
WO2020192673A1 (zh) 资源配置方法、资源确定方法、网络侧设备和终端
WO2020063271A1 (zh) 接收方法、发送方法、终端及网络侧设备
CN110955397A (zh) 游戏终端帧率的设置方法、游戏终端及存储介质
WO2022213386A1 (zh) 准共址关系指示方法、设备及存储介质
WO2022217552A1 (zh) panel状态的处理方法、通信设备及存储介质
WO2021197191A1 (zh) 冲突资源确定方法和终端
CN113900559A (zh) 信息处理方法、移动终端及存储介质
WO2023164804A1 (zh) 处理方法、通信设备及存储介质
CN114125151B (zh) 图像处理方法、移动终端及存储介质
WO2023216197A1 (zh) 处理方法、智能终端及存储介质
CN213243992U (zh) 通讯电路和移动终端
WO2022198520A1 (zh) 信息处理方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096493.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE