WO2022210264A1 - Polishing pad and method for manufacturing polished workpiece - Google Patents

Polishing pad and method for manufacturing polished workpiece Download PDF

Info

Publication number
WO2022210264A1
WO2022210264A1 PCT/JP2022/014016 JP2022014016W WO2022210264A1 WO 2022210264 A1 WO2022210264 A1 WO 2022210264A1 JP 2022014016 W JP2022014016 W JP 2022014016W WO 2022210264 A1 WO2022210264 A1 WO 2022210264A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
detection window
endpoint detection
polishing pad
polishing layer
Prior art date
Application number
PCT/JP2022/014016
Other languages
French (fr)
Japanese (ja)
Inventor
哲平 立野
光紀 糸山
仁志 関谷
堅一 小池
浩 栗原
さつき 山口
大和 ▲高▼見沢
Original Assignee
富士紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021057019A external-priority patent/JP2022154128A/en
Application filed by 富士紡ホールディングス株式会社 filed Critical 富士紡ホールディングス株式会社
Priority to CN202280024991.XA priority Critical patent/CN117120213A/en
Priority to KR1020237036679A priority patent/KR20230162661A/en
Publication of WO2022210264A1 publication Critical patent/WO2022210264A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing pad and a method for manufacturing a polished product using the same.
  • CMP chemical mechanical polishing
  • polishing endpoint detection for detecting whether the polishing process has been completed. For example, over-polishing or under-polishing to the target polishing end point directly leads to product defects. Therefore, in chemical mechanical polishing, it is necessary to strictly control the polishing amount by detecting the polishing end point.
  • polishing speed (polishing rate) varies depending on the operating conditions of the polishing equipment, the quality of consumables (slurry, polishing pads, dressers, etc.), and variations in conditions over time during the polishing process. Change. Furthermore, in recent years, the precision and in-plane uniformity of the residual film thickness required in the semiconductor manufacturing process have become more and more severe. Under these circumstances, it is becoming more difficult to detect the polishing end point with sufficient accuracy.
  • Known major polishing end point detection methods include the optical end point detection method, the torque end point detection method, and the eddy current end point detection method.
  • the end point is detected by irradiating the wafer with light through the member and monitoring the reflected light.
  • Patent Document 1 discloses a polishing pad that can suppress slurry from accumulating in grooves of a window member and increase the accuracy of polishing rate detection.
  • a polishing pad having a pad body and a transparent window member formed integrally with a part of the pad body, wherein the surface of the window member is recessed from the surface of the pad body. It is disclosed to
  • a resin composition is filled and cured in a state where a window member is fixed in a mold, and then the obtained cured product is sliced. and then perform a dressing process.
  • the window member and the cured product of the resin composition are made of different materials, their physical properties are not a little different.
  • the window may be recessed due to the difference in the amount of wear between the window and the polishing layer.
  • the window portion When such dents occur, slurry and polishing waste tend to accumulate there, causing scratches and the like, possibly degrading the surface quality of the object to be polished. Further, when the amount of wear of the window portion is smaller than that of the polishing layer, the window portion is more likely to remain than the polishing layer as the polishing progresses, and as a result, the window portion may become convex. Such convex windows may also cause scratches and the like, degrading the surface quality of the object to be polished.
  • the present invention has been made in view of the above problems, and in the first and third embodiments, a polishing pad having excellent flatness during slicing and dressing processes and a polishing workpiece using the same are provided.
  • One of the objects is to provide a manufacturing method.
  • the endpoint detection window portion is polished faster than the polishing layer and becomes a dent, and slurry and polishing dust tend to accumulate there. Defects (surface defects) may occur. Furthermore, if the end-point detection window is polished later than the polishing layer, the end-point detection window becomes a convex portion as polishing progresses, causing defects and possibly degrading the surface quality of the object to be polished. .
  • the present invention has been made in view of the above-mentioned problems, and in the second and fourth embodiments, it is possible to obtain an object to be polished which has an endpoint detection window and is less susceptible to defects and has excellent surface quality. It is an object of the present invention to provide a polishing pad capable of polishing and a method of manufacturing a polishing workpiece using the same.
  • the first embodiment of the present invention is as follows. [1] having a polishing layer and an endpoint detection window provided in an opening of the polishing layer; In the dynamic viscoelasticity measurement of the endpoint detection window performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100 ° C., the storage elastic modulus E′ W90 at 90 ° C. is 1.0 ⁇ 10 Pa or more, The D hardness (D W80 ) of the endpoint detection window at 80° C. is 40 or more, The endpoint detection window has a D hardness (D W20 ) at 20° C. of 40 to 90. polishing pad. [2] wherein the endpoint detection window comprises a polyurethane resin WI; The polishing pad according to [1].
  • the polyurethane resin WI contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate, The polishing pad according to [2].
  • the polyurethane resin WI contains structural units derived from a compound having 3 or more hydroxyl groups, The polishing pad according to [2] or [3].
  • the storage elastic modulus E′ W30 at 30° C. is 60 ⁇ 107 to 100 ⁇ 107 Pa.
  • the peak temperature of tan ⁇ is 70 to 100 ° C.
  • the polishing layer contains a polyurethane resin P and hollow fine particles dispersed in the polyurethane resin P.
  • the second embodiment of the present invention is as follows. [1] having a polishing layer and an endpoint detection window provided in an opening of the polishing layer; In the dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency 1.0 Hz, 10 to 100 ° C., the storage elastic modulus E'W30 at 30 ° C. of the end point detection window and the storage elastic modulus E at 30 ° C. of the polishing layer ' P30 ratio (E' P30 /E' W30 ) is 0.60 to 1.50, polishing pad. [2] wherein the endpoint detection window comprises a polyurethane resin WI; The polishing pad according to [1].
  • the polyurethane resin WI contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate, The polishing pad according to [2].
  • the polyurethane resin WI contains structural units derived from a compound having 3 or more hydroxyl groups, The polishing pad according to [2] or [3].
  • the ratio of the storage elastic modulus E'W50 at 50°C of the end point detection window to the storage elastic modulus E'P50 at 50°C of the polishing layer ( E'P50 / E'W50 ) is , between 0.70 and 2.00; [1] The polishing pad according to any one of [4].
  • the storage elastic modulus E′ W30 at 30° C. is 10 ⁇ 10 7 to 60 ⁇ 10 7 Pa.
  • the endpoint detection window has a D hardness (D W20 ) at 20° C. of 40 to 70.
  • the polishing layer contains a polyurethane resin P and hollow fine particles dispersed in the polyurethane resin P.
  • the third embodiment of the present invention is as follows. [1] having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
  • the spin-spin relaxation free induction decay curve of 1H obtained by measurement by the Solid Echo method using pulsed NMR is divided into 3 phases derived from the three components of the crystalline phase, intermediate phase, and amorphous phase in order of shortest relaxation time.
  • a ratio (Lp20/Lw20) of the abundance ratio Lw20 of the amorphous phase in the endpoint detection window to the abundance ratio Lp20 of the amorphous phase in the polishing layer at 20° C.
  • the ratio (Sp80/Sw80) of the crystalline phase abundance ratio Sw80 of the endpoint detection window to the crystalline phase abundance ratio Sp80 of the polishing layer at 80° C. is 0.5 to 2.0. polishing pad. [2] The ratio (Mp20/Mw20) of the abundance ratio Mw20 of the intermediate phase in the endpoint detection window to the abundance ratio Mp20 of the intermediate phase in the polishing layer at 20° C. is 0.7 to 1.5. The polishing pad according to [1]. [3] The ratio (Mp80/Mw80) of the abundance ratio Mw80 of the intermediate phase in the endpoint detection window to the abundance ratio Mp80 of the intermediate phase in the polishing layer at 80° C. is 0.5 to 1.5.
  • the polishing layer contains a polyurethane resin P, The polyurethane resin P contains a structural unit derived from an aromatic isocyanate, [1] The polishing pad according to any one of [6]. [8] The polishing layer contains hollow fine particles dispersed in the polishing layer, [1] The polishing pad according to any one of [7]. [9] a polishing step of polishing an object to be polished using the polishing pad according to any one of [1] to [8] in the presence of a polishing slurry to obtain a polished object; an endpoint detection step of performing endpoint detection by an optical endpoint detection method during the polishing; A method for producing an abrasive article.
  • the fourth embodiment of the present invention is as follows. [1] having a polishing layer and an endpoint detection window provided in an opening of the polishing layer; In the dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.6 Hz, 30 to 55°C, and immersion, the storage elastic modulus E′w40 of the endpoint detection window at 40°C and the polishing layer at 40°C The ratio (E'p40/E'w40) to the storage modulus E'p40 is 0.70 to 3.00. polishing pad.
  • the ratio (E'p50/E'w50) of the storage elastic modulus E'w50 of the endpoint detection window at 50°C and the storage elastic modulus E'p50 of the polishing layer at 50°C is , from 0.70 to 5.00; The polishing pad according to [1].
  • ) is 0.05 to 0.30. is The polishing pad according to [1] or [2].
  • the endpoint detection window comprises a polyurethane resin WI;
  • the polyurethane resin WI contains a structural unit derived from an aliphatic isocyanate, [1] The polishing pad according to any one of [5].
  • the polishing layer contains a polyurethane resin P,
  • the polyurethane resin P contains a structural unit derived from an aromatic isocyanate, [1] The polishing pad according to any one of [6].
  • the polishing layer contains hollow fine particles dispersed in the polishing layer, [1] The polishing pad according to any one of [7].
  • the first and third embodiments of the present invention it is possible to provide a polishing pad with excellent flatness during slicing and dressing, and a method for manufacturing a polished product using the same.
  • a polishing pad capable of obtaining an object to be polished having excellent surface quality while having an end-point detection window, while being resistant to defects.
  • a method for manufacturing an abrasive article can be provided.
  • FIG. 1 is a schematic perspective view of polishing pads of first to fourth embodiments
  • FIG. FIG. 4 is a schematic cross-sectional view of the end point detection window portion of the polishing pad of the first to fourth embodiments
  • FIG. 5 is a schematic cross-sectional view of another aspect of the end point detection window portion of the polishing pad of the first to fourth embodiments
  • 1 is a schematic diagram showing a film thickness control system installed in CMP
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Example A1 after slicing and before dressing
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A1 after slicing and before dressing.
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A2 after slicing and before dressing.
  • FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example A2 after slicing and before dressing;
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Example A1 after dressing.
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A1 after dressing.
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A2 after dressing.
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A2 after dressing.
  • FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example A2 after dressing.
  • FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example C1 after slicing and before dressing.
  • FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example C2 after slicing and before dressing;
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example C1 after slicing and before dressing.
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Example C1 after dressing.
  • FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example C2 after dressing.
  • FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example C1 after dressing.
  • polishing pad of the first embodiment has a polishing layer and an end point detection window provided in the opening of the polishing layer, and the end point is performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100°C.
  • the storage elastic modulus E′ W90 at 90° C. is 1.0 ⁇ 10 7 Pa or more
  • the D hardness (D W80 ) of the endpoint detection window at 80° C. is 40 or more
  • the D hardness (D W20 ) at 20° C. of the endpoint detection window is 40-70.
  • the flatness can be improved from the viewpoint that convex portions are less likely to occur in the slicing process, and the flatness can be improved from the viewpoint that the end point detection window is less likely to be over-polished than the polishing layer during the dressing process. can be done.
  • these two types of flatness are simply referred to as "flatness".
  • FIG. 1 shows a schematic perspective view of the polishing pad of the first embodiment.
  • the polishing pad 10 of the first embodiment has a polishing layer 11 and an end point detection window 12, and optionally a cushion layer 13 on the side opposite to the polishing surface 11a. may have.
  • FIGS. 2 and 3 show cross-sectional views around the endpoint detection window 12 in FIG.
  • an adhesive layer 14 may be provided between the polishing layer 11 and the cushion layer 13, and the surface of the cushion layer 13 is attached to the table 22 shown in FIG.
  • An adhesive layer 15 may be provided for the purpose.
  • the polishing surface 11a of the polishing pad of the first embodiment may be flat as shown in FIG. 2, or may be uneven with grooves 16 formed therein as shown in FIG.
  • the grooves 16 may be formed with a plurality of grooves having various shapes such as concentric circles, grids, and radial grooves singly or in combination.
  • the end point detection window is a transparent member provided in the opening of the polishing layer, and serves as a transmission path for light from the film thickness detection sensor in optical end point detection.
  • the endpoint detection window is circular in the first embodiment, it may be square, rectangular, polygonal, elliptical, or the like, if necessary.
  • the endpoint detection window in the process of manufacturing the polishing pad, when slicing, the endpoint detection window becomes recessed from the polishing layer or cracks, and when the dressing process is performed,
  • the storage elastic modulus E' and D hardness of the endpoint detection window are defined from the viewpoint of suppressing the endpoint detection window from becoming recessed or protruding from the polishing layer and improving flatness.
  • the storage elastic modulus E′ of the endpoint detection window in the first embodiment can be obtained by dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100°C. As will be described later, slicing is performed while the object is heated, so the storage elastic modulus E′ W90 at 90° C. is defined as the storage elastic modulus E′ of the endpoint detection window in the first embodiment.
  • the peak of the loss tangent tan ⁇ is set so that the loss elastic modulus E′′ (viscous component) is more dominant than the storage elastic modulus E′ (elastic component) during slicing.
  • the temperature position may be further adjusted, and the storage elastic modulus E′W30 at 30° C. may be specified from the viewpoint of expressing the characteristics of the endpoint detection window during dressing.
  • the storage elastic modulus E′ W90 of the endpoint detection window at 90° C. is 1.0 ⁇ 10 7 Pa or more, preferably 1.25 ⁇ 10 7 to 20 ⁇ 10 7 Pa, more preferably 1.5 ⁇ 10 7 Pa or more. It is 10 7 to 10 ⁇ 10 7 Pa.
  • the storage elastic modulus E′ W90 of 1.0 ⁇ 10 7 Pa or more prevents the end-point detection window from becoming recessed or protruding from the polishing layer, or from cracking when slicing. can be suppressed, and flatness can be further improved.
  • the peak temperature of tan ⁇ is preferably 70-100°C, more preferably 70-95, still more preferably 75-90.
  • the peak temperature of tan ⁇ is within the above range, when slicing, it is possible to suppress the end-point detection window from becoming recessed or protruding from the polishing layer, or from being cracked, thereby improving flatness. can be improved.
  • the storage elastic modulus E′ W30 at 30° C. is preferably 10 ⁇ 10 7 to 80 ⁇ 10 7 Pa, more preferably 20 ⁇ 10 7 to 70 ⁇ 10 7 Pa, still more preferably 30 ⁇ 10 7 to 70 ⁇ 10 7 Pa.
  • the storage elastic modulus E′W30 is within the above range, it is possible to suppress the end-point detection window from being recessed from the polishing layer when performing the dressing process, and to improve the flatness. can be improved.
  • the measurement conditions for dynamic viscoelasticity measurement are not particularly limited, the measurement can be performed under the conditions described in Examples.
  • the D hardness (D W80 ) of the endpoint detection window at 80° C. is 40 or more, preferably 40-60, more preferably 40-50.
  • D hardness (D W80 ) is 40 or more, when slicing, it is possible to suppress the end point detection window from being recessed or protruding from the polishing layer, or from being cracked, thereby improving flatness. can be improved.
  • the D hardness (D W20 ) of the endpoint detection window at 20° C. is 40-90, preferably 50-85, more preferably 55-80.
  • D hardness (D W20 ) is within the above range, it is possible to suppress the end-point detection window from becoming recessed or protruding from the polishing layer when the dressing process is performed. Flatness can be further improved.
  • the conditions for measuring the D hardness are not particularly limited, but can be measured according to the conditions described in the examples.
  • the material constituting the endpoint detection window is not particularly limited as long as it is a transparent member that can function as a window.
  • Examples include polyurethane resin WI, polyvinyl chloride resin, polyvinylidene fluoride resin, polyethersulfone resin, polystyrene resin, polyethylene resin, polytetrafluoroethylene resin, and the like.
  • polyurethane resin WI is preferable. By using such a resin, the dynamic viscoelastic properties, D hardness, and transparency can be more easily adjusted, and the flatness can be further improved.
  • the polyurethane resin WI can be synthesized from polyisocyanate and polyol, and contains structural units derived from polyisocyanate and structural units derived from polyol.
  • Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units.
  • the polyurethane resin WI preferably contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate. This makes it easier to adjust the dynamic viscoelastic properties, D hardness (D W20 ), and D hardness (D W80 ) within the above ranges, further improving the transparency and further improving the yellowing resistance of the window. It is in. Moreover, the flatness can be further improved.
  • the alicyclic isocyanate is not particularly limited, but examples include 4,4′-methylene-bis(cyclohexyl isocyanate) (hydrogenated MDI), cyclohexylene-1,2-diisocyanate, cyclohexylene-1,4-diisocyanate, and isophorone diisocyanate.
  • aliphatic isocyanates include, but are not limited to, hexamethylene diisocyanate (HDI), pentamethylene diisocyanate (PDI), tetramethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, and trimethylene diisocyanate. , trimethylhexamethylene diisocyanate, and the like.
  • aromatic isocyanates include, but are not limited to, phenylene diisocyanate, 2,6-tolylene diisocyanate (2,6-TDI), 2,4-tolylene diisocyanate (2,4-TDI), xylylene diisocyanate, naphthalene diisocyanate and diphenylmethane-4,4'-diisocyanate (MDI).
  • Structural Units Derived from Polyols are not particularly limited.
  • low-molecular-weight polyols include, but are not limited to, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4- butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexane glycol, 2,5-hexanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, tricyclode low-molecular-weight polyols having two hydroxyl groups such as candimethanol and 1,4-cyclohexanedimethanol; and low-molecular-weight polyols having three or more hydroxyl groups such as glycerin, hexanetriol, trimethylolpropane, isocyanuric acid and erythritol.
  • low-molecular-weight polyols having 3 or more hydroxyl groups are preferred, and glycerin is more preferred.
  • the dynamic viscoelastic properties and D hardness can be easily adjusted within the above range, the wear amount can be adjusted, the flatness can be further improved, and the transparency can be further improved.
  • the yellowing resistance of windows tends to be further improved.
  • the content of the structural unit derived from the low-molecular-weight polyol having 3 or more hydroxyl groups is preferably 8.0 to 30 parts, more preferably 10 to 25 parts, per 100 parts of the structural unit derived from the polyisocyanate. and more preferably 12.5 to 20 parts.
  • the content of the structural unit derived from the low-molecular-weight polyol having three or more hydroxyl groups is within the above range, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above range, and the flatness can be further improved. , the transparency tends to be further improved, and the yellowing resistance of the window tends to be further improved.
  • polymer polyol is not particularly limited, but for example, polyether polyol, polyester polyol, polycarbonate polyol, polyether polycarbonate polyol, polyurethane polyol, epoxy polyol, vegetable oil polyol, polyolefin polyol, acrylic polyol, and vinyl monomer-modified polyols.
  • Polymer polyols may be used singly or in combination of two or more.
  • the number average molecular weight of the polymer polyol is preferably 300-1200, more preferably 400-950, still more preferably 500-800.
  • polyether polyol is preferred, and polytetramethylene ether glycol is more preferred.
  • the dynamic viscoelastic properties and D hardness can be easily adjusted within the above ranges, the hardness at low temperatures can be easily adjusted, and the decrease in hardness due to temperature rise can be suppressed.
  • the flatness can be further improved, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
  • the content of structural units derived from polyether polyol is preferably 40 to 100 parts, preferably 50 to 90 parts, more preferably 60 to 84 parts, per 100 parts of structural units derived from polyisocyanate. Department.
  • the content of the structural unit derived from the polyether polyol is within the above range, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above range, the flatness can be further improved, and the transparency can be improved.
  • the polyol it is preferable to use a low-molecular-weight polyol and a high-molecular-weight polyol together, and it is more preferable to use a low-molecular-weight polyol having three or more hydroxyl groups and a polyether polyol together.
  • the dynamic viscoelastic properties and D hardness can be easily adjusted within the above ranges, the hardness at low temperatures can be easily adjusted, and a decrease in hardness due to temperature rise can be suppressed.
  • the flatness can be further improved, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
  • the content of the polyether polyol is preferably 1.0 to 9.0 parts, more preferably 2.0 to 8.0 parts, per 1 part of the low-molecular-weight polyol having 3 or more hydroxyl groups. parts, more preferably 3.0 to 7.0 parts.
  • the polishing layer of the first embodiment has an opening in which the endpoint detection window is embedded.
  • the position of the opening is not particularly limited, it is preferably provided at a position in the radial direction corresponding to the film thickness detection sensor 23 installed on the table 22 .
  • the number of openings is not particularly limited, the openings are arranged at similar radial positions so that the windows pass over the film thickness detection sensor 23 multiple times when the polishing pad 10 attached to the table 22 rotates once. It is preferable to have a plurality of them.
  • the form of the abrasive layer is not particularly limited, but examples include resin foam molded articles, non-foam molded articles, and resin-impregnated substrates obtained by impregnating fiber substrates with resin.
  • the resin foam molding refers to a foam that does not have a fiber base material and is composed of a predetermined resin.
  • the foam shape is not particularly limited, but examples thereof include spherical cells, substantially spherical cells, tear-shaped cells, and open cells in which each cell is partially connected.
  • non-foamed resin molded body refers to a non-foamed body that does not have a fiber base material and is composed of a predetermined resin.
  • a non-foamed body refers to a body that does not have air bubbles as described above.
  • non-foamed molded articles of resin include those obtained by applying a curable composition to a base material such as a film and then curing the same. More specifically, the resin cured product formed by a labia coater method, a small diameter gravure coater method, a reverse roll coater method, a transfer roll coater method, a kiss coater method, a die coater method, a screen printing method, a spray coating method, etc. Included in non-foamed molded products.
  • a resin-impregnated base material refers to a material obtained by impregnating a fiber base material with a resin.
  • the fiber base material is not particularly limited, and examples thereof include woven fabrics, nonwoven fabrics, and knitted fabrics.
  • the polishing layer depends on the polishing rate and the surface quality of the object to be polished, and in the polishing pad obtained by slicing or dressing, the end point detection window becomes more recessed than the polishing layer or cracks. From the viewpoint of suppressing this, it is preferable to have predetermined dynamic viscoelastic properties.
  • the storage elastic modulus E' P90 of the polishing layer at 90°C is preferably 1.0 ⁇ 10 7 . Pa or more, preferably 2.0 ⁇ 10 7 Pa to 20 ⁇ 10 7 Pa, more preferably 3.0 ⁇ 10 7 Pa to 15 ⁇ 10 7 Pa.
  • the storage elastic modulus E′ P90 is 1.0 ⁇ 10 7 Pa or more, in addition to improving the polishing rate and the surface quality of the object to be polished, the polishing pad obtained by slicing or dressing has an endpoint detection window. It tends to be more inhibited from becoming recessed or protruding from the polishing layer, or from being cracked, thereby further improving the flatness.
  • the difference (E' P90 -E' W90 ) between the storage elastic modulus E' W90 and the storage elastic modulus E' P90 is 9.5 ⁇ 10 7 Pa or less, preferably 1.0. ⁇ 10 7 Pa to 9.0 ⁇ 10 7 Pa, more preferably 2.0 ⁇ 10 7 Pa to 9.0 ⁇ 10 7 Pa.
  • the difference (E' P90 -E' W90 ) is 9.5 ⁇ 10 7 Pa or less, the difference in physical properties between the polishing layer and the endpoint detection window is reduced under the slicing conditions, so that the polishing layer and the endpoint detection window are uniform. , and the shape of the window tends to be flat. Therefore, in the polishing pad obtained by slicing or dressing, the end-point detection window is further suppressed from becoming recessed or protruding from the polishing layer, or from being cracked, thereby further improving flatness. tend to be able.
  • polishing layer a polyurethane sheet is exemplified as an example of the polishing layer.
  • the polishing layer is not limited to the polyurethane sheet, and any resin sheet can be used.
  • the polyurethane resin P constituting the polyurethane sheet is not particularly limited, but examples thereof include polyester-based polyurethane resins, polyether-based polyurethane resins, and polycarbonate-based polyurethane resins. You may use these individually by 1 type or in combination of 2 or more types.
  • Such a polyurethane resin P can be synthesized from a polyisocyanate and a polyol, and a reaction product of a urethane prepolymer and a curing agent is particularly preferred.
  • the urethane prepolymer can be synthesized from polyisocyanate and polyol.
  • the polyisocyanate, polyol, and curing agent that constitute the polyurethane resin P are described below.
  • Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units. Among these, aromatic isocyanates are preferred, and 2,4-tolylene diisocyanate (2,4-TDI) is more preferred.
  • alicyclic isocyanate aliphatic isocyanate
  • aromatic isocyanate the same ones as those exemplified in the endpoint detection window can be exemplified.
  • Structural Units Derived from Polyols are not particularly limited. Among these, it is preferable to use at least a low-molecular-weight polyol, and it is preferable to use a combination of a low-molecular-weight polyol and a high-molecular-weight polyol.
  • low-molecular-weight polyols and high-molecular-weight polyols are the same as those exemplified in the endpoint detection window.
  • the low-molecular-weight polyol a low-molecular-weight polyol having two hydroxyl groups is preferable, and diethylene glycol is more preferable.
  • polyether polyol is preferable, and polytetramethylene ether glycol is more preferable.
  • the curing agent is not particularly limited, but examples thereof include polyamines and polyols. Curing agents may be used singly or in combination of two or more.
  • polyamines include, but are not limited to, aliphatic polyamines such as ethylenediamine, propylenediamine and hexamethylenediamine; alicyclic polyamines such as isophoronediamine and dicyclohexylmethane-4,4'-diamine; Dichloro-4,4'-diaminodiphenylmethane (MOCA), 4-methyl-2,6-bis(methylthio)-1,3-benzenediamine, 2-methyl-4,6-bis(methylthio)-1,3- aromatic polyamines such as benzenediamine and 2,2-bis(3-amino-4-hydroxyphenyl)propane;
  • aliphatic polyamines such as ethylenediamine, propylenediamine and hexamethylenediamine
  • alicyclic polyamines such as isophoronediamine and dicyclohexylmethane-4,4'-diamine
  • MOCA Dichloro-4,4'-diamin
  • aromatic polyamines are preferred, and 3'-dichloro-4,4'-diaminodiphenylmethane (MOCA) is more preferred.
  • MOCA 3'-dichloro-4,4'-diaminodiphenylmethane
  • polyol the same polyols as those exemplified in the endpoint detection window can be exemplified.
  • polymer polyols are preferred, polyether polyols are more preferred, and polypropylene glycol is even more preferred.
  • the polyurethane sheet is preferably a foamed polyurethane sheet containing a polyurethane resin P and hollow fine particles dispersed in the polyurethane resin P.
  • a polyurethane sheet has closed cells derived from hollow fine particles, and tends to easily adjust the dynamic viscoelasticity and D hardness within the above ranges.
  • the shell material of the hollow fine particles is not particularly limited, but examples include polyvinyl alcohol, polyvinylpyrrolidone, poly(meth)acrylic acid, polyacrylamide, polyethylene glycol, polyhydroxyether acrylate, maleic acid copolymer, and polyethylene oxide. , polyurethane, acrylonitrile-vinylidene chloride copolymer, acrylonitrile-methyl methacrylate copolymer, vinyl chloride-ethylene copolymer and the like.
  • the shape of the hollow fine particles is not particularly limited, and may be spherical or substantially spherical, for example. Further, when the hollow fine particles are expandable balloons, they may be used in an unexpanded state or in an expanded state.
  • the average particle size of the hollow fine particles contained in the polyurethane sheet is preferably 5-200 ⁇ m, more preferably 5-80 ⁇ m, still more preferably 5-50 ⁇ m, and particularly preferably 5-35 ⁇ m.
  • the average particle diameter can be measured by a laser diffraction particle size distribution analyzer (eg, Mastersizer-2000 manufactured by Spectris Co., Ltd.) or the like.
  • the polishing pad of the first embodiment may have a cushion layer on the side opposite to the polishing surface of the polishing layer.
  • the surface to be attached to the polishing machine may have an adhesive layer.
  • the cushion layer and the adhesive layer have openings at locations similar to where the endpoint detection windows of the polishing layer are located.
  • polishing pad of the second embodiment has a polishing layer and an end point detection window provided in the opening of the polishing layer, and is operated under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100°C.
  • the ratio of the storage elastic modulus E'W30 at 30°C of the endpoint detection window to the storage elastic modulus E'P30 of the polishing layer at 30°C is 0. 0.60 to 1.50.
  • the dynamic viscoelastic properties of the polishing layer and the endpoint detection window are more similar, so even when the endpoint detection window, which is a different member, is embedded in the polishing layer, the The occurrence of defects (surface defects) is further suppressed. Therefore, an object to be polished having excellent surface quality can be obtained.
  • FIG. 1 shows a schematic perspective view of the polishing pad of the second embodiment.
  • the polishing pad 10 of the second embodiment has a polishing layer 11 and an end point detection window 12, and optionally a cushion layer 13 on the side opposite to the polishing surface 11a. may have.
  • FIGS. 2 and 3 show cross-sectional views around the endpoint detection window 12 in FIG.
  • an adhesive layer 14 may be provided between the polishing layer 11 and the cushion layer 13, and the surface of the cushion layer 13 is attached to the table 22 shown in FIG.
  • An adhesive layer 15 may be provided for the purpose.
  • the polishing surface 11a of the polishing pad of the second embodiment may be flat as shown in FIG. 2, or may be uneven with grooves 16 formed therein as shown in FIG.
  • the grooves 16 may be formed with a plurality of grooves having various shapes such as concentric circles, grids, and radial grooves singly or in combination.
  • the end point detection window is a transparent member provided in the opening of the polishing layer, and serves as a transmission path for light from the film thickness detection sensor in optical end point detection.
  • the endpoint detection window is circular in the second embodiment, it may be square, rectangular, polygonal, elliptical, or the like, if desired.
  • the degree of abrasion of the endpoint detection window and the polishing layer during polishing is adjusted, and either the endpoint detection window or the polishing layer is excessively polished, thereby causing defects (surface defects) on the non-polished object.
  • the ratio of the storage elastic modulus E′ between the end point detection window and the polishing layer is defined.
  • the end-point detection window and the storage elastic modulus E′ of the polishing layer in the second embodiment can be determined by dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100°C.
  • the ratio of the storage elastic modulus E' at 30° C. is specified from the viewpoint of representing the properties of the endpoint detection window and the polishing layer during polishing.
  • the ratio of the storage elastic modulus E'W30 at 30°C of the endpoint detection window to the storage elastic modulus E'P30 of the polishing layer at 30°C is 0.60 to 1.50. , preferably 0.60 to 1.35, more preferably 0.60 to 1.20.
  • the ratio (E' P30 /E' W30 ) is within the above range, the properties of the endpoint detection window and the polishing layer are similar during polishing, so that the surface quality of the resulting polished object is further improved.
  • the ratio of the storage elastic modulus E'W50 at 50°C of the endpoint detection window to the storage elastic modulus E'P50 of the polishing layer at 50°C is preferably 0.70 to 2.00, more preferably 0.70 to 1.85, and still more preferably 0.70 to 1.70.
  • the ratio (E' P50 /E' W50 ) is within the above range, the properties of the end point detection window and the polishing layer during polishing are similar, so the surface quality of the resulting polished object tends to be further improved. .
  • the storage modulus E′W30 at 30° C. is preferably 10 ⁇ 10 7 to 60 ⁇ 10 7 Pa, more preferably 15 ⁇ 10 7 to 55 ⁇ 10 7 Pa. and more preferably 20 ⁇ 10 7 to 50 ⁇ 10 7 Pa.
  • the storage elastic modulus E'W30 is within the above range, the surface quality of the object to be polished tends to be further improved.
  • the measurement conditions for dynamic viscoelasticity measurement are not particularly limited, the measurement can be performed under the conditions described in Examples.
  • the D hardness (D W20 ) of the endpoint detection window at 20° C. is 40-70, preferably 45-70, more preferably 50-65.
  • D hardness (D W20 ) is within the above range, the occurrence of defects (surface defects) tends to be more suppressed.
  • the conditions for measuring the D hardness are not particularly limited, but can be measured according to the conditions described in the examples.
  • the material constituting the endpoint detection window is not particularly limited as long as it is a transparent member that can function as a window.
  • Examples include polyurethane resin WI, polyvinyl chloride resin, polyvinylidene fluoride resin, polyethersulfone resin, polystyrene resin, polyethylene resin, polytetrafluoroethylene resin, and the like.
  • polyurethane resin WI is preferable. By using such a resin, it is easier to adjust the dynamic viscoelastic properties, D hardness, and transparency.
  • the polyurethane resin WI can be synthesized from polyisocyanate and polyol, and contains structural units derived from polyisocyanate and structural units derived from polyol.
  • Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units.
  • the polyurethane resin WI preferably contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate.
  • the alicyclic isocyanate, aliphatic isocyanate, and aromatic isocyanate are not particularly limited, but include, for example, the compounds exemplified in the first embodiment.
  • Structural Units Derived from Polyols are not particularly limited.
  • the low-molecular-weight polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
  • low-molecular-weight polyols having 3 or more hydroxyl groups are preferred, and glycerin is more preferred.
  • the dynamic viscoelastic properties and D hardness can be easily adjusted within the above range, the amount of wear can be adjusted, the transparency is further improved, and the yellowing resistance of the window is further improved.
  • the content of the structural unit derived from the low-molecular-weight polyol having 3 or more hydroxyl groups is preferably 7.5 to 30 parts, more preferably 10 to 25 parts, per 100 parts of the structural unit derived from the polyisocyanate. and more preferably 12.5 to 20 parts.
  • the content of the structural unit derived from the low-molecular-weight polyol having three or more hydroxyl groups is within the above range, the dynamic viscoelastic properties and D hardness are easily adjusted within the above range, and the transparency is further improved. , the yellowing resistance of windows tends to be more improved.
  • polymer polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
  • the number average molecular weight of the polymer polyol is preferably 300-3000, more preferably 500-2500, still more preferably 850-2000.
  • polyether polyol is preferred, and poly(oxytetramethylene) glycol is more preferred.
  • the dynamic viscoelastic properties and D hardness can be easily adjusted within the above ranges, the hardness at low temperatures can be easily adjusted, and the decrease in hardness due to temperature rise can be suppressed. .
  • the transparency tends to be further improved, and the yellowing resistance of windows tends to be further improved.
  • the content of structural units derived from polyether polyol is preferably 80 to 200 parts, more preferably 85 to 160 parts, and still more preferably 90 to 100 parts based on 100 parts of structural units derived from polyisocyanate. 140 copies.
  • the content of the structural unit derived from the polyether polyol is within the above range, the dynamic viscoelastic properties and D hardness are easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window is improved. tend to improve.
  • the polyol it is preferable to use a low-molecular-weight polyol and a high-molecular-weight polyol together, and it is more preferable to use a low-molecular-weight polyol having three or more hydroxyl groups and a polyether polyol together.
  • the dynamic viscoelastic properties and the D hardness can be easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
  • the content of the polyether polyol is preferably 2.0 to 15.0 parts, more preferably 3.0 to 12.5 parts, relative to 1 part of the low-molecular-weight polyol having 3 or more hydroxyl groups. parts, more preferably 4.0 to 9.0 parts.
  • the polishing layer of the second embodiment has an opening in which the endpoint detection window is embedded.
  • the position of the opening is not particularly limited, it is preferably provided at a position in the radial direction corresponding to the film thickness detection sensor 23 installed on the table 22 .
  • the number of openings is not particularly limited, the openings are arranged at similar radial positions so that the windows pass over the film thickness detection sensor 23 multiple times when the polishing pad 10 attached to the table 22 rotates once. It is preferable to have a plurality of them.
  • the form of the abrasive layer is not particularly limited, but examples include resin foam molded articles, non-foam molded articles, and resin-impregnated substrates obtained by impregnating fiber substrates with resin.
  • the storage elastic modulus E′ P30 at 30° C. is preferably 15 ⁇ 10 7 to 65 ⁇ 10 7 Pa, more preferably 20 ⁇ 10 7 to 60 ⁇ . 10 7 Pa, more preferably 25 ⁇ 10 7 to 55 ⁇ 10 7 Pa.
  • the storage elastic modulus E'P30 is within the above range, the surface quality of the resulting polished object tends to be further improved.
  • the storage modulus E′ P50 at 50° C. is preferably 10 ⁇ 10 7 to 40 ⁇ 10 7 Pa, more preferably 15 ⁇ 10 7 to 35 ⁇ 10 7 Pa. and more preferably 20 ⁇ 10 7 to 30 ⁇ 10 7 Pa.
  • the storage elastic modulus E′ P50 is within the above range, the surface quality of the resulting polished object tends to be further improved.
  • polyurethane sheet is exemplified as an example of the polishing layer.
  • the description of the polyurethane sheet is omitted because it includes the aspects described in the first embodiment.
  • the polishing pad of the second embodiment may have a cushion layer on the side opposite to the polishing surface of the polishing layer, between the polishing layer and the cushion layer, or on the surface of the cushion layer that is not on the polishing layer side ( The surface to be attached to the polishing machine) may have an adhesive layer.
  • the cushion layer and the adhesive layer have openings at locations similar to where the endpoint detection windows of the polishing layer are located.
  • polishing pad of the third embodiment has a polishing layer and an end-point detection window provided in the opening of the polishing layer, and has a 1H value obtained by measurement by a Solid Echo method using pulse NMR.
  • the spin-spin relaxation free induction decay curve is separated into three curves derived from the three components of the crystalline phase, the intermediate phase, and the amorphous phase in order of shorter relaxation time, the endpoint detection window at 20 ° C.
  • a ratio (Lp20/Lw20) of the abundance ratio Lw20 of the amorphous phase to the abundance ratio Lp20 of the amorphous phase in the polishing layer is 0.5 to 2.0
  • the crystalline phase of the endpoint detection window at 80°C and the abundance ratio Sp80 of the crystalline phase of the polishing layer is 0.5 to 2.0.
  • the flatness can be improved from the viewpoint that convex portions are less likely to occur in the slicing process, and the flatness can be improved from the viewpoint that the end point detection window is less likely to be over-polished than the polishing layer during the dressing process. can be done.
  • these two types of flatness are simply referred to as "flatness".
  • FIG. 1 shows a schematic perspective view of the polishing pad of the third embodiment.
  • the polishing pad 10 of the third embodiment has a polishing layer 11 and an end point detection window 12, and optionally a cushion layer 13 on the side opposite to the polishing surface 11a. may have.
  • FIGS. 2 and 3 show cross-sectional views around the endpoint detection window 12 in FIG.
  • an adhesive layer 14 may be provided between the polishing layer 11 and the cushion layer 13, and the surface of the cushion layer 13 is attached to the table 22 shown in FIG.
  • An adhesive layer 15 may be provided for the purpose.
  • the polishing surface 11a of the polishing pad of the third embodiment may be flat as shown in FIG. 2, or may be uneven with grooves 16 formed therein as shown in FIG.
  • the grooves 16 may be formed with a plurality of grooves having various shapes such as concentric circles, grids, and radial grooves singly or in combination.
  • the end point detection window is a transparent member provided in the opening of the polishing layer, and serves as a transmission path for light from the film thickness detection sensor in optical end point detection.
  • the endpoint detection window is circular in the third embodiment, it may be square, rectangular, polygonal, elliptical, or the like, if necessary.
  • the end point detection window becomes recessed or cracked from the polishing layer, and when the dressing process is performed, From the viewpoint of improving flatness by suppressing the end-point detection window from becoming recessed or protruding from the polishing layer, parameters relating to the end-point detection window and the polishing layer are defined.
  • Pulsed NMR Pulse NMR is one type of solid-state NMR, and is a method of detecting a response signal to a pulse to determine the 1 H nuclear magnetic relaxation time (an index representing molecular mobility) of a sample. A free induction decay (FID signal) is obtained in response to the pulse.
  • FID signal free induction decay
  • Pulse NMR is an analytical method for evaluating the mobility of the polymer molecular chain as a whole system, and the mobility can be evaluated by measuring the relaxation time of the resin composition and the signal intensity at that time.
  • the lower the mobility of the polymer chain the shorter the relaxation time, so the signal intensity decays faster, and the relative signal intensity decreases in a short time when the initial signal intensity is taken as 100%.
  • the higher the mobility of the polymer chain the longer the relaxation time, so the attenuation of the signal intensity becomes slower, and the relative signal intensity when the initial signal intensity is 100% gradually decreases over a long period of time.
  • the obtained FID is the sum of the FIDs of multiple components with different relaxation times, and by separating this using the least squares method, the relaxation time of each component can be detected.
  • Three-component approximation of the free induction decay curve at a given temperature obtained by measurement by the solid echo method of pulse NMR shows that the signal obtained by the measurement is the component with the lowest mobility (crystalline phase) in the sample, the intermediate It is possible to classify which of the motile component (intermediate phase) and the component with the highest motility (amorphous phase) is derived from, and to determine the abundance ratio of those components.
  • the three components of the crystalline phase, the intermediate phase and the amorphous phase are approximated by fitting the free induction attenuation curve measured by the solid echo method of pulse NMR using the following formula (1). can be obtained, and each composition fraction can be obtained by approximation to the three components.
  • M(t) ⁇ exp(-(1/2)(t/T ⁇ ) 2 ) sinbt /bt+ ⁇ exp(-(1/Wa)(t/ T ⁇ ) Wa )+ ⁇ exp (-t/T ⁇ ).
  • the motility of the polishing layer and endpoint detection window can be evaluated.
  • pulse NMR is used to evaluate that the polishing layer and endpoint detection window have similar motility.
  • the ratio (Lp20/Lw20) of the abundance ratio Lw20 of the amorphous phase in the endpoint detection window to the abundance ratio Lp20 of the amorphous phase in the polishing layer at 20° C. is 0.5 to 2.0. , preferably 0.6 to 1.7, more preferably 0.7 to 1.5, still more preferably 0.8 to 1.2.
  • the ratio (Lp20/Lw20) is within the above range, the motility of the polishing layer and the material forming the endpoint detection window are close to each other during dressing. Therefore, the polishing layer and the endpoint detection window can be uniformly treated in the dressing process, and the flatness after the dressing process is further improved.
  • the ratio (Sp80/Sw80) of the abundance ratio Sw80 of the crystalline phase in the endpoint detection window to the abundance ratio Sp80 of the crystalline phase in the polishing layer at 80° C. is 0.5 to 2.0, preferably 0.5. It is 6 to 1.7, more preferably 0.9 to 1.5, still more preferably 1.0 to 1.3.
  • the ratio (Sp80/Sw80) is within the above range, the motility of the polishing layer and the material forming the endpoint detection window are close to each other in the slice. Therefore, in the slicing process, the polishing layer and the endpoint detection window can be uniformly processed, and the flatness after the slicing process is further improved.
  • the ratio (Mp20/Mw20) of the abundance ratio Mw20 of the intermediate phase in the endpoint detection window to the abundance ratio Mp20 of the intermediate phase in the polishing layer at 20° C. is preferably 0.7 to 1.5, more preferably 0. .7 to 1.3, more preferably 0.7 to 1.1.
  • the ratio (Mp20/Mw20) is within the above range, the polishing layer and the endpoint detection window can be uniformly treated in the dressing process, and the flatness after the dressing process tends to be further improved.
  • the ratio (Mp80/Mw80) of the abundance ratio Mw80 of the intermediate phase in the endpoint detection window to the abundance ratio Mp80 of the intermediate phase in the polishing layer at 80° C. is preferably 0.5 to 1.5, more preferably 0. .7 to 1.4, more preferably 0.8 to 1.3.
  • the ratio (Mp80/Mw80) is within the above range, the polishing layer and the end point detection window can be uniformly treated in the slicing process, and the flatness after the slicing process tends to be further improved.
  • ) between the abundance ratio Lw20 and the abundance ratio Lp20 is preferably 10 or less, more preferably 0 to 8.0, still more preferably 0 to 5.0.
  • ) is within the above range, the polishing layer and the end point detection window can be uniformly processed in the dressing process, and the flatness after the dressing process tends to be further improved.
  • ) between the abundance ratio Sw80 and the abundance ratio Sw80 is preferably 15 or less, more preferably 0 to 12, and still more preferably 0 to 8.0.
  • ) is within the above range, the polishing layer and the endpoint detection window can be uniformly processed in the slicing process, and the flatness after the slicing process tends to be further improved.
  • the existence ratio Sw20 of the crystalline phase in the endpoint detection window at 20°C is preferably 30 to 65%, more preferably 35 to 60%, still more preferably 40 to 55%.
  • the abundance ratio Mw20 of the intermediate phase in the endpoint detection window at 20°C is preferably 15 to 45%, more preferably 20 to 40%, still more preferably 25 to 35%.
  • the abundance ratio Lw20 of the amorphous phase in the endpoint detection window at 20°C is preferably 10 to 40%, more preferably 15 to 35%, still more preferably 20 to 30%.
  • the polishing layer and the endpoint detection window can be treated homogeneously in the dressing process. Flatness after processing tends to be further improved.
  • the sum of abundance ratio Sw20, abundance ratio Mw20, and abundance ratio Lw20 is 100%.
  • the existence ratio Sw80 of the crystalline phase in the endpoint detection window at 80°C is preferably 15 to 50%, more preferably 20 to 45%, still more preferably 25 to 40%.
  • the existence ratio Mw80 of the intermediate phase in the endpoint detection window at 80°C is preferably 10 to 35%, more preferably 15 to 30%, still more preferably 20 to 25%.
  • the abundance ratio Lw80 of the amorphous phase in the endpoint detection window at 80°C is preferably 30-60%, more preferably 35-55%, and still more preferably 40-50%.
  • the polishing layer and the endpoint detection window can be uniformly treated in the slicing process, and the slicing is performed. Flatness after processing tends to be further improved.
  • the sum of abundance ratio Sw80, abundance ratio Mw80, and abundance ratio Lw80 is 100%.
  • the measurement conditions for pulse NMR measurement are not particularly limited, but measurements can be made under the conditions described in Examples.
  • the material constituting the endpoint detection window is not particularly limited as long as it is a transparent member that can function as a window.
  • Examples include polyurethane resin WI, polyvinyl chloride resin, polyvinylidene fluoride resin, polyethersulfone resin, polystyrene resin, polyethylene resin, polytetrafluoroethylene resin, and the like.
  • polyurethane resin WI is preferable. By using such a resin, the pulse NMR characteristics and transparency can be more easily adjusted, and the flatness can be further improved.
  • the polyurethane resin WI can be synthesized from polyisocyanate and polyol, and contains structural units derived from polyisocyanate and structural units derived from polyol.
  • Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units.
  • the polyurethane resin WI preferably contains a structural unit derived from an alicyclic isocyanate and/or an aliphatic isocyanate, and more preferably contains a structural unit derived from an aliphatic isocyanate. This makes it easy to adjust each value related to pulse NMR within the above range, further improves transparency, and further improves flatness during dressing and slicing.
  • the alicyclic isocyanate, aliphatic isocyanate, and aromatic isocyanate are not particularly limited, but include, for example, the compounds exemplified in the first embodiment.
  • Structural Units Derived from Polyols are not particularly limited.
  • the low-molecular-weight polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
  • low-molecular-weight polyols having 3 or more hydroxyl groups are preferred, and glycerin is more preferred.
  • the pulse NMR characteristics can be easily adjusted within the above range, the wear amount can be adjusted, the flatness can be further improved, the transparency can be further improved, and the durability of the window can be improved. Yellowing tends to be more improved.
  • the content of the structural unit derived from the low-molecular-weight polyol having 3 or more hydroxyl groups is preferably 8.0 to 30 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the structural unit derived from the polyisocyanate. 25 parts by mass, more preferably 12.5 to 20 parts by mass.
  • the pulse NMR characteristics can be easily adjusted within the above range, flatness can be further improved, and transparency can be improved. is further improved, and the yellowing resistance of the window tends to be further improved.
  • polymer polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
  • the number average molecular weight of the polymer polyol is preferably 300-3000, more preferably 500-2500.
  • polyether polyol is preferred, and poly(oxytetramethylene) glycol is more preferred.
  • poly(oxytetramethylene) glycol is more preferred.
  • the content of structural units derived from polyether polyol is preferably 60 to 130 parts by mass, preferably 65 to 120 parts by mass, more preferably 100 parts by mass of structural units derived from polyisocyanate. 70 to 110 parts by mass.
  • the pulse NMR characteristics can be easily adjusted within the above range, the flatness can be further improved, and the transparency can be further improved. It tends to improve the yellowing resistance of windows.
  • the polyol it is preferable to use a low-molecular-weight polyol and a high-molecular-weight polyol together, and it is more preferable to use a low-molecular-weight polyol having three or more hydroxyl groups and a polyether polyol together. This makes it easy to adjust the pulse NMR characteristics within the above range. Further, the flatness can be further improved, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
  • the content of the polyether polyol is preferably 2.0 to 15.0 parts, more preferably 3.0 to 12.5 parts, relative to 1 part of the low-molecular-weight polyol having 3 or more hydroxyl groups. part, more preferably 4.0 to 9.0 parts.
  • the polishing layer of the third embodiment has an opening in which the endpoint detection window is embedded.
  • the position of the opening is not particularly limited, it is preferably provided at a position in the radial direction corresponding to the film thickness detection sensor 23 installed on the table 22 .
  • the number of openings is not particularly limited, the openings are arranged at similar radial positions so that the windows pass over the film thickness detection sensor 23 multiple times when the polishing pad 10 attached to the table 22 rotates once. It is preferable to have a plurality of them.
  • the form of the abrasive layer is not particularly limited, but examples include resin foam molded articles, non-foam molded articles, and resin-impregnated substrates obtained by impregnating fiber substrates with resin.
  • the existence ratio Sp20 of the crystal phase in the polishing layer is preferably 40 to 65%, preferably 45 to 60%, and preferably 50 to 55%.
  • the existence ratio Mp20 of the intermediate phase in the polishing layer is preferably 10-40%, preferably 15-35%, and preferably 20-30%.
  • the existence ratio Lp20 of the amorphous phase in the polishing layer is preferably 10 to 35%, preferably 15 to 30%, and preferably 20 to 25%.
  • the polishing layer and the endpoint detection window can be treated homogeneously in the dressing process. Flatness after processing tends to be further improved.
  • the sum of abundance ratio Sp20, abundance ratio Mp20, and abundance ratio Lp20 is 100%.
  • the existence ratio Sp80 of the crystalline phase of the polishing layer is preferably 25 to 50%, preferably 30 to 45%, and preferably 35 to 40%.
  • the abundance ratio Mp80 of the intermediate phase in the polishing layer is preferably 10-40%, preferably 15-35%, and preferably 20-30%.
  • the abundance ratio Lp80 of the amorphous phase in the polishing layer is preferably 25-50%, preferably 30-45%, and preferably 35-40%.
  • the polishing layer and the endpoint detection window can be uniformly treated in the slicing process. Flatness after processing tends to be further improved.
  • the sum of the abundance ratio Sp80, the abundance ratio Mp80, and the abundance ratio Lp80 is 100%.
  • the measurement conditions for pulse NMR measurement are not particularly limited, but measurements can be made under the conditions described in Examples.
  • polyurethane sheet is exemplified as an example of the polishing layer.
  • the description of the polyurethane sheet is omitted because it includes the aspects described in the first embodiment.
  • the polishing pad of the third embodiment may have a cushion layer on the side opposite to the polishing surface of the polishing layer.
  • the surface to be attached to the polishing machine may have an adhesive layer.
  • the cushion layer and the adhesive layer have openings at locations similar to where the endpoint detection windows of the polishing layer are located.
  • polishing pad of the fourth embodiment has a polishing layer and an end point detection window provided in the opening of the polishing layer, and has a tensile mode, a frequency of 1.6 Hz, 30 to 55 ° C., and a water immersion state.
  • the ratio of the storage elastic modulus E′w40 of the endpoint detection window at 40° C. to the storage elastic modulus E′p40 of the polishing layer at 40° C. (E′p40/E′w40 ) is between 0.70 and 3.00.
  • the dynamic viscoelastic properties of the polishing layer and the endpoint detection window are more similar, so even when the endpoint detection window, which is a different member, is embedded in the polishing layer, the The occurrence of defects (surface defects) is further suppressed. Therefore, an object to be polished having excellent surface quality can be obtained.
  • FIG. 1 shows a schematic perspective view of the polishing pad of the fourth embodiment.
  • the polishing pad 10 of the fourth embodiment has a polishing layer 11 and an end point detection window 12, and optionally a cushion layer 13 on the side opposite to the polishing surface 11a. may have.
  • FIGS. 2 and 3 show cross-sectional views around the endpoint detection window 12 in FIG.
  • an adhesive layer 14 may be provided between the polishing layer 11 and the cushion layer 13, and the surface of the cushion layer 13 is attached to the table 22 shown in FIG.
  • An adhesive layer 15 may be provided for the purpose.
  • the polishing surface 11a of the polishing pad of the fourth embodiment may be flat as shown in FIG. 2, or may be uneven with grooves 16 formed therein as shown in FIG.
  • the grooves 16 may be formed with a plurality of grooves having various shapes such as concentric circles, grids, and radial grooves singly or in combination.
  • the end point detection window is a transparent member provided in the opening of the polishing layer, and serves as a transmission path for light from the film thickness detection sensor in optical end point detection.
  • the endpoint detection window is circular in the fourth embodiment, it may be square, rectangular, polygonal, elliptical, or the like, if necessary.
  • the degree of abrasion of the endpoint detection window and the polishing layer during polishing is adjusted, and either the endpoint detection window or the polishing layer is excessively polished, thereby causing defects (surface defects) on the non-polished object.
  • the ratio of the storage elastic modulus E′ between the end point detection window and the polishing layer is defined.
  • the endpoint detection window and the storage elastic modulus E′ of the polishing layer in the fourth embodiment are determined by dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.6 Hz, 30 to 55° C., and water immersion. be able to. In this embodiment, unless otherwise specified, it is assumed that the dynamic viscoelasticity measurement is performed in a submerged state.
  • the ratio of the dynamic viscoelasticity of the endpoint detection window and the polishing layer in the submerged state is defined at 40° C., which corresponds to the temperature during polishing. More specifically, in the dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency 1.6 Hz, 30 to 55 ° C., and immersion, the storage elastic modulus E'w40 of the endpoint detection window at 40 ° C. and 40 ° C. defines the ratio (E'p40/E'w40) to the storage elastic modulus E'p40 of the polishing layer at .
  • the ratio (E'p40/E'w40) is 0.70-3.00, preferably 0.80-2.50, more preferably 0.90-2.00.
  • the ratio (E'p40/E'w40) is within the above range, the properties of the end-point detection window and the polishing layer are similar during polishing, and the surface quality of the resulting polished object is further improved.
  • the state of contact with the object to be polished (workpiece) during polishing is improved, and persistent pressing of polishing dust is suppressed, thereby suppressing the occurrence of scratches.
  • the ratio of the storage elastic modulus E′w50 of the endpoint detection window at 50° C. to the storage elastic modulus E′p50 of the polishing layer at 50° C. is preferably 0.70 to 5.00, more preferably 0.80 to 4.00, still more preferably 0.90 to 3.00.
  • the ratio (E'p50/E'w50) is within the above range, the characteristics of the end point detection window and the polishing layer are similar during polishing, so the surface quality of the resulting polished object tends to be further improved. .
  • the difference between the loss coefficient tan ⁇ w30 of the endpoint detection window at 30° C. and the loss coefficient tan ⁇ p30 of the polishing layer at 30° C. is preferably 0 to 0.0. 30, more preferably 0.05 to 0.30, still more preferably 0.05 to 0.20.
  • the difference between the loss coefficient tan ⁇ w40 of the endpoint detection window at 40° C. and the loss coefficient tan ⁇ p40 of the polishing layer at 40° C. is preferably 0 to 0.5. 40, more preferably 0.05 to 0.40, still more preferably 0.05 to 0.30.
  • the difference between the loss coefficient tan ⁇ w50 of the endpoint detection window at 50° C. and the loss coefficient tan ⁇ p50 of the polishing layer at 50° C. is preferably 0 to 0.5. 50, more preferably 0.05 to 0.50, more preferably 0.05 to 0.40,
  • ) are each within the above range, so that the properties of the end point detection window and the polishing layer during polishing are similar. Therefore, the surface quality of the resulting polished object tends to be further improved.
  • the storage elastic modulus E′w40 at 40° C. of the endpoint detection window in the submerged state is preferably 6.0 to 50 ⁇ 10 7 Pa, more preferably 8.0 to 40 ⁇ 10 7 Pa, still more preferably It is 10 to 30 ⁇ 10 7 Pa.
  • the storage elastic modulus E′w50 at 50° C. of the endpoint detection window in the submerged state is preferably 2.0 to 40 ⁇ 10 7 Pa, more preferably 3.0 to 30 ⁇ 10 7 Pa, still more preferably 4.0 to 20 ⁇ 10 7 Pa.
  • the tan ⁇ w40 at 40° C. of the endpoint detection window in the submerged state is preferably 0.1 to 0.7, more preferably 0.1 to 0.6, still more preferably 0.1 to 0.5. .
  • the tan ⁇ w50 at 50° C. of the endpoint detection window in the submerged state is preferably 0.1 to 0.6, more preferably 0.1 to 0.5, still more preferably 0.1 to 0.4. .
  • the measurement conditions for dynamic viscoelasticity measurement are not particularly limited, the measurement can be performed under the conditions described in Examples.
  • the material constituting the endpoint detection window is not particularly limited as long as it is a transparent member that can function as a window.
  • Examples include polyurethane resin WI, polyvinyl chloride resin, polyvinylidene fluoride resin, polyethersulfone resin, polystyrene resin, polyethylene resin, polytetrafluoroethylene resin, and the like.
  • polyurethane resin WI is preferable. By using such a resin, the dynamic viscoelastic properties and transparency can be more easily adjusted, and the surface quality can be further improved.
  • the polyurethane resin WI can be synthesized from polyisocyanate and polyol, and contains structural units derived from polyisocyanate and structural units derived from polyol.
  • Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units.
  • the polyurethane resin WI preferably contains a structural unit derived from an alicyclic isocyanate and/or an aliphatic isocyanate, and more preferably contains a structural unit derived from an aliphatic isocyanate.
  • the alicyclic isocyanate, aliphatic isocyanate, and aromatic isocyanate are not particularly limited, but include, for example, the compounds exemplified in the first embodiment.
  • Structural Units Derived from Polyols are not particularly limited.
  • the low-molecular-weight polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
  • low-molecular-weight polyols having 3 or more hydroxyl groups are preferred, and glycerin is more preferred.
  • the dynamic viscoelastic properties can be easily adjusted within the above range, the wear amount can be adjusted, the transparency is further improved, and the surface quality tends to be further improved.
  • the content of the structural unit derived from the low-molecular-weight polyol having 3 or more hydroxyl groups is preferably 7.5 to 30 parts by mass, more preferably 10 to 100 parts by mass, relative to 100 parts by mass of the structural unit derived from the polyisocyanate. 25 parts by mass, more preferably 12.5 to 20 parts by mass.
  • polymer polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
  • the number average molecular weight of the polymer polyol is preferably 300-3000, more preferably 500-2500.
  • polyether polyol is preferred, and poly(oxytetramethylene) glycol is more preferred.
  • poly(oxytetramethylene) glycol is more preferred.
  • the content of structural units derived from polyether polyol is preferably 60 to 130 parts by mass, preferably 65 to 120 parts by mass, more preferably 70 parts by mass, based on 100 parts by mass of structural units derived from polyisocyanate. ⁇ 110 parts by mass.
  • the content of the structural unit derived from the polyether polyol is within the above range, the dynamic viscoelastic properties are easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window is further improved.
  • the polyol it is preferable to use a low-molecular-weight polyol and a high-molecular-weight polyol together, and it is more preferable to use a low-molecular-weight polyol having three or more hydroxyl groups and a polyether polyol together.
  • the dynamic viscoelastic property can be easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
  • the content of the polyether polyol is preferably 2.0 to 15.0 parts, more preferably 3.0 to 12.5 parts, relative to 1 part of the low-molecular-weight polyol having 3 or more hydroxyl groups. parts, more preferably 4.0 to 9.0 parts.
  • the polishing layer of the fourth embodiment has an opening in which the endpoint detection window is embedded.
  • the position of the opening is not particularly limited, it is preferably provided at a position in the radial direction corresponding to the film thickness detection sensor 23 installed on the table 22 .
  • the number of openings is not particularly limited, the openings are arranged at similar radial positions so that the windows pass over the film thickness detection sensor 23 multiple times when the polishing pad 10 attached to the table 22 rotates once. It is preferable to have a plurality of them.
  • the form of the abrasive layer is not particularly limited, but examples include resin foam molded articles, non-foam molded articles, and resin-impregnated substrates obtained by impregnating fiber substrates with resin.
  • the storage elastic modulus E′p40 at 40° C. of the polishing layer in a water-immersed state is preferably 10 to 40 ⁇ 10 7 Pa, more preferably 15 to 35 ⁇ 10 7 Pa, still more preferably 20. ⁇ 30 ⁇ 10 7 Pa.
  • the storage elastic modulus E′p50 at 50° C. of the polishing layer in the submerged state is preferably 50 to 35 ⁇ 10 7 Pa, more preferably 10 to 30 ⁇ 10 7 Pa, still more preferably 15 to 25 ⁇ 10. 7 Pa.
  • the tan ⁇ p40 at 40°C of the polishing layer in the submerged state is preferably 0.01 to 0.25, more preferably 0.03 to 0.20, still more preferably 0.05 to 0.15.
  • the tan ⁇ p50 at 50°C of the polishing layer in the submerged state is preferably 0.01 to 0.25, more preferably 0.03 to 0.20, still more preferably 0.05 to 0.15.
  • a polyurethane sheet is exemplified as an example of the polishing layer.
  • the description of the polyurethane sheet is omitted because it includes the aspects described in the first embodiment.
  • the polishing pad of the fourth embodiment may have a cushion layer on the side opposite to the polishing surface of the polishing layer.
  • the surface to be attached to the polishing machine may have an adhesive layer.
  • the cushion layer and the adhesive layer have openings at locations similar to where the endpoint detection windows of the polishing layer are located.
  • the method for manufacturing the polishing pad of the first to fourth embodiments is not particularly limited, but for example, a polishing layer is formed in a mold in which a window member serving as an endpoint detection window is fixed. A step of filling and curing a resin composition to obtain a resin block in which a window member is embedded, and a step of slicing the obtained resin block to obtain a polyurethane sheet having an endpoint detection window in the opening. If necessary, the polished surface of the resulting polyurethane sheet may be dressed.
  • the temperature for slicing is preferably 70°C to 100°C. Also, the temperature in the dressing treatment is preferably 20°C to 30°C. This tends to further improve flatness.
  • the method for producing a polished object according to the first to fourth embodiments includes a polishing step of polishing an object to be polished using the polishing pad in the presence of a polishing slurry to obtain a polished object. and an end-point detection step of performing end-point detection by an optical end-point detection method during the polishing.
  • polishing process may be primary lapping polishing (rough lapping), secondary lapping (finish lapping), primary polishing (rough polishing), or secondary polishing (finish polishing). ), or may also serve as polishing.
  • lapping refers to polishing at a relatively high rate using coarse abrasive grains
  • polishing refers to increasing the surface quality at a relatively low rate using fine abrasive grains.
  • polishing pads of the first to fourth embodiments are preferably used for chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • the methods for manufacturing the polished objects of the first to fourth embodiments will be described below using chemical mechanical polishing as an example, but the methods for manufacturing the polished objects of the first to fourth embodiments are not limited to the following.
  • the object to be polished is not particularly limited, but for example, materials such as semiconductor devices and electronic components, particularly Si substrates (silicon wafers), SiC (silicon carbide) substrates, GaAs (gallium arsenide) substrates, glass, hard disks and LCDs. Thin substrates (objects to be polished) such as substrates for (liquid crystal displays) can be mentioned. In particular, semiconductor devices having metal wiring such as W (tungsten) and Cu (copper) are mentioned.
  • a conventionally known method can be used as the polishing method, and is not particularly limited. For example, first, an object to be polished held on a holding surface plate arranged to face the polishing pad is pressed against the polishing surface, and the polishing pad and/or the holding surface plate are rotated while slurry is supplied from the outside. Let The polishing pad and the holding platen may rotate in the same direction or in opposite directions at different rotational speeds. Further, the object to be polished may be polished while moving (rotating) inside the frame during the polishing process.
  • the slurry may contain chemical components such as water and an oxidizing agent represented by hydrogen peroxide, additives, abrasive grains (abrasive particles; for example, SiC, SiO 2 , Al 2 O 3 , CeO 2 ) and the like.
  • an oxidizing agent represented by hydrogen peroxide
  • additives for example, SiC, SiO 2 , Al 2 O 3 , CeO 2
  • abrasive grains abrasive particles; for example, SiC, SiO 2 , Al 2 O 3 , CeO 2
  • the method of manufacturing a polished workpiece according to the first to fourth embodiments has an end point detection step of detecting the end point by an optical end point detection method in the polishing step.
  • a conventionally known method can be used as the end point detection method by the optical end point detection method.
  • FIG. 4 shows a schematic diagram of the endpoint detection method of the optical endpoint detection method.
  • This schematic diagram shows a chemical mechanical polishing process in which a wafer W held by a top ring 21 is pressed onto a polishing pad 10 attached on a table 22 while flowing a slurry 24 thereon, and the uneven film on the surface of the wafer W is scraped and flattened.
  • the polishing apparatus 20 mounts a film thickness detection sensor 23 for monitoring the film thickness on the table 22 in order to detect the end point of the predetermined film thickness at the same time as flattening and terminate the process with high accuracy.
  • the film thickness detection sensor 23 can detect the polishing end point by, for example, irradiating the polishing surface of the wafer W with light and measuring and analyzing the spectral intensity characteristics of the reflected light.
  • the film thickness detection sensor 23 causes light to enter the surface of the wafer W through the end point detection window 12, and the light reflected by the film on the wafer W (wafer surface) and the film on the wafer W are detected.
  • a film thickness change can be detected by detecting the strength of the reflection intensity caused by the phase difference with respect to the light reflected at the interface between the wafer and the substrate.
  • part shall mean a mass part.
  • Example A [Manufacturing Example A1: End Point Detection Window A1] 100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 650, and 14.8 parts of glycerin are reacted to detect the end point. A transparent member to be the window A1 was obtained.
  • PTMG poly(oxytetramethylene)glycol
  • End point detection window A2 100 parts of 4,4' methylene bis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 650, 7.5 parts of glycerin, and 7.5 parts of ethylene glycol were allowed to react to obtain a transparent member serving as the endpoint detection window A2.
  • PTMG poly(oxytetramethylene) glycol
  • End point detection window A3 100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 650, 4.5 parts of glycerin, and 10.5 parts of ethylene glycol were reacted to obtain a transparent member that will serve as the endpoint detection window A3.
  • PTMG poly(oxytetramethylene)glycol
  • Example A1 2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG ) is reacted with 100 parts of a urethane prepolymer having an NCO equivalent of 455, and 2.7 parts of unexpanded hollow fine particles (average particle diameter: 8.5 ⁇ m) having a shell portion made of an acrylonitrile-vinylidene chloride copolymer are added. By mixing, a urethane prepolymer mixture was obtained.
  • the obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 25.8 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, The mixture was heated and melted at 120° C., mixed, and degassed under reduced pressure to obtain a curing agent melt.
  • MOCA 3,3'-dichloro-4,4'-diaminodiphenylmethane
  • the liquids in the first liquid tank and the second liquid tank were injected from respective inlets of a mixer provided with two inlets, and stirred and mixed to obtain a mixed liquid.
  • the obtained mixed liquid was cast into a mold in which the endpoint detection window A1 obtained as described above was installed in advance, and was primarily cured at 80°C for 30 minutes.
  • the formed block-shaped molding was extracted from the mold and subjected to secondary curing in an oven at 120° C. for 4 hours to obtain a urethane resin block.
  • the resulting urethane resin block was allowed to cool to 25°C.
  • polishing pad obtained as described above was subjected to the dressing process under the following conditions.
  • Polishing machine used Speedfam, trade name “FAM-12BS” Surface plate rotation speed (polishing pad rotation speed): 50 rpm Flow rate: 100 ml/min (Pure water at 20° C. was dropped from the rotation center of the polishing pad.)
  • Dresser 3M diamond dresser, model number "A188" Dresser rotation speed: 100 rpm Dressing pressure: 0.115 kg/cm2
  • Direction of dresser rotation Rotates in the same direction as the polishing pad Test time: 60 minutes
  • Example A2 A polishing pad was obtained in the same manner as in Example A1, except that the endpoint detection window A4 of Production Example A4 was used.
  • Measuring device Measuring device: RSA III (manufactured by TA Instruments) Test length: 1cm Test mode: Tensile Frequency: 1.0Hz Temperature range: 10-100°C Heating rate: 3.0°C/min Strain range: 0.10% Initial load: 300g Measurement interval: 1.5 points/°C
  • the D hardness was measured according to JIS K6253. At the time of measurement, a D hardness tester manufactured by Teclock Co., Ltd. was used, and the sample was a stack of four endpoint detection windows (thickness of about 0.125 cm (1.25 mm)) described in Comparative Example A and Example A, and at least the total thickness It was set to be 0.45 cm (4.5 mm) or more. In addition, the sample used was one which was allowed to stand for 30 minutes in a constant temperature and humidity chamber at 20°C or 80°C.
  • FIGS 5A-D and 6A-D show the cross-sectional measurement results of two endpoint detection windows, and the cross-sectional measurement results of each endpoint detection window in the slicing direction and the direction perpendicular to the slicing direction. is shown.
  • the end point detection window was within ⁇ 50 ⁇ m from the polished surface, it was evaluated as ⁇ , and otherwise as x.
  • the cross-sectional image is flat (the height is the same from the edge to the center), it is rated as ⁇ , and if it is convex (the height is increased from the edge to the center), it is rated as x. .
  • Example B [Manufacturing Example B1: End Point Detection Window B1] 100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 120.9 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 1000, and 14.8 parts of glycerin are reacted to detect the end point. A transparent member to be the window B1 was obtained.
  • PTMG poly(oxytetramethylene)glycol
  • Example B1 2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with an average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG) 2.7 parts of unexpanded hollow fine particles (average particle size: 8.5 ⁇ m) whose shell is made of acrylonitrile-vinylidene chloride copolymer are added and mixed to 100 parts of a urethane prepolymer having an NCO equivalent of 455 obtained by reacting to obtain a urethane prepolymer mixture.
  • 2,4-TDI 2,4-tolylene diisocyanate
  • PTMG poly(oxytetramethylene) glycol
  • PTMG poly(oxytetramethylene) glycol
  • DEG diethylene glycol
  • the obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 25.8 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, The mixture was heated and melted at 120° C., mixed, and degassed under reduced pressure to obtain a curing agent melt.
  • MOCA 3,3'-dichloro-4,4'-diaminodiphenylmethane
  • the liquids in the first liquid tank and the second liquid tank were injected from respective inlets of a mixer provided with two inlets, and stirred and mixed to obtain a mixed liquid.
  • the obtained mixed liquid was poured into a mold in which the endpoint detection window B1 obtained as described above was installed in advance, and was primarily cured at 80°C for 30 minutes.
  • the formed block-shaped molding was extracted from the mold and subjected to secondary curing in an oven at 120° C. for 4 hours to obtain a urethane resin block.
  • the resulting urethane resin block was allowed to cool to 25°C.
  • Example B2 2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with an average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG) 2.9 parts of unexpanded hollow fine particles (average particle diameter: 8.5 ⁇ m) whose shell part is made of acrylonitrile-vinylidene chloride copolymer are added and mixed. to obtain a urethane prepolymer mixture.
  • the obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C.
  • a polishing pad was obtained in the same manner as in Example B1, except that the curing agent melt obtained by heating and melting at 120° C., and then degassing under reduced pressure, and the endpoint detection window B2 were used.
  • Example B3 2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene)glycol (PTMG) with an average molecular weight of 650 and diethylene glycol (DEG) are reacted to 100 parts of a urethane prepolymer having an NCO equivalent of 460, 2.8 parts of expanded hollow fine particles (average particle size: 20 ⁇ m) having a shell portion made of an acrylonitrile-vinylidene chloride copolymer were added and mixed to obtain a urethane prepolymer mixture. The obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C.
  • Example B4 A polishing pad was obtained in the same manner as in Example B1, except that the endpoint detection window B2 was used.
  • Example B5 A polishing pad was obtained in the same manner as in Example B1, except that the endpoint detection window B3 was used.
  • Example B6 A polishing pad was obtained in the same manner as in Example B1, except that the endpoint detection window B4 was used.
  • Example B7 A polishing pad was obtained in the same manner as in Example B2, except that the endpoint detection window B4 was used.
  • Measuring device Measuring device: RSA III (manufactured by TA Instruments) Test length: 1cm Test mode: Tensile Frequency: 1.0Hz Temperature range: 10-100°C Heating rate: 3.0°C/min Strain range: 0.10% Initial load: 300g Measurement interval: 1.5 points/°C
  • the D hardness was measured according to JIS K6253. For the measurement, a D hardness tester manufactured by Teclock Co., Ltd. was used. The thickness was set to 0.45 cm (4.5 mm) or more. In addition, the sample used was one that had been allowed to stand for 30 minutes in a constant temperature and humidity chamber at 20°C.
  • Polishing pad was set at a predetermined position of a polishing apparatus via a double-sided tape having an acrylic adhesive, and the Cu film substrate was subjected to polishing under the following conditions.
  • Polishing machine F-REX300X (manufactured by Ebara Corporation) Disk: A188 (manufactured by 3M) Rotation speed: (Surface plate) 85 rpm, (Top ring) 86 rpm Polishing pressure: 3.5 psi
  • Abrasive temperature 20°C
  • Abrasive discharge rate 200ml/min
  • Object to be polished Cu film substrate Polishing time: 60 seconds
  • Pad break 35N 10 minutes Conditioning: Ex-situ, 35N, 4 scans
  • Defects with a size of 155 nm or more were detected and evaluated.
  • the surface quality was evaluated based on the confirmation results of defects (surface defects).
  • Example C [Manufacturing Example C1: End Point Detection Window C1] 100 parts of 4,4′ methylenebis(cyclohexyl isocyanate), 90.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 1000, and 16.7 parts of glycerin are reacted to form an endpoint detection window. A transparent member of C1 was obtained.
  • PTMG poly(oxytetramethylene) glycol
  • Example C1 2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG ) is reacted with 100 parts of a urethane prepolymer having an NCO equivalent of 420, and 2.9 parts of unexpanded hollow fine particles (average particle diameter: 8.5 ⁇ m) having a shell made of an acrylonitrile-vinylidene chloride copolymer are added. By mixing, a urethane prepolymer mixture was obtained.
  • the obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 28.0 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, The mixture was heated and melted at 120° C., mixed, and degassed under reduced pressure to obtain a curing agent melt.
  • MOCA 3,3'-dichloro-4,4'-diaminodiphenylmethane
  • the liquids in the first liquid tank and the second liquid tank were injected from respective inlets of a mixer provided with two inlets, and stirred and mixed to obtain a mixed liquid.
  • the obtained mixed liquid was cast into a mold in which the endpoint detection window C1 obtained as described above was installed in advance, and was primarily cured at 80°C for 30 minutes.
  • the formed block-shaped molding was extracted from the mold and subjected to secondary curing in an oven at 120° C. for 4 hours to obtain a urethane resin block.
  • the resulting urethane resin block was allowed to cool to 25°C.
  • polishing pad obtained as described above was subjected to the dressing process under the following conditions.
  • Polishing machine used Speedfam, trade name “FAM-12BS” Surface plate rotation speed (polishing pad rotation speed): 50 rpm Flow rate: 100 ml/min (Pure water at 20° C. was dropped from the rotation center of the polishing pad.)
  • Dresser 3M diamond dresser, model number "A188" Dresser rotation speed: 100 rpm Dressing pressure: 0.115 kg/cm2
  • Direction of dresser rotation Rotates in the same direction as the polishing pad Test time: 60 minutes
  • Example C2 A polishing pad was obtained in the same manner as in Example C1, except that the endpoint detection window C2 of Production Example C3 was used.
  • the obtained attenuation curve was fitted and analyzed using equation (1) to obtain the relaxation times of the crystalline phase, the intermediate phase and the amorphous phase in the polyurethane resin.
  • the software attached to the measuring device was used.
  • M(t) ⁇ exp(-(1/2)(t/T ⁇ ) 2 ) sinbt /bt+ ⁇ exp(-(1/Wa)(t/ T ⁇ ) Wa )+ ⁇ exp (-t/T ⁇ ).
  • FIGS. 8A to C show the cross-sectional measurement results of two end-point detection windows, which are the results of cross-sectional measurement in the slicing direction and a direction orthogonal to the slicing direction for each end-point detection window. is shown.
  • evaluation C1 if the end point detection window was within ⁇ 50 ⁇ m from the polished surface, it was evaluated as ⁇ , and otherwise as x. In the evaluation C2, if the cross-sectional image was flat (the height was the same from the edge to the center), it was rated as ⁇ , and if it was convex (the height increased from the edge to the center), it was rated as x. .
  • Example D [Manufacturing Example D1: End Point Detection Window D1] 100 parts of 4,4′ methylenebis(cyclohexyl isocyanate), 90.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 1000, and 16.7 parts of glycerin are reacted to form an endpoint detection window. A transparent member of D1 was obtained.
  • PTMG poly(oxytetramethylene) glycol
  • Example D1 2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG ) is reacted with 100 parts of a urethane prepolymer having an NCO equivalent of 420, and 2.9 parts of unexpanded hollow fine particles (average particle diameter: 8.5 ⁇ m) having a shell made of an acrylonitrile-vinylidene chloride copolymer are added. By mixing, a urethane prepolymer mixture was obtained.
  • the obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 28.0 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, The mixture was heated and melted at 120° C., mixed, and degassed under reduced pressure to obtain a curing agent melt.
  • MOCA 3,3'-dichloro-4,4'-diaminodiphenylmethane
  • the liquids in the first liquid tank and the second liquid tank were injected from respective inlets of a mixer provided with two inlets, and stirred and mixed to obtain a mixed liquid.
  • the obtained mixed liquid was cast into a mold in which the end point detection window D1 obtained as described above was installed in advance, and was primarily cured at 80°C for 30 minutes.
  • the formed block-shaped molding was extracted from the mold and subjected to secondary curing in an oven at 120° C. for 4 hours to obtain a urethane resin block.
  • the resulting urethane resin block was allowed to cool to 25°C.
  • Dynamic viscoelasticity measurement Dynamic viscoelasticity was measured under the following conditions. First, the sample was immersed in water at a temperature of 23°C for 3 days. Using the obtained sample, dynamic viscoelasticity measurement was performed in water (immersion state). The sample size of the endpoint detection window was 5 cm long ⁇ 0.5 cm wide ⁇ 0.13 cm thick, and the sample size of the polishing layer was 5 cm long ⁇ 0.5 cm wide ⁇ 0.13 cm thick.
  • Measuring device Measuring device: RSA G2 (manufactured by TA Instruments) Test length: 1cm Sample pretreatment: Hold in water at 23°C for 3 days Test mode: Tensile Frequency: 1.6Hz Temperature range: 30-55°C Heating rate: 0.3°C/min Strain range: 0.10% Initial load: 300g Measurement interval: 200 points/°C
  • Polishing pad was set at a predetermined position of a polishing apparatus via a double-sided tape having an acrylic adhesive, and the Cu film substrate was subjected to polishing under the following conditions.
  • Polishing machine F-REX300X (manufactured by Ebara Corporation) Disk: A188 (manufactured by 3M) Rotation speed: (Surface plate) 85 rpm, (Top ring) 86 rpm Polishing pressure: 3.5 psi
  • Abrasive temperature 20°C
  • Abrasive discharge rate 200ml/min
  • Object to be polished Cu film substrate Polishing time: 60 seconds
  • Pad break 35N 10 minutes Conditioning: Ex-situ, 35N, 4 scans
  • Defects with a size of 155 nm or more were detected and evaluated.
  • the surface quality was evaluated based on the confirmation results of defects (surface defects).
  • the “ratio p/w” in Table 4 is the ratio of the storage elastic modulus E'w of the endpoint detection window and the storage elastic modulus E'p of the polishing layer at the same temperature, or tan ⁇ w of the endpoint detection window and The ratio to tan ⁇ p of the polishing layer is shown.
  • the ratio (E'p40/E'w40) of Example D1 is 0.95
  • the ratio (E'p40/E'w40) of Example D2 is 1.62
  • the ratio (E'p40/E'w40) of Comparative Example D1 is 4.90.
  • ” in Table 4 is the difference between the storage elastic modulus E'w of the endpoint detection window and the storage elastic modulus E'p of the polishing layer at the same temperature, or The difference between tan ⁇ w and tan ⁇ p of the polishing layer is shown.
  • the difference in Example D1 (
  • the difference in Example D2
  • the difference in Comparative Example D1 is The difference (
  • the polishing pad of the present invention has industrial applicability as a pad suitable for polishing semiconductor wafers and the like.

Abstract

This polishing pad includes: a polyurethane sheet serving as a polishing layer; and an end point detection window provided in an opening in the polyurethane sheet. In a dynamic viscoelasticity measurement of the end point detection window performed under the conditions of a tensile mode, a frequency of 1.0 Hz, and 10 to 100°C, the storage elastic modulus E'W90 at 90°C is 1.0×107 Pa or more, the D hardness (DW80) of the end point detection window at 80°C is 40 or more, and the D hardness (DW20) of the end point detection window at 20°C is from 40 to 90.

Description

研磨パッド及び研磨加工物の製造方法Method for manufacturing polishing pad and polishing workpiece
 本発明は、研磨パッド及びそれを用いた研磨加工物の製造方法に関する。 The present invention relates to a polishing pad and a method for manufacturing a polished product using the same.
 半導体製造工程においては、絶縁膜成膜後の平坦化や金属配線の形成過程で化学機械研磨(CMP)が使用される。化学機械研磨に要求される重要な技術の一つとして、研磨プロセスが完了したかどうかを検出する研磨終点検出がある。例えば、目標とする研磨終点に対する過研磨や研磨不足は製品不良に直結する。そのため、化学機械研磨では、研磨終点検出により研磨量を厳しく管理する必要がある。 In the semiconductor manufacturing process, chemical mechanical polishing (CMP) is used in the process of flattening after insulating film deposition and forming metal wiring. One of the important techniques required for chemical mechanical polishing is polishing endpoint detection for detecting whether the polishing process has been completed. For example, over-polishing or under-polishing to the target polishing end point directly leads to product defects. Therefore, in chemical mechanical polishing, it is necessary to strictly control the polishing amount by detecting the polishing end point.
 化学機械研磨は複雑なプロセスであり、研磨装置の運転状態や消耗品(スラリー、研磨パッド、ドレッサー等)の品質や研磨過程における経時的な状態のばらつきの影響によって、研磨速度(研磨レート)が変化する。さらに、近年半導体製造工程で求められる残膜厚の精度、面内均一性はますます厳しくなっている。このような事情から、十分な精度の研磨終点検出はより困難となってきている。 Chemical mechanical polishing is a complicated process, and the polishing speed (polishing rate) varies depending on the operating conditions of the polishing equipment, the quality of consumables (slurry, polishing pads, dressers, etc.), and variations in conditions over time during the polishing process. Change. Furthermore, in recent years, the precision and in-plane uniformity of the residual film thickness required in the semiconductor manufacturing process have become more and more severe. Under these circumstances, it is becoming more difficult to detect the polishing end point with sufficient accuracy.
 研磨終点検出の主な方法としては、光学式終点検出方式、トルク終点検出方式、渦電流終点検出方式などが知られており、光学式終点検出方式では、研磨パッド上に設けた透明な窓用部材を通してウエハに光を照射し、反射光をモニタすることで終点検出を行う。 Known major polishing end point detection methods include the optical end point detection method, the torque end point detection method, and the eddy current end point detection method. The end point is detected by irradiating the wafer with light through the member and monitoring the reflected light.
 このような光学式終点検出方式を用いる研磨パッドとしては、例えば、特許文献1には、窓用部材の溝内にスラリーが溜まるのを抑えて、研磨レートの検出精度を上げることができる研磨パッドを提供することを目的として、パッド本体と該パッド本体の一部に一体に形成された透明な窓用部材とを有する研磨パッドにおいて、窓用部材の表面をパッド本体の表面から凹んだ状態とすることが開示されている。 As a polishing pad using such an optical end point detection system, for example, Patent Document 1 discloses a polishing pad that can suppress slurry from accumulating in grooves of a window member and increase the accuracy of polishing rate detection. A polishing pad having a pad body and a transparent window member formed integrally with a part of the pad body, wherein the surface of the window member is recessed from the surface of the pad body. It is disclosed to
特開2002-001647号公報JP-A-2002-001647
 ところで、上記のような窓を有する研磨パッドの製造方法の一つとして、金型に窓用部材を固定した状態で、樹脂組成物を充填し硬化させたあと、得られた硬化物をスライスしたり、その後ドレス処理をしたりする方法が挙げられる。ここで、窓用部材と樹脂組成物の硬化物は異なる材料からなるものであるためその物性は少なからず相違するが、例えば、スライスをした際に、窓部が凹んだり割れたりする恐れがある。また、ドレス処理を行う際にも、窓部と研磨層の摩耗量の相違によって、窓部が凹んだ状態となる恐れがある。 By the way, as one method for producing a polishing pad having a window as described above, a resin composition is filled and cured in a state where a window member is fixed in a mold, and then the obtained cured product is sliced. and then perform a dressing process. Here, since the window member and the cured product of the resin composition are made of different materials, their physical properties are not a little different. . Also, when performing the dressing process, the window may be recessed due to the difference in the amount of wear between the window and the polishing layer.
 このような凹みなどが生じると、そこにスラリーや研磨屑がたまりやすくなり、スクラッチなどを生じさせて、被研磨物の面品位を低下させる可能性がある。また、窓部の方が摩耗量が少ない場合には、研磨が進むにつれて窓部が研磨層よりも残りやすくなる結果、窓部部分が凸状となることが考えられる。このような凸状の窓部も、スクラッチなどを生じさせて、被研磨物の面品位を低下させる可能性がある。 When such dents occur, slurry and polishing waste tend to accumulate there, causing scratches and the like, possibly degrading the surface quality of the object to be polished. Further, when the amount of wear of the window portion is smaller than that of the polishing layer, the window portion is more likely to remain than the polishing layer as the polishing progresses, and as a result, the window portion may become convex. Such convex windows may also cause scratches and the like, degrading the surface quality of the object to be polished.
 本発明は、上記問題点に鑑みてなされたものであり、第1実施形態及び第3実施形態においては、スライス処理及びドレス処理時における平坦性に優れる研磨パッド及びそれを用いた研磨加工物の製造方法を提供することを目的の一つとする。 The present invention has been made in view of the above problems, and in the first and third embodiments, a polishing pad having excellent flatness during slicing and dressing processes and a polishing workpiece using the same are provided. One of the objects is to provide a manufacturing method.
 また、特許文献1のように研磨層と終点検出窓の特性を異ならせると、例えば、終点検出窓の部分が研磨層より早く研磨されて凹みとなり、そこにスラリーや研磨屑がたまりやすくなり、ディフェクト(表面欠陥)を生じさせることがある。さらに、終点検出窓の部分が研磨層より遅く研磨される場合には、研磨が進むにつれ終点検出窓が凸部となり、ディフェクトを生じさせて、被研磨物の面品位を低下させる可能性がある。 In addition, if the polishing layer and the endpoint detection window have different characteristics as in Patent Document 1, for example, the endpoint detection window portion is polished faster than the polishing layer and becomes a dent, and slurry and polishing dust tend to accumulate there. Defects (surface defects) may occur. Furthermore, if the end-point detection window is polished later than the polishing layer, the end-point detection window becomes a convex portion as polishing progresses, causing defects and possibly degrading the surface quality of the object to be polished. .
 本発明は、上記問題点に鑑みてなされたものであり、第2実施形態及び第4実施形態においては、終点検出窓を有しつつもディフェクトが生じにくく面品位に優れた被研磨物を得ることのできる研磨パッド及びそれを用いた研磨加工物の製造方法を提供することを目的の一つとする。 The present invention has been made in view of the above-mentioned problems, and in the second and fourth embodiments, it is possible to obtain an object to be polished which has an endpoint detection window and is less susceptible to defects and has excellent surface quality. It is an object of the present invention to provide a polishing pad capable of polishing and a method of manufacturing a polishing workpiece using the same.
〔第1実施形態〕
 本発明者らは、上記問題を解決するため鋭意検討した。その結果、終点検出窓が所定の粘弾性及び硬度を有することにより、上記問題点を解決しうることを見出して、本発明を完成するに至った。
[First Embodiment]
The present inventors have made extensive studies to solve the above problems. As a result, the inventors have found that the above problems can be solved by providing the endpoint detection window with predetermined viscoelasticity and hardness, and have completed the present invention.
 すなわち、本発明の第1実施形態は以下のとおりである。
〔1〕
 研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、
 引張モード、周波数1.0Hz、10~100℃の条件で行う前記終点検出窓の動的粘弾性測定において、90℃における貯蔵弾性率E’W90が、1.0×107Pa以上であり、
 前記終点検出窓の80℃におけるD硬度(DW80)が、40以上であり、
 前記終点検出窓の20℃におけるD硬度(DW20)が、40~90である、
 研磨パッド。
〔2〕
 前記終点検出窓が、ポリウレタン樹脂WIを含む、
 〔1〕に記載の研磨パッド。
〔3〕
 前記ポリウレタン樹脂WIが、脂環族イソシアネート及び/又は脂肪族イソシアネートに由来する構成単位を含む、
 〔2〕に記載の研磨パッド。
〔4〕
 前記ポリウレタン樹脂WIが、水酸基を3つ以上有する化合物に由来する構成単位を含む、
 〔2〕又は〔3〕に記載の研磨パッド。
〔5〕
 前記終点検出窓の動的粘弾性測定において、30℃における貯蔵弾性率E’W30が、60×107~100×107Paである、
 〔1〕~〔4〕のいずれか一項に記載の研磨パッド。
〔6〕
 前記終点検出窓の動的粘弾性測定において、tanδのピーク温度が、70~100℃である、
 〔1〕~〔5〕のいずれか一項に記載の研磨パッド。
〔7〕
 前記研磨層は、ポリウレタン樹脂Pと、該ポリウレタン樹脂P中に分散した中空微粒子とを含む、
 〔1〕~〔6〕のいずれか一項に記載の研磨パッド。
〔8〕
 研磨スラリーの存在下、〔1〕~〔7〕のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨し研磨加工物を得る研磨工程と、
 該研磨中に光学式終点検出方式で終点検出を行う終点検出工程と、を有する、
 研磨加工物の製造方法。
That is, the first embodiment of the present invention is as follows.
[1]
having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
In the dynamic viscoelasticity measurement of the endpoint detection window performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100 ° C., the storage elastic modulus E′ W90 at 90 ° C. is 1.0 × 10 Pa or more,
The D hardness (D W80 ) of the endpoint detection window at 80° C. is 40 or more,
The endpoint detection window has a D hardness (D W20 ) at 20° C. of 40 to 90.
polishing pad.
[2]
wherein the endpoint detection window comprises a polyurethane resin WI;
The polishing pad according to [1].
[3]
The polyurethane resin WI contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate,
The polishing pad according to [2].
[4]
The polyurethane resin WI contains structural units derived from a compound having 3 or more hydroxyl groups,
The polishing pad according to [2] or [3].
[5]
In the dynamic viscoelasticity measurement of the endpoint detection window, the storage elastic modulus E′ W30 at 30° C. is 60×107 to 100× 107 Pa.
[1] The polishing pad according to any one of [4].
[6]
In the dynamic viscoelasticity measurement of the endpoint detection window, the peak temperature of tan δ is 70 to 100 ° C.
[1] The polishing pad according to any one of [5].
[7]
The polishing layer contains a polyurethane resin P and hollow fine particles dispersed in the polyurethane resin P.
[1] The polishing pad according to any one of [6].
[8]
a polishing step of polishing an object to be polished using the polishing pad according to any one of [1] to [7] in the presence of a polishing slurry to obtain a polished object;
an endpoint detection step of performing endpoint detection by an optical endpoint detection method during the polishing;
A method for producing an abrasive article.
〔第2実施形態〕
 本発明者らは、上記問題を解決するため鋭意検討した。その結果、終点検出窓と研磨層の粘弾性が所定の関係を有することにより、上記問題点を解決しうることを見出して、本発明を完成するに至った。
[Second embodiment]
The present inventors have made extensive studies to solve the above problems. As a result, the inventors have found that the above problems can be solved by establishing a predetermined relationship between the endpoint detection window and the viscoelasticity of the polishing layer, and have completed the present invention.
 すなわち、本発明の第2実施形態は以下のとおりである。
〔1〕
 研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、
 引張モード、周波数1.0Hz、10~100℃の条件で行う動的粘弾性測定において、前記終点検出窓の30℃における貯蔵弾性率E’W30と、前記研磨層の30℃における貯蔵弾性率E’P30との比(E’P30/E’W30)が、0.60~1.50である、
 研磨パッド。
〔2〕
 前記終点検出窓が、ポリウレタン樹脂WIを含む、
 〔1〕に記載の研磨パッド。
〔3〕
 前記ポリウレタン樹脂WIが、脂環族イソシアネート及び/又は脂肪族イソシアネートに由来する構成単位を含む、
 〔2〕に記載の研磨パッド。
〔4〕
 前記ポリウレタン樹脂WIが、水酸基を3つ以上有する化合物に由来する構成単位を含む、
 〔2〕又は〔3〕に記載の研磨パッド。
〔5〕
 前記動的粘弾性測定において、前記終点検出窓の50℃における貯蔵弾性率E’W50と、前記研磨層の50℃における貯蔵弾性率E’P50との比(E’P50/E’W50)が、0.70~2.00である、
 〔1〕~〔4〕のいずれか一項に記載の研磨パッド。
〔6〕
 前記終点検出窓の動的粘弾性測定において、30℃における貯蔵弾性率E’W30が、10×10~60×10Paである、
 〔1〕~〔5〕のいずれか一項に記載の研磨パッド。
〔7〕
 前記終点検出窓の20℃におけるD硬度(DW20)が、40~70である、
 〔1〕~〔6〕のいずれか一項に記載の研磨パッド。
〔8〕
 前記研磨層は、ポリウレタン樹脂Pと、該ポリウレタン樹脂P中に分散した中空微粒子とを含む、
 〔1〕~〔7〕のいずれか一項に記載の研磨パッド。
〔9〕
 研磨スラリーの存在下、〔1〕~〔8〕のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨する研磨工程と、
 該研磨中に光学式終点検出方式で終点検出を行う終点検出工程と、を有する、
 研磨加工物の製造方法。
That is, the second embodiment of the present invention is as follows.
[1]
having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
In the dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency 1.0 Hz, 10 to 100 ° C., the storage elastic modulus E'W30 at 30 ° C. of the end point detection window and the storage elastic modulus E at 30 ° C. of the polishing layer ' P30 ratio (E' P30 /E' W30 ) is 0.60 to 1.50,
polishing pad.
[2]
wherein the endpoint detection window comprises a polyurethane resin WI;
The polishing pad according to [1].
[3]
The polyurethane resin WI contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate,
The polishing pad according to [2].
[4]
The polyurethane resin WI contains structural units derived from a compound having 3 or more hydroxyl groups,
The polishing pad according to [2] or [3].
[5]
In the dynamic viscoelasticity measurement, the ratio of the storage elastic modulus E'W50 at 50°C of the end point detection window to the storage elastic modulus E'P50 at 50°C of the polishing layer ( E'P50 / E'W50 ) is , between 0.70 and 2.00;
[1] The polishing pad according to any one of [4].
[6]
In the dynamic viscoelasticity measurement of the endpoint detection window, the storage elastic modulus E′ W30 at 30° C. is 10×10 7 to 60×10 7 Pa.
[1] The polishing pad according to any one of [5].
[7]
The endpoint detection window has a D hardness (D W20 ) at 20° C. of 40 to 70.
[1] The polishing pad according to any one of [6].
[8]
The polishing layer contains a polyurethane resin P and hollow fine particles dispersed in the polyurethane resin P.
[1] The polishing pad according to any one of [7].
[9]
a polishing step of polishing an object to be polished using the polishing pad according to any one of [1] to [8] in the presence of a polishing slurry;
an endpoint detection step of performing endpoint detection by an optical endpoint detection method during the polishing;
A method for producing an abrasive article.
〔第3実施形態〕
 本発明者らは、上記問題を解決するため鋭意検討した。その結果、パルスNMRによる分析において、終点検出窓と研磨層が所定の関係を有することにより、上記問題点を解決しうることを見出して、本発明を完成するに至った。
[Third Embodiment]
The present inventors have made extensive studies to solve the above problems. As a result, the inventors have found that the above problems can be solved by providing a predetermined relationship between the endpoint detection window and the polishing layer in the analysis by pulse NMR, and have completed the present invention.
 すなわち、本発明の第3実施形態は以下のとおりである。
〔1〕
 研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、
 パルスNMRを用いてSolid Echo法により測定することによって得られる1Hのスピン-スピン緩和の自由誘導減衰曲線を緩和時間の短い順に、結晶相、中間相、及び非晶相の3成分に由来する3つの曲線に波形分離したとき、
 20℃における、前記終点検出窓の非晶相の存在比Lw20と、前記研磨層の非晶相の存在比Lp20の比(Lp20/Lw20)が、0.5~2.0であり、
 80℃における、前記終点検出窓の結晶相の存在比Sw80と、前記研磨層の結晶相の存在比Sp80の比(Sp80/Sw80)が、0.5~2.0である、
 研磨パッド。
〔2〕
 20℃における、前記終点検出窓の中間相の存在比Mw20と、前記研磨層の中間相の存在比Mp20の比(Mp20/Mw20)が、0.7~1.5である、
 〔1〕に記載の研磨パッド。
〔3〕
 80℃における、前記終点検出窓の中間相の存在比Mw80と、前記研磨層の中間相の存在比Mp80の比(Mp80/Mw80)が、0.5~1.5である、
 〔1〕又は〔2〕に記載の研磨パッド。
〔4〕
 前記存在比Lw20と前記存在比Lp20の差(|Lp20-Lw20|)が、10以下である、
 〔1〕~〔3〕のいずれか一項に記載の研磨パッド。
〔5〕
 前記存在比Sw80と前記存在比Sw80の差(|Sp80-Sw80|)が、15以下である、
 〔1〕~〔4〕のいずれか一項に記載の研磨パッド。
〔6〕
 前記終点検出窓が、ポリウレタン樹脂WIを含み、
 前記ポリウレタン樹脂WIが、脂肪族イソシアネートに由来する構成単位を含む、
 〔1〕~〔5〕のいずれか一項に記載の研磨パッド。
〔7〕
 前記研磨層が、ポリウレタン樹脂Pを含み、
 前記ポリウレタン樹脂Pが、芳香族イソシアネートに由来する構成単位を含む、
 〔1〕~〔6〕のいずれか一項に記載の研磨パッド。
〔8〕
 前記研磨層は、前記研磨層中に分散した中空微粒子を含む、
 〔1〕~〔7〕のいずれか一項に記載の研磨パッド。
〔9〕
 研磨スラリーの存在下、〔1〕~〔8〕のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨し研磨加工物を得る研磨工程と、
 該研磨中に光学式終点検出方式で終点検出を行う終点検出工程と、を有する、
 研磨加工物の製造方法。
That is, the third embodiment of the present invention is as follows.
[1]
having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
The spin-spin relaxation free induction decay curve of 1H obtained by measurement by the Solid Echo method using pulsed NMR is divided into 3 phases derived from the three components of the crystalline phase, intermediate phase, and amorphous phase in order of shortest relaxation time. When the waveform is separated into two curves,
a ratio (Lp20/Lw20) of the abundance ratio Lw20 of the amorphous phase in the endpoint detection window to the abundance ratio Lp20 of the amorphous phase in the polishing layer at 20° C. is 0.5 to 2.0;
The ratio (Sp80/Sw80) of the crystalline phase abundance ratio Sw80 of the endpoint detection window to the crystalline phase abundance ratio Sp80 of the polishing layer at 80° C. is 0.5 to 2.0.
polishing pad.
[2]
The ratio (Mp20/Mw20) of the abundance ratio Mw20 of the intermediate phase in the endpoint detection window to the abundance ratio Mp20 of the intermediate phase in the polishing layer at 20° C. is 0.7 to 1.5.
The polishing pad according to [1].
[3]
The ratio (Mp80/Mw80) of the abundance ratio Mw80 of the intermediate phase in the endpoint detection window to the abundance ratio Mp80 of the intermediate phase in the polishing layer at 80° C. is 0.5 to 1.5.
The polishing pad according to [1] or [2].
[4]
The difference (|Lp20−Lw20|) between the abundance ratio Lw20 and the abundance ratio Lp20 is 10 or less.
[1] The polishing pad according to any one of [3].
[5]
The difference (|Sp80−Sw80|) between the abundance ratio Sw80 and the abundance ratio Sw80 is 15 or less.
[1] The polishing pad according to any one of [4].
[6]
wherein the endpoint detection window comprises a polyurethane resin WI;
The polyurethane resin WI contains a structural unit derived from an aliphatic isocyanate,
[1] The polishing pad according to any one of [5].
[7]
The polishing layer contains a polyurethane resin P,
The polyurethane resin P contains a structural unit derived from an aromatic isocyanate,
[1] The polishing pad according to any one of [6].
[8]
The polishing layer contains hollow fine particles dispersed in the polishing layer,
[1] The polishing pad according to any one of [7].
[9]
a polishing step of polishing an object to be polished using the polishing pad according to any one of [1] to [8] in the presence of a polishing slurry to obtain a polished object;
an endpoint detection step of performing endpoint detection by an optical endpoint detection method during the polishing;
A method for producing an abrasive article.
〔第4実施形態〕
 本発明者らは、上記問題を解決するため鋭意検討した。その結果、終点検出窓と研磨層の粘弾性が所定の関係を有することにより、上記問題点を解決しうることを見出して、本発明を完成するに至った。
[Fourth Embodiment]
The present inventors have made extensive studies to solve the above problems. As a result, the inventors have found that the above problems can be solved by establishing a predetermined relationship between the endpoint detection window and the viscoelasticity of the polishing layer, and have completed the present invention.
 すなわち、本発明の第4実施形態は以下のとおりである。
〔1〕
 研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、
 引張モード、周波数1.6Hz、30~55℃、及び浸水状態の条件で行う動的粘弾性測定において、40℃における前記終点検出窓の貯蔵弾性率E’w40と、40℃における前記研磨層の貯蔵弾性率E’p40との比(E’p40/E’w40)が、0.70~3.00である、
 研磨パッド。
〔2〕
 前記動的粘弾性測定において、50℃における前記終点検出窓の貯蔵弾性率E’w50と、50℃における前記研磨層の貯蔵弾性率E’p50との比(E’p50/E’w50)が、0.70~5.00である、
 〔1〕に記載の研磨パッド。
〔3〕
 前記動的粘弾性測定において、30℃における前記終点検出窓の損失係数tanδw30と、30℃における前記研磨層の損失係数tanδp30との差(|tanδw30-tanδp30|)が、0.05~0.30である、
 〔1〕又は〔2〕に記載の研磨パッド。
〔4〕
 前記動的粘弾性測定において、40℃における前記終点検出窓の損失係数tanδw40と、40℃における前記研磨層の損失係数tanδp40との差(|tanδw40-tanδp40|)が、0.05~0.40である、
 〔1〕~〔3〕のいずれか一項に記載の研磨パッド。
〔5〕
 前記動的粘弾性測定において、50℃における前記終点検出窓の損失係数tanδw50と、50℃における前記研磨層の損失係数tanδp50との差(|tanδw50-tanδp50|)が、0.05~0.50である、
 〔1〕~〔4〕のいずれか一項に記載の研磨パッド。
〔6〕
 前記終点検出窓が、ポリウレタン樹脂WIを含み、
 前記ポリウレタン樹脂WIが、脂肪族イソシアネートに由来する構成単位を含む、
 〔1〕~〔5〕のいずれか一項に記載の研磨パッド。
〔7〕
 前記研磨層が、ポリウレタン樹脂Pを含み、
 前記ポリウレタン樹脂Pが、芳香族イソシアネートに由来する構成単位を含む、
 〔1〕~〔6〕のいずれか一項に記載の研磨パッド。
〔8〕
 前記研磨層は、前記研磨層中に分散した中空微粒子を含む、
 〔1〕~〔7〕のいずれか一項に記載の研磨パッド。
〔9〕
 研磨スラリーの存在下、〔1〕~〔8〕のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨し研磨加工物を得る研磨工程と、
 該研磨中に光学式終点検出方式で終点検出を行う終点検出工程と、を有する、
 研磨加工物の製造方法。
That is, the fourth embodiment of the present invention is as follows.
[1]
having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
In the dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.6 Hz, 30 to 55°C, and immersion, the storage elastic modulus E′w40 of the endpoint detection window at 40°C and the polishing layer at 40°C The ratio (E'p40/E'w40) to the storage modulus E'p40 is 0.70 to 3.00.
polishing pad.
[2]
In the dynamic viscoelasticity measurement, the ratio (E'p50/E'w50) of the storage elastic modulus E'w50 of the endpoint detection window at 50°C and the storage elastic modulus E'p50 of the polishing layer at 50°C is , from 0.70 to 5.00;
The polishing pad according to [1].
[3]
In the dynamic viscoelasticity measurement, the difference between the loss coefficient tan δw30 of the endpoint detection window at 30° C. and the loss coefficient tan δp30 of the polishing layer at 30° C. (|tan δw30−tan δp30|) is 0.05 to 0.30. is
The polishing pad according to [1] or [2].
[4]
In the dynamic viscoelasticity measurement, the difference between the loss coefficient tan δw40 of the endpoint detection window at 40° C. and the loss coefficient tan δp40 of the polishing layer at 40° C. (|tan δw40−tan δp40|) is 0.05 to 0.40. is
[1] The polishing pad according to any one of [3].
[5]
In the dynamic viscoelasticity measurement, the difference between the loss coefficient tan δw50 of the endpoint detection window at 50° C. and the loss coefficient tan δp50 of the polishing layer at 50° C. (|tan δw50−tan δp50|) is 0.05 to 0.50. is
[1] The polishing pad according to any one of [4].
[6]
wherein the endpoint detection window comprises a polyurethane resin WI;
The polyurethane resin WI contains a structural unit derived from an aliphatic isocyanate,
[1] The polishing pad according to any one of [5].
[7]
The polishing layer contains a polyurethane resin P,
The polyurethane resin P contains a structural unit derived from an aromatic isocyanate,
[1] The polishing pad according to any one of [6].
[8]
The polishing layer contains hollow fine particles dispersed in the polishing layer,
[1] The polishing pad according to any one of [7].
[9]
a polishing step of polishing an object to be polished using the polishing pad according to any one of [1] to [8] in the presence of a polishing slurry to obtain a polished object;
an endpoint detection step of performing endpoint detection by an optical endpoint detection method during the polishing;
A method for producing an abrasive article.
 本発明の第1実施形態及び第3実施形態によれば、スライス処理及びドレス処理時における平坦性に優れる研磨パッド及びそれを用いた研磨加工物の製造方法を提供することができる。 According to the first and third embodiments of the present invention, it is possible to provide a polishing pad with excellent flatness during slicing and dressing, and a method for manufacturing a polished product using the same.
 また、本発明の第2実施形態及び第4実施形態によれば、終点検出窓を有しつつもディフェクトが生じにくく面品位に優れた被研磨物を得ることのできる研磨パッド及びそれを用いた研磨加工物の製造方法を提供することができる。 Further, according to the second embodiment and the fourth embodiment of the present invention, there is provided a polishing pad capable of obtaining an object to be polished having excellent surface quality while having an end-point detection window, while being resistant to defects. A method for manufacturing an abrasive article can be provided.
第1実施形態~第4実施形態の研磨パッドの概略斜視図である。1 is a schematic perspective view of polishing pads of first to fourth embodiments; FIG. 第1実施形態~第4実施形態の研磨パッドの終点検出窓部分の概略断面図である。FIG. 4 is a schematic cross-sectional view of the end point detection window portion of the polishing pad of the first to fourth embodiments; 第1実施形態~第4実施形態の研磨パッドの終点検出窓部分の他の態様の概略断面図である。FIG. 5 is a schematic cross-sectional view of another aspect of the end point detection window portion of the polishing pad of the first to fourth embodiments; CMPに搭載する膜厚制御システムを示す概略図である。1 is a schematic diagram showing a film thickness control system installed in CMP; FIG. スライス後ドレス前における実施例A1の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Example A1 after slicing and before dressing; スライス後ドレス前における比較例A1の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A1 after slicing and before dressing. スライス後ドレス前における比較例A2の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A2 after slicing and before dressing. スライス後ドレス前における実施例A2の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example A2 after slicing and before dressing; ドレス後における実施例A1の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Example A1 after dressing. ドレス後における比較例A1の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A1 after dressing. ドレス後における比較例A2の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example A2 after dressing. ドレス後における実施例A2の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example A2 after dressing. スライス後ドレス前における実施例C1の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example C1 after slicing and before dressing. スライス後ドレス前における実施例C2の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example C2 after slicing and before dressing; スライス後ドレス前における比較例C1の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example C1 after slicing and before dressing. ドレス後における実施例C1の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Example C1 after dressing. ドレス後における実施例C2の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the endpoint detection window portion of the polishing pad of Example C2 after dressing. ドレス後における比較例C1の研磨パッドの終点検出窓部分の表面状態を示す図である。FIG. 10 is a diagram showing the surface state of the end point detection window portion of the polishing pad of Comparative Example C1 after dressing.
 以下、必要に応じて図面を参照しつつ、本発明の実施の形態について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。又上下左右などの位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as necessary, but the present invention is not limited to these, and various modifications can be made without departing from the scope of the invention. be. In the drawings, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. Moreover, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios of the drawings are not limited to the illustrated ratios.
1.第1実施形態
1.1.研磨パッド
 第1実施形態の研磨パッドは、研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、引張モード、周波数1.0Hz、10~100℃の条件で行う終点検出窓の動的粘弾性測定において、90℃における貯蔵弾性率E’W90が、1.0×107Pa以上であり、終点検出窓の80℃におけるD硬度(DW80)が、40以上であり、終点検出窓の20℃におけるD硬度(DW20)が、40~70である。
1. First Embodiment 1.1. Polishing Pad The polishing pad of the first embodiment has a polishing layer and an end point detection window provided in the opening of the polishing layer, and the end point is performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100°C. In the dynamic viscoelasticity measurement of the detection window, the storage elastic modulus E′ W90 at 90° C. is 1.0×10 7 Pa or more, and the D hardness (D W80 ) of the endpoint detection window at 80° C. is 40 or more. and the D hardness (D W20 ) at 20° C. of the endpoint detection window is 40-70.
 これにより、スライス処理においては凸部が生じにくいという観点から平坦性を向上することができ、ドレス処理時においては終点検出窓が研磨層よりも過研磨されにくいという観点から平坦性を向上することができる。なお、第1実施形態においては、これら2種の平坦性をまとめて単に「平坦性」という。 As a result, the flatness can be improved from the viewpoint that convex portions are less likely to occur in the slicing process, and the flatness can be improved from the viewpoint that the end point detection window is less likely to be over-polished than the polishing layer during the dressing process. can be done. In the first embodiment, these two types of flatness are simply referred to as "flatness".
 図1に、第1実施形態の研磨パッドの概略斜視図を示す。図1に示すように、第1実施形態の研磨パッド10は、研磨層11と、終点検出窓12と、を有し、必要に応じて、研磨面11aとは反対側に、クッション層13を有していてもよい。 FIG. 1 shows a schematic perspective view of the polishing pad of the first embodiment. As shown in FIG. 1, the polishing pad 10 of the first embodiment has a polishing layer 11 and an end point detection window 12, and optionally a cushion layer 13 on the side opposite to the polishing surface 11a. may have.
 図2~3に、図1における終点検出窓12の周辺の断面図を示す。図2~3に示すように、研磨層11とクッション層13の間には、接着層14が設けられていてもよく、また、クッション層13の表面には、図4のテーブル22と貼り合わせるための接着層15が設けられていてもよい。第1実施形態の研磨パッドの研磨面11aは、図2に示すように平坦の場合の他、図3に示すように、溝16が形成された凹凸状であってもよい。溝16は複数の同心円状、格子状、放射状等の様々な形状の溝を単独又は併用して形成してもよい。 2 and 3 show cross-sectional views around the endpoint detection window 12 in FIG. As shown in FIGS. 2 and 3, an adhesive layer 14 may be provided between the polishing layer 11 and the cushion layer 13, and the surface of the cushion layer 13 is attached to the table 22 shown in FIG. An adhesive layer 15 may be provided for the purpose. The polishing surface 11a of the polishing pad of the first embodiment may be flat as shown in FIG. 2, or may be uneven with grooves 16 formed therein as shown in FIG. The grooves 16 may be formed with a plurality of grooves having various shapes such as concentric circles, grids, and radial grooves singly or in combination.
1.1.1.終点検出窓
 終点検出窓は研磨層の開口に設けられた透明な部材であり、光学式の終点検出において、膜厚検出センサからの光の透過路となるものである。第1実施形態において、終点検出窓は円形であるが、必要に応じて、正方形、長方形、多角形、楕円形等の形状としてもよい。
1.1.1. End Point Detection Window The end point detection window is a transparent member provided in the opening of the polishing layer, and serves as a transmission path for light from the film thickness detection sensor in optical end point detection. Although the endpoint detection window is circular in the first embodiment, it may be square, rectangular, polygonal, elliptical, or the like, if necessary.
 第1実施形態においては、研磨パッドを製造する過程において、スライスをした場合に、終点検出窓が研磨層よりも凹んだ状態になったり、割れたりすることや、ドレス処理を行った際に、終点検出窓が研磨層よりも凹んだ状態や突出した状態になったりすることを抑制し、平坦性を向上する観点から、終点検出窓の貯蔵弾性率E’とD硬度を規定する。 In the first embodiment, in the process of manufacturing the polishing pad, when slicing, the endpoint detection window becomes recessed from the polishing layer or cracks, and when the dressing process is performed, The storage elastic modulus E' and D hardness of the endpoint detection window are defined from the viewpoint of suppressing the endpoint detection window from becoming recessed or protruding from the polishing layer and improving flatness.
1.1.1.1.動的粘弾性
 第1実施形態における終点検出窓の貯蔵弾性率E’は、引張モード、周波数1.0Hz、10~100℃の条件で行う動的粘弾性測定により求めることができる。後述するようにスライスは対象を加熱した状態で行うことから、第1実施形態における終点検出窓の貯蔵弾性率E’としては、90℃における貯蔵弾性率E’W90を規定する。また、第1実施形態においては、スライス時において貯蔵弾性率E’(弾性成分)に対して損失弾性率E’’(粘性成分)がより優位となる状態が発現するよう、損失正接tanδのピーク温度位置をさらに調整してもよいし、ドレス時における終点検出窓の特性を表す観点から、30℃における貯蔵弾性率E’W30を規定していてもよい。
1.1.1.1. Dynamic Viscoelasticity The storage elastic modulus E′ of the endpoint detection window in the first embodiment can be obtained by dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100°C. As will be described later, slicing is performed while the object is heated, so the storage elastic modulus E′ W90 at 90° C. is defined as the storage elastic modulus E′ of the endpoint detection window in the first embodiment. In the first embodiment, the peak of the loss tangent tan δ is set so that the loss elastic modulus E″ (viscous component) is more dominant than the storage elastic modulus E′ (elastic component) during slicing. The temperature position may be further adjusted, and the storage elastic modulus E′W30 at 30° C. may be specified from the viewpoint of expressing the characteristics of the endpoint detection window during dressing.
 終点検出窓の90℃における貯蔵弾性率E’W90は、1.0×107Pa以上であり、好ましくは1.25×107~20×107Paであり、より好ましくは1.5×107~10×107Paである。貯蔵弾性率E’W90が1.0×107Pa以上であることにより、スライスをした場合に、終点検出窓が研磨層よりも凹んだ状態や突出した状態になったり、割れたりすることを抑制でき、平坦性をより向上することができる。 The storage elastic modulus E′ W90 of the endpoint detection window at 90° C. is 1.0×10 7 Pa or more, preferably 1.25×10 7 to 20×10 7 Pa, more preferably 1.5×10 7 Pa or more. It is 10 7 to 10×10 7 Pa. The storage elastic modulus E′ W90 of 1.0×10 7 Pa or more prevents the end-point detection window from becoming recessed or protruding from the polishing layer, or from cracking when slicing. can be suppressed, and flatness can be further improved.
 また、終点検出窓の動的粘弾性測定において、tanδのピーク温度は、好ましくは70~100℃であり、より好ましくは70~95であり、さらに好ましくは75~90である。tanδのピーク温度が上記範囲内であることにより、スライスをした場合に、終点検出窓が研磨層よりも凹んだ状態や突出した状態になったり、割れたりすることを抑制でき、平坦性をより向上することができる。 In addition, in the dynamic viscoelasticity measurement in the endpoint detection window, the peak temperature of tan δ is preferably 70-100°C, more preferably 70-95, still more preferably 75-90. When the peak temperature of tan δ is within the above range, when slicing, it is possible to suppress the end-point detection window from becoming recessed or protruding from the polishing layer, or from being cracked, thereby improving flatness. can be improved.
 さらに、30℃における貯蔵弾性率E’W30は、好ましくは10×107~80×107Paであり、より好ましくは20×107~70×107Paであり、さらに好ましくは30×107~70×107Paである。貯蔵弾性率E’W30が上記範囲内であることにより、ドレス処理を行った際に、終点検出窓が研磨層よりも凹んだ状態になったりすることを抑制することができ、平坦性をより向上することができる。 Furthermore, the storage elastic modulus E′ W30 at 30° C. is preferably 10×10 7 to 80×10 7 Pa, more preferably 20×10 7 to 70×10 7 Pa, still more preferably 30×10 7 to 70×10 7 Pa. When the storage elastic modulus E′W30 is within the above range, it is possible to suppress the end-point detection window from being recessed from the polishing layer when performing the dressing process, and to improve the flatness. can be improved.
 動的粘弾性測定の測定条件については、特に制限されるものではないが、実施例において記載した条件により測定することができる。 Although the measurement conditions for dynamic viscoelasticity measurement are not particularly limited, the measurement can be performed under the conditions described in Examples.
1.1.1.2.D硬度
 終点検出窓の80℃におけるD硬度(DW80)は、40以上であり、好ましくは40~60であり、より好ましくは40~50である。D硬度(DW80)が40以上であることにより、スライスをした場合に、終点検出窓が研磨層よりも凹んだ状態や突出した状態になったり、割れたりすることを抑制でき、平坦性をより向上することができる。
1.1.1.2. D Hardness The D hardness (D W80 ) of the endpoint detection window at 80° C. is 40 or more, preferably 40-60, more preferably 40-50. When the D hardness (D W80 ) is 40 or more, when slicing, it is possible to suppress the end point detection window from being recessed or protruding from the polishing layer, or from being cracked, thereby improving flatness. can be improved.
 また、終点検出窓の20℃におけるD硬度(DW20)は、40~90であり、好ましくは50~85であり、より好ましくは55~80である。D硬度(DW20)が上記範囲内であることにより、ドレス処理を行った際に、終点検出窓が研磨層よりも凹んだ状態や突出した状態になったりすることを抑制することができ、平坦性をより向上することができる。 The D hardness (D W20 ) of the endpoint detection window at 20° C. is 40-90, preferably 50-85, more preferably 55-80. When the D hardness (D W20 ) is within the above range, it is possible to suppress the end-point detection window from becoming recessed or protruding from the polishing layer when the dressing process is performed. Flatness can be further improved.
 D硬度の測定条件については、特に制限されるものではないが、実施例において記載した条件により測定することができる。 The conditions for measuring the D hardness are not particularly limited, but can be measured according to the conditions described in the examples.
1.1.1.3.構成材料
 終点検出窓を構成する材料は、窓として機能し得る透明な部材であれば特に限定されないが、例えば、ポリウレタン樹脂WI、ポリ塩化ビニル樹脂、ポリフッ化ビニリデン樹脂、ポリエーテルサルホン樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂などが挙げられる。このなかでも、ポリウレタン樹脂WIが好ましい。このような樹脂を用いることにより、上記動的粘弾性特性やD硬度、透明性をより調整しやすく、平坦性をより向上することができる。
1.1.1.3. Constituent Material The material constituting the endpoint detection window is not particularly limited as long as it is a transparent member that can function as a window. Examples include polyurethane resin WI, polyvinyl chloride resin, polyvinylidene fluoride resin, polyethersulfone resin, polystyrene resin, polyethylene resin, polytetrafluoroethylene resin, and the like. Among these, polyurethane resin WI is preferable. By using such a resin, the dynamic viscoelastic properties, D hardness, and transparency can be more easily adjusted, and the flatness can be further improved.
 ポリウレタン樹脂WIは、ポリイソシアネートとポリオールにより合成することができ、ポリイソシアネートに由来する構成単位とポリオールに由来する構成単位とを含む。 The polyurethane resin WI can be synthesized from polyisocyanate and polyol, and contains structural units derived from polyisocyanate and structural units derived from polyol.
1.1.1.3.1.ポリイソシアネートに由来する構成単位
 ポリイソシアネートに由来する構成単位は、特に限定されないが、例えば、脂環族イソシアネートに由来する構成単位、脂肪族イソシアネートに由来する構成単位、及び芳香族イソシアネートに由来する構成単位が挙げられる。このなかでも、ポリウレタン樹脂WIは、脂環族イソシアネート及び/又は脂肪族イソシアネートに由来する構成単位を含むことが好ましい。これにより、動的粘弾性特性、D硬度(DW20)、及びD硬度(DW80)を上記範囲内に調整しやすく、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。また、平坦性をより向上することができる。
1.1.1.3.1. Structural Units Derived from Polyisocyanates Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units. Among these, the polyurethane resin WI preferably contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate. This makes it easier to adjust the dynamic viscoelastic properties, D hardness (D W20 ), and D hardness (D W80 ) within the above ranges, further improving the transparency and further improving the yellowing resistance of the window. It is in. Moreover, the flatness can be further improved.
 脂環族イソシアネートとしては、特に限定されないが、例えば、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)(水添MDI)、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、イソホロンジイソシアネートなどが挙げられる。 The alicyclic isocyanate is not particularly limited, but examples include 4,4′-methylene-bis(cyclohexyl isocyanate) (hydrogenated MDI), cyclohexylene-1,2-diisocyanate, cyclohexylene-1,4-diisocyanate, and isophorone diisocyanate.
 脂肪族イソシアネートとしては、特に限定されないが、例えば、ヘキサメチレンジイソシアネート(HDI)、ペンタメチレンジイソシアネート(PDI)、テトラメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、トリメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどが挙げられる。 Examples of aliphatic isocyanates include, but are not limited to, hexamethylene diisocyanate (HDI), pentamethylene diisocyanate (PDI), tetramethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, and trimethylene diisocyanate. , trimethylhexamethylene diisocyanate, and the like.
 芳香族イソシアネートとしては、特に限定されないが、例えば、フェニレンジイソシアネート、2,6-トリレンジイソシアネート(2,6-TDI)、2,4-トリレンジイソシアネート(2,4-TDI)、キシリレンジイソシアネート、ナフタレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネー卜(MDI)が挙げられる。 Examples of aromatic isocyanates include, but are not limited to, phenylene diisocyanate, 2,6-tolylene diisocyanate (2,6-TDI), 2,4-tolylene diisocyanate (2,4-TDI), xylylene diisocyanate, naphthalene diisocyanate and diphenylmethane-4,4'-diisocyanate (MDI).
1.1.1.3.2.ポリオールに由来する構成単位
 ポリオールに由来する構成単位としては、特に限定されないが、例えば、分子量300未満の低分子ポリオールと、分子量300以上の高分子ポリオールが挙げられる。
1.1.1.3.2. Structural Units Derived from Polyols Structural units derived from polyols are not particularly limited.
 低分子ポリオールとしては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサングリコール、2,5-ヘキサンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、トリシクロデカンジメタノール、1,4-シクロヘキサンジメタノール等の水酸基を2つ有する低分子ポリオール;グリセリン、ヘキサントリオール、トリメチロールプロパン、イソシアヌル酸、エリスリトール等の水酸基を3つ以上有する低分子ポリオールが挙げられる。低分子ポリオールは1種単独で用いても、2種以上を併用してもよい。 Examples of low-molecular-weight polyols include, but are not limited to, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4- butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexane glycol, 2,5-hexanediol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, tricyclode low-molecular-weight polyols having two hydroxyl groups such as candimethanol and 1,4-cyclohexanedimethanol; and low-molecular-weight polyols having three or more hydroxyl groups such as glycerin, hexanetriol, trimethylolpropane, isocyanuric acid and erythritol. Low-molecular-weight polyols may be used singly or in combination of two or more.
 このなかでも、水酸基を3つ以上有する低分子ポリオールが好ましく、グリセリンがより好ましい。このような低分子ポリオールを用いることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、摩耗量を調整でき、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 Among these, low-molecular-weight polyols having 3 or more hydroxyl groups are preferred, and glycerin is more preferred. By using such a low-molecular-weight polyol, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above range, the wear amount can be adjusted, the flatness can be further improved, and the transparency can be further improved. In addition, the yellowing resistance of windows tends to be further improved.
 水酸基を3つ以上有する低分子ポリオールに由来する構成単位の含有量は、ポリイソシアネートに由来する構成単位100部に対して、好ましくは8.0~30部であり、より好ましくは10~25部であり、さらに好ましくは12.5~20部である。水酸基を3つ以上有する低分子ポリオールに由来する構成単位の含有量が上記範囲内であることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 The content of the structural unit derived from the low-molecular-weight polyol having 3 or more hydroxyl groups is preferably 8.0 to 30 parts, more preferably 10 to 25 parts, per 100 parts of the structural unit derived from the polyisocyanate. and more preferably 12.5 to 20 parts. When the content of the structural unit derived from the low-molecular-weight polyol having three or more hydroxyl groups is within the above range, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above range, and the flatness can be further improved. , the transparency tends to be further improved, and the yellowing resistance of the window tends to be further improved.
 また、高分子ポリオールとしては、特に限定されないが、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリエーテルポリカーボネートポリオール、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオール、および、ビニルモノマー変性ポリオールが挙げられる。高分子ポリオールは1種単独で用いても、2種以上を併用してもよい。 In addition, the polymer polyol is not particularly limited, but for example, polyether polyol, polyester polyol, polycarbonate polyol, polyether polycarbonate polyol, polyurethane polyol, epoxy polyol, vegetable oil polyol, polyolefin polyol, acrylic polyol, and vinyl monomer-modified polyols. Polymer polyols may be used singly or in combination of two or more.
 なお、高分子ポリオールの数平均分子量は、好ましくは300~1200であり、より好ましくは400~950であり、さらに好ましくは500~800である。このような高分子ポリオールを用いることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすい傾向にある。 The number average molecular weight of the polymer polyol is preferably 300-1200, more preferably 400-950, still more preferably 500-800. By using such a polymer polyol, it tends to be easy to adjust the dynamic viscoelastic properties and the D hardness within the above ranges.
 このなかでも、ポリエーテルポリオールが好ましく、ポリテトラメチレンエーテルグリコールがより好ましい。このような高分子ポリオールを用いることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、低温時における硬度を調整しやすく、温度上昇に伴う硬度の低下を抑制することができる。また、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 Among these, polyether polyol is preferred, and polytetramethylene ether glycol is more preferred. By using such a polymer polyol, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above ranges, the hardness at low temperatures can be easily adjusted, and the decrease in hardness due to temperature rise can be suppressed. . Further, the flatness can be further improved, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
 ポリエーテルポリオールに由来する構成単位の含有量は、ポリイソシアネートに由来する構成単位100部に対して、好ましくは40~100部であり、好ましくは50~90部であり、より好ましくは60~84部である。ポリエーテルポリオールに由来する構成単位の含有量が上記範囲内であることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 The content of structural units derived from polyether polyol is preferably 40 to 100 parts, preferably 50 to 90 parts, more preferably 60 to 84 parts, per 100 parts of structural units derived from polyisocyanate. Department. When the content of the structural unit derived from the polyether polyol is within the above range, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above range, the flatness can be further improved, and the transparency can be improved. In addition to further improvement, there is a tendency for the yellowing resistance of the window to be further improved.
 また、ポリオールとしては、低分子ポリオールと高分子ポリオールとを併用することが好ましく、水酸基を3つ以上有する低分子ポリオールとポリエーテルポリオールとを併用することがより好ましい。これにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、低温時における硬度を調整しやすく、温度上昇に伴う硬度の低下を抑制することができる。また、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 In addition, as the polyol, it is preferable to use a low-molecular-weight polyol and a high-molecular-weight polyol together, and it is more preferable to use a low-molecular-weight polyol having three or more hydroxyl groups and a polyether polyol together. As a result, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above ranges, the hardness at low temperatures can be easily adjusted, and a decrease in hardness due to temperature rise can be suppressed. Further, the flatness can be further improved, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
 上記観点から、ポリエーテルポリオールの含有量は、水酸基を3つ以上有する低分子ポリオール1部に対して、好ましくは1.0~9.0部であり、より好ましくは2.0~8.0部であり、さらに好ましくは3.0~7.0部である。 From the above viewpoint, the content of the polyether polyol is preferably 1.0 to 9.0 parts, more preferably 2.0 to 8.0 parts, per 1 part of the low-molecular-weight polyol having 3 or more hydroxyl groups. parts, more preferably 3.0 to 7.0 parts.
1.1.2.研磨層
 第1実施形態の研磨層は、終点検出窓が埋設される開口を有する。開口の位置は特に制限されないが、テーブル22に設置された膜厚検出センサ23に対応する半径方向の位置に設けることが好ましい。また、開口の数は特に制限されないが、テーブル22に貼られた研磨パッド10が一回転する際に、窓が膜厚検出センサ23上を複数回通過するように、同様の半径方向の位置に複数個有することが好ましい。
1.1.2. Polishing Layer The polishing layer of the first embodiment has an opening in which the endpoint detection window is embedded. Although the position of the opening is not particularly limited, it is preferably provided at a position in the radial direction corresponding to the film thickness detection sensor 23 installed on the table 22 . Although the number of openings is not particularly limited, the openings are arranged at similar radial positions so that the windows pass over the film thickness detection sensor 23 multiple times when the polishing pad 10 attached to the table 22 rotates once. It is preferable to have a plurality of them.
 研磨層の態様としては、特に制限されないが、例えば、樹脂の発泡成形体、無発泡成形体、繊維基材に樹脂を含浸した樹脂含侵基材などが挙げられる。 The form of the abrasive layer is not particularly limited, but examples include resin foam molded articles, non-foam molded articles, and resin-impregnated substrates obtained by impregnating fiber substrates with resin.
 ここで、樹脂の発泡成形体とは、繊維基材を有さず、所定の樹脂から構成される発泡体をいう。発泡形状は、特に制限されないが、例えば、球状気泡、略球状気泡、涙型気泡、あるいは、各気泡が部分的に連結した連続気泡などが挙げられる。 Here, the resin foam molding refers to a foam that does not have a fiber base material and is composed of a predetermined resin. The foam shape is not particularly limited, but examples thereof include spherical cells, substantially spherical cells, tear-shaped cells, and open cells in which each cell is partially connected.
 また、樹脂の無発泡成形体とは、繊維基材を有さず、所定の樹脂から構成される無発泡体をいう。無発泡体とは、上記のような気泡を有しないものをいう。第1実施形態においては、フィルムなどの基材の上に、硬化性組成物を付着させて硬化させたようなものも樹脂の無発泡成形体に含まれる。より具体的には、ラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法等により形成された樹脂硬化物も樹脂の無発泡成形体に含まれる。 In addition, a non-foamed resin molded body refers to a non-foamed body that does not have a fiber base material and is composed of a predetermined resin. A non-foamed body refers to a body that does not have air bubbles as described above. In the first embodiment, non-foamed molded articles of resin include those obtained by applying a curable composition to a base material such as a film and then curing the same. More specifically, the resin cured product formed by a labia coater method, a small diameter gravure coater method, a reverse roll coater method, a transfer roll coater method, a kiss coater method, a die coater method, a screen printing method, a spray coating method, etc. Included in non-foamed molded products.
 さらに、樹脂含侵基材とは、繊維基材に樹脂を含浸させて得られるものをいう。ここで、繊維基材としては、特に制限されないが、例えば、織布、不織布、編地などが挙げられる。 Furthermore, a resin-impregnated base material refers to a material obtained by impregnating a fiber base material with a resin. Here, the fiber base material is not particularly limited, and examples thereof include woven fabrics, nonwoven fabrics, and knitted fabrics.
1.1.2.1.動的粘弾性
 研磨層は、研磨レートや被研磨物の面品位に加え、スライスやドレスをして得られる研磨パッドにおいて、終点検出窓が研磨層よりも凹んだ状態になったり、割れたりすることを抑制する観点から、所定の動的粘弾性特性を有していることが好ましい。
1.1.2.1. Dynamic viscoelasticity The polishing layer depends on the polishing rate and the surface quality of the object to be polished, and in the polishing pad obtained by slicing or dressing, the end point detection window becomes more recessed than the polishing layer or cracks. From the viewpoint of suppressing this, it is preferable to have predetermined dynamic viscoelastic properties.
 具体的には、引張モード、周波数1.0Hz、10~100℃の条件で行う動的粘弾性測定において、研磨層の90℃における貯蔵弾性率E’P90は、好ましくは1.0×107Pa以上であり、好ましくは2.0×107~20×107Paであり、より好ましくは3.0×107Pa~15×107Paである。貯蔵弾性率E’P90が1.0×107Pa以上であることにより、研磨レートや被研磨物の面品位の向上に加え、スライスやドレスをして得られる研磨パッドにおいて、終点検出窓が研磨層よりも凹んだ状態や突出した状態になったり、割れたりすることがより抑制され、平坦性をより向上することができる傾向にある。 Specifically, in the dynamic viscoelasticity measurement performed under the conditions of tension mode, frequency of 1.0 Hz, and temperature of 10 to 100°C, the storage elastic modulus E' P90 of the polishing layer at 90°C is preferably 1.0 × 10 7 . Pa or more, preferably 2.0×10 7 Pa to 20×10 7 Pa, more preferably 3.0×10 7 Pa to 15×10 7 Pa. When the storage elastic modulus E′ P90 is 1.0×10 7 Pa or more, in addition to improving the polishing rate and the surface quality of the object to be polished, the polishing pad obtained by slicing or dressing has an endpoint detection window. It tends to be more inhibited from becoming recessed or protruding from the polishing layer, or from being cracked, thereby further improving the flatness.
 また、同様の観点から、貯蔵弾性率E’W90と貯蔵弾性率E’P90との差(E’P90-E’W90)は、9.5×107Pa以下であり、好ましくは1.0×107Pa~9.0×107Paであり、より好ましくは2.0×107Pa~9.0×107Paである。差(E’P90-E’W90)が9.5×107Pa以下であることにより、スライス条件下において研磨層と終点検出窓の物性差が小さくなるため、研磨層と終点検出窓が均一にスライスされ、窓の形状が平坦となりやすくなる。そのため、スライスやドレスをして得られる研磨パッドにおいて、終点検出窓が研磨層よりも凹んだ状態や突出した状態になったり、割れたりすることがより抑制され、平坦性をより向上することができる傾向にある。 From the same point of view, the difference (E' P90 -E' W90 ) between the storage elastic modulus E' W90 and the storage elastic modulus E' P90 is 9.5×10 7 Pa or less, preferably 1.0. ×10 7 Pa to 9.0×10 7 Pa, more preferably 2.0×10 7 Pa to 9.0×10 7 Pa. When the difference (E' P90 -E' W90 ) is 9.5×10 7 Pa or less, the difference in physical properties between the polishing layer and the endpoint detection window is reduced under the slicing conditions, so that the polishing layer and the endpoint detection window are uniform. , and the shape of the window tends to be flat. Therefore, in the polishing pad obtained by slicing or dressing, the end-point detection window is further suppressed from becoming recessed or protruding from the polishing layer, or from being cracked, thereby further improving flatness. tend to be able.
1.1.2.2.ポリウレタンシート
 以下においては、研磨層の一例としてポリウレタンシートを例示する。なお、研磨層はポリウレタンシートに限られるものではなく任意の樹脂シートを用いることができる。
1.1.2.2. Polyurethane Sheet Hereinafter, a polyurethane sheet is exemplified as an example of the polishing layer. The polishing layer is not limited to the polyurethane sheet, and any resin sheet can be used.
 ポリウレタンシートを構成するポリウレタン樹脂Pとしては、特に制限されないが、例えば、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、及びポリカーボネート系ポリウレタン樹脂が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。 The polyurethane resin P constituting the polyurethane sheet is not particularly limited, but examples thereof include polyester-based polyurethane resins, polyether-based polyurethane resins, and polycarbonate-based polyurethane resins. You may use these individually by 1 type or in combination of 2 or more types.
 このようなポリウレタン樹脂Pとしては、ポリイソシアネートとポリオールにより合成することができ、特には、ウレタンプレポリマーと硬化剤との反応物が好ましい。ここで、ウレタンプレポリマーは、ポリイソシアネートとポリオールにより合成することができる。以下、ポリウレタン樹脂Pを構成するポリイソシアネート、ポリオール、及び硬化剤について記載する。 Such a polyurethane resin P can be synthesized from a polyisocyanate and a polyol, and a reaction product of a urethane prepolymer and a curing agent is particularly preferred. Here, the urethane prepolymer can be synthesized from polyisocyanate and polyol. The polyisocyanate, polyol, and curing agent that constitute the polyurethane resin P are described below.
1.1.2.2.1.ポリイソシアネートに由来する構成単位
 ポリイソシアネートに由来する構成単位は、特に限定されないが、例えば、脂環族イソシアネートに由来する構成単位、脂肪族イソシアネートに由来する構成単位、及び芳香族イソシアネートに由来する構成単位が挙げられる。このなかでも、芳香族イソシアネートが好ましく、2,4-トリレンジイソシアネート(2,4-TDI)がより好ましい。
1.1.2.2.1. Structural Units Derived from Polyisocyanates Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units. Among these, aromatic isocyanates are preferred, and 2,4-tolylene diisocyanate (2,4-TDI) is more preferred.
 脂環族イソシアネート、脂肪族イソシアネート、及び芳香族イソシアネートとしては、上記終点検出窓において例示したものと同様ものを例示することができる。 As the alicyclic isocyanate, aliphatic isocyanate, and aromatic isocyanate, the same ones as those exemplified in the endpoint detection window can be exemplified.
1.1.2.2.2.ポリオールに由来する構成単位
 ポリオールに由来する構成単位としては、特に限定されないが、例えば、分子量300未満の低分子ポリオールと、分子量300以上の高分子ポリオールが挙げられる。このなかでも、少なくとも低分子ポリオールを用いることが好ましく、低分子ポリオールと高分子ポリオールとを併用すること好ましい。
1.1.2.2.2. Structural Units Derived from Polyols Structural units derived from polyols are not particularly limited. Among these, it is preferable to use at least a low-molecular-weight polyol, and it is preferable to use a combination of a low-molecular-weight polyol and a high-molecular-weight polyol.
 低分子ポリオール及び高分子ポリオールとしては、上記終点検出窓において例示したものと同様ものを例示することができる。このなかでも、低分子ポリオールとしては、水酸基を2つ有する低分子ポリオールが好ましく、ジエチレングリコールがより好ましい。また、高分子ポリオールとしては、ポリエーテルポリオールが好ましく、ポリテトラメチレンエーテルグリコールがより好ましい。 Examples of low-molecular-weight polyols and high-molecular-weight polyols are the same as those exemplified in the endpoint detection window. Among these, as the low-molecular-weight polyol, a low-molecular-weight polyol having two hydroxyl groups is preferable, and diethylene glycol is more preferable. Moreover, as a polymer polyol, polyether polyol is preferable, and polytetramethylene ether glycol is more preferable.
1.1.2.2.3.硬化剤
 硬化剤としては、特に限定されないが、例えば、ポリアミンとポリオールが挙げられる。硬化剤は、1種単独で用いても、2種以上を併用してもよい。
1.1.2.2.3. Curing Agent The curing agent is not particularly limited, but examples thereof include polyamines and polyols. Curing agents may be used singly or in combination of two or more.
 ポリアミンとしては、特に限定されないが、例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミンなどの脂肪族ポリアミン;、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミンなどの脂環族ポリアミン;3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(MOCA)、4-メチル-2,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2-メチル-4,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパンなどの芳香族ポリアミンなどが挙げられる。 Examples of polyamines include, but are not limited to, aliphatic polyamines such as ethylenediamine, propylenediamine and hexamethylenediamine; alicyclic polyamines such as isophoronediamine and dicyclohexylmethane-4,4'-diamine; Dichloro-4,4'-diaminodiphenylmethane (MOCA), 4-methyl-2,6-bis(methylthio)-1,3-benzenediamine, 2-methyl-4,6-bis(methylthio)-1,3- aromatic polyamines such as benzenediamine and 2,2-bis(3-amino-4-hydroxyphenyl)propane;
 このなかでも、芳香族ポリアミンが好ましく、3’-ジクロロ-4,4’-ジアミノジフェニルメタン(MOCA)を用いることがより好ましい。 Among these, aromatic polyamines are preferred, and 3'-dichloro-4,4'-diaminodiphenylmethane (MOCA) is more preferred.
 ポリオールとしては、上記終点検出窓において例示したポリオールと同様ものを例示することができる。このなかでも、高分子ポリオールが好ましく、ポリエーテルポリオールがより好ましく、ポリプロピレングリコールがさらに好ましい。 As the polyol, the same polyols as those exemplified in the endpoint detection window can be exemplified. Among these, polymer polyols are preferred, polyether polyols are more preferred, and polypropylene glycol is even more preferred.
1.1.2.2.4.中空微粒子
 上記ポリウレタンシートは、ポリウレタン樹脂Pと、該ポリウレタン樹脂P中に分散した中空微粒子とを含む発泡ポリウレタンシートであることが好ましい。このようなポリウレタンシートは中空微粒子に由来する独立気泡を有するものとなり、上記動的粘弾性特性やD硬度を上記範囲内に調整しやすい傾向にある。
1.1.2.2.4. Hollow Fine Particles The polyurethane sheet is preferably a foamed polyurethane sheet containing a polyurethane resin P and hollow fine particles dispersed in the polyurethane resin P. Such a polyurethane sheet has closed cells derived from hollow fine particles, and tends to easily adjust the dynamic viscoelasticity and D hardness within the above ranges.
 中空微粒子は、市販のものを使用してもよく、常法により合成することにより得られたものを使用してもよい。中空微粒子の外殻の材質としては、特に制限されないが、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリル酸、ポリアクリルアミド、ポリエチレングリコール、ポリヒドロキシエーテルアクリライト、マレイン酸共重合体、ポリエチレンオキシド、ポリウレタン、アクリロニトリル-塩化ビニリデン共重合体、アクリロニトリル-メチルメタクリレート共重合体、塩化ビニル-エチレン共重合体などが挙げられる。 Commercially available hollow microparticles may be used, or those obtained by synthesizing by a conventional method may be used. The shell material of the hollow fine particles is not particularly limited, but examples include polyvinyl alcohol, polyvinylpyrrolidone, poly(meth)acrylic acid, polyacrylamide, polyethylene glycol, polyhydroxyether acrylate, maleic acid copolymer, and polyethylene oxide. , polyurethane, acrylonitrile-vinylidene chloride copolymer, acrylonitrile-methyl methacrylate copolymer, vinyl chloride-ethylene copolymer and the like.
 中空微粒子の形状は特に限定されず、例えば、球状及び略球状であってもよい。また、中空微粒子が膨張性バルーンである場合、未膨張の状態で用いても膨張した状態で用いてもよい。 The shape of the hollow fine particles is not particularly limited, and may be spherical or substantially spherical, for example. Further, when the hollow fine particles are expandable balloons, they may be used in an unexpanded state or in an expanded state.
 ポリウレタンシートに含まれる中空微粒子の平均粒径は、好ましくは5~200μmであり、より好ましくは5~80μmであり、さらに好ましくは5~50μmであり、特に好ましくは5~35μmである。平均粒径が上記範囲内であることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすい傾向にある。なお、平均粒径は、レーザー回折式粒度分布測定装置(例えばスペクトリス(株)製、マスターサイザ-2000)等により測定することができる。 The average particle size of the hollow fine particles contained in the polyurethane sheet is preferably 5-200 μm, more preferably 5-80 μm, still more preferably 5-50 μm, and particularly preferably 5-35 μm. When the average particle size is within the above range, it tends to be easy to adjust the dynamic viscoelastic properties and D hardness within the above range. The average particle diameter can be measured by a laser diffraction particle size distribution analyzer (eg, Mastersizer-2000 manufactured by Spectris Co., Ltd.) or the like.
1.1.3.その他
 第1実施形態の研磨パッドは、研磨層の研磨面とは反対側にクッション層を有していてもよく、研磨層とクッション層との間や、クッション層の研磨層側ではない面(研磨機に貼り合わせる面)に、接着層を有していてもよい。この場合、クッション層と接着層には、研磨層の終点検出窓が位置する場所と同様の場所に開口を有するものとする。
1.1.3. Others The polishing pad of the first embodiment may have a cushion layer on the side opposite to the polishing surface of the polishing layer. The surface to be attached to the polishing machine) may have an adhesive layer. In this case, the cushion layer and the adhesive layer have openings at locations similar to where the endpoint detection windows of the polishing layer are located.
2.第2実施形態
2.1.研磨パッド
 第2実施形態の研磨パッドは、研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、引張モード、周波数1.0Hz、10~100℃の条件で行う動的粘弾性測定において、前記終点検出窓の30℃における貯蔵弾性率E’W30と、前記研磨層の30℃における貯蔵弾性率E’P30との比(E’P30/E’W30)が、0.60~1.50である。
2. Second Embodiment 2.1. Polishing Pad The polishing pad of the second embodiment has a polishing layer and an end point detection window provided in the opening of the polishing layer, and is operated under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100°C. In the physical viscoelasticity measurement, the ratio of the storage elastic modulus E'W30 at 30°C of the endpoint detection window to the storage elastic modulus E'P30 of the polishing layer at 30°C ( E'P30 / E'W30 ) is 0. 0.60 to 1.50.
 これにより、研磨時において、研磨層と終点検出窓の動的粘弾性特性がより近いものとなるため、研磨層に異種部材である終点検出窓を埋設した場合においても、被研磨物の表面にディフェクト(表面欠陥)が生じることがより抑制される。そのため、面品位に優れた被研磨物を得ることができる。 As a result, during polishing, the dynamic viscoelastic properties of the polishing layer and the endpoint detection window are more similar, so even when the endpoint detection window, which is a different member, is embedded in the polishing layer, the The occurrence of defects (surface defects) is further suppressed. Therefore, an object to be polished having excellent surface quality can be obtained.
 図1に、第2実施形態の研磨パッドの概略斜視図を示す。図1に示すように、第2実施形態の研磨パッド10は、研磨層11と、終点検出窓12と、を有し、必要に応じて、研磨面11aとは反対側に、クッション層13を有していてもよい。 FIG. 1 shows a schematic perspective view of the polishing pad of the second embodiment. As shown in FIG. 1, the polishing pad 10 of the second embodiment has a polishing layer 11 and an end point detection window 12, and optionally a cushion layer 13 on the side opposite to the polishing surface 11a. may have.
 図2~3に、図1における終点検出窓12の周辺の断面図を示す。図2~3に示すように、研磨層11とクッション層13の間には、接着層14が設けられていてもよく、また、クッション層13の表面には、図4のテーブル22と貼り合わせるための接着層15が設けられていてもよい。第2実施形態の研磨パッドの研磨面11aは、図2に示すように平坦の場合の他、図3に示すように、溝16が形成された凹凸状であってもよい。溝16は複数の同心円状、格子状、放射状等の様々な形状の溝を単独又は併用して形成してもよい。 2 and 3 show cross-sectional views around the endpoint detection window 12 in FIG. As shown in FIGS. 2 and 3, an adhesive layer 14 may be provided between the polishing layer 11 and the cushion layer 13, and the surface of the cushion layer 13 is attached to the table 22 shown in FIG. An adhesive layer 15 may be provided for the purpose. The polishing surface 11a of the polishing pad of the second embodiment may be flat as shown in FIG. 2, or may be uneven with grooves 16 formed therein as shown in FIG. The grooves 16 may be formed with a plurality of grooves having various shapes such as concentric circles, grids, and radial grooves singly or in combination.
2.1.1.終点検出窓
 終点検出窓は研磨層の開口に設けられた透明な部材であり、光学式の終点検出において、膜厚検出センサからの光の透過路となるものである。第2実施形態において、終点検出窓は円形であるが、必要に応じて、正方形、長方形、多角形、楕円形等の形状としてもよい。
2.1.1. End Point Detection Window The end point detection window is a transparent member provided in the opening of the polishing layer, and serves as a transmission path for light from the film thickness detection sensor in optical end point detection. Although the endpoint detection window is circular in the second embodiment, it may be square, rectangular, polygonal, elliptical, or the like, if desired.
 第2実施形態においては、研磨時における終点検出窓と研磨層の摩耗度等を調整し、終点検出窓又は研磨層の一方が過剰に研磨されることにより、非研磨物にディフェクト(表面欠陥)が生じることを抑制観点から、終点検出窓と研磨層との貯蔵弾性率E’の比を規定する。 In the second embodiment, the degree of abrasion of the endpoint detection window and the polishing layer during polishing is adjusted, and either the endpoint detection window or the polishing layer is excessively polished, thereby causing defects (surface defects) on the non-polished object. From the viewpoint of suppressing the occurrence of , the ratio of the storage elastic modulus E′ between the end point detection window and the polishing layer is defined.
2.1.1.1.動的粘弾性
 第2実施形態における終点検出窓及び研磨層の貯蔵弾性率E’は、引張モード、周波数1.0Hz、10~100℃の条件で行う動的粘弾性測定により求めることができる。第2実施形態においては、研磨時における終点検出窓及び研磨層の特性を表す観点から、30℃における貯蔵弾性率E’の比を規定する。
2.1.1.1. Dynamic Viscoelasticity The end-point detection window and the storage elastic modulus E′ of the polishing layer in the second embodiment can be determined by dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100°C. In the second embodiment, the ratio of the storage elastic modulus E' at 30° C. is specified from the viewpoint of representing the properties of the endpoint detection window and the polishing layer during polishing.
 終点検出窓の30℃における貯蔵弾性率E’W30と、研磨層の30℃における貯蔵弾性率E’P30との比(E’P30/E’W30)は、0.60~1.50であり、好ましくは0.60~1.35であり、より好ましくは0.60~1.20である。比(E’P30/E’W30)が上記範囲内であることにより、研磨時における終点検出窓及び研磨層の特性が類似するため、得られる被研磨物の面品位がより向上する。 The ratio of the storage elastic modulus E'W30 at 30°C of the endpoint detection window to the storage elastic modulus E'P30 of the polishing layer at 30°C ( E'P30 / E'W30 ) is 0.60 to 1.50. , preferably 0.60 to 1.35, more preferably 0.60 to 1.20. When the ratio (E' P30 /E' W30 ) is within the above range, the properties of the endpoint detection window and the polishing layer are similar during polishing, so that the surface quality of the resulting polished object is further improved.
 また、同様の観点から、動的粘弾性測定において、終点検出窓の50℃における貯蔵弾性率E’W50と、研磨層の50℃における貯蔵弾性率E’P50との比(E’P50/E’W50)は、好ましくは0.70~2.00であり、より好ましくは0.70~1.85であり、さらに好ましくは0.70~1.70である。比(E’P50/E’W50)が上記範囲内であることにより、研磨時における終点検出窓及び研磨層の特性が類似するため、得られる被研磨物の面品位がより向上する傾向にある。 From the same point of view, in the dynamic viscoelasticity measurement, the ratio of the storage elastic modulus E'W50 at 50°C of the endpoint detection window to the storage elastic modulus E'P50 of the polishing layer at 50°C ( E'P50 /E ' W50 ) is preferably 0.70 to 2.00, more preferably 0.70 to 1.85, and still more preferably 0.70 to 1.70. When the ratio (E' P50 /E' W50 ) is within the above range, the properties of the end point detection window and the polishing layer during polishing are similar, so the surface quality of the resulting polished object tends to be further improved. .
 終点検出窓の動的粘弾性測定において、30℃における貯蔵弾性率E’W30は、好ましくは10×10~60×10Paであり、より好ましくは15×10~55×10Paであり、さらに好ましくは20×10~50×10Paである。貯蔵弾性率E’W30が上記範囲内であることにより、得られる被研磨物の面品位がより向上する傾向にある。 In the dynamic viscoelasticity measurement in the endpoint detection window, the storage modulus E′W30 at 30° C. is preferably 10×10 7 to 60×10 7 Pa, more preferably 15×10 7 to 55×10 7 Pa. and more preferably 20×10 7 to 50×10 7 Pa. When the storage elastic modulus E'W30 is within the above range, the surface quality of the object to be polished tends to be further improved.
 動的粘弾性測定の測定条件については、特に制限されるものではないが、実施例において記載した条件により測定することができる。 Although the measurement conditions for dynamic viscoelasticity measurement are not particularly limited, the measurement can be performed under the conditions described in Examples.
2.1.1.2.D硬度
 終点検出窓の20℃におけるD硬度(DW20)は、40~70であり、好ましくは45~70であり、より好ましくは50~65である。D硬度(DW20)が上記範囲内であることにより、ディフェクト(表面欠陥)の発生がより抑制できる傾向にある。
2.1.1.2. D Hardness The D hardness (D W20 ) of the endpoint detection window at 20° C. is 40-70, preferably 45-70, more preferably 50-65. When the D hardness (D W20 ) is within the above range, the occurrence of defects (surface defects) tends to be more suppressed.
 D硬度の測定条件については、特に制限されるものではないが、実施例において記載した条件により測定することができる。 The conditions for measuring the D hardness are not particularly limited, but can be measured according to the conditions described in the examples.
2.1.1.3.構成材料
 終点検出窓を構成する材料は、窓として機能し得る透明な部材であれば特に限定されないが、例えば、ポリウレタン樹脂WI、ポリ塩化ビニル樹脂、ポリフッ化ビニリデン樹脂、ポリエーテルサルホン樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂などが挙げられる。このなかでも、ポリウレタン樹脂WIが好ましい。このような樹脂を用いることにより、上記動的粘弾性特性やD硬度、透明性をより調整しやすい。
2.1.1.3. Constituent Material The material constituting the endpoint detection window is not particularly limited as long as it is a transparent member that can function as a window. Examples include polyurethane resin WI, polyvinyl chloride resin, polyvinylidene fluoride resin, polyethersulfone resin, polystyrene resin, polyethylene resin, polytetrafluoroethylene resin, and the like. Among these, polyurethane resin WI is preferable. By using such a resin, it is easier to adjust the dynamic viscoelastic properties, D hardness, and transparency.
 ポリウレタン樹脂WIは、ポリイソシアネートとポリオールにより合成することができ、ポリイソシアネートに由来する構成単位とポリオールに由来する構成単位とを含む。 The polyurethane resin WI can be synthesized from polyisocyanate and polyol, and contains structural units derived from polyisocyanate and structural units derived from polyol.
2.1.1.3.1.ポリイソシアネートに由来する構成単位
 ポリイソシアネートに由来する構成単位は、特に限定されないが、例えば、脂環族イソシアネートに由来する構成単位、脂肪族イソシアネートに由来する構成単位、及び芳香族イソシアネートに由来する構成単位が挙げられる。このなかでも、ポリウレタン樹脂WIは、脂環族イソシアネート及び/又は脂肪族イソシアネートに由来する構成単位を含むことが好ましい。これにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。
2.1.1.3.1. Structural Units Derived from Polyisocyanates Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units. Among these, the polyurethane resin WI preferably contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate. As a result, the dynamic viscoelastic properties and the D hardness can be easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
 脂環族イソシアネート、脂肪族イソシアネート、芳香族イソシアネートとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 The alicyclic isocyanate, aliphatic isocyanate, and aromatic isocyanate are not particularly limited, but include, for example, the compounds exemplified in the first embodiment.
2.1.1.3.2.ポリオールに由来する構成単位
 ポリオールに由来する構成単位としては、特に限定されないが、例えば、分子量300未満の低分子ポリオールと、分子量300以上の高分子ポリオールが挙げられる。
2.1.1.3.2. Structural Units Derived from Polyols Structural units derived from polyols are not particularly limited.
 低分子ポリオールとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 The low-molecular-weight polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
 このなかでも、水酸基を3つ以上有する低分子ポリオールが好ましく、グリセリンがより好ましい。このような低分子ポリオールを用いることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、摩耗量を調整でき、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 Among these, low-molecular-weight polyols having 3 or more hydroxyl groups are preferred, and glycerin is more preferred. By using such a low-molecular-weight polyol, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above range, the amount of wear can be adjusted, the transparency is further improved, and the yellowing resistance of the window is further improved. tend to
 水酸基を3つ以上有する低分子ポリオールに由来する構成単位の含有量は、ポリイソシアネートに由来する構成単位100部に対して、好ましくは7.5~30部であり、より好ましくは10~25部であり、さらに好ましくは12.5~20部である。水酸基を3つ以上有する低分子ポリオールに由来する構成単位の含有量が上記範囲内であることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 The content of the structural unit derived from the low-molecular-weight polyol having 3 or more hydroxyl groups is preferably 7.5 to 30 parts, more preferably 10 to 25 parts, per 100 parts of the structural unit derived from the polyisocyanate. and more preferably 12.5 to 20 parts. When the content of the structural unit derived from the low-molecular-weight polyol having three or more hydroxyl groups is within the above range, the dynamic viscoelastic properties and D hardness are easily adjusted within the above range, and the transparency is further improved. , the yellowing resistance of windows tends to be more improved.
 また、高分子ポリオールとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 In addition, the polymer polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
 なお、高分子ポリオールの数平均分子量は、好ましくは300~3000であり、より好ましくは500~2500であり、さらに好ましくは850~2000である。このような高分子ポリオールを用いることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすい傾向にある。 The number average molecular weight of the polymer polyol is preferably 300-3000, more preferably 500-2500, still more preferably 850-2000. By using such a polymer polyol, it tends to be easy to adjust the dynamic viscoelastic properties and the D hardness within the above ranges.
 このなかでも、ポリエーテルポリオールが好ましく、ポリ(オキシテトラメチレン)グリコールがより好ましい。このような高分子ポリオールを用いることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、低温時における硬度を調整しやすく、温度上昇に伴う硬度の低下を抑制することができる。また、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 Among these, polyether polyol is preferred, and poly(oxytetramethylene) glycol is more preferred. By using such a polymer polyol, the dynamic viscoelastic properties and D hardness can be easily adjusted within the above ranges, the hardness at low temperatures can be easily adjusted, and the decrease in hardness due to temperature rise can be suppressed. . In addition, the transparency tends to be further improved, and the yellowing resistance of windows tends to be further improved.
 ポリエーテルポリオールに由来する構成単位の含有量は、ポリイソシアネートに由来する構成単位100部に対して、好ましくは80~200部であり、より好ましくは85~160部であり、さらに好ましくは90~140部である。ポリエーテルポリオールに由来する構成単位の含有量が上記範囲内であることにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 The content of structural units derived from polyether polyol is preferably 80 to 200 parts, more preferably 85 to 160 parts, and still more preferably 90 to 100 parts based on 100 parts of structural units derived from polyisocyanate. 140 copies. When the content of the structural unit derived from the polyether polyol is within the above range, the dynamic viscoelastic properties and D hardness are easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window is improved. tend to improve.
 また、ポリオールとしては、低分子ポリオールと高分子ポリオールとを併用することが好ましく、水酸基を3つ以上有する低分子ポリオールとポリエーテルポリオールとを併用することがより好ましい。これにより、動的粘弾性特性やD硬度を上記範囲内に調整しやすく、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 In addition, as the polyol, it is preferable to use a low-molecular-weight polyol and a high-molecular-weight polyol together, and it is more preferable to use a low-molecular-weight polyol having three or more hydroxyl groups and a polyether polyol together. As a result, the dynamic viscoelastic properties and the D hardness can be easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
 上記観点から、ポリエーテルポリオールの含有量は、水酸基を3つ以上有する低分子ポリオール1部に対して、好ましくは2.0~15.0部であり、より好ましくは3.0~12.5部であり、さらに好ましくは4.0~9.0部である。 From the above viewpoint, the content of the polyether polyol is preferably 2.0 to 15.0 parts, more preferably 3.0 to 12.5 parts, relative to 1 part of the low-molecular-weight polyol having 3 or more hydroxyl groups. parts, more preferably 4.0 to 9.0 parts.
2.1.2.研磨層
 第2実施形態の研磨層は、終点検出窓が埋設される開口を有する。開口の位置は特に制限されないが、テーブル22に設置された膜厚検出センサ23に対応する半径方向の位置に設けることが好ましい。また、開口の数は特に制限されないが、テーブル22に貼られた研磨パッド10が一回転する際に、窓が膜厚検出センサ23上を複数回通過するように、同様の半径方向の位置に複数個有することが好ましい。
2.1.2. Polishing Layer The polishing layer of the second embodiment has an opening in which the endpoint detection window is embedded. Although the position of the opening is not particularly limited, it is preferably provided at a position in the radial direction corresponding to the film thickness detection sensor 23 installed on the table 22 . Although the number of openings is not particularly limited, the openings are arranged at similar radial positions so that the windows pass over the film thickness detection sensor 23 multiple times when the polishing pad 10 attached to the table 22 rotates once. It is preferable to have a plurality of them.
 研磨層の態様としては、特に制限されないが、例えば、樹脂の発泡成形体、無発泡成形体、繊維基材に樹脂を含浸した樹脂含侵基材などが挙げられる。 The form of the abrasive layer is not particularly limited, but examples include resin foam molded articles, non-foam molded articles, and resin-impregnated substrates obtained by impregnating fiber substrates with resin.
 ここで、樹脂の発泡成形体、無発泡成形体、樹脂含侵基材、繊維基材については、第1実施態様で記載した態様が挙げられるため、記載を省略する。 Here, descriptions of the foamed resin article, the non-foamed molded article, the resin-impregnated base material, and the fiber base material are omitted because they are the same as those described in the first embodiment.
2.1.2.1.動的粘弾性
 研磨層の動的粘弾性測定において、30℃における貯蔵弾性率E’P30は、好ましくは15×10~65×10Paであり、より好ましくは20×10~60×10Paであり、さらに好ましくは25×10~55×10Paである。貯蔵弾性率E’P30が上記範囲内であることにより、得られる被研磨物の面品位がより向上する傾向にある。
2.1.2.1. Dynamic Viscoelasticity In the dynamic viscoelasticity measurement of the polishing layer, the storage elastic modulus E′ P30 at 30° C. is preferably 15×10 7 to 65×10 7 Pa, more preferably 20×10 7 to 60×. 10 7 Pa, more preferably 25×10 7 to 55×10 7 Pa. When the storage elastic modulus E'P30 is within the above range, the surface quality of the resulting polished object tends to be further improved.
 研磨層の動的粘弾性測定において、50℃における貯蔵弾性率E’P50は、好ましくは10×10~40×10Paであり、より好ましくは15×10~35×10Paであり、さらに好ましくは20×10~30×10Paである。貯蔵弾性率E’P50が上記範囲内であることにより、得られる被研磨物の面品位がより向上する傾向にある。 In the dynamic viscoelasticity measurement of the polishing layer, the storage modulus E′ P50 at 50° C. is preferably 10×10 7 to 40×10 7 Pa, more preferably 15×10 7 to 35×10 7 Pa. and more preferably 20×10 7 to 30×10 7 Pa. When the storage elastic modulus E′ P50 is within the above range, the surface quality of the resulting polished object tends to be further improved.
2.1.2.2.ポリウレタンシート
 以下においては、研磨層の一例としてポリウレタンシートを例示する。ポリウレタンシートについては、第1実施態様で記載した態様が挙げられるため、記載を省略する。
2.1.2.2. Polyurethane Sheet Hereinafter, a polyurethane sheet is exemplified as an example of the polishing layer. The description of the polyurethane sheet is omitted because it includes the aspects described in the first embodiment.
2.1.3.その他
 第2実施形態の研磨パッドは、研磨層の研磨面とは反対側にクッション層を有していてもよく、研磨層とクッション層との間や、クッション層の研磨層側ではない面(研磨機に貼り合わせる面)に、接着層を有していてもよい。この場合、クッション層と接着層には、研磨層の終点検出窓が位置する場所と同様の場所に開口を有するものとする。
2.1.3. Others The polishing pad of the second embodiment may have a cushion layer on the side opposite to the polishing surface of the polishing layer, between the polishing layer and the cushion layer, or on the surface of the cushion layer that is not on the polishing layer side ( The surface to be attached to the polishing machine) may have an adhesive layer. In this case, the cushion layer and the adhesive layer have openings at locations similar to where the endpoint detection windows of the polishing layer are located.
3.第3実施形態
3.1.研磨パッド
 第3実施形態の研磨パッドは、研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、パルスNMRを用いてSolid Echo法により測定することによって得られる1Hのスピン-スピン緩和の自由誘導減衰曲線を緩和時間の短い順に、結晶相、中間相、及び非晶相の3成分に由来する3つの曲線に波形分離したとき、20℃における、前記終点検出窓の非晶相の存在比Lw20と、前記研磨層の非晶相の存在比Lp20の比(Lp20/Lw20)が、0.5~2.0であり、80℃における、前記終点検出窓の結晶相の存在比Sw80と、前記研磨層の結晶相の存在比Sp80の比(Sp80/Sw80)が、0.5~2.0である。
3. Third Embodiment 3.1. Polishing Pad The polishing pad of the third embodiment has a polishing layer and an end-point detection window provided in the opening of the polishing layer, and has a 1H value obtained by measurement by a Solid Echo method using pulse NMR. When the spin-spin relaxation free induction decay curve is separated into three curves derived from the three components of the crystalline phase, the intermediate phase, and the amorphous phase in order of shorter relaxation time, the endpoint detection window at 20 ° C. A ratio (Lp20/Lw20) of the abundance ratio Lw20 of the amorphous phase to the abundance ratio Lp20 of the amorphous phase in the polishing layer is 0.5 to 2.0, and the crystalline phase of the endpoint detection window at 80°C and the abundance ratio Sp80 of the crystalline phase of the polishing layer (Sp80/Sw80) is 0.5 to 2.0.
 これにより、スライス処理においては凸部が生じにくいという観点から平坦性を向上することができ、ドレス処理時においては終点検出窓が研磨層よりも過研磨されにくいという観点から平坦性を向上することができる。なお、第3実施形態においては、これら2種の平坦性をまとめて単に「平坦性」という。 As a result, the flatness can be improved from the viewpoint that convex portions are less likely to occur in the slicing process, and the flatness can be improved from the viewpoint that the end point detection window is less likely to be over-polished than the polishing layer during the dressing process. can be done. In the third embodiment, these two types of flatness are simply referred to as "flatness".
 図1に、第3実施形態の研磨パッドの概略斜視図を示す。図1に示すように、第3実施形態の研磨パッド10は、研磨層11と、終点検出窓12と、を有し、必要に応じて、研磨面11aとは反対側に、クッション層13を有していてもよい。 FIG. 1 shows a schematic perspective view of the polishing pad of the third embodiment. As shown in FIG. 1, the polishing pad 10 of the third embodiment has a polishing layer 11 and an end point detection window 12, and optionally a cushion layer 13 on the side opposite to the polishing surface 11a. may have.
 図2~3に、図1における終点検出窓12の周辺の断面図を示す。図2~3に示すように、研磨層11とクッション層13の間には、接着層14が設けられていてもよく、また、クッション層13の表面には、図4のテーブル22と貼り合わせるための接着層15が設けられていてもよい。第3実施形態の研磨パッドの研磨面11aは、図2に示すように平坦の場合の他、図3に示すように、溝16が形成された凹凸状であってもよい。溝16は複数の同心円状、格子状、放射状等の様々な形状の溝を単独又は併用して形成してもよい。 2 and 3 show cross-sectional views around the endpoint detection window 12 in FIG. As shown in FIGS. 2 and 3, an adhesive layer 14 may be provided between the polishing layer 11 and the cushion layer 13, and the surface of the cushion layer 13 is attached to the table 22 shown in FIG. An adhesive layer 15 may be provided for the purpose. The polishing surface 11a of the polishing pad of the third embodiment may be flat as shown in FIG. 2, or may be uneven with grooves 16 formed therein as shown in FIG. The grooves 16 may be formed with a plurality of grooves having various shapes such as concentric circles, grids, and radial grooves singly or in combination.
3.1.1.終点検出窓
 終点検出窓は研磨層の開口に設けられた透明な部材であり、光学式の終点検出において、膜厚検出センサからの光の透過路となるものである。第3実施形態において、終点検出窓は円形であるが、必要に応じて、正方形、長方形、多角形、楕円形等の形状としてもよい。
3.1.1. End Point Detection Window The end point detection window is a transparent member provided in the opening of the polishing layer, and serves as a transmission path for light from the film thickness detection sensor in optical end point detection. Although the endpoint detection window is circular in the third embodiment, it may be square, rectangular, polygonal, elliptical, or the like, if necessary.
 第3実施形態においては、研磨パッドを製造する過程において、スライスをした場合に、終点検出窓が研磨層よりも凹んだ状態になったり、割れたりすることや、ドレス処理を行った際に、終点検出窓が研磨層よりも凹んだ状態や突出した状態になったりすることを抑制し、平坦性を向上する観点から、終点検出窓と研磨層のパルスNMRに関するパラメータを規定する。 In the third embodiment, in the process of manufacturing the polishing pad, when slicing, the end point detection window becomes recessed or cracked from the polishing layer, and when the dressing process is performed, From the viewpoint of improving flatness by suppressing the end-point detection window from becoming recessed or protruding from the polishing layer, parameters relating to the end-point detection window and the polishing layer are defined.
3.1.1.1.パルスNMR
 パルスNMRとは、固体NMRの一つであり、パルスに対する応答信号を検出し、試料の1H核磁気緩和時間(分子の運動性を表す指標)を求める手法である。パルスへの応答として、自由誘導減衰シグナル(free induction decay:FIDシグナル)が得られる。
3.1.1.1. Pulsed NMR
Pulse NMR is one type of solid-state NMR, and is a method of detecting a response signal to a pulse to determine the 1 H nuclear magnetic relaxation time (an index representing molecular mobility) of a sample. A free induction decay (FID signal) is obtained in response to the pulse.
 パルスNMRは、ポリマー分子鎖の系全体としての運動性を評価する分析方法であり、運動性を、樹脂組成物の緩和時間とその時のシグナル強度を測定することで評価することができる。一般に、ポリマー鎖の運動性が低いほど緩和時間は短くなるので、シグナル強度の減衰は早くなり、初期シグナル強度を100%としたときの相対シグナル強度は短い時間で低下する。また、ポリマー鎖の運動性が高いほど緩和時間は長くなるので、シグナル強度の減衰は遅くなり、初期シグナル強度を100%としたときの相対シグナル強度は長時間かけて緩やかに低下する。 Pulse NMR is an analytical method for evaluating the mobility of the polymer molecular chain as a whole system, and the mobility can be evaluated by measuring the relaxation time of the resin composition and the signal intensity at that time. In general, the lower the mobility of the polymer chain, the shorter the relaxation time, so the signal intensity decays faster, and the relative signal intensity decreases in a short time when the initial signal intensity is taken as 100%. In addition, the higher the mobility of the polymer chain, the longer the relaxation time, so the attenuation of the signal intensity becomes slower, and the relative signal intensity when the initial signal intensity is 100% gradually decreases over a long period of time.
 例えば、樹脂を測定すると、得られるFIDは緩和時間の異なる複数成分のFIDの和となり、これを最小二乗法を用いて分離することにより、各成分の緩和時間を検出することができる。パルスNMRのソリッドエコー法による測定により得られる所定の温度における自由誘導減衰曲線を3成分近似すると、当該測定により得られるシグナルが、そのサンプル中の、最も運動性の低い成分(結晶相)、中間の運動性の成分(中間相)及び最も運動性の高い成分(非晶相)のいずれに由来するかを分類することができ、また、それら成分の存在比を求めることができる。 For example, when measuring a resin, the obtained FID is the sum of the FIDs of multiple components with different relaxation times, and by separating this using the least squares method, the relaxation time of each component can be detected. Three-component approximation of the free induction decay curve at a given temperature obtained by measurement by the solid echo method of pulse NMR shows that the signal obtained by the measurement is the component with the lowest mobility (crystalline phase) in the sample, the intermediate It is possible to classify which of the motile component (intermediate phase) and the component with the highest motility (amorphous phase) is derived from, and to determine the abundance ratio of those components.
 具体的には、パルスNMRのソリッドエコー法で測定される自由誘導減衰曲線を、下記式(1)を用いてフィッティングさせることにより、結晶相、中間相及び非晶相の3成分に近似することができ、当該3成分への近似により各組成分率を得ることができる。
M(t)=αexp(-(1/2)(t/Tα)sinbt/bt+βexp(-(1/Wa)(t/TβWa)+γexp(-t/Tγ)・・・(式1)
 α:結晶相の組成分率
 Tα:結晶相の緩和時間(単位:msec)
 β:中間相の組成分率
 Tβ:中間相の緩和時間(単位:msec)
 γ:非晶相の組成分率
 Tγ:非晶相の緩和時間(単位:msec)
 t:観測時間(単位:msec)
 Wa:形状係数
 b:形状係数
Specifically, the three components of the crystalline phase, the intermediate phase and the amorphous phase are approximated by fitting the free induction attenuation curve measured by the solid echo method of pulse NMR using the following formula (1). can be obtained, and each composition fraction can be obtained by approximation to the three components.
M(t)=αexp(-(1/2)(t/Tα) 2 ) sinbt /bt+βexp(-(1/Wa)(t/ ) Wa )+ γexp (-t/Tγ)... (Formula 1)
α: Composition fraction of crystal phase T α : Relaxation time of crystal phase (unit: msec)
β: Composition fraction of intermediate phase T β : Relaxation time of intermediate phase (unit: msec)
γ: Composition fraction of amorphous phase T γ : Relaxation time of amorphous phase (unit: msec)
t: observation time (unit: msec)
Wa: shape factor b: shape factor
 このようなパルスNMRの測定結果によれば、研磨層や終点検出窓の運動性を評価することができる。第3実施形態においては、ドレス時に相当する温度20℃と、スライス時に相当する温度80℃において、研磨層や終点検出窓の運動性が近いことをパルスNMRを用いて評価する。 According to such pulse NMR measurement results, the motility of the polishing layer and endpoint detection window can be evaluated. In the third embodiment, at a temperature of 20° C. corresponding to dressing and a temperature of 80° C. corresponding to slicing, pulse NMR is used to evaluate that the polishing layer and endpoint detection window have similar motility.
 具体的には、20℃における、終点検出窓の非晶相の存在比Lw20と、研磨層の非晶相の存在比Lp20の比(Lp20/Lw20)は、0.5~2.0であり、好ましくは0.6~1.7であり、より好ましくは0.7~1.5であり、さらに好ましく0.8~1.2である。比(Lp20/Lw20)が上記範囲内であることにより、ドレス時において、研磨層と終点検出窓を構成する材料のそれぞれの運動性が近いものとなる。そのため、ドレス処理において研磨層と終点検出窓を均質に処理することができ、ドレス処理後の平坦性がより向上する。 Specifically, the ratio (Lp20/Lw20) of the abundance ratio Lw20 of the amorphous phase in the endpoint detection window to the abundance ratio Lp20 of the amorphous phase in the polishing layer at 20° C. is 0.5 to 2.0. , preferably 0.6 to 1.7, more preferably 0.7 to 1.5, still more preferably 0.8 to 1.2. When the ratio (Lp20/Lw20) is within the above range, the motility of the polishing layer and the material forming the endpoint detection window are close to each other during dressing. Therefore, the polishing layer and the endpoint detection window can be uniformly treated in the dressing process, and the flatness after the dressing process is further improved.
 また、80℃における、終点検出窓の結晶相の存在比Sw80と、研磨層の結晶相の存在比Sp80の比(Sp80/Sw80)は、0.5~2.0であり、好ましくは0.6~1.7であり、より好ましくは0.9~1.5であり、さらに好ましく1.0~1.3である。比(Sp80/Sw80)が上記範囲内であることにより、スライスにおいて、研磨層と終点検出窓を構成する材料のそれぞれの運動性が近いものとなる。そのため、スライス処理において研磨層と終点検出窓を均質に処理することができ、スライス処理後の平坦性がより向上する。 In addition, the ratio (Sp80/Sw80) of the abundance ratio Sw80 of the crystalline phase in the endpoint detection window to the abundance ratio Sp80 of the crystalline phase in the polishing layer at 80° C. is 0.5 to 2.0, preferably 0.5. It is 6 to 1.7, more preferably 0.9 to 1.5, still more preferably 1.0 to 1.3. When the ratio (Sp80/Sw80) is within the above range, the motility of the polishing layer and the material forming the endpoint detection window are close to each other in the slice. Therefore, in the slicing process, the polishing layer and the endpoint detection window can be uniformly processed, and the flatness after the slicing process is further improved.
 20℃における、終点検出窓の中間相の存在比Mw20と、研磨層の中間相の存在比Mp20の比(Mp20/Mw20)は、好ましくは0.7~1.5であり、より好ましくは0.7~1.3であり、さらに好ましくは0.7~1.1である。比(Mp20/Mw20)が上記範囲内であることにより、ドレス処理において研磨層と終点検出窓を均質に処理することができ、ドレス処理後の平坦性がより向上する傾向にある。 The ratio (Mp20/Mw20) of the abundance ratio Mw20 of the intermediate phase in the endpoint detection window to the abundance ratio Mp20 of the intermediate phase in the polishing layer at 20° C. is preferably 0.7 to 1.5, more preferably 0. .7 to 1.3, more preferably 0.7 to 1.1. When the ratio (Mp20/Mw20) is within the above range, the polishing layer and the endpoint detection window can be uniformly treated in the dressing process, and the flatness after the dressing process tends to be further improved.
 80℃における、終点検出窓の中間相の存在比Mw80と、研磨層の中間相の存在比Mp80の比(Mp80/Mw80)は、好ましくは0.5~1.5であり、より好ましくは0.7~1.4であり、さらに好ましくは0.8~1.3である。比(Mp80/Mw80)が上記範囲内であることにより、スライス処理において研磨層と終点検出窓を均質に処理することができ、スライス処理後の平坦性がより向上する傾向にある。 The ratio (Mp80/Mw80) of the abundance ratio Mw80 of the intermediate phase in the endpoint detection window to the abundance ratio Mp80 of the intermediate phase in the polishing layer at 80° C. is preferably 0.5 to 1.5, more preferably 0. .7 to 1.4, more preferably 0.8 to 1.3. When the ratio (Mp80/Mw80) is within the above range, the polishing layer and the end point detection window can be uniformly treated in the slicing process, and the flatness after the slicing process tends to be further improved.
 存在比Lw20と存在比Lp20の差(|Lp20-Lw20|)は、好ましくは10以下であり、より好ましくは0~8.0であり、さらに好ましくは0~5.0である。差(|Lp20-Lw20|)が上記範囲内であることにより、ドレス処理において研磨層と終点検出窓を均質に処理することができ、ドレス処理後の平坦性がより向上する傾向にある。 The difference (|Lp20-Lw20|) between the abundance ratio Lw20 and the abundance ratio Lp20 is preferably 10 or less, more preferably 0 to 8.0, still more preferably 0 to 5.0. When the difference (|Lp20−Lw20|) is within the above range, the polishing layer and the end point detection window can be uniformly processed in the dressing process, and the flatness after the dressing process tends to be further improved.
 存在比Sw80と存在比Sw80の差(|Sp80-Sw80|)は、好ましくは15以下であり、より好ましくは0~12であり、さらに好ましくは0~8.0である。差(|Sp80-Sw80|)が上記範囲内であることにより、スライス処理において研磨層と終点検出窓を均質に処理することができ、スライス処理後の平坦性がより向上する傾向にある。 The difference (|Sp80-Sw80|) between the abundance ratio Sw80 and the abundance ratio Sw80 is preferably 15 or less, more preferably 0 to 12, and still more preferably 0 to 8.0. When the difference (|Sp80−Sw80|) is within the above range, the polishing layer and the endpoint detection window can be uniformly processed in the slicing process, and the flatness after the slicing process tends to be further improved.
 20℃における終点検出窓の結晶相の存在比Sw20は、好ましくは30~65%であり、より好ましくは35~60%であり、さらに好ましくは40~55%である。 The existence ratio Sw20 of the crystalline phase in the endpoint detection window at 20°C is preferably 30 to 65%, more preferably 35 to 60%, still more preferably 40 to 55%.
 20℃における終点検出窓の中間相の存在比Mw20は、好ましくは15~45%であり、より好ましくは20~40%であり、さらに好ましくは25~35%である。 The abundance ratio Mw20 of the intermediate phase in the endpoint detection window at 20°C is preferably 15 to 45%, more preferably 20 to 40%, still more preferably 25 to 35%.
 20℃における終点検出窓の非晶相の存在比Lw20は、好ましくは10~40%であり、より好ましくは15~35%であり、さらに好ましくは20~30%である。 The abundance ratio Lw20 of the amorphous phase in the endpoint detection window at 20°C is preferably 10 to 40%, more preferably 15 to 35%, still more preferably 20 to 30%.
 20℃における終点検出窓の存在比Sw20、存在比Mw20、及び存在比Lw20が、それぞれ、上記範囲内であることにより、ドレス処理において研磨層と終点検出窓を均質に処理することができ、ドレス処理後の平坦性がより向上する傾向にある。なお、存在比Sw20、存在比Mw20、及び存在比Lw20の和は100%となる。 When the abundance ratio Sw20, the abundance ratio Mw20, and the abundance ratio Lw20 of the endpoint detection window at 20° C. are each within the above ranges, the polishing layer and the endpoint detection window can be treated homogeneously in the dressing process. Flatness after processing tends to be further improved. The sum of abundance ratio Sw20, abundance ratio Mw20, and abundance ratio Lw20 is 100%.
 80℃における終点検出窓の結晶相の存在比Sw80は、好ましくは15~50%であり、より好ましくは20~45%であり、さらに好ましくは25~40%である。 The existence ratio Sw80 of the crystalline phase in the endpoint detection window at 80°C is preferably 15 to 50%, more preferably 20 to 45%, still more preferably 25 to 40%.
 80℃における終点検出窓の中間相の存在比Mw80は、好ましくは10~35%であり、より好ましくは15~30%であり、さらに好ましくは20~25%である。 The existence ratio Mw80 of the intermediate phase in the endpoint detection window at 80°C is preferably 10 to 35%, more preferably 15 to 30%, still more preferably 20 to 25%.
 80℃における終点検出窓の非晶相の存在比Lw80は、好ましくは30~60%であり、より好ましくは35~55%であり、さらに好ましくは40~50%である。 The abundance ratio Lw80 of the amorphous phase in the endpoint detection window at 80°C is preferably 30-60%, more preferably 35-55%, and still more preferably 40-50%.
 80℃における終点検出窓の存在比Sw80、存在比Mw80、及び存在比Lw80が、それぞれ、上記範囲内であることにより、スライス処理において研磨層と終点検出窓を均質に処理することができ、スライス処理後の平坦性がより向上する傾向にある。なお、存在比Sw80、存在比Mw80、及び存在比Lw80の和は100%となる。 When the abundance ratio Sw80, the abundance ratio Mw80, and the abundance ratio Lw80 of the endpoint detection window at 80° C. are each within the above ranges, the polishing layer and the endpoint detection window can be uniformly treated in the slicing process, and the slicing is performed. Flatness after processing tends to be further improved. The sum of abundance ratio Sw80, abundance ratio Mw80, and abundance ratio Lw80 is 100%.
 パルスNMR測定の測定条件については、特に制限されるものではないが、実施例において記載した条件により測定することができる。 The measurement conditions for pulse NMR measurement are not particularly limited, but measurements can be made under the conditions described in Examples.
3.1.1.3.構成材料
 終点検出窓を構成する材料は、窓として機能し得る透明な部材であれば特に限定されないが、例えば、ポリウレタン樹脂WI、ポリ塩化ビニル樹脂、ポリフッ化ビニリデン樹脂、ポリエーテルサルホン樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂などが挙げられる。このなかでも、ポリウレタン樹脂WIが好ましい。このような樹脂を用いることにより、上記パルスNMR特性、透明性をより調整しやすく、平坦性をより向上することができる。
3.1.1.3. Constituent Material The material constituting the endpoint detection window is not particularly limited as long as it is a transparent member that can function as a window. Examples include polyurethane resin WI, polyvinyl chloride resin, polyvinylidene fluoride resin, polyethersulfone resin, polystyrene resin, polyethylene resin, polytetrafluoroethylene resin, and the like. Among these, polyurethane resin WI is preferable. By using such a resin, the pulse NMR characteristics and transparency can be more easily adjusted, and the flatness can be further improved.
 ポリウレタン樹脂WIは、ポリイソシアネートとポリオールにより合成することができ、ポリイソシアネートに由来する構成単位とポリオールに由来する構成単位とを含む。 The polyurethane resin WI can be synthesized from polyisocyanate and polyol, and contains structural units derived from polyisocyanate and structural units derived from polyol.
3.1.1.3.1.ポリイソシアネートに由来する構成単位
 ポリイソシアネートに由来する構成単位は、特に限定されないが、例えば、脂環族イソシアネートに由来する構成単位、脂肪族イソシアネートに由来する構成単位、及び芳香族イソシアネートに由来する構成単位が挙げられる。このなかでも、ポリウレタン樹脂WIは、脂環族イソシアネート及び/又は脂肪族イソシアネートに由来する構成単位を含むことが好ましく、脂肪族イソシアネートに由来する構成単位を含むことがより好ましい。これにより、パルスNMRに関する各値を上記範囲内に調整しやすく、透明性がより向上するほか、ドレス時とスライス時における平坦性をより向上することができる。
3.1.1.3.1. Structural Units Derived from Polyisocyanates Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units. Among these, the polyurethane resin WI preferably contains a structural unit derived from an alicyclic isocyanate and/or an aliphatic isocyanate, and more preferably contains a structural unit derived from an aliphatic isocyanate. This makes it easy to adjust each value related to pulse NMR within the above range, further improves transparency, and further improves flatness during dressing and slicing.
 脂環族イソシアネート、脂肪族イソシアネート、芳香族イソシアネートとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 The alicyclic isocyanate, aliphatic isocyanate, and aromatic isocyanate are not particularly limited, but include, for example, the compounds exemplified in the first embodiment.
3.1.1.3.2.ポリオールに由来する構成単位
 ポリオールに由来する構成単位としては、特に限定されないが、例えば、分子量300未満の低分子ポリオールと、分子量300以上の高分子ポリオールが挙げられる。
3.1.1.3.2. Structural Units Derived from Polyols Structural units derived from polyols are not particularly limited.
 低分子ポリオールとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 The low-molecular-weight polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
 このなかでも、水酸基を3つ以上有する低分子ポリオールが好ましく、グリセリンがより好ましい。このような低分子ポリオールを用いることにより、パルスNMR特性を上記範囲内に調整しやすく、摩耗量を調整でき、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 Among these, low-molecular-weight polyols having 3 or more hydroxyl groups are preferred, and glycerin is more preferred. By using such a low-molecular-weight polyol, the pulse NMR characteristics can be easily adjusted within the above range, the wear amount can be adjusted, the flatness can be further improved, the transparency can be further improved, and the durability of the window can be improved. Yellowing tends to be more improved.
 水酸基を3つ以上有する低分子ポリオールに由来する構成単位の含有量は、ポリイソシアネートに由来する構成単位100質量部に対して、好ましくは8.0~30質量部であり、より好ましくは10~25質量部であり、さらに好ましくは12.5~20質量部である。水酸基を3つ以上有する低分子ポリオールに由来する構成単位の含有量が上記範囲内であることにより、パルスNMR特性を上記範囲内に調整しやすく、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 The content of the structural unit derived from the low-molecular-weight polyol having 3 or more hydroxyl groups is preferably 8.0 to 30 parts by mass, more preferably 10 to 100 parts by mass, based on 100 parts by mass of the structural unit derived from the polyisocyanate. 25 parts by mass, more preferably 12.5 to 20 parts by mass. When the content of the structural unit derived from a low-molecular-weight polyol having three or more hydroxyl groups is within the above range, the pulse NMR characteristics can be easily adjusted within the above range, flatness can be further improved, and transparency can be improved. is further improved, and the yellowing resistance of the window tends to be further improved.
 また、高分子ポリオールとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 In addition, the polymer polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
 なお、高分子ポリオールの数平均分子量は、好ましくは300~3000であり、より好ましくは500~2500である。このような高分子ポリオールを用いることにより、パルスNMR特性を上記範囲内に調整しやすい傾向にある。 The number average molecular weight of the polymer polyol is preferably 300-3000, more preferably 500-2500. By using such a polymer polyol, the pulse NMR characteristics tend to be easily adjusted within the above range.
 このなかでも、ポリエーテルポリオールが好ましく、ポリ(オキシテトラメチレン)グリコールがより好ましい。このような高分子ポリオールを用いることにより、パルスNMR特性を上記範囲内に調整しやすい。また、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 Among these, polyether polyol is preferred, and poly(oxytetramethylene) glycol is more preferred. By using such a polymer polyol, it is easy to adjust the pulse NMR characteristics within the above range. Further, the flatness can be further improved, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
 ポリエーテルポリオールに由来する構成単位の含有量は、ポリイソシアネートに由来する構成単位100質量部に対して、好ましくは60~130質量部であり、好ましくは65~120質量部であり、より好ましくは70~110質量部である。ポリエーテルポリオールに由来する構成単位の含有量が上記範囲内であることにより、パルスNMR特性を上記範囲内に調整しやすく、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 The content of structural units derived from polyether polyol is preferably 60 to 130 parts by mass, preferably 65 to 120 parts by mass, more preferably 100 parts by mass of structural units derived from polyisocyanate. 70 to 110 parts by mass. When the content of the structural unit derived from the polyether polyol is within the above range, the pulse NMR characteristics can be easily adjusted within the above range, the flatness can be further improved, and the transparency can be further improved. It tends to improve the yellowing resistance of windows.
 また、ポリオールとしては、低分子ポリオールと高分子ポリオールとを併用することが好ましく、水酸基を3つ以上有する低分子ポリオールとポリエーテルポリオールとを併用することがより好ましい。これにより、パルスNMR特性を上記範囲内に調整しやすい。また、平坦性をより向上することができ、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 In addition, as the polyol, it is preferable to use a low-molecular-weight polyol and a high-molecular-weight polyol together, and it is more preferable to use a low-molecular-weight polyol having three or more hydroxyl groups and a polyether polyol together. This makes it easy to adjust the pulse NMR characteristics within the above range. Further, the flatness can be further improved, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
 上記観点から、ポリエーテルポリオールの含有量は、水酸基を3つ以上有する低分子ポリオール1部に対して、好ましくは2.0~15.0部であり、より好ましくは3.0~12.5部であり、さらに好ましくは4.0~9.0部である 。 From the above viewpoint, the content of the polyether polyol is preferably 2.0 to 15.0 parts, more preferably 3.0 to 12.5 parts, relative to 1 part of the low-molecular-weight polyol having 3 or more hydroxyl groups. part, more preferably 4.0 to 9.0 parts.
3.1.2.研磨層
 第3実施形態の研磨層は、終点検出窓が埋設される開口を有する。開口の位置は特に制限されないが、テーブル22に設置された膜厚検出センサ23に対応する半径方向の位置に設けることが好ましい。また、開口の数は特に制限されないが、テーブル22に貼られた研磨パッド10が一回転する際に、窓が膜厚検出センサ23上を複数回通過するように、同様の半径方向の位置に複数個有することが好ましい。
3.1.2. Polishing Layer The polishing layer of the third embodiment has an opening in which the endpoint detection window is embedded. Although the position of the opening is not particularly limited, it is preferably provided at a position in the radial direction corresponding to the film thickness detection sensor 23 installed on the table 22 . Although the number of openings is not particularly limited, the openings are arranged at similar radial positions so that the windows pass over the film thickness detection sensor 23 multiple times when the polishing pad 10 attached to the table 22 rotates once. It is preferable to have a plurality of them.
 研磨層の態様としては、特に制限されないが、例えば、樹脂の発泡成形体、無発泡成形体、繊維基材に樹脂を含浸した樹脂含侵基材などが挙げられる。 The form of the abrasive layer is not particularly limited, but examples include resin foam molded articles, non-foam molded articles, and resin-impregnated substrates obtained by impregnating fiber substrates with resin.
 ここで、樹脂の発泡成形体、無発泡成形体、樹脂含侵基材、繊維基材については、第1実施態様で記載した態様が挙げられるため、記載を省略する。 Here, descriptions of the foamed resin article, the non-foamed molded article, the resin-impregnated base material, and the fiber base material are omitted because they are the same as those described in the first embodiment.
3.1.2.1.パルスNMR
 研磨層の結晶相の存在比Sp20は、好ましくは40~65%であり、好ましくは45~60%であり、好ましくは50~55%である。
3.1.2.1. Pulsed NMR
The existence ratio Sp20 of the crystal phase in the polishing layer is preferably 40 to 65%, preferably 45 to 60%, and preferably 50 to 55%.
 研磨層の中間相の存在比Mp20は、好ましくは10~40%であり、好ましくは15~35%であり、好ましくは20~30%である。 The existence ratio Mp20 of the intermediate phase in the polishing layer is preferably 10-40%, preferably 15-35%, and preferably 20-30%.
 研磨層の非晶相の存在比Lp20は、好ましくは10~35%であり、好ましくは15~30%であり、好ましくは20~25%である。 The existence ratio Lp20 of the amorphous phase in the polishing layer is preferably 10 to 35%, preferably 15 to 30%, and preferably 20 to 25%.
 20℃における終点検出窓の存在比Sp20、存在比Mp20、及び存在比Lp20が、それぞれ、上記範囲内であることにより、ドレス処理において研磨層と終点検出窓を均質に処理することができ、ドレス処理後の平坦性がより向上する傾向にある。なお、存在比Sp20、存在比Mp20、及び存在比Lp20の和は100%となる。 When the abundance ratio Sp20, the abundance ratio Mp20, and the abundance ratio Lp20 of the endpoint detection window at 20° C. are each within the above ranges, the polishing layer and the endpoint detection window can be treated homogeneously in the dressing process. Flatness after processing tends to be further improved. The sum of abundance ratio Sp20, abundance ratio Mp20, and abundance ratio Lp20 is 100%.
 研磨層の結晶相の存在比Sp80は、好ましくは25~50%であり、好ましくは30~45%であり、好ましくは35~40%である。 The existence ratio Sp80 of the crystalline phase of the polishing layer is preferably 25 to 50%, preferably 30 to 45%, and preferably 35 to 40%.
 研磨層の中間相の存在比Mp80は、好ましくは10~40%であり、好ましくは15~35%であり、好ましくは20~30%である。 The abundance ratio Mp80 of the intermediate phase in the polishing layer is preferably 10-40%, preferably 15-35%, and preferably 20-30%.
 研磨層の非晶相の存在比Lp80は、好ましくは25~50%であり、好ましくは30~45%であり、好ましくは35~40%である。 The abundance ratio Lp80 of the amorphous phase in the polishing layer is preferably 25-50%, preferably 30-45%, and preferably 35-40%.
 80℃における終点検出窓の存在比Sp80、存在比Mp80、及び存在比Lp80が、それぞれ、上記範囲内であることにより、スライス処理において研磨層と終点検出窓を均質に処理することができ、スライス処理後の平坦性がより向上する傾向にある。なお、存在比Sp80、存在比Mp80、及び存在比Lp80の和は100%となる。 When the abundance ratio Sp80, the abundance ratio Mp80, and the abundance ratio Lp80 of the endpoint detection window at 80° C. are each within the above ranges, the polishing layer and the endpoint detection window can be uniformly treated in the slicing process. Flatness after processing tends to be further improved. The sum of the abundance ratio Sp80, the abundance ratio Mp80, and the abundance ratio Lp80 is 100%.
 パルスNMR測定の測定条件については、特に制限されるものではないが、実施例において記載した条件により測定することができる。 The measurement conditions for pulse NMR measurement are not particularly limited, but measurements can be made under the conditions described in Examples.
3.1.2.2.ポリウレタンシート
 以下においては、研磨層の一例としてポリウレタンシートを例示する。ポリウレタンシートについては、第1実施態様で記載した態様が挙げられるため、記載を省略する。
3.1.2.2. Polyurethane Sheet Hereinafter, a polyurethane sheet is exemplified as an example of the polishing layer. The description of the polyurethane sheet is omitted because it includes the aspects described in the first embodiment.
3.1.3.その他
 第3実施形態の研磨パッドは、研磨層の研磨面とは反対側にクッション層を有していてもよく、研磨層とクッション層との間や、クッション層の研磨層側ではない面(研磨機に貼り合わせる面)に、接着層を有していてもよい。この場合、クッション層と接着層には、研磨層の終点検出窓が位置する場所と同様の場所に開口を有するものとする。
3.1.3. Others The polishing pad of the third embodiment may have a cushion layer on the side opposite to the polishing surface of the polishing layer. The surface to be attached to the polishing machine) may have an adhesive layer. In this case, the cushion layer and the adhesive layer have openings at locations similar to where the endpoint detection windows of the polishing layer are located.
4.第4実施形態
4.1.研磨パッド
 第4実施形態の研磨パッドは、研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、引張モード、周波数1.6Hz、30~55℃、及び浸水状態の条件で行う動的粘弾性測定において、40℃における前記終点検出窓の貯蔵弾性率E’w40と、40℃における前記研磨層の貯蔵弾性率E’p40との比(E’p40/E’w40)が、0.70~3.00である。
4. Fourth Embodiment 4.1. Polishing Pad The polishing pad of the fourth embodiment has a polishing layer and an end point detection window provided in the opening of the polishing layer, and has a tensile mode, a frequency of 1.6 Hz, 30 to 55 ° C., and a water immersion state. In the dynamic viscoelasticity measurement performed under the conditions, the ratio of the storage elastic modulus E′w40 of the endpoint detection window at 40° C. to the storage elastic modulus E′p40 of the polishing layer at 40° C. (E′p40/E′w40 ) is between 0.70 and 3.00.
 これにより、研磨時において、研磨層と終点検出窓の動的粘弾性特性がより近いものとなるため、研磨層に異種部材である終点検出窓を埋設した場合においても、被研磨物の表面にディフェクト(表面欠陥)が生じることがより抑制される。そのため、面品位に優れた被研磨物を得ることができる。 As a result, during polishing, the dynamic viscoelastic properties of the polishing layer and the endpoint detection window are more similar, so even when the endpoint detection window, which is a different member, is embedded in the polishing layer, the The occurrence of defects (surface defects) is further suppressed. Therefore, an object to be polished having excellent surface quality can be obtained.
 図1に、第4実施形態の研磨パッドの概略斜視図を示す。図1に示すように、第4実施形態の研磨パッド10は、研磨層11と、終点検出窓12と、を有し、必要に応じて、研磨面11aとは反対側に、クッション層13を有していてもよい。 FIG. 1 shows a schematic perspective view of the polishing pad of the fourth embodiment. As shown in FIG. 1, the polishing pad 10 of the fourth embodiment has a polishing layer 11 and an end point detection window 12, and optionally a cushion layer 13 on the side opposite to the polishing surface 11a. may have.
 図2~3に、図1における終点検出窓12の周辺の断面図を示す。図2~3に示すように、研磨層11とクッション層13の間には、接着層14が設けられていてもよく、また、クッション層13の表面には、図4のテーブル22と貼り合わせるための接着層15が設けられていてもよい。第4実施形態の研磨パッドの研磨面11aは、図2に示すように平坦の場合の他、図3に示すように、溝16が形成された凹凸状であってもよい。溝16は複数の同心円状、格子状、放射状等の様々な形状の溝を単独又は併用して形成してもよい。 2 and 3 show cross-sectional views around the endpoint detection window 12 in FIG. As shown in FIGS. 2 and 3, an adhesive layer 14 may be provided between the polishing layer 11 and the cushion layer 13, and the surface of the cushion layer 13 is attached to the table 22 shown in FIG. An adhesive layer 15 may be provided for the purpose. The polishing surface 11a of the polishing pad of the fourth embodiment may be flat as shown in FIG. 2, or may be uneven with grooves 16 formed therein as shown in FIG. The grooves 16 may be formed with a plurality of grooves having various shapes such as concentric circles, grids, and radial grooves singly or in combination.
4.1.1.終点検出窓
 終点検出窓は研磨層の開口に設けられた透明な部材であり、光学式の終点検出において、膜厚検出センサからの光の透過路となるものである。第4実施形態において、終点検出窓は円形であるが、必要に応じて、正方形、長方形、多角形、楕円形等の形状としてもよい。
4.1.1. End Point Detection Window The end point detection window is a transparent member provided in the opening of the polishing layer, and serves as a transmission path for light from the film thickness detection sensor in optical end point detection. Although the endpoint detection window is circular in the fourth embodiment, it may be square, rectangular, polygonal, elliptical, or the like, if necessary.
 第4実施形態においては、研磨時における終点検出窓と研磨層の摩耗度等を調整し、終点検出窓又は研磨層の一方が過剰に研磨されることにより、非研磨物にディフェクト(表面欠陥)が生じることを抑制観点から、終点検出窓と研磨層との貯蔵弾性率E’の比を規定する。 In the fourth embodiment, the degree of abrasion of the endpoint detection window and the polishing layer during polishing is adjusted, and either the endpoint detection window or the polishing layer is excessively polished, thereby causing defects (surface defects) on the non-polished object. From the viewpoint of suppressing the occurrence of , the ratio of the storage elastic modulus E′ between the end point detection window and the polishing layer is defined.
4.1.1.1.動的粘弾性
 第4実施形態における終点検出窓及び研磨層の貯蔵弾性率E’は、引張モード、周波数1.6Hz、30~55℃、及び浸水状態の条件で行う動的粘弾性測定により求めることができる。なお、本実施形態において特に断りがないときは、動的粘弾性測定は浸水状態で行うことを前提とする。
4.1.1.1. Dynamic Viscoelasticity The endpoint detection window and the storage elastic modulus E′ of the polishing layer in the fourth embodiment are determined by dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.6 Hz, 30 to 55° C., and water immersion. be able to. In this embodiment, unless otherwise specified, it is assumed that the dynamic viscoelasticity measurement is performed in a submerged state.
 スラリーと研磨パッドが接触する研磨工程では、研磨面は浸水状態にある。このことから、第4実施形態においては、研磨時の温度に相当する40℃において、浸水状態における終点検出窓及び研磨層の動的粘弾性の比を規定する。より具体的には、引張モード、周波数1.6Hz、30~55℃、及び浸水状態の条件で行う動的粘弾性測定において、40℃における終点検出窓の貯蔵弾性率E’w40と、40℃における研磨層の貯蔵弾性率E’p40との比(E’p40/E’w40)を規定する。  In the polishing process where the slurry and the polishing pad come into contact, the polishing surface is submerged. For this reason, in the fourth embodiment, the ratio of the dynamic viscoelasticity of the endpoint detection window and the polishing layer in the submerged state is defined at 40° C., which corresponds to the temperature during polishing. More specifically, in the dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency 1.6 Hz, 30 to 55 ° C., and immersion, the storage elastic modulus E'w40 of the endpoint detection window at 40 ° C. and 40 ° C. defines the ratio (E'p40/E'w40) to the storage elastic modulus E'p40 of the polishing layer at .
 比(E’p40/E’w40)は、0.70~3.00であり、好ましくは0.80~2.50であり、より好ましくは0.90~2.00である。比(E’p40/E’w40)が上記範囲内であることにより、研磨時における終点検出窓及び研磨層の特性が類似するため、得られる被研磨物の面品位がより向上する。これにより、研磨時における被研磨物(ワーク)への接触状態がより良化し、また、研磨くずの執拗な押し付けが抑制され、スクラッチの発生が抑制される。 The ratio (E'p40/E'w40) is 0.70-3.00, preferably 0.80-2.50, more preferably 0.90-2.00. When the ratio (E'p40/E'w40) is within the above range, the properties of the end-point detection window and the polishing layer are similar during polishing, and the surface quality of the resulting polished object is further improved. As a result, the state of contact with the object to be polished (workpiece) during polishing is improved, and persistent pressing of polishing dust is suppressed, thereby suppressing the occurrence of scratches.
 上記浸水状態の動的粘弾性測定において、50℃における終点検出窓の貯蔵弾性率E’w50と、50℃における研磨層の貯蔵弾性率E’p50との比(E’p50/E’w50)は、好ましくは0.70~5.00であり、より好ましくは0.80~4.00であり、さらに好ましくは0.90~3.00である。比(E’p50/E’w50)が上記範囲内であることにより、研磨時における終点検出窓及び研磨層の特性が類似するため、得られる被研磨物の面品位がより向上する傾向にある。 In the dynamic viscoelasticity measurement in the water-immersed state, the ratio of the storage elastic modulus E′w50 of the endpoint detection window at 50° C. to the storage elastic modulus E′p50 of the polishing layer at 50° C. (E′p50/E′w50) is preferably 0.70 to 5.00, more preferably 0.80 to 4.00, still more preferably 0.90 to 3.00. When the ratio (E'p50/E'w50) is within the above range, the characteristics of the end point detection window and the polishing layer are similar during polishing, so the surface quality of the resulting polished object tends to be further improved. .
 上記浸水状態の動的粘弾性測定において、30℃における終点検出窓の損失係数tanδw30と、30℃における研磨層の損失係数tanδp30との差(|tanδw30-tanδp30|)は、好ましくは0~0.30であり、より好ましくは0.05~0.30であり、さらに好ましくは0.05~0.20である。 In the dynamic viscoelasticity measurement in the water-immersed state, the difference between the loss coefficient tan δw30 of the endpoint detection window at 30° C. and the loss coefficient tan δp30 of the polishing layer at 30° C. (|tan δw30−tan δp30|) is preferably 0 to 0.0. 30, more preferably 0.05 to 0.30, still more preferably 0.05 to 0.20.
 上記浸水状態の動的粘弾性測定において、40℃における終点検出窓の損失係数tanδw40と、40℃における研磨層の損失係数tanδp40との差(|tanδw40-tanδp40|)は、好ましくは0~0.40であり、より好ましくは0.05~0.40であり、さらに好ましくは0.05~0.30である。 In the dynamic viscoelasticity measurement in the water-immersed state, the difference between the loss coefficient tan δw40 of the endpoint detection window at 40° C. and the loss coefficient tan δp40 of the polishing layer at 40° C. (|tan δw40−tan δp40|) is preferably 0 to 0.5. 40, more preferably 0.05 to 0.40, still more preferably 0.05 to 0.30.
 上記浸水状態の動的粘弾性測定において、50℃における終点検出窓の損失係数tanδw50と、50℃における研磨層の損失係数tanδp50との差(|tanδw50-tanδp50|)は、好ましくは0~0.50であり、より好ましくは0.05~0.50であり、さらに好ましくは0.05~0.40である、 In the dynamic viscoelasticity measurement in the water-immersed state, the difference between the loss coefficient tan δw50 of the endpoint detection window at 50° C. and the loss coefficient tan δp50 of the polishing layer at 50° C. (|tan δw50−tan δp50|) is preferably 0 to 0.5. 50, more preferably 0.05 to 0.50, more preferably 0.05 to 0.40,
 差(|tanδw30-tanδp30|),差(|tanδw40-tanδp40|),差(|tanδw50-tanδp50|)がそれぞれ上記範囲内であることにより、研磨時における終点検出窓及び研磨層の特性が類似するため、得られる被研磨物の面品位がより向上する傾向にある。 Difference (|tan δw30-tan δp30|), difference (|tan δw40-tan δp40|), and difference (|tan δw50-tan δp50|) are each within the above range, so that the properties of the end point detection window and the polishing layer during polishing are similar. Therefore, the surface quality of the resulting polished object tends to be further improved.
 浸水状態における終点検出窓の40℃における貯蔵弾性率E’w40は、好ましくは6.0~50×10Paであり、より好ましくは8.0~40×10Paであり、さらに好ましくは10~30×10Paである。 The storage elastic modulus E′w40 at 40° C. of the endpoint detection window in the submerged state is preferably 6.0 to 50×10 7 Pa, more preferably 8.0 to 40×10 7 Pa, still more preferably It is 10 to 30×10 7 Pa.
 浸水状態における終点検出窓の50℃における貯蔵弾性率E’w50は、好ましくは2.0~40×10Paであり、より好ましくは3.0~30×10Paであり、さらに好ましくは4.0~20×10Paである。 The storage elastic modulus E′w50 at 50° C. of the endpoint detection window in the submerged state is preferably 2.0 to 40×10 7 Pa, more preferably 3.0 to 30×10 7 Pa, still more preferably 4.0 to 20×10 7 Pa.
 浸水状態における終点検出窓の40℃におけるtanδw40は、好ましくは0.1~0.7であり、より好ましくは0.1~0.6であり、さらに好ましくは0.1~0.5である。 The tan δw40 at 40° C. of the endpoint detection window in the submerged state is preferably 0.1 to 0.7, more preferably 0.1 to 0.6, still more preferably 0.1 to 0.5. .
 浸水状態における終点検出窓の50℃におけるtanδw50は、好ましくは0.1~0.6であり、より好ましくは0.1~0.5であり、さらに好ましくは0.1~0.4である。 The tan δw50 at 50° C. of the endpoint detection window in the submerged state is preferably 0.1 to 0.6, more preferably 0.1 to 0.5, still more preferably 0.1 to 0.4. .
 E’w40、E’w50、tanδw40、及びtanδw50が、それぞれ、上記範囲内であることにより、研磨時における終点検出窓及び研磨層の特性が類似するため、得られる被研磨物の面品位がより向上する傾向にある。 When E′w40, E′w50, tan δw40, and tan δw50 are each within the above ranges, the properties of the end point detection window and the polishing layer during polishing are similar, so that the surface quality of the object to be polished is improved. tend to improve.
 動的粘弾性測定の測定条件については、特に制限されるものではないが、実施例において記載した条件により測定することができる。 Although the measurement conditions for dynamic viscoelasticity measurement are not particularly limited, the measurement can be performed under the conditions described in Examples.
4.1.1.3.構成材料
 終点検出窓を構成する材料は、窓として機能し得る透明な部材であれば特に限定されないが、例えば、ポリウレタン樹脂WI、ポリ塩化ビニル樹脂、ポリフッ化ビニリデン樹脂、ポリエーテルサルホン樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリテトラフルオロエチレン樹脂などが挙げられる。このなかでも、ポリウレタン樹脂WIが好ましい。このような樹脂を用いることにより、上記動的粘弾性特性、透明性をより調整しやすく、面品位をより向上することができる。
4.1.1.3. Constituent Material The material constituting the endpoint detection window is not particularly limited as long as it is a transparent member that can function as a window. Examples include polyurethane resin WI, polyvinyl chloride resin, polyvinylidene fluoride resin, polyethersulfone resin, polystyrene resin, polyethylene resin, polytetrafluoroethylene resin, and the like. Among these, polyurethane resin WI is preferable. By using such a resin, the dynamic viscoelastic properties and transparency can be more easily adjusted, and the surface quality can be further improved.
 ポリウレタン樹脂WIは、ポリイソシアネートとポリオールにより合成することができ、ポリイソシアネートに由来する構成単位とポリオールに由来する構成単位とを含む。 The polyurethane resin WI can be synthesized from polyisocyanate and polyol, and contains structural units derived from polyisocyanate and structural units derived from polyol.
4.1.1.3.1.ポリイソシアネートに由来する構成単位
 ポリイソシアネートに由来する構成単位は、特に限定されないが、例えば、脂環族イソシアネートに由来する構成単位、脂肪族イソシアネートに由来する構成単位、及び芳香族イソシアネートに由来する構成単位が挙げられる。このなかでも、ポリウレタン樹脂WIは、脂環族イソシアネート及び/又は脂肪族イソシアネートに由来する構成単位を含むことが好ましく、脂肪族イソシアネートに由来する構成単位を含むことがより好ましい。これにより、動的粘弾性特性を上記範囲内に調整しやすく、透明性がより向上するほか、面品位がより向上する傾向にある。
4.1.1.3.1. Structural Units Derived from Polyisocyanates Structural units derived from polyisocyanates are not particularly limited, but for example, structural units derived from alicyclic isocyanates, structural units derived from aliphatic isocyanates, and structures derived from aromatic isocyanates units. Among these, the polyurethane resin WI preferably contains a structural unit derived from an alicyclic isocyanate and/or an aliphatic isocyanate, and more preferably contains a structural unit derived from an aliphatic isocyanate. As a result, the dynamic viscoelastic properties are easily adjusted within the above range, the transparency is further improved, and the surface quality tends to be further improved.
 脂環族イソシアネート、脂肪族イソシアネート、芳香族イソシアネートとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 The alicyclic isocyanate, aliphatic isocyanate, and aromatic isocyanate are not particularly limited, but include, for example, the compounds exemplified in the first embodiment.
4.1.1.3.2.ポリオールに由来する構成単位
 ポリオールに由来する構成単位としては、特に限定されないが、例えば、分子量300未満の低分子ポリオールと、分子量300以上の高分子ポリオールが挙げられる。
4.1.1.3.2. Structural Units Derived from Polyols Structural units derived from polyols are not particularly limited.
 低分子ポリオールとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 The low-molecular-weight polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
 このなかでも、水酸基を3つ以上有する低分子ポリオールが好ましく、グリセリンがより好ましい。このような低分子ポリオールを用いることにより、動的粘弾性特性を上記範囲内に調整しやすく、摩耗量を調整でき、透明性がより向上するほか、面品位がより向上する傾向にある。 Among these, low-molecular-weight polyols having 3 or more hydroxyl groups are preferred, and glycerin is more preferred. By using such a low-molecular-weight polyol, the dynamic viscoelastic properties can be easily adjusted within the above range, the wear amount can be adjusted, the transparency is further improved, and the surface quality tends to be further improved.
 水酸基を3つ以上有する低分子ポリオールに由来する構成単位の含有量は、ポリイソシアネートに由来する構成単位100質量部に対して、好ましくは7.5~30質量部であり、より好ましくは10~25質量部であり、さらに好ましくは12.5~20質量部である。水酸基を3つ以上有する低分子ポリオールに由来する構成単位の含有量が上記範囲内であることにより、動的粘弾性特性を上記範囲内に調整しやすく、透明性がより向上するほか、面品位がより向上する傾向にある。 The content of the structural unit derived from the low-molecular-weight polyol having 3 or more hydroxyl groups is preferably 7.5 to 30 parts by mass, more preferably 10 to 100 parts by mass, relative to 100 parts by mass of the structural unit derived from the polyisocyanate. 25 parts by mass, more preferably 12.5 to 20 parts by mass. When the content of the structural unit derived from a low-molecular-weight polyol having three or more hydroxyl groups is within the above range, the dynamic viscoelastic properties are easily adjusted within the above range, the transparency is further improved, and the surface quality is improved. tend to improve.
 また、高分子ポリオールとしては、特に限定されないが、例えば、第1実施態様で例示した化合物が挙げられる。 In addition, the polymer polyol is not particularly limited, but includes, for example, the compounds exemplified in the first embodiment.
 なお、高分子ポリオールの数平均分子量は、好ましくは300~3000であり、より好ましくは500~2500である。このような高分子ポリオールを用いることにより、動的粘弾性特性を上記範囲内に調整しやすい傾向にある。 The number average molecular weight of the polymer polyol is preferably 300-3000, more preferably 500-2500. By using such a polymer polyol, the dynamic viscoelastic properties tend to be easily adjusted within the above range.
 このなかでも、ポリエーテルポリオールが好ましく、ポリ(オキシテトラメチレン)グリコールがより好ましい。このような高分子ポリオールを用いることにより、動的粘弾性特性を上記範囲内に調整しやすい。また、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 Among these, polyether polyol is preferred, and poly(oxytetramethylene) glycol is more preferred. By using such a polymer polyol, it is easy to adjust the dynamic viscoelastic properties within the above range. In addition, the transparency tends to be further improved, and the yellowing resistance of windows tends to be further improved.
 ポリエーテルポリオールに由来する構成単位の含有量は、ポリイソシアネートに由来する構成単位100部に対して、好ましくは60~130質量部であり、好ましくは65~120質量部であり、より好ましくは70~110質量部である。ポリエーテルポリオールに由来する構成単位の含有量が上記範囲内であることにより、動的粘弾性特性を上記範囲内に調整しやすく、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 The content of structural units derived from polyether polyol is preferably 60 to 130 parts by mass, preferably 65 to 120 parts by mass, more preferably 70 parts by mass, based on 100 parts by mass of structural units derived from polyisocyanate. ~110 parts by mass. When the content of the structural unit derived from the polyether polyol is within the above range, the dynamic viscoelastic properties are easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window is further improved. tend to
 また、ポリオールとしては、低分子ポリオールと高分子ポリオールとを併用することが好ましく、水酸基を3つ以上有する低分子ポリオールとポリエーテルポリオールとを併用することがより好ましい。これにより、動的粘弾性特性を上記範囲内に調整しやすく、透明性がより向上するほか、窓の耐黄変性がより向上する傾向にある。 In addition, as the polyol, it is preferable to use a low-molecular-weight polyol and a high-molecular-weight polyol together, and it is more preferable to use a low-molecular-weight polyol having three or more hydroxyl groups and a polyether polyol together. As a result, the dynamic viscoelastic property can be easily adjusted within the above range, the transparency is further improved, and the yellowing resistance of the window tends to be further improved.
 上記観点から、ポリエーテルポリオールの含有量は、水酸基を3つ以上有する低分子ポリオール1部に対して、好ましくは2.0~15.0部であり、より好ましくは3.0~12.5部であり、さらに好ましくは4.0~9.0部である。 From the above viewpoint, the content of the polyether polyol is preferably 2.0 to 15.0 parts, more preferably 3.0 to 12.5 parts, relative to 1 part of the low-molecular-weight polyol having 3 or more hydroxyl groups. parts, more preferably 4.0 to 9.0 parts.
4.1.2.研磨層
 第4実施形態の研磨層は、終点検出窓が埋設される開口を有する。開口の位置は特に制限されないが、テーブル22に設置された膜厚検出センサ23に対応する半径方向の位置に設けることが好ましい。また、開口の数は特に制限されないが、テーブル22に貼られた研磨パッド10が一回転する際に、窓が膜厚検出センサ23上を複数回通過するように、同様の半径方向の位置に複数個有することが好ましい。
4.1.2. Polishing Layer The polishing layer of the fourth embodiment has an opening in which the endpoint detection window is embedded. Although the position of the opening is not particularly limited, it is preferably provided at a position in the radial direction corresponding to the film thickness detection sensor 23 installed on the table 22 . Although the number of openings is not particularly limited, the openings are arranged at similar radial positions so that the windows pass over the film thickness detection sensor 23 multiple times when the polishing pad 10 attached to the table 22 rotates once. It is preferable to have a plurality of them.
 研磨層の態様としては、特に制限されないが、例えば、樹脂の発泡成形体、無発泡成形体、繊維基材に樹脂を含浸した樹脂含侵基材などが挙げられる。 The form of the abrasive layer is not particularly limited, but examples include resin foam molded articles, non-foam molded articles, and resin-impregnated substrates obtained by impregnating fiber substrates with resin.
 ここで、樹脂の発泡成形体、無発泡成形体、樹脂含侵基材、繊維基材については、第1実施態様で記載した態様が挙げられるため、記載を省略する。 Here, descriptions of the foamed resin article, the non-foamed molded article, the resin-impregnated base material, and the fiber base material are omitted because they are the same as those described in the first embodiment.
4.1.2.1.動的粘弾性
 浸水状態における研磨層の40℃における貯蔵弾性率E’p40は、好ましくは10~40×10Paであり、より好ましくは15~35×10Paであり、さらに好ましくは20~30×10Paである。
4.1.2.1. Dynamic Viscoelasticity The storage elastic modulus E′p40 at 40° C. of the polishing layer in a water-immersed state is preferably 10 to 40×10 7 Pa, more preferably 15 to 35×10 7 Pa, still more preferably 20. ˜30×10 7 Pa.
 浸水状態における研磨層の50℃における貯蔵弾性率E’p50は、好ましくは50~35×10Paであり、より好ましくは10~30×10Paであり、さらに好ましくは15~25×10Paである。 The storage elastic modulus E′p50 at 50° C. of the polishing layer in the submerged state is preferably 50 to 35×10 7 Pa, more preferably 10 to 30×10 7 Pa, still more preferably 15 to 25×10. 7 Pa.
 浸水状態における研磨層の40℃におけるtanδp40は、好ましくは0.01~0.25であり、より好ましくは0.03~0.20であり、さらに好ましくは0.05~0.15である。 The tan δp40 at 40°C of the polishing layer in the submerged state is preferably 0.01 to 0.25, more preferably 0.03 to 0.20, still more preferably 0.05 to 0.15.
 浸水状態における研磨層の50℃におけるtanδp50は、好ましくは0.01~0.25であり、より好ましくは0.03~0.20であり、さらに好ましくは0.05~0.15である。 The tan δp50 at 50°C of the polishing layer in the submerged state is preferably 0.01 to 0.25, more preferably 0.03 to 0.20, still more preferably 0.05 to 0.15.
 E’p40、E’ p50、tanδp40、及びtanδp50が、それぞれ、上記範囲内であることにより、研磨時における終点検出窓及び研磨層の特性が類似するため、得られる被研磨物の面品位がより向上する傾向にある。 When E' p40 , E' p50 , tanδ p40 , and tanδ p50 are each within the above ranges, the end point detection window during polishing and the characteristics of the polishing layer are similar, and the surface quality of the resulting polished object is improved. tend to improve.
4.1.2.2.ポリウレタンシート
 以下においては、研磨層の一例としてポリウレタンシートを例示する。ポリウレタンシートについては、第1実施態様で記載した態様が挙げられるため、記載を省略する。
4.1.2.2. Polyurethane Sheet Hereinafter, a polyurethane sheet is exemplified as an example of the polishing layer. The description of the polyurethane sheet is omitted because it includes the aspects described in the first embodiment.
4.1.3.その他
 第4実施形態の研磨パッドは、研磨層の研磨面とは反対側にクッション層を有していてもよく、研磨層とクッション層との間や、クッション層の研磨層側ではない面(研磨機に貼り合わせる面)に、接着層を有していてもよい。この場合、クッション層と接着層には、研磨層の終点検出窓が位置する場所と同様の場所に開口を有するものとする。
4.1.3. Others The polishing pad of the fourth embodiment may have a cushion layer on the side opposite to the polishing surface of the polishing layer. The surface to be attached to the polishing machine) may have an adhesive layer. In this case, the cushion layer and the adhesive layer have openings at locations similar to where the endpoint detection windows of the polishing layer are located.
5.研磨パッドの製造方法
 第1実施形態~第4実施形態の研磨パッドの製造方法としては、特に限定されないが、例えば、終点検出窓となる窓用部材を固定した金型に、研磨層を構成する樹脂組成物を充填し硬化させることで、窓用部材が埋没した樹脂ブロックを得る工程と、得られた樹脂ブロックをスライスすることで、開口に終点検出窓を有するポリウレタンシートを得る工程と、を有し、必要に応じて、得られたポリウレタンシートの研磨面をドレス処理してもよい。
5. Method for Manufacturing Polishing Pad The method for manufacturing the polishing pad of the first to fourth embodiments is not particularly limited, but for example, a polishing layer is formed in a mold in which a window member serving as an endpoint detection window is fixed. A step of filling and curing a resin composition to obtain a resin block in which a window member is embedded, and a step of slicing the obtained resin block to obtain a polyurethane sheet having an endpoint detection window in the opening. If necessary, the polished surface of the resulting polyurethane sheet may be dressed.
 なお、スライスする際の温度は、好ましくは70℃~100℃である。また、ドレス処理における温度は、好ましくは20℃~30℃である。これにより、平坦性がより向上する傾向にある。 The temperature for slicing is preferably 70°C to 100°C. Also, the temperature in the dressing treatment is preferably 20°C to 30°C. This tends to further improve flatness.
6.研磨加工物の製造方法
 第1実施形態~第4実施形態の研磨加工物の製造方法は、研磨スラリーの存在下、上記研磨パッドを用いて、被研磨物を研磨し研磨加工物を得る研磨工程と、該研磨中に光学式終点検出方式で終点検出を行う終点検出工程と、を有する。
6. Method for producing a polished object The method for producing a polished object according to the first to fourth embodiments includes a polishing step of polishing an object to be polished using the polishing pad in the presence of a polishing slurry to obtain a polished object. and an end-point detection step of performing end-point detection by an optical end-point detection method during the polishing.
6.1.研磨工程
 研磨工程は、一次ラッピング研磨(粗ラッピング)であってもよく、二次ラッピング(仕上げラッピング)であってもよく、一次ポリッシング(粗ポリッシング)であってもよく、二次ポリッシング(仕上げポリッシング)であってもよく、これら研磨を兼ねるものであってもよい。なお、ここで、「ラッピング」とは粗砥粒を用いて比較的に高いレートで研磨することを言い、「ポリッシング」とは微細砥粒を用いて比較的に低いレートで表面品位を高くするために研磨することを言う。
6.1. Polishing process The polishing process may be primary lapping polishing (rough lapping), secondary lapping (finish lapping), primary polishing (rough polishing), or secondary polishing (finish polishing). ), or may also serve as polishing. Here, "lapping" refers to polishing at a relatively high rate using coarse abrasive grains, and "polishing" refers to increasing the surface quality at a relatively low rate using fine abrasive grains. Say to polish for.
 このなかでも、第1実施形態~第4実施形態の研磨パッドは化学機械研磨(CMP)に用いられることが好ましい。以下、化学機械研磨を例に第1実施形態~第4実施形態の研磨物の製造方法を説明するが、第1実施形態~第4実施形態の研磨物の製造方法は以下に限定されない。 Among these, the polishing pads of the first to fourth embodiments are preferably used for chemical mechanical polishing (CMP). The methods for manufacturing the polished objects of the first to fourth embodiments will be described below using chemical mechanical polishing as an example, but the methods for manufacturing the polished objects of the first to fourth embodiments are not limited to the following.
 被研磨物としては、特に限定されないが、例えば、半導体デバイス、電子部品等の材料、特に、Si基板(シリコンウエハ)、SiC(炭化珪素)基板、GaAs(ガリウム砒素)基板、ガラス、ハードディスクやLCD(液晶ディスプレイ)用基板等の薄型基板(被研磨物)が挙げられる。特に、W(タングステン)やCu(銅)などの金属配線を有する半導体デバイスが挙げられる。 The object to be polished is not particularly limited, but for example, materials such as semiconductor devices and electronic components, particularly Si substrates (silicon wafers), SiC (silicon carbide) substrates, GaAs (gallium arsenide) substrates, glass, hard disks and LCDs. Thin substrates (objects to be polished) such as substrates for (liquid crystal displays) can be mentioned. In particular, semiconductor devices having metal wiring such as W (tungsten) and Cu (copper) are mentioned.
 研磨方法としては、従来公知の方法を用いることができ、特に限定されない。例えば、まず、研磨パッドと対向するように配置された保持定盤に保持させた被研磨物を研磨面側へ押し付けると共に、外部からスラリーを供給しながら、研磨パッド及び/又は保持定盤を回転させる。研磨パッドと保持定盤は、互いに異なる回転速度で同方向に回転しても、異方向に回転してもよい。また、被研磨物は、研磨加工中に、枠部の内側で移動(自転)しながら研磨加工されてもよい。 A conventionally known method can be used as the polishing method, and is not particularly limited. For example, first, an object to be polished held on a holding surface plate arranged to face the polishing pad is pressed against the polishing surface, and the polishing pad and/or the holding surface plate are rotated while slurry is supplied from the outside. Let The polishing pad and the holding platen may rotate in the same direction or in opposite directions at different rotational speeds. Further, the object to be polished may be polished while moving (rotating) inside the frame during the polishing process.
 スラリーは、被研磨物や研磨条件等に応じて、水、過酸化水素に代表される酸化剤などの化学成分、添加剤、砥粒(研磨粒子;例えば、SiC、SiO2、Al23、CeO2)等を含んでいてもよい。 Depending on the object to be polished, polishing conditions, etc., the slurry may contain chemical components such as water and an oxidizing agent represented by hydrogen peroxide, additives, abrasive grains (abrasive particles; for example, SiC, SiO 2 , Al 2 O 3 , CeO 2 ) and the like.
6.2.終点検出工程
 第1実施形態~第4実施形態の研磨加工物の製造方法は、上記研磨工程において、光学式終点検出方式で終点検出を行う終点検出工程を有する。光学式終点検出方式による終点検出方法としては、具体的には従来公知の方法を用いることができる。
6.2. End Point Detection Step The method of manufacturing a polished workpiece according to the first to fourth embodiments has an end point detection step of detecting the end point by an optical end point detection method in the polishing step. Specifically, a conventionally known method can be used as the end point detection method by the optical end point detection method.
 図4に、光学式終点検出方式の終点検出方法の模式図を示す。この模式図は、トップリング21で保持したウエハWをテーブル22上に貼られた研磨パッド10上にスラリー24を流しながら押し付けてウエハW表面の凹凸膜を削り平坦化する化学機械研磨プロセスを示す。研磨装置20は平坦化と同時に所定の膜厚を終点検出して精度良くプロセスを終了させるため、膜厚をモニタする膜厚検出センサ23をテーブル22に搭載している。膜厚検出センサ23は、例えば、ウエハWの研磨面に光を照射し、その反射光の分光強度特性を測定・解析することにより、研磨終点を検出することができる。 FIG. 4 shows a schematic diagram of the endpoint detection method of the optical endpoint detection method. This schematic diagram shows a chemical mechanical polishing process in which a wafer W held by a top ring 21 is pressed onto a polishing pad 10 attached on a table 22 while flowing a slurry 24 thereon, and the uneven film on the surface of the wafer W is scraped and flattened. . The polishing apparatus 20 mounts a film thickness detection sensor 23 for monitoring the film thickness on the table 22 in order to detect the end point of the predetermined film thickness at the same time as flattening and terminate the process with high accuracy. The film thickness detection sensor 23 can detect the polishing end point by, for example, irradiating the polishing surface of the wafer W with light and measuring and analyzing the spectral intensity characteristics of the reflected light.
 より具体的には、膜厚検出センサ23は終点検出窓12を介して、ウエハW表面に光を入射し、ウエハW上の膜(ウェハ表面)で反射した光と、ウエハW上の膜とウエハの基板との界面において反射した光との位相差により生じる、反射強度の強弱を検出することで、膜厚変化を検出することができる。 More specifically, the film thickness detection sensor 23 causes light to enter the surface of the wafer W through the end point detection window 12, and the light reflected by the film on the wafer W (wafer surface) and the film on the wafer W are detected. A film thickness change can be detected by detecting the strength of the reflection intensity caused by the phase difference with respect to the light reflected at the interface between the wafer and the substrate.
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。なお、「部」は質量部を意味するものとする。 Hereinafter, the present invention will be described more specifically using examples and comparative examples. The present invention is by no means limited by the following examples. In addition, "part" shall mean a mass part.
〔実施例A〕
〔製造例A1:終点検出窓A1〕
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)78.6部と、及びグリセリン14.8部と、を反応させて、終点検出窓A1となる透明な部材を得た。
[Example A]
[Manufacturing Example A1: End Point Detection Window A1]
100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 650, and 14.8 parts of glycerin are reacted to detect the end point. A transparent member to be the window A1 was obtained.
〔製造例A2:終点検出窓A2〕
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)78.6部と、及びグリセリン7.5部と、エチレングリコール7.5部と、を反応させて、終点検出窓A2となる透明な部材を得た。
[Manufacturing example A2: end point detection window A2]
100 parts of 4,4' methylene bis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 650, 7.5 parts of glycerin, and 7.5 parts of ethylene glycol were allowed to react to obtain a transparent member serving as the endpoint detection window A2.
〔製造例A3:終点検出窓A3〕
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)78.6部と、及びグリセリン4.5部と、エチレングリコール10.5部と、を反応させて、終点検出窓A3となる透明な部材を得た。
[Manufacturing example A3: end point detection window A3]
100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 650, 4.5 parts of glycerin, and 10.5 parts of ethylene glycol were reacted to obtain a transparent member that will serve as the endpoint detection window A3.
〔製造例A4:終点検出窓A4〕
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)103.6部と、及びグリセリン15.9部と、を反応させて、終点検出窓A4となる透明な部材を得た。
[Manufacturing Example A4: End Point Detection Window A4]
100 parts of 4,4'methylenebis(cyclohexyl isocyanate), 103.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 1000, and 15.9 parts of glycerin are reacted to detect the end point. A transparent member to be the window A4 was obtained.
〔実施例A1〕
 2,4-トリレンジイソシアネート(2,4-TDI)、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)及びジエチレングリコール(DEG)を反応させてなるNCO当量455のウレタンプレポリマー100部に、殻部分がアクリロニトリル-塩化ビニリデン共重合体からなり、未膨張の中空微粒子(平均粒径:8.5μm)2.7部を添加混合し、ウレタンプレポリマー混合液を得た。得られたウレタンプレポリマー混合液を第1液タンクに仕込み、60℃で保温した。また、第1液タンクとは別に、硬化剤として3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(メチレンビス-o-クロロアニリン)(MOCA)25.8部を第2液タンクに入れ、120℃で加熱溶融させて混合し、更に減圧脱泡して硬化剤溶融液を得た。
[Example A1]
2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG ) is reacted with 100 parts of a urethane prepolymer having an NCO equivalent of 455, and 2.7 parts of unexpanded hollow fine particles (average particle diameter: 8.5 μm) having a shell portion made of an acrylonitrile-vinylidene chloride copolymer are added. By mixing, a urethane prepolymer mixture was obtained. The obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 25.8 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, The mixture was heated and melted at 120° C., mixed, and degassed under reduced pressure to obtain a curing agent melt.
 次に、第1液タンク、第2液タンクのそれぞれの液体を、注入口を2つ備えた混合機のそれぞれの注入口から注入し、攪拌混合して混合液を得た。 Next, the liquids in the first liquid tank and the second liquid tank were injected from respective inlets of a mixer provided with two inlets, and stirred and mixed to obtain a mixed liquid.
 そして、上記のようにして得られた終点検出窓A1を予め設置した型枠に、得られた混合液を注型して、30分間、80℃にて一次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて120℃で4時間二次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した。 Then, the obtained mixed liquid was cast into a mold in which the endpoint detection window A1 obtained as described above was installed in advance, and was primarily cured at 80°C for 30 minutes. The formed block-shaped molding was extracted from the mold and subjected to secondary curing in an oven at 120° C. for 4 hours to obtain a urethane resin block. The resulting urethane resin block was allowed to cool to 25°C.
 その後、再度オーブンにて120℃で5時間加熱してから、スライス処理を施し、スライスした面に対して、必要に応じて研削(バフ)処理を施し、発泡ポリウレタンシートを得た。得られたポリウレタンシートの裏面に両面テープを貼り付け、クッション層を貼り合わせて、さらにクッション層表面に両面テープを貼り付けることで研磨パッドを得た。 After that, it was heated again in an oven at 120°C for 5 hours, then subjected to slicing, and the sliced surface was subjected to grinding (buffing) as necessary to obtain a foamed polyurethane sheet. A double-faced tape was attached to the rear surface of the obtained polyurethane sheet, a cushion layer was attached thereto, and a double-sided tape was attached to the surface of the cushion layer to obtain a polishing pad.
 なお、ドレス処理後の状態の終点検出窓周辺の断面を評価する際に、上記のようにして得られた研磨パッドに対して下記の条件でドレス処理を行った。
(ドレス条件)
 使用研磨機:Speedfam社製、商品名「FAM-12BS」
 定盤回転数(研磨パッドの回転数):50rpm
 流量:100ml/min (20℃の純水を研磨パッドの回転中心から滴下した。)
 ドレッサー:3M社製ダイヤモンドドレッサー、型番「A188」
 ドレッサー回転数:100rpm
 ドレス圧力:0.115kg/cm2
 ドレッサーの回転方向:研磨パッドと同一方向に回転
 試験時間:60分
When evaluating the cross section around the end point detection window after the dressing process, the polishing pad obtained as described above was subjected to the dressing process under the following conditions.
(dress condition)
Polishing machine used: Speedfam, trade name “FAM-12BS”
Surface plate rotation speed (polishing pad rotation speed): 50 rpm
Flow rate: 100 ml/min (Pure water at 20° C. was dropped from the rotation center of the polishing pad.)
Dresser: 3M diamond dresser, model number "A188"
Dresser rotation speed: 100 rpm
Dressing pressure: 0.115 kg/cm2
Direction of dresser rotation: Rotates in the same direction as the polishing pad Test time: 60 minutes
〔比較例A1〕
 製造例A2の終点検出窓A2を用いたこと以外は、実施例A1と同様にして、研磨パッドを得た。
[Comparative Example A1]
A polishing pad was obtained in the same manner as in Example A1, except that the endpoint detection window A2 of Production Example A2 was used.
〔比較例A2〕
 製造例A3の終点検出窓A3を用いたこと以外は、実施例A1と同様にして、研磨パッドを得た。
[Comparative Example A2]
A polishing pad was obtained in the same manner as in Example A1, except that the endpoint detection window A3 of Production Example A3 was used.
〔実施例A2〕
 製造例A4の終点検出窓A4を用いたこと以外は、実施例A1と同様にして、研磨パッドを得た。
[Example A2]
A polishing pad was obtained in the same manner as in Example A1, except that the endpoint detection window A4 of Production Example A4 was used.
〔動的粘弾性測定〕
 下記条件に基づき、温度23℃(±2℃)、相対湿度50%(±5%)の恒温恒湿槽中でポリウレタンシートを40時間保持した乾燥状態のポリウレタンシートをサンプルとして用い、通常の大気雰囲気下(乾燥状態)で動的粘弾性測定を行った。なお、終点検出窓のサンプルサイズは、縦5cm×横0.5cm×厚み0.125cmとし、研磨層のサンプルサイズは、縦5cm×横0.5cm×厚み0.13cmとした。
(測定条件)
 測定装置      :RSA III(TAインスツルメンツ社製)
 試験長       :1cm
 試験モード     :引張
 周波数       :1.0Hz
 温度範囲      :10~100℃
 昇温速度      :3.0℃/min
 歪範囲       :0.10%
 初荷重       :300g
 測定間隔      :1.5point/℃
[Dynamic viscoelasticity measurement]
Based on the following conditions, a dry polyurethane sheet was held for 40 hours in a constant temperature and humidity chamber at a temperature of 23 ° C (± 2 ° C) and a relative humidity of 50% (± 5%). A dynamic viscoelasticity measurement was performed in an atmosphere (dry state). The sample size of the endpoint detection window was 5 cm long×0.5 cm wide×0.125 cm thick, and the sample size of the polishing layer was 5 cm long×0.5 cm wide×0.13 cm thick.
(Measurement condition)
Measuring device: RSA III (manufactured by TA Instruments)
Test length: 1cm
Test mode: Tensile Frequency: 1.0Hz
Temperature range: 10-100°C
Heating rate: 3.0°C/min
Strain range: 0.10%
Initial load: 300g
Measurement interval: 1.5 points/°C
〔D硬度〕
 D硬度の測定はJIS K6253に準じて行った。測定に際して、テクロック社製D硬度計を用い、試料は、比較例A及び実施例Aに記載の終点検出窓(厚さ約0.125cm(1.25mm))を4枚重ねとし、少なくとも総厚さ0.45cm(4.5mm)以上になるように設定した。なお、試料は20℃又は80℃の恒温恒湿槽中で30分間静置したものを用いた。
[D hardness]
The D hardness was measured according to JIS K6253. At the time of measurement, a D hardness tester manufactured by Teclock Co., Ltd. was used, and the sample was a stack of four endpoint detection windows (thickness of about 0.125 cm (1.25 mm)) described in Comparative Example A and Example A, and at least the total thickness It was set to be 0.45 cm (4.5 mm) or more. In addition, the sample used was one which was allowed to stand for 30 minutes in a constant temperature and humidity chamber at 20°C or 80°C.
〔断面評価〕
 上記のようにして得られた各パッドについて、スライス後であってドレス前の状態の終点検出窓周辺(図2における破線Sで囲った部分)と(評価A1)、ドレス後の状態の終点検出窓周辺(図2における破線Sで囲った部分)の断面(評価A2)を、レーザーマイクロスコープ(VK-X1000、KEYENCE社製)で終点検出窓の直径部分の表面に対して約14mm×1mmの範囲で200倍に拡大し連結モードにより観察し、得られたレーザー画像をもとに高さ情報のプロファイル計測を行った。
[Cross-section evaluation]
For each pad obtained as described above, the end point detection window periphery (area surrounded by the dashed line S in FIG. 2) after slicing and before dressing (evaluation A1), and the end point detection after dressing A cross section (evaluation A2) around the window (the portion surrounded by the dashed line S in FIG. 2) is measured with a laser microscope (VK-X1000, manufactured by KEYENCE) with a diameter of about 14 mm × 1 mm with respect to the surface of the diameter portion of the endpoint detection window. The range was magnified 200 times and observed in the coupled mode, and profile measurement of height information was performed based on the obtained laser image.
 その結果を図5A~D,図6A~Dに示す。なお、図5A~D,図6A~Dでは、2点の終点検出窓の断面測定結果であって、それぞれの終点検出窓について、スライス方向とスライス方向と直交する方向で断面測定を行った結果を示している。 The results are shown in Figures 5A-D and 6A-D. 5A to 5D and 6A to 6D show the cross-sectional measurement results of two endpoint detection windows, and the cross-sectional measurement results of each endpoint detection window in the slicing direction and the direction perpendicular to the slicing direction. is shown.
 評価A1では、終点検出窓が研磨面から±50μm以内であれば○とし、それ以外を×とした。また、評価A2では、断面画像が平坦(端から中央にかけて高さが同等のもの)であれば○とし、凸状(端から中央にかけて高さが高くなっているもの)であれば×とした。 In the evaluation A1, if the end point detection window was within ±50 μm from the polished surface, it was evaluated as ◯, and otherwise as x. In the evaluation A2, if the cross-sectional image is flat (the height is the same from the edge to the center), it is rated as ◯, and if it is convex (the height is increased from the edge to the center), it is rated as x. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔実施例B〕
〔製造例B1:終点検出窓B1〕 
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)120.9部と、及びグリセリン14.8部と、を反応させて、終点検出窓B1となる透明な部材を得た。
[Example B]
[Manufacturing Example B1: End Point Detection Window B1]
100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 120.9 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 1000, and 14.8 parts of glycerin are reacted to detect the end point. A transparent member to be the window B1 was obtained.
〔製造例B2:終点検出窓B2〕 
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)103.6部と、及びグリセリン15.9部と、を反応させて、終点検出窓B2となる透明な部材を得た。
[Manufacturing Example B2: End Point Detection Window B2]
100 parts of 4,4'methylenebis(cyclohexyl isocyanate), 103.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 1000, and 15.9 parts of glycerin are reacted to detect the end point. A transparent member to be the window B2 was obtained.
〔製造例B3:終点検出窓B3〕 
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)96.7部と、及びグリセリン16.3部と、を反応させて、終点検出窓B3となる透明な部材を得た。
[Manufacturing Example B3: End Point Detection Window B3]
100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 96.7 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 1000, and 16.3 parts of glycerin are reacted to detect the end point. A transparent member to be the window B3 was obtained.
〔製造例B4:終点検出窓B4〕 
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)90.6部と、及びグリセリン16.7部と、を反応させて、終点検出窓B4となる透明な部材を得た。
[Manufacturing Example B4: End Point Detection Window B4]
100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 90.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 1000, and 16.7 parts of glycerin are reacted to detect the end point. A transparent member to be the window B4 was obtained.
〔製造例B5:終点検出窓B5〕 
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)78.6部と、及びグリセリン14.8部と、を反応させて、終点検出窓B5となる透明な部材を得た。
[Manufacturing Example B5: End Point Detection Window B5]
100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 650, and 14.8 parts of glycerin are reacted to detect the end point. A transparent member to be the window B5 was obtained.
〔製造例B6:終点検出窓B6〕 
 4,4’メチレンビス(シクロヘキシルイソシアナート)100部と、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)78.6部と、エチレングリコール10.5部と、及びグリセリン4.5部と、を反応させて、終点検出窓B6となる透明な部材を得た。
[Manufacturing Example B6: End Point Detection Window B6]
100 parts of 4,4′methylenebis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene)glycol (PTMG) having a number average molecular weight of 650, 10.5 parts of ethylene glycol, and 4.5 parts of glycerin , to obtain a transparent member that will serve as the endpoint detection window B6.
〔実施例B1〕
 2,4-トリレンジイソシアネート(2,4-TDI)、平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)及びジエチレングリコール(DEG)を反応させてなるNCO当量455のウレタンプレポリマー100部に、殻部分がアクリロニトリル-塩化ビニリデン共重合体からなり、未膨張の中空微粒子(平均粒径:8.5μm)2.7部を添加混合し、ウレタンプレポリマー混合液を得た。得られたウレタンプレポリマー混合液を第1液タンクに仕込み、60℃で保温した。また、第1液タンクとは別に、硬化剤として3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(メチレンビス-o-クロロアニリン)(MOCA)25.8部を第2液タンクに入れ、120℃で加熱溶融させて混合し、更に減圧脱泡して硬化剤溶融液を得た。
[Example B1]
2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with an average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG) 2.7 parts of unexpanded hollow fine particles (average particle size: 8.5 μm) whose shell is made of acrylonitrile-vinylidene chloride copolymer are added and mixed to 100 parts of a urethane prepolymer having an NCO equivalent of 455 obtained by reacting to obtain a urethane prepolymer mixture. The obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 25.8 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, The mixture was heated and melted at 120° C., mixed, and degassed under reduced pressure to obtain a curing agent melt.
 次に、第1液タンク、第2液タンクのそれぞれの液体を、注入口を2つ備えた混合機のそれぞれの注入口から注入し、攪拌混合して混合液を得た。 Next, the liquids in the first liquid tank and the second liquid tank were injected from respective inlets of a mixer provided with two inlets, and stirred and mixed to obtain a mixed liquid.
 そして、上記のようにして得られた終点検出窓B1を予め設置した型枠に、得られた混合液を注型して、30分間、80℃にて一次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて120℃で4時間二次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した。 Then, the obtained mixed liquid was poured into a mold in which the endpoint detection window B1 obtained as described above was installed in advance, and was primarily cured at 80°C for 30 minutes. The formed block-shaped molding was extracted from the mold and subjected to secondary curing in an oven at 120° C. for 4 hours to obtain a urethane resin block. The resulting urethane resin block was allowed to cool to 25°C.
 その後、再度オーブンにて120℃で5時間加熱してから、スライス処理を施し、スライスした面に対して、研削処理(バフ)を施し、発泡ポリウレタンシートを得た。得られたポリウレタンシートの裏面に両面テープを貼り付け、クッション層を貼り合わせて、さらにクッション層表面に両面テープを貼り付けることで研磨パッドを得た。 After that, it was heated again in an oven at 120°C for 5 hours, sliced, and the sliced surface was ground (buffed) to obtain a foamed polyurethane sheet. A double-faced tape was attached to the rear surface of the obtained polyurethane sheet, a cushion layer was attached thereto, and a double-sided tape was attached to the surface of the cushion layer to obtain a polishing pad.
〔実施例B2〕
 2,4-トリレンジイソシアネート(2,4-TDI)、平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)及びジエチレングリコール(DEG)を反応させてなるNCO当量420のウレタンプレポリマー100部に、殻部分がアクリロニトリル-塩化ビニリデン共重合体からなり、未膨張の中空微粒子(平均粒径:8.5μm)2.9部を添加混合し、ウレタンプレポリマー混合液を得た。得られたウレタンプレポリマー混合液を第1液タンクに仕込み、60℃で保温した。また、第1液タンクとは別に、硬化剤として3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(メチレンビス-o-クロロアニリン)(MOCA)28.0部を第2液タンクに入れ、120℃で加熱溶融させて混合し、更に減圧脱泡して得た硬化剤溶融液と、終点検出窓B2を用いたこと以外は、実施例B1と同様にして、研磨パッドを得た。
[Example B2]
2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with an average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG) 2.9 parts of unexpanded hollow fine particles (average particle diameter: 8.5 μm) whose shell part is made of acrylonitrile-vinylidene chloride copolymer are added and mixed. to obtain a urethane prepolymer mixture. The obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 28.0 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, A polishing pad was obtained in the same manner as in Example B1, except that the curing agent melt obtained by heating and melting at 120° C., and then degassing under reduced pressure, and the endpoint detection window B2 were used.
〔実施例B3〕
 2,4-トリレンジイソシアネート(2,4-TDI)、平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)及びジエチレングリコール(DEG)を反応させてなるNCO当量460のウレタンプレポリマー100部に、殻部分がアクリロニトリル-塩化ビニリデン共重合体からなり、既膨張の中空微粒子(平均粒径:20μm)2.8部を添加混合し、ウレタンプレポリマー混合液を得た。得られたウレタンプレポリマー混合液を第1液タンクに仕込み、60℃で保温した。また、第1液タンクとは別に、硬化剤として3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(メチレンビス-o-クロロアニリン)(MOCA)25.5部、ポリプロピレングリコール8,5部を第2液タンクに入れ、120℃で加熱溶融させて混合し、更に減圧脱泡して得た硬化剤溶融液と、終点検出窓B3を用いたこと以外は、実施例B1と同様にして、研磨パッドを得た。
[Example B3]
2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene)glycol (PTMG) with an average molecular weight of 650 and diethylene glycol (DEG) are reacted to 100 parts of a urethane prepolymer having an NCO equivalent of 460, 2.8 parts of expanded hollow fine particles (average particle size: 20 μm) having a shell portion made of an acrylonitrile-vinylidene chloride copolymer were added and mixed to obtain a urethane prepolymer mixture. The obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, 25.5 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) and 8.5 parts of polypropylene glycol were added as curing agents. In the same manner as in Example B1, except that the curing agent melt obtained by putting it in the second liquid tank, heating and melting at 120 ° C. and mixing, and further degassing under reduced pressure and using the end point detection window B3, A polishing pad was obtained.
〔実施例B4〕
 終点検出窓B2を用いたこと以外は、実施例B1と同様にして、研磨パッドを得た。
[Example B4]
A polishing pad was obtained in the same manner as in Example B1, except that the endpoint detection window B2 was used.
〔実施例B5〕
 終点検出窓B3を用いたこと以外は、実施例B1と同様にして、研磨パッドを得た。
[Example B5]
A polishing pad was obtained in the same manner as in Example B1, except that the endpoint detection window B3 was used.
〔実施例B6〕
 終点検出窓B4を用いたこと以外は、実施例B1と同様にして、研磨パッドを得た。
[Example B6]
A polishing pad was obtained in the same manner as in Example B1, except that the endpoint detection window B4 was used.
〔実施例B7〕
 終点検出窓B4を用いたこと以外は、実施例B2と同様にして、研磨パッドを得た。
[Example B7]
A polishing pad was obtained in the same manner as in Example B2, except that the endpoint detection window B4 was used.
〔比較例B1〕
 終点検出窓B5を用いたこと以外は、実施例B1と同様にして、研磨パッドを得た。
[Comparative Example B1]
A polishing pad was obtained in the same manner as in Example B1, except that the endpoint detection window B5 was used.
〔比較例B2〕
 終点検出窓B6を用いたこと以外は、実施例B1と同様にして、研磨パッドを得た。
[Comparative Example B2]
A polishing pad was obtained in the same manner as in Example B1, except that the endpoint detection window B6 was used.
〔動的粘弾性測定〕
 下記条件に基づき、温度23℃(±2℃)、相対湿度50%(±5%)の恒温恒湿槽中で研磨層及び終点検出窓を40時間保持した乾燥状態の研磨層及び終点検出窓をサンプルとして用い、通常の大気雰囲気下(乾燥状態)で動的粘弾性測定を行った。なお、終点検出窓のサンプルサイズは、縦5cm×横0.5cm×厚み0.125cmとし、研磨層のサンプルサイズは、縦5cm×横0.5cm×厚み0.13cmとした。
(測定条件)
 測定装置      :RSA III(TAインスツルメンツ社製)
 試験長       :1cm
 試験モード     :引張
 周波数       :1.0Hz
 温度範囲      :10~100℃
 昇温速度      :3.0℃/min
 歪範囲       :0.10%
 初荷重       :300g
 測定間隔      :1.5point/℃
[Dynamic viscoelasticity measurement]
Based on the following conditions, the polishing layer and endpoint detection window in a dry state were held for 40 hours in a constant temperature and humidity chamber at a temperature of 23°C (±2°C) and a relative humidity of 50% (±5%). was used as a sample, and dynamic viscoelasticity was measured under normal air atmosphere (dry state). The sample size of the endpoint detection window was 5 cm long×0.5 cm wide×0.125 cm thick, and the sample size of the polishing layer was 5 cm long×0.5 cm wide×0.13 cm thick.
(Measurement condition)
Measuring device: RSA III (manufactured by TA Instruments)
Test length: 1cm
Test mode: Tensile Frequency: 1.0Hz
Temperature range: 10-100°C
Heating rate: 3.0°C/min
Strain range: 0.10%
Initial load: 300g
Measurement interval: 1.5 points/°C
〔D硬度〕
 D硬度の測定はJIS K6253に準じて行った。測定に際しては、テクロック社製D硬度計を用い、試料は、比較例B及び実施例Bに記載の終点検出窓(厚さ約0.125cm(1.25mm))を4枚重ねとし、少なくとも総厚さ0.45cm(4.5mm)以上になるように設定した。なお、試料は20℃の恒温恒湿槽中で30分間静置したものを用いた。
[D hardness]
The D hardness was measured according to JIS K6253. For the measurement, a D hardness tester manufactured by Teclock Co., Ltd. was used. The thickness was set to 0.45 cm (4.5 mm) or more. In addition, the sample used was one that had been allowed to stand for 30 minutes in a constant temperature and humidity chamber at 20°C.
〔評価B:面品位確認試験〕
 研磨パッドを研磨装置の所定位置にアクリル系接着剤を有する両面テープを介して設置し、Cu膜基板に対して、下記条件にて研磨加工を施した。
(研磨条件)
 研磨機      :F-REX300X(荏原製作所社製)
 Disk     :A188(3M社製)
 回転数      :(定盤)85rpm、(トップリング)86rpm
 研磨圧力     :3.5psi
 研磨剤温度    :20℃
 研磨剤吐出量   :200ml/min
 研磨剤      :CSL-9044C(フジミコーポレーション社製)(CSL-9044C原液:純水=重量比1:9の混合液を使用)
 被研磨物     :Cu膜基板
 研磨時間     :60秒
 パッドブレーク  :35N 10分
 コンディショニング:Ex-situ、35N、4スキャン
[Evaluation B: Surface Quality Confirmation Test]
A polishing pad was set at a predetermined position of a polishing apparatus via a double-sided tape having an acrylic adhesive, and the Cu film substrate was subjected to polishing under the following conditions.
(polishing conditions)
Polishing machine: F-REX300X (manufactured by Ebara Corporation)
Disk: A188 (manufactured by 3M)
Rotation speed: (Surface plate) 85 rpm, (Top ring) 86 rpm
Polishing pressure: 3.5 psi
Abrasive temperature: 20°C
Abrasive discharge rate: 200ml/min
Abrasive: CSL-9044C (manufactured by Fujimi Corporation) (CSL-9044C undiluted solution: pure water = 1:9 weight ratio mixed solution is used)
Object to be polished: Cu film substrate Polishing time: 60 seconds Pad break: 35N 10 minutes Conditioning: Ex-situ, 35N, 4 scans
 上記研磨加工後の被研磨物10枚目以降50枚目までについて、表面検査装置(KLAテンコール社製、Surfscan SP2XP)の高感度測定モードを用いて、大きさが155nm以上となるディフェクト(表面欠陥)を検出し評価した。ディフェクト(表面欠陥)の確認結果に基づいて、面品位を評価した。 Defects with a size of 155 nm or more (surface defects ) were detected and evaluated. The surface quality was evaluated based on the confirmation results of defects (surface defects).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔実施例C〕
〔製造例C1:終点検出窓C1〕 
 4,4’メチレンビス(シクロヘキシルイソシアネート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)90.6部と、及びグリセリン16.7部と、を反応させて、終点検出窓C1となる透明な部材を得た。
[Example C]
[Manufacturing Example C1: End Point Detection Window C1]
100 parts of 4,4′ methylenebis(cyclohexyl isocyanate), 90.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 1000, and 16.7 parts of glycerin are reacted to form an endpoint detection window. A transparent member of C1 was obtained.
〔製造例C2:終点検出窓C2〕 
 4,4’メチレンビス(シクロヘキシルイソシアネート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)103.6部と、及びグリセリン15.9部と、を反応させて、終点検出窓C2となる透明な部材を得た。
[Manufacturing Example C2: End Point Detection Window C2]
100 parts of 4,4′ methylenebis(cyclohexyl isocyanate), 103.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 1000, and 15.9 parts of glycerin are reacted to form an endpoint detection window. A transparent member of C2 was obtained.
〔製造例C3:終点検出窓C3〕
 4,4’メチレンビス(シクロヘキシルイソシアネート)100部と、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)78.6部と、及びグリセリン4.5部と、エチレングリコール10.5部と、を反応させて、終点検出窓C3となる透明な部材を得た。
[Manufacturing Example C3: End Point Detection Window C3]
100 parts of 4,4′ methylene bis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 650, 4.5 parts of glycerin, and 10.5 parts of ethylene glycol; was reacted to obtain a transparent member that will serve as the endpoint detection window C3.
〔実施例C1〕
 2,4-トリレンジイソシアネート(2,4-TDI)、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)及びジエチレングリコール(DEG)を反応させてなるNCO当量420のウレタンプレポリマー100部に、殻部分がアクリロニトリル-塩化ビニリデン共重合体からなり、未膨張の中空微粒子(平均粒径:8.5μm)2.9部を添加混合し、ウレタンプレポリマー混合液を得た。得られたウレタンプレポリマー混合液を第1液タンクに仕込み、60℃で保温した。また、第1液タンクとは別に、硬化剤として3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(メチレンビス-o-クロロアニリン)(MOCA)28.0部を第2液タンクに入れ、120℃で加熱溶融させて混合し、更に減圧脱泡して得た硬化剤溶融液を得た。
[Example C1]
2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG ) is reacted with 100 parts of a urethane prepolymer having an NCO equivalent of 420, and 2.9 parts of unexpanded hollow fine particles (average particle diameter: 8.5 μm) having a shell made of an acrylonitrile-vinylidene chloride copolymer are added. By mixing, a urethane prepolymer mixture was obtained. The obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 28.0 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, The mixture was heated and melted at 120° C., mixed, and degassed under reduced pressure to obtain a curing agent melt.
 次に、第1液タンク、第2液タンクのそれぞれの液体を、注入口を2つ備えた混合機のそれぞれの注入口から注入し、攪拌混合して混合液を得た。 Next, the liquids in the first liquid tank and the second liquid tank were injected from respective inlets of a mixer provided with two inlets, and stirred and mixed to obtain a mixed liquid.
 そして、上記のようにして得られた終点検出窓C1を予め設置した型枠に、得られた混合液を注型して、30分間、80℃にて一次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて120℃で4時間二次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した。 Then, the obtained mixed liquid was cast into a mold in which the endpoint detection window C1 obtained as described above was installed in advance, and was primarily cured at 80°C for 30 minutes. The formed block-shaped molding was extracted from the mold and subjected to secondary curing in an oven at 120° C. for 4 hours to obtain a urethane resin block. The resulting urethane resin block was allowed to cool to 25°C.
 その後、再度オーブンにて120℃で5時間加熱してから、スライス処理を施し、スライスした面に対して、必要に応じて研削(バフ)処理を施し、発泡ポリウレタンシートを得た。得られたポリウレタンシートの裏面に両面テープを貼り付け、クッション層を貼り合わせて、さらにクッション層表面に両面テープを貼り付けることで研磨パッドを得た。 After that, it was heated again in an oven at 120°C for 5 hours, then subjected to slicing, and the sliced surface was subjected to grinding (buffing) as necessary to obtain a foamed polyurethane sheet. A double-faced tape was attached to the rear surface of the obtained polyurethane sheet, a cushion layer was attached thereto, and a double-sided tape was attached to the surface of the cushion layer to obtain a polishing pad.
 なお、ドレス処理後の状態の終点検出窓周辺の断面を評価する際に、上記のようにして得られた研磨パッドに対して下記の条件でドレス処理を行った。
(ドレス条件)
 使用研磨機:Speedfam社製、商品名「FAM-12BS」
 定盤回転数(研磨パッドの回転数):50rpm
 流量:100ml/min (20℃の純水を研磨パッドの回転中心から滴下した。)
 ドレッサー:3M社製ダイヤモンドドレッサー、型番「A188」
 ドレッサー回転数:100rpm
 ドレス圧力:0.115kg/cm2
 ドレッサーの回転方向:研磨パッドと同一方向に回転
 試験時間:60分
When evaluating the cross section around the end point detection window after the dressing process, the polishing pad obtained as described above was subjected to the dressing process under the following conditions.
(dress condition)
Polishing machine used: Speedfam, trade name “FAM-12BS”
Surface plate rotation speed (polishing pad rotation speed): 50 rpm
Flow rate: 100 ml/min (Pure water at 20° C. was dropped from the rotation center of the polishing pad.)
Dresser: 3M diamond dresser, model number "A188"
Dresser rotation speed: 100 rpm
Dressing pressure: 0.115 kg/cm2
Direction of dresser rotation: Rotates in the same direction as the polishing pad Test time: 60 minutes
〔実施例C2〕
 製造例C3の終点検出窓C2を用いたこと以外は、実施例C1と同様にして、研磨パッドを得た。
[Example C2]
A polishing pad was obtained in the same manner as in Example C1, except that the endpoint detection window C2 of Production Example C3 was used.
〔比較例C1〕
 製造例C3の終点検出窓C3を用いたこと以外は、実施例C1と同様にして、研磨パッドを得た。
[Comparative Example C1]
A polishing pad was obtained in the same manner as in Example C1, except that the endpoint detection window C3 of Production Example C3 was used.
〔パルスNMR〕
 装置  :Minispec MQ20(ブルカー・バイオスピン(株)製)
 核種  :1
 測定  :T2
 測定法 :ソリッドエコー法
 積算回数:256回
 繰り返し時間:1.0sec
 測定温度:20℃、80℃(装置温度が測定温度に達して試料をセットしてから60分後に測定を開始した)
 上記の装置、条件にて、試料ペレット8mmφで約50mgを10枚用意して試料管に充填し、パルスNMRの測定を行うことにより、減衰曲線を得た。
[Pulse NMR]
Apparatus: Minispec MQ20 (manufactured by Bruker Biospin Co., Ltd.)
Nuclide : 1H
Measurement: T2
Measurement method: Solid echo method Accumulation times: 256 times Repeat time: 1.0 sec
Measurement temperature: 20°C, 80°C (measurement was started 60 minutes after the device temperature reached the measurement temperature and the sample was set)
Using the apparatus and conditions described above, 10 sample pellets of about 50 mg each having a diameter of 8 mm were prepared, filled in a sample tube, and subjected to pulse NMR measurement to obtain an attenuation curve.
 得られた減衰曲線に対し、式(1)を用いてフィッティングを行い解析し、ポリウレタン樹脂中の結晶相、中間相および非晶相の緩和時間を得た。なお、フィッティング及び解析は、上記測定装置に付属のソフトウェアを用いた。
M(t)=αexp(-(1/2)(t/Tα)sinbt/bt+βexp(-(1/Wa)(t/TβWa)+γexp(-t/Tγ)・・・式(1)
 α:結晶相の組成分率
 Tα:結晶相の緩和時間(単位:msec)
 β:中間相の組成分率
 Tβ:中間相の緩和時間(単位:msec)
 γ:非晶相の組成分率
 Tγ:非晶相の緩和時間(単位:msec)
 t:観測時間(単位:msec)
 Wa:形状係数
 b:形状係数
The obtained attenuation curve was fitted and analyzed using equation (1) to obtain the relaxation times of the crystalline phase, the intermediate phase and the amorphous phase in the polyurethane resin. For fitting and analysis, the software attached to the measuring device was used.
M(t)=αexp(-(1/2)(t/Tα) 2 ) sinbt /bt+βexp(-(1/Wa)(t/ ) Wa )+ γexp (-t/Tγ)... formula (1)
α: Composition fraction of crystal phase T α : Relaxation time of crystal phase (unit: msec)
β: Composition fraction of intermediate phase T β : Relaxation time of intermediate phase (unit: msec)
γ: Composition fraction of amorphous phase T γ : Relaxation time of amorphous phase (unit: msec)
t: observation time (unit: msec)
Wa: shape factor b: shape factor
〔断面評価〕
 上記のようにして得られた各パッドについて、スライス後であってドレス前の状態の終点検出窓周辺(図2における破線Sで囲った部分)と(評価C1)、ドレス後の状態の終点検出窓周辺(図2における破線Sで囲った部分)の断面(評価C2)を、レーザーマイクロスコープ(VK-X1000、KEYENCE社製)で終点検出窓の直径部分の表面に対して約14mm×1mmの範囲で200倍に拡大し連結モードにより観察し、得られたレーザー画像をもとに高さ情報のプロファイル計測を行った。
[Cross-section evaluation]
For each pad obtained as described above, the end point detection window periphery (the portion surrounded by the dashed line S in FIG. 2) after slicing and before dressing (evaluation C1), and the end point detection after dressing A cross section (evaluation C2) around the window (the portion surrounded by the dashed line S in FIG. 2) is measured with a laser microscope (VK-X1000, manufactured by KEYENCE) at a size of about 14 mm × 1 mm with respect to the surface of the diameter portion of the endpoint detection window. The range was magnified 200 times and observed in the coupled mode, and profile measurement of height information was performed based on the obtained laser image.
 その結果を図7A~C,図8A~Cに示す。なお、図7A~C,図8A~Cでは、2点の終点検出窓の断面測定結果であって、それぞれの終点検出窓について、スライス方向とスライス方向と直交する方向で断面測定を行った結果を示している。 The results are shown in Figures 7A-C and Figures 8A-C. 7A to C and FIGS. 8A to C show the cross-sectional measurement results of two end-point detection windows, which are the results of cross-sectional measurement in the slicing direction and a direction orthogonal to the slicing direction for each end-point detection window. is shown.
 評価C1では、終点検出窓が研磨面から±50μm以内であれば○とし、それ以外を×とした。また、評価C2では、断面画像が平坦(端から中央にかけて高さが同等のもの)であれば○とし、凸状(端から中央にかけて高さが高くなっているもの)であれば×とした。 In evaluation C1, if the end point detection window was within ±50 μm from the polished surface, it was evaluated as ◯, and otherwise as x. In the evaluation C2, if the cross-sectional image was flat (the height was the same from the edge to the center), it was rated as ◯, and if it was convex (the height increased from the edge to the center), it was rated as x. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〔実施例D〕
〔製造例D1:終点検出窓D1〕 
 4,4’メチレンビス(シクロヘキシルイソシアネート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)90.6部と、及びグリセリン16.7部と、を反応させて、終点検出窓D1となる透明な部材を得た。
[Example D]
[Manufacturing Example D1: End Point Detection Window D1]
100 parts of 4,4′ methylenebis(cyclohexyl isocyanate), 90.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 1000, and 16.7 parts of glycerin are reacted to form an endpoint detection window. A transparent member of D1 was obtained.
〔製造例D2:終点検出窓D2〕 
 4,4’メチレンビス(シクロヘキシルイソシアネート)100部と、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)103.6部と、及びグリセリン15.9部と、を反応させて、終点検出窓D2となる透明な部材を得た。
[Manufacturing Example D2: End Point Detection Window D2]
100 parts of 4,4′ methylenebis(cyclohexyl isocyanate), 103.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 1000, and 15.9 parts of glycerin are reacted to form an endpoint detection window. A transparent member of D2 was obtained.
〔製造例D3:終点検出窓D3〕
 4,4’メチレンビス(シクロヘキシルイソシアネート)100部と、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)78.6部と、及びグリセリン4.5部と、エチレングリコール10.5部と、を反応させて、終点検出窓D3となる透明な部材を得た。
[Manufacturing Example D3: End Point Detection Window D3]
100 parts of 4,4′ methylene bis(cyclohexyl isocyanate), 78.6 parts of poly(oxytetramethylene) glycol (PTMG) having a number average molecular weight of 650, 4.5 parts of glycerin, and 10.5 parts of ethylene glycol; was reacted to obtain a transparent member that will serve as the endpoint detection window D3.
〔実施例D1〕
 2,4-トリレンジイソシアネート(2,4-TDI)、数平均分子量650のポリ(オキシテトラメチレン)グリコール(PTMG)、数平均分子量1000のポリ(オキシテトラメチレン)グリコール(PTMG)及びジエチレングリコール(DEG)を反応させてなるNCO当量420のウレタンプレポリマー100部に、殻部分がアクリロニトリル-塩化ビニリデン共重合体からなり、未膨張の中空微粒子(平均粒径:8.5μm)2.9部を添加混合し、ウレタンプレポリマー混合液を得た。得られたウレタンプレポリマー混合液を第1液タンクに仕込み、60℃で保温した。また、第1液タンクとは別に、硬化剤として3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(メチレンビス-o-クロロアニリン)(MOCA)28.0部を第2液タンクに入れ、120℃で加熱溶融させて混合し、更に減圧脱泡して得た硬化剤溶融液を得た。
[Example D1]
2,4-tolylene diisocyanate (2,4-TDI), poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 650, poly(oxytetramethylene) glycol (PTMG) with a number average molecular weight of 1000 and diethylene glycol (DEG ) is reacted with 100 parts of a urethane prepolymer having an NCO equivalent of 420, and 2.9 parts of unexpanded hollow fine particles (average particle diameter: 8.5 μm) having a shell made of an acrylonitrile-vinylidene chloride copolymer are added. By mixing, a urethane prepolymer mixture was obtained. The obtained urethane prepolymer mixed liquid was charged into the first liquid tank and kept at 60°C. Separately from the first liquid tank, put 28.0 parts of 3,3'-dichloro-4,4'-diaminodiphenylmethane (methylenebis-o-chloroaniline) (MOCA) as a curing agent into the second liquid tank, The mixture was heated and melted at 120° C., mixed, and degassed under reduced pressure to obtain a curing agent melt.
 次に、第1液タンク、第2液タンクのそれぞれの液体を、注入口を2つ備えた混合機のそれぞれの注入口から注入し、攪拌混合して混合液を得た。 Next, the liquids in the first liquid tank and the second liquid tank were injected from respective inlets of a mixer provided with two inlets, and stirred and mixed to obtain a mixed liquid.
 そして、上記のようにして得られた終点検出窓D1を予め設置した型枠に、得られた混合液を注型して、30分間、80℃にて一次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて120℃で4時間二次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した。 Then, the obtained mixed liquid was cast into a mold in which the end point detection window D1 obtained as described above was installed in advance, and was primarily cured at 80°C for 30 minutes. The formed block-shaped molding was extracted from the mold and subjected to secondary curing in an oven at 120° C. for 4 hours to obtain a urethane resin block. The resulting urethane resin block was allowed to cool to 25°C.
 その後、再度オーブンにて120℃で5時間加熱してから、スライス処理を施し、スライスした面に対して、必要に応じて研削(バフ)処理を施し、発泡ポリウレタンシートを得た。得られたポリウレタンシートの裏面に両面テープを貼り付け、クッション層を貼り合わせて、さらにクッション層表面に両面テープを貼り付けることで研磨パッドを得た。 After that, it was heated again in an oven at 120°C for 5 hours, then subjected to slicing, and the sliced surface was subjected to grinding (buffing) as necessary to obtain a foamed polyurethane sheet. A double-faced tape was attached to the rear surface of the obtained polyurethane sheet, a cushion layer was attached thereto, and a double-sided tape was attached to the surface of the cushion layer to obtain a polishing pad.
〔動的粘弾性測定〕
 下記条件に基づき動的粘弾性測定を行った。まず、温度23℃の水中にサンプルを3日間浸漬した。得られたサンプルを用いて、水中(浸水状態)で動的粘弾性測定を行った。なお、終点検出窓のサンプルサイズは、縦5cm×横0.5cm×厚み0.13cmとし、研磨層のサンプルサイズは、縦5cm×横0.5cm×厚み0.13cmとした。
(測定条件)
 測定装置      :RSA G2(TAインスツルメンツ社製)
 試験長       :1cm
 サンプルの前処理  :温度23℃の水に3日間保持
 試験モード     :引張
 周波数       :1.6Hz
 温度範囲      :30~55℃
 昇温速度      :0.3℃/min
 歪範囲       :0.10%
 初荷重       :300g
 測定間隔      :200point/℃
[Dynamic viscoelasticity measurement]
Dynamic viscoelasticity was measured under the following conditions. First, the sample was immersed in water at a temperature of 23°C for 3 days. Using the obtained sample, dynamic viscoelasticity measurement was performed in water (immersion state). The sample size of the endpoint detection window was 5 cm long×0.5 cm wide×0.13 cm thick, and the sample size of the polishing layer was 5 cm long×0.5 cm wide×0.13 cm thick.
(Measurement condition)
Measuring device: RSA G2 (manufactured by TA Instruments)
Test length: 1cm
Sample pretreatment: Hold in water at 23°C for 3 days Test mode: Tensile Frequency: 1.6Hz
Temperature range: 30-55°C
Heating rate: 0.3°C/min
Strain range: 0.10%
Initial load: 300g
Measurement interval: 200 points/°C
〔面品位確認試験〕
 研磨パッドを研磨装置の所定位置にアクリル系接着剤を有する両面テープを介して設置し、Cu膜基板に対して、下記条件にて研磨加工を施した。
(研磨条件)
 研磨機      :F-REX300X(荏原製作所社製)
 Disk     :A188(3M社製)
 回転数      :(定盤)85rpm、(トップリング)86rpm
 研磨圧力     :3.5psi
 研磨剤温度    :20℃
 研磨剤吐出量   :200ml/min
 研磨剤      :CSL-9044C(フジミコーポレーション社製)(CSL-9044C原液:純水=重量比1:9の混合液を使用)
 被研磨物     :Cu膜基板
 研磨時間     :60秒
 パッドブレーク  :35N 10分
 コンディショニング:Ex-situ、35N、4スキャン
[Surface Quality Confirmation Test]
A polishing pad was set at a predetermined position of a polishing apparatus via a double-sided tape having an acrylic adhesive, and the Cu film substrate was subjected to polishing under the following conditions.
(polishing conditions)
Polishing machine: F-REX300X (manufactured by Ebara Corporation)
Disk: A188 (manufactured by 3M)
Rotation speed: (Surface plate) 85 rpm, (Top ring) 86 rpm
Polishing pressure: 3.5 psi
Abrasive temperature: 20°C
Abrasive discharge rate: 200ml/min
Abrasive: CSL-9044C (manufactured by Fujimi Corporation) (CSL-9044C undiluted solution: pure water = 1:9 weight ratio mixed solution is used)
Object to be polished: Cu film substrate Polishing time: 60 seconds Pad break: 35N 10 minutes Conditioning: Ex-situ, 35N, 4 scans
 上記研磨加工後の被研磨物10枚目以降50枚目までについて、表面検査装置(KLAテンコール社製、Surfscan SP2XP)の高感度測定モードを用いて、大きさが155nm以上となるディフェクト(表面欠陥)を検出し評価した。ディフェクト(表面欠陥)の確認結果に基づいて、面品位を評価した。 Defects with a size of 155 nm or more (surface defects ) were detected and evaluated. The surface quality was evaluated based on the confirmation results of defects (surface defects).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、表4中の「比p/w」は、同じ温度における、終点検出窓の貯蔵弾性率E’wと研磨層の貯蔵弾性率E’pとの比、又は、終点検出窓のtanδwと研磨層のtanδpとの比を示す。例えば、表1によれば、実施例D1の比(E’p40/E’w40)は0.95であり、実施例D2の比(E’p40/E’w40)は1.62であり、比較例D1の比(E’p40/E’w40)は4.90である。 The "ratio p/w" in Table 4 is the ratio of the storage elastic modulus E'w of the endpoint detection window and the storage elastic modulus E'p of the polishing layer at the same temperature, or tan δw of the endpoint detection window and The ratio to tan δp of the polishing layer is shown. For example, according to Table 1, the ratio (E'p40/E'w40) of Example D1 is 0.95, the ratio (E'p40/E'w40) of Example D2 is 1.62, The ratio (E'p40/E'w40) of Comparative Example D1 is 4.90.
 また、表4中の「差|p-w|」は、同じ温度における、終点検出窓の貯蔵弾性率E’wと研磨層の貯蔵弾性率E’pとの差、又は、終点検出窓のtanδwと研磨層のtanδpとの差を示す。例えば、表1によれば、実施例D1の差(|tanδw30-tanδp30|)は0.07であり、実施例D2の差(|tanδw30-tanδp30|)は0.12であり、比較例D1の差(|tanδw30-tanδp30|)は0.34である。 "Difference |pw|" in Table 4 is the difference between the storage elastic modulus E'w of the endpoint detection window and the storage elastic modulus E'p of the polishing layer at the same temperature, or The difference between tan δw and tan δp of the polishing layer is shown. For example, according to Table 1, the difference in Example D1 (|tan δw30-tan δp30|) is 0.07, the difference in Example D2 (|tan δw30-tan δp30|) is 0.12, and the difference in Comparative Example D1 is The difference (|tan δw30-tan δp30|) is 0.34.
 本発明の研磨パッドは、半導体ウエハなどを研磨するのに好適に用いられるパッドとして、産業上の利用可能性を有する。 The polishing pad of the present invention has industrial applicability as a pad suitable for polishing semiconductor wafers and the like.
10…研磨パッド、11…研磨層、11a…研磨面、12…終点検出窓、13…クッション層、14,15…接着層、16…溝、20…研磨装置、21…トップリング、22…テーブル、23…膜厚検出センサ、24…スラリー、W…ウエハ DESCRIPTION OF SYMBOLS 10... Polishing pad, 11... Polishing layer, 11a... Polishing surface, 12... End point detection window, 13... Cushion layer, 14, 15... Adhesive layer, 16... Groove, 20... Polishing device, 21... Top ring, 22... Table , 23... Film thickness detection sensor, 24... Slurry, W... Wafer

Claims (32)

  1.  研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、
     引張モード、周波数1.0Hz、10~100℃の条件で行う前記終点検出窓の動的粘弾性測定において、90℃における貯蔵弾性率E’W90が、1.0×107Pa以上であり、
     前記終点検出窓の80℃におけるD硬度(DW80)が、40以上であり、
     前記終点検出窓の20℃におけるD硬度(DW20)が、40~90である、
     研磨パッド。
    having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
    In the dynamic viscoelasticity measurement of the endpoint detection window performed under the conditions of tensile mode, frequency of 1.0 Hz, and 10 to 100 ° C., the storage elastic modulus E′ W90 at 90 ° C. is 1.0 × 10 Pa or more,
    The D hardness (D W80 ) of the endpoint detection window at 80° C. is 40 or more,
    The endpoint detection window has a D hardness (D W20 ) at 20° C. of 40 to 90.
    polishing pad.
  2.  前記終点検出窓が、ポリウレタン樹脂WIを含む、
     請求項1に記載の研磨パッド。
    wherein the endpoint detection window comprises a polyurethane resin WI;
    The polishing pad according to claim 1.
  3.  前記ポリウレタン樹脂WIが、脂環族イソシアネート及び/又は脂肪族イソシアネートに由来する構成単位を含む、
     請求項2に記載の研磨パッド。
    The polyurethane resin WI contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate,
    The polishing pad according to claim 2.
  4.  前記ポリウレタン樹脂WIが、水酸基を3つ以上有する化合物に由来する構成単位を含む、
     請求項2又は3に記載の研磨パッド。
    The polyurethane resin WI contains structural units derived from a compound having 3 or more hydroxyl groups,
    The polishing pad according to claim 2 or 3.
  5.  前記終点検出窓の動的粘弾性測定において、30℃における貯蔵弾性率E’W30が、60×10~100×10Paである、
     請求項1~4のいずれか一項に記載の研磨パッド。
    In the dynamic viscoelasticity measurement of the endpoint detection window, the storage elastic modulus E′ W30 at 30° C. is 60×10 7 to 100×10 7 Pa.
    The polishing pad according to any one of claims 1-4.
  6.  前記終点検出窓の動的粘弾性測定において、tanδのピーク温度が、70~100℃である、
     請求項1~5のいずれか一項に記載の研磨パッド。
    In the dynamic viscoelasticity measurement of the endpoint detection window, the peak temperature of tan δ is 70 to 100 ° C.
    The polishing pad according to any one of claims 1-5.
  7.  前記研磨層は、ポリウレタン樹脂Pと、該ポリウレタン樹脂P中に分散した中空微粒子とを含む、
     請求項1~6のいずれか一項に記載の研磨パッド。
    The polishing layer contains a polyurethane resin P and hollow fine particles dispersed in the polyurethane resin P.
    The polishing pad according to any one of claims 1-6.
  8.  研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、
     引張モード、周波数1.0Hz、10~100℃の条件で行う動的粘弾性測定において、前記終点検出窓の30℃における貯蔵弾性率E’W30と、前記研磨層の30℃における貯蔵弾性率E’P30との比(E’P30/E’W30)が、0.60~1.50である、
     研磨パッド。
    having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
    In the dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency 1.0 Hz, 10 to 100 ° C., the storage elastic modulus E'W30 at 30 ° C. of the end point detection window and the storage elastic modulus E at 30 ° C. of the polishing layer ' P30 ratio (E' P30 /E' W30 ) is 0.60 to 1.50,
    polishing pad.
  9.  前記終点検出窓が、ポリウレタン樹脂WIを含む、
     請求項8に記載の研磨パッド。
    wherein the endpoint detection window comprises a polyurethane resin WI;
    The polishing pad according to claim 8.
  10.  前記ポリウレタン樹脂WIが、脂環族イソシアネート及び/又は脂肪族イソシアネートに由来する構成単位を含む、
     請求項8に記載の研磨パッド。
    The polyurethane resin WI contains structural units derived from an alicyclic isocyanate and/or an aliphatic isocyanate,
    The polishing pad according to claim 8.
  11.  前記ポリウレタン樹脂WIが、水酸基を3つ以上有する化合物に由来する構成単位を含む、
     請求項9又は10に記載の研磨パッド。
    The polyurethane resin WI contains structural units derived from a compound having 3 or more hydroxyl groups,
    The polishing pad according to claim 9 or 10.
  12.  前記動的粘弾性測定において、前記終点検出窓の50℃における貯蔵弾性率E’W50と、前記研磨層の50℃における貯蔵弾性率E’P50との比(E’P50/E’W50)が、0.70~2.00である、
     請求項8~11のいずれか一項に記載の研磨パッド。
    In the dynamic viscoelasticity measurement, the ratio of the storage elastic modulus E'W50 at 50°C of the end point detection window to the storage elastic modulus E'P50 at 50°C of the polishing layer ( E'P50 / E'W50 ) is , between 0.70 and 2.00;
    The polishing pad according to any one of claims 8-11.
  13.  前記終点検出窓の動的粘弾性測定において、30℃における貯蔵弾性率E’W30が、10×10~60×10Paである、
     請求項8~12のいずれか一項に記載の研磨パッド。
    In the dynamic viscoelasticity measurement of the endpoint detection window, the storage elastic modulus E′ W30 at 30° C. is 10×10 7 to 60×10 7 Pa.
    The polishing pad according to any one of claims 8-12.
  14.  前記終点検出窓の20℃におけるD硬度(DW20)が、40~70である、
     請求項8~13のいずれか一項に記載の研磨パッド。
    The endpoint detection window has a D hardness (D W20 ) at 20° C. of 40 to 70.
    The polishing pad according to any one of claims 8-13.
  15.  前記研磨層は、ポリウレタン樹脂Pと、該ポリウレタン樹脂P中に分散した中空微粒子とを含む、
     請求項8~14のいずれか一項に記載の研磨パッド。
    The polishing layer contains a polyurethane resin P and hollow fine particles dispersed in the polyurethane resin P.
    The polishing pad according to any one of claims 8-14.
  16.  研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、
     パルスNMRを用いてSolid Echo法により測定することによって得られる1Hのスピン-スピン緩和の自由誘導減衰曲線を緩和時間の短い順に、結晶相、中間相、及び非晶相の3成分に由来する3つの曲線に波形分離したとき、
     20℃における、前記終点検出窓の非晶相の存在比Lw20と、前記研磨層の非晶相の存在比Lp20の比(Lp20/Lw20)が、0.5~2.0であり、
     80℃における、前記終点検出窓の結晶相の存在比Sw80と、前記研磨層の結晶相の存在比Sp80の比(Sp80/Sw80)が、0.5~2.0である、
     研磨パッド。
    having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
    The spin-spin relaxation free induction decay curve of 1H obtained by measurement by the Solid Echo method using pulsed NMR is divided into 3 phases derived from the three components of the crystalline phase, intermediate phase, and amorphous phase in order of shortest relaxation time. When the waveform is separated into two curves,
    a ratio (Lp20/Lw20) of the abundance ratio Lw20 of the amorphous phase in the endpoint detection window to the abundance ratio Lp20 of the amorphous phase in the polishing layer at 20° C. is 0.5 to 2.0;
    The ratio (Sp80/Sw80) of the crystalline phase abundance ratio Sw80 of the endpoint detection window to the crystalline phase abundance ratio Sp80 of the polishing layer at 80° C. is 0.5 to 2.0.
    polishing pad.
  17.  20℃における、前記終点検出窓の中間相の存在比Mw20と、前記研磨層の中間相の存在比Mp20の比(Mp20/Mw20)が、0.7~1.5である、
     請求項16に記載の研磨パッド。
    The ratio (Mp20/Mw20) of the abundance ratio Mw20 of the intermediate phase in the endpoint detection window to the abundance ratio Mp20 of the intermediate phase in the polishing layer at 20° C. is 0.7 to 1.5.
    17. The polishing pad of claim 16.
  18.  80℃における、前記終点検出窓の中間相の存在比Mw80と、前記研磨層の中間相の存在比Mp80の比(Mp80/Mw80)が、0.5~1.5である、
     請求項16又は17に記載の研磨パッド。
    The ratio (Mp80/Mw80) of the abundance ratio Mw80 of the intermediate phase in the endpoint detection window to the abundance ratio Mp80 of the intermediate phase in the polishing layer at 80° C. is 0.5 to 1.5.
    18. The polishing pad according to claim 16 or 17.
  19.  前記存在比Lw20と前記存在比Lp20の差(|Lp20-Lw20|)が、10以下である、
     請求項16~18のいずれか一項に記載の研磨パッド。
    The difference (|Lp20−Lw20|) between the abundance ratio Lw20 and the abundance ratio Lp20 is 10 or less.
    The polishing pad according to any one of claims 16-18.
  20.  前記存在比Sw80と前記存在比Sw80の差(|Sp80-Sw80|)が、15以下である、
     請求項16~19のいずれか一項に記載の研磨パッド。
    The difference (|Sp80−Sw80|) between the abundance ratio Sw80 and the abundance ratio Sw80 is 15 or less.
    The polishing pad according to any one of claims 16-19.
  21.  前記終点検出窓が、ポリウレタン樹脂WIを含み、
     前記ポリウレタン樹脂WIが、脂肪族イソシアネートに由来する構成単位を含む、
     請求項16~20のいずれか一項に記載の研磨パッド。
    wherein the endpoint detection window comprises a polyurethane resin WI;
    The polyurethane resin WI contains a structural unit derived from an aliphatic isocyanate,
    The polishing pad according to any one of claims 16-20.
  22.  前記研磨層が、ポリウレタン樹脂Pを含み、
     前記ポリウレタン樹脂Pが、芳香族イソシアネートに由来する構成単位を含む、
     請求項16~21のいずれか一項に記載の研磨パッド。
    The polishing layer contains a polyurethane resin P,
    The polyurethane resin P contains a structural unit derived from an aromatic isocyanate,
    The polishing pad according to any one of claims 16-21.
  23.  前記研磨層は、前記研磨層中に分散した中空微粒子を含む、
     請求項16~22のいずれか一項に記載の研磨パッド。
    The polishing layer contains hollow fine particles dispersed in the polishing layer,
    The polishing pad according to any one of claims 16-22.
  24.  研磨層と、該研磨層の開口に設けられた終点検出窓と、を有し、
     引張モード、周波数1.6Hz、30~55℃、及び浸水状態の条件で行う動的粘弾性測定において、40℃における前記終点検出窓の貯蔵弾性率E’w40と、40℃における前記研磨層の貯蔵弾性率E’p40との比(E’p40/E’w40)が、0.70~3.00である、
     研磨パッド。
    having a polishing layer and an endpoint detection window provided in an opening of the polishing layer;
    In the dynamic viscoelasticity measurement performed under the conditions of tensile mode, frequency of 1.6 Hz, 30 to 55°C, and immersion, the storage elastic modulus E′w40 of the endpoint detection window at 40°C and the polishing layer at 40°C The ratio (E'p40/E'w40) to the storage modulus E'p40 is 0.70 to 3.00.
    polishing pad.
  25.  前記動的粘弾性測定において、50℃における前記終点検出窓の貯蔵弾性率E’w50と、50℃における前記研磨層の貯蔵弾性率E’p50との比(E’p50/E’w50)が、0.70~5.00である、
     請求項24に記載の研磨パッド。
    In the dynamic viscoelasticity measurement, the ratio (E'p50/E'w50) of the storage elastic modulus E'w50 of the endpoint detection window at 50°C and the storage elastic modulus E'p50 of the polishing layer at 50°C is , from 0.70 to 5.00;
    25. The polishing pad of claim 24.
  26.  前記動的粘弾性測定において、30℃における前記終点検出窓の損失係数tanδw30と、30℃における前記研磨層の損失係数tanδp30との差(|tanδw30-tanδp30|)が、0.05~0.30である、
     請求項24又は25に記載の研磨パッド。
    In the dynamic viscoelasticity measurement, the difference between the loss coefficient tan δw30 of the endpoint detection window at 30° C. and the loss coefficient tan δp30 of the polishing layer at 30° C. (|tan δw30−tan δp30|) is 0.05 to 0.30. is
    26. The polishing pad according to claim 24 or 25.
  27.  前記動的粘弾性測定において、40℃における前記終点検出窓の損失係数tanδw40と、40℃における前記研磨層の損失係数tanδp40との差(|tanδw40-tanδp40|)が、0.05~0.40である、
     請求項24~26のいずれか一項に記載の研磨パッド。
    In the dynamic viscoelasticity measurement, the difference between the loss coefficient tan δw40 of the endpoint detection window at 40° C. and the loss coefficient tan δp40 of the polishing layer at 40° C. (|tan δw40−tan δp40|) is 0.05 to 0.40. is
    The polishing pad according to any one of claims 24-26.
  28.  前記動的粘弾性測定において、50℃における前記終点検出窓の損失係数tanδw50と、50℃における前記研磨層の損失係数tanδp50との差(|tanδw50-tanδp50|)が、0.05~0.50である、
     請求項24~27のいずれか一項に記載の研磨パッド。
    In the dynamic viscoelasticity measurement, the difference between the loss coefficient tan δw50 of the endpoint detection window at 50° C. and the loss coefficient tan δp50 of the polishing layer at 50° C. (|tan δw50−tan δp50|) is 0.05 to 0.50. is
    The polishing pad according to any one of claims 24-27.
  29.  前記終点検出窓が、ポリウレタン樹脂WIを含み、
     前記ポリウレタン樹脂WIが、脂肪族イソシアネートに由来する構成単位を含む、
     請求項24~28のいずれか一項に記載の研磨パッド。
    wherein the endpoint detection window comprises a polyurethane resin WI;
    The polyurethane resin WI contains a structural unit derived from an aliphatic isocyanate,
    The polishing pad according to any one of claims 24-28.
  30.  前記研磨層が、ポリウレタン樹脂Pを含み、
     前記ポリウレタン樹脂Pが、芳香族イソシアネートに由来する構成単位を含む、
     請求項24~29のいずれか一項に記載の研磨パッド。
    The polishing layer contains a polyurethane resin P,
    The polyurethane resin P contains a structural unit derived from an aromatic isocyanate,
    The polishing pad according to any one of claims 24-29.
  31.  前記研磨層は、前記研磨層中に分散した中空微粒子を含む、
     請求項24~30のいずれか一項に記載の研磨パッド。
    The polishing layer contains hollow fine particles dispersed in the polishing layer,
    The polishing pad according to any one of claims 24-30.
  32.  研磨スラリーの存在下、請求項1~31のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨し研磨加工物を得る研磨工程と、
     該研磨中に光学式終点検出方式で終点検出を行う終点検出工程と、を有する、
     研磨加工物の製造方法。
    a polishing step of polishing an object to be polished using the polishing pad according to any one of claims 1 to 31 in the presence of a polishing slurry to obtain a polished object;
    an endpoint detection step of performing endpoint detection by an optical endpoint detection method during the polishing;
    A method for producing an abrasive article.
PCT/JP2022/014016 2021-03-30 2022-03-24 Polishing pad and method for manufacturing polished workpiece WO2022210264A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280024991.XA CN117120213A (en) 2021-03-30 2022-03-24 Polishing pad and method for producing polished product
KR1020237036679A KR20230162661A (en) 2021-03-30 2022-03-24 Method for manufacturing polishing pads and polishing workpieces

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021057019A JP2022154128A (en) 2021-03-30 2021-03-30 Abrasive pad and polished product manufacturing method
JP2021-057002 2021-03-30
JP2021057002 2021-03-30
JP2021-057019 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210264A1 true WO2022210264A1 (en) 2022-10-06

Family

ID=83458847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014016 WO2022210264A1 (en) 2021-03-30 2022-03-24 Polishing pad and method for manufacturing polished workpiece

Country Status (3)

Country Link
KR (1) KR20230162661A (en)
TW (1) TW202307050A (en)
WO (1) WO2022210264A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507374A (en) * 2005-09-06 2009-02-19 フリースケール セミコンダクター インコーポレイテッド Grooved surface plate with channel or path to ambient air
JP2017533585A (en) * 2014-10-17 2017-11-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Polishing pad manufactured by additive manufacturing process
US20190047112A1 (en) * 2017-08-04 2019-02-14 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
JP2020519458A (en) * 2017-07-11 2020-07-02 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Polishing pad including a window having a hardness similar to that of the polishing layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001647A (en) 2000-06-19 2002-01-08 Rodel Nitta Co Polishing pad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507374A (en) * 2005-09-06 2009-02-19 フリースケール セミコンダクター インコーポレイテッド Grooved surface plate with channel or path to ambient air
JP2017533585A (en) * 2014-10-17 2017-11-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Polishing pad manufactured by additive manufacturing process
JP2020519458A (en) * 2017-07-11 2020-07-02 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Polishing pad including a window having a hardness similar to that of the polishing layer
US20190047112A1 (en) * 2017-08-04 2019-02-14 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof

Also Published As

Publication number Publication date
TW202307050A (en) 2023-02-16
KR20230162661A (en) 2023-11-28

Similar Documents

Publication Publication Date Title
JP6487249B2 (en) Chemical mechanical polishing pad having polishing layer and window
US9238296B2 (en) Multilayer chemical mechanical polishing pad stack with soft and conditionable polishing layer
US20150065013A1 (en) Chemical mechanical polishing pad
WO2013089240A1 (en) Polishing pad
JP2006297582A (en) Polishing pad
WO2021011260A1 (en) Polishing pad employing polyamine and cyclohexanedimethanol curatives
JP5426469B2 (en) Polishing pad and glass substrate manufacturing method
KR20150052268A (en) Polishing pad production method
CN111203798B (en) Chemical mechanical polishing pad and polishing method
JP6688530B2 (en) Polishing pad
WO2022210264A1 (en) Polishing pad and method for manufacturing polished workpiece
WO2022210037A1 (en) Polishing pad and method for manufacturing polishing pad
JP6155018B2 (en) Polishing pad
WO2023182392A1 (en) Polishing pad and method for manufacturing polished workpiece
CN112512747B (en) Polishing pad and method for producing polished product
JP2014111296A (en) Polishing pad and its manufacturing method
JP2022155532A (en) Abrasive pad and polished product manufacturing method
JP2017113856A (en) Polishing pad and method for producing the same
JP4514199B2 (en) Polishing pad and semiconductor device manufacturing method
JP2023141624A (en) Abrasive pad and polished product manufacturing method
JP2022154128A (en) Abrasive pad and polished product manufacturing method
WO2022210676A1 (en) Polishing pad and method for manufacturing polishing pad
JP2006128563A (en) Polishing pad for semiconductor wafer polishing and manufacturing method of semiconductor device
JP2023050503A (en) Manufacturing method of window material for endpoint detection
WO2022201254A1 (en) Polishing pad and method for manufacturing polished workpiece

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237036679

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780478

Country of ref document: EP

Kind code of ref document: A1