WO2022210387A1 - Electrode - Google Patents

Electrode Download PDF

Info

Publication number
WO2022210387A1
WO2022210387A1 PCT/JP2022/014534 JP2022014534W WO2022210387A1 WO 2022210387 A1 WO2022210387 A1 WO 2022210387A1 JP 2022014534 W JP2022014534 W JP 2022014534W WO 2022210387 A1 WO2022210387 A1 WO 2022210387A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive carbon
carbon layer
electrode
bonded atoms
gold nanoparticles
Prior art date
Application number
PCT/JP2022/014534
Other languages
French (fr)
Japanese (ja)
Inventor
梨恵 林内
基希 拝師
大 加藤
智之 鎌田
Original Assignee
日東電工株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 国立研究開発法人産業技術総合研究所 filed Critical 日東電工株式会社
Priority to JP2023511182A priority Critical patent/JPWO2022210387A1/ja
Publication of WO2022210387A1 publication Critical patent/WO2022210387A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells

Definitions

  • the present invention relates to electrodes.
  • Patent Document 1 An electrode comprising a conductive carbon layer in which gold nanoparticles are dispersed is known (see Patent Document 1 below).
  • Patent Document 1 discloses that the content of gold nanoparticles in the conductive carbon layer is 10 atomic % to 22 atomic %.
  • the content of gold nanoparticles is 17 atomic %.
  • the ratio of sp 3-bonded atoms to the total of sp 3 - bonded atoms and sp 2 -bonded atoms (sp 3 /(sp 3 +sp 2 )) was 0.20. and low.
  • the present invention provides electrodes with a high signal-to-noise ratio.
  • the inventors of the present invention surprisingly found that if the ratio of sp 3 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is as high as 0.25 or more, the content of gold nanoparticles The inventors have found that a high signal-to-noise ratio can be obtained by reducing the to less than 10 atomic %, which led to the completion of the present invention.
  • the present invention (1) comprises a substrate and a conductive carbon layer in order toward one side in the thickness direction, and the conductive carbon layer contains 10 atoms of gold nanoparticles dispersed in the conductive carbon layer. %, wherein the conductive carbon layer comprises sp 3 -bonded atoms and sp 2 -bonded atoms, the ratio of sp 3-bonded atoms to the sum of sp 3 - bonded atoms and sp 2 -bonded atoms including electrodes wherein (sp 3 /(sp 3 +sp 2 )) is greater than or equal to 0.25.
  • the present invention (2) includes the electrode according to (1), wherein the content of the gold nanoparticles in the conductive carbon layer is less than 5 atomic %.
  • the electrode of the present invention can obtain a high signal-noise ratio.
  • FIG. 1 is a cross-sectional view of an electrode according to one embodiment of the invention.
  • the electrode 1 extends in a plane direction perpendicular to the thickness direction.
  • the electrode 1 has one surface in the thickness direction and the other surface separated from the one surface in the thickness direction.
  • the electrode 1 includes a base material 2 and a conductive carbon layer 3 arranged on one surface of the base material 2 in the thickness direction. That is, the electrode 1 has a substrate 2 and a conductive carbon layer 3 in this order on one side in the thickness direction. Preferably, electrode 1 comprises only substrate 2 and conductive carbon layer 3 .
  • the base material 2 forms the other surface of the electrode 1 in the thickness direction.
  • the base material 2 include inorganic base materials and organic base materials.
  • Inorganic substrates include, for example, silicon and glass.
  • Examples of organic substrates include polyethylene terephthalate.
  • Other known materials can also be preferably used as the material of the base material 2 . From the viewpoint of electrode activity, inorganic substrates are preferred, and silicon is more preferred.
  • the base material 2 is prepared as a silicon wafer, for example.
  • the thickness of the base material 2 is not limited.
  • the thickness of the substrate 2 is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and is, for example, 1000 ⁇ m or less, preferably 500 ⁇ m, more preferably 100 ⁇ m or less. be.
  • the conductive carbon layer 3 forms one surface of the electrode 1 in the thickness direction.
  • the conductive carbon layer 3 has conductivity.
  • the conductive carbon layer 3 is in contact with one surface of the substrate 2 in the thickness direction.
  • the conductive carbon layer 3 contains a plurality of gold nanoparticles 5.
  • a plurality of gold nanoparticles 5 are dispersed in the conductive carbon layer 3 .
  • the conductive carbon layer 3 contains, for example, a carbon matrix 4 and a plurality of gold nanoparticles 5 .
  • the carbon matrix 4 is the main part of the conductive carbon layer 3.
  • the carbon matrix 4 has carbon with sp 2 bonds and carbon with sp 3 bonds. That is, the carbon matrix 4 is a microcrystalline domain having a graphite-type structure and a diamond-type structure. Thereby, the conductive carbon layer 3 has a chemically stable structure and low background noise while having good conductivity. As a result, sensitivity to the object to be measured is sufficiently improved.
  • the ratio of the number of sp 3 -bonded atoms to the sum of the number of sp 3 -bonded atoms and the number of sp 2 -bonded atoms is 0.25 or more.
  • the ratio of the number of sp 3 -bonded atoms to the sum of the number of sp 3 -bonded atoms and the number of sp 2 -bonded atoms is less than 0.25 , resulting in a lower signal-to-noise ratio.
  • the ratio of the number of sp 3 -bonded atoms to the sum of the number of sp 3 -bonded atoms and the number of sp 2 -bonded atoms is preferably 0.30. Above, more preferably 0.35 or more, still more preferably 0.40 or more.
  • the ratio of the number of sp 3 -bonded atoms to the sum of the number of sp 3 -bonded atoms and the number of sp 2 -bonded atoms is preferably 0.95. Below, more preferably 0.90 or less, still more preferably 0.75 or less, particularly preferably 0.60 or less. If the ratio of the number of sp 3 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is equal to or less than the above upper limit, excellent conductivity in the conductive carbon layer 3 can be ensured.
  • the carbon matrix 4 is allowed to contain a small amount of unavoidable impurities.
  • Inevitable impurities include, for example, oxygen, argon, and nitrogen.
  • the gold nanoparticles 5 are uniformly dispersed in the carbon matrix 4.
  • the median diameter of the gold nanoparticles 5 is, for example, 0.1 nm or more, preferably 1 nm or more, and for example, 20 nm or less, preferably 10 nm or less.
  • Some of the plurality of gold nanoparticles 5 are exposed from one side of the carbon matrix 4 in the thickness direction.
  • the tip (one edge) of the exposed gold nanoparticles 5 is located on the most one side in the thickness direction of the conductive carbon layer 3 .
  • the content of gold nanoparticles 5 in the conductive carbon layer 3 is less than 10 atomic percent.
  • the ratio of the number of sp 3 bonded atoms in the conductive carbon layer 3 (sp 3 /(sp 3 +sp 2 )) is 0.25 or more, the gold nanoparticles in the conductive carbon layer 3 in the conductive carbon layer 3 If the content of 5 is 10 atomic % or more, the signal-noise ratio becomes low.
  • the content of the gold nanoparticles 5 in the conductive carbon layer 3 is preferably 9 atomic % or less, more preferably 7 atomic % or less, still more preferably 6 atomic % or less, particularly preferably 5 atomic % or less, Furthermore, it is preferably less than 5 atomic %, more preferably 4 atomic % or less, furthermore 3 atomic % or less.
  • the lower limit of the content of gold nanoparticles 5 in the conductive carbon layer 3 is not limited.
  • the content of the gold nanoparticles 5 in the conductive carbon layer 3 is, for example, more than 0 atomic %, preferably 0.1 atomic % or more, more preferably 0.5 atomic % or more, and still more preferably 1 atomic %. More preferably, it is 2 atomic % or more.
  • the content ratio of the gold nanoparticles 5 in the conductive carbon layer 3 will be described later in Examples.
  • the thickness of the conductive carbon layer 3 is, for example, 0.1 nm or more, preferably 0.2 nm or more, and 100 nm or less, preferably 50 nm or less.
  • the surface resistance Rs of the conductive carbon layer 3 on one side in the thickness direction is, for example, 1.0 ⁇ 10 4 ⁇ / ⁇ or less, preferably 1.0 ⁇ 10 3 ⁇ / ⁇ or less.
  • the thickness of the electrode 1 is the total thickness of the substrate 2 and the conductive carbon layer 3. Specifically, the thickness is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more. Also, for example, it is 1000 ⁇ m or less, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the base material 2 is prepared.
  • a conductive carbon layer 3 is formed on one surface of the substrate 2 in the thickness direction.
  • a method for forming the conductive carbon layer 3 include a dry method. Dry methods include, for example, PVD (physical vapor deposition) and CVD (chemical vapor deposition). The dry method preferably includes PVD method. PVD methods include, for example, sputtering, vacuum deposition, laser deposition, and ion plating (arc deposition). Sputtering is preferred.
  • Sputtering includes, for example, unbalanced magnetron sputtering (UBM sputtering), high-power pulse sputtering, electron cyclotron resonance sputtering, RF sputtering, DC sputtering (DC magnetron sputtering), DC pulse sputtering, and ion beam sputtering.
  • UBM sputtering is more preferred.
  • Targets in sputtering include, for example, sintered carbon and gold.
  • a target is provided in the sputtering apparatus.
  • Two targets are provided in the sputtering apparatus.
  • the sputtering apparatus includes, for example, a film forming member.
  • film formation members include film formation plates (film formation substrates) and film formation rolls.
  • the film forming member is arranged to face the target with a space therebetween. Desired electric power and voltage can be applied to each of the target and the deposition member.
  • the power and voltage are appropriately set according to the content of the gold nanoparticles 5 and the ratio of sp 3 in the conductive carbon layer 3 .
  • the voltage applied to the film forming member is called an ion acceleration voltage because it has the effect of accelerating the speed of the sputtering gas ions that collide with the film forming member.
  • the sputtering gas introduced into the sputtering apparatus includes, for example, an inert gas.
  • Inert gases include, for example, argon.
  • the pressure in sputtering is, for example, 1 Pa or less.
  • the electrode 1 having the substrate 2 and the conductive carbon layer 3 in order on one side in the thickness direction is obtained.
  • the electrode 1 can be used as various electrodes, preferably an electrode for electrochemical measurements for performing electrochemical measurements, specifically a working electrode (working electrode) for performing cyclic voltammetry (CV), It can be used as a working electrode (working electrode) for performing square wave voltammetry (SWV), anodic-stripping-voltammetry (ASV), and amperometry.
  • an electrode for electrochemical measurements for performing electrochemical measurements specifically a working electrode (working electrode) for performing cyclic voltammetry (CV)
  • CV cyclic voltammetry
  • SWV square wave voltammetry
  • ASV anodic-stripping-voltammetry
  • amperometry amperometry
  • this electrode 1 is suitably used as an electrode (working electrode) with a high signal-to-noise ratio for metal elements classified into groups 14 to 15 in the periodic table defined by IUPAC in 2019.
  • Electrode 1 is preferably an electrode (working electrode) with a high signal-to-noise ratio for Group 15 metal elements, more preferably for arsenic (specifically, trivalent arsenic ion). - Suitable for use as an electrode (working electrode) with a high noise ratio.
  • the conductive carbon layer 3 contains less than 10 atomic percent of the gold nanoparticles 5, and the ratio of sp 3 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is 0.25 or more. so the signal-to-noise ratio is high.
  • this electrode 1 is used as an electrode for measuring metal elements classified into groups 14 to 15, specifically arsenic, a high signal-to-noise ratio can be obtained.
  • electrode 1 comprises one base material 2 and one conductive carbon layer 3 .
  • the modified example includes one base material 2 and a plurality of (specifically, two) conductive carbon layers 3 . That is, the electrode 1 can be provided with a number (specifically, two) of the conductive carbon layers 3 for one substrate 2 .
  • the electrode 1 has two conductive carbon layers 3, the conductive carbon layer 3, the substrate 2, and the conductive carbon layer 3 are arranged in order in the thickness direction.
  • the conductive carbon layer 3 arranged on the other side in the thickness direction of the base material 2 is formed by the same method as the method for forming the conductive carbon layer 3 arranged on one side in the thickness direction of the base material 2. be.
  • one or more functional layers may be further provided.
  • the functional layer include an underlying layer, a gas barrier layer, a conductive layer, an adhesion layer, and a smooth surface layer.
  • Examples and comparative examples are shown below to describe the present invention more specifically.
  • the present invention is not limited to Examples and Comparative Examples.
  • specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the following description are the corresponding mixing ratios ( Content ratio), physical properties, parameters, etc. be able to.
  • Example 1 A substrate 2 made of a silicon wafer having a thickness of 280 ⁇ m was prepared.
  • the sputtering apparatus independently includes a first target, a second target, and a film deposition plate.
  • a conductive carbon layer 3 having a target thickness of 40 nm was formed on one surface of the substrate 2 in the thickness direction by sputtering using this sputtering apparatus.
  • an electrode 1 comprising a substrate 2 and a conductive carbon layer 3 in which gold nanoparticles 5 were dispersed was produced.
  • Sputtering conditions are as follows.
  • First target sintered carbon
  • Second target gold Sputtering gas: argon Pressure: 0.6 Pa Voltage applied to film plate (ion acceleration voltage): 75V Power applied to first target: 400 W Power applied to second target: 50 W
  • Electrode 1 was manufactured in the same manner as in Example 1. However, the voltage applied to the film formation plate, the power applied to the first target, and the power applied to the second target were changed as shown in Table 1.
  • a sample electrode with a known electrode area was prepared by attaching an insulating tape having a hole with a diameter of 2 mm to one side of the conductive carbon layer 3. .
  • This sample electrode was used as a working electrode, inserted into a 0.05MH 2 SO 4 aqueous solution, and connected to a potentiostat (ALS730C, manufactured by CHI Instruments).
  • a reference electrode (Ag/AgCl) and a counter electrode (Pt) were also inserted into the H 2 SO 4 solution and connected to the potentiostat.
  • aqueous H 2 SO 4 solutions were prepared such that the concentrations of arsenic ions (trivalent) in the aqueous H 2 SO 4 solution were 0 ppb and 100 ppb, respectively.
  • Arsenic ions (trivalent) were reduced and deposited on the electrode 1 by setting the reduction deposition potential to ⁇ 0.8 V and the deposition time to 120 seconds. After that, square wave voltammetry (SWV) measurement was performed for each concentration at a frequency of 50 Hz, a potential increment of 3 mV, and an amplitude of 25 mV to obtain an SWV curve.
  • SWV square wave voltammetry
  • the electrodes are used, for example, as electrodes for electrochemical measurements.

Abstract

This electrode (1) comprises a base material (2) and a conductive carbon layer (3) in sequence toward one side in the thickness direction. The conductive carbon layer (3) contains less than 10% by atom of gold nanoparticles that are dispersed in the conductive carbon layer (3). The conductive carbon layer (3) contains atoms to be sp3-bonded and atoms to be sp2-bonded. The ratio of the atoms to be sp3-bonded to the sum of the atoms to be sp3-bonded and the atoms to be sp2-bonded ((sp3)/(sp3 + sp2)) is 0.25 or more.

Description

電極electrode
 本発明は、電極に関する。 The present invention relates to electrodes.
 金ナノ粒子を分散する導電性カーボン層を備える電極が知られている(下記特許文献1参照。)。特許文献1では、導電性カーボン層における金ナノ粒子の含有量が10原子%から22原子%であることが開示される。また、特許文献1の実施例2では、金ナノ粒子の含有量は、17原子%である。また、実施例2の導電性カーボン層において、sp結合する原子とsp結合する原子との合計に対するsp結合する原子の割合(sp/(sp+sp))が、0.20と低い。 An electrode comprising a conductive carbon layer in which gold nanoparticles are dispersed is known (see Patent Document 1 below). Patent Document 1 discloses that the content of gold nanoparticles in the conductive carbon layer is 10 atomic % to 22 atomic %. In addition, in Example 2 of Patent Document 1, the content of gold nanoparticles is 17 atomic %. In the conductive carbon layer of Example 2, the ratio of sp 3-bonded atoms to the total of sp 3 - bonded atoms and sp 2 -bonded atoms (sp 3 /(sp 3 +sp 2 )) was 0.20. and low.
特開2016-065815号JP 2016-065815
 上記したsp結合する原子の割合(sp/(sp+sp))が0.20と比較的低い場合には、特許文献1に開示されるように、金ナノ粒子の含有量を10原子%以上にすれば、強いシグナル強度が得られる。 When the above ratio of sp 3 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is relatively low at 0.20, the content of gold nanoparticles is reduced to 10 as disclosed in Patent Document 1. A high signal intensity can be obtained at atomic percent or more.
 一方、電極の測定対象の濃度が低ければ、弱いシグナル強度が得られるので、高いシグナル-ノイズ比(S/N比)が求められる。 On the other hand, if the concentration of the object to be measured on the electrode is low, a weak signal intensity can be obtained, so a high signal-to-noise ratio (S/N ratio) is required.
 しかし、特許文献1に記載の電極では、上記した高いシグナル-ノイズ比を得ることができないという不具合がある。 However, the electrode described in Patent Document 1 has a problem that the high signal-noise ratio described above cannot be obtained.
 本発明は、高いシグナル-ノイズ比を有する電極を提供する。 The present invention provides electrodes with a high signal-to-noise ratio.
 そこで、本件発明者らは、sp結合する原子の割合(sp/(sp+sp))が、0.25以上と高い割合であれば、驚くべきことに、金ナノ粒子の含有割合を10原子%未満と低くすることにより、高いシグナル-ノイズ比が得られることを見出し、本発明を完成するに至った。 Therefore, the inventors of the present invention surprisingly found that if the ratio of sp 3 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is as high as 0.25 or more, the content of gold nanoparticles The inventors have found that a high signal-to-noise ratio can be obtained by reducing the to less than 10 atomic %, which led to the completion of the present invention.
 本発明(1)は、基材と、導電性カーボン層とを厚み方向の一方側に向かって順に備え、前記導電性カーボン層は、前記導電性カーボン層に分散された金ナノ粒子を10原子%未満含有し、前記導電性カーボン層は、sp結合する原子と、sp結合する原子とを含み、sp結合する原子とsp結合する原子との合計に対するsp結合する原子の割合(sp/(sp+sp))が、0.25以上である、電極を含む。 The present invention (1) comprises a substrate and a conductive carbon layer in order toward one side in the thickness direction, and the conductive carbon layer contains 10 atoms of gold nanoparticles dispersed in the conductive carbon layer. %, wherein the conductive carbon layer comprises sp 3 -bonded atoms and sp 2 -bonded atoms, the ratio of sp 3-bonded atoms to the sum of sp 3 - bonded atoms and sp 2 -bonded atoms including electrodes wherein (sp 3 /(sp 3 +sp 2 )) is greater than or equal to 0.25.
 本発明(2)は、前記導電性カーボン層における前記金ナノ粒子の含有割合は、5原子%未満である、(1)に記載の電極を含む。 The present invention (2) includes the electrode according to (1), wherein the content of the gold nanoparticles in the conductive carbon layer is less than 5 atomic %.
 本発明の電極は、高いシグナル-ノイズ比を得ることができる。 The electrode of the present invention can obtain a high signal-noise ratio.
本発明の一実施形態の電極の断面図である。1 is a cross-sectional view of an electrode according to one embodiment of the invention; FIG.
 <一実施形態>
 本発明の電極の一実施形態を、図1を参照して説明する。
<One embodiment>
One embodiment of the electrode of the present invention will be described with reference to FIG.
 <電極1>
 図1に示すように、電極1は、厚み方向に直交する面方向に延びる。電極1は、厚み方向の一方面と、一方面と厚み方向に間隔が隔てられる他方面とを有する。
<Electrode 1>
As shown in FIG. 1, the electrode 1 extends in a plane direction perpendicular to the thickness direction. The electrode 1 has one surface in the thickness direction and the other surface separated from the one surface in the thickness direction.
 電極1は、基材2と、基材2の厚み方向の一方面に配置される導電性カーボン層3とを備える。すなわち、電極1は、基材2と、導電性カーボン層3とを厚み方向の一方側に順に備える。好ましくは、電極1は、基材2と、導電性カーボン層3とのみを備える。 The electrode 1 includes a base material 2 and a conductive carbon layer 3 arranged on one surface of the base material 2 in the thickness direction. That is, the electrode 1 has a substrate 2 and a conductive carbon layer 3 in this order on one side in the thickness direction. Preferably, electrode 1 comprises only substrate 2 and conductive carbon layer 3 .
 <基材2>
 基材2は、電極1の厚み方向の他方面を形成する。基材2としては、例えば、無機基材、および、有機基材が挙げられる。無機基材としては、例えば、シリコン、および、ガラスが挙げられる。有機基材としては、例えば、ポリエチレンテレフタレートが挙げられる。基材2の材料として、他の公知の材料も、好ましく用いることができる。好ましくは、電極活性の観点から、無機基材が挙げられ、より好ましくは、シリコンが挙げられる。基材2の材料がシリコンである場合には、基材2は、例えば、シリコンウエハとして準備される。
<Base material 2>
The base material 2 forms the other surface of the electrode 1 in the thickness direction. Examples of the base material 2 include inorganic base materials and organic base materials. Inorganic substrates include, for example, silicon and glass. Examples of organic substrates include polyethylene terephthalate. Other known materials can also be preferably used as the material of the base material 2 . From the viewpoint of electrode activity, inorganic substrates are preferred, and silicon is more preferred. When the material of the base material 2 is silicon, the base material 2 is prepared as a silicon wafer, for example.
 基材2の厚みは、限定されない。基材2の厚みは、例えば、0.1μm以上、好ましくは、0.5μm以上、より好ましくは、1μm以上であり、また、例えば、1000μm以下、好ましくは、500μm、より好ましくは、100μm以下である。 The thickness of the base material 2 is not limited. The thickness of the substrate 2 is, for example, 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm or more, and is, for example, 1000 μm or less, preferably 500 μm, more preferably 100 μm or less. be.
 <導電性カーボン層3>
 導電性カーボン層3は、電極1の厚み方向の一方面を形成する。導電性カーボン層3は、導電性を有する。導電性カーボン層3は、基材2の厚み方向の一方面に接触する。
<Conductive carbon layer 3>
The conductive carbon layer 3 forms one surface of the electrode 1 in the thickness direction. The conductive carbon layer 3 has conductivity. The conductive carbon layer 3 is in contact with one surface of the substrate 2 in the thickness direction.
 導電性カーボン層3は、複数の金ナノ粒子5を含有する。複数の金ナノ粒子5は、導電性カーボン層3に分散されている。具体的には、導電性カーボン層3は、例えば、カーボンマトリクス4と、複数の金ナノ粒子5とを含有する。 The conductive carbon layer 3 contains a plurality of gold nanoparticles 5. A plurality of gold nanoparticles 5 are dispersed in the conductive carbon layer 3 . Specifically, the conductive carbon layer 3 contains, for example, a carbon matrix 4 and a plurality of gold nanoparticles 5 .
 カーボンマトリクス4は、導電性カーボン層3の主な部分である。 The carbon matrix 4 is the main part of the conductive carbon layer 3.
 カーボンマトリクス4は、sp結合を有する炭素およびsp結合を有する炭素を有する。すなわち、カーボンマトリクス4は、グラファイト型構造およびダイヤモンド型構造を有する微結晶ドメインである。これにより、導電性カーボン層3は、良好な導電性を備えながら、化学的に安定な構造と低いバックグラウンドノイズを備える。その結果、測定対象に対する感度が十分に向上される。 The carbon matrix 4 has carbon with sp 2 bonds and carbon with sp 3 bonds. That is, the carbon matrix 4 is a microcrystalline domain having a graphite-type structure and a diamond-type structure. Thereby, the conductive carbon layer 3 has a chemically stable structure and low background noise while having good conductivity. As a result, sensitivity to the object to be measured is sufficiently improved.
 導電性カーボン層3において、sp結合する原子数およびsp結合する原子数の和に対するsp結合する原子数の比率(sp/(sp+sp))は、0.25以上である。 In the conductive carbon layer 3, the ratio of the number of sp 3 -bonded atoms to the sum of the number of sp 3 -bonded atoms and the number of sp 2 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is 0.25 or more. .
 導電性カーボン層3において、sp結合する原子数およびsp結合する原子数の和に対するsp結合する原子数の比率(sp/(sp+sp))が0.25未満であれば、シグナル-ノイズ比が低くなる。 In the conductive carbon layer 3, if the ratio of the number of sp 3 -bonded atoms to the sum of the number of sp 3 -bonded atoms and the number of sp 2 -bonded atoms (sp 3 / (sp 3 + sp 2 )) is less than 0.25 , resulting in a lower signal-to-noise ratio.
 導電性カーボン層3において、sp結合する原子数およびsp結合する原子数の和に対するsp結合する原子数の比率(sp/(sp+sp))は、好ましくは、0.30以上、より好ましくは、0.35以上、さらに好ましくは、0.40以上である。 In the conductive carbon layer 3, the ratio of the number of sp 3 -bonded atoms to the sum of the number of sp 3 -bonded atoms and the number of sp 2 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is preferably 0.30. Above, more preferably 0.35 or more, still more preferably 0.40 or more.
 導電性カーボン層3において、sp結合する原子数およびsp結合する原子数の和に対するsp結合する原子数の比率(sp/(sp+sp))は、好ましくは、0.95以下、より好ましくは、0.90以下、さらに好ましくは、0.75以下、とりわけ好ましくは、0.60以下である。sp結合する原子数の比率(sp/(sp+sp))が上記した上限以下であれば、導電性カーボン層3における優れた導電性を確保できる。 In the conductive carbon layer 3, the ratio of the number of sp 3 -bonded atoms to the sum of the number of sp 3 -bonded atoms and the number of sp 2 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is preferably 0.95. Below, more preferably 0.90 or less, still more preferably 0.75 or less, particularly preferably 0.60 or less. If the ratio of the number of sp 3 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is equal to or less than the above upper limit, excellent conductivity in the conductive carbon layer 3 can be ensured.
 sp結合する原子数の比率(sp/(sp+sp))の測定方法は、後の実施例で記載する。 A method for measuring the ratio of sp 3 -bonded atoms (sp 3 /(sp 3 +sp 2 )) will be described later in Examples.
 なお、カーボンマトリクス4には、不可避不純物の微量の混入が許容される。不可避不純物として、例えば、酸素、アルゴン、および、窒素が挙げられる。 It should be noted that the carbon matrix 4 is allowed to contain a small amount of unavoidable impurities. Inevitable impurities include, for example, oxygen, argon, and nitrogen.
 金ナノ粒子5は、カーボンマトリクス4に均一に分散する。金ナノ粒子5のメジアン径は、例えば、0.1nm以上、好ましくは、1nm以上であり、例えば、20nm以下、好ましくは、10nm以下である。 The gold nanoparticles 5 are uniformly dispersed in the carbon matrix 4. The median diameter of the gold nanoparticles 5 is, for example, 0.1 nm or more, preferably 1 nm or more, and for example, 20 nm or less, preferably 10 nm or less.
 複数の金ナノ粒子5の一部は、カーボンマトリクス4の厚み方向の一方面から露出する。本実施形態では、導電性カーボン層3において、厚み方向の最一方側には、露出した金ナノ粒子5の先端部(一方端縁)が位置する。 Some of the plurality of gold nanoparticles 5 are exposed from one side of the carbon matrix 4 in the thickness direction. In the present embodiment, the tip (one edge) of the exposed gold nanoparticles 5 is located on the most one side in the thickness direction of the conductive carbon layer 3 .
 導電性カーボン層3における金ナノ粒子5の含有割合は、10原子%未満である。 The content of gold nanoparticles 5 in the conductive carbon layer 3 is less than 10 atomic percent.
 導電性カーボン層3においてsp結合する原子数の比率(sp/(sp+sp))が0.25以上である場合において、導電性カーボン層3における導電性カーボン層3における金ナノ粒子5の含有割合が10原子%以上であれば、シグナル-ノイズ比が低くなる。 When the ratio of the number of sp 3 bonded atoms in the conductive carbon layer 3 (sp 3 /(sp 3 +sp 2 )) is 0.25 or more, the gold nanoparticles in the conductive carbon layer 3 in the conductive carbon layer 3 If the content of 5 is 10 atomic % or more, the signal-noise ratio becomes low.
 導電性カーボン層3における金ナノ粒子5の含有割合は、好ましくは、9原子%以下、より好ましくは、7原子%以下、さらに好ましくは、6原子%以下、とりわけ好ましくは、5原子%以下、さらには、5原子%未満、さらには、4原子%以下、さらには、3原子%以下が好適である。 The content of the gold nanoparticles 5 in the conductive carbon layer 3 is preferably 9 atomic % or less, more preferably 7 atomic % or less, still more preferably 6 atomic % or less, particularly preferably 5 atomic % or less, Furthermore, it is preferably less than 5 atomic %, more preferably 4 atomic % or less, furthermore 3 atomic % or less.
 導電性カーボン層3における金ナノ粒子5の含有割合の下限は、限定されない。導電性カーボン層3における金ナノ粒子5の含有割合は、例えば、0原子%超過、好ましくは、0.1原子%以上、より好ましくは、0.5原子%以上、さらに好ましくは、1原子%以上、とりわけ好ましくは、2原子%以上である。 The lower limit of the content of gold nanoparticles 5 in the conductive carbon layer 3 is not limited. The content of the gold nanoparticles 5 in the conductive carbon layer 3 is, for example, more than 0 atomic %, preferably 0.1 atomic % or more, more preferably 0.5 atomic % or more, and still more preferably 1 atomic %. More preferably, it is 2 atomic % or more.
 導電性カーボン層3における金ナノ粒子5の含有割合は、後の実施例で記載する。 The content ratio of the gold nanoparticles 5 in the conductive carbon layer 3 will be described later in Examples.
 導電性カーボン層3の厚みは、例えば、0.1nm以上、好ましくは、0.2nm以上であり、また、100nm以下、好ましくは、50nm以下である。 The thickness of the conductive carbon layer 3 is, for example, 0.1 nm or more, preferably 0.2 nm or more, and 100 nm or less, preferably 50 nm or less.
 導電性カーボン層3の厚み方向の一方面における表面抵抗Rsは、例えば、電極1.0×10Ω/□以下、好ましくは、1.0×10Ω/□以下である。 The surface resistance Rs of the conductive carbon layer 3 on one side in the thickness direction is, for example, 1.0×10 4 Ω/□ or less, preferably 1.0×10 3 Ω/□ or less.
 電極1の厚みは、基材2および導電性カーボン層3の総厚みであって、具体的には、例えば、0.1μm以上、好ましくは、0.5μm以上、より好ましくは、1μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下、より好ましくは、100μm以下である。 The thickness of the electrode 1 is the total thickness of the substrate 2 and the conductive carbon layer 3. Specifically, the thickness is, for example, 0.1 μm or more, preferably 0.5 μm or more, and more preferably 1 μm or more. Also, for example, it is 1000 μm or less, preferably 500 μm or less, more preferably 100 μm or less.
 <電極1の製造方法>
 次に、電極1の製造方法を説明する。
<Manufacturing method of electrode 1>
Next, a method for manufacturing the electrode 1 will be described.
 まず、この方法では、基材2を準備する。 First, in this method, the base material 2 is prepared.
 次いで、導電性カーボン層3を、基材2の厚み方向一方面に形成する。導電性カーボン層3の形成方法としては、例えば、乾式方法が挙げられる。乾式方法としては、例えば、PVD法(物理蒸着法)、および、CVD法(化学蒸着法)が挙げられる。乾式方法として、好ましくは、PVD法が挙げられる。PVD法としては、例えば、スパッタリング、真空蒸着、レーザー蒸着、および、イオンプレーティング(アーク蒸着)が挙げられる。
 好ましくは、スパッタリングが挙げられる。
Next, a conductive carbon layer 3 is formed on one surface of the substrate 2 in the thickness direction. Examples of a method for forming the conductive carbon layer 3 include a dry method. Dry methods include, for example, PVD (physical vapor deposition) and CVD (chemical vapor deposition). The dry method preferably includes PVD method. PVD methods include, for example, sputtering, vacuum deposition, laser deposition, and ion plating (arc deposition).
Sputtering is preferred.
 スパッタリングとしては、例えば、アンバランストマグネトロンスパッタリング(UBMスパッタリング)、大電力パルススパッタリング、電子サイクロトロン共鳴スパッタリング、RFスパッタリング、DCスパッタリング(DCマグネトロンスパッタリング)、DCパルススパッタリング、および、イオンビームスパッタリングが挙げられる。より好ましくは、UBMスパッタリングが挙げられる。 Sputtering includes, for example, unbalanced magnetron sputtering (UBM sputtering), high-power pulse sputtering, electron cyclotron resonance sputtering, RF sputtering, DC sputtering (DC magnetron sputtering), DC pulse sputtering, and ion beam sputtering. UBM sputtering is more preferred.
 スパッタリングにおけるターゲットとしては、例えば、焼結カーボンおよび金が挙げられる。ターゲットは、スパッタリング装置に備えられる。2つのターゲットが、スパッタリング装置に設けられる。また、スパッタリング装置は、例えば、成膜部材を備える。成膜部材としては、例えば、成膜板(成膜基板)、および、成膜ロールが挙げられる。成膜部材は、ターゲットに間隔を隔てて対向配置される。ターゲットおよび成膜部材のそれぞれは、所望の電力および電圧を印加可能である。電力および電圧は、金ナノ粒子5の含有割合、および、導電性カーボン層3におけるspの比率に応じて、適宜設定される。なお、成膜部材に印加する電圧は、成膜部材に衝突するスパッタリングガスイオンの速度を加速する効果があることから、イオン加速電圧と称呼される。 Targets in sputtering include, for example, sintered carbon and gold. A target is provided in the sputtering apparatus. Two targets are provided in the sputtering apparatus. Also, the sputtering apparatus includes, for example, a film forming member. Examples of film formation members include film formation plates (film formation substrates) and film formation rolls. The film forming member is arranged to face the target with a space therebetween. Desired electric power and voltage can be applied to each of the target and the deposition member. The power and voltage are appropriately set according to the content of the gold nanoparticles 5 and the ratio of sp 3 in the conductive carbon layer 3 . The voltage applied to the film forming member is called an ion acceleration voltage because it has the effect of accelerating the speed of the sputtering gas ions that collide with the film forming member.
 スパッタリング装置に導入されるスパッタリングガスとしては、例えば、不活性ガスが挙げられる。不活性ガスは、例えば、アルゴンを含む。スパッタにおける圧力は、例えば、1Pa以下である。 The sputtering gas introduced into the sputtering apparatus includes, for example, an inert gas. Inert gases include, for example, argon. The pressure in sputtering is, for example, 1 Pa or less.
 これにより、基材2と、導電性カーボン層3とを厚み方向一方側に順に備える電極1を得る。 Thus, the electrode 1 having the substrate 2 and the conductive carbon layer 3 in order on one side in the thickness direction is obtained.
 <電極1の用途>
 電極1は、各種電極として用いることができ、好ましくは、電気化学測定法を実施する電気化学測定用の電極、具体的には、サイクリックボルタンメトリー(CV)を実施する作用電極(作用極)、スクウェアウェイブボルタンメトリー(SWV)、アノーディック-ストリッピング-ボルタンメトリー(ASV)、アンペロメトリーを実施する作用電極(作用極)として用いることができる。
<Application of Electrode 1>
The electrode 1 can be used as various electrodes, preferably an electrode for electrochemical measurements for performing electrochemical measurements, specifically a working electrode (working electrode) for performing cyclic voltammetry (CV), It can be used as a working electrode (working electrode) for performing square wave voltammetry (SWV), anodic-stripping-voltammetry (ASV), and amperometry.
 とりわけ、この電極1は、2019年にIUPACにより定められる周期表において第14族から第15族に分類される金属元素に対してシグナル-ノイズ比が高い電極(作用極)として好適に用いられる。電極1は、好ましくは、第15族の金属元素に対してシグナル-ノイズ比が高い電極(作用極)として、より好ましくは、ヒ素(具体的には、3価のヒ素イオン)に対してシグナル-ノイズ比が高い電極(作用極)として好適に用いられる。 In particular, this electrode 1 is suitably used as an electrode (working electrode) with a high signal-to-noise ratio for metal elements classified into groups 14 to 15 in the periodic table defined by IUPAC in 2019. Electrode 1 is preferably an electrode (working electrode) with a high signal-to-noise ratio for Group 15 metal elements, more preferably for arsenic (specifically, trivalent arsenic ion). - Suitable for use as an electrode (working electrode) with a high noise ratio.
 <一実施形態の作用効果>
 この電極1では、導電性カーボン層3は、金ナノ粒子5を10原子%未満含有し、sp結合する原子の割合(sp/(sp+sp))が、0.25以上であるので、シグナル-ノイズ比が高い。
<Action and effect of one embodiment>
In this electrode 1, the conductive carbon layer 3 contains less than 10 atomic percent of the gold nanoparticles 5, and the ratio of sp 3 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is 0.25 or more. so the signal-to-noise ratio is high.
 とりわけ、この電極1を、第14族から第15族に分類される金属元素測定、具体的には、ヒ素測定用電極として用いれば、高いシグナル-ノイズ比が得られる。 In particular, if this electrode 1 is used as an electrode for measuring metal elements classified into groups 14 to 15, specifically arsenic, a high signal-to-noise ratio can be obtained.
<変形例>
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
<Modification>
In the modified example, the same reference numerals are given to the same members and steps as in the embodiment, and detailed description thereof will be omitted. In addition, the modified example can have the same effects as the one embodiment, unless otherwise specified. Furthermore, one embodiment and its modifications can be combined as appropriate.
 図1に示すように、一実施形態では、電極1は、1つの基材2と、1つの導電性カーボン層3とを備える。一方、変形例では、図示しないが、1つの基材2と、複数(具体的には、2つ)の導電性カーボン層3とを備える。つまり、1つの基材2に対して、数(具体的には、2つ)の導電性カーボン層3を電極1が備えることができる。電極1が、2つの導電性カーボン層3を備える場合には、導電性カーボン層3と、基材2と、導電性カーボン層3とが、厚み方向に順に配置される。基材2の厚み方向の他方面に配置される導電性カーボン層3は、基材2の厚み方向の一方面に配置される導電性カーボン層3の形成方法と、同様の方法によって、形成される。 As shown in FIG. 1 , in one embodiment, electrode 1 comprises one base material 2 and one conductive carbon layer 3 . On the other hand, although not shown, the modified example includes one base material 2 and a plurality of (specifically, two) conductive carbon layers 3 . That is, the electrode 1 can be provided with a number (specifically, two) of the conductive carbon layers 3 for one substrate 2 . When the electrode 1 has two conductive carbon layers 3, the conductive carbon layer 3, the substrate 2, and the conductive carbon layer 3 are arranged in order in the thickness direction. The conductive carbon layer 3 arranged on the other side in the thickness direction of the base material 2 is formed by the same method as the method for forming the conductive carbon layer 3 arranged on one side in the thickness direction of the base material 2. be.
 基材2と導電性カーボン層3との間に、または、基材2の下側に、1または2以上の機能層をさらに備えてもよい。機能層としては、例えば、下地層、ガスバリア層、導電層、密着層、表面平滑層などが挙げられる。 Between the base material 2 and the conductive carbon layer 3 or under the base material 2, one or more functional layers may be further provided. Examples of the functional layer include an underlying layer, a gas barrier layer, a conductive layer, an adhesion layer, and a smooth surface layer.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Examples and comparative examples are shown below to describe the present invention more specifically. In addition, the present invention is not limited to Examples and Comparative Examples. In addition, specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the following description are the corresponding mixing ratios ( Content ratio), physical properties, parameters, etc. be able to.
  <実施例1>
 厚み280μmのシリコンウエハからなる基材2を準備した。
<Example 1>
A substrate 2 made of a silicon wafer having a thickness of 280 μm was prepared.
 次いで、基材2をスパッタリング装置にセットした。スパッタリング装置は、第1ターゲットと、第2ターゲットと、成膜板とを独立して備える。このスパッタリング装置を用いるスパッタリングによって、狙い厚み40nmの導電性カーボン層3を基材2の厚み方向の一方面に形成した。これにより、基材2と、金ナノ粒子5が分散された導電性カーボン層3とを備える電極1を製造した。スパッタリング条件は以下の通りである。 Then, the substrate 2 was set in the sputtering device. The sputtering apparatus independently includes a first target, a second target, and a film deposition plate. A conductive carbon layer 3 having a target thickness of 40 nm was formed on one surface of the substrate 2 in the thickness direction by sputtering using this sputtering apparatus. Thus, an electrode 1 comprising a substrate 2 and a conductive carbon layer 3 in which gold nanoparticles 5 were dispersed was produced. Sputtering conditions are as follows.
 第1ターゲット:焼結カーボン
 第2ターゲット:金
 スパッタリングガス:アルゴン
 圧力:0.6Pa
 成膜板に印加する電圧(イオン加速電圧):75V
 第1ターゲットに印加する電力:400W
 第2ターゲットに印加する電力:50W
First target: sintered carbon Second target: gold Sputtering gas: argon Pressure: 0.6 Pa
Voltage applied to film plate (ion acceleration voltage): 75V
Power applied to first target: 400 W
Power applied to second target: 50 W
   <実施例2から実施例4、比較例1から比較例4>
 実施例1と同様にして、電極1を製造した。但し、成膜板に印加する電圧、第1ターゲットに印加する電力、第2ターゲットに印加する電力を、表1に記載の通りに変更した。
<Examples 2 to 4, Comparative Examples 1 to 4>
Electrode 1 was manufactured in the same manner as in Example 1. However, the voltage applied to the film formation plate, the power applied to the first target, and the power applied to the second target were changed as shown in Table 1.
<評価>
 実施例1から実施例4および比較例1から比較例4の電極1について、以下の事項を評価した。
<Evaluation>
The following items were evaluated for the electrodes 1 of Examples 1 to 4 and Comparative Examples 1 to 4.
(1)導電性カーボン層3における金ナノ粒子の含有割合、および、sp/(sp+sp
 導電性カーボン層3における金ナノ粒子5の含有割合、および、sp/(sp+sp)は、X線光電子分光法(XPS、島津製作所)を用いて観測した。
(1) Content ratio of gold nanoparticles in conductive carbon layer 3 and sp 3 /(sp 3 +sp 2 )
The content ratio of gold nanoparticles 5 in the conductive carbon layer 3 and sp 3 /(sp 3 +sp 2 ) were observed using X-ray photoelectron spectroscopy (XPS, Shimadzu Corporation).
(2)低濃度ヒ素イオン(3価)測定時のシグナル-ノイズ比
 直径2mmの穴を有する絶縁テープを導電性カーボン層3の一方面に貼り付けて、電極面積が既知のサンプル電極を作製した。このサンプル電極を作用極として、0.05MHSO水溶液中に挿入し、ポテンシオスタット(CHIインスツルメンツ社製、ALS730C)に接続した。また、同様に、参照電極(Ag/AgCl)および対極(Pt)についてもHSO溶液中に挿入し、ポテンシオスタットに接続した。
(2) Signal-to-noise ratio when measuring low-concentration arsenic ions (trivalent) A sample electrode with a known electrode area was prepared by attaching an insulating tape having a hole with a diameter of 2 mm to one side of the conductive carbon layer 3. . This sample electrode was used as a working electrode, inserted into a 0.05MH 2 SO 4 aqueous solution, and connected to a potentiostat (ALS730C, manufactured by CHI Instruments). Similarly, a reference electrode (Ag/AgCl) and a counter electrode (Pt) were also inserted into the H 2 SO 4 solution and connected to the potentiostat.
 次に、HSO水溶液におけるヒ素イオン(3価)の濃度が0ppb、100ppbとなるようにHSO水溶液をそれぞれ調製した。還元堆積電位-0.8V、堆積時間120秒に設定して、ヒ素イオン(3価)を電極1上へ還元堆積させた。その後、周波数50Hz、電位増加分3mV、振幅25mVと設定して、濃度ごとにスクウェアウェイブボルタンメトリー(SWV)測定を実施して、SWV曲線を得た。得られたSWV曲線において、ヒ素イオン(3価)の濃度100ppbの場合に0.2V付近に観察されるヒ素イオン(3価)由来のピーク応答電流値と、0ppbの溶液の場合にそのピークと同電位での電流値(ノイズ相当値)との比からシグナル-ノイズ比(S/N比、Signal/Noise ratio)を求めた。 Next, aqueous H 2 SO 4 solutions were prepared such that the concentrations of arsenic ions (trivalent) in the aqueous H 2 SO 4 solution were 0 ppb and 100 ppb, respectively. Arsenic ions (trivalent) were reduced and deposited on the electrode 1 by setting the reduction deposition potential to −0.8 V and the deposition time to 120 seconds. After that, square wave voltammetry (SWV) measurement was performed for each concentration at a frequency of 50 Hz, a potential increment of 3 mV, and an amplitude of 25 mV to obtain an SWV curve. In the obtained SWV curve, the peak response current value derived from arsenic ions (trivalent) observed at around 0.2 V when the concentration of arsenic ions (trivalent) is 100 ppb, and the peak for the solution of 0 ppb. A signal-to-noise ratio (S/N ratio, Signal/Noise ratio) was obtained from the ratio to the current value (noise equivalent value) at the same potential.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an illustration and should not be construed as limiting. Variations of the invention that are obvious to those skilled in the art are included in the following claims.
 電極は、例えば、電気化学測定用の電極に用いられる。 The electrodes are used, for example, as electrodes for electrochemical measurements.
1 電極
2 基材
3 導電性カーボン層
1 electrode 2 substrate 3 conductive carbon layer

Claims (2)

  1.  基材と、導電性カーボン層とを厚み方向の一方側に向かって順に備え、
     前記導電性カーボン層は、前記導電性カーボン層に分散された金ナノ粒子を10原子%未満含有し、
     前記導電性カーボン層は、sp結合する原子と、sp結合する原子とを含み、
     sp結合する原子とsp結合する原子との合計に対するsp結合する原子の割合(sp/(sp+sp))が、0.25以上である、電極。
    A substrate and a conductive carbon layer are provided in order toward one side in the thickness direction,
    The conductive carbon layer contains less than 10 atomic% of gold nanoparticles dispersed in the conductive carbon layer,
    The conductive carbon layer includes sp 3 -bonded atoms and sp 2 -bonded atoms,
    An electrode, wherein the ratio of sp 3-bonded atoms to the sum of sp 3 - bonded atoms and sp 2 -bonded atoms (sp 3 /(sp 3 +sp 2 )) is 0.25 or more.
  2.  前記導電性カーボン層における前記金ナノ粒子の含有割合は、5原子%未満である、請求項1に記載の電極 The electrode according to claim 1, wherein the content of the gold nanoparticles in the conductive carbon layer is less than 5 atomic%
PCT/JP2022/014534 2021-03-31 2022-03-25 Electrode WO2022210387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511182A JPWO2022210387A1 (en) 2021-03-31 2022-03-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-059011 2021-03-31
JP2021059011 2021-03-31
JP2022-036168 2022-03-09
JP2022036168 2022-03-09

Publications (1)

Publication Number Publication Date
WO2022210387A1 true WO2022210387A1 (en) 2022-10-06

Family

ID=83459192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014534 WO2022210387A1 (en) 2021-03-31 2022-03-25 Electrode

Country Status (3)

Country Link
JP (1) JPWO2022210387A1 (en)
TW (1) TW202242911A (en)
WO (1) WO2022210387A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130341204A1 (en) * 2012-04-23 2013-12-26 Ritedia Corporation Carbon Electrode Devices for Use with Liquids and Associated Methods
JP2016065815A (en) * 2014-09-25 2016-04-28 国立研究開発法人産業技術総合研究所 Gold nanoparticle containing carbon thin film electrode for electrochemical measurement and method of electrochemically detecting arsenic ion using electrode
JP2016070885A (en) * 2014-10-01 2016-05-09 国立研究開発法人産業技術総合研究所 Carbon electrode containing alloy nano particles, device having the electrode, and method for forming the electrode
WO2020175471A1 (en) * 2019-02-28 2020-09-03 日東電工株式会社 Electrode and electrochemical measurement system
US20200284748A1 (en) * 2019-03-05 2020-09-10 Abb Schweiz Ag Chlorine Species Sensing Using Pseudo-Graphite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130341204A1 (en) * 2012-04-23 2013-12-26 Ritedia Corporation Carbon Electrode Devices for Use with Liquids and Associated Methods
JP2016065815A (en) * 2014-09-25 2016-04-28 国立研究開発法人産業技術総合研究所 Gold nanoparticle containing carbon thin film electrode for electrochemical measurement and method of electrochemically detecting arsenic ion using electrode
JP2016070885A (en) * 2014-10-01 2016-05-09 国立研究開発法人産業技術総合研究所 Carbon electrode containing alloy nano particles, device having the electrode, and method for forming the electrode
WO2020175471A1 (en) * 2019-02-28 2020-09-03 日東電工株式会社 Electrode and electrochemical measurement system
US20200284748A1 (en) * 2019-03-05 2020-09-10 Abb Schweiz Ag Chlorine Species Sensing Using Pseudo-Graphite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEGISHI, TAKAYUKI; KATO, D.; UEDA, A., KURITA, R.; KAMATA, T.; UMEMURA, S.; HIRONO, S.; NIWA, O.: "1H26 Electrochemical characterization of metal doped ECR nano-carbon film electrode for saccharide measurements", LECTURE ABSTRACTS OF ECSJ FALL MEETING; SEPTEMBER 10-11, 2009, ELECTROCHEMICAL SOCIETY OF JAPAN., JP, 1 January 2009 (2009-01-01) - 11 September 2009 (2009-09-11), JP, pages 134, XP009540067 *

Also Published As

Publication number Publication date
TW202242911A (en) 2022-11-01
JPWO2022210387A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
Jo et al. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process
TWI821534B (en) Electrodes and electrochemical measurement systems
Swain et al. The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes
US8906571B2 (en) Fuel cell separator, manufacturing method of the fuel cell separator, and fuel cell
JP2019105637A (en) Electrode film and electrochemical measurement system
US20220214299A1 (en) Electrode and electrochemical measurement system
SG177021A1 (en) Micoelectrode array sensor for detection of heavy metals in aqueous solutions
KR102646492B1 (en) Physically deposited electrodes for electrochemical sensors
KR102547061B1 (en) Biosensor electrodes fabricated by physical vapor deposition
WO2018223760A1 (en) Electrochemical biosensor electrode, sensor and preparation method therefor
WO2022210387A1 (en) Electrode
KR20020009502A (en) Method of manufacturing substrate having transparent conductive film, substrate having transparent conductive film manufactured using the method, and touch panel using the substrate
JP2003123781A (en) Separator for solid polymer electrolyte fuel cell and its manufacturing method
Zeng et al. Ohmic contact to nitrogen doped amorphous carbon films
WO2022210176A1 (en) Electrode
CN116457655A (en) Electrode
WO2019117112A1 (en) Electrode film and electrochemical measurement system
US20220140341A1 (en) Electrode and electrochemical measurement system
Kowalik et al. Electrical parameters of solar cells with electrodes made by selective metallization
WO2024071292A1 (en) Electrode, and electrochemical measuring system
JP2023152904A (en) Electrode and electrochemical measurement system
WO2022202941A1 (en) Electrode, and method for producing same
KR20190116388A (en) Electrochemical Sensor Electrode
TWI833723B (en) Electrode membrane and electrochemical measurement system
Dorovskikh et al. MOCVD of Pt coatings with high surface areas on the contacts of electrophysiological diagnostic electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780600

Country of ref document: EP

Kind code of ref document: A1