WO2022210714A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2022210714A1
WO2022210714A1 PCT/JP2022/015461 JP2022015461W WO2022210714A1 WO 2022210714 A1 WO2022210714 A1 WO 2022210714A1 JP 2022015461 W JP2022015461 W JP 2022015461W WO 2022210714 A1 WO2022210714 A1 WO 2022210714A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
magnetic pole
axial direction
stator core
insulator
Prior art date
Application number
PCT/JP2022/015461
Other languages
French (fr)
Japanese (ja)
Inventor
智彰 中野
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2022210714A1 publication Critical patent/WO2022210714A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present invention relates to motors.
  • the roundness of the inner diameter of the stator (roundness at the tips of the magnetic pole portions (teeth) that protrude inward in the radial direction of the stator) may increase.
  • An object of one aspect is to provide a motor capable of reducing the roundness of the inner diameter of the stator.
  • a motor in one aspect, includes a shaft, a rotor, a first stator, and a second stator.
  • the first stator has a cylindrical yoke portion and a plurality of first magnetic pole portions integrally formed with the yoke portion.
  • the second stator has a plurality of second magnetic pole portions that can be engaged with the first stator, and a connecting portion that connects one end sides of the plurality of second magnetic pole portions.
  • the roundness of the inner diameter of the stator can be reduced.
  • FIG. 1 is a top view showing an example of the motor in the first embodiment.
  • FIG. FIG. 2 is a perspective view showing an example of a stator in the first embodiment;
  • FIG. FIG. 3 is a perspective view showing an example of a first stator core in the first embodiment;
  • FIG. FIG. 4 is a perspective view showing an example of a second stator core in the first embodiment.
  • FIG. 5 is an exploded perspective view showing one example of the stator in the first embodiment.
  • FIG. 6 is a cross-sectional view showing an example of the first stator core in the first embodiment.
  • FIG. 7 is a perspective view showing an example of a second stator core in the first embodiment;
  • FIG. 8 is a perspective view showing an example of a first stator core and a second stator core in the first embodiment;
  • FIG. 9 is a cross-sectional view showing an example of a stator in the first embodiment;
  • FIG. 10 is a bottom view showing one example of the stator in the first embodiment.
  • FIG. 11 is a top view showing an example of the motor in the second embodiment.
  • FIG. 12 is a perspective view showing one example of a stator according to the second embodiment.
  • FIG. 13 is an exploded perspective view showing an example of a stator according to the second embodiment.
  • FIG. 14 is a perspective view showing an example of a first stator core in the second embodiment;
  • FIG. 15 is an enlarged perspective view showing an example of the first magnetic pole portion in the second embodiment.
  • FIG. 16 is an enlarged perspective view showing an example of the first magnetic pole portion to which the outer insulator is attached according to the second embodiment.
  • FIG. 17 is an enlarged perspective view showing an example of the first magnetic pole portion to which the inner insulator is attached according to the second embodiment.
  • FIG. 18 is a perspective view showing an example of a second stator core in the second embodiment.
  • FIG. 19 is an enlarged cross-sectional view showing an example of the motor in the second embodiment.
  • FIG. 20A is a cross-sectional view showing an example of an inner insulator in the second embodiment;
  • FIG. 20B is a cross-sectional view showing an example of an inner insulator in the second embodiment;
  • FIG. 21A is an enlarged cross-sectional view showing an example of the first projection and the second projection when the first stator is inserted in the second embodiment.
  • FIG. 21B is an enlarged cross-sectional view showing an example of the first protrusion and the second protrusion when the insertion of the first stator is completed in the second embodiment.
  • FIG. 1 is a top view showing an example of the motor in the first embodiment.
  • FIG. Motor 1 shown in FIG. 1 includes, for example, stator 2 , rotor 90 and shaft 99 .
  • the motor 1 described in each embodiment is an inner rotor type brushless motor.
  • a rotor 90 having, for example, a plurality of magnets 91 as components is arranged in the motor 1 .
  • a rotating shaft (shaft) 99 is coupled to the rotor 90 .
  • the motor 1 is housed in, for example, a frame (not shown).
  • FIG. 2 is a perspective view showing an example of the stator in the first embodiment.
  • the stator 2 in the first embodiment includes a first stator core 10, a second stator core 20, a plurality of pairs of insulators 13 and 14, and a plurality of pairs of insulators 23 and 24. , a plurality of first coils 31 , and a plurality of second coils 32 .
  • the insulators 13a to 13f may be used when the plurality of insulators 13 are distinguished from each other.
  • the plurality of insulators 14, 23 and 24, the plurality of first coils 31, and the plurality of second coils 32 may also be denoted similarly.
  • FIG. 3 is a perspective view showing an example of a first stator core in the first embodiment; FIG. As shown in FIG. 3 , the first stator core 10 includes a yoke portion 11 and six first magnetic pole portions 12 . In the following, when the plurality of first magnetic pole portions 12 are distinguished and expressed, they may be referred to as first magnetic pole portions 12a to 12f, respectively.
  • the yoke portion 11 is a bottomless cylindrical member made of a magnetic material such as stainless steel or an electromagnetic steel plate.
  • the six first magnetic pole portions 12 are formed integrally with the yoke portion 11 .
  • the first magnetic pole portion 12 is a protrusion that protrudes radially inward from the inner peripheral surface side of the yoke portion 11 .
  • the first magnetic pole portion 12 in the first embodiment includes, for example, two ends protruding in the circumferential direction on the tip side (inner side in the radial direction).
  • the insulators 13 and 14 are made of an insulating material such as resin. As shown in FIG. 3, the insulators 13a to 13f and the insulators 14a to 14f are attached to the corresponding first magnetic pole portions 12a to 12f from each axial direction. As shown in FIG. 2, the insulator 13 is mounted so as to protrude in the negative direction in the axial direction from the one end portion 11x of the yoke portion 11 in the axial direction. Similarly, the insulator 14 is mounted so as to protrude in the positive direction in the axial direction from the other end portion 11y of the yoke portion 11 in the axial direction. 1 and 2, the first magnetic pole portion 12 is covered with a pair of insulators 13 and 14 and is not visible.
  • the first coils 31a to 31f are wound around the first magnetic pole portions 12a to 12f via insulators 13a to 13f and insulators 14a to 14f, respectively.
  • the first coil 31 is formed by, for example, winding a round copper wire by nozzle winding.
  • a pair of insulators 13 and 14 are attached to the first stator core 10, and a first coil 31 is wound around the insulators 13 and 14 to form the first stator 3. As shown in FIG.
  • FIG. 4 is a perspective view showing an example of the second stator core in the first embodiment.
  • the second stator core 20 includes connecting portions 21 and six second magnetic pole portions 22 .
  • the plurality of second magnetic pole portions 22 when distinguished and expressed, they may be referred to as second magnetic pole portions 22a to 22f, respectively.
  • the connecting part 21 is an annular member made of a magnetic material such as stainless steel or electromagnetic steel plate.
  • the six second magnetic pole portions 22 are protruding portions that are integrally formed by connecting to the connecting portion 21 and protrude inward in the radial direction.
  • the second magnetic pole portion 22 in the first embodiment also has two ends protruding in the circumferential direction, for example, toward the distal end side (inner side in the radial direction), similarly to the first magnetic pole portion 12 .
  • the second magnetic pole portion 22 is formed so that the cross-sectional shape in the radial direction and the length in the axial direction are substantially the same as those of the first magnetic pole portion 12 .
  • the connecting portion 21 and the second magnetic pole portion 22 may be formed separately and connected to each other, and the material of the connecting portion 21 is not limited to a magnetic material.
  • the insulators 23 and 24 are made of an insulating material such as resin. As shown in FIG. 4, the insulators 23a to 23f and the insulators 24a to 24f are attached to the corresponding second magnetic pole portions 22a to 22f from each axial direction. As shown in FIGS. 2 and 4, the insulator 23 is mounted so as to protrude in the negative direction in the axial direction from the one end 21x of the connecting portion 21 in the axial direction. Similarly, the insulator 24 is mounted so as to protrude in the positive direction in the axial direction from the other end 22y of the second magnetic pole portion 22 in the axial direction. 1 and 2, the second magnetic pole portion 22 is covered with a pair of insulators 23 and 24 and is not visible. In the first embodiment, insulator 23 has substantially the same shape as insulator 13 and insulator 24 has substantially the same shape as insulator 14 .
  • the second coils 32a to 32f are wound around the second magnetic pole portions 22a to 22f via pairs of insulators 23a to 23f and insulators 24a to 24f, respectively.
  • the second coil 32 is also wound by nozzle winding, for example.
  • a pair of insulators 23 and 24 are attached to the second stator core 20, and a second coil 32 is wound around the insulators 23 and 24 to form the second stator 4. As shown in FIG.
  • each of the first magnetic pole portions 12 a to 12 f is formed integrally with the cylindrical yoke portion 11 .
  • each of the second magnetic pole portions 22 a to 22 f is formed integrally with the annular connecting portion 21 .
  • the positional deviation of each magnetic pole portion is reduced as compared with the case where each independent magnetic pole portion is combined. Therefore, in the first stator core 10 and the second stator core 20, it is possible to easily reduce the circularity of the tip end side (inner side in the radial direction) of each magnetic pole portion, so that the efficiency of the motor 1 can be improved, Cogging torque can be easily reduced.
  • the stator 2 in the first embodiment is configured by combining the first stator 3 including the first stator core 10 shown in FIG. 3 and the second stator 4 including the second stator core 20 shown in FIG.
  • FIG. 5 is an exploded perspective view showing one example of the stator in the first embodiment. As shown in FIG. 5, the stator 2 is formed by attaching the second stator 4 to the first stator 3 from the negative side in the axial direction. At that time, the second magnetic pole portion 22 of the second stator 4 is inserted into the gap between the two first magnetic pole portions 12 of the first stator 3 .
  • the first coil 31 wound around the first magnetic pole portion 12 via the insulators 13 and 14 and the second coil 32 wound around the second magnetic pole portion 22 via the insulators 23 and 24 are adjacent to each other.
  • a second coil 32a is inserted between the first coils 31a and 31b.
  • the first coil 31a is arranged between the second coil 32f and the second coil 32a.
  • the joining of the first stator 3 and the second stator 4 is performed, for example, by press-fitting the first stator core 10 and the second stator core 20, but is not limited to this, and may be joined by welding, adhesion, or the like.
  • the first coil 31 and the second coil 32 are wound before the first stator core 10 and the second stator core 20 are respectively combined.
  • workability in winding the coil by nozzle winding for example, can be improved, and the winding space factor can also be improved.
  • the length in the axial direction of the first magnetic pole portion 12 is smaller than the length in the axial direction of the yoke portion 11, for example.
  • a gap G1 is formed between one axial end portion 11x of the yoke portion 11 and an axial end portion 12x corresponding to the one end portion of the first magnetic pole portion 12. be done.
  • FIG. 6 is a cross-sectional view showing an example of the first stator core in the first embodiment.
  • FIG. 6 shows a cross section taken along line AA in FIG.
  • the other end portion 11y of the yoke portion 11 and the end portion 12y corresponding to the other end portion of the first magnetic pole portion 12 are substantially flush with each other. It is formed. That is, the axial length of the first magnetic pole portion 12 is shorter than the axial length of the yoke portion 11 by the gap G1.
  • a convex portion 16 that protrudes radially inward is formed on a part of the one end portion 11x of the yoke portion 11 in the axial direction.
  • the convex part 16 is an example of an engaging part. Further, in the following, when the plurality of convex portions 16 are distinguished and expressed, they may be described as convex portions 16a to 16f, respectively.
  • the convex portion 16 is formed, for example, between two first magnetic pole portions 12 adjacent in the circumferential direction.
  • the convex portion 16a is formed between the first magnetic pole portion 12a and the first magnetic pole portion 12b
  • the convex portion 16f is formed between the first magnetic pole portion 12f and the first magnetic pole portion 12a.
  • FIG. 7 is a perspective view showing an example of a second stator core in the first embodiment; FIG.
  • the protrusions 16a of the first stator core 10 shown in FIGS. 3 and 6 engage with the recesses 26a of the second stator core 20 shown in FIG.
  • the convex portion 16a and the concave portion 26a are formed such that the one ends 11x and 21x in the axial direction are substantially flush with each other, in other words, substantially flush with each other.
  • a gap G2 is formed between one end portion 21x of the connecting portion 21 and an end portion 22x corresponding to the one end portion of the second magnetic pole portion 22.
  • the gap G2 is formed to have approximately the same size as the gap G1 formed in the first stator core 10 . That is, as shown in FIGS. 8 and 9, the end portion 12x of the first magnetic pole portion 12 and the end portion 22x of the second magnetic pole portion 22 are substantially at the same position in the axial direction. Further, in the first embodiment, the axial length of the second magnetic pole portions 22 is substantially the same as the axial length of the first magnetic pole portions 12 of the first stator core 10 .
  • FIG. 8 is a perspective view showing an example of the first stator core and the second stator core in the first embodiment.
  • FIG. 9 is a cross-sectional view showing an example of a stator in the first embodiment; FIG. 9 shows a cross section taken along line BB in FIG.
  • one end portion 11x of the yoke portion 11 and one end portion 21x of the connecting portion 21 are arranged substantially on the same plane when the protrusions 16 and the recesses 26 are engaged with each other. .
  • the one end portion 11x of the yoke portion 11 and the one end portion 21x of the connecting portion 21 are formed to be substantially flush with each other.
  • the end portion 12x of the first magnetic pole portion 12 and the end portion 22x of the second magnetic pole portion 22 are substantially at the same position in the axial direction. It is sufficient that the first magnetic pole portions 12 and the second magnetic pole portions 22 are aligned in the axial direction within a range that does not affect the rotation of the motor 1, and the gap G1 formed in the first stator core 10 and the The size of the gap G2 formed in the second stator core 20 may be different. In other words, the stator 2 may have a shape in which unevenness is generated on the end face in the axial direction.
  • the axial length L1 of the first stator core 10 and the axial length L2 of the second stator core 20 are formed to be substantially the same. be.
  • the other end 11 y of the yoke portion 11 of the first stator core 10 and the other end of the second magnetic pole portion 22 of the second stator core 20 are connected to each other.
  • the portion 22y is formed substantially on the same plane, in other words, substantially flush with the portion 22y.
  • FIG. 10 is a bottom view showing one example of the stator in the first embodiment.
  • FIG. 10 is a view of the stator 2 viewed from the direction opposite to that of FIG.
  • the first magnetic pole portion 12 of the first stator core 10 is inserted between two adjacent second magnetic pole portions 22 . With such a configuration, it is possible to secure the center-of-gravity balance of the stator 2 when the first stator core 10 and the second stator core 20 are combined.
  • the motor 1 in the first embodiment includes the shaft 99, the rotor 90, the first stator 3, and the second stator 4.
  • the first stator 3 has a tubular yoke portion 11 and a plurality of first magnetic pole portions 12 integrally formed with the yoke portion 11 .
  • the second stator 4 has a plurality of second magnetic pole portions 22 that can be engaged with the first stator 3 and a connecting portion 21 that connects portions of the plurality of second magnetic pole portions 22 on one end side. With such a configuration, the roundness of the inner diameter of the stator can be reduced.
  • the first stator core 10 and the second stator core 20 each have six magnetic pole portions, but the number of magnetic pole portions is not limited to this. On the other hand, for example, when the number of magnetic pole portions of the stator core increases, it may become difficult to insert the second stator around which the second coil is wound into the first stator around which the first coil is wound. .
  • FIG. 11 is a top view showing an example of the motor in the second embodiment.
  • FIG. 12 is a perspective view showing one example of a stator according to the second embodiment.
  • FIG. 13 is an exploded perspective view showing an example of a stator according to the second embodiment.
  • the motor 1A in the second embodiment includes a stator 2A, a rotor 90 and a shaft 99, for example.
  • the stator 2A as shown in FIG. 13, includes a first stator 3A and a second stator 4A.
  • the first stator 3 ⁇ /b>A is configured by attaching an outer insulator 67 , a bobbin coil 36 , and an inner insulator 68 to the first stator core 60 .
  • the second stator 4 ⁇ /b>A is configured by attaching an outer insulator 77 , a bobbin coil 37 , and an inner insulator 78 to the second stator core 70 .
  • the inner insulator 68 is an example of a first insulating member
  • the inner insulator 78 is an example of a second insulating member.
  • the 12 outer insulators 67 when distinguished and expressed, they may be referred to as outer insulators 67a to 67l.
  • the plurality of outer insulators 77, the plurality of bobbin coils 36 and 37, and the plurality of inner insulators 68 and 78 may also be denoted similarly.
  • FIG. 14 is a perspective view showing an example of the first stator core in the second embodiment.
  • the first stator core 60 in the second embodiment includes a yoke portion 61 and twelve first magnetic pole portions 62a to 62l.
  • the yoke portion 61 of the first stator core 60 is also formed with convex portions 66a to 66l projecting radially inward.
  • the plurality of first magnetic pole portions 62a to 62l are expressed without distinction, they are simply referred to as the first magnetic pole portion 62, and when the plurality of convex portions 66a to 66l are expressed without distinction, may be simply referred to as a convex portion 66 .
  • FIG. 15 is an enlarged perspective view showing an example of the first magnetic pole portion in the second embodiment.
  • the first magnetic pole portion 62 in the second embodiment differs from the first magnetic pole portion 12 in that, for example, the tip side (inner side in the radial direction: upward direction in FIG. 15) and the circumferential direction It has a shape with no protruding ends.
  • a gap G1 is formed between one axial end 61x of the yoke portion 61 in the second embodiment and an axial end 62x corresponding to the one end of the first magnetic pole portion 62, .
  • FIG. 16 is an enlarged perspective view showing an example of the first magnetic pole portion to which the outer insulator is attached according to the second embodiment. 14 and 16, unlike the insulators 13, 14, 23, or 24 in the first embodiment, the outer insulator 67 is arranged radially inward ( 16). The inner insulator 68 to which the bobbin coil 36 is attached is similarly attached.
  • the bobbin coil 36 in the second embodiment is composed of, for example, pre-wound rectangular copper wire.
  • the bobbin coil 36 has, for example, a substantially trapezoidal cross-sectional shape that tapers toward the inner diameter side of the stator 2A.
  • the inner diameter of the bobbin coil 36 is formed to be slightly larger than the outer shape of the first magnetic pole portion 62, for example.
  • FIG. 17 is an enlarged perspective view showing an example of the first magnetic pole portion to which the inner insulator is attached according to the second embodiment.
  • the inner insulator 68 is inserted from the radially inner side (upward in FIG. 17).
  • the outer insulator 67 and the inner insulator 68 prevent the bobbin coil 36 from coming off.
  • the order of attaching the outer insulator, the bobbin coil, and the inner insulator to the first magnetic pole portion is not limited to this.
  • the inner insulator may be attached in the order of attaching the first magnetic pole portion to which the bobbin coil and the outer insulator are attached. The same applies to the second magnetic pole portion, which will be described later.
  • the inner insulator 68 includes a pair of first protrusions 6L and 6R that protrude in the circumferential direction.
  • the first projecting portion 6L engages with a second projecting portion 7R of an inner insulator 78, which will be described later.
  • the first protrusion 6R engages with a second protrusion 7L, which will be described later.
  • FIG. 18 is a perspective view showing an example of a second stator core in the second embodiment.
  • the second stator core 70 includes a connecting portion 71 and twelve second magnetic pole portions 72a to 72l.
  • the plurality of second magnetic pole portions 72a to 72l are expressed without distinguishing between them, they may simply be referred to as the second magnetic pole portions 72 in some cases.
  • the second magnetic pole portion 72 is formed so that the cross-sectional shape in the radial direction and the length in the axial direction are substantially the same as those of the first magnetic pole portion 62 .
  • the gap G1 has a size of A substantially identical gap G2 is formed.
  • the second magnetic pole portion 72 also has a shape that does not have an end protruding in the circumferential direction on the tip side (inside in the radial direction), similarly to the first magnetic pole portion 62 .
  • the connecting portion 71 of the second stator core 70 is also formed with recesses 76a to 76l that engage with the protrusions 66a to 66l of the first stator core 60, respectively. It should be noted that when expressing the plurality of recesses 76a to 76l without distinguishing between them, they may simply be referred to as recesses 76 in some cases.
  • outer insulator 77 An outer insulator 77, a bobbin coil 37, and an inner insulator 78 are attached to the second magnetic pole portion 72 from the inside in the radial direction.
  • the outer insulator 77 has substantially the same structure as the outer insulator 67
  • the bobbin coil 37 has substantially the same structure as the bobbin coil 36, so detailed description thereof will be omitted.
  • the inner insulator 78 with the bobbin coil 37 attached is attached to the second magnetic pole portion 72 with the outer insulator 77 attached.
  • the inner insulator 78 is also inserted from the inner side in the radial direction.
  • the inner insulator 78 also includes a pair of second protrusions 7L and 7R that protrude in the circumferential direction.
  • FIG. 19 is an enlarged cross-sectional view showing an example of the motor in the second embodiment.
  • FIG. 19 is an enlarged view of the portion indicated by the frame F1 in FIG.
  • the first protrusions 6L and 6R of the inner insulator 68 are engaged with the second protrusions 7R and 7L of the adjacent inner insulator 78, respectively.
  • the first protrusion 6La of the inner insulator 68a engages the second protrusion 7Ra of the adjacent inner insulator 78a
  • the first protrusion 6Ra of the inner insulator 68a engages the second protrusion of the adjacent inner insulator 78l.
  • Engage with 7Ll Engages the coupling between the magnetic pole portions becomes stronger, so that rattling of the stator can be suppressed, and the bobbin coil 36, the outer insulator 67, the bobbin coil 36, the outer insulator 67, It is possible to prevent the inner insulator 68 from moving in the radial direction.
  • first protrusions 6L and 6R and the second protrusions 7L and 7R in the second embodiment may be tapered such that the thickness in the radial direction changes continuously.
  • the first protruding portion 6L of the inner insulator 68 is formed with a taper TP1 between the vicinity of the end portion on the negative side in the axial direction and the vicinity of the central portion in the axial direction.
  • the taper TP1 the radial thickness of the first projecting portion 6L changes continuously with respect to the axial direction.
  • the thickness T3 near the negative end in the axial direction of the first projecting portion 6L is smaller than the thickness T4 near the positive end in the axial direction and near the central portion.
  • the first protrusion 6R of the inner insulator 68 is also tapered similarly to the taper TP1.
  • the thickness T1 near the negative end in the axial direction of the first projecting portion 6R is also smaller than the thickness T2 near the positive end in the axial direction and near the central portion.
  • 20A and 20B are cross-sectional views showing an example of the inner insulator in the second embodiment. 20A shows a cross section cut along line CC of FIG. 17, and FIG. 20B shows a cross section cut along line DD of FIG.
  • the thickness T4 of the first projection 6L at the portion near the positive direction in the axial direction is greater than the thickness T4 of the first projection 6L at the portion near the negative direction in the axial direction.
  • T3 is getting smaller. The same applies to the relationship between the thicknesses T2 and T1 of the first projecting portion 6R.
  • the second protrusions 7R and 7L of the inner insulator 78 are also tapered.
  • the tapered position and the direction in which the thickness changes in the radial direction are different from the taper TP1 formed in the first protrusion 6L.
  • the thickness T6 near the end on the positive side in the axial direction is the thickness T6 near the end on the negative side in the axial direction and near the center.
  • a taper is formed that is smaller than T5.
  • a taper TP2 is formed such that the thickness in the radial direction changes continuously from the vicinity of the central portion in the axial direction toward the end portion on the positive side in the axial direction.
  • a similar taper is also formed on the second projecting portion 7R.
  • the thickness in the negative direction in the axial direction of the first projecting portions 6L and 6R of the inner insulator 68 attached to the first stator 3A is reduced.
  • the thickness in the positive direction in the axial direction is reduced in the second protruding portions 7L and 7R of the inner insulator 78 attached to the second stator 4A. This makes it easy to mount the second stator 4A with the inner insulator 78 attached to the first stator 3A with the inner insulator 68 attached from the negative direction side in the axial direction.
  • FIG. 21A is an enlarged cross-sectional view showing an example of the first projecting portion and the second projecting portion when the first stator is inserted in the second embodiment.
  • FIG. 21B is an enlarged cross-sectional view showing an example of the first protrusion and the second protrusion when the insertion of the first stator is completed in the second embodiment.
  • the thickness T1 near the end of the first projecting portion 6R on the negative direction side and the thickness T6 near the end on the negative direction side of the second projecting portion 7L are small.
  • a gap I is created between the first protrusion 6R and the second protrusion 7L. Due to the gap I, collision between the inner insulator 68 of the first stator 3A and the inner insulator 78 of the second stator 4A is less likely to occur, so workability is improved when inserting the first stator 3A into the second stator 4A. .
  • the thickness T2 of the first projecting portion 6R and the thickness T5 of the second projecting portion 7L increase, for example, near the central portion in the axial direction. As a result, the gap I between the first projecting portion 6R and the second projecting portion 7L is reduced. This suppresses rattling between the first stator 3A and the second stator 4A.
  • the first stator 3A of the motor 1A in the second embodiment includes the first insulating member 68
  • the second stator 4A includes the second insulating member 78.
  • the first insulating member 68 has first protrusions 6L and 6R protruding in the inner diameter side in the circumferential direction
  • the second insulating member 78 has second protrusions 7L and 7R protruding in the inner diameter side in the circumferential direction. have Then, the first projecting portion 6R and the second projecting portion 7L are engaged.
  • the radial thickness of the first projecting portion 6R is thinner on one axial end side than the axial direction other end side
  • the radial thickness of the second projecting portion 7L is axially thinner than the axial direction one end side. It is thinner at the other end of the direction.
  • first magnetic pole portions and second magnetic pole portions are not limited to those shown in each embodiment, and the number of first magnetic pole portions 12 and second magnetic pole portions 22 need not be the same.
  • the tip portions (portions protruding inward in the radial direction) of the teeth (magnetic pole portions) 12 and 22 are provided with portions protruding in the circumferential direction
  • the teeth (magnetic pole portions) (Parts) 62 and 72 have been described as having no portion protruding in the circumferential direction, but the embodiment is not limited to this.
  • the tip portion of the first magnetic pole portion 12 or the tip portion of the second magnetic pole portion 22 may be configured so as not to have a portion protruding in the circumferential direction.
  • the configuration using the bobbin coil as in the second embodiment it is preferable that the configuration does not include a circumferentially projecting portion like the first magnetic pole portion 62 and the second magnetic pole portion 72 .
  • the insulator is attached to the stator core from the front and rear in the axial direction
  • the insulator is attached to the stator core from the inner side in the radial direction with the coil interposed therebetween.
  • the insulator may be attached to the stator core from the inside in the radial direction.
  • a gap is created between the front and rear insulators, so the insulators are likely to get caught when combining the first stator and the second stator. Therefore, when the number of magnetic pole portions is large as in the second embodiment, it is preferable to install the insulator from the inner side in the radial direction.
  • the configuration in which the protrusions 6L, 6R, 7L and 7R are formed at both ends of the inner insulators 68 and 78 in the circumferential direction has been described, but the protrusions are provided only at one end.
  • recesses may be provided instead of protrusions.
  • the tapers TP1 and TP2 may be formed not only on one side in the axial direction but also over the entire axial direction.
  • the portion where the thickness in the radial direction changes continuously may be formed by a curved surface or the like instead of the inclined surface.
  • the present invention is not limited to this, and the first magnetic pole portion 12 or the second stator 4 It may be formed in the magnetic pole portion 22 .
  • the ends are arranged on substantially the same plane. Due to the above error, they may not be formed on the same plane. For example, there are cases where the lengths of the first stator and the second stator fluctuate within a range of ⁇ 5% of their respective axial lengths. Similarly, each member such as the first stator core and the second stator core may not have completely the same shape due to dimensional tolerances, etc., but there is no problem due to manufacturing errors within the scope of the effects of the present invention. .
  • the motor in each embodiment is, for example, an inner rotor type brushless motor, it is not limited to this, and the first stator and the second stator in the embodiment may be adopted in an outer rotor type motor. Also, the first stator and the second stator may be employed in rotating electric machines other than motors, such as generators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

A motor (1) is provided with a shaft (99), a rotor (90), a first stator (3), and a second stator (4). The first stator (3) has a cylindrical yoke portion (11), and a plurality of first magnetic pole portions (12) formed integrally with the yoke portion (11). The second stator (4) has a plurality of second magnetic pole portions (22) capable of engaging with the first stator (3), and linking portions (21) linking one end side of each of the plurality of second magnetic pole portions (22) together.

Description

モータmotor
 本発明は、モータに関する。 The present invention relates to motors.
 モータ等の回転電機において、ステータの巻線占積率を向上するため、あるいはコイルの巻き回しを容易にするために、分割コアを組み合わせて環状のステータコアを構成する技術が知られている。 In a rotating electric machine such as a motor, there is known a technique of forming an annular stator core by combining split cores in order to improve the winding space factor of the stator or facilitate winding of the coil.
特開平10-4640号公報JP-A-10-4640 特開2013-223414号公報JP 2013-223414 A 特開2017-46381号公報JP 2017-46381 A 特開2011-103733号公報JP 2011-103733 A
 分割コアを組み合わせてステータコアを構成する場合、ステータの内径真円度(ステータの径方向における内側に突出する磁極部(ティース)の先端における真円度)が大きくなる場合がある。 When a stator core is configured by combining split cores, the roundness of the inner diameter of the stator (roundness at the tips of the magnetic pole portions (teeth) that protrude inward in the radial direction of the stator) may increase.
 一つの側面では、ステータの内径真円度を小さくできるモータを提供することを目的とする。 An object of one aspect is to provide a motor capable of reducing the roundness of the inner diameter of the stator.
 一つの態様において、モータは、シャフトと、ロータと、第1ステータと、第2ステータとを備える。前記第1ステータは、筒状のヨーク部と、前記ヨーク部と一体に形成される複数の第1磁極部とを有する。前記第2ステータは、前記第1ステータと係合可能な複数の第2磁極部と、前記複数の第2磁極部の一端側をそれぞれ連結する連結部とを有する。 In one aspect, a motor includes a shaft, a rotor, a first stator, and a second stator. The first stator has a cylindrical yoke portion and a plurality of first magnetic pole portions integrally formed with the yoke portion. The second stator has a plurality of second magnetic pole portions that can be engaged with the first stator, and a connecting portion that connects one end sides of the plurality of second magnetic pole portions.
 一つの態様によれば、ステータの内径真円度を小さくできる。 According to one aspect, the roundness of the inner diameter of the stator can be reduced.
図1は、第1の実施形態におけるモータの一例を示す上面図である。FIG. 1 is a top view showing an example of the motor in the first embodiment. FIG. 図2は、第1の実施形態におけるステータの一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a stator in the first embodiment; FIG. 図3は、第1の実施形態における第1ステータコアの一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a first stator core in the first embodiment; FIG. 図4は、第1の実施形態における第2ステータコアの一例を示す斜視図である。FIG. 4 is a perspective view showing an example of a second stator core in the first embodiment. 図5は、第1の実施形態におけるステータの一例を示す分解斜視図である。FIG. 5 is an exploded perspective view showing one example of the stator in the first embodiment. 図6は、第1の実施形態における第1ステータコアの一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of the first stator core in the first embodiment. 図7は、第1の実施形態における第2ステータコアの一例を示す斜視図である。FIG. 7 is a perspective view showing an example of a second stator core in the first embodiment; FIG. 図8は、第1の実施形態における第1ステータコアと第2ステータコアとの一例を示す斜視図である。FIG. 8 is a perspective view showing an example of a first stator core and a second stator core in the first embodiment; 図9は、第1の実施形態におけるステータの一例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of a stator in the first embodiment; 図10は、第1の実施形態におけるステータの一例を示す底面図である。FIG. 10 is a bottom view showing one example of the stator in the first embodiment. 図11は、第2の実施形態におけるモータの一例を示す上面図である。FIG. 11 is a top view showing an example of the motor in the second embodiment. 図12は、第2の実施形態におけるステータの一例を示す斜視図である。FIG. 12 is a perspective view showing one example of a stator according to the second embodiment. 図13は、第2の実施形態におけるステータの一例を示す分解斜視図である。FIG. 13 is an exploded perspective view showing an example of a stator according to the second embodiment. 図14は、第2の実施形態における第1ステータコアの一例を示す斜視図である。FIG. 14 is a perspective view showing an example of a first stator core in the second embodiment; 図15は、第2の実施形態における第1磁極部の一例を示す拡大斜視図である。FIG. 15 is an enlarged perspective view showing an example of the first magnetic pole portion in the second embodiment. 図16は、第2の実施形態における外側インシュレータが装着された第1磁極部の一例を示す拡大斜視図である。FIG. 16 is an enlarged perspective view showing an example of the first magnetic pole portion to which the outer insulator is attached according to the second embodiment. 図17は、第2の実施形態における内側インシュレータが装着された第1磁極部の一例を示す拡大斜視図である。FIG. 17 is an enlarged perspective view showing an example of the first magnetic pole portion to which the inner insulator is attached according to the second embodiment. 図18は、第2の実施形態における第2ステータコアの一例を示す斜視図である。FIG. 18 is a perspective view showing an example of a second stator core in the second embodiment. 図19は、第2の実施形態におけるモータの一例を示す拡大断面図である。FIG. 19 is an enlarged cross-sectional view showing an example of the motor in the second embodiment. 図20Aは、第2の実施形態における内側インシュレータの一例を示す断面図である。FIG. 20A is a cross-sectional view showing an example of an inner insulator in the second embodiment; 図20Bは、第2の実施形態における内側インシュレータの一例を示す断面図である。FIG. 20B is a cross-sectional view showing an example of an inner insulator in the second embodiment; 図21Aは、第2の実施形態における第1ステータ挿入時における第1突出部と第2突出部との一例を示す拡大断面図である。FIG. 21A is an enlarged cross-sectional view showing an example of the first projection and the second projection when the first stator is inserted in the second embodiment. 図21Bは、第2の実施形態における第1ステータ挿入完了時における第1突出部と第2突出部との一例を示す拡大断面図である。FIG. 21B is an enlarged cross-sectional view showing an example of the first protrusion and the second protrusion when the insertion of the first stator is completed in the second embodiment.
 以下に、本願の開示するモータの実施形態を図面に基づいて詳細に説明する。なお、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。各図面において、説明を分かりやすくするために、後に説明するシャフト99が延在する方向を軸方向とし、ロータ90が回転する方向を周方向とする座標系を図示する場合がある。 Below, embodiments of the motor disclosed in the present application will be described in detail based on the drawings. Note that the dimensional relationship of each element in the drawings, the ratio of each element, and the like may differ from reality. Even between the drawings, there are cases where portions with different dimensional relationships and ratios are included. In each drawing, in order to make the description easier to understand, a coordinate system may be illustrated in which the direction in which the shaft 99 extends, which will be described later, is the axial direction, and the direction in which the rotor 90 rotates is the circumferential direction.
(第1の実施形態)
 図1は、第1の実施形態におけるモータの一例を示す上面図である。図1に示すモータ1は、例えば、ステータ2と、ロータ90と、シャフト99とを含む。なお、各実施形態で説明するモータ1は、インナーロータ型のブラシレスモータである。モータ1には、例えば、複数のマグネット91を構成部品として持つロータ90が配置されている。このロータ90には回転軸(シャフト)99が結合している。また、モータ1は、例えば、図示しないフレームに収容される。
(First embodiment)
FIG. 1 is a top view showing an example of the motor in the first embodiment. FIG. Motor 1 shown in FIG. 1 includes, for example, stator 2 , rotor 90 and shaft 99 . The motor 1 described in each embodiment is an inner rotor type brushless motor. A rotor 90 having, for example, a plurality of magnets 91 as components is arranged in the motor 1 . A rotating shaft (shaft) 99 is coupled to the rotor 90 . Also, the motor 1 is housed in, for example, a frame (not shown).
 図2は、第1の実施形態におけるステータの一例を示す斜視図である。図1及び図2に示すように、第1の実施形態におけるステータ2は、第1ステータコア10と、第2ステータコア20と、複数の一対のインシュレータ13及び14と、複数の一対のインシュレータ23及び24と、複数の第1コイル31と、複数の第2コイル32とを備える。なお、以下において、複数のインシュレータ13を区別して表現する場合に、それぞれインシュレータ13a乃至13fと表記する場合がある。複数のインシュレータ14、23及び24と、複数の第1コイル31と、複数の第2コイル32とについても、同様に表記する場合がある。 FIG. 2 is a perspective view showing an example of the stator in the first embodiment. As shown in FIGS. 1 and 2, the stator 2 in the first embodiment includes a first stator core 10, a second stator core 20, a plurality of pairs of insulators 13 and 14, and a plurality of pairs of insulators 23 and 24. , a plurality of first coils 31 , and a plurality of second coils 32 . In the following description, the insulators 13a to 13f may be used when the plurality of insulators 13 are distinguished from each other. The plurality of insulators 14, 23 and 24, the plurality of first coils 31, and the plurality of second coils 32 may also be denoted similarly.
 第1の実施形態において、インシュレータ13は、第1ステータコア10に、軸方向における負方向側から装着される。同様に、インシュレータ14は、第1ステータコア10に、軸方向における正方向側から装着される。図3は、第1の実施形態における第1ステータコアの一例を示す斜視図である。図3に示すように、第1ステータコア10は、ヨーク部11と、6つの第1磁極部12と備える。なお、以下において、複数の第1磁極部12を区別して表現する場合に、それぞれ第1磁極部12a乃至12fと表記する場合がある。 In the first embodiment, the insulator 13 is attached to the first stator core 10 from the negative side in the axial direction. Similarly, the insulator 14 is attached to the first stator core 10 from the positive side in the axial direction. FIG. 3 is a perspective view showing an example of a first stator core in the first embodiment; FIG. As shown in FIG. 3 , the first stator core 10 includes a yoke portion 11 and six first magnetic pole portions 12 . In the following, when the plurality of first magnetic pole portions 12 are distinguished and expressed, they may be referred to as first magnetic pole portions 12a to 12f, respectively.
 ヨーク部11は、例えばステンレス鋼や電磁鋼板などの磁性体により形成される、底部を有さない円筒状の部材である。6つの第1磁極部12は、ヨーク部11と一体に形成される。第1磁極部12は、ヨーク部11の内周面側から、径方向における内側に向かって突出する突出部である。第1の実施形態における第1磁極部12は、図3に示すように、例えば、先端側(径方向における内側)に、周方向に突出する2つの端部を備える。 The yoke portion 11 is a bottomless cylindrical member made of a magnetic material such as stainless steel or an electromagnetic steel plate. The six first magnetic pole portions 12 are formed integrally with the yoke portion 11 . The first magnetic pole portion 12 is a protrusion that protrudes radially inward from the inner peripheral surface side of the yoke portion 11 . As shown in FIG. 3, the first magnetic pole portion 12 in the first embodiment includes, for example, two ends protruding in the circumferential direction on the tip side (inner side in the radial direction).
 インシュレータ13及び14は、樹脂などの絶縁性を有する材料により形成される。インシュレータ13a乃至13f、及びインシュレータ14a乃至14fは、図3に示すように、軸方向における各方向から、それぞれ対応する第1磁極部12a乃至12fに装着される。図2に示すように、インシュレータ13は、ヨーク部11の軸方向における一端部11xよりも、軸方向における負方向側に突出するように装着される。同様に、インシュレータ14は、ヨーク部11の軸方向における他端部11yよりも、軸方向における正方向側に突出するように装着される。図1及び図2においては、第1磁極部12は、一対のインシュレータ13及び14により覆われており、視認されない。 The insulators 13 and 14 are made of an insulating material such as resin. As shown in FIG. 3, the insulators 13a to 13f and the insulators 14a to 14f are attached to the corresponding first magnetic pole portions 12a to 12f from each axial direction. As shown in FIG. 2, the insulator 13 is mounted so as to protrude in the negative direction in the axial direction from the one end portion 11x of the yoke portion 11 in the axial direction. Similarly, the insulator 14 is mounted so as to protrude in the positive direction in the axial direction from the other end portion 11y of the yoke portion 11 in the axial direction. 1 and 2, the first magnetic pole portion 12 is covered with a pair of insulators 13 and 14 and is not visible.
 第1磁極部12a乃至12fには、それぞれ第1コイル31a乃至31fが、それぞれインシュレータ13a乃至13f及びインシュレータ14a乃至14fを介して巻き回される。第1コイル31は、例えば丸線の銅線がノズル巻線により巻き回されることにより形成される。第1ステータコア10に、一対のインシュレータ13及び14が装着され、さらに第1コイル31が巻き回されることにより、第1ステータ3が構成される。 The first coils 31a to 31f are wound around the first magnetic pole portions 12a to 12f via insulators 13a to 13f and insulators 14a to 14f, respectively. The first coil 31 is formed by, for example, winding a round copper wire by nozzle winding. A pair of insulators 13 and 14 are attached to the first stator core 10, and a first coil 31 is wound around the insulators 13 and 14 to form the first stator 3. As shown in FIG.
 図4は、第1の実施形態における第2ステータコアの一例を示す斜視図である。図4に示すように、第2ステータコア20は、連結部21と、6つの第2磁極部22と備える。なお、以下において、複数の第2磁極部22を区別して表現する場合に、それぞれ第2磁極部22a乃至22fと表記する場合がある。 FIG. 4 is a perspective view showing an example of the second stator core in the first embodiment. As shown in FIG. 4 , the second stator core 20 includes connecting portions 21 and six second magnetic pole portions 22 . In the following, when the plurality of second magnetic pole portions 22 are distinguished and expressed, they may be referred to as second magnetic pole portions 22a to 22f, respectively.
 連結部21は、例えばステンレス鋼や電磁鋼板などの磁性体により形成される、環状の部材である。6つの第2磁極部22は、連結部21に連結して一体に形成される、径方向における内側に向かって突出する突出部である。図4に示すように、第1の実施形態における第2磁極部22も、第1磁極部12と同様に、例えば、先端側(径方向における内側)に、周方向に突出する2つの端部を備える。第1の実施形態において、第2磁極部22は、第1磁極部12と径方向における断面形状及び軸方向における長さが略同一となるように形成される。なお、連結部21と第2磁極部22とは、別体で成形したものをそれぞれ接続し、一体としてもよく、連結部21の材料も磁性体には限定されない。 The connecting part 21 is an annular member made of a magnetic material such as stainless steel or electromagnetic steel plate. The six second magnetic pole portions 22 are protruding portions that are integrally formed by connecting to the connecting portion 21 and protrude inward in the radial direction. As shown in FIG. 4 , the second magnetic pole portion 22 in the first embodiment also has two ends protruding in the circumferential direction, for example, toward the distal end side (inner side in the radial direction), similarly to the first magnetic pole portion 12 . Prepare. In the first embodiment, the second magnetic pole portion 22 is formed so that the cross-sectional shape in the radial direction and the length in the axial direction are substantially the same as those of the first magnetic pole portion 12 . Note that the connecting portion 21 and the second magnetic pole portion 22 may be formed separately and connected to each other, and the material of the connecting portion 21 is not limited to a magnetic material.
 インシュレータ23及び24は、樹脂などの絶縁性を有する材料により形成される。インシュレータ23a乃至23f、及びインシュレータ24a乃至24fは、図4に示すように、軸方向における各方向から、それぞれ対応する第2磁極部22a乃至22fに装着される。図2及び図4に示すように、インシュレータ23は、連結部21の軸方向における一端部21xよりも、軸方向における負方向側に突出するように装着される。同様に、インシュレータ24は、第2磁極部22の軸方向における他端部22yよりも、軸方向における正方向側に突出するように装着される。図1及び図2においては、第2磁極部22は、一対のインシュレータ23及び24により覆われており、視認されない。第1の実施形態においては、インシュレータ23は、インシュレータ13と略同一の形状を有し、インシュレータ24は、インシュレータ14と略同一の形状を有する。 The insulators 23 and 24 are made of an insulating material such as resin. As shown in FIG. 4, the insulators 23a to 23f and the insulators 24a to 24f are attached to the corresponding second magnetic pole portions 22a to 22f from each axial direction. As shown in FIGS. 2 and 4, the insulator 23 is mounted so as to protrude in the negative direction in the axial direction from the one end 21x of the connecting portion 21 in the axial direction. Similarly, the insulator 24 is mounted so as to protrude in the positive direction in the axial direction from the other end 22y of the second magnetic pole portion 22 in the axial direction. 1 and 2, the second magnetic pole portion 22 is covered with a pair of insulators 23 and 24 and is not visible. In the first embodiment, insulator 23 has substantially the same shape as insulator 13 and insulator 24 has substantially the same shape as insulator 14 .
 第2磁極部22a乃至22fには、それぞれ第2コイル32a乃至32fが、それぞれ一対のインシュレータ23a乃至23f及びインシュレータ24a乃至24fを介して巻き回される。第2コイル32も、例えばノズル巻線により巻き回される。第2ステータコア20に、一対のインシュレータ23及び24が装着され、さらに第2コイル32が巻き回されることにより、第2ステータ4が構成される。 The second coils 32a to 32f are wound around the second magnetic pole portions 22a to 22f via pairs of insulators 23a to 23f and insulators 24a to 24f, respectively. The second coil 32 is also wound by nozzle winding, for example. A pair of insulators 23 and 24 are attached to the second stator core 20, and a second coil 32 is wound around the insulators 23 and 24 to form the second stator 4. As shown in FIG.
 第1の実施形態において、各第1磁極部12a乃至12fは、いずれも円筒状のヨーク部11と一体に形成される。また、各第2磁極部22a乃至22fは、いずれも環状の連結部21と一体に形成される。これにより、1つ1つ独立した磁極部を組み合わせる場合と比べて、各磁極部の位置のずれが小さくなる。このため、第1ステータコア10及び第2ステータコア20において、各磁極部の先端側(径方向における内側)の真円度を容易に小さくすることができるので、モータ1の効率を向上させることや、コギングトルクの低減を容易に行うことができる。 In the first embodiment, each of the first magnetic pole portions 12 a to 12 f is formed integrally with the cylindrical yoke portion 11 . Moreover, each of the second magnetic pole portions 22 a to 22 f is formed integrally with the annular connecting portion 21 . As a result, the positional deviation of each magnetic pole portion is reduced as compared with the case where each independent magnetic pole portion is combined. Therefore, in the first stator core 10 and the second stator core 20, it is possible to easily reduce the circularity of the tip end side (inner side in the radial direction) of each magnetic pole portion, so that the efficiency of the motor 1 can be improved, Cogging torque can be easily reduced.
 第1の実施形態におけるステータ2は、図3に示す第1ステータコア10を含む第1ステータ3と、図4に示す第2ステータコア20を含む第2ステータ4とを組み合わせて構成される。図5は、第1の実施形態におけるステータの一例を示す分解斜視図である。図5に示すように、ステータ2は、第2ステータ4を、第1ステータ3に、軸方向における負方向側から装着することにより形成される。その際、第2ステータ4における第2磁極部22は、第1ステータ3における2つの第1磁極部12の隙間に挿入される。この場合において、第1磁極部12にインシュレータ13及び14を介して巻き回された第1コイル31と、第2磁極部22にインシュレータ23及び24を介して巻き回された第2コイル32とは相互に隣接する。例えば、図2乃至図5に示すように、第1コイル31aと第1コイル31bとの間には、第2コイル32aが挿入される。この場合において、第1コイル31aは、第2コイル32fと第2コイル32aとの間に配置される。第1ステータ3と第2ステータ4との接合は、例えば、第1ステータコア10と第2ステータコア20との圧入により行われるが、これに限られず、例えば溶接や接着等により接合されてもよい。 The stator 2 in the first embodiment is configured by combining the first stator 3 including the first stator core 10 shown in FIG. 3 and the second stator 4 including the second stator core 20 shown in FIG. FIG. 5 is an exploded perspective view showing one example of the stator in the first embodiment. As shown in FIG. 5, the stator 2 is formed by attaching the second stator 4 to the first stator 3 from the negative side in the axial direction. At that time, the second magnetic pole portion 22 of the second stator 4 is inserted into the gap between the two first magnetic pole portions 12 of the first stator 3 . In this case, the first coil 31 wound around the first magnetic pole portion 12 via the insulators 13 and 14 and the second coil 32 wound around the second magnetic pole portion 22 via the insulators 23 and 24 are adjacent to each other. For example, as shown in FIGS. 2 to 5, a second coil 32a is inserted between the first coils 31a and 31b. In this case, the first coil 31a is arranged between the second coil 32f and the second coil 32a. The joining of the first stator 3 and the second stator 4 is performed, for example, by press-fitting the first stator core 10 and the second stator core 20, but is not limited to this, and may be joined by welding, adhesion, or the like.
 以上説明したように、第1の実施形態において、第1コイル31及び第2コイル32は、それぞれ第1ステータコア10と第2ステータコア20とが組み合わされる前に巻き回される。これにより、例えばノズル巻線によりコイルを巻き回す際の作業性が向上するとともに、巻線占積率も向上できる。 As described above, in the first embodiment, the first coil 31 and the second coil 32 are wound before the first stator core 10 and the second stator core 20 are respectively combined. As a result, workability in winding the coil by nozzle winding, for example, can be improved, and the winding space factor can also be improved.
 また、第1の実施形態において、第1磁極部12の軸方向における長さは、例えば、ヨーク部11の軸方向における長さよりも小さい。この場合、図6に示すように、ヨーク部11の軸方向における一端部11xと、第1磁極部12の当該一端部と対応する軸方向における端部12xとの間には、間隙G1が形成される。 Also, in the first embodiment, the length in the axial direction of the first magnetic pole portion 12 is smaller than the length in the axial direction of the yoke portion 11, for example. In this case, as shown in FIG. 6, a gap G1 is formed between one axial end portion 11x of the yoke portion 11 and an axial end portion 12x corresponding to the one end portion of the first magnetic pole portion 12. be done.
 図6は、第1の実施形態における第1ステータコアの一例を示す断面図である。図6では、図3のA-A線で切断した断面を示す。図6に示すように、ヨーク部11の他端部11yと、第1磁極部12の当該他端部と対応する端部12yとは略同一平面上、言い換えると、略面一になるように形成される。すなわち、第1磁極部12の軸方向における長さは、ヨーク部11の軸方向における長さに比べて、間隙G1の分だけ短い。 FIG. 6 is a cross-sectional view showing an example of the first stator core in the first embodiment. FIG. 6 shows a cross section taken along line AA in FIG. As shown in FIG. 6, the other end portion 11y of the yoke portion 11 and the end portion 12y corresponding to the other end portion of the first magnetic pole portion 12 are substantially flush with each other. It is formed. That is, the axial length of the first magnetic pole portion 12 is shorter than the axial length of the yoke portion 11 by the gap G1.
 また、図3及び図6に示すように、ヨーク部11の軸方向における一端部11xの一部には、径方向における内側に向かって突出する凸部16が形成される。なお、凸部16は、係合部の一例である。また、以下において、複数の凸部16を区別して表現する場合に、それぞれ凸部16a乃至16fと表記する場合がある。 In addition, as shown in FIGS. 3 and 6, a convex portion 16 that protrudes radially inward is formed on a part of the one end portion 11x of the yoke portion 11 in the axial direction. In addition, the convex part 16 is an example of an engaging part. Further, in the following, when the plurality of convex portions 16 are distinguished and expressed, they may be described as convex portions 16a to 16f, respectively.
 第1の実施形態において、凸部16は、例えば、周方向において隣接する2つの第1磁極部12の間に形成される。例えば、凸部16aは、第1磁極部12aと、第1磁極部12bとの間に形成され、凸部16fは、第1磁極部12fと、第1磁極部12aとの間に形成される。 In the first embodiment, the convex portion 16 is formed, for example, between two first magnetic pole portions 12 adjacent in the circumferential direction. For example, the convex portion 16a is formed between the first magnetic pole portion 12a and the first magnetic pole portion 12b, and the convex portion 16f is formed between the first magnetic pole portion 12f and the first magnetic pole portion 12a. .
 また、第1の実施形態において、図6及び図7に示すように、第2ステータコア20の連結部21には、凸部16a乃至16fと係合する凹部26a乃至26fが形成される。図7は、第1の実施形態における第2ステータコアの一例を示す斜視図である。例えば、図3及び図6に示す第1ステータコア10の凸部16aは、図7に示す第2ステータコア20の凹部26aと係合する。その際、凸部16aと凹部26aとは、軸方向における一端部11xと21xとが略同一平面上、言い換えると、略面一になるように形成される。 Further, in the first embodiment, as shown in FIGS. 6 and 7, the connecting portion 21 of the second stator core 20 is formed with recesses 26a to 26f that engage with the projections 16a to 16f. FIG. 7 is a perspective view showing an example of a second stator core in the first embodiment; FIG. For example, the protrusions 16a of the first stator core 10 shown in FIGS. 3 and 6 engage with the recesses 26a of the second stator core 20 shown in FIG. At this time, the convex portion 16a and the concave portion 26a are formed such that the one ends 11x and 21x in the axial direction are substantially flush with each other, in other words, substantially flush with each other.
 第1の実施形態において、図7に示すように、連結部21の一端部21xと、第2磁極部22の当該一端部と対応する端部22xとの間には、間隙G2が形成される。第1の実施形態において、間隙G2は、第1ステータコア10に形成される間隙G1と、大きさが略同一となるように形成される。すなわち、図8及び図9に示すように、第1磁極部12の端部12xと、第2磁極部22の端部22xとは、軸方向における位置が略同一となる。また、第1の実施形態において、第2磁極部22の軸方向における長さは、第1ステータコア10の第1磁極部12の軸方向における長さと略同一である。この場合、後に説明するように、第2磁極部22の他端部22yは、第1ステータ3が第2ステータ4と接合した際に、第1ステータコア10のヨーク部11の他端部11y、及び第1磁極部12の端部12yと、軸方向における位置が略同一となる。 In the first embodiment, as shown in FIG. 7, a gap G2 is formed between one end portion 21x of the connecting portion 21 and an end portion 22x corresponding to the one end portion of the second magnetic pole portion 22. . In the first embodiment, the gap G2 is formed to have approximately the same size as the gap G1 formed in the first stator core 10 . That is, as shown in FIGS. 8 and 9, the end portion 12x of the first magnetic pole portion 12 and the end portion 22x of the second magnetic pole portion 22 are substantially at the same position in the axial direction. Further, in the first embodiment, the axial length of the second magnetic pole portions 22 is substantially the same as the axial length of the first magnetic pole portions 12 of the first stator core 10 . In this case, as will be described later, when the first stator 3 is joined to the second stator 4, the other end portion 22y of the second magnetic pole portion 22 is connected to the other end portion 11y of the yoke portion 11 of the first stator core 10, and the end portion 12y of the first magnetic pole portion 12, and the position in the axial direction is substantially the same.
 図8は、第1の実施形態における第1ステータコアと第2ステータコアとの一例を示す斜視図である。図9は、第1の実施形態におけるステータの一例を示す断面図である。図9では、図2のB-B線で切断した断面を示す。図8に示すように、各凸部16と各凹部26とがそれぞれ係合した状態において、ヨーク部11の一端部11xと、連結部21の一端部21xとは略同一平面上に配置される。言い換えると、ヨーク部11の一端部11xと、連結部21の一端部21xとは略面一になるように形成される。また、第1磁極部12の端部12xと、第2磁極部22の端部22xとは、軸方向における位置が略同一となる。なお、第1磁極部12と第2磁極部22のそれぞれの配置が、モータ1の回転に影響を与えない範囲で軸方向に揃っていればよく、第1ステータコア10に形成される間隙G1と第2ステータコア20に形成される間隙G2の大きさとは相違してもよい。言い換えると、ステータ2の軸方向における端面に凹凸が発生するような形状としてもよい。 FIG. 8 is a perspective view showing an example of the first stator core and the second stator core in the first embodiment. FIG. 9 is a cross-sectional view showing an example of a stator in the first embodiment; FIG. 9 shows a cross section taken along line BB in FIG. As shown in FIG. 8, one end portion 11x of the yoke portion 11 and one end portion 21x of the connecting portion 21 are arranged substantially on the same plane when the protrusions 16 and the recesses 26 are engaged with each other. . In other words, the one end portion 11x of the yoke portion 11 and the one end portion 21x of the connecting portion 21 are formed to be substantially flush with each other. Further, the end portion 12x of the first magnetic pole portion 12 and the end portion 22x of the second magnetic pole portion 22 are substantially at the same position in the axial direction. It is sufficient that the first magnetic pole portions 12 and the second magnetic pole portions 22 are aligned in the axial direction within a range that does not affect the rotation of the motor 1, and the gap G1 formed in the first stator core 10 and the The size of the gap G2 formed in the second stator core 20 may be different. In other words, the stator 2 may have a shape in which unevenness is generated on the end face in the axial direction.
 さらに、第1の実施形態において、図9に示すように、第1ステータコア10の軸方向における長さL1と、第2ステータコア20の軸方向における長さL2とは略同一となるように形成される。これにより、図10に示すように、ステータ2の軸方向における正方向側においても、第1ステータコア10のヨーク部11の他端部11yと、第2ステータコア20の第2磁極部22の他端部22yとが略同一平面上、言い換えると、略面一になるように形成される。図10は、第1の実施形態におけるステータの一例を示す底面図である。図10は、ステータ2を、図1とは反対の方向(軸方向における正方向側)から見た図である。図10に示すように、第1ステータコア10の第1磁極部12は、隣接する2つの第2磁極部22の間に挿入される。このような構成により、第1ステータコア10と第2ステータコア20とを組み合わせた場合におけるステータ2の重心バランスを担保できる。 Furthermore, in the first embodiment, as shown in FIG. 9, the axial length L1 of the first stator core 10 and the axial length L2 of the second stator core 20 are formed to be substantially the same. be. As a result, as shown in FIG. 10 , even on the positive axial side of the stator 2 , the other end 11 y of the yoke portion 11 of the first stator core 10 and the other end of the second magnetic pole portion 22 of the second stator core 20 are connected to each other. The portion 22y is formed substantially on the same plane, in other words, substantially flush with the portion 22y. FIG. 10 is a bottom view showing one example of the stator in the first embodiment. FIG. 10 is a view of the stator 2 viewed from the direction opposite to that of FIG. 1 (positive side in the axial direction). As shown in FIG. 10 , the first magnetic pole portion 12 of the first stator core 10 is inserted between two adjacent second magnetic pole portions 22 . With such a configuration, it is possible to secure the center-of-gravity balance of the stator 2 when the first stator core 10 and the second stator core 20 are combined.
 以上説明したように、第1の実施形態におけるモータ1は、シャフト99と、ロータ90と、第1ステータ3と、第2ステータ4とを備える。第1ステータ3は、筒状のヨーク部11と、ヨーク部11と一体に形成される複数の第1磁極部12とを有する。第2ステータ4は、第1ステータ3と係合可能な複数の第2磁極部22と、複数の第2磁極部22の一端側の部分をそれぞれ連結する連結部21とを有する。かかる構成によれば、ステータの内径真円度を小さくできる。 As described above, the motor 1 in the first embodiment includes the shaft 99, the rotor 90, the first stator 3, and the second stator 4. The first stator 3 has a tubular yoke portion 11 and a plurality of first magnetic pole portions 12 integrally formed with the yoke portion 11 . The second stator 4 has a plurality of second magnetic pole portions 22 that can be engaged with the first stator 3 and a connecting portion 21 that connects portions of the plurality of second magnetic pole portions 22 on one end side. With such a configuration, the roundness of the inner diameter of the stator can be reduced.
(第2の実施形態)
 第1の実施形態においては、第1ステータコア10及び第2ステータコア20が、それぞれ6つの磁極部を備える構成について説明したが、磁極部の数はこれに限られない。一方、例えば、ステータコアの磁極部の数が増加する場合等、第2コイルが巻き回された第2ステータを、第1コイルが巻き回された第1ステータに挿入することが難しくなる場合がある。
(Second embodiment)
In the first embodiment, the first stator core 10 and the second stator core 20 each have six magnetic pole portions, but the number of magnetic pole portions is not limited to this. On the other hand, for example, when the number of magnetic pole portions of the stator core increases, it may become difficult to insert the second stator around which the second coil is wound into the first stator around which the first coil is wound. .
 そこで、第2の実施形態においては、第1ステータと第2ステータとの組み合わせを容易にするために、インシュレータの形状を変更した構成について説明する。図11は、第2の実施形態におけるモータの一例を示す上面図である。図12は、第2の実施形態におけるステータの一例を示す斜視図である。図13は、第2の実施形態におけるステータの一例を示す分解斜視図である。なお、以下の各実施形態及び各変形例において、先に説明した図面に示す部位と同一の部位には同一の符号を付し、重複する説明は省略する。 Therefore, in the second embodiment, a configuration in which the shape of the insulator is changed in order to facilitate the combination of the first stator and the second stator will be described. FIG. 11 is a top view showing an example of the motor in the second embodiment. FIG. 12 is a perspective view showing one example of a stator according to the second embodiment. FIG. 13 is an exploded perspective view showing an example of a stator according to the second embodiment. In addition, in each of the following embodiments and modifications, the same reference numerals are given to the same parts as the parts shown in the drawings described above, and overlapping explanations will be omitted.
 図11及び図12に示すように、第2の実施形態におけるモータ1Aは、例えば、ステータ2Aと、ロータ90と、シャフト99とを含む。ステータ2Aは、図13に示すように、第1ステータ3Aと、第2ステータ4Aとを備える。第1ステータ3Aは、第1ステータコア60に、外側インシュレータ67と、ボビンコイル36と、内側インシュレータ68とを装着することにより構成される。第2ステータ4Aは、第2ステータコア70に、外側インシュレータ77と、ボビンコイル37と、内側インシュレータ78とを装着することにより構成される。なお、内側インシュレータ68は、第1絶縁部材の一例であり、内側インシュレータ78は、第2絶縁部材の一例である。なお、以下において、12個の外側インシュレータ67を区別して表現する場合に、それぞれ外側インシュレータ67a乃至67lと表記する場合がある。複数の外側インシュレータ77、複数のボビンコイル36及び37、並びに複数の内側インシュレータ68及び78についても、それぞれ同様に表記する場合がある。 As shown in FIGS. 11 and 12, the motor 1A in the second embodiment includes a stator 2A, a rotor 90 and a shaft 99, for example. The stator 2A, as shown in FIG. 13, includes a first stator 3A and a second stator 4A. The first stator 3</b>A is configured by attaching an outer insulator 67 , a bobbin coil 36 , and an inner insulator 68 to the first stator core 60 . The second stator 4</b>A is configured by attaching an outer insulator 77 , a bobbin coil 37 , and an inner insulator 78 to the second stator core 70 . The inner insulator 68 is an example of a first insulating member, and the inner insulator 78 is an example of a second insulating member. In the following, when the 12 outer insulators 67 are distinguished and expressed, they may be referred to as outer insulators 67a to 67l. The plurality of outer insulators 77, the plurality of bobbin coils 36 and 37, and the plurality of inner insulators 68 and 78 may also be denoted similarly.
 図14は、第2の実施形態における第1ステータコアの一例を示す斜視図である。図14に示すように、第2の実施形態における第1ステータコア60は、ヨーク部61と、12個の第1磁極部62a乃至62lとを備える。また、第1ステータコア10と同様に、第1ステータコア60のヨーク部61にも、径方向における内側に向かって突出する凸部66a乃至66lが形成される。なお、以下において、複数の第1磁極部62a乃至62lを区別せずに表現する場合に、単に第1磁極部62と表記し、複数の凸部66a乃至66lを区別せずに表現する場合に、単に凸部66と表記する場合がある。 FIG. 14 is a perspective view showing an example of the first stator core in the second embodiment. As shown in FIG. 14, the first stator core 60 in the second embodiment includes a yoke portion 61 and twelve first magnetic pole portions 62a to 62l. Further, similarly to the first stator core 10, the yoke portion 61 of the first stator core 60 is also formed with convex portions 66a to 66l projecting radially inward. In the following, when the plurality of first magnetic pole portions 62a to 62l are expressed without distinction, they are simply referred to as the first magnetic pole portion 62, and when the plurality of convex portions 66a to 66l are expressed without distinction, , may be simply referred to as a convex portion 66 .
 図15は、第2の実施形態における第1磁極部の一例を示す拡大斜視図である。図15に示すように、第2の実施形態における第1磁極部62は、第1磁極部12とは異なり、例えば、先端側(径方向における内側:図15における上方向)に、周方向に突出する端部を備えない形状を有する。また、図15に示すように、第2の実施形態におけるヨーク部61の軸方向における一端部61xと、第1磁極部62の当該一端部と対応する軸方向における端部62xとの間にも、間隙G1が形成される。 FIG. 15 is an enlarged perspective view showing an example of the first magnetic pole portion in the second embodiment. As shown in FIG. 15, the first magnetic pole portion 62 in the second embodiment differs from the first magnetic pole portion 12 in that, for example, the tip side (inner side in the radial direction: upward direction in FIG. 15) and the circumferential direction It has a shape with no protruding ends. Further, as shown in FIG. 15, between one axial end 61x of the yoke portion 61 in the second embodiment and an axial end 62x corresponding to the one end of the first magnetic pole portion 62, , a gap G1 is formed.
 図14に示すように、各第1磁極部62a乃至62lには、それぞれ、外側インシュレータ67a乃至67lと、ボビンコイル36a乃至36lと、内側インシュレータ68a乃至68lとが装着される。図16は、第2の実施形態における外側インシュレータが装着された第1磁極部の一例を示す拡大斜視図である。図14及び図16に示すように、外側インシュレータ67は、第1の実施形態におけるインシュレータ13、14、23又は24とは異なり、第1ステータコア60の第1磁極部62に、径方向における内側(図16における上方向)から装着される。ボビンコイル36が装着された内側インシュレータ68についても同様に装着される。 As shown in FIG. 14, outer insulators 67a to 67l, bobbin coils 36a to 36l, and inner insulators 68a to 68l are attached to the first magnetic pole portions 62a to 62l, respectively. FIG. 16 is an enlarged perspective view showing an example of the first magnetic pole portion to which the outer insulator is attached according to the second embodiment. 14 and 16, unlike the insulators 13, 14, 23, or 24 in the first embodiment, the outer insulator 67 is arranged radially inward ( 16). The inner insulator 68 to which the bobbin coil 36 is attached is similarly attached.
 次に、内側インシュレータ68にボビンコイル36が装着される。第2の実施形態におけるボビンコイル36は、例えば、事前に巻き回された平角線の銅線により構成される。ボビンコイル36は、例えば、ステータ2Aの内径側に向けて先細り形状となる、略台形状の断面形状を有する。ボビンコイル36の内径は、例えば、第1磁極部62の外形よりもやや大きくなるように形成される。 Next, the bobbin coil 36 is attached to the inner insulator 68 . The bobbin coil 36 in the second embodiment is composed of, for example, pre-wound rectangular copper wire. The bobbin coil 36 has, for example, a substantially trapezoidal cross-sectional shape that tapers toward the inner diameter side of the stator 2A. The inner diameter of the bobbin coil 36 is formed to be slightly larger than the outer shape of the first magnetic pole portion 62, for example.
 次に、外側インシュレータ67が装着された第1磁極部62に、ボビンコイル36が装着された内側インシュレータ68が装着される。図17は、第2の実施形態における内側インシュレータが装着された第1磁極部の一例を示す拡大斜視図である。上で述べたように、内側インシュレータ68は、径方向における内側(図17における上方向)から挿入される。外側インシュレータ67及び内側インシュレータ68は、ボビンコイル36の抜け止めとなる。なお、第1磁極部に対する外側インシュレータ、ボビンコイル、及び内側インシュレータの装着順はこれに限らず、第1磁極部に外側インシュレータを装着し、外側インシュレータを装着した第1磁極部にボビンコイルを装着し、ボビンコイルと外側インシュレータとを装着した第1磁極部に内側インシュレータを装着する順で装着してもよい。後に説明する第2磁極部についても同様である。 Next, the inner insulator 68 with the bobbin coil 36 attached is attached to the first magnetic pole portion 62 with the outer insulator 67 attached. FIG. 17 is an enlarged perspective view showing an example of the first magnetic pole portion to which the inner insulator is attached according to the second embodiment. As described above, the inner insulator 68 is inserted from the radially inner side (upward in FIG. 17). The outer insulator 67 and the inner insulator 68 prevent the bobbin coil 36 from coming off. The order of attaching the outer insulator, the bobbin coil, and the inner insulator to the first magnetic pole portion is not limited to this. The inner insulator may be attached in the order of attaching the first magnetic pole portion to which the bobbin coil and the outer insulator are attached. The same applies to the second magnetic pole portion, which will be described later.
 図17に示すように、内側インシュレータ68は、周方向に突出する、一対の第1突出部6L及び6Rを備える。第1突出部6Lは、後に説明する内側インシュレータ78の第2突出部7Rと係合する。同様に、第1突出部6Rは、後に説明する第2突出部7Lと係合する。 As shown in FIG. 17, the inner insulator 68 includes a pair of first protrusions 6L and 6R that protrude in the circumferential direction. The first projecting portion 6L engages with a second projecting portion 7R of an inner insulator 78, which will be described later. Similarly, the first protrusion 6R engages with a second protrusion 7L, which will be described later.
 次に、内側インシュレータ78が装着される第2ステータ4Aについて説明する。図18は、第2の実施形態における第2ステータコアの一例を示す斜視図である。図18に示すように、第2ステータコア70は、連結部71と、12個の第2磁極部72a乃至72lと備える。なお、以下において、複数の第2磁極部72a乃至72lを区別せずに表現する場合に、単に第2磁極部72と表記する場合がある。 Next, the second stator 4A to which the inner insulator 78 is attached will be described. FIG. 18 is a perspective view showing an example of a second stator core in the second embodiment. As shown in FIG. 18, the second stator core 70 includes a connecting portion 71 and twelve second magnetic pole portions 72a to 72l. In the following, when the plurality of second magnetic pole portions 72a to 72l are expressed without distinguishing between them, they may simply be referred to as the second magnetic pole portions 72 in some cases.
 第2の実施形態において、第2磁極部72は、第1磁極部62と径方向における断面形状及び軸方向における長さが略同一となるように形成される。例えば、図18に示すように、第2ステータコア70の連結部71の一端部71xと、第2磁極部72の当該一端部と対応する端部72xとの間にも、間隙G1と大きさが略同一となる間隙G2が形成される。また、図18に示すように、第2磁極部72も、第1磁極部62と同様に、先端側(径方向における内側)に、周方向に突出する端部を備えない形状を有する。また、第2ステータコア20と同様に、第2ステータコア70の連結部71にも、第1ステータコア60の凸部66a乃至66lとそれぞれ係合する凹部76a乃至76lが形成される。なお、複数の凹部76a乃至76lを区別せずに表現する場合に、単に凹部76と表記する場合がある。 In the second embodiment, the second magnetic pole portion 72 is formed so that the cross-sectional shape in the radial direction and the length in the axial direction are substantially the same as those of the first magnetic pole portion 62 . For example, as shown in FIG. 18, between one end portion 71x of the connecting portion 71 of the second stator core 70 and an end portion 72x corresponding to the one end portion of the second magnetic pole portion 72, the gap G1 has a size of A substantially identical gap G2 is formed. Further, as shown in FIG. 18, the second magnetic pole portion 72 also has a shape that does not have an end protruding in the circumferential direction on the tip side (inside in the radial direction), similarly to the first magnetic pole portion 62 . Similarly to the second stator core 20, the connecting portion 71 of the second stator core 70 is also formed with recesses 76a to 76l that engage with the protrusions 66a to 66l of the first stator core 60, respectively. It should be noted that when expressing the plurality of recesses 76a to 76l without distinguishing between them, they may simply be referred to as recesses 76 in some cases.
 第2磁極部72には、外側インシュレータ77と、ボビンコイル37と、内側インシュレータ78とが、径方向における内側から装着される。第2の実施形態において、外側インシュレータ77は、外側インシュレータ67と略同一の構造を有し、ボビンコイル37は、ボビンコイル36と略同一の構造を有するため、それぞれ詳細な説明は省略する。 An outer insulator 77, a bobbin coil 37, and an inner insulator 78 are attached to the second magnetic pole portion 72 from the inside in the radial direction. In the second embodiment, the outer insulator 77 has substantially the same structure as the outer insulator 67, and the bobbin coil 37 has substantially the same structure as the bobbin coil 36, so detailed description thereof will be omitted.
 次に、外側インシュレータ77が装着された第2磁極部72に、ボビンコイル37が装着された内側インシュレータ78が装着される。外側インシュレータ67と同様に、内側インシュレータ78も、径方向における内側から挿入される。 Next, the inner insulator 78 with the bobbin coil 37 attached is attached to the second magnetic pole portion 72 with the outer insulator 77 attached. Like the outer insulator 67, the inner insulator 78 is also inserted from the inner side in the radial direction.
 図18に示すように、内側インシュレータ78も、周方向に突出する、一対の第2突出部7L及び7Rを備える。ここで、第1突出部6L及び6Rと、第2突出部7L及び7Rとの係合について説明する。図19は、第2の実施形態におけるモータの一例を示す拡大断面図である。図19では、図11の枠F1に示す部分を拡大した図である。図19に示すモータ1Aにおいて、内側インシュレータ68の第1突出部6L及び6Rは、それぞれ隣接する内側インシュレータ78の第2突出部7R及び7Lと係合する。例えば、内側インシュレータ68aの第1突出部6Laは、隣接する内側インシュレータ78aの第2突出部7Raと係合し、内側インシュレータ68aの第1突出部6Raは、隣接する内側インシュレータ78lの第2突出部7Llと係合する。このように第1突出部と第2突出部とが係合することにより、各磁極部間の結合がより強固になるので、ステータのがたつきを抑制できるとともに、ボビンコイル36、外側インシュレータ67、内側インシュレータ68が径方向に移動することを防止できる。 As shown in FIG. 18, the inner insulator 78 also includes a pair of second protrusions 7L and 7R that protrude in the circumferential direction. Here, the engagement between the first protrusions 6L and 6R and the second protrusions 7L and 7R will be described. FIG. 19 is an enlarged cross-sectional view showing an example of the motor in the second embodiment. FIG. 19 is an enlarged view of the portion indicated by the frame F1 in FIG. In the motor 1A shown in FIG. 19, the first protrusions 6L and 6R of the inner insulator 68 are engaged with the second protrusions 7R and 7L of the adjacent inner insulator 78, respectively. For example, the first protrusion 6La of the inner insulator 68a engages the second protrusion 7Ra of the adjacent inner insulator 78a, and the first protrusion 6Ra of the inner insulator 68a engages the second protrusion of the adjacent inner insulator 78l. Engage with 7Ll. By engaging the first projecting portion and the second projecting portion in this manner, the coupling between the magnetic pole portions becomes stronger, so that rattling of the stator can be suppressed, and the bobbin coil 36, the outer insulator 67, the bobbin coil 36, the outer insulator 67, It is possible to prevent the inner insulator 68 from moving in the radial direction.
 また、第2の実施形態における第1突出部6L及び6R、並びに第2突出部7L及び7Rのうち、少なくともいずれかにおいて、径方向における厚みが連続的に変化するテーパが形成されていてもよい。例えば、内側インシュレータ68の第1突出部6Lには、図17に示すように、軸方向における負方向側の端部付近と、軸方向における中央部付近との間に、テーパTP1が形成される。テーパTP1が形成されることにより、第1突出部6Lの径方向における厚みは、軸方向に対して連続的に変化する。例えば、第1突出部6Lの軸方向における負方向側の端部付近における厚さT3は、軸方向における正方向側の端部付近及び中央部付近における厚さT4よりも小さくなる。 Further, at least one of the first protrusions 6L and 6R and the second protrusions 7L and 7R in the second embodiment may be tapered such that the thickness in the radial direction changes continuously. . For example, as shown in FIG. 17, the first protruding portion 6L of the inner insulator 68 is formed with a taper TP1 between the vicinity of the end portion on the negative side in the axial direction and the vicinity of the central portion in the axial direction. . By forming the taper TP1, the radial thickness of the first projecting portion 6L changes continuously with respect to the axial direction. For example, the thickness T3 near the negative end in the axial direction of the first projecting portion 6L is smaller than the thickness T4 near the positive end in the axial direction and near the central portion.
 第2の実施形態においては、内側インシュレータ68の第1突出部6Rにも、テーパTP1と同様のテーパが形成される。これにより、第1突出部6Rの軸方向における負方向側の端部付近における厚さT1も、軸方向における正方向側の端部付近及び中央部付近における厚さT2よりも小さくなる。図20A及び図20Bは、第2の実施形態における内側インシュレータの一例を示す断面図である。図20Aでは、図17のC-C線で切断した断面を示し、図20Bでは、図17のD-D線で切断した断面を示す。 In the second embodiment, the first protrusion 6R of the inner insulator 68 is also tapered similarly to the taper TP1. As a result, the thickness T1 near the negative end in the axial direction of the first projecting portion 6R is also smaller than the thickness T2 near the positive end in the axial direction and near the central portion. 20A and 20B are cross-sectional views showing an example of the inner insulator in the second embodiment. 20A shows a cross section cut along line CC of FIG. 17, and FIG. 20B shows a cross section cut along line DD of FIG.
 図20A及び図20Bに示すように、軸方向における正方向側に近い部分における第1突出部6Lの厚さT4よりも、軸方向における負方向側に近い部分における第1突出部6Lの厚さT3は小さくなっている。第1突出部6Rの厚さT2及びT1の関係についても同様である。 As shown in FIGS. 20A and 20B, the thickness T4 of the first projection 6L at the portion near the positive direction in the axial direction is greater than the thickness T4 of the first projection 6L at the portion near the negative direction in the axial direction. T3 is getting smaller. The same applies to the relationship between the thicknesses T2 and T1 of the first projecting portion 6R.
 第2の実施形態においては、内側インシュレータ78の第2突出部7R及び7Lにもテーパが形成される。ただし、第2突出部7R及び7Lにおいては、テーパが形成される位置及び径方向における厚みが変化する方向が、第1突出部6Lに形成されるテーパTP1とは異なる。例えば、図18に示すように、第2突出部7Lにおいては、軸方向における正方向側の端部付近における厚さT6が、軸方向における負方向側の端部付近及び中央部付近における厚さT5よりも小さくなるようなテーパが形成される。すなわち、第2突出部7Lにおいては、軸方向における中央部付近から、軸方向における正方向側の端部に向かって、径方向における厚みが連続的に変化するようなテーパTP2が形成される。第2の実施形態においては、第2突出部7Rにも、同様のテーパが形成される。 In the second embodiment, the second protrusions 7R and 7L of the inner insulator 78 are also tapered. However, in the second protrusions 7R and 7L, the tapered position and the direction in which the thickness changes in the radial direction are different from the taper TP1 formed in the first protrusion 6L. For example, as shown in FIG. 18, in the second projecting portion 7L, the thickness T6 near the end on the positive side in the axial direction is the thickness T6 near the end on the negative side in the axial direction and near the center. A taper is formed that is smaller than T5. That is, in the second protruding portion 7L, a taper TP2 is formed such that the thickness in the radial direction changes continuously from the vicinity of the central portion in the axial direction toward the end portion on the positive side in the axial direction. In the second embodiment, a similar taper is also formed on the second projecting portion 7R.
 このように、第2の実施形態においては、第1ステータ3Aに装着される内側インシュレータ68の第1突出部6L及び6Rにおいて、軸方向における負方向側の厚みが小さくなる。また、第2ステータ4Aに装着される内側インシュレータ78の第2突出部7L及び7Rにおいて、軸方向における正方向側の厚みが小さくなる。これにより、内側インシュレータ78が装着された第2ステータ4Aを、軸方向における負方向側から、内側インシュレータ68が装着された第1ステータ3Aに装着することが容易になる。 Thus, in the second embodiment, the thickness in the negative direction in the axial direction of the first projecting portions 6L and 6R of the inner insulator 68 attached to the first stator 3A is reduced. In addition, the thickness in the positive direction in the axial direction is reduced in the second protruding portions 7L and 7R of the inner insulator 78 attached to the second stator 4A. This makes it easy to mount the second stator 4A with the inner insulator 78 attached to the first stator 3A with the inner insulator 68 attached from the negative direction side in the axial direction.
 図21Aは、第2の実施形態における第1ステータ挿入時における第1突出部と第2突出部との一例を示す拡大断面図である。図21Bは、第2の実施形態における第1ステータ挿入完了時における第1突出部と第2突出部との一例を示す拡大断面図である。第2ステータ4Aを第1ステータ3Aに挿入する際、第1ステータ3Aに装着された内側インシュレータ68の第1突出部6Rの軸方向における負方向側の端部と、第2ステータ4Aに装着された内側インシュレータ78の第2突出部7Lの軸方向における正方向側の端部とが接近する。この場合、図21Aに示すように、第1突出部6Rの負方向側の端部付近における厚さT1及び第2突出部7Lの負方向側の端部付近における厚さT6が小さいため、第1突出部6Rと第2突出部7Lとの間に隙間Iが生じる。かかる隙間Iにより、第1ステータ3Aの内側インシュレータ68と第2ステータ4Aの内側インシュレータ78との衝突が生じにくくなるので、第1ステータ3Aを第2ステータ4Aに挿入する際の作業性が向上する。 FIG. 21A is an enlarged cross-sectional view showing an example of the first projecting portion and the second projecting portion when the first stator is inserted in the second embodiment. FIG. 21B is an enlarged cross-sectional view showing an example of the first protrusion and the second protrusion when the insertion of the first stator is completed in the second embodiment. When inserting the second stator 4A into the first stator 3A, the first protrusion 6R of the inner insulator 68 attached to the first stator 3A and the axially negative end portion of the first projection 6R of the inner insulator 68 are attached to the second stator 4A. The end of the second projecting portion 7L of the inner insulator 78 on the positive direction side in the axial direction approaches. In this case, as shown in FIG. 21A, the thickness T1 near the end of the first projecting portion 6R on the negative direction side and the thickness T6 near the end on the negative direction side of the second projecting portion 7L are small. A gap I is created between the first protrusion 6R and the second protrusion 7L. Due to the gap I, collision between the inner insulator 68 of the first stator 3A and the inner insulator 78 of the second stator 4A is less likely to occur, so workability is improved when inserting the first stator 3A into the second stator 4A. .
 また、第2ステータ4Aの第1ステータ3Aへの挿入が完了すると、例えば軸方向における中央部付近においては、第1突出部6Rの厚さT2及び第2突出部7Lの厚さT5が大きくなることにより、第1突出部6Rと第2突出部7Lとの間の隙間Iが小さくなる。これにより、第1ステータ3Aと第2ステータ4Aとの間のがたつきが抑えられる。 Further, when the insertion of the second stator 4A into the first stator 3A is completed, the thickness T2 of the first projecting portion 6R and the thickness T5 of the second projecting portion 7L increase, for example, near the central portion in the axial direction. As a result, the gap I between the first projecting portion 6R and the second projecting portion 7L is reduced. This suppresses rattling between the first stator 3A and the second stator 4A.
 以上説明したように、第2の実施形態におけるモータ1Aの第1ステータ3Aは、第1絶縁部材68を備え、第2ステータ4Aは、第2絶縁部材78を備える。第1絶縁部材68は、内径側に、周方向に突出する第1突出部6L及び6Rを有し、第2絶縁部材78は、内径側に、周方向に突出する第2突出部7L及び7Rを有する。そして、第1突出部6Rと第2突出部7Lとが係合する。また、第1突出部6Rの径方向における厚みは、軸方向他端側よりも軸方向の一端側の方が薄く、第2突出部7Lの径方向における厚みは、軸方向一端側よりも軸方向の他端側の方が薄い。かかる構成によれば、第2ステータ4Aを第1ステータ3Aに挿入する際の作業性を向上できる。 As described above, the first stator 3A of the motor 1A in the second embodiment includes the first insulating member 68, and the second stator 4A includes the second insulating member 78. The first insulating member 68 has first protrusions 6L and 6R protruding in the inner diameter side in the circumferential direction, and the second insulating member 78 has second protrusions 7L and 7R protruding in the inner diameter side in the circumferential direction. have Then, the first projecting portion 6R and the second projecting portion 7L are engaged. In addition, the radial thickness of the first projecting portion 6R is thinner on one axial end side than the axial direction other end side, and the radial thickness of the second projecting portion 7L is axially thinner than the axial direction one end side. It is thinner at the other end of the direction. With such a configuration, it is possible to improve workability when inserting the second stator 4A into the first stator 3A.
 以上、各実施形態における構成について説明したが、実施形態はこれらに限られない。例えば、第1磁極部及び第2磁極部の数は各実施形態に示したものに限られず、また、第1磁極部12と第2磁極部22の数とは同数でなくともよい。 Although the configuration in each embodiment has been described above, the embodiment is not limited to these. For example, the number of first magnetic pole portions and second magnetic pole portions is not limited to those shown in each embodiment, and the number of first magnetic pole portions 12 and second magnetic pole portions 22 need not be the same.
 また、第1の実施形態では、ティース(磁極部)12及び22の先端部(径方向における内側に突出した部分)が周方向に突出した部分を備え、第2の実施形態では、ティース(磁極部)62及び72の先端部は周方向に突出した部分を備えていない構成について説明したが、実施の形態はこれらに限られない。例えば、第1の実施形態において、第1磁極部12の先端部又は第2磁極部22の先端部が、周方向に突出した部分を備えないような構成であってもよい。ただし、第2の実施形態のようなボビンコイルを用いる構成においては、第1磁極部62及び第2磁極部72のように、周方向に突出した部分を備えていない構成が好ましい。 Further, in the first embodiment, the tip portions (portions protruding inward in the radial direction) of the teeth (magnetic pole portions) 12 and 22 are provided with portions protruding in the circumferential direction, and in the second embodiment, the teeth (magnetic pole portions) (Parts) 62 and 72 have been described as having no portion protruding in the circumferential direction, but the embodiment is not limited to this. For example, in the first embodiment, the tip portion of the first magnetic pole portion 12 or the tip portion of the second magnetic pole portion 22 may be configured so as not to have a portion protruding in the circumferential direction. However, in the configuration using the bobbin coil as in the second embodiment, it is preferable that the configuration does not include a circumferentially projecting portion like the first magnetic pole portion 62 and the second magnetic pole portion 72 .
 また、第1の実施形態においては、インシュレータをステータコアに軸方向の前後から装着し、第2の実施形態においては、インシュレータをステータコアに径方向における内側からコイルを挟んで装着しているが、実施の形態はこれに限られない。例えば、第1の実施の形態において、インシュレータをステータコアに径方向における内側から装着してもよい。ただし、軸方向の前後からインシュレータを装着する場合、前後のインシュレータの間に間隙が生じるので、第1ステータと第2ステータとを組み合わせる場合にインシュレータが引っかかりやすくなる。そこで、第2の実施形態のように磁極部の数が多い場合は、インシュレータを径方向における内側から装着する構成が好ましい。 In the first embodiment, the insulator is attached to the stator core from the front and rear in the axial direction, and in the second embodiment, the insulator is attached to the stator core from the inner side in the radial direction with the coil interposed therebetween. is not limited to this. For example, in the first embodiment, the insulator may be attached to the stator core from the inside in the radial direction. However, when the insulators are attached from the front and rear in the axial direction, a gap is created between the front and rear insulators, so the insulators are likely to get caught when combining the first stator and the second stator. Therefore, when the number of magnetic pole portions is large as in the second embodiment, it is preferable to install the insulator from the inner side in the radial direction.
 また、第2の実施形態においては、内側インシュレータ68及び78の周方向における両端に突出部6L、6R、7L及び7Rが形成される構成について説明したが、突出部がいずれか一端にのみ設けられていてもよく、また突出部の代わりに凹部が設けられていてもよい。ただし、第2の実施形態に示すようにテーパを形成する場合においては、内側インシュレータ68及び78の周方向における両端に突出部が形成される構成が好ましい。なお、テーパTP1及びTP2は、軸方向における片側だけでなく、軸方向における全体にわたって形成されていてもよい。なお、径方向における厚みが連続的に変化する部分は、傾斜面の代わりに、曲面等により形成されていてもよい。 Further, in the second embodiment, the configuration in which the protrusions 6L, 6R, 7L and 7R are formed at both ends of the inner insulators 68 and 78 in the circumferential direction has been described, but the protrusions are provided only at one end. Alternatively, recesses may be provided instead of protrusions. However, in the case of forming a taper as shown in the second embodiment, it is preferable to form protrusions at both ends of the inner insulators 68 and 78 in the circumferential direction. Note that the tapers TP1 and TP2 may be formed not only on one side in the axial direction but also over the entire axial direction. Note that the portion where the thickness in the radial direction changes continuously may be formed by a curved surface or the like instead of the inclined surface.
 なお、第1ステータ3と第2ステータ4との係合部が、それぞれヨーク部11と連結部21とに形成される構成について説明したが、これに限られず、第1磁極部12又は第2磁極部22に形成されてもよい。 In addition, although the configuration in which the engaging portions of the first stator 3 and the second stator 4 are formed in the yoke portion 11 and the connecting portion 21 respectively has been described, the present invention is not limited to this, and the first magnetic pole portion 12 or the second stator 4 It may be formed in the magnetic pole portion 22 .
 また、各実施形態において、端部が略同一平面上に配置される旨記載をしているが、第1ステータ及び第2ステータの寸法公差や、各部材の組み立ての際の累積公差等の製造上の誤差から同一平面上に形成されない場合もある。例えば、それぞれの軸方向の長さの±5%の範囲内において第1ステータと第2ステータとの長さが変動する場合が存在するが、その場合であっても本発明の効果を奏する。同様に、第1ステータコア、第2ステータコア等の各部材はそれぞれ、寸法公差等により完全な同一形状とはならない場合が存在するが、本発明の効果を奏する範囲において製造上の誤差による問題はない。 In each embodiment, it is described that the ends are arranged on substantially the same plane. Due to the above error, they may not be formed on the same plane. For example, there are cases where the lengths of the first stator and the second stator fluctuate within a range of ±5% of their respective axial lengths. Similarly, each member such as the first stator core and the second stator core may not have completely the same shape due to dimensional tolerances, etc., but there is no problem due to manufacturing errors within the scope of the effects of the present invention. .
 また、各実施形態におけるモータは、例えばインナーロータ型のブラシレスモータであるが、これに限られず、アウターロータ型のモータにおいて、実施形態における第1ステータ及び第2ステータを採用してもよい。また、第1ステータ及び第2ステータは、例えば発電機等、モータ以外の回転電機に採用されてもよい。 Also, although the motor in each embodiment is, for example, an inner rotor type brushless motor, it is not limited to this, and the first stator and the second stator in the embodiment may be adopted in an outer rotor type motor. Also, the first stator and the second stator may be employed in rotating electric machines other than motors, such as generators.
 以上、本発明を実施形態及び各変形例に基づき説明したが、本発明は実施形態及び各変形例に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の変更が可能であることも言うまでもない。そのような要旨を逸脱しない範囲での種々の変更を行ったものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。 As described above, the present invention has been described based on the embodiment and each modified example, but the present invention is not limited to the embodiment and each modified example, and various modifications can be made without departing from the gist of the present invention. It goes without saying that there is. Various modifications without departing from the gist of the invention are also included in the technical scope of the present invention, which will be apparent to those skilled in the art from the description of the claims.
 1,1A モータ、 2,2A ステータ、 3,3A 第1ステータ、 4,4A 第2ステータ、 10,60 第1ステータコア、 11,61 ヨーク部、 12(12a~12f),(62(62a~62l) 第1磁極部(ティース)、 13,14,23,24 インシュレータ、 16,66 凸部、 20,70 第2ステータコア、 21,71 連結部、 22(22a~22f),72(72a~72l) 第2磁極部(ティース)、 26,76 凹部、 31 第1コイル、 32 第2コイル、36,37 ボビンコイル、67,77 外側インシュレータ、 68,78 内側インシュレータ 1, 1A motor, 2, 2A stator, 3, 3A first stator, 4, 4A second stator, 10, 60 first stator core, 11, 61 yoke portion, 12 (12a to 12f), (62 (62a to 62l ) First magnetic pole portion (teeth), 13, 14, 23, 24 insulator, 16, 66 convex portion, 20, 70 second stator core, 21, 71 connecting portion, 22 (22a to 22f), 72 (72a to 72l) Second magnetic pole portion (teeth), 26, 76 concave portion, 31 first coil, 32 second coil, 36, 37 bobbin coil, 67, 77 outer insulator, 68, 78 inner insulator

Claims (7)

  1.  シャフトと、
     ロータと、
     第1ステータと、
     第2ステータとを備え、
     前記第1ステータは、筒状のヨーク部と、前記ヨーク部と一体に形成される複数の第1磁極部とを有し、
     前記第2ステータは、前記第1ステータと係合可能な複数の第2磁極部と、連結部とを有し、
     前記連結部は前記複数の第2磁極部を軸方向の一端側の部分でそれぞれ連結する
     モータ。
    a shaft;
    a rotor;
    a first stator;
    a second stator;
    The first stator has a cylindrical yoke portion and a plurality of first magnetic pole portions integrally formed with the yoke portion,
    The second stator has a plurality of second magnetic pole portions that can be engaged with the first stator and a connecting portion,
    The connecting portion connects the plurality of second magnetic pole portions at a portion on one end side in the axial direction.
  2.  前記第1ステータは、前記一端側に、前記第2ステータの前記連結部と係合する係合部を有する、請求項1に記載のモータ。 3. The motor according to claim 1, wherein the first stator has an engaging portion that engages with the connecting portion of the second stator on the one end side.
  3.  前記第1ステータの前記一端側の端面の少なくとも一部と、前記係合部により前記第1ステータと係合された前記第2ステータの前記一端側の端面の少なくとも一部とが略同一平面上に配置され、
     前記第1ステータの他端側の端面の少なくとも一部と、前記第2ステータの前記他端側の端面の少なくとも一部とが略同一平面上に配置される、請求項2に記載のモータ。
    At least part of the end surface of the first stator on the one end side and at least part of the end surface of the second stator on the one end side engaged with the first stator by the engaging portion are substantially coplanar. is placed in
    3. The motor according to claim 2, wherein at least a portion of the end surface of the first stator on the other end side and at least a portion of the end surface of the second stator on the other end side are arranged substantially on the same plane.
  4.  前記複数の第2磁極部は、前記複数の第1磁極部の間に配置される、請求項1乃至3のいずれか1つに記載のモータ。 The motor according to any one of claims 1 to 3, wherein the plurality of second magnetic pole portions are arranged between the plurality of first magnetic pole portions.
  5.  前記第1ステータは、第1絶縁部材を備え、
     前記第2ステータは、第2絶縁部材を備え、
     前記第1絶縁部材は、内径側に、周方向に突出する第1突出部を有し、
     前記第2絶縁部材は、内径側に、周方向に突出する第2突出部を有し、
     前記第1突出部と前記第2突出部とが係合する、請求項1乃至4のいずれか1つに記載のモータ。
    The first stator includes a first insulating member,
    the second stator includes a second insulating member,
    The first insulating member has a first projecting portion projecting in the circumferential direction on the inner diameter side,
    The second insulating member has a second projecting portion projecting in the circumferential direction on the inner diameter side,
    5. The motor according to any one of claims 1 to 4, wherein the first protrusion and the second protrusion are engaged.
  6.  前記第1突出部の径方向における厚みは、軸方向他端側よりも軸方向の前記一端側の方が薄く、
     前記第2突出部の径方向における厚みは、軸方向一端側よりも軸方向の前記他端側の方が薄い、請求項5に記載のモータ。
    the thickness of the first projecting portion in the radial direction is thinner on the one end side in the axial direction than on the other end side in the axial direction;
    6. The motor according to claim 5, wherein the thickness of the second projecting portion in the radial direction is thinner on the other end side in the axial direction than on the one end side in the axial direction.
  7.  前記第1突出部及び前記第2突出部のいずれかに、径方向における厚みが連続的に変化する部分が形成される、請求項6に記載のモータ。 The motor according to claim 6, wherein a portion in which the thickness in the radial direction changes continuously is formed in either the first projecting portion or the second projecting portion.
PCT/JP2022/015461 2021-03-31 2022-03-29 Motor WO2022210714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059459 2021-03-31
JP2021059459A JP2022155981A (en) 2021-03-31 2021-03-31 motor

Publications (1)

Publication Number Publication Date
WO2022210714A1 true WO2022210714A1 (en) 2022-10-06

Family

ID=83456355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015461 WO2022210714A1 (en) 2021-03-31 2022-03-29 Motor

Country Status (2)

Country Link
JP (1) JP2022155981A (en)
WO (1) WO2022210714A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014969A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Molded motor and mobile body mounted therewith
JP2019092252A (en) * 2017-11-13 2019-06-13 アイシン精機株式会社 Stator core and stator core manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014969A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Molded motor and mobile body mounted therewith
JP2019092252A (en) * 2017-11-13 2019-06-13 アイシン精機株式会社 Stator core and stator core manufacturing method

Also Published As

Publication number Publication date
JP2022155981A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
JP6640621B2 (en) Motor rotor and brushless motor
US6541889B2 (en) DC motor
JP6991998B2 (en) Power terminal and motor including it
JP2007089346A (en) Stator for rotary electric machine
US20130069479A1 (en) Stator core
JP2012165630A (en) Stator of rotary electric machine and manufacturing method of the same
JP6649161B2 (en) Stator, manufacturing method thereof, and brushless motor
JP2017188981A (en) Stator, manufacturing method of the same, and brushless motor
US5969453A (en) Motor
US6876287B2 (en) Bobbin structure and transformer and inductor employing same
JP7436775B2 (en) stator
WO2022210714A1 (en) Motor
JPH10309048A (en) Stator for motor and its manufacture
JP2009177907A (en) Stator of rotary electric machine, and rotary electric machine with the same
WO2022210716A1 (en) Motor
JP2008109746A (en) Stator
JP4078706B2 (en) Split coil
JP2010011706A (en) Motor
JP2011172440A (en) Stator of rotary electric machine
WO2017217271A1 (en) Stator for rotary electric machine
JP2002247786A (en) Manufacturing method of motor and motor stator
EP1020975A2 (en) Dynamo-electric machine stators with multiple poles, and method for winding same
JP3541550B2 (en) Electric motor
JP2014107993A (en) Motor-driven actuator
KR102159798B1 (en) Motor of outer rotor type

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780925

Country of ref document: EP

Kind code of ref document: A1