WO2022211370A1 - Bonding tool having high flatness and provided with polycrystalline diamond tip integrated with cemented carbide body - Google Patents

Bonding tool having high flatness and provided with polycrystalline diamond tip integrated with cemented carbide body Download PDF

Info

Publication number
WO2022211370A1
WO2022211370A1 PCT/KR2022/004144 KR2022004144W WO2022211370A1 WO 2022211370 A1 WO2022211370 A1 WO 2022211370A1 KR 2022004144 W KR2022004144 W KR 2022004144W WO 2022211370 A1 WO2022211370 A1 WO 2022211370A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding tool
bonding
polycrystalline diamond
carbide body
diamond tip
Prior art date
Application number
PCT/KR2022/004144
Other languages
French (fr)
Korean (ko)
Inventor
박기표
이상용
문환균
이은비
류민호
Original Assignee
일진다이아몬드(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220029160A external-priority patent/KR20220137536A/en
Application filed by 일진다이아몬드(주) filed Critical 일진다이아몬드(주)
Priority to JP2023532251A priority Critical patent/JP2023552133A/en
Priority to CN202280007096.7A priority patent/CN116547092A/en
Publication of WO2022211370A1 publication Critical patent/WO2022211370A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers

Definitions

  • the present invention relates to a bonding tool, and more particularly, to a bonding tool used for mounting a semiconductor device.
  • TAB Tape Automated Bonding
  • COF Chip on Film
  • a bonding tool is used to bond a semiconductor device such as a Distplay Driver IC (DDI) and a lead on a film by thermocompression bonding.
  • DAI Distplay Driver IC
  • the bonding tool includes a body portion 12 coupled to a holder of the bonding device and a tip portion joined to the body portion.
  • diamond for the tip portion, diamond, for example, vapor-phase synthetic diamond, diamond single crystal, or diamond sintered body may be used in order to obtain flatness of the tool surface, wear resistance, uniformity of temperature distribution, and the like.
  • a substrate 14 having a CVD diamond 15 formed thereon is used.
  • the substrate 14 is coupled to the body 12 by soldering or brazing via soldering (or bonding material).
  • a metal material made of molybdenum, cemented carbide, nickel base alloy, tungsten or tungsten alloy, iron-nickel cobalt alloy, stainless steel, iron-nickel alloy, titanium or titanium alloy, etc. is used as the body 12 .
  • heterogeneous materials such as a body, a solder (or bonding material), a substrate, and a diamond are used in a conventional bonding tool. Since these dissimilar materials have different coefficients of thermal expansion, thermal deformation such as distortion or warpage occurs in a high-temperature manufacturing process or in a high-temperature use environment (400 ⁇ 500°C), and due to such thermal deformation, the tip of the bonding tool is required There is a problem in that the flatness cannot be maintained.
  • an object of the present invention is to provide an integrated bonding tool for minimizing a difference in thermal expansion coefficient in a manufacturing process or a use environment.
  • an object of the present invention is to provide a bonding tool that is easy to manufacture and process in one piece and can achieve high flatness by processing.
  • Another object of the present invention is to provide a bonding tool having high flatness even in a high-temperature use environment.
  • Another object of the present invention is to provide a bonding tool capable of suppressing thermal deformation at a high temperature in a manufacturing process or a use environment.
  • Another object of the present invention is to provide a bonding tool having a large-area diamond tip.
  • Another object of the present invention is to provide a manufacturing method suitable for manufacturing the above-described bonding tool.
  • the present invention provides a bonding tool for coupling to a holder of a bonding device for thermocompression bonding a semiconductor device and a wiring device, wherein the bonding tool is coupled to a holder for coupling with the holder of the bonding device on one side.
  • a single carbide body having a portion and a heater insertion hole therein; And it provides a bonding tool comprising a polycrystalline diamond tip coupled to the other side of the carbide body.
  • the cemented carbide body preferably has a non-bonding structure.
  • the polycrystalline diamond tip is preferably coupled to the cemented carbide body by high-temperature and high-pressure sintering. At this time, the polycrystalline diamond tip may be coupled by diffusion of the metal binder in the carbide body.
  • the other side of the cemented carbide body may be provided with a protrusion for mounting the polycrystalline diamond tip.
  • the protrusion may be in the shape of a band extending across the surface of the carbide body.
  • the bonding tool preferably has room temperature and high temperature flatness of 2 ⁇ m or less at a length of 25 mm or more of the polycrystalline diamond tip.
  • the present invention provides a method for manufacturing a bonding tool for bonding a semiconductor element and a wiring element to a holder of a bonding apparatus for thermocompression bonding, laminating a diamond powder compact on a cemented carbide base material and sintering at high temperature and high pressure to prepare a sintered body having a laminate structure including a cemented carbide base material and a polycrystalline diamond layer; planarizing the sintered body; and processing the sintered body, wherein the processing step includes processing an outer shape of the sintered body; And it provides a method of manufacturing a bonding tool comprising the step of processing the hole in the sintered body.
  • the diamond powder compact preferably does not include a metal binder.
  • the processing step may include processing the polycrystalline diamond layer to form a polycrystalline diamond tip, and the polycrystalline diamond tip may have a band shape extending across the surface of the cemented carbide body on the cemented carbide body.
  • the processing step may include electric discharge machining or laser machining.
  • the high-temperature and high-pressure sintering step is preferably performed at a temperature of 1300-1700° C. and a pressure of 5-10 GPa.
  • the present invention it is possible to provide an integrated bonding tool that minimizes the difference in the coefficient of thermal expansion in the manufacturing process or the use environment.
  • the present invention can provide a bonding tool that is easy to manufacture and process in one piece, and can achieve high flatness by processing.
  • the present invention can exhibit high flatness even in a high-temperature environment by suppressing thermal deformation at a high temperature in a manufacturing process or a use environment. Accordingly, the present invention can provide a bonding tool having a large-area diamond tip.
  • FIGS. 2A and 2B are a perspective view and a bottom perspective view of a bonding tool according to an embodiment of the present invention, respectively.
  • FIG 3 is a view for explaining an example of using a bonding tool according to an embodiment of the present invention.
  • FIG. 4 is a flowchart schematically illustrating a method of manufacturing a bonding tool according to an embodiment of the present invention.
  • 5 is a photograph taken after flat processing of the sintered body manufactured according to an embodiment of the present invention.
  • FIG. 6 is a photograph taken of the bonding tool of the present invention manufactured according to the sintering and machining process.
  • FIGS. 2A and 2B are a perspective view and a bottom perspective view, respectively, according to an embodiment of the present invention.
  • the bonding tool 100 includes a carbide body 110 and a polycrystalline diamond tip 120 .
  • the carbide body 110 has a hexahedral outline as shown, but the present invention is not limited thereto.
  • a polycrystalline diamond tip 120 is provided on one side of the carbide body 110 , and a portion of the upper surface of the carbide body protrudes for mounting the tip 120 to form a protrusion 118 .
  • the protrusion 118 has a band shape extending in the longitudinal direction while forming the mesa structure of the tip 120 .
  • the shape of the tip is exemplary, and may be a shape that follows the bump arrangement shape of the semiconductor device.
  • two or more rows of band-shaped heaters may be arranged in the bonding tool of the present invention.
  • the bonding tool has room temperature flatness or high temperature flatness of the polycrystalline diamond tip of 2 ⁇ m or less in the area of 25 mm, 30 mm, or 35 mm tip length or more. Or, it is preferable to have room temperature flatness and high temperature flatness of 2 ⁇ m or less in an area of 135 m 2 or more with a tip area.
  • the surface of the polycrystalline diamond tip may have a convex or concave shape.
  • the surface of the polycrystalline diamond tip has a concave shape at a high temperature to prevent bump open of the semiconductor element at both ends of the tip and the lead circuit on the film.
  • the high-temperature flatness is based on a value measured at a temperature of 480°C, and the flatness may be measured by either white light scanning interferometry (WSI) or phase shift interferometry (PSI).
  • WSI white light scanning interferometry
  • PSI phase shift interferometry
  • the flatness may be measured by white light scanning interferometry.
  • room temperature and high temperature flatness of the bonding tool may have a value of, for example, 1.5 ⁇ m or more.
  • Heater insertion holes 112A and 112B arranged parallel to the tip 120 are provided on the inner side of the carbide body 110, that is, in the middle, and a temperature sensor is inserted between the heater insertion holes 112A and 112B and the tip. Holes 113A and 113B are provided. A heater (not shown) and a temperature sensor (not shown) such as a thermocouple are inserted into the insertion holes 112A, 112B, 113A, and 113B, respectively, and are used to control the temperature of the bonding tool.
  • the other side of the carbide body 110 is provided with fastening parts (115A, 115B) as a coupling mechanism for mounting to a holder (not shown) of the bonding device.
  • the fastening parts 115A and 115B may have screw holes as shown and be fastened to the holder by means such as bolts.
  • the fastening parts (115A, 115B) protrude to the side of the carbide body, but the present invention is not limited thereto, and the shape of the fastening part may be implemented in various ways.
  • a vacuum hole 114 may be provided inside the cemented carbide body 110 .
  • the vacuum hole 114 forms a flow path passing through the carbide body at the tip 120 of the carbide body 110 .
  • the vacuum hole 114 allows a semiconductor device such as a driver IC in contact with the tip 120 to be vacuum-adsorbed.
  • additional holes such as a position fixing hole 116 for setting a holder fixing position may be formed in the carbide body.
  • the carbide body 110 is composed of a single component.
  • 'single' means that two or more components, either homogeneous or heterogeneous, are chemically bonded or not mechanically bonded. This is compared to the conventional bonding tool described with reference to FIG. 1, wherein the body 12 and the substrate 14 are formed by bonding and are not a single component.
  • the cemented carbide body 110 of the present invention is obtained by processing a single homogeneous cemented carbide member.
  • the polycrystalline diamond tip 120 is a sintered body including polycrystalline diamond and a metal binder.
  • the metal binder of the polycrystalline diamond tip 120 may be derived from the cemented carbide body 110 . More preferably, the polycrystalline diamond tip 120 is sintered and integrated without using a separate binder. This will be described later.
  • 3 is a view for explaining an example of using the bonding tool of the present invention.
  • a bonding tool 100 is mounted on a holder 200 of a bonding apparatus (not shown).
  • a heater is mounted inside the bonding tool 100 .
  • the polycrystalline diamond tip 120 of the bonding tool 100 vacuum-adsorbs a semiconductor device such as, for example, a display driver IC (hereinafter referred to as 'DDI'; 10).
  • the bonding device transports the bonding tool 100 and aligns it on the film 20 on which metal wiring such as a lead is formed.
  • the heater built into the bonding tool 100 is heated according to the driving of the bonding device, and the holder of the device presses the bonding tool 100 to bond the bump 12 of the DDI to the metal wiring 22 on the film. do.
  • the cemented carbide base material of the above-described bonding tool is heated to a temperature of about 400 ⁇ 500 °C.
  • the cemented carbide body and the polycrystalline diamond tip 120 which are each component constituting the bonding tool, are heated, respectively.
  • thermal deformation occurs due to the difference in thermal expansion of each component.
  • the thermal strain generated in the polycrystalline diamond tip generated in this process can be divided into two components. One is a deformation component in a direction parallel to the pressing axis (1), and the other is a deformation component in a direction perpendicular to the pressing axis. It is (2).
  • the former acts uniformly across the contact surface of the polycrystalline diamond tip, whereas the latter does not. Due to the difference in the coefficient of thermal expansion between the cemented carbide base material and the polycrystalline diamond tip 120 , thermal deformation in a direction perpendicular to the pressure axis occurs during heating, and accordingly, the polycrystalline diamond tip causes warpage. This bending deformation affects the flatness of the polycrystalline diamond tip.
  • the bending deformation occurring in the carbide body is suppressed by using a carbide body of a single component, unlike the conventional method of manufacturing a bonding body by bonding or mechanically combining two or more components.
  • the interface between the cemented carbide body and the polycrystalline diamond tip does not act as a heterogeneous component.
  • FIG. 4 is a flowchart schematically illustrating a method of manufacturing a bonding tool according to an embodiment of the present invention.
  • a diamond powder compact is manufactured ( S110 ).
  • the diamond powder compact may be manufactured by mixing diamond powder and an organic binder to prepare a slurry, then molding and drying the slurry.
  • the diamond powder compact may be formed in a sheet form. In this case, it is preferable to use a diamond powder having a particle diameter in the range of 0.5 to 50 ⁇ m.
  • the diamond powder compact contains substantially no metal binder.
  • HTHP high temperature and high pressure
  • This process is carried out under high temperature and pressure in which the diamond exists in a stable state by charging the compact into a refractory crucible made of a high-melting-point material (eg, Ta, Mo, Nb, etc.) of 2000°C or higher.
  • a high-melting-point material eg, Ta, Mo, Nb, etc.
  • the metal binder (for example, Co) in the cemented carbide base material is melted at the sintering temperature to form a liquid phase, and the metal liquid phase is squeezed out from the cemented carbide base material by the pressure applied during the sintering process to form a liquid phase between the diamond powder of the molded body. infiltration into the pores.
  • the diamond powder compact is liquid-phase sintered by liquid-phase penetration.
  • high-temperature and high-pressure sintering may be performed at a temperature and pressure of 1300-1700° C. and 5-10 GPa.
  • the sintered compact processing process for obtaining a bonding tool in the present invention is as follows. However, each processing process described below does not necessarily have to be performed, and it goes without saying that the order of each processing process may be changed.
  • the upper and/or lower surfaces of the sintered body are ground and lapped.
  • the polycrystalline diamond layer and the underlying cemented carbide base material are integrated by sintering, the flatness of the entire sintered body can be improved by lapping and grinding.
  • the diameter of the sintered body in the picture is about 60 mm
  • the thickness is about 20-30 mm
  • the thickness of the polycrystalline diamond tip is 0.5 mm. According to the present invention, it is possible to manufacture a large-area bonding tool having a maximum diameter of 60 mm and a thickness of 20 to 30 mm.
  • the sintered body is machined according to the predetermined shape of the bonding tool as shown in FIGS. 2A and 2B .
  • This machining can be performed, for example, by wire cut electric discharge machining (WEDM).
  • WEDM wire cut electric discharge machining
  • the holes 112A, 112B, 113A, 113B, and 114 of FIGS. 2A and 2B are machined in the carbide part by electric discharge machining, and other tap machining is performed.
  • Vacuum hole processing, chamfer processing, etc. are performed on the polycrystalline diamond part by laser processing.
  • the electric discharge machining marks are removed by polishing and coated.
  • TiN, TiCN, TiAlN, AlTiN, AlCrN, CrN or CrAlN can be coated on the tool using the PVD coating method, which is a physical vapor deposition method.
  • FIG. 6 is a photograph taken of the bonding tool of the present invention manufactured according to the sintering and machining process.
  • a sintered body was prepared by charging a diamond powder compact with a particle diameter of 0.5-50 ⁇ m and a WC-Co cemented carbide base material into a refractory crucible and sintering at 1,500° C. and 7 GPa at high temperature and high pressure.
  • the prepared sintered body was ground and lapped. Specifically, the carbide body was ground by using a diamond wheel in a planar grinding machine, and the polycrystalline diamond layer was subjected to lapping and polishing using a diamond slurry in a lapping machine and a polishing machine.
  • a bonding tool as shown in FIG. 6 was manufactured through shape processing and hole processing. The manufactured bonding tool had a thickness of 25mm, and the polycrystalline diamond tip was 35(W)mm*5(L)mm*0.5(T)mm.
  • the room-temperature flatness of the bonding tool manufactured in Preparation Example 1 was measured by white-light scanning interferometry in an area of 34(W)mm*4(L)mm of the polycrystalline diamond tip.
  • the measurement method and conditions are as follows.
  • the room temperature flatness was 1.6 ⁇ m.
  • the high temperature (480° C.) flatness of the manufactured bonding tool was measured.
  • the high-temperature flatness was measured using a phase shifting interferometry (PSI) method for a polycrystalline diamond tip 34(W)mm*4(L)mm area.
  • PSI phase shifting interferometry
  • a polycrystalline diamond tip 34(W)mm*4(L)mm area was measured by phase shifting interferometry (PSI) for room temperature and high temperature (480° C.) flatness of the bonding tool manufactured in Preparation Example 1.
  • PSI phase shifting interferometry
  • the room temperature flatness was 1.6 ⁇ m and the high temperature flatness was 1.3 ⁇ m.
  • the bonding tool prepared in Preparation Example 1 was repeatedly tested by pressing at a high temperature.
  • the test conditions are as follows.
  • the room temperature flatness before the test, after 2 million tests, and after 4 million tests was measured by white-light scanning interferometry, and is shown in Table 2 below.
  • the present invention is applicable to a bonding tool used for mounting a semiconductor device.

Abstract

A bonding tool used for mounting a semiconductor device is disclosed. The present invention provides a bonding tool which is coupled to a holder of a bonding device so as to heat-compress a semiconductor device and a wire device, wherein the bonding tool comprises: a single cemented carbide body including a holder coupling part provided at one side thereof to be coupled to the holder of the bonding device and a heater insertion hole provided therein; and a polycrystalline diamond tip coupled to the other side of the cemented carbide body. According to the present invention, an integrated bonding tool, which minimizes a difference in a thermal expansion coefficient in a manufacturing process or a use environment, can be provided.

Description

초경 몸체에 일체화 된 다결정 다이아몬드 팁을 구비하는 고평탄 본딩 공구High-flat bonding tool with polycrystalline diamond tip integrated into a carbide body
본 발명은 본딩 공구에 관한 것으로, 보다 상세하게는 반도체 소자의 장착에 사용되는 본딩 공구에 관한 것이다.The present invention relates to a bonding tool, and more particularly, to a bonding tool used for mounting a semiconductor device.
TAB(Tape Automated Bonding)이나 COF(Chip on film) 기술에서 DDI(Distplay Driver IC)와 같은 반도체 소자와 필름상의 리드(lead)를 가열 압착하여 본딩하는 데 본딩 공구가 사용되고 있다.In Tape Automated Bonding (TAB) or Chip on Film (COF) technology, a bonding tool is used to bond a semiconductor device such as a Distplay Driver IC (DDI) and a lead on a film by thermocompression bonding.
도 1은 종래의 전형적인 본딩 공구의 일례를 모식적으로 도시한 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically an example of a conventional typical bonding tool.
도 1을 참조하면, 본딩 공구는 본딩 장치의 홀더에 결합되는 몸체부(12)와 상기 몸체부에 접합되는 선단부로 이루어진다. 이 때, 선단부는 공구면의 평탄도, 내마모성, 온도 분포의 균일성 등을 얻기 위하여 다이아몬드 예컨대 기상 합성 다이아몬드, 다이아몬드 단결정 또는 다이아몬드 소결체가 사용될 수 있다. Referring to FIG. 1 , the bonding tool includes a body portion 12 coupled to a holder of the bonding device and a tip portion joined to the body portion. At this time, for the tip portion, diamond, for example, vapor-phase synthetic diamond, diamond single crystal, or diamond sintered body may be used in order to obtain flatness of the tool surface, wear resistance, uniformity of temperature distribution, and the like.
일례로, 도 1에는 선단부로 CVD 다이아몬드(15)가 형성된 기판(14)이 사용되고 있다. 이 때, 기판(14)은 솔더(또는 접합재)를 개재하여 솔더링 또는 브레이징 등의 방식으로 몸체(12)에 결합된다. For example, in FIG. 1 , a substrate 14 having a CVD diamond 15 formed thereon is used. At this time, the substrate 14 is coupled to the body 12 by soldering or brazing via soldering (or bonding material).
한편, 상기 몸체(12)로는 몰리브덴, 초경합금, 니켈 베이스 합금, 텅스텐 또는 텅스텐 합금, 철-니켈 코발트 합금, 스테인레스강, 철-니켈 합금, 티탄 또는 티탄 합금 등으로 만들어진 금속재가 사용된다. Meanwhile, as the body 12 , a metal material made of molybdenum, cemented carbide, nickel base alloy, tungsten or tungsten alloy, iron-nickel cobalt alloy, stainless steel, iron-nickel alloy, titanium or titanium alloy, etc. is used.
이와 같이 종래의 본딩 공구에는 몸체, 솔더(또는 접합재), 기판 및 다이아몬드라는 이종의 소재들이 사용되고 있다. 이와 같은 이종 소재들은 상이한 열팽창율을 가지므로, 고온의 제조 공정 또는 고온의 사용 환경(400~500℃)에서 뒤틀림이나 휨 등의 열변형이 발생하며, 이러한 열변형으로 인해 본딩 공구의 팁은 요구되는 평탄도를 유지할 수 없게 되는 문제점이 있다. As described above, heterogeneous materials such as a body, a solder (or bonding material), a substrate, and a diamond are used in a conventional bonding tool. Since these dissimilar materials have different coefficients of thermal expansion, thermal deformation such as distortion or warpage occurs in a high-temperature manufacturing process or in a high-temperature use environment (400~500℃), and due to such thermal deformation, the tip of the bonding tool is required There is a problem in that the flatness cannot be maintained.
이러한 열변형으로 인한 평탄도 문제는 대면적의 다이아몬드 팁을 갖는 본딩 공구의 제조에 실질적인 장애가 되고 있으며, 특히 고온 환경에서 사용되는 열압착 방식의 본딩 공구는 많은 수의 범프를 동시에 가열 압착하기 위한 평탄도를 확보하기 어렵게 된다. The flatness problem due to such thermal deformation is a practical obstacle to the manufacture of a bonding tool having a large-area diamond tip. It becomes difficult to obtain
한편, 본딩 공구의 몸체와 팁의 결합 시 솔더를 대신하여 볼트 등의 결합 기구를 사용하는 경우도 있으나, 이 때에도 마찬가지로 볼트 등의 이종의 소재의 사용으로 인해 열변형이 불가피하게 발생하게 된다.On the other hand, there are cases in which a coupling mechanism such as a bolt is used instead of a solder when the body and the tip of the bonding tool are combined.
상기 종래 기술의 문제점을 해결하기 위하여 본 발명은 제조 공정 또는 사용 환경에서 열팽창율차를 최소화 하기 위한 일체형 본딩 공구를 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art, an object of the present invention is to provide an integrated bonding tool for minimizing a difference in thermal expansion coefficient in a manufacturing process or a use environment.
또한, 본 발명은 일체형으로 제조 및 가공이 용이하며 가공에 의해 높은 평탄도의 구현이 가능한 본딩 공구를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a bonding tool that is easy to manufacture and process in one piece and can achieve high flatness by processing.
또한, 본 발명은 고온 사용 환경에서도 높은 평탄도를 갖는 본딩 공구를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a bonding tool having high flatness even in a high-temperature use environment.
또한, 본 발명은 제조 공정 또는 사용 환경의 고온에서 열변형을 억제할 수 있는 본딩 공구를 제공하는 것을 목적으로 한다. Another object of the present invention is to provide a bonding tool capable of suppressing thermal deformation at a high temperature in a manufacturing process or a use environment.
또한, 본 발명은 대면적의 다이아몬드 팁을 갖는 본딩 공구를 제공하는 것을 목적으로 한다. Another object of the present invention is to provide a bonding tool having a large-area diamond tip.
또한, 본 발명은 전술한 본딩 공구의 제조에 적합한 제조 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a manufacturing method suitable for manufacturing the above-described bonding tool.
상기 기술적 과제를 달성하기 위하여 본 발명은, 반도체 소자와 배선 소자를 열압착하기 위하여 본딩 장치의 홀더에 결합하는 본딩 공구에 있어서, 상기 본딩 공구는 일측에 상기 본딩 장치의 홀더와 결합하기 위한 홀더 결합부를 구비하고, 내측에 히터 삽입홀을 구비하는 단일의 초경 몸체; 및 상기 초경 몸체의 타측에 결합된 다결정 다이아몬드 팁을 구비하는 것을 특징으로 하는 본딩 공구를 제공한다. In order to achieve the above technical object, the present invention provides a bonding tool for coupling to a holder of a bonding device for thermocompression bonding a semiconductor device and a wiring device, wherein the bonding tool is coupled to a holder for coupling with the holder of the bonding device on one side. a single carbide body having a portion and a heater insertion hole therein; And it provides a bonding tool comprising a polycrystalline diamond tip coupled to the other side of the carbide body.
본 발명에서 상기 초경 몸체는 무접합 구조를 갖는 것이 바람직하다. In the present invention, the cemented carbide body preferably has a non-bonding structure.
또한, 본 발명에서 상기 다결정 다이아몬드 팁은 고온고압 소결에 의해 상기 초경 몸체에 결합되는 것이 바람직하다. 이 때, 상기 다결정 다이아몬드 팁은 상기 초경 몸체 내의 금속 결합재의 확산에 의해 결합될 수 있다. In addition, in the present invention, the polycrystalline diamond tip is preferably coupled to the cemented carbide body by high-temperature and high-pressure sintering. At this time, the polycrystalline diamond tip may be coupled by diffusion of the metal binder in the carbide body.
또한, 본 발명에서 상기 초경 몸체의 타측에는 상기 다결정 다이아몬드 팁의 장착을 위한 돌출부를 구비할 수 있다. 이 때, 상기 돌출부는 초경 몸체 표면을 가로질러 연장되는 밴드 형상일 수 있다. In addition, in the present invention, the other side of the cemented carbide body may be provided with a protrusion for mounting the polycrystalline diamond tip. At this time, the protrusion may be in the shape of a band extending across the surface of the carbide body.
본 발명에서 상기 본딩 공구는 상기 다결정 다이아몬드 팁의 길이 25mm 이상에서 2㎛ 이하의 상온 및 고온 평탄도를 갖는 것이 바람직하다.In the present invention, the bonding tool preferably has room temperature and high temperature flatness of 2 μm or less at a length of 25 mm or more of the polycrystalline diamond tip.
상기 다른 기술적 과제를 달성하기 위하여 본 발명은, 반도체 소자와 배선 소자를 열압착하기 위하여 본딩 장치의 홀더에 결합하는 본딩 공구의 제조 방법에 있어서, 초경 모재 상에 다이아몬드 분말 성형체를 적층하고 고온고압 소결하여 초경 모재와 다결정 다이아몬드층을 포함하는 적층 구조의 소결체를 제조하는 단계; 상기 소결체를 평탄화하는 단계; 및 상기 소결체를 가공하는 단계를 포함하고, 상기 가공 단계는 상기 소결체의 외형을 가공하는 단계; 및 상기 소결체를 홀 가공하는 단계를 포함하는 것을 특징으로 하는 본딩 공구의 제조 방법을 제공한다.In order to achieve the above other technical problem, the present invention provides a method for manufacturing a bonding tool for bonding a semiconductor element and a wiring element to a holder of a bonding apparatus for thermocompression bonding, laminating a diamond powder compact on a cemented carbide base material and sintering at high temperature and high pressure to prepare a sintered body having a laminate structure including a cemented carbide base material and a polycrystalline diamond layer; planarizing the sintered body; and processing the sintered body, wherein the processing step includes processing an outer shape of the sintered body; And it provides a method of manufacturing a bonding tool comprising the step of processing the hole in the sintered body.
본 발명에서 상기 다이아몬드 분말 성형체는 금속 결합재를 포함하지 않는 것이 바람직하다. In the present invention, the diamond powder compact preferably does not include a metal binder.
이 때, 상기 가공 단계는 다결정 다이아몬드층을 가공하여 다결정 다이아몬드 팁을 형성하는 단계를 포함하고, 상기 다결정 다이아몬드 팁은 초경 몸체 상에서 상기 초경 몸체 표면을 가로질러 연장되는 밴드 형상일 수 있다. In this case, the processing step may include processing the polycrystalline diamond layer to form a polycrystalline diamond tip, and the polycrystalline diamond tip may have a band shape extending across the surface of the cemented carbide body on the cemented carbide body.
본 발명에서 상기 가공 단계는 방전 가공을 포함하거나 레이저 가공을 포함할 수 있다. In the present invention, the processing step may include electric discharge machining or laser machining.
본 발명에서 상기 고온고압 소결 단계는 1300~1700℃의 온도 및 5~10 GPa의 압력에서 수행되는 것이 바람직하다.In the present invention, the high-temperature and high-pressure sintering step is preferably performed at a temperature of 1300-1700° C. and a pressure of 5-10 GPa.
본 발명에 따르면, 제조 공정 또는 사용 환경에서 열팽창율차를 최소화 하는 일체형 본딩 공구를 제공할 수 있게 된다. 또한, 본 발명은 일체형으로 제조 및 가공이 용이하며 가공에 의해 높은 평탄도의 구현이 가능한 본딩 공구를 제공할 수 있게 된다. 또한, 본 발명은 제조 공정 또는 사용 환경의 고온에서 열변형을 억제함으로써 고온 환경에서도 높은 평탄도를 나타낼 수 있다. 이에 따라, 본 발명은 대면적의 다이아몬드 팁을 갖는 본딩 공구를 제공할 수 있게 된다.According to the present invention, it is possible to provide an integrated bonding tool that minimizes the difference in the coefficient of thermal expansion in the manufacturing process or the use environment. In addition, the present invention can provide a bonding tool that is easy to manufacture and process in one piece, and can achieve high flatness by processing. In addition, the present invention can exhibit high flatness even in a high-temperature environment by suppressing thermal deformation at a high temperature in a manufacturing process or a use environment. Accordingly, the present invention can provide a bonding tool having a large-area diamond tip.
도 1은 종래의 전형적인 본딩 공구의 일례를 모식적으로 도시한 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically an example of a conventional typical bonding tool.
도 2a 및 도 2b는 각각 본 발명의 실시예에 따른 본딩 공구의 사시도 및 저면 사시도이다. 2A and 2B are a perspective view and a bottom perspective view of a bonding tool according to an embodiment of the present invention, respectively.
도 3은 본 발명의 일 실시예에 따른 본딩 공구의 사용 예를 설명하기 위한 도면이다.3 is a view for explaining an example of using a bonding tool according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 본딩 공구의 제조 방법을 모식적으로 나타낸 절차도이다.4 is a flowchart schematically illustrating a method of manufacturing a bonding tool according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따라 제조된 소결체를 평탄 가공한 후에 촬영한 사진이다.5 is a photograph taken after flat processing of the sintered body manufactured according to an embodiment of the present invention.
도 6은 소결 및 가공 공정에 따라 제조된 본 발명의 본딩 공구를 촬영한 사진이다.6 is a photograph taken of the bonding tool of the present invention manufactured according to the sintering and machining process.
이하 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상술하다. Hereinafter, the present invention will be described in detail by describing preferred embodiments of the present invention with reference to the drawings.
도 2a 및 도 2b는 각각 본 발명의 실시예에 따른 사시도 및 저면 사시도이다. 2A and 2B are a perspective view and a bottom perspective view, respectively, according to an embodiment of the present invention.
도 2a 및 도 2b를 참조하면, 본딩 공구(100)는 초경 몸체(110) 및 다결정 다이아몬드 팁(120)을 포함하고 있다.2A and 2B , the bonding tool 100 includes a carbide body 110 and a polycrystalline diamond tip 120 .
상기 초경 몸체(110)는 도시된 바와 같이 육면체 형상의 윤곽을 가지고 있으나, 본 발명은 이에 한정되지 않는다. The carbide body 110 has a hexahedral outline as shown, but the present invention is not limited thereto.
상기 초경 몸체(110)의 일측에는 다결정 다이아몬드 팁(120)이 구비되어 있는데, 상기 팁(120)의 장착을 위해 상기 초경 몸체의 상면 일부가 돌출되어 돌출부(118)를 형성하고 있다. 예시적으로 상기 돌출부(118)는 상기 팁(120)의 메사 구조를 이루면서 길이 방향으로 연장되는 밴드 형태이다. 본 발명에서 상기 팁의 형상은 예시적인 것으로, 반도체 소자의 범프 배열 형상을 추종하는 형상일 수 있다. 또한, 본 발명의 본딩 공구에는 도시된 밴드 형태의 히터가 2열 이상 배열될 수 있음은 물론이다. A polycrystalline diamond tip 120 is provided on one side of the carbide body 110 , and a portion of the upper surface of the carbide body protrudes for mounting the tip 120 to form a protrusion 118 . Exemplarily, the protrusion 118 has a band shape extending in the longitudinal direction while forming the mesa structure of the tip 120 . In the present invention, the shape of the tip is exemplary, and may be a shape that follows the bump arrangement shape of the semiconductor device. In addition, it goes without saying that two or more rows of band-shaped heaters may be arranged in the bonding tool of the present invention.
본 발명에 따르면, 본딩 공구는 본딩 공구는 다결정 다이아몬드 팁의 상온 평탄도 또는 고온 평탄도는 팁 길이 25mm, 30mm, 또는 35mm 영역 또는 그 이상의 영역에서 2㎛ 이하의 상온 평탄도 및 고온 평탄도를 갖거나 팁 면적 135m2 또는 그 이상의 영역에서 2㎛ 이하의 상온 평탄도 및 고온 평탄도를 갖는 것이 바람직하다. 본 발명에서 다결정 다이아몬드 팁의 표면은 볼록하거나 오목한 형상을 가질 수 있다. 바람직하게는, 다결정 다이아몬드 팁의 표면은 팁 양단부에서의 반도체 소자 범프(bump)와 필름 상의 리드(lead) 회로 미연결(bump open)을 방지하기 위하여 고온에서 오목한 형상을 갖는 것이 좋다. According to the present invention, the bonding tool has room temperature flatness or high temperature flatness of the polycrystalline diamond tip of 2 μm or less in the area of 25 mm, 30 mm, or 35 mm tip length or more. Or, it is preferable to have room temperature flatness and high temperature flatness of 2 μm or less in an area of 135 m 2 or more with a tip area. In the present invention, the surface of the polycrystalline diamond tip may have a convex or concave shape. Preferably, the surface of the polycrystalline diamond tip has a concave shape at a high temperature to prevent bump open of the semiconductor element at both ends of the tip and the lead circuit on the film.
이 때, 고온 평탄도는 480℃의 온도에서 측정된 값을 기준으로 하며, 상기 평탄도는 백색광 주사 간섭법(WSI) 또는 위상 천이 간섭법(PSI)의 어느 하나에 의해 측정될 수 있다. 바람직하게는 상기 평탄도는 백색광 주사 간섭법에 의해 측정될 수 있다. 또한, 본 발명에서 상기 본딩 공구의 상온 및 고온 평탄도는 예컨대 1.5㎛ 이상의 값을 가질 수 있다. In this case, the high-temperature flatness is based on a value measured at a temperature of 480°C, and the flatness may be measured by either white light scanning interferometry (WSI) or phase shift interferometry (PSI). Preferably, the flatness may be measured by white light scanning interferometry. In addition, in the present invention, room temperature and high temperature flatness of the bonding tool may have a value of, for example, 1.5 μm or more.
상기 초경 몸체(110)의 내측 즉 중간부에는 팁(120)과 평행하게 배열된 히터 삽입홀(112A, 112B)가 구비되어 있고, 상기 히터 삽입홀(112A, 112B)과 팁 사이에 온도센서 삽입홀(113A, 113B)이 구비된다. 상기 삽입홀(112A, 112B, 113A, 113B)에는 각각 히터(도시하지 않음) 및 열전대와 같은 온도센서(도시하지 않음)가 삽입되어 상기 본딩 공구의 온도 제어에 사용된다. Heater insertion holes 112A and 112B arranged parallel to the tip 120 are provided on the inner side of the carbide body 110, that is, in the middle, and a temperature sensor is inserted between the heater insertion holes 112A and 112B and the tip. Holes 113A and 113B are provided. A heater (not shown) and a temperature sensor (not shown) such as a thermocouple are inserted into the insertion holes 112A, 112B, 113A, and 113B, respectively, and are used to control the temperature of the bonding tool.
한편, 상기 초경 몸체(110)의 타측에는 본딩 장치의 홀더(도시하지 않음)로의 장착을 위한 결합 기구로서 체결부(115A, 115B)가 구비되어 있다. 상기 체결부(115A, 115B)는 도시된 바와 같이 나사홀을 구비하여 볼트 등의 수단에 의해 상기 홀더에 체결될 수 있다. 본 발명에서 상기 체결부(115A, 115B)는 초경 몸체 측방으로 돌출되어 있으나, 본 발명은 이에 한정되지 않고 상기 체결부의 형상은 다양하게 구현될 수 있음은 물론이다. On the other hand, the other side of the carbide body 110 is provided with fastening parts (115A, 115B) as a coupling mechanism for mounting to a holder (not shown) of the bonding device. The fastening parts 115A and 115B may have screw holes as shown and be fastened to the holder by means such as bolts. In the present invention, the fastening parts (115A, 115B) protrude to the side of the carbide body, but the present invention is not limited thereto, and the shape of the fastening part may be implemented in various ways.
또한, 상기 초경 몸체(110)의 내측에는 진공 홀(114)이 구비될 수 있다. 상기 진공 홀(114)은 상기 초경 몸체(110)의 팁(120)에서 초경 몸체를 관통하는 유로를 형성하고 있다. 이 진공 홀(114)은 상기 팁(120)에 접촉하는 드라이버 IC와 같은 반도체 소자를 진공 흡착하게 한다. In addition, a vacuum hole 114 may be provided inside the cemented carbide body 110 . The vacuum hole 114 forms a flow path passing through the carbide body at the tip 120 of the carbide body 110 . The vacuum hole 114 allows a semiconductor device such as a driver IC in contact with the tip 120 to be vacuum-adsorbed.
그 밖에 초경 몸체에는 홀더 고정 위치를 설정하기 위한 위치 고정홀(116)과 같은 추가적인 홀들이 형성될 수 있다. In addition, additional holes such as a position fixing hole 116 for setting a holder fixing position may be formed in the carbide body.
본 발명의 본딩 공구에서 초경 몸체(110)는 단일 콤포넌트로 구성된다. 여기서 '단일'이란 동종 또는 이종인 둘 이상의 컴포넌트가 화학적으로 결합하거나 기계적으로 결합하지 않았다는 것을 의미한다. 이것은 도 1과 관련하여 설명한 종래의 본딩 공구가 몸체(12)와 기판(14)이 접합에 의해 형성되어 단일 콤포넌트가 아닌 것과 비교된다. 이에 대하여, 후술하는 바와 같이, 본 발명의 초경 몸체(110)는 균질한 하나의 초경 부재를 가공하여 얻어진다. In the bonding tool of the present invention, the carbide body 110 is composed of a single component. Here, 'single' means that two or more components, either homogeneous or heterogeneous, are chemically bonded or not mechanically bonded. This is compared to the conventional bonding tool described with reference to FIG. 1, wherein the body 12 and the substrate 14 are formed by bonding and are not a single component. In contrast, as will be described later, the cemented carbide body 110 of the present invention is obtained by processing a single homogeneous cemented carbide member.
본 발명에서 상기 다결정 다이아몬드 팁(120)은 다결정 다이아몬드와 금속 결합재를 포함하는 소결체이다. 본 발명의 바람직한 실시예에 따르면, 상기 다결정 다이아몬드 팁(120)의 금속 결합재는 초경 몸체(110)로부터 유래될 수 있다. 더욱 바람직하게는 상기 다결정 다이아몬드 팁(120)은 별도의 결합재를 사용하지 않고 소결되어 일체화 되는 것이 바람직하다. 이에 대해서는 후술한다.In the present invention, the polycrystalline diamond tip 120 is a sintered body including polycrystalline diamond and a metal binder. According to a preferred embodiment of the present invention, the metal binder of the polycrystalline diamond tip 120 may be derived from the cemented carbide body 110 . More preferably, the polycrystalline diamond tip 120 is sintered and integrated without using a separate binder. This will be described later.
도 3은 본 발명의 본딩 공구의 사용 예를 설명하기 위한 도면이다.3 is a view for explaining an example of using the bonding tool of the present invention.
도 3을 참조하면, 본딩 공구(100)가 본딩 장치(도시하지 않음)의 홀더(200)에 장착된다. 상기 본딩 공구(100) 내부에는 히터가 탑재된다.Referring to FIG. 3 , a bonding tool 100 is mounted on a holder 200 of a bonding apparatus (not shown). A heater is mounted inside the bonding tool 100 .
상기 본딩 공구(100)의 다결정 다이아몬드 팁(120)은 예컨대 디스플레이 드라이버 IC(이하 'DDI'라 함; 10)와 같은 반도체 소자를 진공 흡착하고 있다. 상기 본딩 장치는 상기 본딩 공구(100)를 이송하여 리드(lead)와 같은 금속 배선이 형성된 필름(20) 상에 정렬한다. The polycrystalline diamond tip 120 of the bonding tool 100 vacuum-adsorbs a semiconductor device such as, for example, a display driver IC (hereinafter referred to as 'DDI'; 10). The bonding device transports the bonding tool 100 and aligns it on the film 20 on which metal wiring such as a lead is formed.
본딩 장치의 구동에 따라 본딩 공구(100)에 내장된 히터는 가열되며, 상기 장치의 홀더는 상기 본딩 공구(100)를 가압함으로써 상기 DDI의 범프(12)를 필름 상의 금속 배선(22)에 본딩한다. The heater built into the bonding tool 100 is heated according to the driving of the bonding device, and the holder of the device presses the bonding tool 100 to bond the bump 12 of the DDI to the metal wiring 22 on the film. do.
상술한 본딩 공구의 초경 모재는 대략 400~500℃의 온도로 가열된다. 본딩 공구의 가열 상태에서 본딩 공구를 구성하는 각 콤포넌트인 초경 몸체와 다결정 다이아몬드 팁(120)은 각각 가열되는데, 이 때 각 콤포넌트의 열팽창차로 인해 열변형이 발생한다. 이 과정에서 발생하는 다결정 다이아몬드 팁에 발생하는 열변형은 크게 두 성분으로 구분할 수 있는데, 하나는 가압 축에 평행한 방향의 변형 성분(①)이고, 다른 하나는 가압 축에 수직한 방향의 변형 성분(②)이다. The cemented carbide base material of the above-described bonding tool is heated to a temperature of about 400 ~ 500 ℃. When the bonding tool is heated, the cemented carbide body and the polycrystalline diamond tip 120, which are each component constituting the bonding tool, are heated, respectively. At this time, thermal deformation occurs due to the difference in thermal expansion of each component. The thermal strain generated in the polycrystalline diamond tip generated in this process can be divided into two components. One is a deformation component in a direction parallel to the pressing axis (①), and the other is a deformation component in a direction perpendicular to the pressing axis. It is (②).
두 성분 중 전자는 다결정 다이아몬드 팁의 접촉면 전체에 균일하게 작용하는 반면, 후자는 그렇지 않다. 초경 모재와 다결정 다이아몬드 팁(120)의 열팽창계수의 차이로 인해 가열 시 가압 축에 수직한 방향의 열변형이 발생되며 이에 따라 다결정 다이아몬드 팁은 휨 변형(warpage)을 일으킨다. 이러한 휨 변형은 다결정 다이아몬드 팁의 평탄도에 영향을 미치게 된다. Of the two components, the former acts uniformly across the contact surface of the polycrystalline diamond tip, whereas the latter does not. Due to the difference in the coefficient of thermal expansion between the cemented carbide base material and the polycrystalline diamond tip 120 , thermal deformation in a direction perpendicular to the pressure axis occurs during heating, and accordingly, the polycrystalline diamond tip causes warpage. This bending deformation affects the flatness of the polycrystalline diamond tip.
본 발명에 따르면, 둘 이상의 콤포넌트를 접합 또는 기계적 결합하여 본딩 몸체를 제조하던 종래와 달리 단일 콤포넌트의 초경 몸체를 사용함으로써 초경 몸체에서 발생하는 휨 변형을 억제하고 있다. 이에 더하여, 다결정 다이아몬드 팁 내의 금속 결합재를 최소화 함으로써 초경 몸체와 다결정 다이아몬드 팁의 계면이 이종(異種) 콤포넌트로 작용하지 않도록 하고 있다. According to the present invention, the bending deformation occurring in the carbide body is suppressed by using a carbide body of a single component, unlike the conventional method of manufacturing a bonding body by bonding or mechanically combining two or more components. In addition, by minimizing the metal binder in the polycrystalline diamond tip, the interface between the cemented carbide body and the polycrystalline diamond tip does not act as a heterogeneous component.
이하에서는 본 발명의 본딩 공구의 제조 방법을 설명한다. Hereinafter, a method of manufacturing the bonding tool of the present invention will be described.
도 4는 본 발명의 실시예에 따른 본딩 공구의 제조 방법을 모식적으로 나타낸 절차도이다. 4 is a flowchart schematically illustrating a method of manufacturing a bonding tool according to an embodiment of the present invention.
도 4를 참조하면, 다아이몬드 분말 성형체를 제조한다(S110). 다이아몬드 분말 성형체는 다이아몬드 분말과 유기 결합재를 혼합하여 슬러리를 제조한 후 성형 및 건조하여 제조될 수 있다. 예시적으로 상기 다이아몬드 분말 성형체는 시트 형태로 성형될 수 있다. 이 때, 다이아몬드 분말은 입경이 0.5 ~ 50㎛ 범위의 것을 사용하는 것이 바람직하다. 또한, 상기 다이아몬드 분말 성형체는 금속 결합재를 실질적으로 함유하지 않는다.Referring to FIG. 4 , a diamond powder compact is manufactured ( S110 ). The diamond powder compact may be manufactured by mixing diamond powder and an organic binder to prepare a slurry, then molding and drying the slurry. Illustratively, the diamond powder compact may be formed in a sheet form. In this case, it is preferable to use a diamond powder having a particle diameter in the range of 0.5 to 50 μm. In addition, the diamond powder compact contains substantially no metal binder.
상기 다이아몬드 분말 성형체를 초경 모재 상에 적층한 후 고온고압(HTHP) 소결한다(S120, S130). After the diamond powder compact is laminated on a cemented carbide base material, high temperature and high pressure (HTHP) sintering is performed (S120, S130).
이 과정은 성형체를 2000℃이상의 고융점재료(예컨대 Ta, Mo, Nb 등)로 이루어진 내화물 도가니에 장입하여 다이아몬드가 안정한 상태로 존재하는 고온고압하에서 수행된다. 이 때, 초경 모재 내의 금속 결합재(예컨대 Co)는 소결 온도에서 용융하여 액상을 형성하는데, 소결 과정에서 가해지는 압력에 의해 초경 모재에서 금속 액상이 용출(squeeze out)되어 상기 성형체의 다이아몬드 분말 사이의 기공으로 침투(infiltration)한다. 액상의 침투에 의해 다이아몬드 분말 성형체는 액상 소결된다. 본 발명에서 고온고압 소결은 1300~1700℃, 5~10GPa의 온도 및 압력 조건에서 수행될 수 있다. This process is carried out under high temperature and pressure in which the diamond exists in a stable state by charging the compact into a refractory crucible made of a high-melting-point material (eg, Ta, Mo, Nb, etc.) of 2000°C or higher. At this time, the metal binder (for example, Co) in the cemented carbide base material is melted at the sintering temperature to form a liquid phase, and the metal liquid phase is squeezed out from the cemented carbide base material by the pressure applied during the sintering process to form a liquid phase between the diamond powder of the molded body. infiltration into the pores. The diamond powder compact is liquid-phase sintered by liquid-phase penetration. In the present invention, high-temperature and high-pressure sintering may be performed at a temperature and pressure of 1300-1700° C. and 5-10 GPa.
이어서 제조된 소결체를 가공한다(S140). 본 발명에서 본딩 공구를 얻기 위한 소결체 가공 과정은 다음과 같다. 다만, 이하에서 설명되는 각 가공 과정이 반드시 수행되어야 하는 것은 아니며, 각 가공 과정의 순서는 변경될 수 있음은 물론이다. Then, the manufactured sintered body is processed (S140). The sintered compact processing process for obtaining a bonding tool in the present invention is as follows. However, each processing process described below does not necessarily have to be performed, and it goes without saying that the order of each processing process may be changed.
① 소결체 그라인딩 및 랩핑① Sintered compact grinding and lapping
소결체의 상면 및/또는 하면을 그라인딩 및 랩핑한다. 본 발명에서는 다결정 다이아몬드층과 하부의 초경 모재가 소결에 의해 일체화되어 있으므로, 랩핑 및 그라인딩에 의해 전체 소결체의 평탄도를 향상시킬 수 있게 된다. The upper and/or lower surfaces of the sintered body are ground and lapped. In the present invention, since the polycrystalline diamond layer and the underlying cemented carbide base material are integrated by sintering, the flatness of the entire sintered body can be improved by lapping and grinding.
도 5는 본 발명의 일실시예에 따라 제조된 소결체를 평탄 가공한 후에 촬영한 사진이다. 사진의 소결체의 직경은 대략 60mm이고, 두께는 약 20~30mm이며, 다결정 다이아몬드 팁의 두께는 0.5 mm이다. 본 발명에 따르면, 최대 직경 60mm, 두께 20~30mm인 대면적의 본딩 공구의 제조가 가능하게 된다. 5 is a photograph taken after flat processing of the sintered body manufactured according to an embodiment of the present invention. The diameter of the sintered body in the picture is about 60 mm, the thickness is about 20-30 mm, and the thickness of the polycrystalline diamond tip is 0.5 mm. According to the present invention, it is possible to manufacture a large-area bonding tool having a maximum diameter of 60 mm and a thickness of 20 to 30 mm.
② 형상 가공② Shape processing
도 2a 및 도 2b와 같은 사전 결정된 본딩 공구의 형상에 따라 소결체를 가공한다. 이 가공은 예컨대 와이어 컷 방전가공(WEDM)에 의해 수행될 수 있다. The sintered body is machined according to the predetermined shape of the bonding tool as shown in FIGS. 2A and 2B . This machining can be performed, for example, by wire cut electric discharge machining (WEDM).
③ 홀 가공③ Hole processing
방전 가공에 의해 초경부에 도 2a 및 도 2b의 홀(112A, 112B, 113A, 113B, 114)을 가공하고, 그 밖에 탭 가공을 수행한다. The holes 112A, 112B, 113A, 113B, and 114 of FIGS. 2A and 2B are machined in the carbide part by electric discharge machining, and other tap machining is performed.
레이저 가공에 의해 다결정 다이아몬드부에 진공 홀 가공, 챔퍼 가공 등을 수행한다. Vacuum hole processing, chamfer processing, etc. are performed on the polycrystalline diamond part by laser processing.
④ 후처리 가공④ Post-processing
연마에 의해 방전 가공 흔을 제거하고, 코팅한다. 코팅은 물리적 증착법인 PVD 코팅 공법을 사용하여 공구에 TiN, TiCN, TiAlN, AlTiN, AlCrN, CrN 또는 CrAlN을 코팅할 수 있다. The electric discharge machining marks are removed by polishing and coated. As for the coating, TiN, TiCN, TiAlN, AlTiN, AlCrN, CrN or CrAlN can be coated on the tool using the PVD coating method, which is a physical vapor deposition method.
도 6은 소결 및 가공 공정에 따라 제조된 본 발명의 본딩 공구를 촬영한 사진이다.6 is a photograph taken of the bonding tool of the present invention manufactured according to the sintering and machining process.
<제조예 1><Production Example 1>
입경 0.5~50㎛인 다아이몬드 분말 성형체와 WC-Co 초경 모재를 내화물 도가니에 장입하여 1,500℃, 7GPa에서 고온고압 소결하여 소결체를 제조하였다. A sintered body was prepared by charging a diamond powder compact with a particle diameter of 0.5-50 μm and a WC-Co cemented carbide base material into a refractory crucible and sintering at 1,500° C. and 7 GPa at high temperature and high pressure.
제조된 소결체를 그라인딩 및 랩핑하였다. 구체적으로, 초경 몸체를 평면 연삭기에서 다이아몬드 휠을 이용하여 연삭가공하고, 다결정 다이아몬드층을 래핑기와 폴리싱기에서 다이아몬드 슬러리를 이용하여 래핑 및 폴리싱 가공을 수행하였다. 형상 가공 및 홀 가공을 거쳐 도 6과 같은 본딩 공구를 제작하였다. 제작된 본딩 공구는 두께는 25mm이고, 다결정 다이아몬드 팁은 35(W)mm*5(L)mm*0.5(T)mm였다. The prepared sintered body was ground and lapped. Specifically, the carbide body was ground by using a diamond wheel in a planar grinding machine, and the polycrystalline diamond layer was subjected to lapping and polishing using a diamond slurry in a lapping machine and a polishing machine. A bonding tool as shown in FIG. 6 was manufactured through shape processing and hole processing. The manufactured bonding tool had a thickness of 25mm, and the polycrystalline diamond tip was 35(W)mm*5(L)mm*0.5(T)mm.
<시험예 1><Test Example 1>
제조예 1에서 제작된 본딩 공구의 상온 평탄도를 백색광 주사 간섭법(White-Light Scanning interferometry)으로 다결정 다이아몬드 팁 34(W)mm*4(L)mm 영역을 측정하였다. 측정 방법 및 조건은 다음과 같다. The room-temperature flatness of the bonding tool manufactured in Preparation Example 1 was measured by white-light scanning interferometry in an area of 34(W)mm*4(L)mm of the polycrystalline diamond tip. The measurement method and conditions are as follows.
- 측정 장치 : Bruker Alicona社 Alicona InfiniteFocusSL- Measuring device: Bruker Alicona Alicona InfiniteFocusSL
- 측정 표준 : ISO/TS 12781-1, 12781-2- Measurement standard: ISO/TS 12781-1, 12781-2
측정 결과, 상온 평탄도는 1.6㎛였다 As a result of the measurement, the room temperature flatness was 1.6 μm.
제작된 본딩 공구의 고온(480℃) 평탄도를 측정하였다. 고온 평탄도는 위상천이 간섭법(Phase shifting interferometry; PSI)으로 다결정 다이아몬드 팁 34(W)mm*4(L)mm 영역을 측정하였다. The high temperature (480° C.) flatness of the manufactured bonding tool was measured. The high-temperature flatness was measured using a phase shifting interferometry (PSI) method for a polycrystalline diamond tip 34(W)mm*4(L)mm area.
<시험예 2><Test Example 2>
제조예 1에서 제작된 본딩 공구의 상온 및 고온(480℃) 평탄도를 위상천이 간섭법(Phase shifting interferometry; PSI)으로 다결정 다이아몬드 팁 34(W)mm*4(L)mm 영역을 측정하였다.A polycrystalline diamond tip 34(W)mm*4(L)mm area was measured by phase shifting interferometry (PSI) for room temperature and high temperature (480° C.) flatness of the bonding tool manufactured in Preparation Example 1.
측정 결과, 상온 평탄도는 1.6㎛, 고온 평탄도는 1.3㎛이었다.As a result of the measurement, the room temperature flatness was 1.6 µm and the high temperature flatness was 1.3 µm.
<시험예 3><Test Example 3>
제조예 1에서 제조된 본딩 공구를 고온에서 가압하여 반복 테스트하였다. 테스트 조건은 다음과 같다.The bonding tool prepared in Preparation Example 1 was repeatedly tested by pressing at a high temperature. The test conditions are as follows.
항목Item 테스트 조건test requirements
사용온도operating temperature 400℃ ~ 500℃400℃ ~ 500℃
사용압력working pressure 7~25kgf/cm2 7~25kgf/cm 2
1 사이클 시간 1 cycle time 2.3sec/회2.3sec/time
위 조건에 따라 테스트 전, 200만회 테스트 후, 400만후 테스트 후의 상온 평탄도를 백색광 주사 간섭법(White-Light Scanning interferometry)으로 측정하여, 아래 표 2에 나타내었다. According to the above conditions, the room temperature flatness before the test, after 2 million tests, and after 4 million tests was measured by white-light scanning interferometry, and is shown in Table 2 below.
구분division 상온 평탄도(㎛)Room temperature flatness (㎛)
테스트 전before test 1.6 1.6
200만회 테스트 후After 2 million tests 1.41.4
400만회 테스트 후After 4 million tests 1.81.8
이상 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명의 기술적 사상이 상술한 바람직한 실시예에 한정되는 것은 아니며, 특허청구범위에 구체화된 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양하게 구현될 수 있다.Although the preferred embodiment of the present invention has been described above, the technical spirit of the present invention is not limited to the above-described preferred embodiment, and can be implemented in various ways without departing from the technical spirit of the present invention embodied in the claims. have.
본 발명은 반도체 소자의 장착에 사용되는 본딩 공구에 적용 가능하다.The present invention is applicable to a bonding tool used for mounting a semiconductor device.

Claims (13)

  1. 반도체 소자와 배선 소자를 열압착하기 위하여 본딩 장치의 홀더에 결합하는 본딩 공구에 있어서,A bonding tool for bonding a semiconductor element and a wiring element to a holder of a bonding apparatus for thermocompression bonding, the bonding tool comprising:
    상기 본딩 공구는,The bonding tool is
    일측에 상기 본딩 장치의 홀더와 결합하기 위한 홀더 결합부를 구비하고, 내측에 히터 삽입홀을 구비하는 단일의 초경 몸체; 및A single cemented carbide body having a holder coupling part for coupling with the holder of the bonding device on one side, and having a heater insertion hole therein; and
    상기 초경 몸체의 타측에 결합된 다결정 다이아몬드 팁을 구비하는 것을 특징으로 하는 본딩 공구.A bonding tool comprising a polycrystalline diamond tip coupled to the other side of the carbide body.
  2. 제1항에 있어서,According to claim 1,
    상기 초경 몸체는 무접합 구조를 갖는 것을 특징으로 하는 본딩 공구.The carbide body is a bonding tool, characterized in that having a non-bonding structure.
  3. 제1항에 있어서,According to claim 1,
    상기 다결정 다이아몬드 팁은 고온고압 소결에 의해 상기 초경 몸체에 결합된 것을 특징으로 하는 본딩 공구.The polycrystalline diamond tip is a bonding tool, characterized in that bonded to the carbide body by high-temperature and high-pressure sintering.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 다결정 다이아몬드 팁은 상기 초경 몸체 내의 금속의 확산에 의해 결합된 것을 특징으로 하는 본딩 공구.The polycrystalline diamond tip is bonded by diffusion of metal in the carbide body.
  5. 제1항에 있어서,The method of claim 1,
    상기 초경 몸체는 상기 타측에는 상기 다결정 다이아몬드 팁의 장착을 위한 돌출부를 구비하는 것을 특징으로 하는 본딩 공구.The cemented carbide body is a bonding tool, characterized in that provided with a protrusion for mounting the polycrystalline diamond tip on the other side.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 돌출부는 초경 몸체 표면을 가로질러 연장되는 밴드 형상인 것을 특징으로 하는 본딩 공구.wherein the protrusion is in the shape of a band extending across the surface of the carbide body.
  7. 제1항에 있어서,According to claim 1,
    상기 본딩 공구는 상기 다결정 다이아몬드 팁의 길이 25mm 이상에서 2㎛ 이하의 평탄도를 갖는 것을 특징으로 하는 본딩 공구.The bonding tool is a bonding tool, characterized in that it has a flatness of 2㎛ or less at a length of 25mm or more of the polycrystalline diamond tip.
  8. 반도체 소자와 배선 소자를 열압착하기 위하여 본딩 장치의 홀더에 결합하는 본딩 공구의 제조 방법에 있어서,A method of manufacturing a bonding tool for bonding a semiconductor element and a wiring element to a holder of a bonding apparatus for thermocompression bonding, the method comprising:
    초경 모재 상에 다이아몬드 분말을 적층하고 고온고압 소결하여 초경 모재와 다결정 다이아몬드층을 포함하는 적층 구조의 소결체를 제조하는 단계;Laminating diamond powder on a cemented carbide base material and sintering at high temperature and high pressure to prepare a sintered body having a laminate structure including a cemented carbide base material and a polycrystalline diamond layer;
    상기 소결체를 평탄화하는 단계; 및planarizing the sintered body; and
    상기 소결체를 가공하는 단계를 포함하고, Including processing the sintered body,
    상기 가공 단계는,The processing step is
    상기 소결체의 외형을 가공하는 단계; 및processing the outer shape of the sintered body; and
    상기 소결체를 홀 가공하는 단계를 포함하는 것을 특징으로 하는 본딩 공구의 제조 방법.Method of manufacturing a bonding tool comprising the step of hole processing the sintered body.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 다이아몬드 분말은 금속 결합재를 포함하지 않는 것을 특징으로 하는 본딩 공구의 제조 방법.The diamond powder manufacturing method of a bonding tool, characterized in that it does not contain a metal binder.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 가공 단계는 다결정 다이아몬드층을 가공하여 다결정 다이아몬드 팁을 형성하는 단계를 포함하고,The processing step comprises processing the polycrystalline diamond layer to form a polycrystalline diamond tip,
    상기 다결정 다이아몬드 팁은 초경 몸체 상에서 상기 초경 몸체 표면을 가로질러 연장되는 밴드 형상인 것을 특징으로 하는 본딩 공구의 제조 방법.wherein the polycrystalline diamond tip is in the shape of a band extending across the surface of the carbide body on the carbide body.
  11. 제8항에 있어서,9. The method of claim 8,
    상기 가공 단계는 방전 가공을 포함하는 것을 특징으로 하는 본딩 공구의 제조 방법.The machining step is a method of manufacturing a bonding tool, characterized in that it comprises electric discharge machining.
  12. 제8항에 있어서,9. The method of claim 8,
    상기 가공 단계는 레이저 가공을 포함하는 것을 특징으로 하는 본딩 공구의 제조 방법. The processing step is a method of manufacturing a bonding tool, characterized in that it comprises laser processing.
  13. 제8항에 있어서,9. The method of claim 8,
    상기 고온고압 소결 단계는 1300~1700℃의 온도 및 5~10GPa의 압력에서 수행되는 것을 특징으로 하는 본딩 공구의 제조 방법.The high-temperature and high-pressure sintering step is a method of manufacturing a bonding tool, characterized in that it is performed at a temperature of 1300 ~ 1700 ℃ and a pressure of 5 ~ 10 GPa.
PCT/KR2022/004144 2021-04-02 2022-03-24 Bonding tool having high flatness and provided with polycrystalline diamond tip integrated with cemented carbide body WO2022211370A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023532251A JP2023552133A (en) 2021-04-02 2022-03-24 High flat bonding tool with polycrystalline diamond tip integrated into carbide body
CN202280007096.7A CN116547092A (en) 2021-04-02 2022-03-24 High flatness bonding tool comprising polycrystalline diamond tips integrated into carbide bodies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0043129 2021-04-02
KR20210043129 2021-04-02
KR1020220029160A KR20220137536A (en) 2021-04-02 2022-03-08 Bonding Tool With High Flatness Comprising Polycrystalline Diamond Tip Unified On Top Of Carbide Body
KR10-2022-0029160 2022-03-08

Publications (1)

Publication Number Publication Date
WO2022211370A1 true WO2022211370A1 (en) 2022-10-06

Family

ID=83456501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004144 WO2022211370A1 (en) 2021-04-02 2022-03-24 Bonding tool having high flatness and provided with polycrystalline diamond tip integrated with cemented carbide body

Country Status (3)

Country Link
JP (1) JP2023552133A (en)
TW (1) TW202302250A (en)
WO (1) WO2022211370A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107129A (en) * 1994-10-05 1996-04-23 Sumitomo Electric Ind Ltd Bonding tool
US5653376A (en) * 1994-03-31 1997-08-05 Sumitomo Electric Industries, Inc. High strength bonding tool and a process for the production of the same
JPH11111777A (en) * 1997-10-03 1999-04-23 Kobe Steel Ltd Bonding tool
KR20020082786A (en) * 2001-04-25 2002-10-31 스미토모덴키고교가부시키가이샤 Bonding tool, bonding stage, tool head for bonding tool, and stage head for bonding stage
JP2013500389A (en) * 2009-07-24 2013-01-07 ダイヤモンド イノベイションズ インコーポレーテッド Metal-free supported polycrystalline diamond (PCD) and formation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653376A (en) * 1994-03-31 1997-08-05 Sumitomo Electric Industries, Inc. High strength bonding tool and a process for the production of the same
JPH08107129A (en) * 1994-10-05 1996-04-23 Sumitomo Electric Ind Ltd Bonding tool
JPH11111777A (en) * 1997-10-03 1999-04-23 Kobe Steel Ltd Bonding tool
KR20020082786A (en) * 2001-04-25 2002-10-31 스미토모덴키고교가부시키가이샤 Bonding tool, bonding stage, tool head for bonding tool, and stage head for bonding stage
JP2013500389A (en) * 2009-07-24 2013-01-07 ダイヤモンド イノベイションズ インコーポレーテッド Metal-free supported polycrystalline diamond (PCD) and formation method

Also Published As

Publication number Publication date
TW202302250A (en) 2023-01-16
JP2023552133A (en) 2023-12-14

Similar Documents

Publication Publication Date Title
US6272002B1 (en) Electrostatic holding apparatus and method of producing the same
US7416793B2 (en) Electrostatic chuck and manufacturing method for the same, and alumina sintered member and manufacturing method for the same
US6460482B1 (en) Gas shower unit for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
US6716304B2 (en) Wafer holder for semiconductor manufacturing apparatus, and method of manufacturing the wafer holder
EP1291903A2 (en) Workpiece holder for processing apparatus, and processing apparatus using the same
KR20010076379A (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus using the same
TW201426904A (en) Substrate support assembly having metal bonded protective layer
US7807010B2 (en) Method for producing an array for detecting electromagnetic radiation, especially infrared radiation
KR100553444B1 (en) Susceptors and the methods of manufacturing them
EP2973659A1 (en) Multiple zone heater
WO2022211370A1 (en) Bonding tool having high flatness and provided with polycrystalline diamond tip integrated with cemented carbide body
US6821381B1 (en) Tool for thermo-compression-bonding chips, and chip packaging device having the same
US6820795B2 (en) Joined article of a supporting member for a semiconductor wafer and a method of producing the same
JP3685962B2 (en) Susceptor and manufacturing method thereof
JP2001308165A (en) Susceptor and its manufacturing method
JP3746935B2 (en) Susceptor and manufacturing method thereof
JP3916366B2 (en) Chip thermocompression bonding tool and chip mounting apparatus including the same
US6650011B2 (en) Porous ceramic work stations for wire and die bonders
KR20220137536A (en) Bonding Tool With High Flatness Comprising Polycrystalline Diamond Tip Unified On Top Of Carbide Body
US20070253138A1 (en) Electrostatic chuck and manufacturing method thereof
US20230187258A1 (en) Stamp tool, transfer device, and element array manufacturing method
JP3597936B2 (en) Wafer holding device
CN116547092A (en) High flatness bonding tool comprising polycrystalline diamond tips integrated into carbide bodies
JP3718359B2 (en) Mounting method of ceramic substrate cap fixing ring
US6168971B1 (en) Method of assembling thin film jumper connectors to a substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007096.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023532251

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781489

Country of ref document: EP

Kind code of ref document: A1