WO2022210780A1 - Side-chain alkyl-modified silicone resin - Google Patents

Side-chain alkyl-modified silicone resin Download PDF

Info

Publication number
WO2022210780A1
WO2022210780A1 PCT/JP2022/015684 JP2022015684W WO2022210780A1 WO 2022210780 A1 WO2022210780 A1 WO 2022210780A1 JP 2022015684 W JP2022015684 W JP 2022015684W WO 2022210780 A1 WO2022210780 A1 WO 2022210780A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
modified silicone
side chain
formula
chain type
Prior art date
Application number
PCT/JP2022/015684
Other languages
French (fr)
Japanese (ja)
Inventor
浩也 石田
マニシュ カヤル
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2023511421A priority Critical patent/JPWO2022210780A1/ja
Publication of WO2022210780A1 publication Critical patent/WO2022210780A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to a side-chain alkyl-modified silicone resin and a resin composite material containing the side-chain alkyl-modified silicone resin.
  • Heat-dissipating silicone greases are used to dissipate heat generated from various electronic devices, and are generally materials containing silicone resins (matrix resins) and fillers, and are required to have high thermal conductivity and flexibility. .
  • a filler with high thermal conductivity increase the filling rate of the filler, and improve the thermal conductivity of the matrix resin.
  • Non-Patent Document 1 examples of introducing an alkyl group into a silicone chain (Patent Documents 1 to 5) and introducing a liquid crystal site into a silicone chain (Non-Patent Document 1) have also been reported as methods of improving the thermal conductivity of a matrix resin. ing.
  • Patent Documents 1 to 5 do not describe the relationship between the type of alkyl group to be introduced into the silicone resin, the introduction rate of the alkyl group, and the thermal conductivity. It is not clear whether it improves the thermal conductivity of In Non-Patent Document 1, crystallinity is improved by introducing a liquid crystal moiety into a silicone chain to improve thermal conductivity. As described above, there are almost no examples of specific methods for improving the thermal conductivity of the silicone resin itself, and solutions are lacking. Accordingly, an object of the present invention is to provide a silicone resin having high thermal conductivity while maintaining flexibility.
  • the present inventors have made intensive studies to achieve the above object, and as a result, have found that a side chain type alkyl-modified silicone resin represented by the formula (1) in which a specific amount of a long-chain alkyl group with a specific carbon number is introduced
  • the inventors have found that the above problems can be solved, and completed the present invention. That is, the present invention relates to the following [1] to [8].
  • a side chain type alkyl-modified silicone resin represented by the following general formula (1).
  • R 1 is a hydrogen atom or an alkenyl group
  • R 2 is a long-chain alkyl group with 8 to 18 carbon atoms
  • R 3 is an ethyl group
  • w, x, and y are each Represents the number of structural units, w and y may each be 0, and the ratio of x to the sum of w, x and y is 80 to 100%.
  • [6] The side chain type alkyl-modified silicone resin according to any one of [1] to [4] above, wherein the ratio of y to the sum of w, x and y in formula (1) is 0%.
  • [7] The side chain type alkyl-modified silicone resin according to any one of [1] to [6] above, which has a weight average molecular weight of 5,000 to 20,000.
  • [8] A resin composite material containing the side chain type alkyl-modified silicone resin according to any one of [1] to [7] above and an insulating thermally conductive filler.
  • the side chain type alkyl-modified silicone resin of the present invention is represented by the following general formula (1).
  • R 1 is a hydrogen atom or an alkenyl group
  • R 2 is a long-chain alkyl group with 8 to 18 carbon atoms
  • R 3 is an ethyl group
  • w, x, and y are each Represents the number of structural units, w and y may each be 0, and the ratio of x to the sum of w, x and y is 80 to 100%.
  • the structural unit in parentheses indicated by w may be described as "structural unit having R 1 "
  • the structural unit in parentheses indicated by x may be described as "structural unit having R 2 ".
  • side-chain type refers to a type in which the chemical species is attached to the central portion of the polymer backbone molecule.
  • the side chain type alkyl-modified silicone resin of the present invention has the structure of general formula (1), it maintains flexibility and improves thermal conductivity. Although the reason why the thermal conductivity is improved is not clear, it is presumed as follows. In order to improve the thermal conductivity of resin, it is effective to increase phonon propagation in polymer chains. An alkyl chain formed from a C--C--C bond has a wider bond angle and less strain than a silicone chain formed from a Si--O--Si bond, thereby improving phonon propagation. Furthermore, as shown in formula (1), since the long-chain alkyl group is introduced into the side chain of the silicone chain, the introduction rate of the alkyl group can be increased compared to introducing it into the terminal.
  • the thermal conductivity is improved because many long-chain alkyl groups capable of enhancing phonon propagation are introduced.
  • the alkyl group introduced into the side chain increases the radius of gyration of the polymer molecule and lengthens the molecular retention length, thereby improving the thermal conductivity.
  • R1 is a hydrogen atom or an alkenyl group.
  • the alkenyl group is preferably an alkenyl group having 2 to 10 carbon atoms, such as vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, and the like. can be mentioned.
  • w represents the number of structural units having R 1 , preferably 0-10, more preferably 0-5.
  • the ratio of w to the sum of w, x, and y is preferably 0% or more than 0% and 20% or less, and more preferably 0% or less than 0%. more than 10% or less.
  • the ratio of w is within this range, aggregation of the side chain type alkyl-modified silicone resin can be suppressed, and good flexibility can be maintained.
  • R 1 represents a hydrogen atom or an alkenyl group bonded to a silicon atom, it is a highly reactive site. Therefore, the side chain type alkyl-modified silicone resin of the present invention having R 1 can form a cured product by an addition reaction with an alkenyl group-containing organopolysiloxane or hydrogen organopolysiloxane.
  • R 2 is a long-chain alkyl group having 8 to 18 carbon atoms.
  • the side chain type alkyl-modified silicone resin of the present invention can increase the thermal conductivity by allowing such long-chain alkyl groups to exist in the side chains in a specific ratio.
  • R 2 is an alkyl group having less than 8 carbon atoms, it becomes difficult to increase thermal conductivity.
  • R 2 is an alkyl group having more than 18 carbon atoms, the flexibility tends to decrease due to an increase in viscosity.
  • R 2 is preferably a long-chain alkyl group having 10 to 18 carbon atoms, more preferably a long-chain alkyl group having 10 to 16 carbon atoms.
  • x represents the number of structural units having R 2 , preferably 10-100, more preferably 15-70. Also, in formula (1), the ratio of x to the sum of w, x and y is preferably 80 to 100%. If the proportion of x is less than 80%, it becomes difficult to increase the thermal conductivity of the side chain type alkyl-modified silicone resin. The proportion of x is preferably 85-100%, more preferably 90-100%, still more preferably 95-100%.
  • the long-chain alkyl group represented by R 2 is preferably a linear long-chain alkyl group from the viewpoint of improving thermal conductivity.
  • Linear long-chain alkyl groups include, for example, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n- Examples include pentadecyl, n-hexadecyl, n-heptadecyl and n-octadecyl groups.
  • a plurality of R 2 in formula (1) may be the same or different, but are preferably the same from the standpoint of ease of production.
  • R3 is an ethyl group.
  • y represents the number of structural units having R 3 , preferably 0-10, more preferably 0-5.
  • the ratio of y to the sum of w, x, and y is preferably 0% or more than 0% and 20% or less, more preferably 0%, or It is more than 0% and 10% or less.
  • the ratio of the structural unit having R 1 , the structural unit having R 2 , and the structural unit having R 3 is as described above, and each structure in the molecular chain
  • the arrangement of units is not limited. That is, each structural unit may exist in a molecule in a block-like manner, or may exist randomly.
  • the weight average molecular weight of the side chain type alkyl-modified silicone resin of the present invention is not particularly limited, but is preferably 5,000 to 20,000, more preferably 7,000 to 18,000. When the weight-average molecular weight is within such a range, the viscosity can be adjusted appropriately and the flexibility can be easily maintained.
  • the weight average molecular weight is a value determined by gel permeation chromatography (GPC) measurement and polystyrene conversion.
  • the method for producing the side chain type alkyl-modified silicone resin of the present invention is not particularly limited.
  • a method comprising the step of reacting with a hydrocarbon having 8 to 18 carbon atoms and having a double bond can be mentioned.
  • m is 10 to 200, preferably 10 to 120, more preferably 15 to 80.
  • part or all of the hydrosilyl group (SiH) of formula (2) reacts with a hydrocarbon having 8 to 18 carbon atoms having an unsaturated double bond, and A building block with R 2 can be formed.
  • the amount of R 2 introduced can be adjusted to a desired amount by adjusting the amount of the hydrocarbon having 8 to 18 carbon atoms and having an unsaturated double bond to be blended.
  • the reaction temperature and reaction time may be appropriately adjusted.
  • the reaction temperature is preferably 40 to 120° C., and the reaction time is preferably 1 to 24 hours.
  • the reaction may be performed in the presence of a solvent.
  • the type of solvent is not particularly limited, and may be appropriately adjusted according to the type of hydrocarbon having an unsaturated double bond, but toluene is preferred from the viewpoint of solubility of the synthesized product, reaction temperature, and the like.
  • ⁇ -olefins having 8 to 18 carbon atoms are preferable, specifically 1-octene, 1-nonene, 1-decene, 1-undecene. , 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene and 1-octadecene.
  • ethylene is further added to the reaction to reduce the number of remaining hydrosilyl groups in formula (2) as necessary. You may let Thereby, a structural unit having R 3 in formula (1) can be formed.
  • a side chain type alkyl-modified silicone resin represented by formula (1) in which R 1 is a hydrogen atom can be obtained.
  • R 1 is an alkenyl group
  • a hydrocarbon having two unsaturated double bonds preferably a hydrocarbon having 4 to 18 carbon atoms having unsaturated double bonds at both ends is added to obtain a hydrosilyl group. It may be reacted with a group.
  • the resin composite material of the present invention contains the side chain type alkyl-modified silicone resin represented by the general formula (1) and an insulating thermally conductive filler.
  • a side-chain alkyl-modified resin serves as a matrix resin, and an insulating thermally conductive filler is dispersed in the matrix resin.
  • the side chain type alkyl-modified silicone resin of the present invention is excellent in thermal conductivity, so that the combined use of an insulating thermally conductive filler improves the thermal conductivity more effectively.
  • the content of the side-chain alkyl-modified silicone resin in the resin composite material is not particularly limited, and may be appropriately adjusted while considering the dispersibility and thermal conductivity of the insulating thermally conductive filler, preferably 10 to 97. % by mass, more preferably 50 to 95% by mass.
  • the resin composite material of the present invention contains an insulating thermally conductive filler.
  • the insulating properties and thermal conductivity of the resin composite material can be improved.
  • the average particle diameter of the insulating thermally conductive filler is not particularly limited, it is preferably 0.1 ⁇ m or more and 250 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 100 ⁇ m or less.
  • the average particle size can be measured by, for example, a laser diffraction method, and the particle size (d50) when the cumulative volume is 50% may be taken as the average particle size.
  • the insulating thermally conductive filler has, for example, an insulating property with a volume resistivity of preferably 1.0 ⁇ 10 10 ⁇ cm or more at 20° C., and a thermal conductivity with a thermal conductivity of preferably 10 W/m ⁇ K or more. have Volume resistivity can be measured according to JIS C2141.
  • the thermal conductivity can be measured, for example, by a periodic heating thermoreflectance method using a thermal microscope manufactured by Bethel Co., Ltd. on a cross section of the filler cut by a cross section polisher.
  • the content of the insulating thermally conductive filler is not particularly limited, but is preferably 10 to 97 parts by mass, more preferably 50 to 95 parts by mass with respect to 100 parts by mass of the side chain type alkyl-modified silicone resin.
  • the content of the insulating thermally conductive filler is at least these lower limits, the thermal conductivity of the resin composite material increases.
  • the content of the insulating thermally conductive filler is not more than these upper limits, it is possible to prevent the resin composite material from becoming unnecessarily hard or from being difficult to handle.
  • the type of insulating thermally conductive filler is not particularly limited, but examples thereof include aluminum oxide, magnesium oxide, boron nitride, boron nitride nanotubes, aluminum nitride, and diamond.
  • One type of the insulating thermally conductive filler may be used alone, or two or more types may be used in combination.
  • the resin composite material may contain other silicone resins other than the side chain type alkyl-modified silicone resin represented by the general formula (1), if necessary, as long as the effects of the present invention are not impaired.
  • Other silicone resins may be silicone resins having reactive groups such as alkenyl groups, hydrosilyl groups, and alkoxy groups, or silicone resins having no reactive groups. When containing other silicone resins, the content thereof is preferably 50% by mass or less, more preferably 30% by mass or less, and even more preferably 10% by mass or less, relative to the resin composite material.
  • the resin composite material of the present invention may contain additives such as dispersants, antioxidants, heat stabilizers, colorants, flame retardants, and antistatic agents, if necessary.
  • the application of the resin composite material of the present invention is not particularly limited, but for example, it can be used for various heat dissipation applications as heat dissipation silicone grease.
  • the resin composite material can be placed between an electronic component such as a semiconductor element and a heat sink to effectively dissipate heat generated from the electronic component.
  • the evaluation method for each compound (silicone resin) in each example and comparative example is as follows.
  • the thermal conductivity of each compound of each example and comparative example was measured by TCi manufactured by C-Therm, and evaluated based on the following evaluation criteria. (evaluation) AA: 0.165 W/mK or more A: 0.160 W/mK or more and less than 0.165 W/mK B: 0.150 W/mK or more and less than 0.160 W/mK C: 0.150 W/ less than mK
  • the side chain type alkyl-modified silicone resins used in Examples and Comparative Examples were prepared as Compounds 1 to 5 and Comparative Compounds 1 to 13 shown below.
  • Compound 5 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
  • Comparative compound 3 As comparative compound 3, commercial product 1 (“KF-96-50cst” manufactured by Shin-Etsu Chemical Co., Ltd.) having the following structure was used.
  • Comparative compound 4 As comparative compound 4, commercial product 2 (“KF-96-200cst” manufactured by Shin-Etsu Chemical Co., Ltd.) having the following structure was used.
  • Comparative compound 5 As comparative compound 5, commercial product 3 (“KF-96-1000cst” manufactured by Shin-Etsu Chemical Co., Ltd.) having the following structure was used.
  • Comparative compound 6 As comparative compound 6, commercial product 4 (“KF-96H-6000cst” manufactured by Shin-Etsu Chemical Co., Ltd.) having the following structure was used.
  • Example 1 Thermal conductivity, initial shape, solubility in silicone, and change over time (gelation) were evaluated using Compound 1, which is the side chain type alkyl-modified silicone resin of the present invention produced as described above, as a sample. Table 2 shows the results.
  • the compound (side-chain alkyl-modified silicone resin) of each example that satisfies the requirements of the present invention had high thermal conductivity, and had good solubility in silicone and good results of change over time. was excellent.
  • the compounds of each comparative example had a lower thermal conductivity than the compounds of the examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicon Polymers (AREA)

Abstract

This side-chain alkyl-modified silicone resin is represented by general formula (1). (In formula (1), R1 is a hydrogen atom or an alkenyl group; R2 is a C8-18 long-chain alkyl group; R3 is a methyl group or an ethyl group; w, x, and y represent the number of the respective structural units; w and y are each optionally 0; and the percentage of x to the total of w, x, and y is 80 to 100%.) This invention addresses the problem of providing a silicone resin that retains softness while having a high thermal conductivity.

Description

側鎖型アルキル変性シリコーン樹脂Side chain type alkyl-modified silicone resin
 本発明は側鎖型アルキル変性シリコーン樹脂及び該側鎖型アルキル変性シリコーン樹脂を含む樹脂コンポジット材料に関する。 The present invention relates to a side-chain alkyl-modified silicone resin and a resin composite material containing the side-chain alkyl-modified silicone resin.
 近年、電子機器は、回路の高集積化に伴う発熱量の増加から熱対策が重要となり、そのための放熱材料の需要が高まっている。放熱用シリコーングリースは、各種電子機器から発生する熱を逃がす用途などとして使用され、一般にシリコーン樹脂(マトリクス樹脂)とフィラーとを含有する材料であり、高い熱伝導性及び柔軟性が求められている。放熱用シリコーングリースの熱伝導性を向上させるためには、熱伝導率の高いフィラーを使用すること、フィラーの充填率を高めること、マトリクス樹脂の熱伝導率を向上させることなどが考えられる。
 しかしながら、熱伝導率の高いフィラーとして窒化ホウ素、窒化アルミニウム、ダイヤモンドなどが知られているが、これらのフィラーはシリコーン樹脂への馴染みや分散性が低く、充填率を高めると柔軟性が悪くなる傾向がある。また、フィラーの充填率を高めようとすると、放熱用シリコーングリースのようなコンポジット材料の比重が重くなるため、電子機器を軽量化することができない。
 一方、マトリックス樹脂の熱伝導性を改善する方法として、シリコーン鎖にアルキル基を導入した例(特許文献1~5)、シリコーン鎖に液晶部位を導入した例(非特許文献1)なども報告されている。
2. Description of the Related Art In recent years, in electronic devices, countermeasures against heat have become important due to an increase in the amount of heat generated due to the high integration of circuits. Heat-dissipating silicone greases are used to dissipate heat generated from various electronic devices, and are generally materials containing silicone resins (matrix resins) and fillers, and are required to have high thermal conductivity and flexibility. . In order to improve the thermal conductivity of the heat-dissipating silicone grease, it is conceivable to use a filler with high thermal conductivity, increase the filling rate of the filler, and improve the thermal conductivity of the matrix resin.
However, boron nitride, aluminum nitride, diamond, etc. are known as fillers with high thermal conductivity, but these fillers have low affinity and dispersibility in silicone resin, and the flexibility tends to deteriorate when the filling rate is increased. There is In addition, if an attempt is made to increase the filling rate of the filler, the weight of the electronic device cannot be reduced because the specific gravity of the composite material such as heat-dissipating silicone grease increases.
On the other hand, examples of introducing an alkyl group into a silicone chain (Patent Documents 1 to 5) and introducing a liquid crystal site into a silicone chain (Non-Patent Document 1) have also been reported as methods of improving the thermal conductivity of a matrix resin. ing.
特開平10-110179号公報JP-A-10-110179 特開平11-049958号公報JP-A-11-049958 特開2005-154532号公報JP 2005-154532 A 特開2007-277387号公報JP 2007-277387 A 特開2009-209230号公報Japanese Patent Application Laid-Open No. 2009-209230
 しかしながら、特許文献1~5には、シリコーン樹脂に導入するアルキル基の種類及びアルキル基の導入率と、熱伝導率との関係について何ら記載されておらず、具体的にどのようにしてシリコーン樹脂の熱伝導率を向上させるかが明らかではない。また、非特許文献1ではシリコーン鎖に液晶部位を導入することにより結晶性を高めて熱伝導率を向上させているが、樹脂が架橋しすぎるため固体となってしまい柔軟性を失っている。
 以上のように、シリコーン樹脂自体の熱伝導率を向上させる具体的手法について、ほとんど例がなく解決手段が乏しい状況である。
 そこで本発明では、柔軟性を維持しつつ、熱伝導率が高いシリコーン樹脂を提供することを課題とする。
However, Patent Documents 1 to 5 do not describe the relationship between the type of alkyl group to be introduced into the silicone resin, the introduction rate of the alkyl group, and the thermal conductivity. It is not clear whether it improves the thermal conductivity of In Non-Patent Document 1, crystallinity is improved by introducing a liquid crystal moiety into a silicone chain to improve thermal conductivity.
As described above, there are almost no examples of specific methods for improving the thermal conductivity of the silicone resin itself, and solutions are lacking.
Accordingly, an object of the present invention is to provide a silicone resin having high thermal conductivity while maintaining flexibility.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の炭素数の長鎖アルキル基を特定量導入した式(1)で表される側鎖型アルキル変性シリコーン樹脂により上記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、下記[1]~[8]に関する。
The present inventors have made intensive studies to achieve the above object, and as a result, have found that a side chain type alkyl-modified silicone resin represented by the formula (1) in which a specific amount of a long-chain alkyl group with a specific carbon number is introduced The inventors have found that the above problems can be solved, and completed the present invention.
That is, the present invention relates to the following [1] to [8].
[1]下記一般式(1)で表される側鎖型アルキル変性シリコーン樹脂。
Figure JPOXMLDOC01-appb-C000002

(式(1)において、Rは水素原子又はアルケニル基であり、Rは炭素数8~18の長鎖アルキル基であり、Rはエチル基であり、w、x、yはそれぞれの構成単位のユニット数を表し、w、yはそれぞれ0であってもよく、w、x、yの合計に対するxの割合が80~100%である。)
[2]前記Rが直鎖状の長鎖アルキル基である、上記[1]に記載の側鎖型アルキル変性シリコーン樹脂。
[3]式(1)においてw、x、yの合計に対してwの割合が0%を超え20%以下である、上記[1]又は[2]に記載の側鎖型アルキル変性シリコーン樹脂。
[4]式(1)においてw、x、yの合計に対してwの割合が0%である、上記[1]又は[2]に記載の側鎖型アルキル変性シリコーン樹脂。
[5]式(1)においてw、x、yの合計に対してyの割合が0%を超え20%以下である、上記[1]~[4]のいずれかに記載の側鎖型アルキル変性シリコーン樹脂。
[6]式(1)においてw、x、yの合計に対してyの割合が0%である、上記[1]~[4]のいずれかに記載の側鎖型アルキル変性シリコーン樹脂。
[7]重量平均分子量が5,000~20,000である、上記[1]~[6]のいずれかに記載の側鎖型アルキル変性シリコーン樹脂。
[8]上記[1]~[7]のいずれかに記載の側鎖型アルキル変性シリコーン樹脂と、絶縁性熱伝導フィラーを含有する樹脂コンポジット材料。
[1] A side chain type alkyl-modified silicone resin represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002

(In formula (1), R 1 is a hydrogen atom or an alkenyl group, R 2 is a long-chain alkyl group with 8 to 18 carbon atoms, R 3 is an ethyl group, and w, x, and y are each Represents the number of structural units, w and y may each be 0, and the ratio of x to the sum of w, x and y is 80 to 100%.)
[2] The side chain type alkyl-modified silicone resin according to [1] above, wherein R2 is a linear long-chain alkyl group.
[3] The side chain type alkyl-modified silicone resin according to [1] or [2] above, wherein the ratio of w to the sum of w, x, and y in formula (1) is more than 0% and 20% or less. .
[4] The side chain type alkyl-modified silicone resin according to [1] or [2] above, wherein the ratio of w to the sum of w, x and y in formula (1) is 0%.
[5] The side-chain alkyl according to any one of [1] to [4] above, wherein the ratio of y to the sum of w, x, and y in formula (1) is more than 0% and 20% or less. Modified silicone resin.
[6] The side chain type alkyl-modified silicone resin according to any one of [1] to [4] above, wherein the ratio of y to the sum of w, x and y in formula (1) is 0%.
[7] The side chain type alkyl-modified silicone resin according to any one of [1] to [6] above, which has a weight average molecular weight of 5,000 to 20,000.
[8] A resin composite material containing the side chain type alkyl-modified silicone resin according to any one of [1] to [7] above and an insulating thermally conductive filler.
 本発明によれば、柔軟性を維持しつつ、熱伝導率が高いシリコーン樹脂を提供することができる。 According to the present invention, it is possible to provide a silicone resin with high thermal conductivity while maintaining flexibility.
[側鎖型アルキル変性シリコーン樹脂]
 本発明の側鎖型アルキル変性シリコーン樹脂は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000003

(式(1)において、Rは水素原子又はアルケニル基であり、Rは炭素数8~18の長鎖アルキル基であり、Rはエチル基であり、w、x、yはそれぞれの構成単位のユニット数を表し、w、yはそれぞれ0であってもよく、w、x、yの合計に対するxの割合が80~100%である。)
 なお、本明細書において、wで示す括弧内の構成単位を「Rを有する構成単位」と記載することがあり、xで示す括弧内の構成単位を「Rを有する構成単位」と記載することがあり、yで示す括弧内の構成単位を「Rを有する構成単位」と記載することがある。
 また、本明細書において、「側鎖型」とは、化学種がポリマー主鎖分子の中心部分に結合している型を意味する。
[Side chain type alkyl-modified silicone resin]
The side chain type alkyl-modified silicone resin of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003

(In formula (1), R 1 is a hydrogen atom or an alkenyl group, R 2 is a long-chain alkyl group with 8 to 18 carbon atoms, R 3 is an ethyl group, and w, x, and y are each Represents the number of structural units, w and y may each be 0, and the ratio of x to the sum of w, x and y is 80 to 100%.)
In this specification, the structural unit in parentheses indicated by w may be described as "structural unit having R 1 ", and the structural unit in parentheses indicated by x may be described as "structural unit having R 2 ". and the structural unit in parentheses indicated by y may be described as "a structural unit having R3 ".
Also, as used herein, the term "side-chain type" refers to a type in which the chemical species is attached to the central portion of the polymer backbone molecule.
 本発明の側鎖型アルキル変性シリコーン樹脂は、一般式(1)の構造を有することにより、柔軟性を維持しつつ熱伝導率が向上する。熱伝導率が向上する理由は定かではないが、以下のように推定される。
 樹脂の熱伝導率を向上させるには、ポリマー鎖のフォノン伝搬を上げることが効果的である。Si-O-Si結合から形成されるシリコーン鎖よりも、C-C-C結合から形成されるアルキル鎖の方が、結合角が広くひずみが少ないためフォノン伝搬が改善される。さらに、式(1)で示す通り、長鎖アルキル基はシリコーン鎖の側鎖に導入されているので、末端に導入するよりもアルキル基の導入率を上げることができる。このように、フォノン伝搬を高められる長鎖アルキル基を多く導入しているため、熱伝導率が向上すると推定される。また、側鎖に導入されたアルキル基によりポリマー分子の回転半径が大きくなることや、分子持続長が長くなることにより、熱伝導率が向上すると考えられる。
Since the side chain type alkyl-modified silicone resin of the present invention has the structure of general formula (1), it maintains flexibility and improves thermal conductivity. Although the reason why the thermal conductivity is improved is not clear, it is presumed as follows.
In order to improve the thermal conductivity of resin, it is effective to increase phonon propagation in polymer chains. An alkyl chain formed from a C--C--C bond has a wider bond angle and less strain than a silicone chain formed from a Si--O--Si bond, thereby improving phonon propagation. Furthermore, as shown in formula (1), since the long-chain alkyl group is introduced into the side chain of the silicone chain, the introduction rate of the alkyl group can be increased compared to introducing it into the terminal. In this way, it is presumed that the thermal conductivity is improved because many long-chain alkyl groups capable of enhancing phonon propagation are introduced. In addition, it is believed that the alkyl group introduced into the side chain increases the radius of gyration of the polymer molecule and lengthens the molecular retention length, thereby improving the thermal conductivity.
<R
 式(1)においてRは水素原子又はアルケニル基である。アルケニル基としては、好ましくは炭素数2~10のアルケニル基であり、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基などを挙げることができる。
 式(1)において、wはRを有する構成単位のユニット数を表し、0~10であることが好ましく、0~5であることがより好ましい。
 また、式(1)においてw、x、yの合計に対するwの割合は、好ましくは0%であるか又は0%を超え20%以下であり、より好ましくは0%であるか又は0%を超え10%以下である。wの割合がこのような範囲であると、側鎖型アルキル変性シリコーン樹脂の凝集を抑制でき、柔軟性を良好に維持することができる。
<R 1 >
In formula (1), R1 is a hydrogen atom or an alkenyl group. The alkenyl group is preferably an alkenyl group having 2 to 10 carbon atoms, such as vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, and the like. can be mentioned.
In formula (1), w represents the number of structural units having R 1 , preferably 0-10, more preferably 0-5.
In formula (1), the ratio of w to the sum of w, x, and y is preferably 0% or more than 0% and 20% or less, and more preferably 0% or less than 0%. more than 10% or less. When the ratio of w is within this range, aggregation of the side chain type alkyl-modified silicone resin can be suppressed, and good flexibility can be maintained.
 Rはケイ素原子に結合した水素原子又はアルケニル基を表すため、反応性の高い部位となる。そのため、本発明の側鎖型アルキル変性シリコーン樹脂はRを有することにより、アルケニル基含有オルガノポリシロキサンやハイドロジェンオルガノポリシロキサンなどと付加反応による硬化物を形成させることができる。
 式(1)においてRは存在していなくてもよい(すなわち、w=0であってもよい)。Rが存在しない場合は、凝集物の形成を効果的に抑制できる。
Since R 1 represents a hydrogen atom or an alkenyl group bonded to a silicon atom, it is a highly reactive site. Therefore, the side chain type alkyl-modified silicone resin of the present invention having R 1 can form a cured product by an addition reaction with an alkenyl group-containing organopolysiloxane or hydrogen organopolysiloxane.
In formula (1), R1 may be absent (that is, w=0). In the absence of R1 , aggregate formation can be effectively suppressed.
<R
 式(1)においてRは炭素数8~18の長鎖アルキル基である。本発明の側鎖型アルキル変性シリコーン樹脂は、側鎖にこのような長鎖アルキル基を特定割合で存在させることで、熱伝導率を高めることができる。Rが炭素数8未満のアルキル基であると、熱伝導率を高めることが難しくなる。一方、Rが炭素数18超のアルキル基であると、粘度が高くなることにより柔軟性が低下しやすくなる。
 Rは炭素数10~18の長鎖アルキル基であることが好ましく、炭素数10~16の長鎖アルキル基であることがより好ましい。
< R2 >
In formula (1), R 2 is a long-chain alkyl group having 8 to 18 carbon atoms. The side chain type alkyl-modified silicone resin of the present invention can increase the thermal conductivity by allowing such long-chain alkyl groups to exist in the side chains in a specific ratio. When R 2 is an alkyl group having less than 8 carbon atoms, it becomes difficult to increase thermal conductivity. On the other hand, when R 2 is an alkyl group having more than 18 carbon atoms, the flexibility tends to decrease due to an increase in viscosity.
R 2 is preferably a long-chain alkyl group having 10 to 18 carbon atoms, more preferably a long-chain alkyl group having 10 to 16 carbon atoms.
 式(1)において、xはRを有する構成単位のユニット数を表し、10~100であることが好ましく、15~70であることがより好ましい。
 また、式(1)においてw、x、yの合計に対するxの割合は好ましくは80~100%である。xの割合が80%未満であると、側鎖型アルキル変性シリコーン樹脂の熱伝導率を高めることが難しくなる。xの割合は、好ましくは85~100%であり、より好ましくは90~100%であり、さらに好ましくは95~100%である。
In formula (1), x represents the number of structural units having R 2 , preferably 10-100, more preferably 15-70.
Also, in formula (1), the ratio of x to the sum of w, x and y is preferably 80 to 100%. If the proportion of x is less than 80%, it becomes difficult to increase the thermal conductivity of the side chain type alkyl-modified silicone resin. The proportion of x is preferably 85-100%, more preferably 90-100%, still more preferably 95-100%.
 Rで表される長鎖アルキル基は、熱伝導率向上の観点から直鎖状の長鎖アルキル基であることが好ましい。直鎖状の長鎖アルキル基としては、例えば、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基を挙げることができる。
 式(1)において複数のRは同一であっても異なっていてもよいが、製造の容易性などから同一であることが好ましい。
The long-chain alkyl group represented by R 2 is preferably a linear long-chain alkyl group from the viewpoint of improving thermal conductivity. Linear long-chain alkyl groups include, for example, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n- Examples include pentadecyl, n-hexadecyl, n-heptadecyl and n-octadecyl groups.
A plurality of R 2 in formula (1) may be the same or different, but are preferably the same from the standpoint of ease of production.
<R
 式(1)においてRはエチル基である。式(1)において、yはRを有する構成単位のユニット数を表し、0~10であることが好ましく、0~5であることがより好ましい。
 また、式(1)においてw、x、yの合計に対して、yの割合は、好ましくは0%であるか又は0%を超え20%以下であり、より好ましくは0%であるか又は0%を超え10%以下である。
 本発明の側鎖型アルキル変性シリコーン樹脂を製造する際に、Rを導入することにより、Rの量を調整しやすくなる。なお、側鎖型アルキル変性シリコーン樹脂の製造過程において、Rの量が適切に調整されるのであればRは導入しなくてもよい(すなわちy=0であってもよい)。
< R3 >
In formula ( 1 ), R3 is an ethyl group. In formula (1), y represents the number of structural units having R 3 , preferably 0-10, more preferably 0-5.
In formula (1), the ratio of y to the sum of w, x, and y is preferably 0% or more than 0% and 20% or less, more preferably 0%, or It is more than 0% and 10% or less.
By introducing R 3 when producing the side chain type alkyl-modified silicone resin of the present invention, it becomes easier to adjust the amount of R 1 . In the production process of the side chain type alkyl-modified silicone resin, if the amount of R1 is appropriately adjusted , R3 may not be introduced (that is, y may be 0).
 本発明の側鎖型アルキル変性シリコーン樹脂は、Rを有する構成単位、Rを有する構成単位、Rを有する構成単位の割合が上記したとおりであればよく、分子鎖内での各構造単位の並び方は限定されない。すなわち、分子内に各構造単位がブロック的に存在してしてもよいし、ランダム的に存在してもよい。 In the side chain type alkyl-modified silicone resin of the present invention, the ratio of the structural unit having R 1 , the structural unit having R 2 , and the structural unit having R 3 is as described above, and each structure in the molecular chain The arrangement of units is not limited. That is, each structural unit may exist in a molecule in a block-like manner, or may exist randomly.
<分子量>
 本発明の側鎖型アルキル変性シリコーン樹脂の重量平均分子量は特に限定されないが、好ましくは5,000~20,000であり、より好ましくは7,000~18,000である。重量平均分子量がこのような範囲であると、適切な粘度に調整することができ、柔軟性を維持しやすくなる。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定を行い、ポリスチレン換算により求められる値である。
<Molecular weight>
The weight average molecular weight of the side chain type alkyl-modified silicone resin of the present invention is not particularly limited, but is preferably 5,000 to 20,000, more preferably 7,000 to 18,000. When the weight-average molecular weight is within such a range, the viscosity can be adjusted appropriately and the flexibility can be easily maintained. The weight average molecular weight is a value determined by gel permeation chromatography (GPC) measurement and polystyrene conversion.
[側鎖型アルキル変性シリコーン樹脂の製造方法]
 本発明の側鎖型アルキル変性シリコーン樹脂の製造方法は、特に限定されないが、例えば以下の式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物を、白金触媒の存在下で、不飽和二重結合を有する炭素数8~18の炭化水素と反応させる工程を備える方法が挙げられる。
Figure JPOXMLDOC01-appb-C000004

(式(2)において、mは10~200であり、好ましくは10~120であり、より好ましくは15~80である。)
[Method for producing side-chain alkyl-modified silicone resin]
The method for producing the side chain type alkyl-modified silicone resin of the present invention is not particularly limited. A method comprising the step of reacting with a hydrocarbon having 8 to 18 carbon atoms and having a double bond can be mentioned.
Figure JPOXMLDOC01-appb-C000004

(In formula (2), m is 10 to 200, preferably 10 to 120, more preferably 15 to 80.)
 このような工程を備えることで、式(2)のヒドロシリル基(SiH)の一部又は全部が不飽和二重結合を有する炭素数8~18の炭化水素と反応して、式(1)におけるRを有する構成単位を形成することができる。この際、Rの導入量は、配合する不飽和二重結合を有する炭素数8~18の炭化水素の量を調節することで、所望の量に調整することができる。
 本工程において、反応温度、反応時間は適宜調整すればよく、例えば反応温度を40~120℃とすることが好ましく、反応時間は1~24時間とすることが好ましい。
 反応は溶媒の存在下で行ってもよい。溶媒の種類は特に限定されず、不飽和二重結合を有する炭化水素の種類に応じて適宜調整すればよいが、合成物の溶解性や反応温度等の観点から、トルエンが好ましい。
By providing such a step, part or all of the hydrosilyl group (SiH) of formula (2) reacts with a hydrocarbon having 8 to 18 carbon atoms having an unsaturated double bond, and A building block with R 2 can be formed. At this time, the amount of R 2 introduced can be adjusted to a desired amount by adjusting the amount of the hydrocarbon having 8 to 18 carbon atoms and having an unsaturated double bond to be blended.
In this step, the reaction temperature and reaction time may be appropriately adjusted. For example, the reaction temperature is preferably 40 to 120° C., and the reaction time is preferably 1 to 24 hours.
The reaction may be performed in the presence of a solvent. The type of solvent is not particularly limited, and may be appropriately adjusted according to the type of hydrocarbon having an unsaturated double bond, but toluene is preferred from the viewpoint of solubility of the synthesized product, reaction temperature, and the like.
 炭素数8~18の不飽和二重結合を有する炭化水素としては、炭素数8~18のα-オレフィンが好ましく、具体的には、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセンを挙げることができる。 As the hydrocarbon having an unsaturated double bond having 8 to 18 carbon atoms, α-olefins having 8 to 18 carbon atoms are preferable, specifically 1-octene, 1-nonene, 1-decene, 1-undecene. , 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene and 1-octadecene.
 上記した炭素数8~18の不飽和二重結合を有する炭化水素と反応させる工程の後、必要に応じて式(2)における残存したヒドロシリル基の数を低減させるため、さらにエチレンを加えて反応させてもよい。これにより、式(1)におけるRを有する構成単位を形成することができる。
 上記のとおりにして、Rが水素原子である式(1)で表される側鎖型アルキル変性シリコーン樹脂を得ることができる。なお、Rをアルケニル基とする場合は、不飽和二重結合を2つ有する炭化水素、好ましくは両末端に不飽和二重結合を有する炭素数4~18の炭化水素を添加して、ヒドロシリル基と反応させるとよい。
After the above step of reacting with a hydrocarbon having an unsaturated double bond with 8 to 18 carbon atoms, ethylene is further added to the reaction to reduce the number of remaining hydrosilyl groups in formula (2) as necessary. You may let Thereby, a structural unit having R 3 in formula (1) can be formed.
As described above, a side chain type alkyl-modified silicone resin represented by formula (1) in which R 1 is a hydrogen atom can be obtained. When R 1 is an alkenyl group, a hydrocarbon having two unsaturated double bonds, preferably a hydrocarbon having 4 to 18 carbon atoms having unsaturated double bonds at both ends is added to obtain a hydrosilyl group. It may be reacted with a group.
[樹脂コンポジット材料]     
 本発明の樹脂コンポジット材料は、上記した一般式(1)で表される側鎖型アルキル変性シリコーン樹脂と絶縁性熱伝導フィラーを含有する。該樹脂コンポジット材料は、側鎖型アルキル変性樹脂がマトリクス樹脂となり、該マトリクス樹脂中に絶縁性熱伝導フィラーが分散している。
 上記したとおり、本発明の側鎖型アルキル変性シリコーン樹脂は熱伝導性に優れるため、絶縁性熱伝導フィラーを併用することにより、より効果的に熱伝導率が向上する。
[Resin composite material]
The resin composite material of the present invention contains the side chain type alkyl-modified silicone resin represented by the general formula (1) and an insulating thermally conductive filler. In the resin composite material, a side-chain alkyl-modified resin serves as a matrix resin, and an insulating thermally conductive filler is dispersed in the matrix resin.
As described above, the side chain type alkyl-modified silicone resin of the present invention is excellent in thermal conductivity, so that the combined use of an insulating thermally conductive filler improves the thermal conductivity more effectively.
 樹脂コンポジット材料中の側鎖型アルキル変性シリコーン樹脂の含有量は、特に制限されず、絶縁性熱伝導フィラーの分散性、熱伝導性を考慮しつつ適宜調整すればよいが、好ましくは10~97質量%であり、より好ましくは50~95質量%である。 The content of the side-chain alkyl-modified silicone resin in the resin composite material is not particularly limited, and may be appropriately adjusted while considering the dispersibility and thermal conductivity of the insulating thermally conductive filler, preferably 10 to 97. % by mass, more preferably 50 to 95% by mass.
<絶縁性熱伝導フィラー>
 本発明の樹脂コンポジット材料は、絶縁性熱伝導フィラーを含有する。絶縁性熱伝導フィラーを含有することにより、樹脂コンポジット材料の絶縁性及び熱伝導性を向上させることができる。
<Insulating thermal conductive filler>
The resin composite material of the present invention contains an insulating thermally conductive filler. By containing the insulating thermally conductive filler, the insulating properties and thermal conductivity of the resin composite material can be improved.
 絶縁性熱伝導フィラーの平均粒径は、特に限定されないが、0.1μm以上250μm以下であることが好ましく、0.2μm以上100μm以下であることがより好ましい。
 なお、平均粒径は、例えば、レーザー回折法などにより測定することができ、累積体積が50%であるときの粒子径(d50)を平均粒径とすればよい。
Although the average particle diameter of the insulating thermally conductive filler is not particularly limited, it is preferably 0.1 μm or more and 250 μm or less, and more preferably 0.2 μm or more and 100 μm or less.
The average particle size can be measured by, for example, a laser diffraction method, and the particle size (d50) when the cumulative volume is 50% may be taken as the average particle size.
 絶縁性熱伝導フィラーは、例えば、20℃での体積抵抗率が好ましくは1.0×1010Ω・cm以上の絶縁性、及び熱伝導率が好ましくは10W/m・K以上の熱伝導性を有する。
 体積抵抗率は、JIS C2141に準拠して測定することができる。
 熱伝導率は、例えば、クロスセクションポリッシャーにて切削加工したフィラー断面に対して、株式会社ベテル製サーマルマイクロスコープを用いて、周期加熱サーモリフレクタンス法により測定することができる。
The insulating thermally conductive filler has, for example, an insulating property with a volume resistivity of preferably 1.0×10 10 Ω·cm or more at 20° C., and a thermal conductivity with a thermal conductivity of preferably 10 W/m·K or more. have
Volume resistivity can be measured according to JIS C2141.
The thermal conductivity can be measured, for example, by a periodic heating thermoreflectance method using a thermal microscope manufactured by Bethel Co., Ltd. on a cross section of the filler cut by a cross section polisher.
 絶縁性熱伝導フィラーの含有量は、特に制限されないが、側鎖型アルキル変性シリコーン樹脂100質量部に対して、好ましくは10~97質量部であり、より好ましくは50~95質量部である。絶縁性熱伝導フィラーの含有量がこれら下限値以上であると、樹脂コンポジット材料の熱伝導性が高まる。一方、絶縁性熱伝導フィラーの含有量がこれら上限値以下であると、樹脂コンポジット材料が必要以上に硬くなったり、取り扱い性が悪くなったりすることを防止することができる。 The content of the insulating thermally conductive filler is not particularly limited, but is preferably 10 to 97 parts by mass, more preferably 50 to 95 parts by mass with respect to 100 parts by mass of the side chain type alkyl-modified silicone resin. When the content of the insulating thermally conductive filler is at least these lower limits, the thermal conductivity of the resin composite material increases. On the other hand, if the content of the insulating thermally conductive filler is not more than these upper limits, it is possible to prevent the resin composite material from becoming unnecessarily hard or from being difficult to handle.
 絶縁性熱伝導フィラーの種類としては、特に制限されないが、例えば、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化ホウ素ナノチューブ、窒化アルミ二ウム、及びダイヤモンドなどが挙げられる。
 絶縁性熱伝導フィラーは1種を単独で使用してもよいし、2種以上を併用してもよい。
The type of insulating thermally conductive filler is not particularly limited, but examples thereof include aluminum oxide, magnesium oxide, boron nitride, boron nitride nanotubes, aluminum nitride, and diamond.
One type of the insulating thermally conductive filler may be used alone, or two or more types may be used in combination.
<その他の成分>
 樹脂コンポジット材料は、本発明の効果を阻害しない範囲で必要に応じて、上記した一般式(1)で表される側鎖型アルキル変性シリコーン樹脂以外のその他のシリコーン樹脂を含んでいてもよい。
 その他のシリコーン樹脂としては、アルケニル基、ヒドロシリル基、アルコキシ基などの反応性基を有するシリコーン樹脂であってもよいし、反応基を有しないシリコーン樹脂であってもよい。
 その他のシリコーン樹脂を含有させる場合、その含有量は、樹脂コンポジット材料に対して、好ましくは50質量%以下、より好ましくは30質量%以下、さらに好ましくは10質量%以下である。
 また、本発明の樹脂コンポジット材料は、必要に応じて、分散剤、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤等の添加剤を含有してもよい。
<Other ingredients>
The resin composite material may contain other silicone resins other than the side chain type alkyl-modified silicone resin represented by the general formula (1), if necessary, as long as the effects of the present invention are not impaired.
Other silicone resins may be silicone resins having reactive groups such as alkenyl groups, hydrosilyl groups, and alkoxy groups, or silicone resins having no reactive groups.
When containing other silicone resins, the content thereof is preferably 50% by mass or less, more preferably 30% by mass or less, and even more preferably 10% by mass or less, relative to the resin composite material.
Moreover, the resin composite material of the present invention may contain additives such as dispersants, antioxidants, heat stabilizers, colorants, flame retardants, and antistatic agents, if necessary.
 本発明の樹脂コンポジット材料の用途は特に限定されないが、例えば、放熱用シリコーングリースとして各種放熱用途に使用することができる。例えば、前記樹脂コンポジット材料を、半導体素子などの電子部品とヒートシンクとの間に配置して、電子部品から発生する熱を効果的に放熱することができる。 The application of the resin composite material of the present invention is not particularly limited, but for example, it can be used for various heat dissipation applications as heat dissipation silicone grease. For example, the resin composite material can be placed between an electronic component such as a semiconductor element and a heat sink to effectively dissipate heat generated from the electronic component.
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。 The present invention will be clarified below by giving specific examples and comparative examples of the present invention. In addition, the present invention is not limited to the following examples.
 各実施例、比較例の各化合物(シリコーン樹脂)の評価方法は以下のとおりである。 The evaluation method for each compound (silicone resin) in each example and comparative example is as follows.
[熱伝導率]
 各実施例、比較例の各化合物の熱伝導率の測定をC-Therm社製のTCiにより行い、以下の評価基準に基づいて評価した。
(評価)
AA・・・0.165W/mK以上
A・・・0.160W/mK以上0.165W/mK未満
B・・・0.150W/mK以上0.160W/mK未満
C・・・0.150W/mK未満
[Thermal conductivity]
The thermal conductivity of each compound of each example and comparative example was measured by TCi manufactured by C-Therm, and evaluated based on the following evaluation criteria.
(evaluation)
AA: 0.165 W/mK or more A: 0.160 W/mK or more and less than 0.165 W/mK B: 0.150 W/mK or more and less than 0.160 W/mK C: 0.150 W/ less than mK
[初期形状]
 各実施例、比較例の各化合物の性状が室温(23℃)において液体であれば「A」、固体であれば「B」として評価した。
[Initial shape]
If the property of each compound of each example and comparative example was liquid at room temperature (23° C.), it was evaluated as "A", and if it was solid, it was evaluated as "B".
[シリコーンへの溶解性]
 25℃において、各実施例及び比較例の化合物3gとシリコーン7gとを混合して各化合物の溶解性を確認した。なお、シリコーンとしてはジメチルシリコーンオイル(信越化学製「KF-96-100cst」)を用いた。
 溶解した場合を「A」、溶解しなかった場合を「C」として評価した。
[Solubility in silicone]
At 25° C., 3 g of the compound of each example and comparative example and 7 g of silicone were mixed to confirm the solubility of each compound. As silicone, dimethyl silicone oil (“KF-96-100cst” manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
It was evaluated as "A" when it dissolved, and as "C" when it did not dissolve.
[経時変化(ゲル化)]
 各実施例、比較例の各化合物(シリコーン樹脂)について、120℃、85%湿度で24時間経過させた後のゲル化の有無を確認した。
A・・ゲル化が確認されなかった。
C・・ゲル化が確認された。
[Change over time (gelation)]
For each compound (silicone resin) of each example and comparative example, the presence or absence of gelation after 24 hours at 120° C. and 85% humidity was checked.
A... Gelation was not confirmed.
C. Gelation was confirmed.
 実施例及び比較例で使用した側鎖型アルキル変性シリコーン樹脂は、次に示す化合物1~5、比較化合物1~13として準備した。 The side chain type alkyl-modified silicone resins used in Examples and Comparative Examples were prepared as Compounds 1 to 5 and Comparative Compounds 1 to 13 shown below.
(化合物1)
 化合物1は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)10gと、モノマーとして炭素数8のα-オレフィン(1-オクテン)17.8gとを無溶媒、窒素雰囲気、白金触媒存在下において90℃で12時間反応させ、反応後エバポレーター及び真空乾燥機で未反応のモノマー除去し、化合物1を得た。
 化合物1をSi-NMRで分析して、表1に記載の構造の側鎖型アルキル変性シリコーン樹脂が製造できていることを確認した。なお、後述する各化合物についても同様の方法で同定した。Si-HとSi-Cの強度比を比較することにより、w,xの比率を同定した。
(Compound 1)
Compound 1 was prepared as follows.
10 g of an organopolysiloxane compound (m=56) having a hydrosilyl group represented by the formula (2) and 17.8 g of an α-olefin (1-octene) having 8 carbon atoms as a monomer were subjected to platinum in a nitrogen atmosphere without a solvent. A reaction was carried out at 90° C. for 12 hours in the presence of a catalyst, and after the reaction, unreacted monomers were removed by an evaporator and a vacuum dryer to obtain compound 1.
Si-NMR analysis of Compound 1 confirmed that a side chain type alkyl-modified silicone resin having the structure shown in Table 1 was produced. Each compound described later was also identified by the same method. By comparing the Si—H and Si—C intensity ratios, the ratio of w and x was identified.
(化合物2)
 化合物2は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)10gと炭素数12のα-オレフィン(1-ドデセン)26gとを無溶媒、窒素雰囲気、白金触媒存在下において90℃で12時間反応させた。生成物はメタノール中に攪拌、未反応のモノマーをメタノールに溶解、デカンテーションにより除去し、化合物2を得た。化合物2は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Compound 2)
Compound 2 was prepared as follows.
10 g of an organopolysiloxane compound (m = 56) having a hydrosilyl group represented by formula (2) and 26 g of an α-olefin (1-dodecene) having 12 carbon atoms were dissolved in a nitrogen atmosphere in the presence of a platinum catalyst in the presence of a platinum catalyst. °C for 12 hours. The product was stirred in methanol, and unreacted monomers were dissolved in methanol and removed by decantation to obtain Compound 2. Compound 2 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(化合物3)
 化合物3は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=24)10gと炭素数12のα-オレフィン(1-ドデセン)24.2gとを無溶媒、窒素雰囲気、白金触媒存在下において90℃で12時間反応させた。生成物はメタノール中に攪拌、未反応のモノマーをメタノールに溶解、デカンテーションにより除去し化合物3を得た。化合物3は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Compound 3)
Compound 3 was prepared as follows.
10 g of an organopolysiloxane compound (m=24) having a hydrosilyl group represented by the formula (2) and 24.2 g of an α-olefin (1-dodecene) having 12 carbon atoms were prepared in the presence of a platinum catalyst without a solvent in a nitrogen atmosphere. at 90° C. for 12 hours. The product was stirred in methanol, and unreacted monomers were dissolved in methanol and removed by decantation to obtain Compound 3. Compound 3 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(化合物4)
 化合物4は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)10gと炭素数12のα-オレフィン(1-ドデセン)26.7gとを無溶媒、窒素雰囲気、白金触媒存在下において90℃で12時間反応させた。生成物はメタノール中に攪拌、未反応のモノマーをメタノールに溶解、デカンテーションにより除去し化合物4を得た。化合物4は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Compound 4)
Compound 4 was prepared as follows.
10 g of an organopolysiloxane compound (m=56) having a hydrosilyl group represented by formula (2) and 26.7 g of α-olefin (1-dodecene) having 12 carbon atoms were prepared in the presence of a platinum catalyst without a solvent in a nitrogen atmosphere. at 90° C. for 12 hours. The product was stirred in methanol, and unreacted monomers were dissolved in methanol and removed by decantation to obtain Compound 4. Compound 4 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(化合物5)
 化合物5は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)6gと炭素数18のα-オレフィン(1-オクタデセン)22.8gとを無溶媒、窒素雰囲気、白金触媒存在下において90℃で36時間反応させ、化合物5を得た。化合物5は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Compound 5)
Compound 5 was prepared as follows.
6 g of an organopolysiloxane compound (m=56) having a hydrosilyl group represented by the formula (2) and 22.8 g of an α-olefin (1-octadecene) having 18 carbon atoms were prepared in the presence of a platinum catalyst without a solvent in a nitrogen atmosphere. at 90° C. for 36 hours to obtain compound 5. Compound 5 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(比較化合物1)
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=24)を比較化合物1とした。
(Comparative compound 1)
Comparative compound 1 was an organopolysiloxane compound (m=24) having a hydrosilyl group represented by formula (2).
(比較化合物2)
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)を比較化合物2とした。
(Comparative compound 2)
Comparative compound 2 was an organopolysiloxane compound (m=56) having a hydrosilyl group represented by formula (2).
(比較化合物3)
 比較化合物3としては、以下の構造を有する市販品1(信越化学社製「KF-96-50cst」)を用いた。
Figure JPOXMLDOC01-appb-C000005
(Comparative compound 3)
As comparative compound 3, commercial product 1 (“KF-96-50cst” manufactured by Shin-Etsu Chemical Co., Ltd.) having the following structure was used.
Figure JPOXMLDOC01-appb-C000005
(比較化合物4)
 比較化合物4としては、以下の構造を有する市販品2(信越化学社製「KF-96-200cst」)を用いた。
Figure JPOXMLDOC01-appb-C000006
(Comparative compound 4)
As comparative compound 4, commercial product 2 (“KF-96-200cst” manufactured by Shin-Etsu Chemical Co., Ltd.) having the following structure was used.
Figure JPOXMLDOC01-appb-C000006
(比較化合物5)
 比較化合物5としては、以下の構造を有する市販品3(信越化学社製「KF-96-1000cst」)を用いた。
Figure JPOXMLDOC01-appb-C000007
(Comparative compound 5)
As comparative compound 5, commercial product 3 (“KF-96-1000cst” manufactured by Shin-Etsu Chemical Co., Ltd.) having the following structure was used.
Figure JPOXMLDOC01-appb-C000007
(比較化合物6)
 比較化合物6としては、以下の構造を有する市販品4(信越化学社製「KF-96H-6000cst」)を用いた。
Figure JPOXMLDOC01-appb-C000008
(Comparative compound 6)
As comparative compound 6, commercial product 4 (“KF-96H-6000cst” manufactured by Shin-Etsu Chemical Co., Ltd.) having the following structure was used.
Figure JPOXMLDOC01-appb-C000008
(比較化合物7)
 比較化合物7は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=24)5gと炭素数6のα-オレフィン(1-ヘキセン)6gとを白金触媒存在下において90℃で反応させて比較化合物7を得た。比較化合物7は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Comparative compound 7)
Comparative compound 7 was prepared as follows.
5 g of an organopolysiloxane compound (m=24) having a hydrosilyl group represented by formula (2) and 6 g of an α-olefin (1-hexene) having 6 carbon atoms were reacted at 90° C. in the presence of a platinum catalyst and compared. Compound 7 was obtained. Comparative compound 7 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(比較化合物8)
 比較化合物8は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=35)4gと炭素数6のα-オレフィン(1-ヘキセン)4.9gとを白金触媒存在下において90℃で反応させて比較化合物8を得た。比較化合物8は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Comparative compound 8)
Comparative compound 8 was prepared as follows.
4 g of an organopolysiloxane compound (m=35) having a hydrosilyl group represented by formula (2) and 4.9 g of an α-olefin (1-hexene) having 6 carbon atoms were reacted at 90° C. in the presence of a platinum catalyst. Comparative compound 8 was obtained by Comparative compound 8 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(比較化合物9)
 比較化合物9は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)9gと炭素数6のα-オレフィン(1-ヘキセン)1.8gとを白金触媒存在下において90℃で反応させて比較化合物9を得た。比較化合物9は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Comparative compound 9)
Comparative compound 9 was prepared as follows.
9 g of an organopolysiloxane compound (m=56) having a hydrosilyl group represented by formula (2) and 1.8 g of an α-olefin (1-hexene) having 6 carbon atoms were reacted at 90° C. in the presence of a platinum catalyst. Comparative compound 9 was obtained by Comparative compound 9 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(比較化合物10)
 比較化合物10は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)9gと炭素数6のα-オレフィン(1-ヘキセン)11.6gとを白金触媒存在下において90℃で反応させて比較化合物10を得た。比較化合物10は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Comparative compound 10)
Comparative compound 10 was produced as follows.
9 g of an organopolysiloxane compound (m=56) having a hydrosilyl group represented by formula (2) and 11.6 g of an α-olefin (1-hexene) having 6 carbon atoms were reacted at 90° C. in the presence of a platinum catalyst. Comparative compound 10 was obtained by Comparative compound 10 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(比較化合物11)
 比較化合物11は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)10gと炭素数12のα-オレフィン(1-ドデセン)6.7gとを白金触媒存在下において90℃で反応させて比較化合物11を得た。比較化合物11は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Comparative compound 11)
Comparative compound 11 was prepared as follows.
10 g of an organopolysiloxane compound (m=56) having a hydrosilyl group represented by formula (2) and 6.7 g of α-olefin (1-dodecene) having 12 carbon atoms were reacted at 90° C. in the presence of a platinum catalyst. Comparative compound 11 was obtained. Comparative compound 11 was a side-chain alkyl-modified silicone resin having the structure shown in Table 1.
(比較化合物12)
 比較化合物12は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)10gと炭素数12のα-オレフィン(1-ドデセン)12gとを白金触媒存在下において90℃で反応させて比較化合物12を得た。比較化合物12は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Comparative compound 12)
Comparative compound 12 was prepared as follows.
10 g of an organopolysiloxane compound (m=56) having a hydrosilyl group represented by formula (2) and 12 g of an α-olefin (1-dodecene) having 12 carbon atoms were reacted at 90° C. in the presence of a platinum catalyst and compared. Compound 12 was obtained. Comparative compound 12 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
(比較化合物13)
 比較化合物13は以下のとおり製造した。
 式(2)で表されるヒドロシリル基を有するオルガノポリシロキサン化合物(m=56)1gと炭素数30のα-オレフィン6.8gとを白金触媒存在下において120℃で反応させて比較化合物13を得た。比較化合物13は表1に記載の構造の側鎖型アルキル変性シリコーン樹脂であった。
(Comparative compound 13)
Comparative compound 13 was prepared as follows.
1 g of an organopolysiloxane compound (m=56) having a hydrosilyl group represented by formula (2) and 6.8 g of an α-olefin having 30 carbon atoms were reacted at 120° C. in the presence of a platinum catalyst to give comparative compound 13. Obtained. Comparative compound 13 was a side chain type alkyl-modified silicone resin having the structure shown in Table 1.
[実施例1]
 上記のとおり製造した本発明の側鎖型アルキル変性シリコーン樹脂である化合物1を試料として、熱伝導率、初期形状、シリコーンへの溶解性及び経時変化(ゲル化)に関する各評価を行った。結果を表2に示した。
[Example 1]
Thermal conductivity, initial shape, solubility in silicone, and change over time (gelation) were evaluated using Compound 1, which is the side chain type alkyl-modified silicone resin of the present invention produced as described above, as a sample. Table 2 shows the results.
[実施例2~5、比較例1~13]
 化合物1の代わりに表2に記載の各化合物を使用した以外は、実施例1と同様にして各評価を行った。結果を表2に示した。
[Examples 2 to 5, Comparative Examples 1 to 13]
Each evaluation was performed in the same manner as in Example 1, except that each compound listed in Table 2 was used instead of Compound 1. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明の要件を満足する各実施例の化合物(側鎖型アルキル変性シリコーン樹脂)は、熱伝導率が高く、また、シリコーンへの溶解性及び経時変化の結果が良好であったことより柔軟性に優れていた。
 一方、各比較例の化合物は、実施例の化合物よりも熱伝導率が低い結果となった。
The compound (side-chain alkyl-modified silicone resin) of each example that satisfies the requirements of the present invention had high thermal conductivity, and had good solubility in silicone and good results of change over time. was excellent.
On the other hand, the compounds of each comparative example had a lower thermal conductivity than the compounds of the examples.

Claims (8)

  1.  下記一般式(1)で表される側鎖型アルキル変性シリコーン樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)において、Rは水素原子又はアルケニル基であり、Rは炭素数8~18の長鎖アルキル基であり、Rはエチル基であり、w、x、yはそれぞれの構成単位のユニット数を表し、w、yはそれぞれ0であってもよく、w、x、yの合計に対するxの割合が80~100%である。)
    A side chain type alkyl-modified silicone resin represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1), R 1 is a hydrogen atom or an alkenyl group, R 2 is a long-chain alkyl group with 8 to 18 carbon atoms, R 3 is an ethyl group, and w, x, and y are each Represents the number of structural units, w and y may each be 0, and the ratio of x to the sum of w, x and y is 80 to 100%.)
  2.  前記Rが直鎖状の長鎖アルキル基である、請求項1に記載の側鎖型アルキル変性シリコーン樹脂。 2. The side chain type alkyl-modified silicone resin according to claim 1, wherein said R2 is a linear long chain alkyl group.
  3.  式(1)においてw、x、yの合計に対してwの割合が0%を超え20%以下である、請求項1又は2に記載の側鎖型アルキル変性シリコーン樹脂。 The side chain type alkyl-modified silicone resin according to claim 1 or 2, wherein the ratio of w to the sum of w, x and y in formula (1) is more than 0% and 20% or less.
  4.  式(1)においてw、x、yの合計に対してwの割合が0%である、請求項1又は2に記載の側鎖型アルキル変性シリコーン樹脂。 The side chain type alkyl-modified silicone resin according to claim 1 or 2, wherein the ratio of w to the sum of w, x and y in formula (1) is 0%.
  5.  式(1)においてw、x、yの合計に対してyの割合が0%を超え20%以下である、請求項1~4のいずれかに記載の側鎖型アルキル変性シリコーン樹脂。 The side chain type alkyl-modified silicone resin according to any one of claims 1 to 4, wherein the ratio of y to the sum of w, x and y in formula (1) is more than 0% and 20% or less.
  6.  式(1)においてw、x、yの合計に対してyの割合が0%である、請求項1~4のいずれかに記載の側鎖型アルキル変性シリコーン樹脂。 The side chain type alkyl-modified silicone resin according to any one of claims 1 to 4, wherein the ratio of y to the sum of w, x and y in formula (1) is 0%.
  7.  重量平均分子量が5,000~20,000である、請求項1~6のいずれかに記載の側鎖型アルキル変性シリコーン樹脂。 The side chain type alkyl-modified silicone resin according to any one of claims 1 to 6, which has a weight average molecular weight of 5,000 to 20,000.
  8.  請求項1~7のいずれかに記載の側鎖型アルキル変性シリコーン樹脂と、絶縁性熱伝導フィラーを含有する樹脂コンポジット材料。 A resin composite material containing the side chain type alkyl-modified silicone resin according to any one of claims 1 to 7 and an insulating thermally conductive filler.
PCT/JP2022/015684 2021-03-31 2022-03-29 Side-chain alkyl-modified silicone resin WO2022210780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511421A JPWO2022210780A1 (en) 2021-03-31 2022-03-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062141 2021-03-31
JP2021-062141 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210780A1 true WO2022210780A1 (en) 2022-10-06

Family

ID=83459491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015684 WO2022210780A1 (en) 2021-03-31 2022-03-29 Side-chain alkyl-modified silicone resin

Country Status (3)

Country Link
JP (1) JPWO2022210780A1 (en)
TW (1) TW202305041A (en)
WO (1) WO2022210780A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105573A (en) * 1973-12-18 1975-08-20
JPH1067910A (en) * 1996-06-14 1998-03-10 Bergquist Co:The Semi-solid thermal interfacial material having low fluid resistance
JP2001163683A (en) * 1999-12-03 2001-06-19 Sumitomo Kinzoku Kozan Siporex Kk Lightweight cellular concrete excellent in carbonation resistance
JP2004071401A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Rotational operation type electronic component having push-on switch
JP2005054090A (en) * 2003-08-06 2005-03-03 Shin Etsu Chem Co Ltd Oil-in-water type modified silicone emulsion composition
WO2006043334A1 (en) * 2004-10-18 2006-04-27 Nippon Koyu Ltd. Silicone composition for heat dissipation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105573A (en) * 1973-12-18 1975-08-20
JPH1067910A (en) * 1996-06-14 1998-03-10 Bergquist Co:The Semi-solid thermal interfacial material having low fluid resistance
JP2001163683A (en) * 1999-12-03 2001-06-19 Sumitomo Kinzoku Kozan Siporex Kk Lightweight cellular concrete excellent in carbonation resistance
JP2004071401A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Rotational operation type electronic component having push-on switch
JP2005054090A (en) * 2003-08-06 2005-03-03 Shin Etsu Chem Co Ltd Oil-in-water type modified silicone emulsion composition
WO2006043334A1 (en) * 2004-10-18 2006-04-27 Nippon Koyu Ltd. Silicone composition for heat dissipation

Also Published As

Publication number Publication date
JPWO2022210780A1 (en) 2022-10-06
TW202305041A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
JP6438458B2 (en) Polymer composition having silicone and fatty acid amide slip agent
KR101357514B1 (en) Heat dissipating member and semiconductor device using same
TWI676655B (en) Polyolefin elastomer and polysiloxane blends and method of preparing the same
US11814521B2 (en) Thermally conductive polyorganosiloxane composition
US11591470B2 (en) Silicone composition
JP5155033B2 (en) Thermally conductive silicone composition
TW201943768A (en) Heat-conductive silicone composition and cured product thereof
WO2022210780A1 (en) Side-chain alkyl-modified silicone resin
WO2021206064A1 (en) Resin composition, heat-radiating member, and electronic apparatus
WO2022210782A1 (en) Side-chain alkyl-modified silicone resin
WO2022210781A1 (en) Side chain-type alkyl-modified silicone resin
US11773264B2 (en) Silicone composition
Longhi et al. Influence of the functionality of polyhedral oligomeric silsesquioxane–POSS containing glycidyl groups on the dispersion and interaction with epoxy nanocomposites
WO2023188491A1 (en) Thermally conductive silicone composition, thermally conductive silicone sheet, and method for manufacturing said sheet
US20230227625A1 (en) Silicone gel composition and silicone gel sheet
JP2024007486A (en) Side chain type modified silicone resin and resin composition
JP2024061264A (en) Olefin-based resin composition, crosslinked body, molded body, heat dissipation insulation sheet, and electric wire or cable
TW202334320A (en) Thermally conductive composition, thermally conductive sheet, and method for manufacturing same
CN115991936A (en) Thermally conductive silicone composition
JP2020172408A (en) Method for producing surface-treated alumina powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780991

Country of ref document: EP

Kind code of ref document: A1