WO2022210619A1 - ショベル及びショベルの制御装置 - Google Patents

ショベル及びショベルの制御装置 Download PDF

Info

Publication number
WO2022210619A1
WO2022210619A1 PCT/JP2022/015224 JP2022015224W WO2022210619A1 WO 2022210619 A1 WO2022210619 A1 WO 2022210619A1 JP 2022015224 W JP2022015224 W JP 2022015224W WO 2022210619 A1 WO2022210619 A1 WO 2022210619A1
Authority
WO
WIPO (PCT)
Prior art keywords
attachment
target
turning
excavator
bucket
Prior art date
Application number
PCT/JP2022/015224
Other languages
English (en)
French (fr)
Inventor
裕介 佐野
圭二 本田
将 小野寺
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to DE112022002012.1T priority Critical patent/DE112022002012T5/de
Priority to CN202280023199.2A priority patent/CN117083430A/zh
Priority to JP2023511317A priority patent/JPWO2022210619A1/ja
Publication of WO2022210619A1 publication Critical patent/WO2022210619A1/ja
Priority to US18/470,689 priority patent/US20240011241A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/302Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom with an additional link
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/307Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom the boom and the dipper-arm being connected so as to permit relative movement in more than one plane
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • E02F9/2012Setting the functions of the control levers, e.g. changing assigned functions among operations levers, setting functions dependent on the operator or seat orientation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present disclosure relates to an excavator and a control device for the excavator.
  • the above excavator does not support the operation to form the bottom of the slope, which is the lower edge of the slope. Therefore, the excavator operator may not be able to efficiently form the edge of the feature such as the bottom of the slope, which is the lower edge of the slope.
  • An excavator includes a lower traveling body, an upper revolving body mounted on the lower traveling body, a boom attached to the upper revolving body, an arm attached to a tip of the boom, and the arm. and a control device for controlling the turning of the upper turning body and the movement of the attachment so that the end of the end attachment moves along the target line.
  • a shovel is provided that can assist in forming the edges of features.
  • FIG. 1 is a side view of a shovel according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing a configuration example of a drive system of the excavator of FIG. 1;
  • FIG. FIG. 2 is a schematic diagram showing a configuration example of a hydraulic system mounted on the excavator of FIG. 1;
  • FIG. 4 is a diagram of part of the hydraulic system for operating the arm cylinder;
  • FIG. 4 is a diagram of a portion of the hydraulic system for operating the boom cylinder;
  • FIG. 4 is a diagram of a portion of the hydraulic system for operating the bucket cylinder;
  • FIG. 4 is a diagram of a portion of the hydraulic system for operating the swing hydraulic motor;
  • FIG. 4 is a diagram of a portion of the hydraulic system for operation of the left travel hydraulic motor;
  • FIG. 4 is a diagram of a portion of the hydraulic system for operation of the right travel hydraulic motor;
  • 2 is a block diagram showing another configuration example of the drive system of the excavator of FIG. 1;
  • FIG. 10 is a flowchart of facing processing;
  • FIG. 10 is a top view of the excavator when the facing process is performed;
  • FIG. 10 is a top view of the excavator when the facing process is performed;
  • FIG. 10 is a perspective view of the excavator when the facing process is performed;
  • FIG. 10 is a perspective view of the excavator when the facing process is performed;
  • FIG. 10 is a perspective view of the excavator when the facing process is performed;
  • FIG. 10 is a perspective view of the excavator when the facing process is performed;
  • FIG. 10 is a perspective view of the excavator when the facing process is performed;
  • FIG. 4 is a top view of the excavator as the slope finishing process is being performed;
  • FIG. 4 is a top view of the excavator as the slope finishing process is being performed;
  • FIG. 10 is a top view of the excavator when the trailing edge forming process is performed;
  • FIG. 10 is a top view of the excavator when the trailing edge forming process is performed;
  • FIG. 10 is a top view of the excavator when the trailing edge forming process is performed;
  • FIG. 10 is a perspective view of the bucket when the trailing edge forming process is performed;
  • FIG. 10 is a top view of the excavator when running support processing is executed;
  • FIG. 1 is a side view of a shovel 100 as an excavator according to an embodiment of the present disclosure.
  • An upper revolving body 3 is rotatably mounted on a lower traveling body 1 of the excavator 100 via a revolving mechanism 2 .
  • a boom 4 is attached to the upper revolving body 3 .
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 is attached to the tip of the arm 5 as an end attachment.
  • Bucket 6 may be a slope bucket.
  • the boom 4, arm 5, and bucket 6 constitute an excavation attachment as an example of an attachment.
  • the boom 4 is driven by a boom cylinder 7
  • the arm 5 is driven by an arm cylinder 8
  • the bucket 6 is driven by a bucket cylinder 9 .
  • a boom angle sensor S1 is attached to the boom 4
  • an arm angle sensor S2 is attached to the arm 5
  • a bucket angle sensor S3 is attached to the bucket 6.
  • the boom angle sensor S1 is configured to detect the rotation angle of the boom 4.
  • the boom angle sensor S1 is an acceleration sensor, and can detect the rotation angle of the boom 4 with respect to the upper rotating body 3 (hereinafter referred to as "boom angle").
  • the boom angle is, for example, the minimum angle when the boom 4 is lowered, and increases as the boom 4 is raised.
  • the arm angle sensor S2 is configured to detect the rotation angle of the arm 5.
  • the arm angle sensor S2 is an acceleration sensor, and can detect the rotation angle of the arm 5 with respect to the boom 4 (hereinafter referred to as "arm angle").
  • the arm angle is, for example, the minimum angle when the arm 5 is closed most, and increases as the arm 5 is opened.
  • the bucket angle sensor S3 is configured to detect the rotation angle of the bucket 6.
  • the bucket angle sensor S3 is an acceleration sensor, and can detect the rotation angle of the bucket 6 with respect to the arm 5 (hereinafter referred to as "bucket angle").
  • the bucket angle is, for example, the smallest angle when the bucket 6 is closed most, and increases as the bucket 6 opens.
  • the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are each a potentiometer using a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotation angle around the connecting pin.
  • a rotary encoder, a gyro sensor, or a combination of an acceleration sensor and a gyro sensor may be used.
  • the upper rotating body 3 includes a controller 30, an audio output device 43, a display device 45, an input device 46, a storage device 47, a body tilt sensor S4, a turning angular velocity sensor S5, a camera S6, a communication device T1, a positioning device P1, and the like. is installed.
  • the controller 30 is configured to function as a main control unit that controls the driving of the excavator 100 .
  • the controller 30 is configured by a computer including a CPU, RAM, ROM, and the like.
  • Various functions of the controller 30 are implemented by the CPU executing programs stored in the ROM, for example.
  • the various functions include, for example, a machine guidance function that guides the manual operation of the excavator 100 by the operator, and a machine control function that automatically supports the manual operation of the excavator 100 by the operator.
  • a machine controller 50 included in controller 30 is configured to perform machine guidance and machine control functions.
  • the display device 45 is configured to display various information.
  • the display device 45 may be connected to the controller 30 via a communication network such as CAN, or may be connected to the controller 30 via a dedicated line.
  • the input device 46 is configured so that the operator can input various information to the controller 30 .
  • the input device 46 includes a touch panel, a knob switch, a membrane switch, and the like installed inside the cabin 10 .
  • the audio output device 43 is configured to output audio.
  • the audio output device 43 may be, for example, an in-vehicle speaker connected to the controller 30 or an alarm device such as a buzzer.
  • the audio output device 43 is configured to output various information as audio in response to an audio output command from the controller 30 .
  • the storage device 47 is configured to store various information.
  • the storage device 47 is, for example, a non-volatile storage medium such as a semiconductor memory.
  • the storage device 47 may store information output by various devices during operation of the excavator 100, or may store information acquired via various devices before the excavator 100 starts operating.
  • the storage device 47 may store, for example, information on the target construction surface (design surface) acquired via the communication device T1 or the like.
  • the target construction surface may be set by the operator of the excavator 100, or may be set by the construction manager or the like.
  • the fuselage tilt sensor S4 is configured to detect the tilt of the upper revolving structure 3 with respect to the virtual horizontal plane.
  • the fuselage tilt sensor S4 is an acceleration sensor that detects the tilt angle of the upper revolving structure 3 about the front-rear axis and the tilt angle about the left-right axis.
  • the longitudinal axis and the lateral axis of the upper revolving body 3 are orthogonal to each other, for example, at a shovel center point, which is one point on the revolving axis of the excavator 100 .
  • the turning angular velocity sensor S5 is configured to detect the turning angular velocity of the upper turning body 3.
  • the turning angular velocity sensor S5 may be configured to detect or calculate the turning angle of the upper turning body 3 .
  • the turning angular velocity sensor S5 is a gyro sensor.
  • the turning angular velocity sensor S5 may be a resolver, a rotary encoder, or the like.
  • the camera S6 is an example of a space recognition device, and is configured to acquire an image around the shovel 100.
  • the cameras S6 include a front camera S6F that captures the space in front of the excavator 100, a left camera S6L that captures the space to the left of the excavator 100, a right camera S6R that captures the space to the right of the excavator 100, and a rear camera S6B that captures an image of the space behind the excavator 100 .
  • the camera S6 is, for example, a monocular camera having an imaging device such as a CCD or CMOS, and outputs the captured image to the display device 45.
  • the camera S6 may be a stereo camera, a distance image camera, or the like.
  • the camera S6 may be replaced with another space recognition device such as an ultrasonic sensor, a millimeter wave radar, a LIDAR, or an infrared sensor, or may be replaced with a combination of another space recognition device and a camera.
  • the front camera S6F is attached to the ceiling of the cabin 10, that is, inside the cabin 10, for example.
  • the front camera S ⁇ b>6 ⁇ /b>F may be attached to the roof of the cabin 10 , that is, to the outside of the cabin 10 .
  • the left camera S6L is attached to the left end of the upper surface of the upper rotating body 3
  • the right camera S6R is attached to the right end of the upper surface of the upper rotating body 3
  • the rear camera S6B is attached to the rear end of the upper surface of the upper rotating body 3. .
  • the communication device T1 controls communication with external equipment outside the shovel 100.
  • the communication device T1 controls communication with external devices via a satellite communication network, a mobile phone communication network, an Internet network, or the like.
  • the external device may be, for example, a management device such as a server installed in an external facility, or may be a support device such as a smart phone carried by a worker around the excavator 100 .
  • the external device is configured, for example, to manage construction information related to one or more excavators 100 .
  • the construction information includes, for example, information related to at least one of the operation time, fuel consumption, work amount, and the like of the excavator 100 .
  • the amount of work is, for example, the amount of excavated earth and sand, the amount of earth and sand loaded on the platform of the dump truck, and the like.
  • the excavator 100 is configured to transmit construction information related to the excavator 100 to an external device at predetermined time intervals via the communication device T1.
  • the positioning device P1 is configured to measure the position of the upper revolving structure 3.
  • the positioning device P1 may be configured to measure the orientation of the upper swing structure 3 .
  • the positioning device P ⁇ b>1 is, for example, a GNSS compass, detects the position and orientation of the upper swing structure 3 , and outputs the detected values to the controller 30 . Therefore, the positioning device P1 can function as an orientation detection device that detects the orientation of the upper revolving structure 3 .
  • the orientation detection device may be an orientation sensor attached to the upper swing structure 3 .
  • FIG. 2 is a block diagram showing a configuration example of the drive system of the excavator 100, in which the mechanical power system, hydraulic oil line, pilot line, and electric control system are indicated by double lines, solid lines, broken lines, and dotted lines, respectively.
  • a drive system of the excavator 100 mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve unit 17, an operation device 26, a discharge pressure sensor 28, an operation sensor 29, a controller 30, a proportional valve 31, and the like. including.
  • the engine 11 is a drive source for the shovel 100.
  • the engine 11 is, for example, a diesel engine that operates to maintain a predetermined number of revolutions.
  • the output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15 .
  • the main pump 14 is configured to supply hydraulic oil to the control valve unit 17 via a hydraulic oil line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the regulator 13 is configured to control the discharge amount of the main pump 14 .
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the tilt angle of the swash plate of the main pump 14 according to the control command from the controller 30 .
  • the controller 30 receives the output of the operation sensor 29 or the like, outputs a control command to the regulator 13 as necessary, and changes the discharge amount of the main pump 14 .
  • the pilot pump 15 supplies hydraulic fluid to various hydraulic control devices including the proportional valve 31 through the pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the pilot pump 15 may be omitted.
  • the function previously performed by the pilot pump 15 may be realized by the main pump 14 . That is, the main pump 14 is provided with a circuit separate from the function of supplying the hydraulic oil to the control valve unit 17, and supplies the hydraulic oil to the proportional valve 31 and the like after reducing the supply pressure of the hydraulic oil by means of a throttle or the like. It may have functions.
  • the control valve unit 17 is a hydraulic control device that controls the hydraulic system in the excavator 100.
  • the control valve unit 17 includes control valves 171-176.
  • the control valve unit 17 can selectively supply hydraulic fluid discharged from the main pump 14 to one or more hydraulic actuators through the control valves 171-176.
  • the control valves 171 to 176 are configured to control the flow rate of hydraulic fluid flowing from the main pump 14 to the hydraulic actuators and the flow rate of hydraulic fluid flowing from the hydraulic actuators to the hydraulic fluid tank.
  • the hydraulic actuators include a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a travel hydraulic motor 2M, and a swing hydraulic motor 2A as a swing actuator.
  • the traveling hydraulic motor 2M includes a left traveling hydraulic motor 2ML and a right traveling hydraulic motor 2MR.
  • the swing hydraulic motor 2A may be a swing motor generator as an electric swing actuator.
  • the operating device 26 is a device used by the operator to operate the actuator.
  • the actuator includes at least one of a hydraulic actuator and an electric actuator.
  • the discharge pressure sensor 28 is configured to detect the discharge pressure of the main pump 14 .
  • the discharge pressure sensor 28 outputs the detected value to the controller 30 .
  • the operation sensor 29 is configured to detect the content of the operator's operation using the operation device 26 .
  • the operation sensor 29 detects the operation direction and the amount of operation of the operation device 26 corresponding to each actuator, and outputs the detected values to the controller 30 .
  • the controller 30 controls the opening area of the proportional valve 31 according to the output of the operation sensor 29 .
  • the controller 30 then supplies the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 .
  • the pressure (pilot pressure) of hydraulic fluid supplied to each of the pilot ports is, in principle, a pressure corresponding to the operation direction and amount of operation of the operation device 26 corresponding to each hydraulic actuator.
  • the operation device 26 is configured to supply the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 .
  • a proportional valve 31 functioning as a control valve for machine control is arranged in a conduit connecting the pilot pump 15 and a pilot port of a control valve in the control valve unit 17 so that the flow area of the conduit can be changed. It is configured.
  • the proportional valve 31 operates according to a control command output by the controller 30 . Therefore, the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the pilot port of the control valve in the control valve unit 17 via the proportional valve 31 regardless of the operation of the operating device 26 by the operator.
  • the controller 30 can operate the hydraulic actuator corresponding to the specific operating device 26 even when the specific operating device 26 is not operated.
  • Machine controller 50 is configured, for example, to perform machine guidance functions.
  • the machine control device 50 provides the operator with work information such as the distance between the target work surface and the work site of the attachment.
  • Information about the target construction surface is stored in advance in the storage device 47, for example.
  • the machine control device 50 may acquire information about the target construction surface from an external device via the communication device T1.
  • Information about the target construction surface is expressed, for example, in a reference coordinate system.
  • the reference coordinate system is, for example, the world geodetic system.
  • the world geodetic system is a three-dimensional orthogonal XYZ system with the origin at the center of gravity of the earth, the X axis in the direction of the intersection of the Greenwich meridian and the equator, the Y axis in the direction of 90 degrees east longitude, and the Z axis in the direction of the North Pole. coordinate system.
  • the target construction plane may be set based on a relative positional relationship with the reference point. In this case, the operator may set any point on the construction site as the reference point.
  • the working part of the attachment is, for example, the tip (toe) of the bucket 6 or the rear surface of the bucket 6 or the like.
  • the machine control device 50 may be configured to guide the operation of the excavator 100 by transmitting work information to the operator via the display device 45, the audio output device 43, or the like.
  • the machine control device 50 may perform a machine control function that automatically assists the manual operation of the excavator 100 by the operator.
  • the machine control device 50 controls at least one of the boom 4, the arm 5, and the bucket 6 so that the tip position of the bucket 6 coincides with the target construction surface when the operator is manually excavating. can be run automatically.
  • the machine control device 50 is incorporated in the controller 30 in this embodiment, it may be a control device provided separately from the controller 30 .
  • the machine control device 50 is composed of, for example, a computer including a CPU and internal memory, like the controller 30 .
  • Various functions of the machine control device 50 are implemented by the CPU executing programs stored in the internal memory.
  • the machine control device 50 and the controller 30 are communicably connected to each other through a communication network such as CAN.
  • FIG. 3 is a diagram showing a configuration example of a hydraulic system mounted on the excavator 100.
  • FIG. 3 shows the mechanical driveline, hydraulic lines, pilot lines and electrical control system in double, solid, dashed and dotted lines respectively.
  • a hydraulic system of the excavator 100 mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve unit 17, an operation device 26, a discharge pressure sensor 28, an operation sensor 29, a controller 30, and the like.
  • the hydraulic system is configured so that hydraulic oil can be circulated from the main pump 14 driven by the engine 11 to the hydraulic oil tank through the center bypass line 40 or parallel line 42.
  • the engine 11 is a drive source for the shovel 100.
  • the engine 11 is, for example, a diesel engine that operates to maintain a predetermined number of revolutions.
  • An output shaft of the engine 11 is connected to respective input shafts of the main pump 14 and the pilot pump 15 .
  • the main pump 14 is configured to supply hydraulic oil to the control valve unit 17 via a hydraulic oil line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the regulator 13 is configured to be able to control the discharge amount of the main pump 14 .
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the tilt angle of the swash plate of the main pump 14 according to the control command from the controller 30 .
  • the pilot pump 15 is an example of a pilot pressure generating device, and is configured to supply hydraulic fluid to hydraulic control equipment via a pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the pilot pressure generator may be implemented by the main pump 14 . That is, the main pump 14 may have a function of supplying hydraulic fluid to various hydraulic control devices via a pilot line in addition to the function of supplying hydraulic fluid to the control valve unit 17 via the hydraulic fluid line. In this case, pilot pump 15 may be omitted.
  • the control valve unit 17 is a hydraulic control device that controls the hydraulic system in the excavator 100.
  • the control valve unit 17 includes control valves 171-176.
  • Control valve 175 includes control valve 175L and control valve 175R
  • control valve 176 includes control valve 176L and control valve 176R.
  • the control valve unit 17 is configured to selectively supply hydraulic fluid discharged from the main pump 14 to one or more hydraulic actuators through control valves 171-176.
  • the control valves 171 to 176 for example, control the flow rate of hydraulic fluid flowing from the main pump 14 to the hydraulic actuator and the flow rate of hydraulic fluid flowing from the hydraulic actuator to the hydraulic fluid tank.
  • Hydraulic actuators include a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a travel hydraulic motor 2M, and a swing hydraulic motor 2A.
  • the traveling hydraulic motor 2M includes a left traveling hydraulic motor 2ML and a right traveling hydraulic motor 2MR.
  • the operating device 26 is configured so that the operator can operate the actuator.
  • the operating device 26 includes a hydraulic actuator operating device configured to allow an operator to operate the hydraulic actuator.
  • the hydraulic actuator operation device is configured to supply the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 via the pilot line.
  • the pressure (pilot pressure) of hydraulic fluid supplied to each of the pilot ports is a pressure corresponding to the operation direction and amount of operation of the operating device 26 corresponding to each of the hydraulic actuators.
  • the discharge pressure sensor 28 is configured to detect the discharge pressure of the main pump 14 .
  • the discharge pressure sensor 28 outputs the detected value to the controller 30 .
  • the operation sensor 29 is configured to detect the content of the operation of the operation device 26 by the operator.
  • the operation sensor 29 detects the operation direction and the amount of operation of the operation device 26 corresponding to each actuator, and outputs the detected values to the controller 30 .
  • the main pump 14 includes a left main pump 14L and a right main pump 14R.
  • the left main pump 14L circulates the hydraulic oil to the hydraulic oil tank through the left center bypass pipe 40L or the left parallel pipe 42L
  • the right main pump 14R circulates the right center bypass pipe 40R or the right parallel pipe 42R. to circulate hydraulic oil to the hydraulic oil tank.
  • the left center bypass line 40L is a hydraulic oil line passing through the control valves 171, 173, 175L and 176L arranged inside the control valve unit 17.
  • the right center bypass line 40R is a hydraulic oil line passing through control valves 172, 174, 175R and 176R arranged in the control valve unit 17.
  • the control valve 171 controls the flow of hydraulic fluid in order to supply the hydraulic fluid discharged by the left main pump 14L to the left traveling hydraulic motor 2ML and to discharge the hydraulic fluid discharged by the left traveling hydraulic motor 2ML to the hydraulic fluid tank. It is a switching spool valve.
  • the control valve 172 controls the flow of hydraulic fluid in order to supply the hydraulic fluid discharged by the right main pump 14R to the right traveling hydraulic motor 2MR and to discharge the hydraulic fluid discharged by the right traveling hydraulic motor 2MR to the hydraulic fluid tank. It is a switching spool valve.
  • the control valve 173 supplies the hydraulic oil discharged by the left main pump 14L to the swing hydraulic motor 2A and discharges the hydraulic oil discharged by the swing hydraulic motor 2A to the hydraulic oil tank. valve.
  • the control valve 174 is a spool valve that switches the flow of hydraulic oil to supply the hydraulic oil discharged by the right main pump 14R to the bucket cylinder 9 and to discharge the hydraulic oil in the bucket cylinder 9 to the hydraulic oil tank. .
  • the control valve 175L is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged by the left main pump 14L to the boom cylinder 7.
  • the control valve 175R is a spool valve that switches the flow of hydraulic oil to supply the hydraulic oil discharged from the right main pump 14R to the boom cylinder 7 and to discharge the hydraulic oil in the boom cylinder 7 to the hydraulic oil tank. .
  • the control valve 176L is a spool valve that switches the flow of hydraulic fluid to supply the hydraulic fluid discharged by the left main pump 14L to the arm cylinder 8 and to discharge the hydraulic fluid in the arm cylinder 8 to the hydraulic fluid tank. .
  • the control valve 176R is a spool valve that switches the flow of hydraulic fluid to supply the hydraulic fluid discharged from the right main pump 14R to the arm cylinder 8 and to discharge the hydraulic fluid in the arm cylinder 8 to the hydraulic fluid tank. .
  • the left parallel pipeline 42L is a hydraulic oil line parallel to the left center bypass pipeline 40L.
  • the left parallel pipeline 42L supplies hydraulic fluid to the downstream control valves when the flow of hydraulic fluid through the left center bypass pipeline 40L is restricted or blocked by any of the control valves 171, 173, and 175L.
  • the right parallel pipeline 42R is a hydraulic oil line parallel to the right center bypass pipeline 40R.
  • the right parallel line 42R supplies hydraulic fluid to more downstream control valves when the flow of hydraulic fluid through the right center bypass line 40R is restricted or blocked by any of the control valves 172, 174, and 175R. can.
  • the regulator 13 includes a left regulator 13L and a right regulator 13R.
  • the left regulator 13L controls the discharge amount of the left main pump 14L by adjusting the tilt angle of the swash plate of the left main pump 14L according to the discharge pressure of the left main pump 14L.
  • the left regulator 13L adjusts the tilt angle of the swash plate of the left main pump 14L according to an increase in the discharge pressure of the left main pump 14L, for example, to reduce the discharge amount.
  • the operating device 26 includes a left operating lever 26L, a right operating lever 26R and a travel lever 26D.
  • the travel lever 26D includes a left travel lever 26DL and a right travel lever 26DR.
  • the left operating lever 26L is used for turning operation and operating the arm 5.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure corresponding to the amount of lever operation to the pilot port of the control valve 176 .
  • hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the amount of lever operation to the pilot port of the control valve 173 .
  • the left operation lever 26L when the left operation lever 26L is operated in the arm closing direction, it introduces hydraulic fluid into the right pilot port of the control valve 176L and introduces hydraulic fluid into the left pilot port of the control valve 176R. . Further, when the left operating lever 26L is operated in the arm opening direction, it introduces hydraulic fluid into the left pilot port of the control valve 176L and introduces hydraulic fluid into the right pilot port of the control valve 176R.
  • hydraulic oil is introduced into the left pilot port of the control valve 173, and when it is operated in the right turning direction, the right pilot port of the control valve 173 is introduced. Hydraulic oil is introduced into
  • the right operating lever 26R is used to operate the boom 4 and the bucket 6.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure corresponding to the amount of lever operation to the pilot port of the control valve 175 .
  • hydraulic oil discharged from the pilot pump 15 is used to introduce a control pressure corresponding to the amount of lever operation to the pilot port of the control valve 174 .
  • hydraulic fluid is introduced into the left pilot port of the control valve 175R.
  • hydraulic fluid is introduced into the right pilot port of the control valve 175L and introduces hydraulic fluid into the left pilot port of the control valve 175R.
  • hydraulic oil is introduced into the right pilot port of the control valve 174, and when it is operated in the bucket opening direction, the hydraulic oil is introduced into the left pilot port of the control valve 174. Introduce hydraulic oil.
  • the left operating lever 26L that is operated in the left-right direction may be referred to as a "rotation operating lever”, and the left operating lever 26L that is operated in the front-rear direction may be referred to as an "arm operating lever”.
  • the right operating lever 26R that is operated in the left-right direction is sometimes referred to as a “bucket operating lever”, and the right operating lever 26R that is operated in the front-rear direction is sometimes referred to as a "boom operating lever”.
  • the travel lever 26D is used to operate the crawler 1C.
  • the left travel lever 26DL is used to operate the left crawler 1CL. It may be configured to be interlocked with the left travel pedal.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure corresponding to the amount of lever operation to the pilot port of the control valve 171 .
  • the right travel lever 26DR is used to operate the right crawler 1CR. It may be configured to interlock with the right travel pedal.
  • the hydraulic oil discharged by the pilot pump 15 is used to introduce a control pressure corresponding to the amount of lever operation to the pilot port of the control valve 172 .
  • the discharge pressure sensor 28 includes a discharge pressure sensor 28L and a discharge pressure sensor 28R.
  • the discharge pressure sensor 28L detects the discharge pressure of the left main pump 14L and outputs the detected value to the controller 30 . The same applies to the discharge pressure sensor 28R.
  • the operation sensor 29 includes operation sensors 29LA, 29LB, 29RA, 29RB, 29DL, and 29DR.
  • the operation sensor 29LA detects the content of the operator's operation of the left operation lever 26L in the front-rear direction, and outputs the detected value to the controller 30.
  • FIG. The details of the operation are, for example, the lever operation direction, lever operation amount (lever operation angle), and the like.
  • the operation sensor 29LB detects the content of the operator's operation of the left operation lever 26L in the horizontal direction, and outputs the detected value to the controller 30.
  • the operation sensor 29RA detects the content of the operator's operation of the right operation lever 26R in the front-rear direction, and outputs the detected value to the controller 30.
  • the operation sensor 29 RB detects the content of the operator's operation of the right operation lever 26 R in the horizontal direction, and outputs the detected value to the controller 30 .
  • the operation sensor 29DL detects the content of the operator's operation of the left traveling lever 26DL in the front-rear direction, and outputs the detected value to the controller 30 .
  • the operation sensor 29DR detects the content of the operator's operation of the right traveling lever 26DR in the front-rear direction, and outputs the detected value to the controller 30 .
  • the controller 30 receives the output of the operation sensor 29, outputs a control command to the regulator 13 as necessary, and changes the discharge amount of the main pump 14.
  • the controller 30 also receives the output of a control pressure sensor 19 provided upstream of the throttle 18 and outputs a control command to the regulator 13 as necessary to change the discharge amount of the main pump 14 .
  • the throttle 18 includes a left throttle 18L and a right throttle 18R
  • the control pressure sensor 19 includes a left control pressure sensor 19L and a right control pressure sensor 19R.
  • a left throttle 18L is arranged between the most downstream control valve 176L and the hydraulic oil tank in the left center bypass pipe 40L. Therefore, the flow of hydraulic oil discharged from the left main pump 14L is restricted by the left throttle 18L.
  • the left throttle 18L generates a control pressure for controlling the left regulator 13L.
  • the left control pressure sensor 19L is a sensor for detecting this control pressure, and outputs the detected value to the controller 30.
  • the controller 30 controls the discharge amount of the left main pump 14L by adjusting the tilt angle of the swash plate of the left main pump 14L according to this control pressure.
  • the controller 30 decreases the discharge amount of the left main pump 14L as the control pressure increases, and increases the discharge amount of the left main pump 14L as the control pressure decreases.
  • the discharge amount of the right main pump 14R is similarly controlled.
  • the controller 30 increases the discharge amount of the left main pump 14L, circulates a sufficient amount of working oil to the hydraulic actuator to be operated, and ensures the driving of the hydraulic actuator to be operated. Note that the controller 30 similarly controls the discharge amount of the right main pump 14R.
  • the hydraulic system of FIG. 3 can suppress wasteful energy consumption in the main pump 14 in the standby state. Wasteful energy consumption includes pumping loss caused by the hydraulic fluid discharged by the main pump 14 in the center bypass pipe 40 . Further, the hydraulic system of FIG. 3 can reliably supply necessary and sufficient working oil from the main pump 14 to the hydraulic actuator to be operated when the hydraulic actuator is to be operated.
  • FIGS. 4A-4D, 5A and 5B are partial cutaway views of the hydraulic system.
  • FIG. 4A is a view of the hydraulic system portion related to the operation of the arm cylinder 8
  • FIG. 4B is a view of the hydraulic system portion related to the operation of the boom cylinder 7.
  • FIG. 4C is a diagram extracting a hydraulic system portion relating to the operation of the bucket cylinder 9
  • FIG. 4D is a diagram extracting a hydraulic system portion relating to the operation of the turning hydraulic motor 2A.
  • FIG. 5A is a diagram extracting a hydraulic system portion related to the operation of the left travel hydraulic motor 2ML
  • FIG. 5B is a diagram extracting a hydraulic system portion related to the operation of the right travel hydraulic motor 2MR.
  • the hydraulic system includes a proportional valve 31, as shown in FIGS. 4A-4D, 5A, and 5B.
  • the proportional valve 31 includes proportional valves 31AL-31DL and 31AR-31DR.
  • the proportional valve 31 functions as a control valve for machine control.
  • the proportional valve 31 is arranged in a pipeline connecting the pilot pump 15 and the pilot port of the corresponding control valve in the control valve unit 17, and is configured to change the flow area of the pipeline.
  • the proportional valve 31 operates according to a control command output by the controller 30 . Therefore, the controller 30 supplies the hydraulic oil discharged by the pilot pump 15 to the pilot port of the corresponding control valve in the control valve unit 17 via the proportional valve 31, regardless of the operation of the operating device 26 by the operator. can.
  • the controller 30 can then cause the pilot pressure generated by the proportional valve 31 to act on the pilot port of the corresponding control valve.
  • the controller 30 can operate the hydraulic actuator corresponding to the specific operating device 26 even when the specific operating device 26 is not operated. Further, even when a specific operating device 26 is being operated, the controller 30 can forcibly stop the operation of the hydraulic actuator corresponding to the specific operating device 26 .
  • the left operating lever 26L is used to operate the arm 5, as shown in FIG. 4A.
  • the left operation lever 26L utilizes hydraulic oil discharged by the pilot pump 15 to apply a pilot pressure to the pilot port of the control valve 176 according to the operation in the front-rear direction. More specifically, when the left operation lever 26L is operated in the arm closing direction (backward), the pilot pressure corresponding to the amount of operation is applied to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R. act. Further, when the left operating lever 26L is operated in the arm opening direction (forward direction), a pilot pressure corresponding to the amount of operation is applied to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R.
  • the operating device 26 is provided with a switch SW.
  • the switch SW includes a switch SW1 and a switch SW2.
  • the switch SW1 is a push button switch provided at the tip of the left operating lever 26L. The operator can operate the left operating lever 26L while pressing the switch SW1.
  • the switch SW1 may be provided on the right operating lever 26R, or may be provided at another position inside the cabin 10.
  • the switch SW2 is a push button switch provided at the tip of the left travel lever 26DL. The operator can operate the left travel lever 26DL while pressing the switch SW2.
  • Switch SW2 may be provided on right travel lever 26DR or may be provided at another position within cabin 10 .
  • the operation sensor 29LA detects the content of the operator's operation of the left operation lever 26L in the front-rear direction, and outputs the detected value to the controller 30.
  • the proportional valve 31AL operates according to a control command (current command) output by the controller 30. Then, it adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 through the proportional valve 31AL to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R.
  • the proportional valve 31AR operates according to a control command (current command) output by the controller 30. Then, it adjusts the pilot pressure of hydraulic oil introduced from the pilot pump 15 through the proportional valve 31AR into the left pilot port of the control valve 176L and the right pilot port of the control valve 176R.
  • the proportional valve 31AL can adjust the pilot pressure so that the control valve 176L and the control valve 176R can be stopped at any valve position.
  • the proportional valve 31AR can adjust the pilot pressure so that the control valve 176L and the control valve 176R can be stopped at any valve position.
  • the controller 30 supplies hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the proportional valve 31AL in response to the arm closing operation by the operator. can.
  • the controller 30 supplies hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 176L and the left pilot port of the control valve 176R via the proportional valve 31AL, regardless of the arm closing operation by the operator. can. That is, the controller 30 can close the arm 5 according to the arm closing operation by the operator or regardless of the arm closing operation by the operator.
  • the controller 30 can supply hydraulic fluid discharged from the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R via the proportional valve 31AR in response to the arm opening operation by the operator.
  • the controller 30 supplies hydraulic oil discharged from the pilot pump 15 to the left pilot port of the control valve 176L and the right pilot port of the control valve 176R via the proportional valve 31AR, regardless of the arm opening operation by the operator. can. That is, the controller 30 can open the arm 5 according to the arm opening operation by the operator or regardless of the arm opening operation by the operator.
  • the controller 30 can operate the closing side pilot port of the control valve 176 (the left side pilot port of the control valve 176L and the By reducing the pilot pressure acting on the right pilot port of the control valve 176R, the closing operation of the arm 5 can be forcibly stopped. The same applies to the case where the opening operation of the arm 5 is forcibly stopped while the operator is performing the arm opening operation.
  • the controller 30 may optionally control the proportional valve 31AR to control the valve 31AR on the opposite side of the closed side pilot port of the control valve 176, even when the operator is performing an arm closing operation.
  • the controller 30 may optionally control the proportional valve 31AR to control the valve 31AR on the opposite side of the closed side pilot port of the control valve 176, even when the operator is performing an arm closing operation.
  • the arm 5 may be forcibly stopped. The same applies to the case of forcibly stopping the opening operation of the arm 5 when the arm opening operation is performed by the operator.
  • the operation of the boom 4 is forced when the operator is performing a boom-up operation or a boom-down operation.
  • the bucket 6 is forcibly stopped when the bucket closing operation or bucket opening operation is performed by the operator, when the operation of the bucket 6 is forced to stop, and when the turning operation is performed by the operator.
  • the revolving motion of the revolving body 3 is forcibly stopped.
  • the running motion of the lower running body 1 is forcibly stopped while the running operation is being performed by the operator.
  • the right operating lever 26R is used to operate the boom 4. Specifically, the right operating lever 26R utilizes the hydraulic oil discharged by the pilot pump 15 to apply a pilot pressure to the pilot port of the control valve 175 according to the operation in the front-rear direction. More specifically, when the right operation lever 26R is operated in the boom raising direction (backward), the pilot pressure corresponding to the amount of operation is applied to the right pilot port of the control valve 175L and the left pilot port of the control valve 175R. act. Further, when the right operation lever 26R is operated in the boom lowering direction (forward direction), a pilot pressure corresponding to the amount of operation is applied to the right pilot port of the control valve 175R.
  • the operation sensor 29RA detects the content of the operator's operation of the right operation lever 26R in the front-rear direction, and outputs the detected value to the controller 30.
  • the proportional valve 31BL operates according to a control command (current command) output by the controller 30. Then, it adjusts the pilot pressure by the hydraulic oil introduced from the pilot pump 15 through the proportional valve 31BL to the right pilot port of the control valve 175L and the left pilot port of the control valve 175R.
  • the proportional valve 31BR operates according to a control command (current command) output by the controller 30 . Then, it adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 175R via the proportional valve 31BR.
  • the proportional valve 31BL can adjust the pilot pressure so that the control valve 175L and the control valve 175R can be stopped at any valve position. Also, the proportional valve 31BR can adjust the pilot pressure so that the control valve 175R can be stopped at any valve position.
  • the controller 30 supplies hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 175L and the left pilot port of the control valve 175R via the proportional valve 31BL in response to the operator's boom raising operation. can.
  • the controller 30 supplies hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 175L and the left pilot port of the control valve 175R via the proportional valve 31BL, regardless of the operator's operation to raise the boom. can. That is, the controller 30 can raise the boom 4 according to the operator's boom raising operation or regardless of the operator's boom raising operation.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 175R via the proportional valve 31BR in response to the boom lowering operation by the operator.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 175R via the proportional valve 31BR regardless of the boom lowering operation by the operator. That is, the controller 30 can lower the boom 4 according to the operator's boom lowering operation or regardless of the operator's boom lowering operation.
  • the right operating lever 26R is also used to operate the bucket 6, as shown in FIG. 4C. Specifically, the right operating lever 26R utilizes the hydraulic oil discharged by the pilot pump 15 to apply a pilot pressure to the pilot port of the control valve 174 according to the operation in the left-right direction. More specifically, the right operating lever 26R applies a pilot pressure corresponding to the amount of operation to the left pilot port of the control valve 174 when operated in the bucket closing direction (leftward direction). Further, when the right operation lever 26R is operated in the bucket opening direction (rightward), a pilot pressure corresponding to the amount of operation is applied to the right pilot port of the control valve 174. As shown in FIG.
  • the operation sensor 29RB detects the content of the operator's operation of the right operation lever 26R in the left-right direction, and outputs the detected value to the controller 30.
  • the proportional valve 31CL operates according to a control command (current command) output by the controller 30. Then, it adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 174 via the proportional valve 31CL.
  • the proportional valve 31CR operates according to a control command (current command) output by the controller 30 . Then, it adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 174 via the proportional valve 31CR.
  • the proportional valve 31CL can adjust the pilot pressure so that the control valve 174 can be stopped at any valve position.
  • the proportional valve 31CR can adjust the pilot pressure so that the control valve 174 can be stopped at any valve position.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 174 via the proportional valve 31CL in response to the bucket closing operation by the operator. Further, the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the left pilot port of the control valve 174 via the proportional valve 31CL regardless of the bucket closing operation by the operator. That is, the controller 30 can close the bucket 6 according to the bucket closing operation by the operator or regardless of the bucket closing operation by the operator.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 174 via the proportional valve 31CR in response to the bucket opening operation by the operator. Further, the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 174 via the proportional valve 31CR regardless of the bucket opening operation by the operator. That is, the controller 30 can open the bucket 6 according to the bucket opening operation by the operator or regardless of the bucket opening operation by the operator.
  • the left operating lever 26L is also used to operate the turning mechanism 2, as shown in FIG. 4D.
  • the left operation lever 26L utilizes the hydraulic oil discharged by the pilot pump 15 to apply pilot pressure to the pilot port of the control valve 173 according to the operation in the left-right direction. More specifically, the left operation lever 26L applies a pilot pressure corresponding to the amount of operation to the left pilot port of the control valve 173 when it is operated in the left turning direction (leftward direction). Further, when the left operating lever 26L is operated in the right turning direction (rightward direction), the pilot pressure corresponding to the amount of operation is applied to the right pilot port of the control valve 173 .
  • the operation sensor 29LB detects the content of the operator's operation of the left operation lever 26L in the horizontal direction, and outputs the detected value to the controller 30.
  • the proportional valve 31DL operates according to a control command (current command) output by the controller 30. Then, it adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 173 via the proportional valve 31DL.
  • the proportional valve 31DR operates according to a control command (current command) output by the controller 30 . Then, it adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 173 via the proportional valve 31DR.
  • the proportional valve 31DL can adjust the pilot pressure so that the control valve 173 can be stopped at any valve position.
  • the proportional valve 31DR can adjust the pilot pressure so that the control valve 173 can be stopped at any valve position.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 173 via the proportional valve 31DL in response to the left turning operation by the operator.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 173 via the proportional valve 31DL regardless of the left turning operation by the operator. That is, the controller 30 can turn the turning mechanism 2 to the left according to the left turning operation by the operator or regardless of the left turning operation by the operator.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 173 via the proportional valve 31DR in response to the right turning operation by the operator.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 173 via the proportional valve 31DR regardless of the right turning operation by the operator. That is, the controller 30 can rotate the turning mechanism 2 to the right according to the right turning operation by the operator or regardless of the right turning operation by the operator.
  • the left travel lever 26DL is used to operate the left crawler 1CL.
  • the left travel lever 26DL utilizes hydraulic fluid discharged by the pilot pump 15 to apply a pilot pressure to the pilot port of the control valve 171 according to the operation in the longitudinal direction. More specifically, the left travel lever 26DL applies pilot pressure corresponding to the amount of operation to the left pilot port of the control valve 171 when operated in the forward direction (forward direction). Further, when the left travel lever 26DL is operated in the backward direction (rear direction), the pilot pressure corresponding to the amount of operation is applied to the right pilot port of the control valve 171 .
  • the operation sensor 29DL electrically detects the content of the operator's operation of the left traveling lever 26DL in the front-rear direction, and outputs the detected value to the controller 30 .
  • the proportional valve 31EL operates according to the current command output by the controller 30.
  • the proportional valve 31EL adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 171 via the proportional valve 31EL.
  • the proportional valve 31ER operates according to a current command output by the controller 30.
  • the proportional valve 31ER adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 171 via the proportional valve 31ER.
  • the proportional valves 31EL and 31ER can adjust the pilot pressure so that the control valve 171 can be stopped at any valve position.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the left pilot port of the control valve 171 via the proportional valve 31EL, regardless of the operator's left forward operation. That is, the left crawler 1CL can be advanced.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the right pilot port of the control valve 171 via the proportional valve 31ER regardless of the operator's left reverse operation. That is, the left crawler 1CL can be moved backward.
  • the right travel lever 26DR is used to operate the right crawler 1CR. Specifically, the right travel lever 26DR utilizes the hydraulic fluid discharged by the pilot pump 15 to apply a pilot pressure to the pilot port of the control valve 172 according to the operation in the longitudinal direction. More specifically, the right travel lever 26DR applies a pilot pressure corresponding to the amount of operation to the right pilot port of the control valve 172 when operated in the forward direction (forward direction). Further, when the right travel lever 26DR is operated in the backward direction (backward direction), the pilot pressure corresponding to the amount of operation is applied to the left pilot port of the control valve 172 .
  • the operation sensor 29DR electrically detects the content of the operator's operation of the right traveling lever 26DR in the front-rear direction, and outputs the detected value to the controller 30.
  • the proportional valve 31FL operates according to the current command output by the controller 30.
  • the proportional valve 31FL adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the left pilot port of the control valve 172 via the proportional valve 31FL.
  • the proportional valve 31FR operates according to a current command output by the controller 30. Then, the proportional valve 31FR adjusts the pilot pressure by hydraulic oil introduced from the pilot pump 15 to the right pilot port of the control valve 172 via the proportional valve 31FR.
  • the proportional valves 31FL, 31FR can adjust the pilot pressure so that the control valve 172 can be stopped at any valve position.
  • the controller 30 can supply the hydraulic oil discharged by the pilot pump 15 to the right pilot port of the control valve 172 via the proportional valve 31FL, regardless of the operator's right forward operation. That is, the right crawler 1CR can be advanced.
  • the controller 30 can supply the hydraulic oil discharged from the pilot pump 15 to the left pilot port of the control valve 172 via the proportional valve 31FR regardless of the right reverse operation by the operator. That is, the right crawler 1CR can be moved backward.
  • the excavator 100 may have a configuration for automatically operating the bucket tilt mechanism.
  • the hydraulic system portion related to the bucket tilt cylinder that constitutes the bucket tilt mechanism may be configured in the same manner as the hydraulic system portion related to the operation of the boom cylinder 7 and the like.
  • the electric operation lever has been described as the form of the operating device 26, a hydraulic operation lever may be employed instead of the electric operation lever.
  • the lever operation amount of the hydraulic operation lever may be detected in the form of pressure by a pressure sensor and input to the controller 30 .
  • an electromagnetic valve may be arranged between the operating device 26 as a hydraulic operating lever and the pilot port of each control valve. The solenoid valve is configured to operate in response to an electrical signal from controller 30 .
  • each control valve may be composed of an electromagnetic spool valve. In this case, the electromagnetic spool valve operates according to an electric signal from the controller 30 corresponding to the lever operation amount of the electric operation lever.
  • FIG. 6 is a block diagram showing a configuration example of the machine control device 50.
  • the machine control device 50 includes a boom angle sensor S1, an arm angle sensor S2, a bucket angle sensor S3, a body tilt sensor S4, a turning angular velocity sensor S5, a camera S6, a positioning device P1, a communication device T1, and an input device. 46 or the like.
  • the machine control device 50 calculates the distance between the bucket 6 and the target construction surface based on the acquired information, and displays the distance between the bucket 6 and the target construction surface by at least one of voice and image display. to the operator of the excavator 100.
  • the machine control device 50 also has a position calculation unit 51 , a distance calculation unit 52 , an information transmission unit 53 and an automatic control unit 54 .
  • the position calculation unit 51 is configured to calculate the position of the positioning target.
  • the position calculator 51 calculates a coordinate point in the reference coordinate system of the working portion of the attachment. Specifically, the position calculator 51 calculates the coordinate point of the tip (toe) of the bucket 6 from the rotation angles of the boom 4 , the arm 5 , and the bucket 6 .
  • the position calculation unit 51 may calculate not only the central coordinate point of the toe of the bucket 6 , but also the coordinate point of the left end of the toe of the bucket 6 and the coordinate point of the right end of the toe of the bucket 6 .
  • the distance calculation unit 52 is configured to calculate the distance between two positioning targets. In this embodiment, the distance calculator 52 calculates the vertical distance between the toe of the bucket 6 and the target construction surface. The distance calculation unit 52 calculates coordinate points of the left end and the right end of the toe of the bucket 6 and the corresponding target construction surface so that the machine control device 50 can determine whether the excavator 100 is facing the target construction surface. may be calculated (for example, vertical distance).
  • the information transmission unit 53 is configured to transmit various types of information to the operator of the excavator 100 .
  • the information transmission unit 53 transmits the magnitude of various distances calculated by the distance calculation unit 52 to the operator of the excavator 100 .
  • at least one of visual information and auditory information is used to inform the operator of the excavator 100 of the vertical distance between the toe of the bucket 6 and the target construction surface.
  • the information transmission unit 53 may use an intermittent sound produced by the audio output device 43 to convey to the operator the magnitude of the vertical distance between the toe of the bucket 6 and the target construction surface. In this case, the information transmission unit 53 may shorten the intervals of intermittent sounds as the vertical distance becomes smaller. The information transmission unit 53 may use a continuous sound, or change at least one of the pitch, strength, etc. of the sound to express the difference in the magnitude of the vertical distance. In addition, the information transmission unit 53 may issue an alarm when the toe of the bucket 6 becomes a position lower than the target construction surface. The alarm is, for example, a continuous sound significantly louder than the intermittent sound.
  • the information transmission unit 53 may cause the display device 45 to display the magnitude of the vertical distance between the toe of the bucket 6 and the target construction surface as work information.
  • the display device 45 displays, for example, the work information received from the information transmission section 53 together with the image data received from the camera S6 on the screen.
  • the information transmission unit 53 may transmit the magnitude of the vertical distance to the operator using, for example, an image of an analog meter or an image of a bar graph indicator.
  • the automatic control unit 54 automatically supports the manual operation of the excavator 100 by the operator by automatically operating the actuator. For example, when the operator manually closes the arm, the automatic control unit 54 controls the boom cylinder 7, the arm cylinder 8, and the bucket cylinder so that the position of the toe of the bucket 6 coincides with the target construction surface. At least one of 9 may be automatically expanded and contracted. In this case, the operator can close the arm 5 while aligning the toe of the bucket 6 with the target construction surface, for example, simply by operating the arm operating lever in the closing direction.
  • This automatic control may be configured to be executed when a predetermined switch, which is one of the input devices 46, is pressed.
  • the predetermined switch is, for example, a machine control switch (hereinafter referred to as "MC switch"), and may be arranged at the tip of the operating device 26 as a knob switch.
  • MC switch machine control switch
  • the automatic control unit 54 controls the swing hydraulic motor to direct the upper swing body 3 to face the target construction surface.
  • 2A may be rotated automatically.
  • the operator can cause the upper swing body 3 to face the target construction surface simply by pressing a predetermined switch or by operating the swing operation lever while the predetermined switch is pressed. .
  • the operator can cause the upper rotating body 3 to face the target construction surface and start the machine control function simply by pressing a predetermined switch.
  • the control for causing the upper revolving body 3 to face the target construction surface is referred to as "facing control”.
  • the machine control device 50 controls the left edge vertical distance, which is the vertical distance between the left edge coordinate point of the toe of the bucket 6 and the target construction surface, and the right edge coordinate point of the toe of the bucket 6 and the target construction surface.
  • the right end vertical distance which is the vertical distance between
  • the left edge vertical distance and the right edge vertical distance are equal, that is, when the difference between the left edge vertical distance and the right edge vertical distance is not zero, but when the difference is equal to or less than a predetermined value, It may be determined that the excavator 100 is facing the target construction surface.
  • the machine control device 50 determines that the excavator 100 is facing the target construction surface after automatically rotating the swing hydraulic motor 2A
  • the machine control device 50 uses at least one of visual information and auditory information to determine whether the excavator 100 is facing the target construction surface. The operator may be informed that control is complete. In other words, the machine control device 50 may notify the operator that the upper rotating body 3 is caused to face the target construction surface.
  • the automatic control unit 54 can automatically operate each actuator by individually and automatically adjusting the pilot pressure acting on the control valve corresponding to each actuator. For example, in facing control, the automatic control unit 54 may operate the turning hydraulic motor 2A based on the difference between the left end vertical distance and the right end vertical distance. Specifically, when the turning operation lever is operated with a predetermined switch depressed, the automatic control unit 54 determines whether the turning operation lever is operated in the direction in which the upper turning body 3 faces the target construction surface. determine whether or not For example, when the turning operation lever is operated in a direction in which the vertical distance between the toe of the bucket 6 and the target construction surface (uphill slope) is increased, the automatic control unit 54 does not perform facing control.
  • the automatic control unit 54 performs facing control.
  • the automatic control unit 54 can operate the turning hydraulic motor 2A so that the difference between the left end vertical distance and the right end vertical distance becomes small.
  • the automatic control section 54 stops the turning hydraulic motor 2A.
  • the automatic control unit 54 sets a turning angle at which the difference is a predetermined value or less or zero as the target angle, and turns so that the angle difference between the target angle and the current turning angle (detected value) becomes zero.
  • Angle control may be performed.
  • the turning angle is, for example, the angle of the longitudinal axis of the upper turning body 3 with respect to the reference direction.
  • the automatic control unit 54 is configured to maintain the state in which the upper rotating body 3 faces the target construction surface when an operation related to the target construction surface such as an excavation operation or a slope finishing operation is performed. Actuators may be operated automatically. For example, when the direction of the upper revolving body 3 changes due to excavation reaction force or the like and the upper revolving body 3 no longer faces the target construction surface, the automatic control unit 54 quickly moves the upper revolving body 3 to face the target construction surface. For this purpose, the swing hydraulic motor 2A may be automatically operated. Alternatively, the automatic control unit 54 may preventively operate the actuator so that the orientation of the upper revolving body 3 does not change due to excavation reaction force or the like while an operation relating to the target construction surface is being performed.
  • the machine control device 50 further has a turning angle calculator 55 and a relative angle calculator 56 .
  • the turning angle calculator 55 calculates the turning angle of the upper turning body 3 . This is to identify the current orientation of the upper revolving structure 3 .
  • the turning angle calculator 55 calculates the angle of the longitudinal axis of the upper turning body 3 with respect to the reference direction as the turning angle based on the output of the GNSS compass as the positioning device P1.
  • the turning angle calculator 55 may calculate the turning angle based on the output of the turning angular velocity sensor S5. Further, when a reference point is set at the construction site, the turning angle calculator 55 may set the direction of the reference point viewed from the turning axis as the reference direction.
  • the turning angle indicates the direction in which the attachment operating surface extends.
  • the attachment operating surface is, for example, a virtual plane that traverses the attachment and is arranged so as to be perpendicular to the revolving plane.
  • the pivot plane is, for example, a virtual plane that includes the bottom surface of the pivot frame perpendicular to the pivot axis. For example, when the machine control device 50 determines that the attachment operation plane AF (see FIG. 9A) includes the normal line of the target construction surface, it determines that the upper rotating body 3 faces the target construction surface. do.
  • the relative angle calculator 56 calculates a relative angle as a swing angle necessary for making the upper swing body 3 face the target construction surface.
  • the relative angle is formed, for example, between the direction of the front-rear axis of the upper revolving body 3 when the upper revolving body 3 faces the target construction surface, and the current direction of the front-rear axis of the upper revolving body 3. is the relative angle
  • the relative angle calculator 56 calculates the relative angle based on the information about the target construction surface stored in the storage device 47 and the turning angle calculated by the turning angle calculator 55 .
  • the automatic control unit 54 determines whether or not the turning operation lever has been operated in the direction in which the upper turning body 3 faces the target construction surface. . Then, when it is determined that the turning operation lever has been operated in the direction in which the upper turning body 3 faces the target construction surface, the automatic control section 54 sets the relative angle calculated by the relative angle calculating section 56 as the target angle. When the change in the turning angle after the turning operation lever is operated reaches the target angle, it is determined that the upper turning body 3 has faced the target construction surface, and the movement of the turning hydraulic motor 2A is stopped.
  • the machine control device 50 can cause the upper rotating body 3 to face the target construction surface.
  • FIG. 7 is a flow chart of the facing process.
  • the controller 30 executes this facing process when the MC switch is pressed.
  • 8A and 8B are top views of the excavator 100 when the alignment process is performed
  • FIGS. 9A and 9B are views of the excavator 100 when the alignment process is performed when viewed from the rear left.
  • 1 is a perspective view of a shovel 100; FIG. Specifically, FIGS. 8A and 9A show a state in which the upper rotating body 3 does not face the target construction surface, and FIGS.
  • FIGS. 8A, 8B, 9A, and 9B show a state in which the upper rotating body 3 faces the target construction surface. indicates
  • the target construction surface set below the ground surface ES in FIGS. 8A, 8B, 9A, and 9B is, for example, an upslope BS as shown in FIG.
  • a region NS represents a state in which the upslope BS is not completed, that is, a state in which the ground surface ES does not match the upslope BS as shown in FIG. is completed, that is, the ground surface ES and the upslope BS are in agreement.
  • the region NS is marked with a coarse dot pattern and the region CS is marked with a fine dot pattern for clarity.
  • the state in which the upper revolving structure 3 faces the target construction surface is represented by a line segment L1 representing the direction (extending direction) of the target construction surface and the upper revolving structure 3
  • the angle ⁇ formed between the line segment L2 representing the front-rear axis of is 90 degrees.
  • the extension direction of the slope as the orientation of the target construction surface represented by the line segment L1 is, for example, the direction perpendicular to the slope length direction.
  • the slope length direction is, for example, a direction along an imaginary line segment connecting the upper end (shoulder) and the lower end (bottom of the slope) of the slope at the shortest distance.
  • the state in which the upper rotating body 3 faces the target construction surface is represented by a line segment L2 representing the longitudinal axis of the upper rotating body 3 and a line segment L3 perpendicular to the orientation (extending direction) of the target construction surface on the virtual horizontal plane. (see FIG. 8A) formed between and is 0 degrees.
  • the direction represented by the line segment L3 corresponds to the direction of the horizontal component of the perpendicular drawn to the target construction surface.
  • the virtual cylinder CB in FIGS. 9A and 9B represents part of the normal to the target construction surface (uphill slope BS), the dashed line represents part of the virtual turning plane SF, and the dashed line represents the virtual attachment. Represents part of the working plane AF.
  • the attachment operating surface AF is arranged so as to be perpendicular to the turning plane SF. Then, as shown in FIG. 9B, in a state in which the upper rotating body 3 faces the target construction surface, the attachment operating surface AF is arranged so as to include a part of the normal line represented by the virtual cylindrical body CB. That is, the attachment operating surface AF is arranged to extend along a part of the normal line.
  • the automatic control unit 54 sets the turning angle at which the attachment operation plane AF and the target construction plane (uphill slope BS) are perpendicular to each other as the target angle. Then, the automatic control unit 54 detects the current turning angle based on the output of the positioning device P1 or the like, and calculates the difference between the target angle and the current turning angle (detected value). Then, the automatic control unit 54 operates the turning hydraulic motor 2A so that the difference is equal to or less than a predetermined value or zero. Specifically, the automatic control unit 54 determines that the upper swing body 3 has faced the target construction surface when the difference between the target angle and the current swing angle is equal to or less than a predetermined value or zero.
  • the automatic control unit 54 determines whether or not the turning operation lever is operated in the direction in which the upper turning body 3 faces the target construction surface. to decide. For example, when the turning operation lever is operated in the direction in which the difference between the target angle and the current turning angle increases, the automatic control unit 54 moves the turning operation lever in the direction in which the upper turning body 3 faces the target construction surface. It judges that it is not being operated, and does not perform facing control. On the other hand, when the turning operation lever is operated in the direction in which the difference between the target angle and the current turning angle becomes smaller, the automatic control unit 54 moves the turning operation lever in the direction in which the upper turning body 3 faces the target construction surface. is operated, and the facing control is executed.
  • the turning hydraulic motor 2A can be operated so that the difference between the target angle and the current turning angle becomes small. After that, when the difference between the target angle and the current swing angle becomes equal to or less than a predetermined value or becomes zero, the automatic control section 54 stops the swing hydraulic motor 2A.
  • the example shown in FIG. 8B is one example showing a state in which the attachment operating surface AF includes a normal line (virtual cylindrical body CB). is 90° with the line segment L2 indicating .
  • the angle ⁇ does not necessarily have to be 90 degrees.
  • the angle ⁇ is 90 degrees, is not limited.
  • the machine control device 50 included in the controller 30 determines whether or not there is a misalignment (step ST1). In this embodiment, the machine control device 50 determines whether or not there is a misalignment based on the information on the target construction surface pre-stored in the storage device 47 and the output of the positioning device P1 as the orientation detection device. judge.
  • the information about the target construction surface includes information about the orientation of the target construction surface.
  • the positioning device P1 outputs information about the orientation of the upper revolving structure 3 . For example, as shown in FIG.
  • the machine control device 50 determines that the target construction surface and the shovel 100 are misaligned when the attachment operation surface AF does not include the normal line of the target construction surface. do.
  • the angle ⁇ formed between the line segment L1 representing the direction of the target construction surface and the line segment L2 representing the direction of the upper revolving structure 3 is an angle other than 90 degrees. becomes.
  • the machine control device 50 may determine whether or not there is a misalignment based on the image captured by the camera S6. For example, the machine control device 50 performs various types of image processing on the image captured by the camera S6 to derive information about the shape of the slope surface to be worked on, and based on the derived information, determines whether or not there is any misalignment. It may be determined whether Alternatively, the machine control device 50 determines whether or not there is a misalignment based on the output of a space recognition device other than the camera S6, such as an ultrasonic sensor, a millimeter wave radar, a range image sensor, a LIDAR, or an infrared sensor. You can judge.
  • a space recognition device other than the camera S6 such as an ultrasonic sensor, a millimeter wave radar, a range image sensor, a LIDAR, or an infrared sensor. You can judge.
  • step ST1 If it is determined that no alignment deviation has occurred (NO in step ST1), the machine control device 50 terminates the current alignment process without executing the alignment control.
  • the machine control device 50 determines whether or not there is an obstacle around the excavator 100 (step ST2).
  • the machine control device 50 performs image recognition processing on the image captured by the camera S6 to determine whether or not an image related to a predetermined obstacle exists in the captured image.
  • the predetermined obstacle is, for example, at least one of people, animals, machines, buildings, and the like.
  • the predetermined range includes, for example, a range in which an object may exist that may come into contact with the excavator 100 when the excavator 100 is moved to bring the upper revolving body 3 to face the target construction surface.
  • a range RA represented by a cross-hatched pattern in FIG. 8A is an example of a predetermined range.
  • the predetermined range may be set as a wider range, such as within a predetermined distance from the turning axis 2X.
  • the machine control device 50 determines whether there is an obstacle around the excavator 100 based on the output of a space recognition device other than the camera S6, such as an ultrasonic sensor, millimeter wave radar, range image sensor, LIDAR, or infrared sensor. It may be determined whether
  • the machine control device 50 terminates the current alignment process without executing the alignment control. This is to prevent the excavator 100 from coming into contact with an obstacle due to the execution of the facing control. In this case, the machine control device 50 may output an alarm.
  • the machine control device 50 may transmit information regarding obstacles, such as the presence or absence of obstacles, the position of obstacles, and the type of obstacles, to an external device via the communication device T1.
  • the machine control device 50 may also receive information about obstacles obtained by other excavators via the communication device T1.
  • step ST3 When it is determined that no obstacle exists around the excavator 100 (YES in step ST2), the machine control device 50 executes facing control (step ST3).
  • the automatic control section 54 of the machine control device 50 outputs a current command to the proportional valve 31CL (see FIG. 4C).
  • the pilot pressure generated by the hydraulic fluid coming out of the pilot pump 15 and passing through the proportional valve 31 CL and the shuttle valve CL is applied to the left pilot port of the control valve 173 .
  • the control valve 173 that receives the pilot pressure at the left pilot port is displaced rightward, causing the hydraulic oil discharged from the left main pump 14L to flow into the first port 2A1 of the swing hydraulic motor 2A.
  • control valve 173 causes the hydraulic fluid flowing out from the second port 2A2 of the swing hydraulic motor 2A to flow out to the hydraulic fluid tank.
  • the turning hydraulic motor 2A rotates in the forward direction, and turns the upper turning body 3 leftward around the turning axis 2X as indicated by the arrow in FIG. 8A.
  • the automatic control unit 54 stops outputting the current command to the proportional valve 31CL when the angle ⁇ becomes 90 degrees or when the angle ⁇ becomes 0 degree as shown in FIG. Reduce the pilot pressure acting on the left pilot port.
  • the control valve 173 is displaced leftward and returns to the neutral position to block the flow of hydraulic oil from the left main pump 14L to the first port 2A1 of the swing hydraulic motor 2A.
  • the control valve 173 blocks the flow of hydraulic fluid from the second port 2A2 of the swing hydraulic motor 2A to the hydraulic fluid tank.
  • the swing hydraulic motor 2A stops rotating in the forward direction and stops the upper swing body 3 from swinging leftward.
  • FIGS. 10A and 10B are top views of the excavator 100 finishing the slope.
  • FIG. 10A is a top view of the excavator 100 when the tip (toe) of the bucket 6 is positioned on the slope shoulder TS of the upslope BS
  • FIG. Fig. 10 is a top view of the shovel 100 when positioned near the toe FS of the plane BS;
  • FIGS. 10A and 10B are top views of the excavator 100 finishing the slope.
  • a coarse dot pattern is attached to the region NS where the upslope BS is not completed, and a fine dot pattern is attached to the region CS where the upslope BS is completed.
  • a cross pattern is given to the earth and sand SL spilled from the upslope BS and deposited near the toe FS during the slope finishing work.
  • 10A and 10B at the lower end of the region NS, a linear boundary line corresponding to the toe of the slope FS (between the upslope BS and the ground GS on which the excavator 100 is located), as in the region CS boundary) has not yet been formed.
  • the automatic control unit 54 causes the toe of the bucket 6 to move upward toward the slope of the slope BS. Automatically operate the drilling attachment so that it is positioned at the TS. Specifically, the automatic control unit 54 automatically performs a boom lowering operation, an arm opening operation, and a bucket opening operation. After that, the automatic control unit 54 stops the excavation attachment when the toe of the bucket 6 is positioned on the slope shoulder TS, as shown in FIG. 10A. In the example shown in FIGS. 10A and 10B, the automatic control section 54 stops the movement of the excavation attachment even when the left operating lever 26L is operated in the arm opening direction.
  • the slope shoulder TS is a point or line on the upslope BS as the target construction surface, and information about the target construction surface is stored in the storage device 47 in advance.
  • the automatic control unit 54 selects the upward direction as the target construction surface.
  • the toe of the bucket 6 is moved from the slope shoulder TS to the slope bottom FS along the surface BS.
  • the earth and sand scraped off from the slope spill down from the slope and are deposited as earth and sand SL near the slope of the ground GS where the shovel 100 is located.
  • the earth and sand SL are deposited so as to cover the portion where the toe of slope FS is formed.
  • the automatic control unit 54 stops the movement of the excavation attachment when the toe of the bucket 6 reaches the bottom of the slope FS.
  • the automatic control section 54 stops the movement of the excavation attachment even when the left operating lever 26L is operated in the arm closing direction.
  • a section of the upslope BS is a part of the slope having a width corresponding to the width of the bucket and extending from the shoulder TS to the toe FS.
  • the operator of the excavator 100 may, for example, perform a turning operation to discharge the earth and sand taken into the bucket 6 to the rear of the excavator 100 .
  • the operator may move the excavator 100 leftward by the width of the bucket by performing a traveling operation for operating the lower traveling body 1 (traveling hydraulic motor 2M).
  • the operator causes the excavator 100 to face the next section of the upslope BS by executing the facing process, and executes the slope finishing process to complete one section of the upslope BS. Finishing may be completed.
  • FIGS. 11A to 11C and FIG. 12 a process in which the machine control device 50 supports an operation for forming the trailing edge FS in the state of being set to the "finishing control mode" (trailing edge forming process).
  • FIGS. 11A-11C are top views of the shovel 100 forming the toe of the slope.
  • FIG. 11A is a top view of the excavator 100 when the left end LE of the toe of the bucket 6 is positioned at the toe FS of the upslope BS (region CS).
  • FIG. 11B shows a state in which the left end LE of the toe is moved by a distance D1 in the direction indicated by the arrow AR1 (leftward) from the state shown in FIG. 11A.
  • a point LE1 in FIG. 11B indicates the position of the left end LE in the state shown in FIG. 11A.
  • FIG. 11C shows a state in which the left end LE of the toe is further moved by a distance D2 in the direction indicated by the arrow AR2 (leftward) from the state shown in FIG. 11B.
  • a point LE2 in FIG. 11C indicates the position of the left end LE in the state shown in FIG. 11B.
  • Distance DA is the sum of distance D1 and distance D2.
  • 11A to 11C a cross pattern is given to the earth and sand SL that spilled from the upslope BS and deposited near the toe FS during the slope finishing work.
  • 11A to 11C show that at the lower end of the region NS, a linear boundary line corresponding to the toe of the slope FS (between the upslope BS and the ground GS on which the excavator 100 is located), as in the region CS. boundary) has not yet been formed.
  • 12 is a perspective view of the bucket 6 when viewed from inside the cabin 10 in the state shown in FIG. 11A.
  • the operator of the excavator 100 moves the upper revolving body 3 as shown in FIG. 11A after the slope finishing process shown in FIGS. and extend the excavation attachment to bring the left end LE of the toe of the bucket 6 into contact with the toe FS.
  • the position where the left end LE contacts is, for example, the position closest to the shovel 100 on the completed slope FS.
  • the completed slope bottom FS means a state in which the earth and sand SL are removed and the boundary line between the upslope BS and the ground GS is exposed.
  • the machine control device 50 may be configured to support the operation for bringing the left end LE into contact with the buttock FS.
  • the automatic control unit 54 excavates so that the end of the toe of the bucket 6 comes into contact with the bottom of the slope FS.
  • the attachment may be automatically operated.
  • the automatic control unit 54 stops the movement of the excavation attachment when the left end LE of the toe of the bucket 6 reaches the toe of the slope FS.
  • the automatic control section 54 stops the movement of the excavation attachment even when the left operating lever 26L is operated in the boom lowering direction.
  • the operator of the excavator 100 executes the trailing edge forming process by operating the left operating lever 26L in the left turning direction while pressing the switch SW1.
  • the automatic control unit 54 starts executing the trailing edge forming process, and the left edge LE of the toe of the bucket 6 is completed.
  • the excavation attachment is automatically operated so as to move along the extension line FSE of the buttocks FS. That is, the extension line FSE of the bottom of the slope FS becomes the target line.
  • the target line is part of the target construction plane.
  • the automatic control unit 54 automatically executes a left turning operation, a boom raising operation, an arm closing operation, and a bucket opening operation.
  • the attachment When the attachment including the arm 5, boom 4, etc. operates based on the turning motion, the attachment is controlled according to the turning motion. Specifically, when the bucket 6 turns toward the underground side in a direction exceeding the target construction surface, the controller 30 controls the attachment so that the bucket 6 does not exceed the target construction surface (target line). Control the attachment to close the For example, the controller 30 executes an arm closing operation and a boom raising operation. Further, when the bucket 6 is turned in a direction away from the target construction surface toward the side opposite to the underground side, the controller 30 causes the bucket 6 to move along the target construction surface (target line). Control the attachment to open it. For example, the controller 30 executes an arm opening operation and a boom lowering operation.
  • the turning movement is controlled according to the movement of the attachment (arm movement, boom movement, etc.). Specifically, when the attachment is rotated (opened/closed) in a direction in which the turning radius increases (a direction beyond the target construction surface), the controller 30 causes the bucket 6 to move toward the target construction surface (target line). Control the turning motion so that it does not exceed. For example, the controller 30 turns the bucket 6 away from the target construction surface. Further, when the attachment is rotated (opened/closed) in a direction in which the turning radius becomes smaller (a direction away from the target construction surface), the controller 30 causes the bucket 6 to move along the target construction surface (target line). Controls turning motion. For example, the controller 30 turns the bucket 6 in a direction approaching the target construction surface.
  • the controller 30 predicts the position of the bucket 6 on the target line after a predetermined time, and generates a control command for the pivoting (opening/closing) movement of the attachment and a control command for the turning movement so that the bucket 6 moves to the predicted position.
  • a control command for the pivoting (opening/closing) movement of the attachment and a control command for the turning movement so that the bucket 6 moves to the predicted position.
  • at least one of the arm motion, boom motion, etc., and the turning motion may be controlled.
  • the automatic control unit 54 moves the excavation attachment so that the left end LE of the toe of the bucket 6 moves along the extension line FSE until it reaches the end point EP of the extension line FSE. operate automatically.
  • the end point EP is the intersection of the boundary line BL and the extension line FSE of the toe of the slope FS.
  • a boundary line BL is a boundary line between the area CS and the area NS.
  • the distance DA shown in FIG. 11C is the point LE1 when the left end LE of the toe of the bucket 6 is in contact with the toe FS or its extension line FSE in the state of the maximum excavation radius (the state in which the attachment is extended to the maximum).
  • the automatic control unit 54 may stop the automatic operation of the excavation attachment before the left end LE of the toe of the bucket 6 reaches the end point EP of the extension line FSE. This is so that the operator can discharge the earth and sand taken into the bucket 6 to the rear of the excavator 100 . In this case, the automatic control unit 54 may restart the movement of the left end LE along the extension line FSE after the soil is removed.
  • the automatic control unit 54 stops the movement of the excavation attachment when the left edge LE of the toe of the bucket 6 reaches the end point EP of the extension line FSE of the toe of the slope FS.
  • the automatic control section 54 stops the movement of the excavation attachment even when the left operating lever 26L is operated in the left turning direction.
  • the operator of the excavator 100 may discharge the sediment SL that has been taken in behind the excavator 100 by performing a turning operation, for example.
  • the automatic control unit 54 moves the left end LE of the toe of the bucket 6 along the extension line FSE of the completed toe FS while executing the left turning operation. Supports the formation of Hojiri FS. However, the automatic control unit 54 supports the formation of the toe FS by moving the right end of the toe of the bucket 6 along the extension line FSE of the completed toe FS while executing the right turning operation. may In this case, the automatic control section 54 may start executing the trailing edge forming process when the left operating lever 26L is operated in the right turning direction while the switch SW1 is pressed.
  • FIG. 13 is a top view of the excavator 100 that performs slope finishing work and slope bottom forming work.
  • a coarse dot pattern is given to the region NS where the upslope BS is not completed, and a fine dot pattern is given to the region CS where the upslope BS is completed.
  • FIG. 13 shows the state of the excavator 100 when the slope finishing process for the first section SD1 of the upslope BS is completed. After this, the operator of the excavator 100 intends to perform the slope finishing work also on the sections after the second section SD2 of the upward slope BS.
  • the broken line circle shown in FIG. 13 represents the position of the pivot axis of the excavator 100, and the dashed line circle Q1 represents the position of the pivot axis when the slope finishing process is performed on the first section SD1.
  • the automatic control unit 54 moves the pivot shaft to the position indicated by the broken line circle Q2 when the travel lever 26D is operated while the switch SW2 is pressed. , the travel hydraulic motor 2M is automatically operated.
  • the position indicated by the broken line circle Q2 is one of the first target stop positions set for executing the slope finishing work.
  • the first target stop position is set, for example, as a position away from the slope by a certain distance. It is set as a position where the toe of 6 can be positioned.
  • the controller 30 determines whether or not the excavator 100 stopped at the first target stop position can position the toe of the bucket 6 on each of the slope shoulder TS and the slope bottom FS, and displays the determination result on the display device 45. You may let
  • the automatic control unit 54 automatically executes the running operation. After that, the automatic control unit 54 stops the movement of the travel hydraulic motor 2M when the pivot shaft is positioned at the position indicated by the broken line circle Q2. In the example shown in FIG. 13, the automatic control unit 54 moves the lower traveling body 1 to the left when both the left traveling lever 26DL and the right traveling lever 26DR are operated in the forward direction with the switch SW2 pressed. to start moving. This is because, in the example shown in FIG. 13, the front side of the undercarriage 1 corresponds to the left side of the figure (the direction indicated by the block arrow).
  • the automatic control unit 54 operates both the left traveling lever 26DL and the right traveling lever 26DR in the reverse direction while the switch SW2 is pressed.
  • the leftward movement of the undercarriage 1 may be started when the control is performed.
  • the automatic control unit 54 may start the leftward movement of the undercarriage 1 when at least one of the left travel lever 26DL and the right travel lever 26DR is operated while the switch SW2 is pressed. .
  • the automatic control unit 54 stops the movement of the traveling hydraulic motor 2M even when the traveling lever 26D is being operated when the pivot shaft is positioned at the position indicated by the dashed circle Q2.
  • the position of the dashed line circle Q2 is determined according to the position of the upslope BS as the target construction surface, and information on the target construction surface is stored in the storage device 47 in advance.
  • the operator of the excavator 100 causes the excavator 100 to face the second section SD2 of the upslope BS by executing the facing process as necessary, and causes the upslope finishing process to be executed. Complete the finishing of the second section SD2 of the slope BS.
  • the toe of the bucket 6 is positioned on the slope shoulder TS of the upslope BS.
  • the automatic control unit 54 automatically performs a boom lowering operation, an arm opening operation, and a bucket opening operation. After that, the automatic control unit 54 stops the movement of the excavation attachment when the toe of the bucket 6 is positioned on the slope shoulder TS.
  • the automatic control unit 54 moves the toe of the bucket 6 along the upslope BS as the target construction surface to the slope shoulder TS. Move from to Hoshiri FS. After that, the automatic control unit 54 stops the movement of the excavation attachment when the toe of the bucket 6 reaches the bottom of the slope FS.
  • the automatic control unit 54 repeats the above operations until the slope finishing process for the eighth section SD8 is completed. Specifically, after the slope finishing process for the second section SD2 is completed, the automatic control unit 54 automatically activates the travel hydraulic motor 2M so that the pivot axis is positioned at the position indicated by the broken line circle Q3. make it work. Similarly, after the slope finishing process for the third section SD3 is completed, the automatic control unit 54 automatically operates the travel hydraulic motor 2M so that the pivot axis is positioned at the position indicated by the broken line circle Q4.
  • the travel hydraulic motor 2M is automatically operated so that the pivot axis is positioned at the position indicated by the broken line circle Q5, and the slope for the fifth section SD5 is set.
  • the traveling hydraulic motor 2M is automatically operated so that the position of the turning axis is positioned at the position indicated by the broken line circle Q6, and after the slope surface finishing process for the sixth section SD6 is completed, the turning is performed.
  • the travel hydraulic motor 2M is automatically operated so that the axis is positioned at the position indicated by the dashed line circle Q7, and after the slope surface finishing processing for the seventh section SD7 is completed, the position of the turning axis is positioned at the dashed line circle Q8.
  • the traveling hydraulic motor 2M is automatically operated so as to be positioned at the position shown.
  • the distance from the dashed circle Q1 to the dashed circle Q8 is set to be less than the distance Dmax.
  • the automatic control unit 54 executes the trailing edge forming process.
  • the excavator 100 directs the upper revolving body 3 rearward (downward in the figure) in order to discharge the earth and sand taken into the bucket 6 .
  • the operator of the excavator 100 causes the bottom of the slope forming process to be executed by operating the left operating lever 26L in the left turning direction while pressing the switch SW1.
  • the automatic control unit 54 starts executing the trailing edge forming process, and the left edge LE of the toe of the bucket 6 is completed.
  • the excavation attachment is automatically operated so as to move along the extension line FSE of the buttocks FS. More specifically, as shown in FIG. 13, the automatic control unit 54 positions the left end LE of the toe of the bucket 6 at the lower right corner of the first section SD1, and then rotates left, raises the boom, and closes the arm. , and bucket opening operations automatically. Then, the automatic control unit 54 moves the left end LE of the toe of the bucket 6 to the lower left corner of the eighth section SD8 along the extension line FSE of the completed toe FS.
  • the automatic control unit 54 is configured to execute the trailing edge formation process while the pivot axis remains positioned at the position indicated by the dashed line circle Q8. That is, the first target stop position (the position indicated by the dashed circle Q8) set for performing the slope finishing work and the second target stop position (the position indicated by the dashed circle Q8) set for performing the slope bottom formation work ) are set so as to overlap each other. However, the automatic control unit 54 may move the lower traveling body 1 to a position (one of the second target stop positions) suitable for execution of the trailing edge forming process for the first section SD1 to the eighth section SD8. That is, the first target stop position (the position indicated by the dashed circle Q8) and the second target stop position may be set to be different from each other.
  • partition set a plurality of sections for which the trailing edge is formed at approximately the same timing by one trailing edge forming process.
  • first partition SD1 to eighth partition SD8 constitute a first partition set SG1
  • the ninth partition SD9 to sixteenth partition SD16 constitute a second partition set SG2.
  • the automatic control unit 54 operates the travel lever 26D while the switch SW2 is pressed, and the position of the turning shaft is indicated by the broken line circle Q9.
  • the traveling hydraulic motor 2M is automatically operated so as to be positioned at the position. This is for executing the slope finishing process for the ninth section SD9.
  • the automatic control unit 54 repeats the slope finishing process and the driving support process until the slope finishing process for the second section set is completed, that is, until the slope finishing process for the 16th section SD16 is completed.
  • the automatic control section 54 executes the trailing edge forming process for the second section set SG2. Specifically, as shown in FIG. 13, the automatic control unit 54 positions the left end LE of the toe of the bucket 6 at the lower right corner of the ninth section SD9, and then rotates to the left, raises the boom, and closes the arm. , and automatically perform the bucket opening operation. Then, the automatic control unit 54 moves the left end LE of the toe of the bucket 6 to the lower left corner of the 16th section SD16 along the extension line FSE of the completed bottom of the slope FS.
  • the automatic control unit 54 executes the slope surface finishing work for the first section set SG1, then executes the slope bottom forming process for the first section set SG1, and then , is configured to perform slope finishing operations on the second set of parcels SG2. That is, the automatic control unit 54 is configured, for example, to execute a series of processes while moving the shovel 100 to the left. Then, the automatic control unit 54 controls the lower traveling body at one of the first target stop positions (the position indicated by the dashed circle Q7) so that the slope finishing process for one section (seventh section SD7) is executed. 1 is stopped, and then the slope finishing process for another section (eighth section SD8) and the slope formation work for one section set (first section SD1 to eighth section SD8) are executed.
  • the first target stop positions the position indicated by the dashed circle Q7
  • the lower traveling body 1 is stopped at one of the second target stop positions (the position indicated by the dashed circle Q8) so as to be done, and then another section (the ninth section SD9) is subjected to slope finishing processing. is executed, the lower traveling body 1 is stopped at another one of the first target stop positions (the position indicated by the broken line circle Q9).
  • the automatic control unit 54 may be configured, for example, to perform the slope bottom formation work after the slope surface finishing work for all sections is completed.
  • the automatic control unit 54 is configured, for example, to perform a series of slope finishing processes while moving the shovel 100 leftward, and to perform a series of slope toe forming processes while moving the shovel 100 rightward. It may be configured to perform processing.
  • the automatic control unit 54 determines the first target stop position so that the slope finishing process is performed on one section (eighth section SD8) belonging to one section set (first section set SG1).
  • the lower running body 1 is stopped at one point (the position indicated by the dashed circle Q8), and then the slope of one section (ninth section SD9) belonging to another section set (second section set SG2).
  • the lower traveling body 1 may be stopped at another one of the first target stop positions (the position indicated by the broken line circle Q9) so that the finishing process is executed.
  • the automatic control unit 54 controls the lower part at one of the second target stop positions (the position indicated by the dashed circle Q16) so that the bottom of the slope formation work for one section set (second section set SG2) is executed.
  • the traveling body 1 is stopped, and then another one of the second target stop positions (indicated by the dashed circle Q9 ), the undercarriage 1 may be stopped.
  • the distance from the dashed-line circle Q9 to the dashed-line circle Q16 is set to be equal to or less than the distance Dmax.
  • the excavator 100 includes the lower traveling body 1, the upper revolving body 3 mounted on the lower traveling body 1, the boom 4 attached to the upper revolving body 3, and the tip of the boom 4.
  • An attachment (excavation attachment) including an arm 5 to be attached and a bucket 6 as an end attachment attached to the tip of the arm 5, and the left end or right end of the toe of the bucket 6 is the extension line FSE of the toe FS as a target line
  • a machine controller 50 as a controller controlling the pivoting of the upper pivoting body 3 and the movement of the drilling attachment so as to move along.
  • control of the left end or right end of the bucket 6 with respect to the toe FS has been described, but the present invention can also be applied to excavators equipped with a bucket tilt mechanism.
  • the controller 30 rotates the upper rotating body 3 so that the end (toe or back) of the tilting bucket moves along the target construction surface (formed by a plurality of target lines). and movement of the drilling attachment.
  • the controller 30 can easily assist the finishing work of the target construction surface by controlling the attachment having the tilt bucket in accordance with the turning motion.
  • the controller 30 controls the turning of the upper turning body 3 and the movement of the excavation attachment so that the end of the bucket 6 (the left end or the right end of the back surface) moves along the target construction surface (formed by a plurality of target lines). You may In this case, the controller 30 performs the turning motion while keeping the left or right straight portion of the rear surface of the bucket 6 along the target construction surface, thereby finishing the target construction surface even without a bucket tilt mechanism. can support. In this manner, the controller 30 can automatically control a predetermined portion of the bucket 6 to move along the target construction surface in accordance with the operator's arm operation, and furthermore, can move the bucket 6 in accordance with the turning operation. The rotation of the upper rotating body 3 and the movement of the attachment are automatically controlled so that the predetermined part moves along the target construction surface including the toe of the slope.
  • This configuration brings about the effect of being able to assist the operator of the shovel 100 in forming the edge of a feature such as the trailhead FS.
  • the operator of the excavator 100 can move the left end LE of the toe of the bucket 6 along the extension line FSE of the toe FS by simply operating the left operating lever 26L in the left turning direction while pressing the switch SW1. Because we can.
  • the operator of the excavator 100 moves the right end of the toe of the bucket 6 along the extension line FSE of the toe FS by, for example, operating the left operating lever 26L in the right turning direction while pressing the switch SW1. Because it can
  • the target line may be, for example, the bottom of the slope, the shoulder of the slope, the edge of the groove, or the line along the corner of the bottom of the square groove.
  • the target line as shown in FIGS. 10A and 10B, may be a line along the toe of the slope FS (extension line FSE of the toe of the slope FS), a line along the shoulder of the slope TS (of the shoulder of the slope TS extension line).
  • the target line may be a line along the edge of a groove such as a U-shaped groove or a square groove, and may be at the corner of the bottom surface of a square groove such as a square groove (the angle between the groove wall surface and the groove bottom surface). It may be a line along.
  • the machine control device 50 may be configured to move the left end or right end of the end attachment along the target line by performing a compound motion including a turning motion, a boom raising motion, and an arm closing motion. For example, as shown in FIGS. 11A to 11C, the machine control device 50 performs a compound motion including a left turning motion, a boom raising motion, and an arm closing motion, so that the left edge LE of the toe of the bucket 6 is positioned at the toe of the slope FS. may be configured to be moved along an extension line FSE of . With this configuration, the machine control device 50 can efficiently remove the sediment SL deposited around the toe FS.
  • the machine control device 50 controls the turning of the upper turning body 3 and the attachment so that the left end or the right end of the end attachment moves along the target line when the turning operation lever is operated while a predetermined switch is operated.
  • the machine control device 50 operates as shown in FIGS.
  • FIGS. As shown in 11C, it is configured to control the left turning of the upper swing body 3 and the movement of the excavation attachment so that the left end LE of the toe of the bucket 6 moves along the extension line FSE of the toe FS. good too.
  • the operator of the excavator 100 can form the bottom of the slope FS with a simple operation.
  • the length of the target line that is set when the bottom of the slope is formed is at least twice the width of the bucket 6 and less than the working radius.
  • the working radius is, for example, the distance between the pivot and the tip of the bucket 6 when the excavating attachment is fully extended in the direction perpendicular to the pivot.
  • the controller 30 moves the lower traveling body 1 so as to stop the lower traveling body 1 at the target stop position set based on the position of the edge of the target construction surface.
  • the controller 30 may be configured to set a target stop position for stopping the undercarriage 1 so that the attachment removes the sediment deposited on the edge of the target construction surface.
  • the target construction surface is, for example, a slope (uphill slope BS), and the edge is the toe of slope FS or shoulder TS.
  • the target stop position is composed of a first target stop position set to correspond to each of the plurality of sections to be subjected to the slope finishing work, and two or more consecutive sections among the plurality of sections. and a second target stop position that is set to correspond to each of the segment sets.
  • the first target stop position and the second target stop position may overlap.
  • the target stop positions are the first target stop positions (positions indicated by dashed circles Q1 to Q22) that are set to correspond to the first section SD1 to the 22nd section SD22, respectively. and a second target stop position set to correspond to each of the section sets (first section set SG1, second section set SG2, etc.) composed of two or more consecutive sections among the plurality of sections.
  • the machine control device 50 sets a line connecting a plurality of first target stop positions (positions indicated by dashed circles Q1 to Q22) as a target travel route, and moves the lower traveling body 1 along the target travel route.
  • This configuration brings about the effect of being able to assist the operator of the shovel 100 in forming the edge of a feature such as the trailhead FS.
  • the operator of the excavator 100 can move the excavator 100 (undercarriage 1) to a position suitable for execution of the slope finishing process, for example, simply by operating the travel lever 26D while pressing the switch SW2. be.
  • the operator of the excavator 100 can move the excavator 100 (lower traveling body 1) to a position suitable for execution of the trailing edge formation process, for example, simply by operating the travel lever 26D while pressing the switch SW2.
  • the target construction surface may be, for example, the wall surface of the groove.
  • the edge may be the edge of the groove or the corner between the wall and bottom of the groove.
  • the extension line FSE of the foot of the slope FS extends linearly, but may include a curved portion.
  • Discharge pressure sensor 29 Operation sensor 30 Controller 31, 31AL, 31AR, 31BL, 31BR, 31CL, 31CR Proportional valve 43 Audio output device 45 Display device 46 Input device 47 ...storage device 50...machine control device 51...position calculation section 52...distance calculation section 53...information transmission section 54...automatic control section 171 to 174, 175L, 175R, 176L, 176R... Control valve S1... Boom angle sensor S2... Arm angle sensor S3... Bucket angle sensor S4... Body tilt sensor S5... Turning angular velocity sensor S6... Camera S6B... Rear camera S6F... Front camera S6L... Left camera S6R... Right camera P1... Positioning device T1... Communication device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

ショベル(100)は、下部走行体(1)と、下部走行体(1)に搭載される上部旋回体(3)と、上部旋回体(3)に取り付けられるブーム(4)、ブーム(4)の先端に取り付けられるアーム(5)、及び、アーム(5)の先端に取り付けられるエンドアタッチメントとしてのバケット(6)を含むアタッチメントと、バケット(6)の端部が目標線としての法尻(FS)の延長線(FSE)に沿って動くように、上部旋回体(3)の旋回とアタッチメントの動きとを制御するコントローラ(30)と、を備える。

Description

ショベル及びショベルの制御装置
 本開示は、ショベル及びショベルの制御装置に関する。
 従来、上部旋回体を法面に正対させることができるショベルが知られている(特許文献1参照)。
国際公開第2019/112059号
 しかしながら、上述のショベルは、法面の下縁である法尻の形成するための操作を支援することはない。そのため、ショベルの操作者は、法面の下縁である法尻等の地物の縁部を効率的に形成できないおそれがある。
 そこで、地物の縁部の形成を支援できるショベルを提供することが望ましい。
 本開示の実施形態に係るショベルは、下部走行体と、前記下部走行体に搭載される上部旋回体と、前記上部旋回体に取り付けられるブーム、前記ブームの先端に取り付けられるアーム、及び、前記アームの先端に取り付けられるエンドアタッチメントを含むアタッチメントと、前記エンドアタッチメントの端部が目標線に沿って動くように、前記上部旋回体の旋回と前記アタッチメントの動きとを制御する制御装置と、を備える。
 上述の手段により、地物の縁部の形成を支援できるショベルが提供される。
本開示の実施形態に係るショベルの側面図である。 図1のショベルの駆動系の構成例を示すブロック図である。 図1のショベルに搭載される油圧システムの構成例を示す概略図である。 アームシリンダの操作に関する油圧システムの一部の図である。 ブームシリンダの操作に関する油圧システムの一部の図である。 バケットシリンダの操作に関する油圧システムの一部の図である。 旋回油圧モータの操作に関する油圧システムの一部の図である。 左走行油圧モータの操作に関する油圧システムの一部の図である。 右走行油圧モータの操作に関する油圧システムの一部の図である。 図1のショベルの駆動系の別の構成例を示すブロック図である。 正対処理のフローチャートである。 正対処理が実行される際のショベルの上面図である。 正対処理が実行される際のショベルの上面図である。 正対処理が実行される際のショベルの斜視図である。 正対処理が実行される際のショベルの斜視図である。 法面仕上げ処理が実行される際のショベルの上面図である。 法面仕上げ処理が実行される際のショベルの上面図である。 法尻形成処理が実行される際のショベルの上面図である。 法尻形成処理が実行される際のショベルの上面図である。 法尻形成処理が実行される際のショベルの上面図である。 法尻形成処理が実行される際のバケットの斜視図である。 走行支援処理が実行される際のショベルの上面図である。
 図1は本開示の実施形態に係る掘削機としてのショベル100の側面図である。ショベル100の下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられている。バケット6は、法面バケットであってもよい。
 ブーム4、アーム5、及びバケット6は、アタッチメントの一例としての掘削アタッチメントを構成している。そして、ブーム4は、ブームシリンダ7で駆動され、アーム5は、アームシリンダ8で駆動され、バケット6は、バケットシリンダ9で駆動される。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。
 ブーム角度センサS1はブーム4の回動角度を検出するように構成されている。本実施形態では、ブーム角度センサS1は加速度センサであり、上部旋回体3に対するブーム4の回動角度(以下、「ブーム角度」とする。)を検出できる。ブーム角度は、例えば、ブーム4を最も下げたときに最小角度となり、ブーム4を上げるにつれて大きくなる。
 アーム角度センサS2はアーム5の回動角度を検出するように構成されている。本実施形態では、アーム角度センサS2は加速度センサであり、ブーム4に対するアーム5の回動角度(以下、「アーム角度」とする。)を検出できる。アーム角度は、例えば、アーム5を最も閉じたときに最小角度となり、アーム5を開くにつれて大きくなる。
 バケット角度センサS3はバケット6の回動角度を検出するように構成されている。本実施形態では、バケット角度センサS3は加速度センサであり、アーム5に対するバケット6の回動角度(以下、「バケット角度」とする。)を検出できる。バケット角度は、例えば、バケット6を最も閉じたときに最小角度となり、バケット6を開くにつれて大きくなる。
 ブーム角度センサS1、アーム角度センサS2、及び、バケット角度センサS3はそれぞれ、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ、ジャイロセンサ、又は、加速度センサとジャイロセンサの組み合わせ等であってもよい。
 上部旋回体3には運転室であるキャビン10が設けられ且つエンジン11等の動力源が搭載されている。また、上部旋回体3には、コントローラ30、音声出力装置43、表示装置45、入力装置46、記憶装置47、機体傾斜センサS4、旋回角速度センサS5、カメラS6、通信装置T1及び測位装置P1等が取り付けられている。
 コントローラ30は、ショベル100の駆動制御を行う主制御部として機能するように構成されている。本実施形態では、コントローラ30は、CPU、RAM、ROM等を含むコンピュータで構成されている。コントローラ30の各種機能は、例えば、ROMに格納されたプログラムをCPUが実行することで実現される。各種機能は、例えば、操作者によるショベル100の手動操作をガイド(案内)するマシンガイダンス機能、及び、操作者によるショベル100の手動操作を自動的に支援するマシンコントロール機能を含む。コントローラ30に含まれる機械制御装置50は、マシンガイダンス機能及びマシンコントロール機能を実行するように構成されている。
 表示装置45は、各種情報を表示するように構成されている。表示装置45は、CAN等の通信ネットワークを介してコントローラ30に接続されていてもよく、専用線を介してコントローラ30に接続されていてもよい。
 入力装置46は、操作者が各種情報をコントローラ30に入力できるように構成されている。入力装置46は、キャビン10内に設置されたタッチパネル、ノブスイッチ、及びメンブレンスイッチ等を含む。
 音声出力装置43は、音声を出力するように構成されている。音声出力装置43は、例えば、コントローラ30に接続される車載スピーカであってもよく、ブザー等の警報器であってもよい。本実施形態では、音声出力装置43は、コントローラ30からの音声出力指令に応じて各種情報を音声出力するように構成されている。
 記憶装置47は、各種情報を記憶するように構成されている。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体である。記憶装置47は、ショベル100の動作中に各種機器が出力する情報を記憶してもよく、ショベル100の動作が開始される前に各種機器を介して取得する情報を記憶してもよい。記憶装置47は、例えば、通信装置T1等を介して取得される目標施工面(設計面)に関する情報を記憶していてもよい。目標施工面は、ショベル100の操作者が設定したものであってもよく、施工管理者等が設定したものであってもよい。
 機体傾斜センサS4は仮想水平面に対する上部旋回体3の傾斜を検出するように構成されている。本実施形態では、機体傾斜センサS4は上部旋回体3の前後軸回りの傾斜角及び左右軸回りの傾斜角を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、ショベル100の旋回軸上の一点であるショベル中心点で互いに直交する。
 旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。旋回角速度センサS5は、上部旋回体3の旋回角度を検出或いは算出するように構成されていてもよい。本実施形態では、旋回角速度センサS5は、ジャイロセンサである。旋回角速度センサS5は、レゾルバ、ロータリエンコーダ等であってもよい。
 カメラS6は、空間認識装置の一例であり、ショベル100の周辺の画像を取得するように構成されている。本実施形態では、カメラS6は、ショベル100の前方の空間を撮像する前カメラS6F、ショベル100の左方の空間を撮像する左カメラS6L、ショベル100の右方の空間を撮像する右カメラS6R、及び、ショベル100の後方の空間を撮像する後カメラS6Bを含む。
 カメラS6は、例えば、CCD又はCMOS等の撮像素子を有する単眼カメラであり、撮影した画像を表示装置45に出力する。カメラS6は、ステレオカメラ、距離画像カメラ等であってもよい。また、カメラS6は、超音波センサ、ミリ波レーダ、LIDAR又は赤外線センサ等の他の空間認識装置で置き換えられてもよく、他の空間認識装置とカメラとの組み合わせで置き換えられてもよい。
 前カメラS6Fは、例えば、キャビン10の天井、すなわちキャビン10の内部に取り付けられている。但し、前カメラS6Fは、キャビン10の屋根、すなわちキャビン10の外部に取り付けられていてもよい。左カメラS6Lは、上部旋回体3の上面左端に取り付けられ、右カメラS6Rは、上部旋回体3の上面右端に取り付けられ、後カメラS6Bは、上部旋回体3の上面後端に取り付けられている。
 通信装置T1は、ショベル100の外部にある外部機器との通信を制御する。本実施形態では、通信装置T1は、衛星通信網、携帯電話通信網、又はインターネット網等を介した外部機器との通信を制御する。外部機器は、例えば、外部施設に設置されたサーバ等の管理装置であってもよく、ショベル100の周囲の作業者が携帯しているスマートフォン等の支援装置であってもよい。外部機器は、例えば、1又は複数のショベル100に関する施工情報を管理できるように構成されている。施工情報は、例えば、ショベル100の稼動時間、燃費及び作業量等の少なくとも一つに関する情報を含む。作業量は、例えば、掘削した土砂の量、及び、ダンプトラックの荷台に積み込んだ土砂の量等である。ショベル100は、通信装置T1を介し、所定の時間間隔でショベル100に関する施工情報を外部機器に送信するように構成されている。
 測位装置P1は、上部旋回体3の位置を測定するように構成されている。測位装置P1は、上部旋回体3の向きを測定できるように構成されていてもよい。本実施形態では、測位装置P1は、例えばGNSSコンパスであり、上部旋回体3の位置及び向きを検出し、検出値をコントローラ30に対して出力する。そのため、測位装置P1は、上部旋回体3の向きを検出する向き検出装置として機能し得る。向き検出装置は、上部旋回体3に取り付けられた方位センサであってもよい。
 図2は、ショベル100の駆動系の構成例を示すブロック図であり、機械的動力系、作動油ライン、パイロットライン及び電気制御系をそれぞれ二重線、実線、破線及び点線で示している。
 ショベル100の駆動系は、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブユニット17、操作装置26、吐出圧センサ28、操作センサ29、コントローラ30、及び比例弁31等を含む。
 エンジン11は、ショベル100の駆動源である。本実施形態では、エンジン11は、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。また、エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15のそれぞれの入力軸に連結されている。
 メインポンプ14は、作動油ラインを介して作動油をコントロールバルブユニット17に供給するように構成されている。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。
 レギュレータ13は、メインポンプ14の吐出量を制御するように構成されている。本実施形態では、レギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。例えば、コントローラ30は、操作センサ29等の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。
 パイロットポンプ15は、パイロットラインを介して比例弁31を含む各種油圧制御機器に作動油を供給する。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。但し、パイロットポンプ15は、省略されてもよい。この場合、パイロットポンプ15が担っていた機能は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、コントロールバルブユニット17に作動油を供給する機能とは別に回路を設け、絞り等により作動油の供給圧力を低下させた後で、比例弁31等に作動油を供給する機能を備えていてもよい。
 コントロールバルブユニット17は、ショベル100における油圧システムを制御する油圧制御装置である。本実施形態では、コントロールバルブユニット17は、制御弁171~176を含む。コントロールバルブユニット17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できる。制御弁171~176は、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御するように構成されている。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行油圧モータ2M、及び旋回用アクチュエータとしての旋回油圧モータ2Aを含む。走行油圧モータ2Mは、左走行油圧モータ2ML及び右走行油圧モータ2MRを含む。旋回油圧モータ2Aは、電動の旋回用アクチュエータとしての旋回電動発電機であってもよい。
 操作装置26は、操作者がアクチュエータの操作のために用いる装置である。アクチュエータは、油圧アクチュエータ及び電動アクチュエータの少なくとも一方を含む。
 吐出圧センサ28は、メインポンプ14の吐出圧を検出するように構成されている。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。
 操作センサ29は、操作装置26を用いた操作者の操作内容を検出するように構成されている。本実施形態では、操作センサ29は、アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量を検出し、検出した値をコントローラ30に対して出力する。本実施形態では、コントローラ30は、操作センサ29の出力に応じて比例弁31の開口面積を制御する。そして、コントローラ30は、パイロットポンプ15が吐出する作動油を、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給する。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、原則として、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量に応じた圧力である。このように、操作装置26は、パイロットポンプ15が吐出する作動油を、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給できるように構成されている。
 マシンコントロール用制御弁として機能する比例弁31は、パイロットポンプ15とコントロールバルブユニット17内の制御弁のパイロットポートとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁31は、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31を介し、コントロールバルブユニット17内の制御弁のパイロットポートに供給できる。
 この構成により、コントローラ30は、特定の操作装置26に対する操作が行われていない場合であっても、その特定の操作装置26に対応する油圧アクチュエータを動作させることができる。
 次に、コントローラ30に含まれている機械制御装置50について説明する。機械制御装置50は、例えば、マシンガイダンス機能を実行するように構成されている。本実施形態では、機械制御装置50は、例えば、目標施工面とアタッチメントの作業部位との距離等の作業情報を操作者に伝える。目標施工面に関する情報は、例えば、記憶装置47に予め記憶されている。機械制御装置50は、通信装置T1を介し、目標施工面に関する情報を外部機器から取得してもよい。目標施工面に関する情報は、例えば、基準座標系で表現されている。基準座標系は、例えば、世界測地系である。世界測地系は、地球の重心に原点をおき、X軸をグリニッジ子午線と赤道との交点の方向に、Y軸を東経90度の方向に、そしてZ軸を北極の方向にとる三次元直交XYZ座標系である。目標施工面は、基準点との相対的な位置関係に基づいて設定されてもよい。この場合、操作者は、施工現場の任意の点を基準点と定めてもよい。アタッチメントの作業部位は、例えば、バケット6の先端(爪先)又はバケット6の背面等である。機械制御装置50は、表示装置45又は音声出力装置43等を介して作業情報を操作者に伝えることでショベル100の操作をガイドするように構成されていてもよい。
 機械制御装置50は、操作者によるショベル100の手動操作を自動的に支援するマシンコントロール機能を実行してもよい。例えば、機械制御装置50は、操作者が手動で掘削操作を行っているときに、目標施工面とバケット6の先端位置とが一致するようにブーム4、アーム5、及びバケット6の少なくとも一つを自動的に動作させてもよい。
 本実施形態では、機械制御装置50は、コントローラ30に組み込まれているが、コントローラ30とは別に設けられた制御装置であってもよい。この場合、機械制御装置50は、例えば、コントローラ30と同様、CPU及び内部メモリを含むコンピュータで構成される。そして、機械制御装置50の各種機能は、CPUが内部メモリに格納されたプログラムを実行することで実現される。また、機械制御装置50とコントローラ30とはCAN等の通信ネットワークを通じて互いに通信可能に接続される。
 次に、図3を参照し、ショベル100に搭載される油圧システムの構成例について説明する。図3は、ショベル100に搭載される油圧システムの構成例を示す図である。図3は、機械的動力伝達系、作動油ライン、パイロットライン及び電気制御系を、それぞれ、二重線、実線、破線及び点線で示している。
 ショベル100の油圧システムは、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブユニット17、操作装置26、吐出圧センサ28、操作センサ29、及びコントローラ30等を含む。
 図3において、油圧システムは、エンジン11によって駆動されるメインポンプ14から、センターバイパス管路40又はパラレル管路42を経て作動油タンクまで作動油を循環させることができるように構成されている。
 エンジン11は、ショベル100の駆動源である。本実施形態では、エンジン11は、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15のそれぞれの入力軸に連結されている。
 メインポンプ14は、作動油ラインを介して作動油をコントロールバルブユニット17に供給できるように構成されている。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。
 レギュレータ13は、メインポンプ14の吐出量を制御できるように構成されている。本実施形態では、レギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。
 パイロットポンプ15は、パイロット圧生成装置の一例であり、パイロットラインを介して油圧制御機器に作動油を供給できるように構成されている。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。但し、パイロット圧生成装置は、メインポンプ14によって実現されてもよい。すなわち、メインポンプ14は、作動油ラインを介して作動油をコントロールバルブユニット17に供給する機能に加え、パイロットラインを介して各種油圧制御機器に作動油を供給する機能を備えていてもよい。この場合、パイロットポンプ15は、省略されてもよい。
 コントロールバルブユニット17は、ショベル100における油圧システムを制御する油圧制御装置である。本実施形態では、コントロールバルブユニット17は、制御弁171~176を含む。制御弁175は制御弁175L及び制御弁175Rを含み、制御弁176は制御弁176L及び制御弁176Rを含む。コントロールバルブユニット17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できるように構成されている。制御弁171~176は、例えば、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行油圧モータ2M、及び旋回油圧モータ2Aを含む。走行油圧モータ2Mは、左走行油圧モータ2ML及び右走行油圧モータ2MRを含む。
 操作装置26は、操作者がアクチュエータを操作できるように構成されている。本実施形態では、操作装置26は、操作者が油圧アクチュエータを操作できるように構成された油圧アクチュエータ操作装置を含む。具体的には、油圧アクチュエータ操作装置は、パイロットラインを介して、パイロットポンプ15が吐出する作動油を、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給できるように構成されている。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量に応じた圧力である。
 吐出圧センサ28は、メインポンプ14の吐出圧を検出できるように構成されている。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。
 操作センサ29は、操作者による操作装置26の操作の内容を検出できるように構成されている。本実施形態では、操作センサ29は、アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量を検出し、検出した値をコントローラ30に対して出力する。
 メインポンプ14は、左メインポンプ14L及び右メインポンプ14Rを含む。そして、左メインポンプ14Lは、左センターバイパス管路40L又は左パラレル管路42Lを経て作動油タンクまで作動油を循環させ、右メインポンプ14Rは、右センターバイパス管路40R又は右パラレル管路42Rを経て作動油タンクまで作動油を循環させる。
 左センターバイパス管路40Lは、コントロールバルブユニット17内に配置された制御弁171、173、175L及び176Lを通る作動油ラインである。右センターバイパス管路40Rは、コントロールバルブユニット17内に配置された制御弁172、174、175R及び176Rを通る作動油ラインである。
 制御弁171は、左メインポンプ14Lが吐出する作動油を左走行油圧モータ2MLへ供給し、且つ、左走行油圧モータ2MLが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁172は、右メインポンプ14Rが吐出する作動油を右走行油圧モータ2MRへ供給し、且つ、右走行油圧モータ2MRが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁173は、左メインポンプ14Lが吐出する作動油を旋回油圧モータ2Aへ供給し、且つ、旋回油圧モータ2Aが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁174は、右メインポンプ14Rが吐出する作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁175Lは、左メインポンプ14Lが吐出する作動油をブームシリンダ7へ供給するために作動油の流れを切り換えるスプール弁である。制御弁175Rは、右メインポンプ14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁176Lは、左メインポンプ14Lが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 制御弁176Rは、右メインポンプ14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。
 左パラレル管路42Lは、左センターバイパス管路40Lに並行する作動油ラインである。左パラレル管路42Lは、制御弁171、173、及び175Lの何れかによって左センターバイパス管路40Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。右パラレル管路42Rは、右センターバイパス管路40Rに並行する作動油ラインである。右パラレル管路42Rは、制御弁172、174、及び175Rの何れかによって右センターバイパス管路40Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。
 レギュレータ13は、左レギュレータ13L及び右レギュレータ13Rを含む。左レギュレータ13Lは、左メインポンプ14Lの吐出圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。具体的には、左レギュレータ13Lは、例えば、左メインポンプ14Lの吐出圧の増大に応じて左メインポンプ14Lの斜板傾転角を調節して吐出量を減少させる。右レギュレータ13Rについても同様である。吐出圧と吐出量との積で表されるメインポンプ14の吸収パワー(吸収馬力)がエンジン11の出力パワー(出力馬力)を超えないようにするためである。
 操作装置26は、左操作レバー26L、右操作レバー26R及び走行レバー26Dを含む。走行レバー26Dは、左走行レバー26DL及び右走行レバー26DRを含む。
 左操作レバー26Lは、旋回操作とアーム5の操作に用いられる。左操作レバー26Lは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁176のパイロットポートに導入させる。また、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁173のパイロットポートに導入させる。
 具体的には、左操作レバー26Lは、アーム閉じ方向に操作された場合に、制御弁176Lの右側パイロットポートに作動油を導入させ、且つ、制御弁176Rの左側パイロットポートに作動油を導入させる。また、左操作レバー26Lは、アーム開き方向に操作された場合には、制御弁176Lの左側パイロットポートに作動油を導入させ、且つ、制御弁176Rの右側パイロットポートに作動油を導入させる。また、左操作レバー26Lは、左旋回方向に操作された場合に、制御弁173の左側パイロットポートに作動油を導入させ、右旋回方向に操作された場合に、制御弁173の右側パイロットポートに作動油を導入させる。
 右操作レバー26Rは、ブーム4の操作とバケット6の操作に用いられる。右操作レバー26Rは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁175のパイロットポートに導入させる。また、左右方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁174のパイロットポートに導入させる。
 具体的には、右操作レバー26Rは、ブーム下げ方向に操作された場合に、制御弁175Rの左側パイロットポートに作動油を導入させる。また、右操作レバー26Rは、ブーム上げ方向に操作された場合には、制御弁175Lの右側パイロットポートに作動油を導入させ、且つ、制御弁175Rの左側パイロットポートに作動油を導入させる。また、右操作レバー26Rは、バケット閉じ方向に操作された場合に、制御弁174の右側パイロットポートに作動油を導入させ、バケット開き方向に操作された場合に、制御弁174の左側パイロットポートに作動油を導入させる。
 以下では、左右方向に操作される左操作レバー26Lは、「旋回操作レバー」と称され、前後方向に操作される左操作レバー26Lは、「アーム操作レバー」と称される場合がある。また、左右方向に操作される右操作レバー26Rは、「バケット操作レバー」と称され、前後方向に操作される右操作レバー26Rは、「ブーム操作レバー」と称される場合がある。
 走行レバー26Dは、クローラ1Cの操作に用いられる。具体的には、左走行レバー26DLは、左クローラ1CLの操作に用いられる。左走行ペダルと連動するように構成されていてもよい。左走行レバー26DLは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁171のパイロットポートに導入させる。右走行レバー26DRは、右クローラ1CRの操作に用いられる。右走行ペダルと連動するように構成されていてもよい。右走行レバー26DRは、前後方向に操作されると、パイロットポンプ15が吐出する作動油を利用し、レバー操作量に応じた制御圧を制御弁172のパイロットポートに導入させる。
 吐出圧センサ28は、吐出圧センサ28L及び吐出圧センサ28Rを含む。吐出圧センサ28Lは、左メインポンプ14Lの吐出圧を検出し、検出した値をコントローラ30に対して出力する。吐出圧センサ28Rについても同様である。
 操作センサ29は、操作センサ29LA、29LB、29RA、29RB、29DL、29DRを含む。操作センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。操作の内容は、例えば、レバー操作方向、レバー操作量(レバー操作角度)等である。
 同様に、操作センサ29LBは、操作者による左操作レバー26Lに対する左右方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。操作センサ29RAは、操作者による右操作レバー26Rに対する前後方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。操作センサ29RBは、操作者による右操作レバー26Rに対する左右方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。操作センサ29DLは、操作者による左走行レバー26DLに対する前後方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。操作センサ29DRは、操作者による右走行レバー26DRに対する前後方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。
 コントローラ30は、操作センサ29の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。また、コントローラ30は、絞り18の上流に設けられた制御圧センサ19の出力を受信し、必要に応じてレギュレータ13に対して制御指令を出力し、メインポンプ14の吐出量を変化させる。絞り18は左絞り18L及び右絞り18Rを含み、制御圧センサ19は左制御圧センサ19L及び右制御圧センサ19Rを含む。
 左センターバイパス管路40Lには、最も下流にある制御弁176Lと作動油タンクとの間に左絞り18Lが配置されている。そのため、左メインポンプ14Lが吐出した作動油の流れは、左絞り18Lで制限される。そして、左絞り18Lは、左レギュレータ13Lを制御するための制御圧を発生させる。左制御圧センサ19Lは、この制御圧を検出するためのセンサであり、検出した値をコントローラ30に対して出力する。コントローラ30は、この制御圧に応じて左メインポンプ14Lの斜板傾転角を調節することによって、左メインポンプ14Lの吐出量を制御する。コントローラ30は、この制御圧が大きいほど左メインポンプ14Lの吐出量を減少させ、この制御圧が小さいほど左メインポンプ14Lの吐出量を増大させる。右メインポンプ14Rの吐出量も同様に制御される。
 具体的には、図3で示されるようにショベル100における油圧アクチュエータが何れも操作されていない待機状態の場合、左メインポンプ14Lが吐出する作動油は、左センターバイパス管路40Lを通って左絞り18Lに至る。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lの上流で発生する制御圧を増大させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を許容最小吐出量まで減少させ、吐出した作動油が左センターバイパス管路40Lを通過する際の圧力損失(ポンピングロス)を抑制する。一方、何れかの油圧アクチュエータが操作された場合、左メインポンプ14Lが吐出する作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、左メインポンプ14Lが吐出する作動油の流れは、左絞り18Lに至る量を減少或いは消失させ、左絞り18Lの上流で発生する制御圧を低下させる。その結果、コントローラ30は、左メインポンプ14Lの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を循環させ、操作対象の油圧アクチュエータの駆動を確かなものとする。なお、コントローラ30は、右メインポンプ14Rの吐出量も同様に制御する。
 上述のような構成により、図3の油圧システムは、待機状態においては、メインポンプ14における無駄なエネルギ消費を抑制できる。無駄なエネルギ消費は、メインポンプ14が吐出する作動油がセンターバイパス管路40で発生させるポンピングロスを含む。また、図3の油圧システムは、油圧アクチュエータを作動させる場合には、メインポンプ14から必要十分な作動油を作動対象の油圧アクチュエータに確実に供給できる。
 次に、図4A~図4D、図5A、及び図5Bを参照し、コントローラ30がマシンコントロール機能によってアクチュエータを動作させるための構成について説明する。図4A~図4D、図5A、及び図5Bは、油圧システムの一部を抜き出した図である。具体的には、図4Aは、アームシリンダ8の操作に関する油圧システム部分を抜き出した図であり、図4Bは、ブームシリンダ7の操作に関する油圧システム部分を抜き出した図である。図4Cは、バケットシリンダ9の操作に関する油圧システム部分を抜き出した図であり、図4Dは、旋回油圧モータ2Aの操作に関する油圧システム部分を抜き出した図である。また、図5Aは、左走行油圧モータ2MLの操作に関する油圧システム部分を抜き出した図であり、図5Bは、右走行油圧モータ2MRの操作に関する油圧システム部分を抜き出した図である。
 図4A~図4D、図5A、及び図5Bに示すように、油圧システムは、比例弁31を含む。比例弁31は、比例弁31AL~31DL及び31AR~31DRを含む。
 比例弁31は、マシンコントロール用制御弁として機能する。比例弁31は、パイロットポンプ15とコントロールバルブユニット17内の対応する制御弁のパイロットポートとを接続する管路に配置され、その管路の流路面積を変更できるように構成されている。本実施形態では、比例弁31は、コントローラ30が出力する制御指令に応じて動作する。そのため、コントローラ30は、操作者による操作装置26の操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31を介し、コントロールバルブユニット17内の対応する制御弁のパイロットポートに供給できる。そして、コントローラ30は、比例弁31が生成するパイロット圧を、対応する制御弁のパイロットポートに作用させることができる。
 この構成により、コントローラ30は、特定の操作装置26に対する操作が行われていない場合であっても、その特定の操作装置26に対応する油圧アクチュエータを動作させることができる。また、コントローラ30は、特定の操作装置26に対する操作が行われている場合であっても、その特定の操作装置26に対応する油圧アクチュエータの動作を強制的に停止させることができる。
 例えば、図4Aに示すように、左操作レバー26Lは、アーム5を操作するために用いられる。具体的には、左操作レバー26Lは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁176のパイロットポートに作用させる。より具体的には、左操作レバー26Lは、アーム閉じ方向(後方向)に操作された場合に、操作量に応じたパイロット圧を制御弁176Lの右側パイロットポートと制御弁176Rの左側パイロットポートに作用させる。また、左操作レバー26Lは、アーム開き方向(前方向)に操作された場合には、操作量に応じたパイロット圧を制御弁176Lの左側パイロットポートと制御弁176Rの右側パイロットポートに作用させる。
 操作装置26にはスイッチSWが設けられている。本実施形態では、スイッチSWは、スイッチSW1及びスイッチSW2を含む。スイッチSW1は、左操作レバー26Lの先端に設けられた押しボタンスイッチである。操作者は、スイッチSW1を押しながら左操作レバー26Lを操作できる。スイッチSW1は、右操作レバー26Rに設けられていてもよく、キャビン10内の他の位置に設けられていてもよい。スイッチSW2は、左走行レバー26DLの先端に設けられた押しボタンスイッチである。操作者は、スイッチSW2を押しながら左走行レバー26DLを操作できる。スイッチSW2は、右走行レバー26DRに設けられていてもよく、キャビン10内の他の位置に設けられていてもよい。
 操作センサ29LAは、操作者による左操作レバー26Lに対する前後方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。
 比例弁31ALは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31ALを介して制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31ARは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31ARを介して制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31ALは、制御弁176L及び制御弁176Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。同様に、比例弁31ARは、制御弁176L及び制御弁176Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるアーム閉じ操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31ALを介し、制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに供給できる。また、コントローラ30は、操作者によるアーム閉じ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31ALを介し、制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポートに供給できる。すなわち、コントローラ30は、操作者によるアーム閉じ操作に応じ、或いは、操作者によるアーム閉じ操作とは無関係に、アーム5を閉じることができる。
 また、コントローラ30は、操作者によるアーム開き操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31ARを介し、制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに供給できる。また、コントローラ30は、操作者によるアーム開き操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31ARを介し、制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポートに供給できる。すなわち、コントローラ30は、操作者によるアーム開き操作に応じ、或いは、操作者によるアーム開き操作とは無関係に、アーム5を開くことができる。
 また、この構成により、コントローラ30は、操作者によるアーム閉じ操作が行われている場合であっても、必要に応じて、制御弁176の閉じ側のパイロットポート(制御弁176Lの左側パイロットポート及び制御弁176Rの右側パイロットポート)に作用するパイロット圧を減圧し、アーム5の閉じ動作を強制的に停止させることができる。操作者によるアーム開き操作が行われているときにアーム5の開き動作を強制的に停止させる場合についても同様である。
 或いは、コントローラ30は、操作者によるアーム閉じ操作が行われている場合であっても、必要に応じて、比例弁31ARを制御し、制御弁176の閉じ側のパイロットポートの反対側にある、制御弁176の開き側のパイロットポート(制御弁176Lの右側パイロットポート及び制御弁176Rの左側パイロットポート)に作用するパイロット圧を増大させ、制御弁176を強制的に中立位置に戻すことで、アーム5の閉じ動作を強制的に停止させてもよい。操作者によるアーム開き操作が行われている場合にアーム5の開き動作を強制的に停止させる場合についても同様である。
 また、以下の図4B~図4D、図5A、及び図5Bを参照しながらの説明を省略するが、操作者によるブーム上げ操作又はブーム下げ操作が行われている場合にブーム4の動作を強制的に停止させる場合、操作者によるバケット閉じ操作又はバケット開き操作が行われている場合にバケット6の動作を強制的に停止させる場合、及び、操作者による旋回操作が行われている場合に上部旋回体3の旋回動作を強制的に停止させる場合についても同様である。また、操作者による走行操作が行われている場合に下部走行体1の走行動作を強制的に停止させる場合についても同様である。
 また、図4Bに示すように、右操作レバー26Rは、ブーム4を操作するために用いられる。具体的には、右操作レバー26Rは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁175のパイロットポートに作用させる。より具体的には、右操作レバー26Rは、ブーム上げ方向(後方向)に操作された場合に、操作量に応じたパイロット圧を制御弁175Lの右側パイロットポートと制御弁175Rの左側パイロットポートに作用させる。また、右操作レバー26Rは、ブーム下げ方向(前方向)に操作された場合には、操作量に応じたパイロット圧を制御弁175Rの右側パイロットポートに作用させる。
 操作センサ29RAは、操作者による右操作レバー26Rに対する前後方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。
 比例弁31BLは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31BLを介して制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31BRは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31BRを介して制御弁175Rの右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31BLは、制御弁175L及び制御弁175Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。また、比例弁31BRは、制御弁175Rを任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるブーム上げ操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31BLを介し、制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに供給できる。また、コントローラ30は、操作者によるブーム上げ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31BLを介し、制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに供給できる。すなわち、コントローラ30は、操作者によるブーム上げ操作に応じ、或いは、操作者によるブーム上げ操作とは無関係に、ブーム4を上げることができる。
 また、コントローラ30は、操作者によるブーム下げ操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31BRを介し、制御弁175Rの右側パイロットポートに供給できる。また、コントローラ30は、操作者によるブーム下げ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31BRを介し、制御弁175Rの右側パイロットポートに供給できる。すなわち、コントローラ30は、操作者によるブーム下げ操作に応じ、或いは、操作者によるブーム下げ操作とは無関係に、ブーム4を下げることができる。
 また、図4Cに示すように、右操作レバー26Rは、バケット6を操作するためにも用いられる。具体的には、右操作レバー26Rは、パイロットポンプ15が吐出する作動油を利用し、左右方向への操作に応じたパイロット圧を制御弁174のパイロットポートに作用させる。より具体的には、右操作レバー26Rは、バケット閉じ方向(左方向)に操作された場合に、操作量に応じたパイロット圧を制御弁174の左側パイロットポートに作用させる。また、右操作レバー26Rは、バケット開き方向(右方向)に操作された場合には、操作量に応じたパイロット圧を制御弁174の右側パイロットポートに作用させる。
 操作センサ29RBは、操作者による右操作レバー26Rに対する左右方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。
 比例弁31CLは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31CLを介して制御弁174の左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31CRは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31CRを介して制御弁174の右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31CLは、制御弁174を任意の弁位置で停止できるようにパイロット圧を調整可能である。同様に、比例弁31CRは、制御弁174を任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者によるバケット閉じ操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31CLを介し、制御弁174の左側パイロットポートに供給できる。また、コントローラ30は、操作者によるバケット閉じ操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31CLを介し、制御弁174の左側パイロットポートに供給できる。すなわち、コントローラ30は、操作者によるバケット閉じ操作に応じ、或いは、操作者によるバケット閉じ操作とは無関係に、バケット6を閉じることができる。
 また、コントローラ30は、操作者によるバケット開き操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31CRを介し、制御弁174の右側パイロットポートに供給できる。また、コントローラ30は、操作者によるバケット開き操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31CRを介し、制御弁174の右側パイロットポートに供給できる。すなわち、コントローラ30は、操作者によるバケット開き操作に応じ、或いは、操作者によるバケット開き操作とは無関係に、バケット6を開くことができる。
 また、図4Dに示すように、左操作レバー26Lは、旋回機構2を操作するためにも用いられる。具体的には、左操作レバー26Lは、パイロットポンプ15が吐出する作動油を利用し、左右方向への操作に応じたパイロット圧を制御弁173のパイロットポートに作用させる。より具体的には、左操作レバー26Lは、左旋回方向(左方向)に操作された場合に、操作量に応じたパイロット圧を制御弁173の左側パイロットポートに作用させる。また、左操作レバー26Lは、右旋回方向(右方向)に操作された場合には、操作量に応じたパイロット圧を制御弁173の右側パイロットポートに作用させる。
 操作センサ29LBは、操作者による左操作レバー26Lに対する左右方向への操作の内容を検出し、検出した値をコントローラ30に対して出力する。
 比例弁31DLは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31DLを介して制御弁173の左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31DRは、コントローラ30が出力する制御指令(電流指令)に応じて動作する。そして、パイロットポンプ15から比例弁31DRを介して制御弁173の右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31DLは、制御弁173を任意の弁位置で停止できるようにパイロット圧を調整可能である。同様に、比例弁31DRは、制御弁173を任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者による左旋回操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31DLを介し、制御弁173の左側パイロットポートに供給できる。また、コントローラ30は、操作者による左旋回操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31DLを介し、制御弁173の左側パイロットポートに供給できる。すなわち、コントローラ30は、操作者による左旋回操作に応じ、或いは、操作者による左旋回操作とは無関係に、旋回機構2を左旋回させることができる。
 また、コントローラ30は、操作者による右旋回操作に応じ、パイロットポンプ15が吐出する作動油を、比例弁31DRを介し、制御弁173の右側パイロットポートに供給できる。また、コントローラ30は、操作者による右旋回操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31DRを介し、制御弁173の右側パイロットポートに供給できる。すなわち、コントローラ30は、操作者による右旋回操作に応じ、或いは、操作者による右旋回操作とは無関係に、旋回機構2を右旋回させることができる。
 また、図5Aに示すように、左走行レバー26DLは、左クローラ1CLを操作するために用いられる。具体的には、左走行レバー26DLは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁171のパイロットポートに作用させる。より具体的には、左走行レバー26DLは、前進方向(前方向)に操作された場合に、操作量に応じたパイロット圧を制御弁171の左側パイロットポートに作用させる。また、左走行レバー26DLは、後進方向(後方向)に操作された場合には、操作量に応じたパイロット圧を制御弁171の右側パイロットポートに作用させる。
 操作センサ29DLは、操作者による左走行レバー26DLに対する前後方向への操作の内容を電気的に検出し、検出した値をコントローラ30に対して出力する。
 比例弁31ELは、コントローラ30が出力する電流指令に応じて動作する。そして、比例弁31ELは、パイロットポンプ15から比例弁31ELを介して制御弁171の左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31ERは、コントローラ30が出力する電流指令に応じて動作する。そして、比例弁31ERは、パイロットポンプ15から比例弁31ERを介して制御弁171の右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31EL、31ERは、制御弁171を任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者による左前進操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31ELを介し、制御弁171の左側パイロットポートに供給できる。すなわち、左クローラ1CLを前進させることができる。また、コントローラ30は、操作者による左後進操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31ERを介し、制御弁171の右側パイロットポートに供給できる。すなわち、左クローラ1CLを後進させることができる。
 また、図5Bに示すように、右走行レバー26DRは、右クローラ1CRを操作するために用いられる。具体的には、右走行レバー26DRは、パイロットポンプ15が吐出する作動油を利用し、前後方向への操作に応じたパイロット圧を制御弁172のパイロットポートに作用させる。より具体的には、右走行レバー26DRは、前進方向(前方向)に操作された場合に、操作量に応じたパイロット圧を制御弁172の右側パイロットポートに作用させる。また、右走行レバー26DRは、後進方向(後方向)に操作された場合には、操作量に応じたパイロット圧を制御弁172の左側パイロットポートに作用させる。
 操作センサ29DRは、操作者による右走行レバー26DRに対する前後方向への操作の内容を電気的に検出し、検出した値をコントローラ30に対して出力する。
 比例弁31FLは、コントローラ30が出力する電流指令に応じて動作する。そして、比例弁31FLは、パイロットポンプ15から比例弁31FLを介して制御弁172の左側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31FRは、コントローラ30が出力する電流指令に応じて動作する。そして、比例弁31FRは、パイロットポンプ15から比例弁31FRを介して制御弁172の右側パイロットポートに導入される作動油によるパイロット圧を調整する。比例弁31FL、31FRは、制御弁172を任意の弁位置で停止できるようにパイロット圧を調整可能である。
 この構成により、コントローラ30は、操作者による右前進操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31FLを介し、制御弁172の右側パイロットポートに供給できる。すなわち、右クローラ1CRを前進させることができる。また、コントローラ30は、操作者による右後進操作とは無関係に、パイロットポンプ15が吐出する作動油を、比例弁31FRを介し、制御弁172の左側パイロットポートに供給できる。すなわち、右クローラ1CRを後進させることができる。
 また、ショベル100は、バケットチルト機構を自動的に動作させる構成を備えていてもよい。この場合、バケットチルト機構を構成するバケットチルトシリンダに関する油圧システム部分は、ブームシリンダ7の操作に関する油圧システム部分等と同じように構成されてもよい。
 また、操作装置26の形態として電気式操作レバーに関する説明を記載したが、電気式操作レバーではなく油圧式操作レバーが採用されてもよい。この場合、油圧式操作レバーのレバー操作量は、圧力センサによって圧力の形で検出されてコントローラ30へ入力されてもよい。また、油圧式操作レバーとしての操作装置26と各制御弁のパイロットポートとの間には電磁弁が配置されてもよい。電磁弁は、コントローラ30からの電気信号に応じて動作するように構成される。この構成により、油圧式操作レバーとしての操作装置26を用いた手動操作が行われると、操作装置26は、レバー操作量に応じてパイロット圧を増減させることで各制御弁を移動させることができる。また、各制御弁は電磁スプール弁で構成されていてもよい。この場合、電磁スプール弁は、電気式操作レバーのレバー操作量に対応するコントローラ30からの電気信号に応じて動作する。
 次に、図6を参照し、機械制御装置50の構成例について説明する。図6は、機械制御装置50の構成例を示すブロック図である。具体的には、機械制御装置50は、ブーム角度センサS1、アーム角度センサS2、バケット角度センサS3、機体傾斜センサS4、旋回角速度センサS5、カメラS6、測位装置P1、通信装置T1、及び入力装置46等の少なくとも一つから情報を取得する。そして、機械制御装置50は、例えば、取得した情報に基づいてバケット6と目標施工面との間の距離を算出し、音声及び画像表示の少なくとも一つにより、バケット6と目標施工面との間の距離の大きさをショベル100の操作者に伝えるようにする。また、機械制御装置50は、位置算出部51、距離算出部52、情報伝達部53及び自動制御部54を有する。
 位置算出部51は、測位対象の位置を算出するように構成されている。本実施形態では、位置算出部51は、アタッチメントの作業部位の基準座標系における座標点を算出する。具体的には、位置算出部51は、ブーム4、アーム5、及びバケット6のそれぞれの回動角度からバケット6の先端(爪先)の座標点を算出する。位置算出部51は、バケット6の爪先の中央の座標点だけでなく、バケット6の爪先の左端の座標点、及び、バケット6の爪先の右端の座標点を算出してもよい。
 距離算出部52は、2つの測位対象間の距離を算出するように構成されている。本実施形態では、距離算出部52は、バケット6の爪先と目標施工面との間の鉛直距離を算出する。距離算出部52は、ショベル100が目標施工面に正対しているか否かを機械制御装置50が判断できるよう、バケット6の爪先の左端及び右端のそれぞれの座標点とそれらに対応する目標施工面との距離(例えば鉛直距離)を算出してもよい。
 情報伝達部53は、各種情報をショベル100の操作者に伝えるように構成されている。本実施形態では、情報伝達部53は、距離算出部52が算出した各種距離の大きさをショベル100の操作者に伝える。具体的には、視覚情報及び聴覚情報の少なくとも一つを用いて、バケット6の爪先と目標施工面との間の鉛直距離の大きさをショベル100の操作者に伝える。
 例えば、情報伝達部53は、音声出力装置43による断続音を用いて、バケット6の爪先と目標施工面との間の鉛直距離の大きさを操作者に伝えてもよい。この場合、情報伝達部53は、鉛直距離が小さくなるほど、断続音の間隔を短くしてもよい。情報伝達部53は、連続音を用いてもよく、音の高低及び強弱等の少なくとも一つを変化させて鉛直距離の大きさの違いを表すようにしてもよい。また、情報伝達部53は、バケット6の爪先が目標施工面よりも低い位置になった場合には警報を発してもよい。警報は、例えば、断続音より顕著に大きい連続音である。
 また、情報伝達部53は、バケット6の爪先と目標施工面との間の鉛直距離の大きさを作業情報として表示装置45に表示させてもよい。表示装置45は、例えば、カメラS6から受信した画像データと共に、情報伝達部53から受信した作業情報を画面に表示する。情報伝達部53は、例えば、アナログメータの画像又はバーグラフインジケータの画像等を用いて鉛直距離の大きさを操作者に伝えるようにしてもよい。
 自動制御部54は、アクチュエータを自動的に動作させることで操作者によるショベル100の手動操作を自動的に支援する。例えば、自動制御部54は、操作者が手動でアーム閉じ操作を行っている場合に、目標施工面とバケット6の爪先の位置とが一致するようにブームシリンダ7、アームシリンダ8、及びバケットシリンダ9の少なくとも一つを自動的に伸縮させてもよい。この場合、操作者は、例えば、アーム操作レバーを閉じ方向に操作するだけで、バケット6の爪先を目標施工面に一致させながら、アーム5を閉じることができる。この自動制御は、入力装置46の一つである所定のスイッチが押下されたときに実行されるように構成されていてもよい。所定のスイッチは、例えば、マシンコントロールスイッチ(以下、「MCスイッチ」とする。)であり、ノブスイッチとして操作装置26の先端に配置されていてもよい。
 自動制御部54は、「正対制御モード」に設定された状態で、MCスイッチ等の所定のスイッチが押下されたときに、上部旋回体3を目標施工面に正対させるために旋回油圧モータ2Aを自動的に回転させてもよい。この場合、操作者は、所定のスイッチを押下するだけで、若しくは、所定のスイッチを押下した状態で旋回操作レバーを操作するだけで、上部旋回体3を目標施工面に正対させることができる。或いは、操作者は、所定のスイッチを押下するだけで、上部旋回体3を目標施工面に正対させ且つマシンコントロール機能を開始させることができる。以下では、上部旋回体3を目標施工面に正対させる制御を「正対制御」と称する。正対制御では、機械制御装置50は、バケット6の爪先の左端の座標点と目標施工面との間の鉛直距離である左端鉛直距離と、バケット6の爪先の右端の座標点と目標施工面との間の鉛直距離である右端鉛直距離とが等しくなった場合に、ショベル100が目標施工面に正対していると判断する。但し、左端鉛直距離と右端鉛直距離とが等しくなった場合ではなく、すなわち左端鉛直距離と右端鉛直距離との差がゼロになった場合ではなく、その差が所定値以下になった場合に、ショベル100が目標施工面に正対していると判断してもよい。機械制御装置50は、旋回油圧モータ2Aを自動的に回転させた後で、ショベル100が目標施工面に正対していると判断した場合、視覚情報及び聴覚情報の少なくとも一つを用い、正対制御が完了したことを操作者に知らせてもよい。すなわち、機械制御装置50は、上部旋回体3を目標施工面に正対させたことを操作者に知らせてもよい。
 本実施形態では、自動制御部54は、各アクチュエータに対応する制御弁に作用するパイロット圧を個別に且つ自動的に調整することで各アクチュエータを自動的に動作させることができる。例えば、正対制御では、自動制御部54は、左端鉛直距離と右端鉛直距離との差に基づいて旋回油圧モータ2Aを動作させてもよい。具体的には、自動制御部54は、所定のスイッチが押下された状態で旋回操作レバーが操作されると、上部旋回体3を目標施工面に正対させる方向に旋回操作レバーが操作されたか否かを判断する。例えば、バケット6の爪先と目標施工面(上り法面)との間の鉛直距離が大きくなる方向に旋回操作レバーが操作された場合、自動制御部54は、正対制御を実行しない。一方で、バケット6の爪先と目標施工面(上り法面)との間の鉛直距離が小さくなる方向に旋回操作レバーが操作された場合、自動制御部54は、正対制御を実行する。その結果、自動制御部54は、左端鉛直距離と右端鉛直距離との差が小さくなるように旋回油圧モータ2Aを動作させることができる。その後、自動制御部54は、その差が所定値以下或いはゼロになると、旋回油圧モータ2Aを停止させる。或いは、自動制御部54は、その差が所定値以下或いはゼロとなる旋回角度を目標角度として設定し、その目標角度と現在の旋回角度(検出値)との角度差がゼロになるように旋回角度制御を行ってもよい。この場合、旋回角度は、例えば、基準方向に関する上部旋回体3の前後軸の角度である。
 また、自動制御部54は、掘削操作又は法面仕上げ操作等の目標施工面に関する操作が行われているときに、上部旋回体3が目標施工面に正対している状態が維持されるようにアクチュエータを自動的に動作させてもよい。例えば、自動制御部54は、掘削反力等により上部旋回体3の向きが変わり、上部旋回体3が目標施工面に正対しなくなった場合、上部旋回体3を速やかに目標施工面に正対させるために、旋回油圧モータ2Aを自動的に動作させてもよい。或いは、自動制御部54は、目標施工面に関する操作が行われているときに、掘削反力等によって上部旋回体3の向きが変化しないように、アクチュエータを予防的に動作させてもよい。
 また、機械制御装置50は、更に、旋回角度算出部55及び相対角度算出部56を有する。
 旋回角度算出部55は、上部旋回体3の旋回角度を算出する。上部旋回体3の現在の向きを特定するためである。本実施形態では、旋回角度算出部55は、測位装置P1としてのGNSSコンパスの出力に基づき、基準方向に関する上部旋回体3の前後軸の角度を旋回角度として算出する。旋回角度算出部55は、旋回角速度センサS5の出力に基づいて旋回角度を算出してもよい。また、旋回角度算出部55は、施工現場に基準点が設定されている場合には、旋回軸から基準点を見た方向を基準方向としてもよい。
 旋回角度は、アタッチメント稼動面が延びる方向を示す。アタッチメント稼動面は、例えば、アタッチメントを縦断する仮想平面であり、旋回平面に垂直となるように配置される。旋回平面は、例えば、旋回軸に垂直な旋回フレームの底面を含む仮想平面である。機械制御装置50は、例えば、アタッチメント稼動面AF(図9A参照。)が目標施工面の法線を含んでいると判断した場合に、上部旋回体3が目標施工面に正対していると判断する。
 相対角度算出部56は、上部旋回体3を目標施工面に正対させるために必要な旋回角度としての相対角度を算出する。相対角度は、例えば、上部旋回体3を目標施工面に正対させたときの上部旋回体3の前後軸の方向と、上部旋回体3の前後軸の現在の方向との間に形成されている相対的な角度である。本実施形態では、相対角度算出部56は、記憶装置47に記憶されている目標施工面に関する情報と、旋回角度算出部55が算出した旋回角度とに基づいて相対角度を算出する。
 自動制御部54は、所定のスイッチが押下された状態で旋回操作レバーが操作されると、上部旋回体3を目標施工面に正対させる方向に旋回操作レバーが操作されたか否かを判断する。そして、上部旋回体3を目標施工面に正対させる方向に旋回操作レバーが操作されたと判断した場合、自動制御部54は、相対角度算出部56が算出した相対角度を目標角度として設定する。そして、旋回操作レバーが操作された後の旋回角度の変化が目標角度に達した場合に、上部旋回体3が目標施工面に正対したと判定し、旋回油圧モータ2Aの動きを停止させる。
 このようにして、機械制御装置50は、上部旋回体3を目標施工面に正対させることができる。
 次に、図7~図9を参照し、コントローラ30が上部旋回体3を目標施工面に正対させる処理(以下、「正対処理」とする。)の一例について説明する。図7は、正対処理のフローチャートである。コントローラ30は、MCスイッチが押下されたときにこの正対処理を実行する。図8A及び図8Bは、正対処理が実行される際のショベル100の上面図であり、図9A及び図9Bは、正対処理が実行される際のショベル100を左後方から見たときのショベル100の斜視図である。具体的には、図8A及び図9Aは、上部旋回体3が目標施工面に正対していない状態を示し、図8B及び図9Bは、上部旋回体3が目標施工面に正対している状態を示す。図8A、図8B、図9A、及び図9Bにおける地表面ESより下方に設定された目標施工面は、例えば図1に示すような上り法面BSである。そして、領域NSは、上り法面BSが完成していない状態、すなわち、図1に示すように地表面ESが上り法面BSと一致していない状態を表し、領域CSは、上り法面BSが完成した状態、すなわち、地表面ESと上り法面BSとが一致している状態を表す。図8A、図8B、図9A、及び図9Bでは、明瞭化のため、領域NSに粗いドットパターンが付され、領域CSには細かいドットパターンが付されている。
 上部旋回体3が目標施工面に正対している状態は、例えば、図8Bに示すように、仮想水平面上で、目標施工面の向き(延長方向)を表す線分L1と、上部旋回体3の前後軸を表す線分L2との間に形成される角度αが90度になっている状態を含む。線分L1で表される目標施工面の向きとしての法面の延長方向は、例えば、斜面長方向に垂直な方向である。斜面長方向は、例えば、法面の上端(法肩)と下端(法尻)とを最短距離で結ぶ仮想線分に沿った方向である。上部旋回体3が目標施工面に正対している状態は、仮想水平面上で、上部旋回体3の前後軸を表す線分L2と、目標施工面の向き(延長方向)に垂直な線分L3との間に形成される角度β(図8A参照。)が0度になっている状態として定義されてもよい。なお、線分L3で表される方向は、目標施工面に下ろした垂線の水平成分の方向に対応している。
 図9A及び図9Bの仮想円筒体CBは目標施工面(上り法面BS)の法線の一部を表し、一点鎖線は仮想的な旋回平面SFの一部を表し、破線は仮想的なアタッチメント稼動面AFの一部を表す。アタッチメント稼動面AFは、旋回平面SFに垂直となるように配置されている。そして、図9Bに示すように、上部旋回体3が目標施工面に正対している状態では、アタッチメント稼動面AFは、仮想円筒体CBで表されるような法線の一部を含むように、すなわち、アタッチメント稼動面AFが法線の一部に沿って延びるように配置されている。
 自動制御部54は、例えば、アタッチメント稼動面AFと目標施工面(上り法面BS)とが垂直になるときの旋回角度を目標角度として設定する。そして、自動制御部54は、測位装置P1等の出力に基づいて現在の旋回角度を検出し、目標角度と現在の旋回角度(検出値)との差を算出する。そして、自動制御部54は、その差が所定値以下又はゼロとなるように旋回油圧モータ2Aを動作させる。具体的には、自動制御部54は、目標角度と現在の旋回角度との差が所定値以下又はゼロとなったときに、上部旋回体3が目標施工面に正対したと判定する。また、自動制御部54は、所定のスイッチが押下された状態で旋回操作レバーが操作されると、上部旋回体3を目標施工面に正対させる方向に旋回操作レバーが操作されたか否かを判断する。例えば、目標角度と現在の旋回角度との差が大きくなる方向に旋回操作レバーが操作された場合、自動制御部54は、上部旋回体3を目標施工面に正対させる方向に旋回操作レバーが操作されていないと判断し、正対制御を実行しない。一方で、目標角度と現在の旋回角度との差が小さくなる方向に旋回操作レバーが操作された場合、自動制御部54は、上部旋回体3を目標施工面に正対させる方向に旋回操作レバーが操作されたと判断し、正対制御を実行する。その結果、目標角度と現在の旋回角度との差が小さくなるように旋回油圧モータ2Aを動作させることができる。その後、自動制御部54は、目標角度と現在の旋回角度との差が所定値以下或いはゼロになると、旋回油圧モータ2Aを停止させる。
 図8Bで示す事例は、アタッチメント稼動面AFが法線(仮想円筒体CB)を含んだ状態を示す一つの事例であり、目標施工面の向きを示す線分L1と上部旋回体3の前後軸を示す線分L2との間に形成される角度αは90°となっている。但し、アタッチメント稼動面AFが法線(仮想円筒体CB)を含んだ状態であれば、角度αは、必ずしも90度になる必要はない。例えば、ショベル100が設置される地面は起伏が大きい地面である場合が多いため、アタッチメント稼動面AFが法線(仮想円筒体CB)を含んだ状態であっても、角度αが90度になるとは限らないためである。
 上述の図8A、図8B、図9A、及び図9Bに関する説明を踏まえ、改めて図7を参照し、正対処理の流れについて説明する。最初に、コントローラ30に含まれる機械制御装置50は、正対ずれが生じているか否かを判定する(ステップST1)。本実施形態では、機械制御装置50は、記憶装置47に予め記憶されている目標施工面に関する情報と、向き検出装置としての測位装置P1の出力とに基づいて正対ずれが生じているか否かを判定する。目標施工面に関する情報は、目標施工面の向きに関する情報を含む。測位装置P1は、上部旋回体3の向きに関する情報を出力する。機械制御装置50は、例えば、図9Aに示すように、アタッチメント稼動面AFが目標施工面の法線を含んでいない状態では、目標施工面とショベル100との正対ずれが生じていると判定する。このような状態では、図8Aに示すように、目標施工面の向きを表す線分L1と上部旋回体3の向きを表す線分L2との間に形成される角度αは90度以外の角度となる。
 なお、機械制御装置50は、カメラS6が撮像した画像に基づいて正対ずれが生じているか否かを判定してもよい。例えば、機械制御装置50は、カメラS6が撮像した画像に各種画像処理を施すことで、作業対象である法面の形状に関する情報を導き出し、導き出した情報に基づいて正対ずれが生じているか否かを判定してもよい。或いは、機械制御装置50は、超音波センサ、ミリ波レーダ、距離画像センサ、LIDAR又は赤外線センサ等のカメラS6以外の他の空間認識装置の出力に基づき、正対ずれが生じているか否かを判定してもよい。
 正対ずれが生じていないと判定した場合(ステップST1のNO)、機械制御装置50は、正対制御を実行することなく、今回の正対処理を終了させる。
 正対ずれが生じていると判定した場合(ステップST1のYES)、機械制御装置50は、ショベル100の周囲に障害物が存在しないか否かを判定する(ステップST2)。本実施形態では、機械制御装置50は、カメラS6が撮像した画像に画像認識処理を施すことで、撮像した画像内に所定の障害物に関する画像が存在するか否かを判定する。所定の障害物は、例えば、人、動物、機械、及び建造物等の少なくとも一つである。そして、ショベル100の周囲に設定される所定範囲に関する画像内に所定の障害物に関する画像が存在しないと判定した場合にショベル100の周囲に障害物が存在しないと判定する。所定範囲は、例えば、上部旋回体3を目標施工面に正対させるためにショベル100を動かした場合にショベル100に接触してしまう物体が存在し得る範囲を含む。図8Aにおけるクロスハッチングパターンで表される範囲RAは所定範囲の一例である。但し、所定範囲は、例えば旋回軸2Xから所定距離の範囲内等、より広い範囲として設定されていてもよい。
 機械制御装置50は、超音波センサ、ミリ波レーダ、距離画像センサ、LIDAR又は赤外線センサ等のカメラS6以外の他の空間認識装置の出力に基づき、ショベル100の周囲に障害物が存在しないか否かを判定してもよい。
 ショベル100の周囲に障害物が存在すると判定した場合(ステップST2のNO)、機械制御装置50は、正対制御を実行することなく、今回の正対処理を終了させる。正対制御の実行によってショベル100と障害物とが接触してしまうのを防止するためである。この場合、機械制御装置50は、警報を出力させてもよい。また、機械制御装置50は、通信装置T1を介し、障害物の存否、障害物の位置及び障害物の種類等の障害物に関する情報を外部機器に送信してもよい。また、機械制御装置50は、通信装置T1を介し、他のショベルが取得した障害物に関する情報を受信してもよい。
 ショベル100の周囲に障害物が存在しないと判定した場合(ステップST2のYES)、機械制御装置50は、正対制御を実行する(ステップST3)。図8A、図8B、図9A、及び図9Bの例では、機械制御装置50の自動制御部54は、比例弁31CL(図4C参照。)に対して電流指令を出力する。そして、パイロットポンプ15から出て比例弁31CL及びシャトル弁CLを通る作動油によって生成されるパイロット圧を制御弁173の左側パイロットポートに作用させる。左側パイロットポートでパイロット圧を受けた制御弁173は、右方向に変位し、左メインポンプ14Lが吐出する作動油を旋回油圧モータ2Aの第1ポート2A1に流入させる。また、制御弁173は、旋回油圧モータ2Aの第2ポート2A2から流出する作動油を作動油タンクに流出させる。その結果、旋回油圧モータ2Aは、順方向に回転し、図8Aの矢印で示すように旋回軸2X回りに上部旋回体3を左方向に旋回させる。その後、自動制御部54は、図8Bに示すように角度αが90度になるところで、或いは、角度βが0度になるところで、比例弁31CLに対する電流指令の出力を中止し、制御弁173の左側パイロットポートに作用しているパイロット圧を低減させる。制御弁173は、左方向に変位して中立位置に戻り、左メインポンプ14Lから旋回油圧モータ2Aの第1ポート2A1に向かう作動油の流れを遮断する。また、制御弁173は、旋回油圧モータ2Aの第2ポート2A2から作動油タンクに向かう作動油の流れを遮断する。その結果、旋回油圧モータ2Aは、順方向への回転を停止し、上部旋回体3の左方向への旋回を停止させる。
 次に、図10A及び図10Bを参照し、法面を仕上げるための操作を機械制御装置50が支援する処理(法面仕上げ処理)について説明する。図10A及び図10Bは、法面を仕上げるショベル100の上面図である。具体的には、図10Aは、バケット6の先端(爪先)が上り法面BSの法肩TSに位置付けられたときのショベル100の上面図であり、図10Bは、バケット6の爪先が上り法面BSの法尻FSに近い位置に位置付けられたときのショベル100の上面図である。また、図10A及び図10Bでは、明瞭化のため、上り法面BSが完成していない領域NSに粗いドットパターンが付され、上り法面BSが完成した領域CSには細かいドットパターンが付されている。また、図10A及び図10Bでは、法面仕上げ作業の際に上り法面BSからこぼれ落ちて法尻FSの近くに堆積した土砂SLにクロスパターンが付されている。また、図10A及び図10Bは、領域NSの下端部では、領域CSにおけるような、法尻FSに対応する直線状の境界線(上り法面BSとショベル100が位置する地面GSとの間の境界線)が未だ形成されていないことを表している。
 自動制御部54は、例えば、正対処理が終了した後、スイッチSW1が押された状態で左操作レバー26Lがアーム開き方向に操作されると、バケット6の爪先が上り法面BSの法肩TSに位置付けられるように、掘削アタッチメントを自動的に動作させる。具体的には、自動制御部54は、ブーム下げ動作、アーム開き動作、及びバケット開き動作を自動的に実行する。その後、自動制御部54は、図10Aに示すように、バケット6の爪先が法肩TSに位置付けられたときに掘削アタッチメントの動きを停止させる。図10A及び図10Bに示す例では、自動制御部54は、左操作レバー26Lがアーム開き方向に操作されている場合であっても、掘削アタッチメントの動きを停止させる。なお、法肩TSは、目標施工面としての上り法面BS上の点又は線であり、目標施工面に関する情報は、予め記憶装置47に記憶されている。
 その後、自動制御部54は、例えば、「仕上げ制御モード」に設定された状態でスイッチSW1が押された状態で左操作レバー26Lがアーム閉じ方向に操作されると、目標施工面としての上り法面BSに沿ってバケット6の爪先を法肩TSから法尻FSに移動させる。このとき、斜面から削り落とされた土砂は、斜面からこぼれ落ち、ショベル100が位置する地面GSの斜面に近いところに土砂SLとして堆積される。典型的には、土砂SLは、法尻FSが形成される部分を覆うように堆積される。
 その後、自動制御部54は、バケット6の爪先が法尻FSに達したところで、掘削アタッチメントの動きを停止させる。図10A及び図10Bに示す例では、自動制御部54は、左操作レバー26Lがアーム閉じ方向に操作されている場合であっても、掘削アタッチメントの動きを停止させる。
 上述の法面仕上げ処理により、ショベル100の操作者は、左操作レバー26Lをアーム開き方向又はアーム閉じ方向に操作するだけで、上り法面BSの一区画の仕上げを完了させることができる。なお、上り法面BSの一区画は、バケット幅に相当する幅を有し、且つ、法肩TSから法尻FSまで延びる斜面の一部である。
 その後、ショベル100の操作者は、例えば、旋回操作を行うことで、バケット6内に取り込まれた土砂をショベル100の後方に排土してもよい。その後、操作者は、下部走行体1(走行油圧モータ2M)を動作させるための走行操作を行うことで、バケット幅だけ左方向にショベル100を移動させてもよい。更にその後、操作者は、正対処理を実行させることで、ショベル100を上り法面BSの次の区画に正対させ、法面仕上げ処理を実行させることで、上り法面BSの一区画の仕上げを完了させてもよい。
 次に、図11A~図11C及び図12を参照し、「仕上げ制御モード」に設定された状態で法尻FSを形成するための操作を機械制御装置50が支援する処理(法尻形成処理)について説明する。図11A~図11Cは、法尻を形成するショベル100の上面図である。具体的には、図11Aは、バケット6の爪先の左端LEが上り法面BS(領域CS)の法尻FSに位置付けられたときのショベル100の上面図である。図11Bは、図11Aに示す状態から、矢印AR1で示す方向(左方)に距離D1だけ爪先の左端LEを移動させたときの状態を示す。図11Bの点LE1は、図11Aに示す状態における左端LEの位置を示している。図11Cは、図11Bに示す状態から、矢印AR2で示す方向(左方)に距離D2だけ爪先の左端LEを更に移動させたときの状態を示す。図11Cの点LE2は、図11Bに示す状態における左端LEの位置を示している。距離DAは、距離D1と距離D2との合計である。
なお、図11A~図11Cでは、明瞭化のため、上り法面BSが完成していない領域NSに粗いドットパターンが付され、上り法面BSが完成した領域CSには細かいドットパターンが付されている。また、図11A~図11Cでは、法面仕上げ作業の際に上り法面BSからこぼれ落ちて法尻FSの近くに堆積した土砂SLにクロスパターンが付されている。また、図11A~図11Cは、領域NSの下端部では、領域CSにおけるような、法尻FSに対応する直線状の境界線(上り法面BSとショベル100が位置する地面GSとの間の境界線)が未だ形成されていないことを表している。図12は、図11Aに示す状態におけるバケット6をキャビン10内から見たときのバケット6の斜視図である。
 図11A~図11Cに示す例では、ショベル100の操作者は、図10A及び図10Bに示すような法面仕上げ処理が複数回繰り返された後で、図11Aに示すように、上部旋回体3を旋回させ且つ掘削アタッチメントを伸張させてバケット6の爪先の左端LEを法尻FSに接触させる。左端LEを接触させる位置は、例えば、完成済みの法尻FS上における、ショベル100から最も近い位置である。完成済みの法尻FSは、土砂SLが取り除かれて上り法面BSと地面GSとの間の境界線が露出した状態を意味する。
 なお、機械制御装置50は、左端LEを法尻FSに接触させるための操作を支援するように構成されていてもよい。この場合、自動制御部54は、例えば、スイッチSW1が押された状態で右操作レバー26Rがブーム下げ方向に操作されると、バケット6の爪先の端部が法尻FSに接触するように掘削アタッチメントを自動的に動作させてもよい。そして、自動制御部54は、バケット6の爪先の左端LEが法尻FSに達したところで、掘削アタッチメントの動きを停止させる。図11A~図11Cに示す例では、自動制御部54は、左操作レバー26Lがブーム下げ方向に操作されている場合であっても、掘削アタッチメントの動きを停止させる。
 その後、ショベル100の操作者は、スイッチSW1を押しながら左操作レバー26Lを左旋回方向に操作することによって法尻形成処理を実行させる。自動制御部54は、スイッチSW1が押された状態で左操作レバー26Lが左旋回方向に操作されると、法尻形成処理の実行を開始し、バケット6の爪先の左端LEが完成済みの法尻FSの延長線FSEに沿って移動するように、掘削アタッチメントを自動的に動作させる。すなわち、法尻FSの延長線FSEが目標線となる。目標線は目標施工面の一部である。具体的には、自動制御部54は、左旋回動作、ブーム上げ動作、アーム閉じ動作、及びバケット開き動作を自動的に実行する。
 旋回動作に基づき、アーム5及びブーム4等を含むアタッチメントが動作する場合は、旋回動作に応じてアタッチメントが制御される。具体的には、バケット6が地中側へ向かって目標施工面を超える方向へ旋回動作が行われた場合は、コントローラ30は、バケット6が目標施工面(目標線)を超えないようにアタッチメントを閉じるようにアタッチメントを制御する。例えば、コントローラ30は、アーム閉じ動作とブーム上げ動作とを実行する。また、バケット6が地中側とは反対の側へ向かって目標施工面から離れる方向へ旋回動作が行われた場合は、コントローラ30は、バケット6が目標施工面(目標線)に沿うようにアタッチメントを開くようにアタッチメントを制御する。例えば、コントローラ30は、アーム開き動作とブーム下げ動作とを実行する。
 アタッチメントの動作に基づき、旋回動作する場合は、アタッチメントの動作(アーム動作又はブーム動作等)に応じて旋回動作が制御される。具体的には、旋回半径が大きくなる方向(目標施工面を超える方向)へアタッチメントの回動(開閉)動作が行われた場合は、コントローラ30は、バケット6が目標施工面(目標線)を超えないように旋回動作を制御する。例えば、コントローラ30は、バケット6が目標施工面から離れる方向へ旋回制御する。また、旋回半径が小さくなる方向(目標施工面から離れる方向)へアタッチメントの回動(開閉)動作が行われた場合は、コントローラ30は、バケット6が目標施工面(目標線)に沿うように旋回動作を制御する。例えば、コントローラ30は、バケット6が目標施工面へ接近する方向へ旋回制御する。
 コントローラ30は、目標線上におけるバケット6の所定時間後の位置を予測し、予測した位置にバケット6が移動するように、アタッチメントの回動(開閉)動作に対する制御指令と旋回動作に対する制御指令を生成し、アーム動作及びブーム動作等の少なくとも一つと旋回動作とを制御してもよい。
 その後、自動制御部54は、図11Bに示すように、バケット6の爪先の左端LEが延長線FSEの終点EPに達するまで、左端LEが延長線FSEに沿って移動するように、掘削アタッチメントを自動的に動作させる。図11A~図11Cに示す例では、終点EPは、境界線BLと法尻FSの延長線FSEとの交点である。境界線BLは、領域CSと領域NSとの間の境界線である。図11Cに示す距離DAは、点LE1が、最大掘削半径の状態(アタッチメントを最大限伸張させた状態)でバケット6の爪先の左端LEを法尻FS又はその延長線FSEに接触させたときの左端LEの位置に対応するときに最大となる。以下では、この最大距離を距離Dmaxとする。なお、自動制御部54は、バケット6の爪先の左端LEが延長線FSEの終点EPに達する前に、掘削アタッチメントの自動動作を停止させてもよい。操作者が、バケット6内に取り込まれた土砂をショベル100の後方に排土できるようにするためである。この場合、自動制御部54は、土砂の排土が行われた後で、延長線FSEに沿った左端LEの移動を再開させてもよい。
 その後、自動制御部54は、バケット6の爪先の左端LEが法尻FSの延長線FSEの終点EPに達したところで、掘削アタッチメントの動きを停止させる。図11A~図11Cに示す例では、自動制御部54は、左操作レバー26Lが左旋回方向に操作されている場合であっても、掘削アタッチメントの動きを停止させる。
 このとき、法尻FSの近くの地面GS上に堆積していた土砂SLのほとんどは、図11Cに示すように、バケット6内に取り込まれている。そのため、ショベル100の操作者は、例えば、旋回操作を行うことにより、取り込まれた土砂SLをショベル100の後方に排土してもよい。
 なお、図11A~図11Cに示す例では、自動制御部54は、左旋回動作を実行しながら、バケット6の爪先の左端LEを完成済みの法尻FSの延長線FSEに沿って移動させることにより、法尻FSの形成を支援している。しかしながら、自動制御部54は、右旋回動作を実行しながら、バケット6の爪先の右端を完成済みの法尻FSの延長線FSEに沿って移動させることにより、法尻FSの形成を支援してもよい。この場合、自動制御部54は、スイッチSW1が押された状態で左操作レバー26Lが右旋回方向に操作されたときに、法尻形成処理の実行を開始してもよい。
 次に、図13を参照し、ショベル100の操作者による走行操作を機械制御装置50が支援する処理(走行支援処理)について説明する。図13は、法面仕上げ作業及び法尻形成作業を行うショベル100の上面図である。なお、図13では、明瞭化のため、上り法面BSが完成していない領域NSに粗いドットパターンが付され、上り法面BSが完成した領域CSには細かいドットパターンが付されている。
 具体的には、図13は、上り法面BSの第1区画SD1に対する法面仕上げ処理が完了したときのショベル100の状態を示す。ショベル100の操作者は、この後、上り法面BSの第2区画SD2以降の区画に対しても法面仕上げ作業を行おうとしている。
 なお、図13に示す破線円は、ショベル100の旋回軸の位置を表しており、破線円Q1は、第1区画SD1に対する法面仕上げ処理が行われるときの旋回軸の位置を表している。
 自動制御部54は、例えば、第1区画SD1に対する法面仕上げ処理が終了した後、スイッチSW2が押された状態で走行レバー26Dが操作されると、旋回軸の位置が破線円Q2で示す位置に位置付けられるように、走行油圧モータ2Mを自動的に動作させる。破線円Q2で示す位置は、法面仕上げ作業を実行するために設定される第1目標停止位置の一つである。第1目標停止位置は、例えば、法面から一定の距離だけ離れた位置として設定され、典型的には、第1目標停止位置で停止したショベル100が法肩TS及び法尻FSのそれぞれにバケット6の爪先を位置付けることができる位置として設定される。コントローラ30は、第1目標停止位置で停止したショベル100が法肩TS及び法尻FSのそれぞれにバケット6の爪先を位置付けることができるか否かを判定し、その判定結果を表示装置45に表示させてもよい。
 具体的には、自動制御部54は、走行動作を自動的に実行する。その後、自動制御部54は、旋回軸の位置が破線円Q2で示す位置に位置付けられたときに走行油圧モータ2Mの動きを停止させる。図13に示す例では、自動制御部54は、スイッチSW2が押された状態で左走行レバー26DL及び右走行レバー26DRが何れも前進方向に操作されたときに、下部走行体1の左方への移動を開始させる。図13に示す例では、下部走行体1の前方が図の左方(ブロック矢印で示す方向)に対応しているためである。但し、下部走行体1の前方が図の右方に対応している場合、自動制御部54は、スイッチSW2が押された状態で左走行レバー26DL及び右走行レバー26DRが何れも後進方向に操作されたときに、下部走行体1の左方への移動を開始させてもよい。なお、自動制御部54は、スイッチSW2が押された状態で左走行レバー26DL及び右走行レバー26DRの少なくとも一方が操作された場合に下部走行体1の左方への移動を開始させてもよい。
 その後、自動制御部54は、旋回軸の位置が破線円Q2で示す位置に位置付けられたときに、走行レバー26Dが操作されている場合であっても、走行油圧モータ2Mの動きを停止させる。なお、破線円Q2の位置は、目標施工面としての上り法面BSの位置に応じて決まる位置であり、目標施工面に関する情報は、予め記憶装置47に記憶されている。
 その後、ショベル100の操作者は、必要に応じて正対処理を実行させることで、ショベル100を上り法面BSの第2区画SD2に正対させ、法面仕上げ処理を実行させることで、上り法面BSの第2区画SD2の仕上げを完了させる。
 具体的には、自動制御部54は、スイッチSW1が押された状態で左操作レバー26Lがアーム開き方向に操作されると、バケット6の爪先が上り法面BSの法肩TSに位置付けられるように、掘削アタッチメントを自動的に動作させる。具体的には、自動制御部54は、ブーム下げ動作、アーム開き動作、及びバケット開き動作を自動的に実行する。その後、自動制御部54は、バケット6の爪先が法肩TSに位置付けられたときに掘削アタッチメントの動きを停止させる。その後、自動制御部54は、スイッチSW1が押された状態で左操作レバー26Lがアーム閉じ方向に操作されると、目標施工面としての上り法面BSに沿ってバケット6の爪先を法肩TSから法尻FSに移動させる。その後、自動制御部54は、バケット6の爪先が法尻FSに達したところで、掘削アタッチメントの動きを停止させる。
 その後、自動制御部54は、第8区画SD8に対する法面仕上げ処理が完了するまで、上述の動きを繰り返す。具体的には、自動制御部54は、第2区画SD2に対する法面仕上げ処理が終了した後、旋回軸の位置が破線円Q3で示す位置に位置付けられるように、走行油圧モータ2Mを自動的に動作させる。同様に、自動制御部54は、第3区画SD3に対する法面仕上げ処理が終了した後、旋回軸の位置が破線円Q4で示す位置に位置付けられるように、走行油圧モータ2Mを自動的に動作させ、第4区画SD4に対する法面仕上げ処理が終了した後、旋回軸の位置が破線円Q5で示す位置に位置付けられるように、走行油圧モータ2Mを自動的に動作させ、第5区画SD5に対する法面仕上げ処理が終了した後、旋回軸の位置が破線円Q6で示す位置に位置付けられるように、走行油圧モータ2Mを自動的に動作させ、第6区画SD6に対する法面仕上げ処理が終了した後、旋回軸の位置が破線円Q7で示す位置に位置付けられるように、走行油圧モータ2Mを自動的に動作させ、第7区画SD7に対する法面仕上げ処理が終了した後、旋回軸の位置が破線円Q8で示す位置に位置付けられるように、走行油圧モータ2Mを自動的に動作させる。破線円Q1から破線円Q8までの距離は、距離Dmax以下に設定されている。
 そして、自動制御部54は、第8区画SD8に対する法面仕上げ処理が終了した後、法尻形成処理を実行する。このとき、ショベル100は、バケット6内に取り込まれた土砂の排土のために上部旋回体3を後方(図の下方)に向けている。具体的には、ショベル100の操作者は、スイッチSW1を押しながら左操作レバー26Lを左旋回方向に操作することによって法尻形成処理を実行させる。自動制御部54は、スイッチSW1が押された状態で左操作レバー26Lが左旋回方向に操作されると、法尻形成処理の実行を開始し、バケット6の爪先の左端LEが完成済みの法尻FSの延長線FSEに沿って移動するように、掘削アタッチメントを自動的に動作させる。より具体的には、自動制御部54は、図13に示すように、バケット6の爪先の左端LEを第1区画SD1の右下隅に位置付けた後で、左旋回動作、ブーム上げ動作、アーム閉じ動作、及びバケット開き動作を自動的に実行する。そして、自動制御部54は、バケット6の爪先の左端LEを、完成済みの法尻FSの延長線FSEに沿って、第8区画SD8の左下隅まで移動させる。
 なお、図13に示す例では、自動制御部54は、旋回軸の位置が破線円Q8で示す位置に位置付けられたままの状態で法尻形成処理を実行するように構成されている。すなわち、法面仕上げ作業を実行するために設定される第1目標停止位置(破線円Q8で示す位置)と法尻形成作業を実行するために設定される第2目標停止位置(破線円Q8で示す位置)とは互いに重複するように設定されている。しかしながら、自動制御部54は、第1区画SD1~第8区画SD8に対する法尻形成処理の実行に適した位置(第2目標停止位置の一つ)まで下部走行体1を移動させてもよい。すなわち、第1目標停止位置(破線円Q8で示す位置)と第2目標停止位置とは互いに異なるように設定されてもよい。
 なお、以下では、一回の法尻形成処理によってほぼ同じタイミングで法尻が形成される複数の区画は「区画セット」と称される。図13に示す例では、第1区画SD1~第8区画SD8は第1区画セットSG1を構成し、第9区画SD9~第16区画SD16は第2区画セットSG2を構成している。
 その後、自動制御部54は、第1区画セットSG1に対する法尻形成処理が終了した後、スイッチSW2が押された状態で走行レバー26Dが操作されると、旋回軸の位置が破線円Q9で示す位置に位置付けられるように、走行油圧モータ2Mを自動的に動作させる。第9区画SD9に対する法面仕上げ処理が実行されるようにするためである。
 その後、自動制御部54は、第2区画セットに対する法面仕上げ処理が完了するまで、すなわち、第16区画SD16に対する法面仕上げ処理が完了するまで、法面仕上げ処理と走行支援処理とを繰り返す。
 そして、自動制御部54は、第16区画SD16に対する法面仕上げ処理が終了した後、第2区画セットSG2に対する法尻形成処理を実行する。具体的には、自動制御部54は、図13に示すように、バケット6の爪先の左端LEを第9区画SD9の右下隅に位置付けた後で、左旋回動作、ブーム上げ動作、アーム閉じ動作、及びバケット開き動作を自動的に実行する。そして、自動制御部54は、バケット6の爪先の左端LEを、完成済みの法尻FSの延長線FSEに沿って、第16区画SD16の左下隅まで移動させる。
 なお、図13に示す例では、自動制御部54は、第1区画セットSG1に対する法面仕上げ作業を実行し、その次に、第1区画セットSG1に対する法尻形成処理を実行し、その次に、第2区画セットSG2に対する法面仕上げ作業を実行するように構成されている。すなわち、自動制御部54は、例えば、ショベル100を左方に移動させながら一連の処理を実行するように構成されている。その上で、自動制御部54は、一つの区画(第7区画SD7)に対する法面仕上げ処理が実行されるように第1目標停止位置の一つ(破線円Q7で示す位置)で下部走行体1を停止させ、その次に、別の一つの区画(第8区画SD8)に対する法面仕上げ処理と、一つの区画セット(第1区画SD1~第8区画SD8)に対する法尻形成作業とが実行されるように第2目標停止位置の一つ(破線円Q8で示す位置)で下部走行体1を停止させ、その次に、更に別の一つの区画(第9区画SD9)に対する法面仕上げ処理が実行されるように第1目標停止位置の別の一つ(破線円Q9で示す位置)で下部走行体1を停止させている。
 しかしながら、自動制御部54は、例えば、全ての区画に対する法面仕上げ作業が完了した後で、法尻形成作業を実行するように構成されていてもよい。この場合、自動制御部54は、例えば、ショベル100を左方に移動させながら一連の法面仕上げ処理を実行するように構成され、且つ、ショベル100を右方に移動させながら一連の法尻形成処理を実行するように構成されていてもよい。この場合、自動制御部54は、例えば、一つの区画セット(第1区画セットSG1)に属する一つの区画(第8区画SD8)に対する法面仕上げ処理が実行されるように第1目標停止位置の一つ(破線円Q8で示す位置)で下部走行体1を停止させ、その次に、別の一つの区画セット(第2区画セットSG2)に属する一つの区画(第9区画SD9)に対する法面仕上げ処理が実行されるように第1目標停止位置の別の一つ(破線円Q9で示す位置)で下部走行体1を停止させてもよい。また、自動制御部54は、例えば、一つの区画セット(第2区画セットSG2)に対する法尻形成作業が実行されるように第2目標停止位置の一つ(破線円Q16で示す位置)で下部走行体1を停止させ、その次に、別の一つの区画セット(第1区画セットSG1)に対する法尻形成作業が実行されるように第2目標停止位置の別の一つ(破線円Q9で示す位置)で下部走行体1を停止させてもよい。破線円Q9から破線円Q16までの距離は、距離Dmax以下に設定されている。
 このように、本開示の実施形態に係るショベル100は、下部走行体1と、下部走行体1に搭載される上部旋回体3と、上部旋回体3に取り付けられるブーム4、ブーム4の先端に取り付けられるアーム5、及び、アーム5の先端に取り付けられるエンドアタッチメントとしてのバケット6を含むアタッチメント(掘削アタッチメント)と、バケット6の爪先の左端又は右端が目標線としての法尻FSの延長線FSEに沿って動くように、上部旋回体3の旋回と掘削アタッチメントの動きとを制御する制御装置としての機械制御装置50と、を備えている。また、本実施形態では、法尻FSに対するバケット6の左端又は右端の制御について説明したが、本発明は、バケットチルト機構を備えたショベルへも適用できる。コントローラ30は、バケットチルト機構を備えたショベルにおいては、チルトバケットの端部(爪先、若しくは、背面)が目標施工面(複数の目標線で形成)に沿って動くように上部旋回体3の旋回と掘削アタッチメントの動きとを制御してもよい。この場合、コントローラ30は、旋回動作に対応してチルトバケットを備えるアタッチメントを制御することで、目標施工面の仕上げ作業の支援を容易に行うことができる。また、コントローラ30は、バケット6の端部(背面の左端又は右端)が目標施工面(複数の目標線で形成)に沿って動くように上部旋回体3の旋回と掘削アタッチメントの動きとを制御してもよい。この場合、コントローラ30は、バケット6の背面の左端又は右端の直線部を目標施工面に沿わせつつ旋回動作を行うことで、バケットチルト機構が設けられていなくても目標施工面の仕上げ作業を支援することができる。このように、コントローラ30は、操作者によるアーム操作に応じてバケット6の所定の部位が目標施工面に沿って動くように自動で制御することができ、更に、旋回操作に応じてバケット6の所定の部位が法尻を含む目標施工面に沿って動くように上部旋回体3の旋回とアタッチメントの動きとを自動制御する。
 この構成は、ショベル100の操作者による法尻FS等の地物の縁部の形成を支援できるという効果をもたらす。ショベル100の操作者は、例えば、スイッチSW1を押しながら左操作レバー26Lを左旋回方向に操作するだけで、バケット6の爪先の左端LEを法尻FSの延長線FSEに沿って移動させることができるためである。或いは、ショベル100の操作者は、例えば、スイッチSW1を押しながら左操作レバー26Lを右旋回方向に操作するだけで、バケット6の爪先の右端を法尻FSの延長線FSEに沿って移動させることができるためである。
 目標線は、例えば、法尻、法肩、溝の縁、又は、角溝の底面の角に沿った線であってもよい。例えば、目標線は、図10A及び図10Bに示すように、法尻FSに沿った線(法尻FSの延長線FSE)であってもよく、法肩TSに沿った線(法肩TSの延長線)であってもよい。或いは、目標線は、U字溝又は四角溝等の溝の縁に沿った線であってもよく、四角溝等の角溝の底面の角(溝壁面と溝底面との間の角)に沿った線であってもよい。
 機械制御装置50は、旋回動作、ブーム上げ動作、及びアーム閉じ動作を含む複合動作を行うことにより、エンドアタッチメントの左端又は右端を目標線に沿って移動させるように構成されていてもよい。例えば、機械制御装置50は、図11A~図11Cに示すように、左旋回動作、ブーム上げ動作、及びアーム閉じ動作を含む複合動作を行うことにより、バケット6の爪先の左端LEを法尻FSの延長線FSEに沿って移動させるように構成されていてもよい。この構成により、機械制御装置50は、法尻FSの周囲に堆積している土砂SLを効率的に除去できる。
 機械制御装置50は、所定のスイッチが操作された状態で旋回操作レバーが操作されたときに、エンドアタッチメントの左端又は右端が前記目標線に沿って動くように、上部旋回体3の旋回とアタッチメントの動きとを制御するように構成されていてもよい。例えば、機械制御装置50は、左操作レバー26Lの先端に設けられた押しボタンスイッチであるスイッチSW1が押された状態で左操作レバー26Lが左旋回方向に操作されたときに、図11A~図11Cに示すように、バケット6の爪先の左端LEが法尻FSの延長線FSEに沿って動くように、上部旋回体3の左旋回と掘削アタッチメントの動きとを制御するように構成されていてもよい。この構成により、ショベル100の操作者は、簡単な操作によって法尻FSを形成できる。
 法尻形成処理が実行される際に設定される目標線の長さは、バケット6の幅の2倍以上であり、且つ、作業半径未満である。作業半径は、例えば、掘削アタッチメントを旋回軸に垂直な方向に最大限伸張させたときの旋回軸とバケット6の爪先との間の距離である。この構成により、ショベル100の作業者は、複数回の法面仕上げ作業を行った後で法尻形成処理を実行させることで、複数回の法面仕上げ作業の際に上り法面BSからこぼれ落ちて法尻FSの近くに堆積した土砂SLをバケット6でまとめて掬い上げ且つ除去できる。
 また、本開示の実施形態に係るショベル100では、コントローラ30は、目標施工面の縁部の位置に基づいて設定される目標停止位置で下部走行体1を停止させるように下部走行体1の動きを制御するように構成されていてもよい。例えば、コントローラ30は、目標施工面の縁部に堆積した土砂をアタッチメントにより取り除くように、下部走行体1を停止させる目標停止位置を設定するように構成されていてもよい。目標施工面は、例えば、法面(上り法面BS)であり、縁部は、法尻FS又は法肩TSである。
 目標停止位置は、法面仕上げ作業の対象となる複数の区画のそれぞれに対応するように設定される第1目標停止位置と、複数の区画のうちの連続する二つ以上の区画で構成される区画セットのそれぞれに対応するように設定される第2目標停止位置と、を含んでいてもよい。そして、第1目標停止位置と第2目標停止位置とは重複していてもよい。図13に示す例では、目標停止位置は、第1区画SD1~第22区画SD22のそれぞれに対応するように設定される第1目標停止位置(破線円Q1~破線円Q22のそれぞれで示す位置)と、複数の区画のうちの連続する二つ以上の区画で構成される区画セット(第1区画セットSG1及び第2区画セットSG2等)のそれぞれに対応するように設定される第2目標停止位置(破線円Q8及び破線円Q16のそれぞれで示す位置)と、を含む。機械制御装置50は、複数の第1目標停止位置(破線円Q1~破線円Q22のそれぞれで示す位置)を結ぶ線を目標走行ルートとし、その目標走行ルートに沿って下部走行体1を移動させてもよい。
 この構成は、ショベル100の操作者による法尻FS等の地物の縁部の形成を支援できるという効果をもたらす。ショベル100の操作者は、例えば、スイッチSW2を押しながら走行レバー26Dを操作するだけで、ショベル100(下部走行体1)を法面仕上げ処理の実行に適した位置に移動させることができるためである。また、ショベル100の操作者は、例えば、スイッチSW2を押しながら走行レバー26Dを操作するだけで、ショベル100(下部走行体1)を法尻形成処理の実行に適した位置に移動させることができるためである。なお、目標施工面は、例えば、溝の壁面であってもよい。この場合、縁部は、その溝の縁、又は、その溝の壁面と底面との間の角であってもよい。
 以上、本発明の好ましい実施形態について詳説した。しかしながら、本発明は、上述した実施形態に制限されることはなく、後述の実施形態に制限されることもない。上述した又は後述する実施形態は、本発明の範囲を逸脱することなしに、種々の変形又は置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。
 例えば、上述の実施形態では、法尻FSの延長線FSEは、直線状に延びているが、曲線部分を含んでいてもよい。
 本願は、2021年3月31日に出願した日本国特許出願2021-060297号に基づく優先権、及び、2021年3月31日に出願した日本国特許出願2021-062318号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 2・・・旋回機構 2A・・・旋回油圧モータ 2M・・・走行油圧モータ 2ML・・・左走行油圧モータ 2MR・・・右走行油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13・・・レギュレータ 13L・・・左レギュレータ 13R・・・右レギュレータ 14・・・メインポンプ 14L・・・左メインポンプ 14R・・・右メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブユニット 18・・・絞り 18L・・・左絞り 18R・・・右絞り 19・・・制御圧センサ 19L・・・左制御圧センサ 19R・・・右制御圧センサ 26・・・操作装置 28、28L、28R・・・吐出圧センサ 29・・・操作センサ 30・・・コントローラ 31、31AL、31AR、31BL、31BR、31CL、31CR、・・・比例弁 43・・・音声出力装置 45・・・表示装置 46・・・入力装置 47・・・記憶装置 50・・・機械制御装置 51・・・位置算出部 52・・・距離算出部 53・・・情報伝達部 54・・・自動制御部 171~174、175L、175R、176L、176R・・・制御弁 S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・機体傾斜センサ S5・・・旋回角速度センサ S6・・・カメラ S6B・・・後カメラ S6F・・・前カメラ S6L・・・左カメラ S6R・・・右カメラ P1・・・測位装置 T1・・・通信装置

Claims (13)

  1.  下部走行体と、
     前記下部走行体に搭載される上部旋回体と、
     前記上部旋回体に取り付けられるブーム、前記ブームの先端に取り付けられるアーム、及び、前記アームの先端に取り付けられるエンドアタッチメントを含むアタッチメントと、
     前記エンドアタッチメントの端部が目標線に沿って動くように、前記上部旋回体の旋回と前記アタッチメントの動きとを制御する制御装置と、を備える、
     ショベル。
  2.  前記目標線は、法尻、法肩、溝の縁、又は、四角溝の底面の角に沿った線である、
     請求項1に記載のショベル。
  3.  前記制御装置は、旋回動作、ブーム上げ動作、及びアーム閉じ動作を含む複合動作を行うことにより、前記エンドアタッチメントの左端又は右端を前記目標線に沿って移動させる、
     請求項1に記載のショベル。
  4.  前記制御装置は、所定のスイッチが操作された状態で旋回操作レバーが操作されたときに、前記エンドアタッチメントの左端又は右端が前記目標線に沿って動くように、前記上部旋回体の旋回と前記アタッチメントの動きとを制御する、
     請求項1に記載のショベル。
  5.  前記目標線の長さは、作業半径未満である、
     請求項1に記載のショベル。
  6.  前記目標線は、直線状に延びる線である、
     請求項1に記載のショベル。
  7.  前記制御装置は、目標施工面の縁部に堆積した土砂を前記アタッチメントにより取り除くように、前記下部走行体を停止させる目標停止位置を設定する、
     請求項1に記載のショベル。
  8.  前記目標停止位置は、法面仕上げ作業の対象となる複数の区画のそれぞれに対応するように設定される第1目標停止位置と、複数の前記区画のうちの連続する二つ以上の前記区画で構成される区画セットのそれぞれに対応するように設定される第2目標停止位置と、を含む、
     請求項7に記載のショベル。
  9.  前記制御装置は、前記第1目標停止位置の一つで前記下部走行体を停止させ、その次に、前記第2目標停止位置の一つで前記下部走行体を停止させ、その次に、前記第1目標停止位置の別の一つで前記下部走行体を停止させる、
     請求項8に記載のショベル。
  10.  前記目標施工面は、溝の壁面であり、
     前記縁部は、前記溝の縁、又は、前記溝の前記壁面と底面との間の角である、
     請求項7に記載のショベル。
  11.  下部走行体と、
     前記下部走行体に搭載される上部旋回体と、
     前記上部旋回体に取り付けられるブーム、前記ブームの先端に取り付けられるアーム、及び、前記アームの先端に取り付けられるエンドアタッチメントを含むアタッチメントと、
     目標施工面の縁部に堆積した土砂を前記アタッチメントにより取り除くように、前記下部走行体を停止させる目標停止位置を設定する制御装置と、を備える、
     ショベル。
  12.  下部走行体と、前記下部走行体に搭載される上部旋回体と、前記上部旋回体に取り付けられるブーム、前記ブームの先端に取り付けられるアーム、及び、前記アームの先端に取り付けられるエンドアタッチメントを含むアタッチメントと、を備えるショベルの制御装置であって、
     前記エンドアタッチメントの端部が目標線に沿って動くように、前記上部旋回体の旋回と前記アタッチメントの動きとを制御する、
     ショベルの制御装置。
  13.  下部走行体と、前記下部走行体に搭載される上部旋回体と、前記上部旋回体に取り付けられるブーム、前記ブームの先端に取り付けられるアーム、及び、前記アームの先端に取り付けられるエンドアタッチメントを含むアタッチメントと、を備えるショベルの制御装置であって、
     目標施工面の縁部に堆積した土砂を前記アタッチメントにより取り除くように、前記下部走行体を停止させる目標停止位置を設定する、
     ショベルの制御装置。
PCT/JP2022/015224 2021-03-31 2022-03-28 ショベル及びショベルの制御装置 WO2022210619A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022002012.1T DE112022002012T5 (de) 2021-03-31 2022-03-28 Bagger und Steuervorrichtung für Bagger
CN202280023199.2A CN117083430A (zh) 2021-03-31 2022-03-28 挖土机及挖土机的控制装置
JP2023511317A JPWO2022210619A1 (ja) 2021-03-31 2022-03-28
US18/470,689 US20240011241A1 (en) 2021-03-31 2023-09-20 Shovel and control device for shovel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-062318 2021-03-31
JP2021060297 2021-03-31
JP2021062318 2021-03-31
JP2021-060297 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/470,689 Continuation US20240011241A1 (en) 2021-03-31 2023-09-20 Shovel and control device for shovel

Publications (1)

Publication Number Publication Date
WO2022210619A1 true WO2022210619A1 (ja) 2022-10-06

Family

ID=83459317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015224 WO2022210619A1 (ja) 2021-03-31 2022-03-28 ショベル及びショベルの制御装置

Country Status (4)

Country Link
US (1) US20240011241A1 (ja)
JP (1) JPWO2022210619A1 (ja)
DE (1) DE112022002012T5 (ja)
WO (1) WO2022210619A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049701A1 (ja) * 2017-09-08 2019-03-14 住友重機械工業株式会社 ショベル
WO2019189935A1 (ja) * 2018-03-31 2019-10-03 住友建機株式会社 ショベル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102635054B1 (ko) 2017-12-07 2024-02-07 스미토모 겐키 가부시키가이샤 쇼벨
JP2021060297A (ja) 2019-10-08 2021-04-15 藤森工業株式会社 ひび割れ検出用積層シート、ひび割れ検出方法及びひび割れ検出キット
JP7266504B2 (ja) 2019-10-10 2023-04-28 株式会社日立プラントサービス 汚泥掻寄機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049701A1 (ja) * 2017-09-08 2019-03-14 住友重機械工業株式会社 ショベル
WO2019189935A1 (ja) * 2018-03-31 2019-10-03 住友建機株式会社 ショベル

Also Published As

Publication number Publication date
JPWO2022210619A1 (ja) 2022-10-06
US20240011241A1 (en) 2024-01-11
DE112022002012T5 (de) 2024-03-07

Similar Documents

Publication Publication Date Title
KR102602384B1 (ko) 쇼벨
JP7307051B2 (ja) ショベル
KR20210106409A (ko) 쇼벨
EP4012111A1 (en) Excavator
EP3722517B1 (en) Excavator
KR20210089676A (ko) 쇼벨, 쇼벨의 제어장치
CN113167051A (zh) 挖土机、挖土机的控制装置
CN113544338B (zh) 挖土机及施工系统
JP2004116108A (ja) スイング式油圧ショベルのスイング制御装置
WO2022210173A1 (ja) ショベルの表示装置、ショベル
JP7412918B2 (ja) ショベル
CN114174595B (zh) 挖土机及挖土机的控制装置
JP7285679B2 (ja) ショベル
WO2022210619A1 (ja) ショベル及びショベルの制御装置
WO2022210667A1 (ja) ショベル及びショベルの制御装置
CN117083430A (zh) 挖土机及挖土机的控制装置
WO2022202918A1 (ja) ショベル及びショベルの施工支援システム
WO2022196776A1 (ja) ショベル
JP2024001736A (ja) ショベル
JP2024031019A (ja) ショベルの表示装置
JP2024057971A (ja) ショベル
JP2022154722A (ja) ショベル
JP2021055433A (ja) ショベル
JPH11107323A (ja) スイング式油圧ショベルのフロント制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511317

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280023199.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022002012

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780830

Country of ref document: EP

Kind code of ref document: A1