WO2022210887A1 - Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus - Google Patents

Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus Download PDF

Info

Publication number
WO2022210887A1
WO2022210887A1 PCT/JP2022/016021 JP2022016021W WO2022210887A1 WO 2022210887 A1 WO2022210887 A1 WO 2022210887A1 JP 2022016021 W JP2022016021 W JP 2022016021W WO 2022210887 A1 WO2022210887 A1 WO 2022210887A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasonic probe
probe head
substrate
less
Prior art date
Application number
PCT/JP2022/016021
Other languages
French (fr)
Japanese (ja)
Inventor
真理 酒井
学 西脇
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Priority to JP2023511484A priority Critical patent/JPWO2022210887A1/ja
Publication of WO2022210887A1 publication Critical patent/WO2022210887A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present disclosure relates to an ultrasonic probe head, an ultrasonic probe, and an ultrasonic diagnostic apparatus.
  • An ultrasound diagnostic device is an inspection device that uses ultrasound to examine the inside of the body and structures.
  • ultrasonic waves are transmitted from the body surface to the inside of the body, from the inner surface of the circulatory system and organs to the inside of the body, and from the surface of the structure to the inside of the structure. and the presence or absence of defects, etc., and make a diagnosis. Since the displayed images appear to move in real time, it is possible to perform treatment while confirming the position of the lesion, to observe blood flow dynamics, etc., and because it is a non-invasive technique, it is widely used in the medical field. It is
  • linear type There are linear type, sector type, convex type, concave type, etc. for ultrasonic probes, and these types are selected according to the purpose of observation and the observation site.
  • the linear type is used for examination of tissues positioned shallow from the body surface
  • the convex type is used for examination of tissues positioned deep from the body surface.
  • Patent document 1 shows an example of conventional technology of a convex ultrasonic probe.
  • the ultrasonic element of such an ultrasonic probe is formed by cutting a piezoelectric ceramic sandwiched between electrodes into strips.
  • Patent Documents 2-4 disclose such ultrasonic probes. Further, for details of the MEMS for manufacturing this, reference can be made to Patent Documents 4 and 5, for example.
  • the substrate forming the ultrasonic element is a flat substrate such as a silicon substrate. is a linear ultrasonic probe.
  • the ultrasonic probes described in these documents have a problem of low reliability because the piezoelectric thin film composed of a very thin brittle material is broken when bent or subjected to impact.
  • the present disclosure provides a novel ultrasonic probe head that can realize not only linear and convex probes but also probes of various shapes and that is highly reliable.
  • the piezoelectric MEMS ultrasonic transducer includes an upper electrode, a piezoelectric thin film, and a lower electrode in this order, the upper electrode facing the flexible base and the lower electrode facing the substrate. 3.
  • ⁇ Aspect 4>> The piezoelectric MEMS ultrasonic transducers are arranged one-dimensionally or two-dimensionally, and in each of the ultrasonic element chips, the upper electrode and the lower electrode are connected to the ultrasonic element by upper wiring and lower wiring, respectively.
  • An ultrasonic probe comprising at least the ultrasonic probe head according to any one of aspects 1 to 7 and a head-shaped component forming a head shape of the ultrasonic probe head.
  • An ultrasonic diagnostic apparatus comprising at least the ultrasonic probe according to aspect 8, a processing unit that processes a signal from the ultrasonic probe, and a display device that converts the signal from the processing unit into an image and displays the image.
  • FIG. 1(a) shows a side view of an example ultrasonic probe head of the present disclosure
  • FIG. 1(b) shows a plan view of an example of the ultrasonic probe head of the present disclosure
  • FIG. (c) shows a bottom view of an exemplary ultrasound probe head of the present disclosure
  • FIG. 2 shows a plan view of an example of an ultrasonic element chip.
  • FIG. 3 shows a part of the A-A' cross-sectional view of the ultrasonic element chip of FIG.
  • FIG. 4 shows a part of the B-B' cross-sectional view of the ultrasonic element chip of FIG.
  • FIG. 5 illustrates a plan view of an embodiment in which a plurality of ultrasonic element chips are spaced apart on a flexible substrate.
  • FIGS. 6A and 6B illustrate embodiments of the positional relationship between the ultrasonic element chip and the flexible base material.
  • FIGS. 7(a) and (b) illustrate an embodiment in which the ultrasonic element chip is connected to a flexible printed circuit board.
  • FIG. 8 shows an example of the tip portion of the ultrasonic probe of the present disclosure, which is of convex type.
  • FIG. 9 shows a perspective view of another example of the tip portion of the ultrasonic probe of the present disclosure, which is of convex type.
  • FIGS. 10A and 10B show an example of switching the ultrasonic probe head of the present disclosure between a linear type and a convex type.
  • FIG. 11 illustrates a cross-sectional view of the distal portion of the ultrasound probe of the present disclosure.
  • FIG. 12 illustrates an ultrasound diagnostic apparatus of the present disclosure.
  • a plurality of ultrasonic element chips are arranged on a flexible substrate at intervals, and each of the plurality of ultrasonic element chips includes a plurality of piezoelectric MEMS ultrasonic waves.
  • a transducer is included on the substrate.
  • the present inventors have found that even when piezoelectric MEMS ultrasonic transducers are used, by arranging a plurality of ultrasonic element chips each including a plurality of piezoelectric MEMS ultrasonic transducers on a substrate on a flexible base material, , linear type, convex type, concave type, etc., but also various shapes of probes have been realized.
  • only one rigid ultrasonic element array substrate was used, and this was fixed and used as a linear type. By using it, it became possible to make the ultrasonic probe head into various shapes.
  • the ultrasonic probe can be used as a convex type, a linear type, a concave type, etc., and can be changed to a desired shape. became.
  • FIG. 1(a) shows a side view of an example ultrasonic probe head of the present disclosure
  • FIG. 1(b) shows a plan view of an example of the ultrasonic probe head of the present disclosure
  • FIG. (c) shows a bottom view of an exemplary ultrasound probe head of the present disclosure
  • the ultrasonic probe head 100 has a plurality of ultrasonic element chips 10 arranged on a flexible base material 20 at intervals, so that it can be bent into a convex shape. ing.
  • the ultrasonic probe head 100 of the present disclosure can be a polygon whose cross-section is made up of straight lines, or can be a polyhedron made up of planes by the ultrasonic element chip 10, and can be curved or curved at will.
  • a curved surface can be constructed.
  • FIG. 1(b) shows a plan view of the ultrasonic probe head 100 viewed from the flexible base 20 side (upper side) in FIG. 1(a). Apertures 20a are present.
  • FIG. 1(c) shows a bottom view of the ultrasonic probe head 100 seen from the side (lower side) of the plurality of ultrasonic element chips 10 in FIG. 1(a).
  • a plurality of ultrasonic element chips 10 are present at intervals.
  • the ultrasonic element chip 10 is larger than the aperture 20a, so the aperture 20a is not visible.
  • the ultrasonic element chips 10 are arranged one-dimensionally. may be placed in
  • the distance between the plurality of ultrasonic element chips 10 is 0.05 mm or more, 0.1 mm or more, 0.3 mm or more, 0.5 mm or more, 1.0 mm or more, or 3.0 mm or more. 10.0 mm or less, 5.0 mm or less, 3.0 mm, 2.0 mm, or 1.0 mm.
  • the tip spacing may be in the range of 0.05 mm to 10.0 mm, or 0.1 mm to 3.0 mm. Not all tip spacings need fall within such ranges, and 50% or more, 60% or more, or 80% or more of the total tip spacings may fall within such ranges.
  • the ultrasonic probe head 100 does not include rigid members in the gaps between the plurality of ultrasonic element chips 10 so that the shape thereof can be made into a convex shape or the like.
  • a rubber member or the like may exist in the gap between the ultrasonic element chips 10 as long as a desired shape can be obtained.
  • the curvature R of the ultrasonic probe head 100 is preferably 100 mm or less, 80 mm or less, 50 mm or less, or 40 mm or less, and can be used without problems even if it is bent at 10 mm or more, 20 mm or more, 30 mm or more, or 40 mm or more.
  • the ultrasonic probe head 100 can be used without problems in terms of strength even if the curvature R is in the range of 10 mm to 100 mm or 20 mm to 50 mm. Also, within this range, the curvature is sufficient for a convex ultrasonic probe.
  • An ultrasonic element chip 10 includes a plurality of piezoelectric MEMS ultrasonic transducers 1 on a substrate 2 .
  • the ultrasonic element chip 10 is formed by cutting an ultrasonic element array base material, in which the piezoelectric MEMS ultrasonic transducer 1 is formed by MEMS on one substrate 2, by laser cutting such as stealth dicing, or by mechanical cutting using a dicing saw or the like. etc., may be obtained.
  • the ultrasonic element chip 10 can have a substantially rectangular parallelepiped shape. Alternatively, it may be 5 mm or less. For example, at least one side of the ultrasonic element chip 10 may be 0.5 mm to 10 mm or 1 mm to 5 mm.
  • the thickness of the ultrasonic element chip 10 may be 0.05 mm or more, 0.1 mm or more, 0.5 mm or more, or 1 mm or more, or may be 3 mm or less, 2 mm or less, or 1 mm or less.
  • the thickness of the ultrasonic element chip 10 may be 0.05 mm to 3 mm or 0.1 mm to 1 mm.
  • the thickness of the ultrasonic element chip 10 it is not necessary that at least one side and all of the thickness of the ultrasonic element chip 10 fall within such a range, and 50% or more, 60% or more, or 80% or more of the total number of chips have one side and thickness within such a range. It can be thickness.
  • FIG. 2 shows a plan view of an example of one ultrasonic element chip 10.
  • FIG. 3 shows a part of the AA' cross-sectional view of the ultrasonic element chip 10 of FIG. 2
  • FIG. 4 is a part of the BB' cross-sectional view of the ultrasonic element chip 10 of FIG. showing the part.
  • the X direction, Y direction, and Z direction in the drawings are also referred to as the horizontal direction, vertical direction, and thickness direction, respectively.
  • the ultrasonic element chips 10 each include a plurality of piezoelectric MEMS ultrasonic transducers 1 on the substrate 2 .
  • a plurality of piezoelectric MEMS ultrasonic transducers 1 are arranged one-dimensionally in the lateral direction (X direction), and their upper electrodes 1a are electrically connected by one upper wiring 3. It is
  • the plurality of piezoelectric MEMS ultrasonic transducers 1 are not limited to the embodiment in which they are arranged one-dimensionally on the ultrasonic element chip 10, but are arranged two-dimensionally, for example, in the vertical direction. Piezoelectric MEMS ultrasonic transducers 1 may be arranged.
  • the upper wiring 3 is connected to the upper electrode 1a of the piezoelectric MEMS ultrasonic transducer 1, and is connected to a flexible printed circuit board or the like through upper wiring terminals 3a on the outer edge of the ultrasonic element chip. be able to.
  • the lower wiring 4 is connected to the lower electrode 1c of the piezoelectric MEMS ultrasonic transducer 1, and can be connected to a flexible printed circuit board or the like through lower wiring terminals 4a on the outer edge of the ultrasonic element chip.
  • the piezoelectric MEMS ultrasonic transducer 1 is a piezoelectric ultrasonic element formed on a substrate by means of MEMS well known in the art, such as those described in US Pat.
  • the piezoelectric MEMS ultrasonic transducer 1 has a shape elongated in the vertical direction (Y direction), which is particularly effective when observing deep positions.
  • the intensity of ultrasonic waves can be increased by using a transducer that is long in one direction.
  • the output impedance can be lowered and the S/N ratio can be improved.
  • the aspect ratio (longitudinal length/lateral length) of the piezoelectric MEMS ultrasonic transducer 1 may be 3 or more, 5 or more, 10 or more, 15 or more, 20 or more, or 30 or more, 100 or less, It may be 80 or less, 50 or less, 30 or less, or 20 or less. Note that the aspect ratio may be calculated as the length in the horizontal direction/the length in the vertical direction, for example, when a plurality of piezoelectric MEMS ultrasonic transducers 1 are arranged in the vertical direction (Y direction).
  • the piezoelectric MEMS ultrasonic transducer has an elongated shape, the piezoelectric thin film is easily destroyed when an external force is applied. Even if it has an elongated shape, it is difficult to break, and it has become possible to increase the output and sensitivity of ultrasonic waves.
  • the piezoelectric MEMS ultrasonic transducer 1 includes an upper electrode 1a, a piezoelectric thin film 1b, a lower electrode 1c, a vibrating film 1d and an insulating film 1e.
  • the upper electrode 1a is connected to the upper wiring 3, and the upper wiring 3 is connected to the upper electrode 1a of the piezoelectric MEMS transducer 1 adjacent thereto.
  • At least the vibrating film 1d and the insulating film 1e of the piezoelectric MEMS ultrasonic transducer 1 are optional.
  • the piezoelectric MEMS ultrasonic transducer 1 can have the upper electrode 1 a positioned farther from the substrate 2 and the lower electrode 1 c positioned closer to the substrate 2 .
  • the upper electrode 1a and the lower electrode 1c well-known electrodes in this field can be used, and for example, they may be formed of a metal thin film.
  • the upper electrode 1a and the lower electrode 1c apply a pulse voltage or an alternating voltage to the piezoelectric thin film 1b, the piezoelectric thin film 1b is stretched/extended to vibrate the piezoelectric thin film 1b and the vibrating film 1d.
  • the piezoelectric MEMS ultrasonic transducer 1 can also operate as a receiving element that receives ultrasonic echoes that are emitted ultrasonic waves that are reflected back from the object to be measured.
  • the ultrasonic echo vibrates the vibrating membrane 1d, and this vibration applies stress to the piezoelectric thin film 1b, generating a voltage between the upper electrode 1a and the lower electrode 1c, which can be extracted as a received signal.
  • the configurations of the upper electrode 1a and the lower electrode 1c are not limited to these configurations, and these electrodes expand and contract the piezoelectric thin film 1b by applying a pulse voltage or an alternating voltage to the piezoelectric thin film 1b. It suffices if the piezoelectric thin film 1b and the vibrating film 1d can be vibrated.
  • the lower electrode 1c is an individual electrode that is individually provided on the piezoelectric MEMS ultrasonic transducer 1
  • the upper electrode 1a is a common electrode that is connected across the plurality of piezoelectric MEMS ultrasonic transducers 1 by the upper wiring 3.
  • the upper electrode may be the individual electrode
  • the lower electrode may be the common electrode.
  • the piezoelectric thin film 1b is formed of a piezoelectric thin film well known in this field.
  • the piezoelectric thin film 1b is formed so as to cover at least a portion of the upper electrode 1a and at least a portion of the lower electrode 1c.
  • Examples of the piezoelectric material of the piezoelectric thin film 1b include PZT (lead zirconate titanate), lead titanate (PbTiO 3 ), lead zirconate (PbZrO 3 ), lead lanthanum titanate ((Pb, La)TiO 3 ), and the like. can be mentioned.
  • the average thickness of the piezoelectric thin film 1b may be 50 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, 10 ⁇ m or less, 5 ⁇ m or less, or 3 ⁇ m or less. Alternatively, it may be 3 ⁇ m or more.
  • the average thickness of the piezoelectric thin film 1b may be, for example, 0.1 ⁇ m or more and 50 ⁇ m or less, or 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the vibrating film 1d can form a monomorph structure or a bimorph structure together with the piezoelectric thin film 1b, and can function as an ultrasonic vibrator.
  • a thin film of silica, alumina, zirconia, or the like can be used as the vibrating film 1d.
  • it may have a two-layer structure of a silica thin film and a zirconia thin film.
  • the substrate 2 is a silicon substrate
  • the silica thin film can be formed by thermally oxidizing the substrate surface.
  • the thin silica film may be formed when the grooves 2a are formed in the silicon substrate 2.
  • a zirconia thin film can be formed on a silica thin film by a method such as sputtering.
  • the average thickness of the diaphragm 1d may be 10 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, 1 ⁇ m or less, 0.8 ⁇ m or less, or 0.5 ⁇ m or less, and may be 0.05 ⁇ m or more, 0.1 ⁇ m or more, or 0.2 ⁇ m or more. , 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
  • the average thickness of the piezoelectric thin film 1b may be, for example, 0.05 ⁇ m or more and 10 ⁇ m or less, or 0.3 ⁇ m or more and 3 ⁇ m or less.
  • the substrate 2 is a substrate for forming the piezoelectric MEMS ultrasonic transducer 1 by MEMS, and is, for example, a silicon substrate.
  • a groove 2a is preferably formed in the substrate 2, so that the piezoelectric thin film 1b and the vibrating film 1d are easily vibrated.
  • the groove 2a of the substrate 2 can be slightly larger than the piezoelectric thin film 1b of the piezoelectric MEMS ultrasonic transducer 1.
  • the lateral length of the groove 2a of the substrate 2 may be 500 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, or 30 ⁇ m or less, or 10 ⁇ m or more, 30 ⁇ m or more, 50 ⁇ m or more, or 100 ⁇ m. or more.
  • the lateral length of the groove 2a may be, for example, 10 ⁇ m or more and 500 ⁇ m or less, or 30 ⁇ m or more and 200 ⁇ m or less.
  • the longitudinal length of the groove 2a can be considered with reference to the aspect ratio of the piezoelectric MEMS ultrasonic transducer 1 mentioned above.
  • the average thickness of the body portion 2b of the substrate 2 other than the groove portion 2a is 1000 ⁇ m or less, 800 ⁇ m or less, 500 ⁇ m or less, 300 ⁇ m or less, 150 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less. 10 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, 50 ⁇ m or more, 100 ⁇ m or more, 300 ⁇ m or more, or 500 ⁇ m or more.
  • the average thickness of the body portion of the substrate 2 may be, for example, 300 ⁇ m or more and 1000 ⁇ m or less, or may be 20 ⁇ m or more and 60 ⁇ m or less.
  • the average thickness of the body portion 2b when using a silicon substrate may be 80 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less, or 10 ⁇ m or more. , 20 ⁇ m or more, 25 ⁇ m or more, or 30 ⁇ m or more.
  • the average thickness of the body portion of the silicon substrate may be, for example, between 10 ⁇ m and 80 ⁇ m, or between 20 ⁇ m and 60 ⁇ m.
  • a silicon substrate used in this field usually has a thickness in the range of 500 ⁇ m to 1 mm, and the ultrasonic element chip 10 using such a silicon substrate does not have flexibility.
  • the present inventors have found that by using a silicon substrate having a thickness within the range described above, it is possible to obtain an ultrasonic wave with a degree of flexibility that provides a sufficient curvature as a convex ultrasonic probe and a practically sufficient strength. It has been found to be applied to the device chip 10. Also, in the embodiment in which ultrasonic waves are transmitted to the substrate 2 side of the ultrasonic element chip 10, it is advantageous to use a thin substrate because ultrasonic waves can be transmitted efficiently. I understood it.
  • the piezoelectric MEMS ultrasonic transducer 1 may be formed on a thin silicon substrate, or the piezoelectric MEMS ultrasonic transducer 1 may be formed on a thick silicon substrate.
  • the silicon substrate may be thinned by, for example, polishing the silicon substrate from the back side.
  • the thickness of the silicon substrate used in the element forming process may be kept as it is, without thinning the silicon substrate.
  • the type of the flexible base material 20 is not particularly limited as long as the ultrasonic probe head 100 of the present disclosure can be made into various shapes, but for example, a resin film or sheet can be used.
  • a resin film or sheet can be used.
  • a polyimide film for a flexible printed circuit board may be used as the flexible base material.
  • the flexible base material 20 may be a laminate of a plurality of layers, one of which may function as an acoustic matching layer, and the other layer may function as an acoustic lens. good too.
  • a suitable average thickness of the flexible substrate 20 varies depending on the material of the flexible substrate, and is not particularly limited. 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, or 50 ⁇ m or more.
  • the average thickness of the flexible substrate 20 may be, for example, 10 ⁇ m or more and 300 ⁇ m or less, or 20 ⁇ m or more and 50 ⁇ m or less.
  • the flexible base material 20 may have a plurality of openings 20a. Since the ultrasonic element chip 10 is present at the position of the opening 20a as in this embodiment, the ultrasonic waves oscillated from the ultrasonic element chip can be effectively propagated from the head.
  • the flexible base material 20 and the ultrasonic element chip 10 can be adhered with an adhesive, for example.
  • FIG. 5 illustrates a plan view of an embodiment in which a plurality of ultrasonic element chips 10 are spaced apart and arranged on a flexible substrate 20 .
  • the opening 20a of the flexible base material 20 is preferably provided at a position where the piezoelectric thin film 1b of the piezoelectric MEMS ultrasonic transducer 1 of the ultrasonic element chip 10 exists.
  • FIG. 6(a) and (b) illustrate an embodiment of the positional relationship between the ultrasonic element chip 10 and the flexible base material 20.
  • FIG. 6(a) the piezoelectric MEMS ultrasonic transducer 1 is positioned on the flexible base 20 side, the substrate 2 is positioned farther from the flexible base 20, and the ultrasonic waves are flexibly transmitted.
  • the ultrasonic element chip 10 can be configured so as to transmit toward the base material 20 side.
  • an acoustic lens 30 can be arranged in the aperture 20a.
  • the piezoelectric MEMS ultrasonic transducer 1 is positioned on the flexible base 20 side, the substrate 2 is positioned on the far side from the flexible base 20, and the ultrasonic wave is transmitted to the ultrasonic wave.
  • the ultrasonic element chip 10 can be configured to transmit toward the substrate 2 side of the element chip 10 .
  • there may be no perforations in the flexible substrate 20 .
  • it is preferable that the thickness of the substrate 2 is small in order to improve the transmission efficiency of the ultrasonic waves.
  • an acoustic lens 30 can be arranged on the substrate 2, and an acoustic matching layer may exist in the groove 2a of the substrate 2.
  • the ultrasonic probe head 100 of the present disclosure focuses ultrasonic waves output from the probe on, for example, an aperture 20a of a flexible base material 20 to improve resolution. of acoustic lenses 30 .
  • the material of the flexible substrate 20 can be selected such that the flexible substrate 20 itself functions as an acoustic lens.
  • the acoustic lens may also be configured as a cover portion of the ultrasound probe head, as used in the prior art.
  • a well-known acoustic lens in this field can be adopted, for example, it may be an acoustic lens made of silicone rubber.
  • the acoustic lens 30 and the ultrasonic element chip 10 can be bonded with an adhesive layer, and the adhesive layer can also serve as an acoustic matching layer.
  • the difference in acoustic impedance between the piezoelectric MEMS ultrasonic transducer 1 and the subject can be reduced, the reflection of ultrasonic waves can be reduced, and the ultrasonic waves can be efficiently incident on the subject.
  • the ultrasonic probe head 100 of the present disclosure includes a flexible printed board 40, upper wiring terminals 3a and lower wiring terminals 4a in the piezoelectric MEMS ultrasonic transducer 1 of the ultrasonic element chip 10. can be connected to send and receive electrical signals.
  • the flexible printed board 40 one well known in this field can be adopted.
  • a board in which metal wiring is formed on a polyimide film can be used.
  • the flexible printed board 40, the upper wiring terminal 3a and the lower wiring terminal 4a can be connected by wire bonding 50.
  • the connection between the flexible printed board 40 and the upper wiring terminal 3a and the lower wiring terminal 4a is not limited to the wire bonding 50, and a known connection method such as an anisotropic conductive film (ACF) may be used. and, when wire bonding 50 is used as the connection method, any method known in the art can be employed.
  • ACF anisotropic conductive film
  • the ultrasonic element chip 10 and the flexible substrate 20 are arranged as shown in the embodiment of FIG.
  • the flexible printed board 40 is connected to the upper wiring terminal 3a and the lower wiring terminal 4a through the wire bonding 50, the upper wiring terminal 3a and the lower wiring terminal 4a can be connected regardless of the shape of the ultrasonic probe head 100. This is preferable because the safety of the connection with the flexible printed circuit board 40 is high and disconnection of the wire bonding 50 is less likely to occur.
  • the ultrasonic probe of the present disclosure includes at least the ultrasonic probe head as described above and a head-shaped constituent member that forms the head shape of the ultrasonic probe head.
  • the head-shaped component is not particularly limited as long as it can deform the flexible base material of the ultrasonic probe head.
  • the ultrasound probes of the present disclosure can have other configurations useful as ultrasound probes.
  • the head shape constituent member it is possible to use the head shape constituent member used to make the head shape such as a convex shape in the prior art such as Patent Document 1 as it is. It may be a concave backing material.
  • the head-shaped component may have a shape such as a convex shape, or may have a changeable shape, for example, may be switchable between a linear shape and a convex shape.
  • FIG. 8 shows an example of a cross-sectional view of a tip portion of an ultrasonic probe 200 including the ultrasonic probe head 100 of the present disclosure and a head-shaped component 110 having a convex shape.
  • FIG. 9 has shown the perspective view.
  • This ultrasonic probe head 100 has openings 20 a in the flexible base material 20 at positions corresponding to the respective ultrasonic element chips 10 .
  • a flexible printed circuit board 40 is connected to each ultrasonic element chip 10 .
  • FIG. 10 shows an example of switching the ultrasonic probe head of the present disclosure between a linear type and a convex type.
  • the head-shaped component 110 supports at least three points of the center and both ends of the ultrasonic probe head 100, and by changing the positional relationship of the support members, the ultrasonic probe head 100 can be a member that changes the shape of
  • a wire 113 connects a center support member 111 that supports the ultrasonic probe head 100 at the center and an end support member 112 that supports the end of the ultrasonic probe head 100 .
  • the wire 113 is wound by the spool 111a on the central support member 111 to change the positional relationship of the support members and form a curve in the ultrasonic probe head 100.
  • the ultrasound probe head 100 may be transformed into a variety of shapes by supporting multiple locations other than the central portion.
  • the head shape component 110 may be configured to control the shape of the ultrasonic probe head 100 by changing the distance between the support members (111, 112) using a rack and pinion mechanism.
  • the head-shaped component 110 further includes a flexible back substrate 114 that supports the probe head 100 from the back side.
  • the head shape can be controlled by applying force to such a back substrate as described above.
  • FIG. 11 illustrates a cross-sectional view of the tip portion of the ultrasonic probe when using the ultrasonic probe head of the embodiment shown in FIG.
  • a sealing member 140 may be present between the housing 120 of the ultrasound probe 200 and the ultrasound probe head 100 .
  • the sealing member 140 is not particularly limited as long as it can prevent moisture or the like from entering the housing 120, but may be silicone rubber, for example.
  • An ultrasonic diagnostic apparatus of the present disclosure includes at least the above-described ultrasonic probe, a processing unit that processes signals from the ultrasonic probe, and a display device that converts the signals from the processing unit into image data and displays the image data. Transmission, reception and processing of signals and control of the ultrasound probe can be performed by methods well known in the art, such as those described in Patent Documents 2-4.
  • FIG. 12 illustrates an ultrasonic diagnostic apparatus of the present disclosure.
  • An ultrasound diagnostic apparatus 1000 of the present disclosure includes an ultrasound probe 200 and a display device 300 , and the ultrasound probe 200 and display device 300 are connected by a cable 400 .
  • the ultrasonic diagnostic apparatus 1000 is a portable apparatus, but may be a stationary apparatus.
  • the ultrasonic probe 200 and the display device 300 are connected by a cable 400, but they can be connected wirelessly.
  • a processing unit that processes signals from the ultrasound probe is not shown, but may reside in the ultrasound probe or may reside in the display device 300 .

Abstract

The present disclosure provides a novel ultrasonic probe head that is capable of achieving probes of not only a linear type and a convex type but also of a variety of other configurations. An ultrasonic probe head 100 according to the present disclosure has multiple ultrasonic element chips 10 that are arranged at intervals on a flexible base material 20, and each of the ultrasonic element chips 10 comprises multiple piezoelectric MEMS ultrasonic transducers 1 on a substrate 2.

Description

超音波プローブヘッド、超音波プローブ、及び超音波診断装置Ultrasound Probe Head, Ultrasound Probe, and Ultrasound Diagnostic Device
 本開示は、超音波プローブヘッド、超音波プローブ、及び超音波診断装置に関する。 The present disclosure relates to an ultrasonic probe head, an ultrasonic probe, and an ultrasonic diagnostic apparatus.
 超音波診断装置は、超音波を用いて体内や構造体内を調べる検査装置である。この検査装置の超音波プローブを用いて体表から体内、循環器や臓器の内表面から体内、そして構造体表面から構造体内に超音波を発信し、その反射波を処理して画像化し、病変や欠陥の有無等を判読し、診断を行う。映し出される画像は、リアルタイムで動いて見えるため、病変の位置を確認しながら行う治療、血流動態の観察等も行うことができ、かつ非侵襲的な手法であるために、医療分野で広く利用されている。 An ultrasound diagnostic device is an inspection device that uses ultrasound to examine the inside of the body and structures. Using the ultrasonic probe of this inspection device, ultrasonic waves are transmitted from the body surface to the inside of the body, from the inner surface of the circulatory system and organs to the inside of the body, and from the surface of the structure to the inside of the structure. and the presence or absence of defects, etc., and make a diagnosis. Since the displayed images appear to move in real time, it is possible to perform treatment while confirming the position of the lesion, to observe blood flow dynamics, etc., and because it is a non-invasive technique, it is widely used in the medical field. It is
 超音波プローブは、リニア型、セクタ型、コンベックス型、コンケーブ型等があり、観察目的及び観察部位に応じてこれらの型を選択する。例えば、リニア型は、体表から浅い部位に位置する組織の検査に用いられ、コンベックス型は、体表から深い部位に位置する組織の検査に用いられる。 There are linear type, sector type, convex type, concave type, etc. for ultrasonic probes, and these types are selected according to the purpose of observation and the observation site. For example, the linear type is used for examination of tissues positioned shallow from the body surface, and the convex type is used for examination of tissues positioned deep from the body surface.
 特許文献1は、コンベックス型超音波プローブの従来技術の例を示している。このような超音波プローブの超音波素子は、電極でサンドイッチされた圧電セラミックを短冊状に切断されて形成される。 Patent document 1 shows an example of conventional technology of a convex ultrasonic probe. The ultrasonic element of such an ultrasonic probe is formed by cutting a piezoelectric ceramic sandwiched between electrodes into strips.
 また、近年、圧電MEMS超音波トランスデューサ(pMUT:Piezoelectric Micromachined Ultrasonic Transducers)を超音波素子として用いた超音波プローブが開発されている。このような超音波プローブは、超音波素子を大幅に小型化することができ、素子密度を高めることができる。特許文献2~4は、このような超音波プローブを開示している。また、これを製造するためのMEMSの詳細については、例えば、特許文献4及び5を参照することができる。 Also, in recent years, ultrasonic probes using piezoelectric MEMS ultrasonic transducers (pMUT: Piezoelectric Micromachined Ultrasonic Transducers) as ultrasonic elements have been developed. Such an ultrasonic probe can greatly reduce the size of the ultrasonic elements and increase the element density. Patent Documents 2-4 disclose such ultrasonic probes. Further, for details of the MEMS for manufacturing this, reference can be made to Patent Documents 4 and 5, for example.
特開平8-79895号公報JP-A-8-79895 特開2014-146883号公報JP 2014-146883 A 特開2011-259274号公報JP 2011-259274 A 特開2016-018835号公報JP 2016-018835 A 特表2006-516368号公報Japanese Patent Publication No. 2006-516368
 特許文献2~4に記載のように、圧電MEMS超音波トランスデューサを超音波素子として用いた超音波プローブは、その超音波素子を形成する基板が、シリコン基板等の平板状基板であるため、通常はリニア型の超音波プローブである。また、これらの文献に記載の超音波プローブは、曲げられたり衝撃が与えられたりすると、非常に薄い脆性材料で構成される圧電薄膜が破壊されてしまい、信頼性が低いという課題があった。 As described in Patent Documents 2 to 4, in an ultrasonic probe using a piezoelectric MEMS ultrasonic transducer as an ultrasonic element, the substrate forming the ultrasonic element is a flat substrate such as a silicon substrate. is a linear ultrasonic probe. Moreover, the ultrasonic probes described in these documents have a problem of low reliability because the piezoelectric thin film composed of a very thin brittle material is broken when bent or subjected to impact.
 本開示は、リニア型とコンベックス型だけではなく、様々な形状のプローブを実現することができ、かつ信頼性の高い、新規な超音波プローブヘッドを提供する。 The present disclosure provides a novel ultrasonic probe head that can realize not only linear and convex probes but also probes of various shapes and that is highly reliable.
 本発明者らは、以下の態様を有する本開示により、上記課題を解決できることを見出した。
《態様1》
 複数の超音波素子チップが間隔を空けて可撓性基材上に配置されており、かつ前記複数の超音波素子チップのそれぞれが、複数の圧電MEMS超音波トランスデューサを基板上に含む、超音波プローブヘッド。
《態様2》
 前記可撓性基材が、複数の開孔を有しており、かつ前記複数の超音波素子チップが、前記複数の開孔の位置に存在している、態様1に記載の超音波プローブヘッド。
《態様3》
 前記圧電MEMS超音波トランスデューサが、上部電極、圧電薄膜、及び下部電極をこの順に含み、前記上部電極が、前記可撓性基材側に向いており、かつ前記下部電極が、前記基板側に向いている、態様1又は2に記載の超音波プローブヘッド。
《態様4》
 前記圧電MEMS超音波トランスデューサが、一次元的または二次元的に配列しており、前記超音波素子チップのそれぞれにおいて、前記上部電極および前記下部電極は、それぞれ上部配線および下部配線によって前記超音波素子チップの外縁に設けられた上部配線端子および下部配線端子が接続している、態様3に記載の超音波プローブヘッド。
《態様5》
 前記複数の超音波素子チップのそれぞれの少なくとも1辺が、1mm~5mmであり、厚さが1mm以下である、態様1~4のいずれか一項に記載の超音波プローブヘッド。
《態様6》
 前記複数の超音波素子チップの間隔のそれぞれが、0.1mm~3mmの範囲である、態様1~5のいずれか一項に記載の超音波プローブヘッド。
《態様7》
 前記複数の超音波素子チップの間隙のそれぞれに、剛性部材を含まない、態様1~6のいずれか一項に記載の超音波プローブヘッド。
《態様8》
 態様1~7のいずれか一項に記載の超音波プローブヘッド、及び前記超音波プローブヘッドのヘッド形状を構成するヘッド形状構成部材を少なくとも具備する、超音波プローブ。
《態様9》
 態様8に記載の超音波プローブ、前記超音波プローブからの信号を処理する処理部、及び前記処理部からの信号を画像に変換して表示する表示装置を少なくとも具備する、超音波診断装置。
The present inventors have found that the above problems can be solved by the present disclosure having the following aspects.
<<Aspect 1>>
wherein a plurality of ultrasonic element chips are spaced apart on a flexible substrate, and each of said plurality of ultrasonic element chips includes a plurality of piezoelectric MEMS ultrasonic transducers on a substrate. probe head.
<<Aspect 2>>
The ultrasonic probe head according to aspect 1, wherein the flexible base material has a plurality of apertures, and the plurality of ultrasonic element chips are present at the positions of the plurality of apertures. .
<<Aspect 3>>
The piezoelectric MEMS ultrasonic transducer includes an upper electrode, a piezoelectric thin film, and a lower electrode in this order, the upper electrode facing the flexible base and the lower electrode facing the substrate. 3. The ultrasonic probe head according to aspect 1 or 2.
<<Aspect 4>>
The piezoelectric MEMS ultrasonic transducers are arranged one-dimensionally or two-dimensionally, and in each of the ultrasonic element chips, the upper electrode and the lower electrode are connected to the ultrasonic element by upper wiring and lower wiring, respectively. The ultrasonic probe head according to aspect 3, wherein the upper wiring terminal and the lower wiring terminal provided on the outer edge of the chip are connected.
<<Aspect 5>>
The ultrasonic probe head according to any one of aspects 1 to 4, wherein each of the plurality of ultrasonic element chips has at least one side of 1 mm to 5 mm and a thickness of 1 mm or less.
<<Aspect 6>>
The ultrasonic probe head according to any one of aspects 1 to 5, wherein each interval between the plurality of ultrasonic element chips is in the range of 0.1 mm to 3 mm.
<<Aspect 7>>
7. The ultrasonic probe head according to any one of aspects 1 to 6, wherein each of the gaps between the plurality of ultrasonic element chips does not contain a rigid member.
<<Aspect 8>>
An ultrasonic probe comprising at least the ultrasonic probe head according to any one of aspects 1 to 7 and a head-shaped component forming a head shape of the ultrasonic probe head.
<<Aspect 9>>
An ultrasonic diagnostic apparatus comprising at least the ultrasonic probe according to aspect 8, a processing unit that processes a signal from the ultrasonic probe, and a display device that converts the signal from the processing unit into an image and displays the image.
図1(a)は、本開示の超音波プローブヘッドの一例の側面図を示しており、図1(b)は、本開示の超音波プローブヘッドの一例の平面図を示しており、図1(c)は、本開示の超音波プローブヘッドの一例の底面図を示している。FIG. 1(a) shows a side view of an example ultrasonic probe head of the present disclosure, FIG. 1(b) shows a plan view of an example of the ultrasonic probe head of the present disclosure, and FIG. (c) shows a bottom view of an exemplary ultrasound probe head of the present disclosure; 図2は、超音波素子チップの一例の平面図を示している。FIG. 2 shows a plan view of an example of an ultrasonic element chip. 図3は、図2の超音波素子チップのA-A’断面図の一部を示している。FIG. 3 shows a part of the A-A' cross-sectional view of the ultrasonic element chip of FIG. 図4は、図2の超音波素子チップのB-B’断面図の一部を示している。FIG. 4 shows a part of the B-B' cross-sectional view of the ultrasonic element chip of FIG. 図5は、複数の超音波素子チップが間隔を空けて可撓性基材上に配置される実施形態の平面図を例示している。FIG. 5 illustrates a plan view of an embodiment in which a plurality of ultrasonic element chips are spaced apart on a flexible substrate. 図6(a)及び(b)は、超音波素子チップと可撓性基材との位置関係の実施形態を例示している。FIGS. 6A and 6B illustrate embodiments of the positional relationship between the ultrasonic element chip and the flexible base material. 図7(a)及び(b)は、超音波素子チップがフレキシブル印刷基板と接続する実施形態を例示している。FIGS. 7(a) and (b) illustrate an embodiment in which the ultrasonic element chip is connected to a flexible printed circuit board. 図8は、コンベックス型である本開示の超音波プローブの先端部分の例を示している。FIG. 8 shows an example of the tip portion of the ultrasonic probe of the present disclosure, which is of convex type. 図9は、コンベックス型である本開示の超音波プローブの先端部分の他の例の斜視図を示している。FIG. 9 shows a perspective view of another example of the tip portion of the ultrasonic probe of the present disclosure, which is of convex type. 図10(a)及び(b)は、本開示の超音波プローブヘッドをリニア型とコンベックス型とで切り替えている例を示している。FIGS. 10A and 10B show an example of switching the ultrasonic probe head of the present disclosure between a linear type and a convex type. 図11は、本開示の超音波プローブの先端部分における断面図を例示している。FIG. 11 illustrates a cross-sectional view of the distal portion of the ultrasound probe of the present disclosure. 図12は、本開示の超音波診断装置を例示している。FIG. 12 illustrates an ultrasound diagnostic apparatus of the present disclosure.
 《超音波プローブヘッド》
 本開示の超音波プローブヘッドは、複数の超音波素子チップが間隔を空けて可撓性基材上に配置されており、かつ前記複数の超音波素子チップのそれぞれが、複数の圧電MEMS超音波トランスデューサを基板上に含む。
《Ultrasonic Probe Head》
In the ultrasonic probe head of the present disclosure, a plurality of ultrasonic element chips are arranged on a flexible substrate at intervals, and each of the plurality of ultrasonic element chips includes a plurality of piezoelectric MEMS ultrasonic waves. A transducer is included on the substrate.
 本発明者らは、圧電MEMS超音波トランスデューサを用いた場合であっても、圧電MEMS超音波トランスデューサの複数を基板上に含む超音波素子チップを、可撓性基材上に複数配列させることによって、リニア型、コンベックス型、コンケーブ型等だけではなく、様々な形状のプローブを実現させた。従来は、剛性の超音波素子アレイ基材を1つだけ使用し、これを固定してリニア型として用いていたが、これを複数の超音波素子チップに分割して、可撓性基材と共に用いることによって、超音波プローブヘッドを様々な形状にすることが可能となった。これによって、本開示のプローブヘッドは、圧電MEMS超音波トランスデューサを用いていても、超音波プローブをコンベックス型、リニア型、コンケーブ型等として用いることが可能であり、また所望の形状に変更も可能となった。 The present inventors have found that even when piezoelectric MEMS ultrasonic transducers are used, by arranging a plurality of ultrasonic element chips each including a plurality of piezoelectric MEMS ultrasonic transducers on a substrate on a flexible base material, , linear type, convex type, concave type, etc., but also various shapes of probes have been realized. In the past, only one rigid ultrasonic element array substrate was used, and this was fixed and used as a linear type. By using it, it became possible to make the ultrasonic probe head into various shapes. As a result, even if the probe head of the present disclosure uses a piezoelectric MEMS ultrasonic transducer, the ultrasonic probe can be used as a convex type, a linear type, a concave type, etc., and can be changed to a desired shape. became.
 また、このような構成であれば、超音波プローブヘッドが曲げられたり衝撃が与えられたりしても、隣接するチップ間で直接力が作用しないため、圧電薄膜が破壊されにくくなることがわかった。 In addition, with such a configuration, even if the ultrasonic probe head is bent or impacted, no direct force acts between the adjacent chips, so it was found that the piezoelectric thin film is less likely to be destroyed. .
 図1(a)は、本開示の超音波プローブヘッドの一例の側面図を示しており、図1(b)は、本開示の超音波プローブヘッドの一例の平面図を示しており、図1(c)は、本開示の超音波プローブヘッドの一例の底面図を示している。 FIG. 1(a) shows a side view of an example ultrasonic probe head of the present disclosure, FIG. 1(b) shows a plan view of an example of the ultrasonic probe head of the present disclosure, and FIG. (c) shows a bottom view of an exemplary ultrasound probe head of the present disclosure;
 図1(a)に示すように、超音波プローブヘッド100は、複数の超音波素子チップ10が間隔を空けて可撓性基材20上に配置されているため、コンベックス状に折り曲げることができている。このように、本開示の超音波プローブヘッド100は、その断面が直線からなる多角形となることができ、又は超音波素子チップ10による平面からなる多面体となることができ、自由自在に曲線又は曲面を構成することができる。 As shown in FIG. 1A, the ultrasonic probe head 100 has a plurality of ultrasonic element chips 10 arranged on a flexible base material 20 at intervals, so that it can be bent into a convex shape. ing. In this way, the ultrasonic probe head 100 of the present disclosure can be a polygon whose cross-section is made up of straight lines, or can be a polyhedron made up of planes by the ultrasonic element chip 10, and can be curved or curved at will. A curved surface can be constructed.
 図1(b)は、図1(a)において可撓性基材20側(上側)から見た超音波プローブヘッド100の平面図を示しており、可撓性基材20には、複数の開孔20aが存在している。可撓性基材20の裏側に、開孔20aよりも大きな超音波素子チップ10が存在している。この実施形態のように、超音波素子チップ10が開孔20aの位置に存在していることで、超音波素子チップから発振される超音波を、ヘッドから効果的に伝搬させることができる。 FIG. 1(b) shows a plan view of the ultrasonic probe head 100 viewed from the flexible base 20 side (upper side) in FIG. 1(a). Apertures 20a are present. The ultrasonic element chip 10, which is larger than the opening 20a, exists on the back side of the flexible base material 20. As shown in FIG. Since the ultrasonic element chip 10 is present at the position of the opening 20a as in this embodiment, the ultrasonic waves oscillated from the ultrasonic element chip can be effectively propagated from the head.
 図1(c)は、図1(a)において複数の超音波素子チップ10側(下側)から見た超音波プローブヘッド100の底面図を示しており、可撓性基材20には、複数の超音波素子チップ10が間隔を空けて存在している。この実施形態では、超音波素子チップ10が、開孔20aよりも大きいため、開孔20aは見えていない。 FIG. 1(c) shows a bottom view of the ultrasonic probe head 100 seen from the side (lower side) of the plurality of ultrasonic element chips 10 in FIG. 1(a). A plurality of ultrasonic element chips 10 are present at intervals. In this embodiment, the ultrasonic element chip 10 is larger than the aperture 20a, so the aperture 20a is not visible.
 図1(b)及び(c)では、超音波素子チップ10が一次元的に配置されているが、複数列で配列されて、可撓性基材20に超音波素子チップ10が二次元的に配置されていてもよい。 1(b) and 1(c), the ultrasonic element chips 10 are arranged one-dimensionally. may be placed in
 超音波プローブヘッド100において、複数の超音波素子チップ10の間隔は、それぞれ0.05mm以上、0.1mm以上、0.3mm以上、0.5mm以上、1.0mm以上、又は3.0mm以上であってもよく、10.0mm以下、5.0mm以下、3.0mm、2.0mm、又は1.0mmであってもよい。例えば、チップの間隔は、0.05mm以上10.0mm以下、又は0.1mm以上3.0mm以下の範囲であってもよい。チップの間隔の全てがこのような範囲に入る必要はなく、チップの間隔の総数の50%以上、60%以上、又は80%以上がこのような範囲であってもよい。 In the ultrasonic probe head 100, the distance between the plurality of ultrasonic element chips 10 is 0.05 mm or more, 0.1 mm or more, 0.3 mm or more, 0.5 mm or more, 1.0 mm or more, or 3.0 mm or more. 10.0 mm or less, 5.0 mm or less, 3.0 mm, 2.0 mm, or 1.0 mm. For example, the tip spacing may be in the range of 0.05 mm to 10.0 mm, or 0.1 mm to 3.0 mm. Not all tip spacings need fall within such ranges, and 50% or more, 60% or more, or 80% or more of the total tip spacings may fall within such ranges.
 超音波プローブヘッド100は、その形状をコンベックス型等にできるように、複数の超音波素子チップ10の間隙に、剛性部材を含まないことが好ましい。しかし、所望の形状とすることができるのであれば、超音波素子チップ10の間隙にゴム部材等が存在していてもよい。 It is preferable that the ultrasonic probe head 100 does not include rigid members in the gaps between the plurality of ultrasonic element chips 10 so that the shape thereof can be made into a convex shape or the like. However, a rubber member or the like may exist in the gap between the ultrasonic element chips 10 as long as a desired shape can be obtained.
 超音波プローブヘッド100の曲率Rは、100mm以下、80mm以下、50mm以下、又は40mm以下で、また10mm以上、20mm以上、30mm以上、又は40mm以上で曲げられても、問題なく使用できることが好ましい。例えば、超音波プローブヘッド100は、曲率Rが10mm以上100mm以下、又は20mm以上50mm以下の範囲であっても、強度上等で問題なく使用することができる。また、この範囲であれば、コンベックス型の超音波プローブとして十分な曲率となる。 The curvature R of the ultrasonic probe head 100 is preferably 100 mm or less, 80 mm or less, 50 mm or less, or 40 mm or less, and can be used without problems even if it is bent at 10 mm or more, 20 mm or more, 30 mm or more, or 40 mm or more. For example, the ultrasonic probe head 100 can be used without problems in terms of strength even if the curvature R is in the range of 10 mm to 100 mm or 20 mm to 50 mm. Also, within this range, the curvature is sufficient for a convex ultrasonic probe.
〈超音波素子チップ10〉
 超音波素子チップ10は、複数の圧電MEMS超音波トランスデューサ1を基板2上に含む。
<Ultrasonic element chip 10>
An ultrasonic element chip 10 includes a plurality of piezoelectric MEMS ultrasonic transducers 1 on a substrate 2 .
 超音波素子チップ10は、1つの基板2上に圧電MEMS超音波トランスデューサ1をMEMSで形成した超音波素子アレイ基材を、ステルスダイシング等のレーザーを用いた切断、ダイシングソー等による機械的な切断等によって、得られたものであってもよい。 The ultrasonic element chip 10 is formed by cutting an ultrasonic element array base material, in which the piezoelectric MEMS ultrasonic transducer 1 is formed by MEMS on one substrate 2, by laser cutting such as stealth dicing, or by mechanical cutting using a dicing saw or the like. etc., may be obtained.
 超音波素子チップ10は、略直方体状であることができ、例えばそれぞれの少なくとも1辺が、0.5mm以上、1mm以上、2mm以上、又は3mm以上であってもよく、10mm以下、8mm以下、又は5mm以下であってもよい。例えば、超音波素子チップ10の少なくとも1辺は、0.5mm~10mm又は1mm~5mmであってもよい。また、超音波素子チップ10の厚みは、0.05mm以上、0.1mm以上、0.5mm以上、又は1mm以上であってもよく、3mm以下、2mm以下、又は1mm以下であってもよい。例えば、超音波素子チップ10の厚みは、0.05mm~3mm又は0.1mm~1mmであってもよい。超音波素子チップ10の少なくとも1辺及び厚さの全てがこのような範囲に入る必要はなく、チップの総数の50%以上、60%以上、又は80%以上がこのような範囲の1辺及び厚さであってもよい。 The ultrasonic element chip 10 can have a substantially rectangular parallelepiped shape. Alternatively, it may be 5 mm or less. For example, at least one side of the ultrasonic element chip 10 may be 0.5 mm to 10 mm or 1 mm to 5 mm. The thickness of the ultrasonic element chip 10 may be 0.05 mm or more, 0.1 mm or more, 0.5 mm or more, or 1 mm or more, or may be 3 mm or less, 2 mm or less, or 1 mm or less. For example, the thickness of the ultrasonic element chip 10 may be 0.05 mm to 3 mm or 0.1 mm to 1 mm. It is not necessary that at least one side and all of the thickness of the ultrasonic element chip 10 fall within such a range, and 50% or more, 60% or more, or 80% or more of the total number of chips have one side and thickness within such a range. It can be thickness.
 図2は、1つの超音波素子チップ10の一例の平面図を示している。また、図3は、図2の超音波素子チップ10のA-A’断面図の一部を示しており、図4は、図2の超音波素子チップ10のB-B’断面図の一部を示している。なお、図中のX方向、Y方向、及びZ方向を、それぞれ横方向、縦方向及び厚さ方向ともいう。 FIG. 2 shows a plan view of an example of one ultrasonic element chip 10. FIG. 3 shows a part of the AA' cross-sectional view of the ultrasonic element chip 10 of FIG. 2, and FIG. 4 is a part of the BB' cross-sectional view of the ultrasonic element chip 10 of FIG. showing the part. Note that the X direction, Y direction, and Z direction in the drawings are also referred to as the horizontal direction, vertical direction, and thickness direction, respectively.
 図2に示すように、超音波素子チップ10は、そのそれぞれが、複数の圧電MEMS超音波トランスデューサ1を基板2上に含む。図2の実施形態において、複数の圧電MEMS超音波トランスデューサ1は、横方向(X方向)に一次元的に配列しており、これらは1つの上部配線3によってその上部電極1aが電気的に接続されている。 As shown in FIG. 2, the ultrasonic element chips 10 each include a plurality of piezoelectric MEMS ultrasonic transducers 1 on the substrate 2 . In the embodiment of FIG. 2, a plurality of piezoelectric MEMS ultrasonic transducers 1 are arranged one-dimensionally in the lateral direction (X direction), and their upper electrodes 1a are electrically connected by one upper wiring 3. It is
 本開示において、複数の圧電MEMS超音波トランスデューサ1は、超音波素子チップ10上で一次元的に配列する実施形態に限定されるものではなく、二次元的に、例えば縦方向にも複数個の圧電MEMS超音波トランスデューサ1が配列していてもよい。 In the present disclosure, the plurality of piezoelectric MEMS ultrasonic transducers 1 are not limited to the embodiment in which they are arranged one-dimensionally on the ultrasonic element chip 10, but are arranged two-dimensionally, for example, in the vertical direction. Piezoelectric MEMS ultrasonic transducers 1 may be arranged.
 図2に示す実施形態において、上部配線3は、圧電MEMS超音波トランスデューサ1の上部電極1aと連結しており、超音波素子チップの外縁にある上部配線端子3aを通じて、フレキシブル印刷基板等に接続することができる。また、下部配線4は、圧電MEMS超音波トランスデューサ1の下部電極1cと連結しており、超音波素子チップの外縁にある下部配線端子4aを通じて、フレキシブル印刷基板等に接続することができる。 In the embodiment shown in FIG. 2, the upper wiring 3 is connected to the upper electrode 1a of the piezoelectric MEMS ultrasonic transducer 1, and is connected to a flexible printed circuit board or the like through upper wiring terminals 3a on the outer edge of the ultrasonic element chip. be able to. The lower wiring 4 is connected to the lower electrode 1c of the piezoelectric MEMS ultrasonic transducer 1, and can be connected to a flexible printed circuit board or the like through lower wiring terminals 4a on the outer edge of the ultrasonic element chip.
〈超音波素子チップ10-圧電MEMS超音波トランスデューサ1〉
 圧電MEMS超音波トランスデューサ1は、例えば特許文献4及び5に記載のような本分野で周知のMEMSによって、基板上に形成した圧電超音波素子である。
<Ultrasonic element chip 10-Piezoelectric MEMS ultrasonic transducer 1>
The piezoelectric MEMS ultrasonic transducer 1 is a piezoelectric ultrasonic element formed on a substrate by means of MEMS well known in the art, such as those described in US Pat.
 図2に示す実施形態において、圧電MEMS超音波トランスデューサ1は、縦方向(Y方向)に長い形状を有しており、これにより特に深い位置を観測する場合に有効になる。超音波の振動子の面積が大きければ大きいほど、超音波の強度を大きくすることができるが、一方向に長い振動子は、浅い位置を観測しようとする場合、観測位置から見ると、振動子の近い位置からの超音波と遠い位置からの超音波とで、到達に要する時間に差が出て、超音波に位相のずれが生じる場合がある。しかし、深い位置を観測する場合には、このような差は生じにくいため、一方向に長い振動子を用いることで超音波の強度を高くすることができる。信号を受信する際についても同様であり、一方向に長い振動子を用いることによって出力のインピーダンスが下がってS/N比を向上させることができる。 In the embodiment shown in FIG. 2, the piezoelectric MEMS ultrasonic transducer 1 has a shape elongated in the vertical direction (Y direction), which is particularly effective when observing deep positions. The larger the area of the ultrasonic transducer, the greater the intensity of the ultrasonic wave. There is a difference in the time required for arrival of ultrasonic waves from a position close to and that from a position far away, which may cause a phase shift in the ultrasonic waves. However, when observing a deep position, such a difference is less likely to occur, so the intensity of ultrasonic waves can be increased by using a transducer that is long in one direction. The same is true when receiving a signal, and by using a vibrator that is long in one direction, the output impedance can be lowered and the S/N ratio can be improved.
 圧電MEMS超音波トランスデューサ1のアスペクト比(縦方向の長さ/横方向の長さ)は、3以上、5以上、10以上、15以上、20以上又は30以上であってもよく、100以下、80以下、50以下、30以下、又は20以下であってもよい。なお、アスペクト比は、複数の圧電MEMS超音波トランスデューサ1が縦方向(Y方向)に配列する場合等には、横方向の長さ/縦方向の長さ、として計算されてもよい。従来技術においては、圧電MEMS超音波トランスデューサを細長い形状とすると、外力が働いた際に、圧電薄膜が容易に破壊されてしまっていたが、本開示の構成であれば、圧電MEMS超音波トランスデューサが細長い形状であったとしても破壊されにくく、超音波の出力及び感度を高めることが可能となった。 The aspect ratio (longitudinal length/lateral length) of the piezoelectric MEMS ultrasonic transducer 1 may be 3 or more, 5 or more, 10 or more, 15 or more, 20 or more, or 30 or more, 100 or less, It may be 80 or less, 50 or less, 30 or less, or 20 or less. Note that the aspect ratio may be calculated as the length in the horizontal direction/the length in the vertical direction, for example, when a plurality of piezoelectric MEMS ultrasonic transducers 1 are arranged in the vertical direction (Y direction). In the prior art, if the piezoelectric MEMS ultrasonic transducer has an elongated shape, the piezoelectric thin film is easily destroyed when an external force is applied. Even if it has an elongated shape, it is difficult to break, and it has become possible to increase the output and sensitivity of ultrasonic waves.
 図3及び図4に示す実施形態において、圧電MEMS超音波トランスデューサ1は、上部電極1a、圧電薄膜1b、下部電極1c、振動膜1d及び絶縁膜1eを含んでいる。上部電極1aは、上部配線3と接続しており、上部配線3は、隣接する圧電MEMSトランスデューサ1の上部電極1aと接続している。圧電MEMS超音波トランスデューサ1のうち、少なくとも振動膜1d及び絶縁膜1eは随意の構成である。また、圧電MEMS超音波トランスデューサ1は、上部電極1aが基板2から遠い側に位置し、下部電極1cが基板2に近い側に位置することができる。 In the embodiment shown in FIGS. 3 and 4, the piezoelectric MEMS ultrasonic transducer 1 includes an upper electrode 1a, a piezoelectric thin film 1b, a lower electrode 1c, a vibrating film 1d and an insulating film 1e. The upper electrode 1a is connected to the upper wiring 3, and the upper wiring 3 is connected to the upper electrode 1a of the piezoelectric MEMS transducer 1 adjacent thereto. At least the vibrating film 1d and the insulating film 1e of the piezoelectric MEMS ultrasonic transducer 1 are optional. In addition, the piezoelectric MEMS ultrasonic transducer 1 can have the upper electrode 1 a positioned farther from the substrate 2 and the lower electrode 1 c positioned closer to the substrate 2 .
 上部電極1a及び下部電極1cは、本分野で周知の電極を用いることができ、例えば金属薄膜から形成されていてもよい。上部電極1a及び下部電極1cが、圧電薄膜1bにパルス電圧または交流電圧を与えることによって、圧電薄膜1bを伸縮/伸長させて圧電薄膜1bと振動膜1dとを振動させる。 For the upper electrode 1a and the lower electrode 1c, well-known electrodes in this field can be used, and for example, they may be formed of a metal thin film. When the upper electrode 1a and the lower electrode 1c apply a pulse voltage or an alternating voltage to the piezoelectric thin film 1b, the piezoelectric thin film 1b is stretched/extended to vibrate the piezoelectric thin film 1b and the vibrating film 1d.
 なお、圧電MEMS超音波トランスデューサ1は、出射された超音波が測定対象物から反射されて戻ってくる超音波エコーを受信する受信素子としても動作することができる。超音波エコーにより振動膜1dが振動し、この振動によって圧電薄膜1bに応力が加わり、上部電極1aと下部電極1cとの間に電圧が発生するため、これを受信信号として取り出すことができる。 It should be noted that the piezoelectric MEMS ultrasonic transducer 1 can also operate as a receiving element that receives ultrasonic echoes that are emitted ultrasonic waves that are reflected back from the object to be measured. The ultrasonic echo vibrates the vibrating membrane 1d, and this vibration applies stress to the piezoelectric thin film 1b, generating a voltage between the upper electrode 1a and the lower electrode 1c, which can be extracted as a received signal.
 また、上部電極1a及び下部電極1cの構成は、これらの構成に限定されることはなく、これらの電極は、圧電薄膜1bにパルス電圧または交流電圧を与えることによって圧電薄膜1bを伸縮/伸長させて圧電薄膜1bと振動膜1dを振動させることができればよい。本実施形態では、下部電極1cが圧電MEMS超音波トランスデューサ1に個別に設けられた個別電極であり、上部電極1aが上部配線3で複数の圧電MEMS超音波トランスデューサ1に亘って接続された共通電極となっているが、上部電極を個別電極に、下部電極を共通電極となる構成にしてもよい。 Moreover, the configurations of the upper electrode 1a and the lower electrode 1c are not limited to these configurations, and these electrodes expand and contract the piezoelectric thin film 1b by applying a pulse voltage or an alternating voltage to the piezoelectric thin film 1b. It suffices if the piezoelectric thin film 1b and the vibrating film 1d can be vibrated. In this embodiment, the lower electrode 1c is an individual electrode that is individually provided on the piezoelectric MEMS ultrasonic transducer 1, and the upper electrode 1a is a common electrode that is connected across the plurality of piezoelectric MEMS ultrasonic transducers 1 by the upper wiring 3. However, the upper electrode may be the individual electrode, and the lower electrode may be the common electrode.
 圧電薄膜1bは、本分野で周知の圧電体の薄膜により形成される。圧電薄膜1bは、上部電極1aによってその少なくとも一部が覆われ、かつ下部電極1cの少なくとも一部を覆うように形成される。圧電薄膜1bの圧電体としては、例えばPZT(ジルコン酸チタン酸鉛)、チタン酸鉛(PbTiO)、ジルコン酸鉛(PbZrO)、チタン酸鉛ランタン((Pb、La)TiO)等を挙げることができる。 The piezoelectric thin film 1b is formed of a piezoelectric thin film well known in this field. The piezoelectric thin film 1b is formed so as to cover at least a portion of the upper electrode 1a and at least a portion of the lower electrode 1c. Examples of the piezoelectric material of the piezoelectric thin film 1b include PZT (lead zirconate titanate), lead titanate (PbTiO 3 ), lead zirconate (PbZrO 3 ), lead lanthanum titanate ((Pb, La)TiO 3 ), and the like. can be mentioned.
 圧電薄膜1bの平均厚みは、50μm以下、30μm以下、20μm以下、10μm以下、5μm以下、又は3μm以下であってもよく、0.1μm以上、0.3μm以上、0.5μm以上、1μm以上、又は3μm以上であってもよい。圧電薄膜1bの平均厚さは、例えば、0.1μm以上50μm以下、又は0.5μm以上20μm以下であってもよい。 The average thickness of the piezoelectric thin film 1b may be 50 μm or less, 30 μm or less, 20 μm or less, 10 μm or less, 5 μm or less, or 3 μm or less. Alternatively, it may be 3 μm or more. The average thickness of the piezoelectric thin film 1b may be, for example, 0.1 μm or more and 50 μm or less, or 0.5 μm or more and 20 μm or less.
 振動膜1dは、圧電薄膜1bと共に、モノモルフ構造又はバイモルフ構造を構成して、超音波振動子として機能することができる。振動膜1dとしては、シリカ、アルミナ、ジルコニア等の薄膜を用いることができ、例えばシリカ薄膜とジルコニア薄膜との2層構造により構成されていてもよい。ここで、シリカ薄膜は、基板2がシリコン基板である場合、基板表面を熱酸化処理することで成膜することができる。この場合、シリカ薄膜は、シリコン基板2に溝部2aを設ける際に形成されたものであってもよい。また、ジルコニア薄膜は、シリカ薄膜上に例えばスパッタリングなどの手法により成膜することができる。 The vibrating film 1d can form a monomorph structure or a bimorph structure together with the piezoelectric thin film 1b, and can function as an ultrasonic vibrator. A thin film of silica, alumina, zirconia, or the like can be used as the vibrating film 1d. For example, it may have a two-layer structure of a silica thin film and a zirconia thin film. Here, when the substrate 2 is a silicon substrate, the silica thin film can be formed by thermally oxidizing the substrate surface. In this case, the thin silica film may be formed when the grooves 2a are formed in the silicon substrate 2. FIG. A zirconia thin film can be formed on a silica thin film by a method such as sputtering.
 振動膜1dの平均厚みは、10μm以下、5μm以下、3μm以下、1μm以下、0.8μm以下、又は0.5μm以下であってもよく、0.05μm以上、0.1μm以上、0.2μm以上、0.3μm以上、又は0.5μm以上であってもよい。圧電薄膜1bの平均厚さは、例えば、0.05μm以上10μm以下、又は0.3μm以上3μm以下であってもよい。 The average thickness of the diaphragm 1d may be 10 μm or less, 5 μm or less, 3 μm or less, 1 μm or less, 0.8 μm or less, or 0.5 μm or less, and may be 0.05 μm or more, 0.1 μm or more, or 0.2 μm or more. , 0.3 μm or more, or 0.5 μm or more. The average thickness of the piezoelectric thin film 1b may be, for example, 0.05 μm or more and 10 μm or less, or 0.3 μm or more and 3 μm or less.
〈超音波素子チップ10-基板2〉
 基板2は、圧電MEMS超音波トランスデューサ1をMEMSで形成する際の基板であり、例えばシリコン基板である。基板2には、溝部2aが形成されていることが好ましく、これにより圧電薄膜1b及び振動膜1dが振動しやすくなっている。
<Ultrasonic element chip 10 - substrate 2>
The substrate 2 is a substrate for forming the piezoelectric MEMS ultrasonic transducer 1 by MEMS, and is, for example, a silicon substrate. A groove 2a is preferably formed in the substrate 2, so that the piezoelectric thin film 1b and the vibrating film 1d are easily vibrated.
 基板2の溝部2aは、圧電MEMS超音波トランスデューサ1の圧電薄膜1bよりもわずかに大きくすることができる。例えば、基板2の溝部2aの横方向の長さは、500μm以下、300μm以下、200μm以下、100μm以下、50μm以下、又は30μm以下であってもよく、10μm以上、30μm以上、50μm以上、又は100μm以上であってもよい。溝部2aの横方向の長さは、例えば、10μm以上500μm以下、又は30μm以上200μm以下であってもよい。溝部2aの縦方向の長さについては、圧電MEMS超音波トランスデューサ1の上述のアスペクト比を参照して考慮することができる。 The groove 2a of the substrate 2 can be slightly larger than the piezoelectric thin film 1b of the piezoelectric MEMS ultrasonic transducer 1. For example, the lateral length of the groove 2a of the substrate 2 may be 500 μm or less, 300 μm or less, 200 μm or less, 100 μm or less, 50 μm or less, or 30 μm or less, or 10 μm or more, 30 μm or more, 50 μm or more, or 100 μm. or more. The lateral length of the groove 2a may be, for example, 10 μm or more and 500 μm or less, or 30 μm or more and 200 μm or less. The longitudinal length of the groove 2a can be considered with reference to the aspect ratio of the piezoelectric MEMS ultrasonic transducer 1 mentioned above.
 基板2の溝部2a以外の本体部分2bにおける平均厚さは、1000μm以下、800μm以下、500μm以下、300μm以下、150μm以下、100μm以下、80μm以下、60μm以下、50μm以下、40μm以下、又は30μm以下であってもよく、10μm以上、20μm以上、25μm以上、30μm以上、50μm以上、100μm以上、300μm以上、又は500μm以上であってもよい。基板2の本体部分の平均厚さは、例えば、300μm以上1000μm以下であってもよく、又は20μm以上60μm以下であってもよい。 The average thickness of the body portion 2b of the substrate 2 other than the groove portion 2a is 1000 μm or less, 800 μm or less, 500 μm or less, 300 μm or less, 150 μm or less, 100 μm or less, 80 μm or less, 60 μm or less, 50 μm or less, 40 μm or less, or 30 μm or less. 10 μm or more, 20 μm or more, 25 μm or more, 30 μm or more, 50 μm or more, 100 μm or more, 300 μm or more, or 500 μm or more. The average thickness of the body portion of the substrate 2 may be, for example, 300 μm or more and 1000 μm or less, or may be 20 μm or more and 60 μm or less.
 特に、比較的大きな超音波素子チップ10において、シリコン基板を用いる場合の本体部分2bにおける平均厚さは、80μm以下、60μm以下、50μm以下、40μm以下、又は30μm以下であってもよく、10μm以上、20μm以上、25μm以上、又は30μm以上であってもよい。シリコン基板の本体部分の平均厚さは、例えば、10μm以上80μm以下、又は20μm以上60μm以下であってもよい。 In particular, in the relatively large ultrasonic element chip 10, the average thickness of the body portion 2b when using a silicon substrate may be 80 μm or less, 60 μm or less, 50 μm or less, 40 μm or less, or 30 μm or less, or 10 μm or more. , 20 μm or more, 25 μm or more, or 30 μm or more. The average thickness of the body portion of the silicon substrate may be, for example, between 10 μm and 80 μm, or between 20 μm and 60 μm.
 本分野において用いられるシリコン基板は、通常は厚さが500μm~1mmの範囲であり、このようなシリコン基板を用いた超音波素子チップ10は、可撓性を有さない。本発明者らは、厚さが上記のような範囲のシリコン基板を用いることによって、コンベックス型の超音波プローブとして十分な曲率を与える程度の可撓性と実用上十分な強度とを、超音波素子チップ10に与えられることを見出した。また、超音波素子チップ10の基板2側に超音波を発信させる実施形態においても、薄い基板を用いた方が、超音波を効率的に発信させることができるため、この場合にも有利になることがわかった。 A silicon substrate used in this field usually has a thickness in the range of 500 μm to 1 mm, and the ultrasonic element chip 10 using such a silicon substrate does not have flexibility. The present inventors have found that by using a silicon substrate having a thickness within the range described above, it is possible to obtain an ultrasonic wave with a degree of flexibility that provides a sufficient curvature as a convex ultrasonic probe and a practically sufficient strength. It has been found to be applied to the device chip 10. Also, in the embodiment in which ultrasonic waves are transmitted to the substrate 2 side of the ultrasonic element chip 10, it is advantageous to use a thin substrate because ultrasonic waves can be transmitted efficiently. I understood it.
 なお、そのような超音波素子チップ10を得るために、薄い厚さのシリコン基板上に、圧電MEMS超音波トランスデューサ1を形成してもよく、又は厚さのあるシリコン基板上に、圧電MEMS超音波トランスデューサ1を形成してから、シリコン基板を背面から研磨すること等によって、シリコン基板を薄化してもよい。また、シリコン基板を薄化せず、素子形成プロセスで使う通常のシリコン基板の厚さのままでもよい。 In order to obtain such an ultrasonic element chip 10, the piezoelectric MEMS ultrasonic transducer 1 may be formed on a thin silicon substrate, or the piezoelectric MEMS ultrasonic transducer 1 may be formed on a thick silicon substrate. After forming the acoustic wave transducer 1, the silicon substrate may be thinned by, for example, polishing the silicon substrate from the back side. Alternatively, the thickness of the silicon substrate used in the element forming process may be kept as it is, without thinning the silicon substrate.
〈可撓性基材20〉
 可撓性基材20は、本開示の超音波プローブヘッド100を様々な形状にすることができれば、特にその種類は限定されないが、例えば樹脂製のフィルム又はシートを用いることができる。特に、可撓性基材として、フレキシブル印刷基板用のポリイミドフィルムを用いてもよい。また、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)など、フレキシブルエレクトロニクスで利用される樹脂基材を用いてもよい。
<Flexible base material 20>
The type of the flexible base material 20 is not particularly limited as long as the ultrasonic probe head 100 of the present disclosure can be made into various shapes, but for example, a resin film or sheet can be used. In particular, a polyimide film for a flexible printed circuit board may be used as the flexible base material. Moreover, you may use the resin base material utilized by flexible electronics, such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate).
 また、可撓性基材20は、複数の層による積層体であってもよく、そのうちの1層が、音響整合層として機能してもよく、また他の1層が音響レンズとして機能してもよい。 Also, the flexible base material 20 may be a laminate of a plurality of layers, one of which may function as an acoustic matching layer, and the other layer may function as an acoustic lens. good too.
 可撓性基材20の適切な平均厚さは、可撓性基材の材料に応じて変わり、特に限定されないが、例えば、300μm以下、200μm以下、150μm以下、100μm以下、80μm以下、又は50μm以下であってもよく、10μm以上、20μm以上、30μm以上、40μm以上、又は50μm以上であってもよい。可撓性基材20の平均厚さは、例えば、10μm以上300μm以下、又は20μm以上50μm以下であってもよい。 A suitable average thickness of the flexible substrate 20 varies depending on the material of the flexible substrate, and is not particularly limited. 10 μm or more, 20 μm or more, 30 μm or more, 40 μm or more, or 50 μm or more. The average thickness of the flexible substrate 20 may be, for example, 10 μm or more and 300 μm or less, or 20 μm or more and 50 μm or less.
 図1(b)に示すように、可撓性基材20には、複数の開孔20aがあってもよい。この実施形態のように、超音波素子チップ10が開孔20aの位置に存在していることで、超音波素子チップから発振される超音波を、ヘッドから効果的に伝搬させることができる。可撓性基材20と超音波素子チップ10とは、例えば接着剤によって接着することができる。 As shown in FIG. 1(b), the flexible base material 20 may have a plurality of openings 20a. Since the ultrasonic element chip 10 is present at the position of the opening 20a as in this embodiment, the ultrasonic waves oscillated from the ultrasonic element chip can be effectively propagated from the head. The flexible base material 20 and the ultrasonic element chip 10 can be adhered with an adhesive, for example.
 図5は、複数の超音波素子チップ10が間隔を空けて可撓性基材20上に配置されている実施形態の平面図を例示している。図5に示すように、可撓性基材20の開孔20aは、超音波素子チップ10の圧電MEMS超音波トランスデューサ1の圧電薄膜1bが存在する位置に設けられていることが好ましい。 FIG. 5 illustrates a plan view of an embodiment in which a plurality of ultrasonic element chips 10 are spaced apart and arranged on a flexible substrate 20 . As shown in FIG. 5, the opening 20a of the flexible base material 20 is preferably provided at a position where the piezoelectric thin film 1b of the piezoelectric MEMS ultrasonic transducer 1 of the ultrasonic element chip 10 exists.
 図6(a)及び(b)は、超音波素子チップ10と可撓性基材20との位置関係の実施形態を例示している。図6(a)に示すように、圧電MEMS超音波トランスデューサ1が可撓性基材20側に位置し、基板2が可撓性基材20と遠い側に位置し、かつ超音波を可撓性基材20側に向けて発信するように、超音波素子チップ10を構成することができる。この場合において、開孔20aには、音響レンズ30を配置することができる。 6(a) and (b) illustrate an embodiment of the positional relationship between the ultrasonic element chip 10 and the flexible base material 20. FIG. As shown in FIG. 6(a), the piezoelectric MEMS ultrasonic transducer 1 is positioned on the flexible base 20 side, the substrate 2 is positioned farther from the flexible base 20, and the ultrasonic waves are flexibly transmitted. The ultrasonic element chip 10 can be configured so as to transmit toward the base material 20 side. In this case, an acoustic lens 30 can be arranged in the aperture 20a.
 図6(b)に示すように、圧電MEMS超音波トランスデューサ1が可撓性基材20側に位置し、基板2が可撓性基材20と遠い側に位置し、かつ超音波を超音波素子チップ10の基板2側に向けて発信するように、超音波素子チップ10を構成することができる。この実施形態においては、可撓性基材20に開孔は存在していなくてもよい。また、基板2は、超音波の発信効率を高めるために、基板2の厚さが小さいことが好ましい。さらに、特許文献3の図8に記載のようにして、基板2上には、音響レンズ30を配置することができ、基板2の溝部2aには音響整合層が存在していてもよい。 As shown in FIG. 6B, the piezoelectric MEMS ultrasonic transducer 1 is positioned on the flexible base 20 side, the substrate 2 is positioned on the far side from the flexible base 20, and the ultrasonic wave is transmitted to the ultrasonic wave. The ultrasonic element chip 10 can be configured to transmit toward the substrate 2 side of the element chip 10 . In this embodiment, there may be no perforations in the flexible substrate 20 . Moreover, it is preferable that the thickness of the substrate 2 is small in order to improve the transmission efficiency of the ultrasonic waves. Furthermore, as described in FIG. 8 of Patent Document 3, an acoustic lens 30 can be arranged on the substrate 2, and an acoustic matching layer may exist in the groove 2a of the substrate 2. FIG.
〈その他の構成-音響レンズ30〉
 本開示の超音波プローブヘッド100は、図6(a)に示すように、例えば可撓性基材20の開孔20a上に、プローブから出力された超音波を集束させ、分解能を向上させるための音響レンズ30を有していることができる。また、可撓性基材20に開孔20aが存在していない実施形態では、可撓性基材20の材料を選択して、可撓性基材20自体を音響レンズとして機能させることもできる。また、音響レンズは、従来技術において用いられているように、超音波プローブヘッドのカバー部分として構成してもよい。
<Other Configurations - Acoustic Lens 30>
As shown in FIG. 6A, the ultrasonic probe head 100 of the present disclosure focuses ultrasonic waves output from the probe on, for example, an aperture 20a of a flexible base material 20 to improve resolution. of acoustic lenses 30 . Also, in embodiments in which the flexible substrate 20 does not have apertures 20a, the material of the flexible substrate 20 can be selected such that the flexible substrate 20 itself functions as an acoustic lens. . The acoustic lens may also be configured as a cover portion of the ultrasound probe head, as used in the prior art.
 音響レンズは、本分野において周知のものを採用することができ、例えばシリコーンゴム製の音響レンズであってもよい。 A well-known acoustic lens in this field can be adopted, for example, it may be an acoustic lens made of silicone rubber.
 音響レンズ30と超音波素子チップ10とは、接着層によって接着することができ、接着層は、音響整合層を兼ねることができる。それにより、圧電MEMS超音波トランスデューサ1と被験者との音響インピーダンスの差を小さくして、超音波の反射を低減させて、効率よく被験者に超音波を入射させることができる。 The acoustic lens 30 and the ultrasonic element chip 10 can be bonded with an adhesive layer, and the adhesive layer can also serve as an acoustic matching layer. As a result, the difference in acoustic impedance between the piezoelectric MEMS ultrasonic transducer 1 and the subject can be reduced, the reflection of ultrasonic waves can be reduced, and the ultrasonic waves can be efficiently incident on the subject.
〈その他の構成-フレキシブル印刷基板40及びワイヤーボンディング50〉
 図7(a)及び(b)は、超音波素子チップ10がフレキシブル印刷基板40と接続する実施形態を例示している。図7(a)に示すように、本開示の超音波プローブヘッド100は、フレキシブル印刷基板40と、超音波素子チップ10の圧電MEMS超音波トランスデューサ1にある上部配線端子3a及び下部配線端子4aとを接続して、電気的な信号を送受信することができる。
<Other Configurations - Flexible Printed Board 40 and Wire Bonding 50>
7A and 7B illustrate an embodiment in which the ultrasonic element chip 10 is connected to the flexible printed circuit board 40. FIG. As shown in FIG. 7A, the ultrasonic probe head 100 of the present disclosure includes a flexible printed board 40, upper wiring terminals 3a and lower wiring terminals 4a in the piezoelectric MEMS ultrasonic transducer 1 of the ultrasonic element chip 10. can be connected to send and receive electrical signals.
 フレキシブル印刷基板40は、本分野において周知のものを採用することができ、例えばポリイミド系のフィルムに金属配線を形成した基板を用いることができる。 For the flexible printed board 40, one well known in this field can be adopted. For example, a board in which metal wiring is formed on a polyimide film can be used.
 例えば、フレキシブル印刷基板40と、上部配線端子3a及び下部配線端子4aとは、ワイヤーボンディング50によって接続することができる。フレキシブル印刷基板40と上部配線端子3a及び下部配線端子4aとの接続は、ワイヤーボンディング50に限られるわけではなく、異方性導電フィルム(ACF:Anisotropic Conductive Film)など周知の接続方法を使用することができ、またワイヤーボンディング50を接続方法として用いる場合は、本分野において周知のものを採用することができる。 For example, the flexible printed board 40, the upper wiring terminal 3a and the lower wiring terminal 4a can be connected by wire bonding 50. The connection between the flexible printed board 40 and the upper wiring terminal 3a and the lower wiring terminal 4a is not limited to the wire bonding 50, and a known connection method such as an anisotropic conductive film (ACF) may be used. and, when wire bonding 50 is used as the connection method, any method known in the art can be employed.
 図7(a)及び(b)に示すように、超音波素子チップ10と可撓性基材20とが、図6(a)の実施形態で示すように配置され、それらの接合面において、フレキシブル印刷基板40がワイヤーボンディング50を通じて上部配線端子3a及び下部配線端子4aに接続している場合、超音波プローブヘッド100がどのような形状であっても、上部配線端子3a及び下部配線端子4aとフレキシブル印刷基板40との接続の安全性が高く、ワイヤーボンディング50の断線等が起こりにくいため好ましい。 As shown in FIGS. 7A and 7B, the ultrasonic element chip 10 and the flexible substrate 20 are arranged as shown in the embodiment of FIG. When the flexible printed board 40 is connected to the upper wiring terminal 3a and the lower wiring terminal 4a through the wire bonding 50, the upper wiring terminal 3a and the lower wiring terminal 4a can be connected regardless of the shape of the ultrasonic probe head 100. This is preferable because the safety of the connection with the flexible printed circuit board 40 is high and disconnection of the wire bonding 50 is less likely to occur.
《超音波プローブ》
 本開示の超音波プローブは、上記のような超音波プローブヘッド、及び超音波プローブヘッドのヘッド形状を構成するヘッド形状構成部材を少なくとも具備する。ヘッド形状構成部材は、超音波プローブヘッドの可撓性基材を変形させることができれば特に限定されない。本開示の超音波プローブは、超音波プローブとして有用な他の構成を具備することができる。
《Ultrasonic Probe》
The ultrasonic probe of the present disclosure includes at least the ultrasonic probe head as described above and a head-shaped constituent member that forms the head shape of the ultrasonic probe head. The head-shaped component is not particularly limited as long as it can deform the flexible base material of the ultrasonic probe head. The ultrasound probes of the present disclosure can have other configurations useful as ultrasound probes.
 ヘッド形状構成部材としては、特許文献1のような従来技術において、ヘッド形状をコンベックス型等とするために用いられているヘッド形状構成部材をそのまま用いることができ、例えばリニア型、コンベックス型、又はコンケーブ型のバッキング材であってもよい。ヘッド形状構成部材は、コンベックス型等の形状を有していてもよく、又はその形状を変更できるようになっており、例えばリニア型とコンベックス型とが切替可能になっていてもよい。形状の型式が変更可能なヘッド形状構成部材を採用し、かつ携帯型の超音波診断装置に本開示のプローブヘッドを用いたプローブを採用した場合、2つのプローブを携帯する必要がないため、その超音波診断装置は、院外での使用時、救急用での使用時等に極めて有利である。 As the head shape constituent member, it is possible to use the head shape constituent member used to make the head shape such as a convex shape in the prior art such as Patent Document 1 as it is. It may be a concave backing material. The head-shaped component may have a shape such as a convex shape, or may have a changeable shape, for example, may be switchable between a linear shape and a convex shape. When adopting a head-shaped component whose shape type can be changed and adopting a probe using the probe head of the present disclosure in a portable ultrasonic diagnostic apparatus, there is no need to carry two probes. Ultrasound diagnostic equipment is extremely advantageous when used outside hospitals, when used for emergencies, and the like.
 図8は、本開示の超音波プローブヘッド100及びコンベックス型の形状を有するヘッド形状構成部材110を含む超音波プローブ200の先端部分の断面図の一例を示している。また、図9は、その斜視図を示している。この超音波プローブヘッド100は、各超音波素子チップ10に対応する位置の可撓性基材20に、開孔20aが存在している。各超音波素子チップ10には、フレキシブル印刷基板40が接続している。 FIG. 8 shows an example of a cross-sectional view of a tip portion of an ultrasonic probe 200 including the ultrasonic probe head 100 of the present disclosure and a head-shaped component 110 having a convex shape. Moreover, FIG. 9 has shown the perspective view. This ultrasonic probe head 100 has openings 20 a in the flexible base material 20 at positions corresponding to the respective ultrasonic element chips 10 . A flexible printed circuit board 40 is connected to each ultrasonic element chip 10 .
 図10は、本開示の超音波プローブヘッドをリニア型とコンベックス型とで切り替えている例を示している。図10に示すように、ヘッド形状構成部材110は、超音波プローブヘッド100の中心部及び両端部の少なくとも3点を支持し、その支持部材の位置関係を変更することによって、超音波プローブヘッド100の形状を変化させる部材であることができる。 FIG. 10 shows an example of switching the ultrasonic probe head of the present disclosure between a linear type and a convex type. As shown in FIG. 10, the head-shaped component 110 supports at least three points of the center and both ends of the ultrasonic probe head 100, and by changing the positional relationship of the support members, the ultrasonic probe head 100 can be a member that changes the shape of
 図10(a)に示すように、超音波プローブヘッド100を中心部で支持する中心部支持部材111及び超音波プローブヘッド100の端部で支持する端部支持部材112をワイヤ113でつないでいる。この実施形態では、図10(b)に示すように、中心部支持部材111にあるスプール111aでワイヤ113を巻き上げることで、支持部材の位置関係を変更し、超音波プローブヘッド100に湾曲を形成しているが、中心部以外の複数の位置を支持することで、超音波プローブヘッド100を多様な形状に変化させてもよい。 As shown in FIG. 10A, a wire 113 connects a center support member 111 that supports the ultrasonic probe head 100 at the center and an end support member 112 that supports the end of the ultrasonic probe head 100 . . In this embodiment, as shown in FIG. 10(b), the wire 113 is wound by the spool 111a on the central support member 111 to change the positional relationship of the support members and form a curve in the ultrasonic probe head 100. However, the ultrasound probe head 100 may be transformed into a variety of shapes by supporting multiple locations other than the central portion.
 ヘッド形状構成部材110は、ラックアンドピニオン機構を利用して、支持部材(111,112)間の距離を変えて、超音波プローブヘッド100の形状を制御する構成であってもよい。 The head shape component 110 may be configured to control the shape of the ultrasonic probe head 100 by changing the distance between the support members (111, 112) using a rack and pinion mechanism.
 図10に記載の実施形態では、ヘッド形状構成部材110は、プローブヘッド100の裏面側から支持する可撓性裏面基材114をさらに含む。このような裏面基材に対して上記のように力を加えることで、ヘッド形状を制御することができる。 In the embodiment shown in FIG. 10, the head-shaped component 110 further includes a flexible back substrate 114 that supports the probe head 100 from the back side. The head shape can be controlled by applying force to such a back substrate as described above.
 図11は、図10に記載の実施形態の超音波プローブヘッドを用いた場合の超音波プローブの先端部分における断面図を例示している。超音波ブローブ200の筐体120と超音波プローブヘッド100との間には、封止部材140が存在していてもよい。封止部材140は、筐体120内に水分等が侵入するのを防止できれば特に限定されないが、例えばシリコーンゴムであってもよい。 FIG. 11 illustrates a cross-sectional view of the tip portion of the ultrasonic probe when using the ultrasonic probe head of the embodiment shown in FIG. A sealing member 140 may be present between the housing 120 of the ultrasound probe 200 and the ultrasound probe head 100 . The sealing member 140 is not particularly limited as long as it can prevent moisture or the like from entering the housing 120, but may be silicone rubber, for example.
《超音波診断装置》
 本開示の超音波診断装置は、上記の超音波プローブ、超音波プローブからの信号を処理する処理部、及び処理部からの信号を画像データに変換して表示する表示装置を少なくとも具備する。信号の送受信及び処理並びに超音波プローブの制御については、例えば特許文献2~4に記載のような本分野で周知の方法によって行うことができる。
《Ultrasound diagnostic device》
An ultrasonic diagnostic apparatus of the present disclosure includes at least the above-described ultrasonic probe, a processing unit that processes signals from the ultrasonic probe, and a display device that converts the signals from the processing unit into image data and displays the image data. Transmission, reception and processing of signals and control of the ultrasound probe can be performed by methods well known in the art, such as those described in Patent Documents 2-4.
 図12は、本開示の超音波診断装置を例示している。本開示の超音波診断装置1000は、超音波プローブ200及び表示装置300を具備しており、超音波プローブ200と表示装置300とは、ケーブル400で接続されている。この実施形態では、超音波診断装置1000は、持ち運び可能な装置であるが、据置型の装置であってもよい。また、この実施形態では、超音波プローブ200と表示装置300とはケーブル400で接続されているが、無線で接続することもできる。超音波プローブからの信号を処理する処理部は、図示されていないが、超音波プローブ内に存在していてもよく、又は表示装置300に存在していてもよい。 FIG. 12 illustrates an ultrasonic diagnostic apparatus of the present disclosure. An ultrasound diagnostic apparatus 1000 of the present disclosure includes an ultrasound probe 200 and a display device 300 , and the ultrasound probe 200 and display device 300 are connected by a cable 400 . In this embodiment, the ultrasonic diagnostic apparatus 1000 is a portable apparatus, but may be a stationary apparatus. Moreover, in this embodiment, the ultrasonic probe 200 and the display device 300 are connected by a cable 400, but they can be connected wirelessly. A processing unit that processes signals from the ultrasound probe is not shown, but may reside in the ultrasound probe or may reside in the display device 300 .
1 圧電MEMS超音波トランスデューサ
1a 上部電極
1b 圧電薄膜
1c 下部電極
1d 振動膜
1e 絶縁膜
2 基板
2a 溝部
2b 本体部分
3 上部配線
3a 上部配線端子
4 下部配線
4a 下部配線端子
10 超音波素子チップ
20 可撓性基材
20a 開孔
30 音響レンズ
40 フレキシブル印刷基板
50 ワイヤーボンディング
100 超音波プローブヘッド
110 ヘッド形状構成部材
111 中心部支持部材
111a スプール
112 端部支持部材
113 ワイヤ
114 可撓性裏面基材
120 筐体
140 封止部材
200 超音波プローブ
300 表示装置
400 ケーブル
1000 超音波診断装置

 
1 Piezoelectric MEMS ultrasonic transducer 1a Upper electrode 1b Piezoelectric thin film 1c Lower electrode 1d Vibration film 1e Insulating film 2 Substrate 2a Groove 2b Body portion 3 Upper wiring 3a Upper wiring terminal 4 Lower wiring 4a Lower wiring terminal 10 Ultrasonic element chip 20 Flexible flexible substrate 20a aperture 30 acoustic lens 40 flexible printed substrate 50 wire bonding 100 ultrasonic probe head 110 head-shaped component 111 central support member 111a spool 112 end support member 113 wire 114 flexible back substrate 120 housing 140 Sealing member 200 Ultrasonic probe 300 Display device 400 Cable 1000 Ultrasonic diagnostic device

Claims (9)

  1.  複数の超音波素子チップが間隔を空けて可撓性基材上に配置されており、かつ前記複数の超音波素子チップのそれぞれが、複数の圧電MEMS超音波トランスデューサを基板上に含む、超音波プローブヘッド。 wherein a plurality of ultrasonic element chips are spaced apart on a flexible substrate, and each of said plurality of ultrasonic element chips includes a plurality of piezoelectric MEMS ultrasonic transducers on a substrate. probe head.
  2.  前記可撓性基材が、複数の開孔を有しており、かつ前記複数の超音波素子チップが、前記複数の開孔の位置に存在している、請求項1に記載の超音波プローブヘッド。 2. The ultrasonic probe according to claim 1, wherein said flexible base material has a plurality of apertures, and said plurality of ultrasonic element chips are present at positions of said plurality of apertures. head.
  3.  前記圧電MEMS超音波トランスデューサが、上部電極、圧電薄膜、及び下部電極をこの順に含み、前記上部電極が、前記可撓性基材側に向いており、かつ前記下部電極が、前記基板側に向いている、請求項1又は2に記載の超音波プローブヘッド。 The piezoelectric MEMS ultrasonic transducer includes an upper electrode, a piezoelectric thin film, and a lower electrode in this order, the upper electrode facing the flexible base and the lower electrode facing the substrate. 3. The ultrasonic probe head of claim 1 or 2, comprising:
  4.  前記圧電MEMS超音波トランスデューサが、一次元的または二次元的に配列しており、前記超音波素子チップのそれぞれにおいて、前記上部電極および前記下部電極は、それぞれ上部配線および下部配線によって前記超音波素子チップの外縁に設けられた上部配線端子および下部配線端子に接続している、請求項3に記載の超音波プローブヘッド。 The piezoelectric MEMS ultrasonic transducers are arranged one-dimensionally or two-dimensionally, and in each of the ultrasonic element chips, the upper electrode and the lower electrode are connected to the ultrasonic element by upper wiring and lower wiring, respectively. 4. The ultrasonic probe head of claim 3, connected to upper wiring terminals and lower wiring terminals provided on the outer edge of the chip.
  5.  前記複数の超音波素子チップのそれぞれの少なくとも1辺が、1mm~5mmであり、厚さが1mm以下である、請求項1~4のいずれか一項に記載の超音波プローブヘッド。 The ultrasonic probe head according to any one of claims 1 to 4, wherein each of the plurality of ultrasonic element chips has at least one side of 1 mm to 5 mm and a thickness of 1 mm or less.
  6.  前記複数の超音波素子チップの間隔のそれぞれが、0.1mm~3mmの範囲である、請求項1~5のいずれか一項に記載の超音波プローブヘッド。 The ultrasonic probe head according to any one of claims 1 to 5, wherein each interval between the plurality of ultrasonic element chips ranges from 0.1 mm to 3 mm.
  7.  前記複数の超音波素子チップの間隙のそれぞれに、剛性部材を含まない、請求項1~6のいずれか一項に記載の超音波プローブヘッド。 The ultrasonic probe head according to any one of claims 1 to 6, wherein each gap between the plurality of ultrasonic element chips does not contain a rigid member.
  8.  請求項1~7のいずれか一項に記載の超音波プローブヘッド、及び前記超音波プローブヘッドのヘッド形状を構成するヘッド形状構成部材を少なくとも具備する、超音波プローブ。 An ultrasonic probe comprising at least the ultrasonic probe head according to any one of claims 1 to 7, and a head-shaped component forming a head shape of the ultrasonic probe head.
  9.  請求項8に記載の超音波プローブ、前記超音波プローブからの信号を処理する処理部、及び前記処理部からの信号を画像に変換して表示する表示装置を少なくとも具備する、超音波診断装置。

     
    9. An ultrasonic diagnostic apparatus comprising at least the ultrasonic probe according to claim 8, a processing section that processes a signal from the ultrasonic probe, and a display device that converts the signal from the processing section into an image and displays the image.

PCT/JP2022/016021 2021-03-31 2022-03-30 Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus WO2022210887A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511484A JPWO2022210887A1 (en) 2021-03-31 2022-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059901 2021-03-31
JP2021059901 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210887A1 true WO2022210887A1 (en) 2022-10-06

Family

ID=83459527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016021 WO2022210887A1 (en) 2021-03-31 2022-03-30 Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus

Country Status (2)

Country Link
JP (1) JPWO2022210887A1 (en)
WO (1) WO2022210887A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350700A (en) * 2003-05-26 2004-12-16 Olympus Corp Ultrasonic endoscope apparatus
JP2006247130A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Ultrasonic probe and manufacturing method thereof
JP2013144063A (en) * 2012-01-16 2013-07-25 Olympus Medical Systems Corp Ultrasound unit, ultrasonic endoscope, and method of manufacturing ultrasound unit
JP2013258624A (en) * 2012-06-14 2013-12-26 Seiko Epson Corp Ultrasonic transducer element package, ultrasonic transducer element chip, probe, probe head, electronic apparatus, ultrasonic diagnostic device, and manufacturing method of ultrasonic transducer element package
JP2014086934A (en) * 2012-10-25 2014-05-12 Seiko Epson Corp Ultrasonic measurement apparatus, head unit, probe and diagnosis device
JP2016529834A (en) * 2013-08-26 2016-09-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasonic transducer assembly and method for manufacturing an ultrasonic transducer assembly
US20170256699A1 (en) * 2016-03-01 2017-09-07 Qualcomm Incorporated Sensor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350700A (en) * 2003-05-26 2004-12-16 Olympus Corp Ultrasonic endoscope apparatus
JP2006247130A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Ultrasonic probe and manufacturing method thereof
JP2013144063A (en) * 2012-01-16 2013-07-25 Olympus Medical Systems Corp Ultrasound unit, ultrasonic endoscope, and method of manufacturing ultrasound unit
JP2013258624A (en) * 2012-06-14 2013-12-26 Seiko Epson Corp Ultrasonic transducer element package, ultrasonic transducer element chip, probe, probe head, electronic apparatus, ultrasonic diagnostic device, and manufacturing method of ultrasonic transducer element package
JP2014086934A (en) * 2012-10-25 2014-05-12 Seiko Epson Corp Ultrasonic measurement apparatus, head unit, probe and diagnosis device
JP2016529834A (en) * 2013-08-26 2016-09-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ultrasonic transducer assembly and method for manufacturing an ultrasonic transducer assembly
US20170256699A1 (en) * 2016-03-01 2017-09-07 Qualcomm Incorporated Sensor device

Also Published As

Publication number Publication date
JPWO2022210887A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
EP1810619B1 (en) Capacitive ultrasonic transducer and endo cavity ultrasonic diagnosis system using the same
CN106269451B (en) Piezoelectric transducer using micro-dome array
EP1911529A1 (en) Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic apparatus
JP4839176B2 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus
US7530151B2 (en) Vibrator array, manufacturing method thereof, and ultrasonic probe
JP5019997B2 (en) Ultrasonic transducer, ultrasonic diagnostic apparatus and ultrasonic microscope
US8770030B2 (en) Ultrasonic transmitter and receiver with compliant membrane
JP4516451B2 (en) Ultrasonic probe and method for producing ultrasonic probe
US6614143B2 (en) Class V flextensional transducer with directional beam patterns
US20180146951A1 (en) Ultrasonic transducer and ultrasonic probe
US8667846B2 (en) Method of operating an ultrasonic transmitter and receiver
JP7028013B2 (en) Ultrasonic probe and ultrasonic diagnostic equipment
JP4774394B2 (en) Ultrasonic transducer, ultrasonic transducer manufacturing method, ultrasonic diagnostic apparatus, and ultrasonic microscope
WO2022210887A1 (en) Ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic apparatus
US11331693B2 (en) Ultrasonic transducer array and ultrasonic probe
JP2015100093A (en) Ultrasonic device and probe, and electronic apparatus and ultrasonic image device
WO2022210851A1 (en) Flexible ultrasonic probe head, ultrasonic probe, and ultrasonic diagnostic device
JP3787725B2 (en) Ultrasonic vibrator and manufacturing method thereof
JP2020115940A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
WO2021125087A1 (en) Ultrasound device and ultrasonic diagnostic apparatus
KR102623559B1 (en) Ultrasound prove
JP2019165307A (en) Ultrasonic sensor
CN114950925B (en) Flexible extensible micro-electromechanical system ultrasonic array and medical ultrasonic diagnostic equipment
JP2018029315A (en) Ultrasonic transducer, ultrasonic probe using the same, and electronic apparatus
JP2022167662A (en) Ultrasound device and ultrasound diagnostic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511484

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781097

Country of ref document: EP

Kind code of ref document: A1