WO2022210194A1 - System - Google Patents

System Download PDF

Info

Publication number
WO2022210194A1
WO2022210194A1 PCT/JP2022/013662 JP2022013662W WO2022210194A1 WO 2022210194 A1 WO2022210194 A1 WO 2022210194A1 JP 2022013662 W JP2022013662 W JP 2022013662W WO 2022210194 A1 WO2022210194 A1 WO 2022210194A1
Authority
WO
WIPO (PCT)
Prior art keywords
delivery robot
magnetic marker
home delivery
magnetic
marker
Prior art date
Application number
PCT/JP2022/013662
Other languages
French (fr)
Japanese (ja)
Inventor
道治 山本
知彦 長尾
均 青山
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to JP2023511078A priority Critical patent/JPWO2022210194A5/en
Publication of WO2022210194A1 publication Critical patent/WO2022210194A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the present invention relates to a system in which a moving object moves in space.
  • vehicles that move within a predetermined space by autonomous automatic driving have been put into practical use (see Patent Document 1, for example).
  • Such vehicles include, for example, automated guided vehicles in factories and mobile vehicles in facilities.
  • these vehicles use GPS (Global Positioning System) or the like to move along a predetermined route while measuring the position of the vehicle.
  • GPS Global Positioning System
  • a vehicle that moves outdoors can receive satellite radio waves relatively stably, and can use GPS to determine the position of the vehicle.
  • the reception condition of satellite radio waves is not good, so the actual situation is that positioning by GPS becomes difficult. Therefore, as a system that can be applied to indoor environments such as factories, there is a proposal for a system that automatically drives an unmanned guided vehicle toward a destination while estimating the position of the vehicle using inertial navigation.
  • inertial navigation for example, the amount of movement of the vehicle is estimated by double integrating the acceleration, and the turning angle (amount of change in direction) of the vehicle is estimated by integrating the yaw rate (angular velocity).
  • the system using conventional inertial navigation has the following problems. That is, when estimating the amount of movement or the turning angle by integrating the acceleration or yaw rate, the accumulation of errors due to integration is unavoidable, and there is a possibility that the accuracy of positioning may be impaired due to the accumulated errors.
  • the present invention has been made in view of the conventional problems described above, and aims to provide a system that can maintain high positioning accuracy in a mobile system that uses autonomous navigation such as inertial navigation.
  • the present invention is a system in which a moving object moves in space, A magnetic marker that exerts magnetism on the periphery is arranged in the space, while the moving body is equipped with a magnetic sensor that measures the magnitude of the acting magnetism, a control unit that moves the moving body; a detection unit that detects a magnetic marker by processing values measured by the magnetic sensor; a variation estimation unit for estimating at least one of a positional variation and an azimuth variation associated with movement of the moving object; a positioning unit for estimating the position or orientation of the mobile object after movement by adding the amount of variation estimated by the variation amount estimation unit to the position or orientation of the mobile object when the mobile object started to move.
  • the variation estimator is in a system that resets the variation to zero when the magnetic marker is detected.
  • the system of the present invention is a system for moving a moving body in a space in which magnetic markers are arranged.
  • This system estimates the amount of variation that accompanies the movement of the mobile object, and uses the amount of variation to estimate the position or orientation of the mobile object.
  • the variation amount of the moving object estimated by the variation estimation unit is reset to zero in response to the detection of the magnetic marker.
  • the system of the present invention is a system with excellent characteristics that can maintain high positioning accuracy of mobile objects.
  • FIG. 1 is a perspective view of a home delivery robot in Embodiment 1.
  • FIG. 2 is a bottom view of the home delivery robot in Embodiment 1.
  • FIG. 2 is a block diagram showing an electrical configuration of the home delivery robot according to the first embodiment;
  • FIG. 5 is an explanatory diagram illustrating changes in magnetic measurement values in the front-rear direction when passing through a magnetic marker in Example 1;
  • FIG. 5 is an explanatory diagram illustrating the distribution of magnetic measurement values in the width direction by the magnetic sensors Cn arranged in the width direction according to the first embodiment;
  • FIG. 2 is a flowchart showing the flow of overall system processing in the first embodiment;
  • FIG. 4 is an explanatory diagram of a loading operation of a parcel by a home delivery robot in the first embodiment;
  • FIG. 2 is a flow chart showing the flow of movement control of a home delivery robot according to the first embodiment;
  • FIG. 4 is a flowchart showing the flow of reset processing by the home delivery robot in the first embodiment; Structural drawing of the condominium in Example 2.
  • FIG. FIG. 10 is a flowchart showing the movement control flow of the home delivery robot in the second embodiment;
  • FIG. 10 is a flowchart showing the flow of interrupt processing in the second embodiment; Explanatory drawing of the system in Example 3.
  • FIG. FIG. 11 is a perspective view showing a mark post in Example 3; The top view of the drone in Example 3.
  • FIG. 10 is a flowchart showing the flow of overall system processing in the third embodiment;
  • FIG. 11 is an explanatory diagram showing a work target area and a route of a control target in Example 3;
  • FIG. 11 is a flow chart showing the flow of flight control of a drone in Embodiment 3;
  • FIG. 11 is a flowchart showing the flow of interrupt processing in the third embodiment;
  • FIG. 11 is a flowchart showing the flow of reset processing in the third embodiment;
  • FIG. 11 is an explanatory diagram of a method for specifying the direction of the home delivery robot 2 in the fourth embodiment;
  • Example 1 This example relates to a system 1 in which a home delivery robot 2 delivers a package 100 such as a home delivery service to each house 56 of a collective housing such as an apartment 5 . This content will be described below with reference to FIGS. 1 to 13.
  • FIG. 1 Example 1
  • the delivery robot 2 in the system 1 is an example of a moving body that autonomously moves within the condominium 5 by inertial navigation, as shown in FIG.
  • the delivery robot 2 transports the package 100 that has arrived at the delivery box 4B provided at the entrance 58, which is an example of a delivery location, to the delivery box 4A of each house (each dwelling unit) 56.
  • a magnetic marker 10 is arranged in a waiting space 505 for the home delivery robot 2 provided at the corner of the entrance 58 .
  • the home delivery robot 2 resets the amount of variation estimated by inertial navigation for positioning.
  • the condominium 5 in this example is, for example, a five-story housing complex with an elevator 52 .
  • the structure of each floor of the condominium 5 is similar except that the entrance 58 is provided on the first floor.
  • each house 56 is arranged side by side facing the passage 50 provided linearly.
  • a resident of the condominium 5 can enter the entrance 58 from the doorway 580 on the first floor, and use the elevator 52 provided at the entrance 58 to move upstairs.
  • a plurality of receiving boxes 4B for delivery of packages by a home delivery company are installed side by side.
  • the receiving box 4B forms part of the wall 581 and is embedded in the wall 581 so as to face both the outside of the condominium 5 and the entrance 58 .
  • a delivery box 4A for receiving the package 100 is provided on the side of the entrance door 560 facing the passage 50.
  • the delivery box 4A forms part of the wall 561 that separates each door 56 from the passage 50, and is embedded in the wall 561 so as to face both the interior of each door 56 and the passage 50.
  • the space where the residents can freely come and go is the space in which the home delivery robot 2 moves.
  • the home delivery robot 2 starts from the entrance 58 on the first floor and uses the passageway 50 to reach the dwelling unit 56 of the delivery destination.
  • the home delivery robot 2 enters the elevator 52 from the entrance 58 on the first floor and uses the elevator 52 to move to the target floor.
  • the waiting space 505 for the home delivery robot 2 is provided at the corner of the entrance 58 where the receiving box 4B is installed.
  • a magnetic marker 10 is arranged in the standby space 505 .
  • the home delivery robot 2 uses the magnetic marker 10 to adjust its standby position in the standby space 505 .
  • This standby position is the initial position and initial orientation of the home delivery robot 2 in movement control (see FIG. 12), which will be described later.
  • the configurations of the home delivery box 4A, the receiving box 4B, and the elevator 52, which are facilities on the condominium 5 side, will be described below, and then the configurations of the magnetic marker 10 and the home delivery robot 2 will be described in order. After that, the contents of the operation of the system 1 will be explained.
  • the delivery box 4A is a locker-type facility installed in each house 56 of the condominium 5, as shown in FIGS.
  • FIG. 2 is an explanatory diagram shared with the receiving box 4B.
  • Reference numerals 471 and 472 in the figure indicate the configuration provided only by the receiving box 4B, and are the reference numerals for the configuration not provided by the home delivery box 4A.
  • the delivery box 4A is embedded in the wall 561 beside the entrance door 560 of each house 56 and installed.
  • the home delivery box 4A is substantially flush with the outer wall surface of each door 56 on the passage 50 side, and is substantially flush with the inner wall surface of the room such as the entrance of each door 56.
  • the A side is the passage 50 side
  • the B side is the interior side of each door 56.
  • the home delivery box 4A is equipped with a package storage section 40 for storing packages 100, as shown in FIG.
  • a base portion 43 forming the lower side of the parcel storage portion 40 accommodates a controller 400, a motor (not shown), and the like.
  • a lamp 451 for indicating the presence or absence of the package 100 is arranged at the upper end of the front surface of the delivery box 4A facing the indoor side (B side).
  • a numeric keypad 452 for inputting a personal identification number or the like is arranged at a position adjacent to the lower side of the baggage storage section 40 .
  • the lamp 451 and numeric keypad 452 are an interface for the resident that notifies the resident of the delivery of the package 100 and is operated by the resident.
  • the luggage storage section 40 has a pair of openings 41 and 42 facing each other in a direction penetrating through the wall 561 .
  • the openings 41 and 42 are provided with slide doors 411 and 421 that can be raised and lowered.
  • the openings 41 and 42 are opened and closed by the vertical movement of the slide doors 411 and 421 .
  • the bottom surface of the baggage storage section 40 is formed by a plurality of conveying rollers 403 arranged in parallel.
  • Each conveying roller 403 has a bar shape parallel to the opening surfaces of the openings 41 and 42 and is rotatably mounted.
  • the transport rollers 403 are useful for facilitating the loading and unloading of the load 100 . It should be noted that the transport rollers 403 of the home delivery box 4A are not connected to a motor or the like, and only rotate following the movement of the parcel 100. As shown in FIG.
  • the controller 400 is a unit for controlling motors (not shown) that move the slide doors 411 and 421 up and down, the lighting state of the lamp 451, and the like.
  • the controller 400 has a communication function for exchanging information with the home delivery robot 2, and is configured to be able to take in information input with a numeric keypad 452.
  • the controller 400 raises and lowers the slide door 411 on the passage 50 side (side A) according to the request signal (open request signal, close request signal) received from the home delivery robot 2 to open and close the opening 41 . Further, when the correct password is input using the numeric keypad 452 , the controller 400 drives the slide door 421 on the indoor side (side B) to open the opening 42 . The controller 400 drives the slide door 421 to close the opening 42 when the baggage 100 is taken out.
  • the request signal open request signal, close request signal
  • the receiving box 4B is a locker-type facility for delivery of packages 100 by a delivery company or the like.
  • FIG. 2 is an explanatory diagram shared with the home delivery box 4A.
  • Reference numerals 451 and 452 in the figure indicate the components provided in the home delivery box 4A and the components not provided in the receiving box 4B.
  • each receiving box 4B has a surface on the A side in FIG. It is embedded in the wall 581 and installed.
  • the B-side surface in FIG. 2 of each receiving box 4B is exposed to the entrance 58 which is indoors.
  • the description of the receiving box 4B will be described below, focusing on the differences from the delivery box 4A.
  • the conveying rollers 403 of the receiving box 4B are different from the delivery box 4A in that they are driven by a motor.
  • the load receiving box 4B can carry out the load 100 by rotating the transport roller 403 .
  • a lamp 471 for indicating the presence or absence of the luggage 100 is arranged at the upper end, and is positioned adjacent to the lower side of the luggage storage section 40.
  • a push button 472 is arranged in the .
  • a lamp 471 and a push button 472 are interfaces for the courier.
  • the push button 472 is a button operated by the delivery company to open the opening 41 .
  • the lamp 471 is a lamp for notifying the delivery company whether or not the parcel 100 is stored.
  • the receiving box 4B has a wireless unlocking mechanism (not shown).
  • the wireless unlocking mechanism is configured to unlock when a wireless key (not shown) possessed by a home delivery company or the like approaches.
  • the controller 400 of the receiving box 4B lowers the slide door 411 to open the opening 41 on the outdoor side (side A). Let The controller 400 raises the slide door 411 and closes the opening 41 when the load 100 is carried in.
  • the controller 400 of the receiving box 4B has a communication function for exchanging information with the home delivery robot 2, like the controller of the delivery box 4A.
  • the controller 400 raises and lowers the slide door 421 on the side of the entrance 58 (side B) to open and close the opening 42 in response to request signals (open request signal, close request signal) received from the home delivery robot 2 .
  • the controller 400 rotates the transport rollers 403 in response to a delivery request signal received from the home delivery robot 2 to carry out the parcel 100 toward the home delivery robot 2 .
  • the controller 400 of the package receiving box 4B externally outputs a package receipt signal including the box number and the package receipt time, which are identification information of the package receiving box 4B.
  • a receipt signal is an output signal to the home delivery robot 2 . On the delivery robot 2 side, it can be grasped that the parcel 100 has been delivered to the consignment receiving box 4B of the transmission source in response to the reception of the consignment reception signal.
  • the elevator 52 is an elevator used by residents, and is provided at an entrance 58, for example.
  • the delivery robot 2 in the system 1 of this example uses the elevator 52 when moving across floors.
  • the elevator 52 is an example of a transport device capable of transporting the home delivery robot 2, which is an example of a mobile object, to another floor (another location).
  • the elevator 52 has a communication function for exchanging information with the home delivery robot 2. Specifically, a communication unit (not shown) is incorporated in the elevator car (not shown) of the elevator 52 and the operation panel 520 on each floor. When the home delivery robot 2 is positioned in front of the operation panel 520 of each floor, the elevator 52 detects this through communication with the home delivery robot 2 and executes control to stop the elevator car on that floor.
  • the communication unit of the elevator car can transmit door opening/closing information to the home delivery robot 2, and can receive information from the home delivery robot 2 indicating that the passenger has boarded the elevator car. Furthermore, the communication unit of the elevator car can receive the information of the destination floor from the home delivery robot 2 . When the elevator 52 acquires information on the destination floor from the home delivery robot 2, the elevator 52 executes control to move the elevator car to that floor and stop it.
  • the magnetic marker 10 is, as shown in FIG. 3, a marker as a magnetism generating source that exerts magnetism on its surroundings. As described above, in the system 1 of this example, the magnetic marker 10 is arranged in the waiting space 505 of the entrance 58 for the home delivery robot 2 . As for the arrangement position of the magnetic marker 10, instead of or in addition to the entrance 58 of this example, the position on the route that the home delivery robot 2 always passes when returning to the waiting space 505, or the waiting space where the home delivery robot 2 travels. It may be a position on the route that must be passed when moving from 505 toward the receiving box 4B, a position in front of the elevator 52, an intermediate position in the passage 50, or the like.
  • the magnetic marker 10 has a sheet shape with a diameter of 100 mm and a thickness of 2 mm, as shown in FIG.
  • the magnetic marker 10 can be attached to the floor surface 5S of the entrance 58, passage 50, or the like.
  • the magnetic marker 10 is a sheet body in which two magnet sheets 10S having a thickness of 1 mm are pasted together.
  • the magnet sheet 10S is a ferrite rubber magnet (magnet) in which magnetic particles of iron oxide, which is a magnetic material, are dispersed in a polymer material, which is a base material.
  • a protective layer on the surface of the magnetic marker 10 to improve anti-slip properties and wear resistance.
  • a protective layer for example, a layer made of a composite material in which glass fibers are impregnated with a resin may be employed.
  • An adhesive layer may be provided on the back surface of the magnetic marker 10, and a release paper may be pasted thereon. In this case, the magnetic marker 10 can be applied immediately by peeling off the release paper.
  • a sheet-like RFID tag (Radio Frequency Identification Tag, wireless tag) 15 (Fig. 4) is sandwiched between two magnetic sheets 10S.
  • the RFID tag 15 is a sheet-like electronic component in which an IC chip 157 is mounted on the surface of a tag sheet 150 cut from, for example, a PET (PolyEthylene Terephthalate) film.
  • a printed pattern of a loop coil 151 and an antenna 153 is provided on the surface of the tag sheet 150 .
  • the loop coil 151 is a receiving coil that generates an exciting current by electromagnetic induction from the outside.
  • Antenna 153 is a transmission antenna for wirelessly transmitting the above-described tag information and the like.
  • the RFID tag 15 is an electronic component that operates by wireless external power supply and outputs tag information through wireless communication.
  • the RFID tag 15 of this example transmits tag information including structural information around the magnetic marker 10 .
  • the structural information is information representing the structure of the space in which the home delivery robot 2 moves, and is information representing the surrounding environment around the corresponding magnetic marker 10 .
  • structural information representing a pattern of distribution of boundaries in the vertical direction (referred to as vertical edges) in the surrounding environment around the magnetic marker 10 is exemplified.
  • This structural information specifies the azimuthal (angular) deviation of each longitudinal edge based on the reference orientation.
  • the structural information is used to specify the orientation (orientation, absolute orientation) of the home delivery robot 2 .
  • the vertical edge is, for example, the vertical boundary between the receiving box 4B and the inner wall surface, the vertical boundary forming the boundary between the adjacent receiving boxes 4B, or the corner of the wall formed at the connection point between the entrance 58 and the passage 50. , a vertical boundary between the door of the elevator 52 and the wall, and the like.
  • the structural information output by the RFID tag 15 includes, for example, information on the direction (angle) of the vertical edge based on a specific direction such as true north.
  • the magnet sheet 10S is a sheet-shaped magnet in which iron oxide magnetic powder is dispersed in a polymer material.
  • the magnet sheet 10S has electrical properties such that eddy currents and the like are less likely to occur during wireless power feeding due to its low electrical conductivity. Therefore, even when the RFID tag 15 is sandwiched between the two magnetic sheets 10S, the RFID tag 15 can efficiently receive wirelessly transmitted power and can transmit tag information with high reliability.
  • the home delivery robot 2 is a mobile robot having an external shape like a vertical small refrigerator, as shown in FIG.
  • the home delivery robot 2 has a box shape with a height of 1.2 m and a length and width of 70 cm in the front-rear direction.
  • the home delivery robot 2 has drive wheels 26 and is self-propelled. Note that FIG. 5 shows a state in which the opening 241 is open.
  • a camera 322C that constitutes an image sensor 322 (see FIG. 7) and an object detection unit 323 that detects obstacles and the like are arranged in front of the home delivery robot 2 . Both the camera 322C and the object detection unit 323 are positioned on the front center line 2C of the home delivery robot 2 .
  • the camera 322 ⁇ /b>C is embedded at a position above the opening 241 in the frame surrounding the opening 241 .
  • the object detection unit 323 is arranged below the opening 241 .
  • Ultrasonic sensors 325 for detecting objects using ultrasonic waves are arranged at the lower end of the home delivery robot 2 and at four corners on the periphery.
  • the camera 322C is a camera that captures the front of the home delivery robot 2.
  • the camera 322 ⁇ /b>C is adjusted so that its optical axis is parallel to the longitudinal axis of the delivery robot 2 .
  • the forward image from the camera 322C is used not only for monitoring the forward direction, but also for extracting vertical edges, which are boundaries in the vertical direction. Although details will be described later, the vertical edge extracted from the front image is used to specify the orientation (absolute orientation) of the home delivery robot 2 .
  • the object detection unit 323 is a lidar unit that detects objects using laser light.
  • the object detection unit 323 includes a laser light source (not shown), a scanner for changing the direction of laser light, a processing circuit, and the like.
  • the object detection unit 323 is arranged in a curved convex shape protruding from the front surface of the home delivery robot 2 so that the outer peripheral edge of the cross section along the floor surface 5S forms a substantially arcuate shape.
  • a curved convex front surface of the object detection unit 323 is formed by a translucent window through which laser light can pass.
  • the object detection unit 323 scans a horizontal range of approximately 180 degrees with a laser beam to detect an obstacle in front, a structure in front, and the like.
  • a storage section 24 for storing the package 100 is provided at the top.
  • An opening 241 in front of the home delivery robot 2 is an opening for taking out the package 100 from the storage section 24 and putting the package 100 into the storage section 24 .
  • the dimensional specifications of the storage section 24, such as the ground clearance of the bottom surface, the ground clearance of the ceiling, the width, etc., are substantially the same as the dimensional specifications of the luggage storage section 40 (see FIG. 2).
  • a sliding door 242 that can be raised and lowered is attached to the opening 241 of the storage section 24 .
  • the opening 241 is opened by lowering the sliding door 242 and closed by raising the sliding door 242 .
  • the bottom surface of the storage section 24 is formed by a plurality of rod-shaped conveying rollers 243 arranged in parallel. Each transport roller 243 is parallel to the opening surface of the opening 241 and is rotationally driven by a motor (not shown).
  • the home delivery robot 2 conveys the parcel 100 according to the rotation of the conveying roller 243, receives the parcel 100 from the parcel receiving box 4B, and delivers the parcel 100 to the home delivery box 4A of each house 56.
  • a camera 324C constituting a code reader 324 (see FIG. 7) is installed on the ceiling of the storage section 24.
  • This camera 324 ⁇ /b>C is a camera for photographing the two-dimensional code printed or attached on the top surface of the package 100 .
  • the photographed image of the two-dimensional code is input to the code reader 324, and recorded information (destination information) such as the delivery address and room number is read from the two-dimensional code.
  • the delivery robot 2 includes a pair of left and right drive wheels 26L and R and a pair of front and rear driven wheels 27F and R, as shown in FIG.
  • the pair of left and right driving wheels 26L and 26R are positioned at the center of the home delivery robot 2 in the front-rear direction.
  • the pair of front and rear driven wheels 27F and 27R are positioned at the center of the home delivery robot 2 in the width direction.
  • the drive wheels 26L/R are wheels that are individually rotationally driven by motors 260L/R.
  • the driven wheels 27F/R are free wheels that can roll in any direction. For example, if a difference in rotation is set for the drive wheels 26L and 26L by driving the motors 260L and 260R individually, the home delivery robot 2 can move along an arc-shaped locus according to the difference in rotation. For example, by rotating the left and right drive wheels 26R and 26L in opposite directions, the home delivery robot 2 can be rotated on the spot.
  • a tag reader 321 that communicates with the RFID tag 15 of the magnetic marker 10 and a measurement unit 20 that measures magnetism, angular velocity (yaw rate), and the like are attached.
  • the tag reader 321 functions as an information reading unit that reads information wirelessly output by the RFID tag 15 .
  • the tag reader 321 wirelessly transmits power necessary for operating the RFID tag 15 and receives tag information transmitted by the RFID tag 15 .
  • the RFID tag 15 outputs surrounding structural information as tag information.
  • the measurement unit 20 has a rod shape with a total length of 65 cm and is attached along the width direction of the home delivery robot 2 .
  • the mounting position of the measurement unit 20 in the front-rear direction is midway between the pair of left and right drive wheels 26L and R and the front driven wheel 27F.
  • the mounting height of the measurement unit 20 with respect to the floor surface 5S is approximately 50 mm.
  • the IMU 22 is an inertial navigation unit for estimating the position and orientation (orientation) of the home delivery robot 2 by inertial navigation.
  • the IMU 22 functions as a variation estimation unit for estimating the variation associated with the movement of the home delivery robot 2, as a positioning unit for estimating the position and orientation of the delivery robot 2 using the estimated variation, and the like. I have it.
  • the IMU 22 includes a biaxial acceleration sensor 222 that measures acceleration in the longitudinal direction and width direction, a gyro sensor 223 that measures angular velocity (yaw rate), and the like.
  • the IMU 22 estimates the (cumulative) amount of change in the direction of the home delivery robot 2 by integrating the yaw rate after it starts moving. Then, the IMU 22 estimates the moment-by-moment orientation of the home delivery robot 2 by adding the estimated amount of change in orientation to the orientation (initial orientation) of the home delivery robot 2 when it starts moving.
  • the IMU 22 divides the period of movement into sufficiently short time intervals and estimates the two-dimensional displacement amount (positional variation amount) for each interval.
  • This interval is, for example, a temporal interval corresponding to the processing time of one loop of repetitive control by movement control in FIG. 12, which will be referred to later.
  • the IMU 22 obtains a two-dimensional displacement amount by double-integrating accelerations in the front-rear direction and in the width direction for each section.
  • the IMU 22 accumulates the two-dimensional displacement amount of each section along the direction of the home delivery robot 2 in each section (for example, average value, median value, etc.). Estimate the amount of displacement. Then, the IMU 22 estimates a position shifted from the position (initial position) of the home delivery robot 2 at the start of movement by the amount of two-dimensional displacement after the start of movement as the momentary position of the home delivery robot 2. do.
  • the sensor array 21 of the measurement unit 20 includes 15 magnetic sensors Cn (n is an integer of 1 to 15) arranged in a straight line along the longitudinal direction of the rod-shaped measurement unit 20, and a CPU (not shown). and a detection processing circuit 212 .
  • the detection processing circuit 212 is an example of a detection section that detects the magnetic marker 10 .
  • the detection processing circuit 212 executes detection of the magnetic marker 10 by processing the measurement value of the magnetic sensor Cn.
  • 15 magnetic sensors Cn are arranged at regular intervals of 4 cm.
  • the magnetic sensor Cn is a sensor that detects magnetism using the well-known MI effect (Magneto Impedance Effect), in which the impedance of a magnetosensitive material such as an amorphous wire changes sensitively according to an external magnetic field.
  • the magnetic sensor Cn detects a magnetic component acting along a magnetosensitive body such as an amorphous wire, and outputs a sensor signal representing the magnitude of the magnetic component (magnetism measurement value).
  • each magnetic sensor Cn of the sensor array 21 is incorporated into the sensor array 21 and the sensor for the home delivery robot 2 so that each magnetic sensor Cn of the sensor array 21 detects the magnetic components in the longitudinal direction and the width direction of the home delivery robot 2 .
  • An array 21 is attached.
  • the detection processing circuit 212 (FIG. 7) is an arithmetic circuit that executes marker detection processing for detecting the magnetic marker 10 and the like.
  • the detection processing circuit 212 is configured using memory devices such as a CPU (central processing unit) that executes various calculations, a ROM (read only memory) and a RAM (random access memory).
  • the detection processing circuit 212 acquires the sensor signal (magnetism measurement value, measurement value) output by the magnetic sensor Cn, executes marker detection processing, and inputs the result of the marker detection processing to the control unit 32 .
  • the contents of the marker detection process will be described in detail following the description of the electrical configuration of the home delivery robot 2 .
  • the home delivery robot 2 is electrically configured around a control unit 32 as shown in FIG.
  • the control unit 32 performs movement control (see FIG. 12) for self-running the home delivery robot 2, and various internal processes such as reset processing (see FIG. 13) of the amount of variation estimated by inertial navigation. It is the unit that executes.
  • the control unit 32 is electrically connected to various sensors, an information reader for reading information, motors such as the motors 260L and 260R, a hard disk device as a storage medium, and the like.
  • a map database (map DB) 34 is provided in the storage area of the hard disk device.
  • Sensors include the object detection unit 323, the image sensor 322 including the camera 322C (see FIG. 5) for photographing the front, an ultrasonic sensor 325 for detecting surrounding obstacles, and measuring magnetism, acceleration, and the like.
  • Information readers include the tag reader 321 and the code reader 324 including the camera 324C (see FIG. 5).
  • the map DB 34 is a database that stores a two-dimensional map that shows the structure of the passage 50, the entrance 58, etc. where the delivery robot 2 can move. As described above, the map DB 34 is constructed using the storage area of the hard disk device. A two-dimensional map is prepared for each floor of the condominium 5 .
  • the absolute positions of the home delivery box 4A of each house 56, each receiving box 4B, the elevator 52, the waiting space 505 of the home delivery robot 2, the position of the magnetic marker 10, etc. are specified.
  • the map DB 34 is an example of a database that stores position information of the magnetic markers 10 .
  • the absolute positions of the delivery box 4A of each house 56, the elevator 52, etc. are specified.
  • the absolute position is an absolute position within the condominium 5 .
  • a box number, which is identification information, is attached to each position of the receiving box 4B specified on the two-dimensional map of the first floor.
  • the home delivery robot 2 uses the box number included in the receipt signal transmitted by the receipt box 4B to identify the position of the receipt box 4B, which is the sender, on the two-dimensional map (first floor).
  • Specific information such as the room number is attached to the position of the delivery box 4A of each house 56 specified in the two-dimensional map of each floor.
  • the home delivery robot 2 identifies the floor of the delivery destination using unique information such as the room number, and also identifies the position where the corresponding home delivery box 4A is located on the two-dimensional map of that floor.
  • the control unit 32 (FIG. 7) includes an electronic board (not shown) on which a CPU that executes various calculations, memory elements such as ROM and RAM, etc. are mounted.
  • the control unit 32 implements various functions by causing the CPU to execute programs stored in the ROM or the like.
  • the functions realized by the control unit 32 include a route setting section that sets the route along which the home delivery robot 2 moves, a control section that moves the home delivery robot 2 along the route, a communication circuit section that executes communication with external devices, and the like. There is a function as
  • the route setting unit calculates and sets the route from the position where the home delivery robot 2 is located to the destination.
  • the routes include, for example, a route from the waiting space 505 to the receiving box 4B, a route from the receiving box 4B to the home delivery box 4A of the dwelling unit 56 of the delivery destination, and a route from the home delivery box 4A of the dwelling unit 56 of the delivery destination to the waiting space 505. , and so on. If there is an obstacle on the route, a route for bypassing the obstacle and returning to the original route is calculated and set at any time.
  • the route set by the route setting unit is a route represented by a line segment on the two-dimensional map of the map DB 34. For example, if the position of the delivery robot 2 on the two-dimensional map can be specified, the deviation from the route set by the route setting unit can be specified. Also, if the direction of the home delivery robot 2 on the two-dimensional map can be specified, the deviation in direction from the same route can be specified.
  • the control unit executes control for moving the home delivery robot 2 along the route set by the route setting unit.
  • the control unit controls the motors 260L and 260R to rotate the driving wheels 26L and 26L, thereby causing the home delivery robot 2 to run on its own.
  • the control unit controls to eliminate the positional deviation of the home delivery robot 2 based on the route set by the route setting unit, the azimuthal deviation of the home delivery robot with respect to the direction of the route, and the like.
  • a home delivery robot 2 is self-propelled along a route.
  • the communication circuit unit communicates with external devices such as the delivery box 4A, the receiving box 4B, and the communication unit (not shown) of the elevator 52.
  • the communication circuit unit transmits a signal for opening and closing the opening 42 and carrying out the package 100 to the receiving box 4B.
  • a signal for opening and closing the opening 41 is transmitted to the delivery box 4A.
  • a signal for stopping the elevator car on the floor where the home delivery robot 2 is located and a signal for directing the elevator car to the target floor are transmitted.
  • the communication circuit unit acquires the information of the stopped floor from the communication unit of the elevator 52 .
  • the control unit can specify the destination floor (floor number) as an example of the transport destination position (transport position) of the home delivery robot 2 by the elevator 52, which is an example of the transport device.
  • FIG. 8 the contents of marker detection processing by the sensor array 21 (measurement unit 20) will be described with reference to FIGS. 8 and 9.
  • each magnetic sensor Cn of the sensor array 21 can measure magnetic components in the front-rear direction and width direction of the home delivery robot 2 .
  • this magnetic sensor moves forward and passes directly above the magnetic marker 10
  • the magnetic measurement value in the front-rear direction reverses the positive and negative values before and after the magnetic marker 10 as shown in FIG. changes to cross zero at the position of .
  • the measurement unit 20 While the home delivery robot 2 is running, when a zero cross Zc in which the polarity of the magnetic measurement value in the front-rear direction detected by any of the magnetic sensors Cn occurs, the measurement unit 20 is positioned directly above the magnetic marker 10. I can judge.
  • the detection processing circuit 212 determines that the magnetic marker 10 is detected when the measurement unit 20 is positioned directly above the magnetic marker 10 and the zero crossing Zc of the magnetic measurement value in the front-rear direction occurs.
  • a magnetic sensor having the same specifications as the magnetic sensor Cn forming the sensor array 21 is assumed to move along an imaginary line in the width direction passing directly above the magnetic marker 10 .
  • the positive and negative of the magnetic measurement value in the width direction are reversed on both sides of the magnetic marker 10, and the value changes so as to cross zero at the position directly above the magnetic marker 10.
  • FIG. 9 In the case of the sensor array 21 (measurement unit 20) in which 15 magnetic sensors Cn are arranged in the width direction, the magnetic measurement in the width direction detected by the magnetic sensor Cn depends on which side of the magnetic marker 10 it is on. The positive and negative values are different.
  • the position of the magnetic marker 10 in the width direction is the intermediate position or the position directly below the magnetic sensor Cn where the magnetic measurement value in the width direction is zero and the magnetic measurement values of the magnetic sensors Cn on both outer sides are reversed. becomes.
  • the detection processing circuit 212 can measure the deviation of the position of the magnetic marker 10 in the width direction with respect to the central position of the measurement unit 20 (the position of the magnetic sensor C8) as the amount of lateral displacement of the home delivery robot 2 with respect to the magnetic marker 10. .
  • FIG. 10 is a flowchart showing the flow of overall processing by system 1.
  • FIG. 11 is a diagram referred to in the description of FIG. 10.
  • FIG. 12 is a flowchart showing the content of movement control for causing the home delivery robot 2 to run on its own.
  • FIG. 13 is a flow chart showing the flow of reset processing of the amount of variation (displacement amount, azimuth variation amount) associated with movement estimated by inertial navigation.
  • the overall processing of the system 1 is a series of processes from the delivery robot 2 receiving the package 100 delivered to the receiving box 4B to delivering it to the delivery box 4A of the dwelling unit 56. is.
  • the home delivery robot 2 on standby waits for delivery of the parcel 100 by the home delivery company in the waiting space 505 (see FIG. 1) of the entrance 58 of the condominium 5 .
  • the above (3) inertial navigation reset process (FIG. 13) is executed while waiting in the waiting space 505 .
  • the control unit 32 waits in the standby space 505 to receive the above-mentioned receipt signal from any of the receipt boxes 4B (S101: NO).
  • the receipt signal is a signal including the box number (identification information) of the receipt box 4B to which the package 100 has been delivered.
  • the control unit 32 receives the receipt signal (S301: YES)
  • it determines the route to the receipt box 4B corresponding to the box number included in the receipt signal (S102).
  • the control unit 32 executes movement control P11 for moving the home delivery robot 2 along the route determined by the calculation.
  • the content of the inertial navigation-based movement control P11 will be described later with reference to FIG.
  • the control unit 32 repeatedly executes the movement control P11 until the home delivery robot 2 arrives at the consignment receiving box 4B that sent the consignment receiving signal (S104: NO).
  • the arrival position of the home delivery robot 2 with respect to the receiving box 4B is a position where the front opening 241 faces the opening 42 of the receiving box 4B with a small gap (FIG. 11).
  • the control unit 32 terminates the movement control P11.
  • the control unit 32 loads the package 100 at the arrival position (see FIG. 11) where the home delivery robot 2 faces the receiving box 4B with a small gap (S104: Yes ⁇ S105).
  • the control unit 32 lowers the slide door 242 to open the opening 241 and transmits an open request signal requesting opening of the opening 42 to the cargo receiving box 4B.
  • the receiving box 4B lowers the sliding door 421 and opens the opening 42 in response to receiving the open request signal. After opening the opening 42 , the receiving box 4 ⁇ /b>B rotates the conveying roller 403 so that the cargo 100 can be carried out from the opening 42 . At this time, it is preferable to rotationally drive the transport roller 243 of the home delivery robot 2 in synchronization with the transport roller 403 of the receiving box 4B. If the transport rollers 403 of the delivery box 4B and the transport rollers 243 of the home delivery robot 2 rotate synchronously, the package 100 can be transported from the delivery box 4B to the home delivery robot 2 more smoothly.
  • the control unit 32 raises the slide door 242 to close the opening 241, and directs the close request signal for closing the opening 42 to the receiving box 4B. to send.
  • the receiving box 4B raises the slide door 421 and closes the opening 42 in response to receiving the close request signal. This completes the loading of the parcel 100 by the home delivery robot 2 .
  • the control unit 32 controls the code reader 324 to read the recorded information from the two-dimensional code printed on the cargo 100 (S106).
  • the two-dimensional code records destination information such as the delivery address of the parcel 100 and the room number.
  • the code reader 324 first reads a code image of a two-dimensional code printed on the upper surface of the package 100 by means of a camera 324C (see FIG. 5) provided on the ceiling of the storage section 24. get.
  • the code reader 324 then processes the code image to read the destination information, which is the recorded information of the two-dimensional code.
  • control unit 32 When the control unit 32 acquires the destination information of the delivery destination, it refers to the two-dimensional map stored in the map DB 34 and calculates the route to the home delivery box 4A of the delivery destination (S107). Then, the control unit 32 executes movement control P11 (described later with reference to FIG. 12) for moving the home delivery robot 2 along the route determined by the calculation.
  • the control unit 32 repeatedly executes the movement control P11 until the delivery robot 2 reaches the delivery destination delivery box 4A (S109: NO).
  • the arrival position of the home delivery robot 2 with respect to the home delivery box 4A is a position where the front opening 241 faces the opening 41 of the home delivery box 4A with a small gap.
  • the control unit 32 terminates the movement control P11.
  • the control unit 32 delivers the parcel 100 at the arrival position where the home delivery robot 2 faces the home delivery box 4A with a small gap (S109: Yes ⁇ S110).
  • the control unit 32 lowers the slide door 242 to open the opening 241 and transmits an open request signal requesting opening of the opening 41 to the delivery box 4A.
  • the delivery box 4A lowers the slide door 411 and opens the opening 41 in response to receiving the open request signal.
  • the control unit 32 conveys the parcel 100 toward the home delivery box 4A by driving the conveying roller 243 to rotate.
  • the transport roller 403 of the home delivery box 4A is a rotatable roller that rotates following the movement of the parcel 100. As shown in FIG. Therefore, the home delivery robot 2 can carry the parcel 100 toward the home delivery box 4A with little resistance.
  • the control unit 32 raises the slide door 242 to close the opening 241, and issues the close request signal for closing the opening 41.
  • Send to Box 4A Delivery box 4A raises slide door 411 and closes opening 41 in response to receiving the close request signal. This completes the delivery of the parcel 100 to the home delivery box 4A.
  • control unit 32 determines a route for returning to the waiting space 505 by calculation (S111). Then, the control unit 32 executes movement control P11 (described later with reference to FIG. 12) for moving the home delivery robot 2 along the route determined by the calculation.
  • the control unit 32 repeatedly executes the movement control P11 until it reaches the waiting space 505 (S113: NO).
  • the control unit 32 executes reset processing P12, which will be described later with reference to FIG.
  • the control unit 32 repeats the overall processing of FIG. 10 until all packages 100 delivered to the receiving box 4B are delivered to each house 56.
  • the delivery robot 2 delivers the parcels 100 to each house 56 in the order of earliest parcel reception time included in the parcel reception signal. After delivering all the parcels 100 delivered to the parcel receiving box 4B, the home delivery robot 2 shifts to a waiting state in the waiting space 505. ⁇
  • Movement Control Three movement controls P11 in FIG. 10 are controls for moving the home delivery robot 2 by self-running while positioning by inertial navigation. Each movement control P11 is repeatedly executed until the home delivery robot 2 arrives at the destination. The contents of this movement control P11 will be described with reference to FIG.
  • the IMU 22 In the movement control P11 (FIG. 12), the IMU 22 repeatedly estimates the position and orientation of the home delivery robot 2 (S201). As described above, the IMU 22 integrates the yaw rate to estimate the azimuth fluctuation amount, and adds the estimated azimuth fluctuation amount to the azimuth of the home delivery robot 2 at the start of movement, thereby to estimate In addition, for each sufficiently short time interval corresponding to the processing time of one loop of the movement control P11, the two-dimensional displacement amount is estimated by double integrating the acceleration in the longitudinal direction and the width direction. .
  • the IMU 22 accumulates the two-dimensional displacement amount of each section along the direction of the home delivery robot 2 in each section (for example, average value, median value, etc.), thereby calculating the two-dimensional displacement amount after the start of movement. to estimate Then, the IMU 22 estimates the position of the home delivery robot 2 as the position shifted from the position of the home delivery robot 2 at the start of movement by the amount of two-dimensional displacement after the start of movement.
  • the initial position and initial orientation of the home delivery robot 2 at the start of movement are absolute positions or absolute orientations specified in reset processing P12 described below.
  • the variation amount estimated by the IMU 22 is handed over from the first movement control P11 to the second movement control P11 in FIG. 10, and further handed over to the third movement control P11.
  • the position and orientation estimated by the IMU 22 in step S201 are absolute positions or absolute orientations on the two-dimensional map stored in the map DB34.
  • the control unit 32 identifies the deviation of the position and orientation estimated by the IMU 22 from the preset control target path (S202).
  • the control target path is a path obtained by path calculations S102, S107, and S111 in FIG.
  • the deviation is the positional deviation of the position of the home delivery robot 2 estimated in step S201 above and the azimuthal deviation of the direction of the home delivery robot 2 estimated in the same way.
  • the control unit 32 individually controls the motors 260R and 260L so that the home delivery robot 2 can move on the set route based on the specified position and orientation deviation (S203).
  • the control unit 32 stops the rotation of the drive wheels 26R and 26L or executes control to detour.
  • the control unit 32 performs calculation of the detour route and control for moving the delivery robot 2 along the detour route.
  • a detour route is a route that deviates from the route set by route calculations S102, S107, and S111 in FIG. 10, avoids obstacles, and returns to the original route.
  • the reset process P12 (Fig. 13) is a process for eliminating the effects of cumulative errors contained in these fluctuation amounts by resetting to zero the amount of variation in the position and orientation estimated by inertial navigation. is.
  • the IMU 22 when estimating the position and orientation of the home delivery robot 2, the IMU 22 performs yaw rate integration, acceleration double integration, and the like.
  • integral operations are operations that tend to accumulate errors cumulatively.
  • the yaw rate measured by the 2-axis gyro sensor 223 and the acceleration measured by the 2-axis acceleration sensor 222 are likely to include errors due to drift due to temperature and aging, and furthermore, errors accumulate cumulatively in the amount of fluctuation obtained by integral calculation. can be The errors in the fluctuation amount can accumulate and expand as the moving distance and moving time of the home delivery robot 2 increase.
  • the reset process P12 by resetting the amount of variation estimated by inertial navigation to zero, it is possible to temporarily cut off the accumulation of errors. Then, it is possible to eliminate the influence caused by the accumulated error in the amount of variation.
  • the displacement amount which is the positional variation amount estimated by the IMU 22, and the azimuth variation amount can be reset to zero.
  • the magnetic marker 10 is used to identify the absolute position and absolute orientation of the home delivery robot 2, which are used as the initial position and initial orientation in the movement control P11 in FIG.
  • the reset process P12 (FIG. 13) is executed while the home delivery robot 2 has returned to the waiting space 505 provided at the entrance 58.
  • the control unit 32 first executes a marker detection process P ⁇ b>13 for detecting the magnetic marker 10 .
  • the control unit 32 moves the home delivery robot 2 in small steps inside the waiting space 505 until the magnetic marker 10 is detected (S301: NO), thereby searching for the magnetic marker 10 (S311).
  • the control unit 32 adjusts the position of the home delivery robot 2 so that the magnetic sensor C8 positioned in the center of the sensor array 21 is positioned right above the magnetic marker 10. Alignment is executed (S302). Specifically, the control unit 32 aligns the home delivery robot 2 so that the sensor array 21 is positioned at the zero cross Zc in FIG. 8 and the magnetic sensor C8 is positioned at the zero cross Zc in FIG. (S302). At this time, the orientation of the home delivery robot 2 is arbitrary, and only the positioning of the magnetic sensor C8 directly above the magnetic marker 10 is controlled.
  • the control unit 32 specifies the position of the magnetic marker 10 as the position (absolute position) of the home delivery robot 2 (S303). It should be noted that the arrangement positions of the magnetic markers 10 are specified on the two-dimensional map as described above. Also, the control unit 32 controls the tag reader 321 to acquire the tag information of the RFID tag 15 provided on the magnetic marker 10 (S304). As described above, the tag information is structural information representing the distribution pattern of vertical edges around the magnetic marker 10 . In this structural information, the orientational deviation of each vertical edge based on the reference orientation determined on the two-dimensional map of the condominium 5 is specified.
  • the control unit 32 controls the image sensor 322 that monitors the front and the object detection unit 323, and attempts to extract vertical edges in the environment ahead (S305).
  • the control unit 32 can emphasize vertical edge components by performing image processing such as edging processing for emphasizing high-frequency components on the forward image captured by the camera 322C.
  • the processed image subjected to the edging process is subjected to, for example, a binarization process in which the pixel value of luminance equal to or higher than the threshold is set to 1 and the pixel value of luminance less than the threshold is set to 0, so that the image in the front image is Extract vertical edges.
  • the control unit 32 identifies the azimuth distribution pattern of each vertical edge in the forward environment with reference to the longitudinal axis of the home delivery robot 2 .
  • the control unit 32 examines the correlation between the first distribution pattern of vertical edges represented by the structural information related to the tag information and the second angular distribution pattern of front vertical edges extracted in step S305. , the direction of the home delivery robot 2 is specified (S306). Specifically, the control unit 32 adjusts the degree of correlation between the first distribution pattern and the second distribution pattern while angularly shifting the axis of the home delivery robot 2 in the front-rear direction with respect to the reference orientation related to the structural information. investigate. The control unit 32 then identifies the azimuthal deviation when the second distribution pattern is most consistent with the first distribution pattern and has the highest correlation. This azimuth deviation is the angular deviation of the longitudinal axis of the home delivery robot 2 with respect to the reference azimuth related to the structural information. Based on this azimuth deviation, the absolute azimuth of the longitudinal axis of the home delivery robot 2 can be identified with reference to the reference azimuth related to the structural information.
  • control unit 32 When the control unit 32 can identify the absolute position and absolute orientation of the home delivery robot 2, the control unit 32 determines the amount of fluctuation estimated by the IMU 22, such as the amount of change in orientation estimated by integration of the yaw rate and the amount of displacement estimated by double integration of acceleration. The amount is reset to zero (S307). The control unit 32 also stores the absolute position and absolute orientation of the home delivery robot 2 specified in the reset process P12 as the initial position or initial orientation before starting movement.
  • control unit 32 When the control unit 32 resets the amount of variation estimated by the IMU 22 to zero (S307), it controls the home delivery robot 2 to wait for the delivery of a new parcel 100 in the same posture. Alternatively, the position and orientation of the home delivery robot 2 may be adjusted. At the time of this adjustment, the amount of displacement and the amount of change in orientation estimated by the IMU 22 may be stored.
  • the system 1 of this example configured as described above is a system in which the home delivery robot 2 moves within the condominium 5 by autonomous self-propulsion using inertial navigation.
  • the two-dimensional displacement amount and the azimuth variation amount which are the amount of variation estimated by inertial navigation, are reset to zero according to the detection of the magnetic marker 10 .
  • the absolute position of the delivery robot 2 can be identified based on the position of the magnetic marker 10. After the absolute position is specified by detecting the magnetic marker 10 in this way, the two-dimensional displacement amount and the azimuth variation amount accompanying the movement are estimated from zero start by inertial navigation. Therefore, when the magnetic marker 10 is detected, there is no need to use the past two-dimensional displacement amount or azimuth variation amount estimated by inertial navigation for positioning.
  • the magnetic marker 10 is arranged in the standby space 505 to which the home delivery robot 2 returns each time it delivers the parcel 100 . Therefore, the system 1 can always reset the amount of variation estimated by inertial navigation to zero each time one parcel 100 is delivered. Therefore, in this system 1, there is no possibility that the accuracy of positioning by inertial navigation will deteriorate significantly while the package 100 is being delivered, and the package 100 can be delivered to each house 56 with high reliability.
  • this example illustrates a configuration in which the magnetic markers 10 are arranged only in the standby space 505 .
  • the magnetic markers 10 may be arranged at locations where the home delivery robot 2 frequently passes.
  • the elevator hall 525 (see FIG. 1) in front of the elevator 52 is a place that the home delivery robot 2 must pass through when moving between floors. Therefore, it is also preferable to dispose the magnetic marker 10 in the elevator hole 525 .
  • the magnetic marker 10 may be arranged in the section connecting the elevator 52 and the dwelling unit 56 closest to the elevator 52 in the corridor 50 on each floor. This section on the passageway 50 is a section through which the home delivery robot 2 must pass when delivering the package 100 to one of the dwelling units 56 on each floor.
  • the magnetic marker 10 may be arranged on the floor surface of the elevator 52 .
  • the elevator 52 each time the home delivery robot 2 uses the elevator 52, it is possible to reset the amount of variation due to inertial navigation. Elevator 52 moves in the vertical direction while there is no movement in the horizontal plane. Therefore, when the magnetic marker 10 is arranged on the floor surface of the elevator 52, it is possible to specify the position of each floor on the two-dimensional map.
  • the position in the height direction that is, the selection of the floor where the delivery robot 2 is located can be specified by the delivery robot 2 side that outputs the information on the destination floor, as described above.
  • the floor surface of the elevator 52 is an example of an area where the elevator 52 receives the home delivery robot 2 .
  • Example 2 This example is an example in which the control specifications are changed based on the first example so that the home delivery robot 2 detects the magnetic marker 10 as necessary. This content will be described with reference to FIGS. 7 and 14 to 16 used to describe the first embodiment.
  • magnetic markers 10 are arranged at a plurality of locations within the condominium 5 .
  • the magnetic markers 10 are arranged, for example, in corners of elevator halls 525 on each floor.
  • the position of the magnetic marker 10 in each elevator hall 525 is specified on the two-dimensional map of each floor.
  • the control unit 32 (FIG. 7) provided in the home delivery robot 2 obtains an index value representing the degree of error included in the amount of variation (the amount of displacement and the amount of variation in direction) estimated by the IMU 22. It has a function as an error estimator.
  • the control unit 32 as a control section switches the control applied to the home delivery robot 2 according to the result of threshold processing for the index value obtained by the error estimating section.
  • the control unit 32 of this example switches to control for causing the home delivery robot 2 to reach the position where the magnetic marker 10 is arranged when the index value becomes equal to or greater than the threshold value or exceeds the threshold value.
  • the error included in the amount of variation estimated by the IMU 22 tends to cumulatively increase due to the process of integrating the measured yaw rate and acceleration.
  • the time when the absolute position and absolute orientation are specified using the magnetic marker 10 is the time when the IMU 22 starts estimating the amount of change from zero. is zero.
  • the error included in the amount of variation estimated by the IMU 22 increases cumulatively.
  • This example is an example in which the elapsed time from the time when the absolute position and absolute orientation are identified using the magnetic marker 10 is used as an index value representing the degree of error included in the amount of error variation by the IMU 22 .
  • the index value instead of or in addition to the elapsed time, a moving distance from the absolute position specified using the magnetic marker 10 may be used.
  • step S211 for threshold judgment regarding the elapsed time after the reset processing and the interrupt processing executed according to the result of the threshold processing P21 has been added. If the elapsed time is within the threshold (S211: YES), control similar to that of the first embodiment is executed. On the other hand, when the elapsed time after the reset process exceeds the threshold (S211: NO), the interrupt process P21 is executed as an interrupt.
  • This interrupt process P21 is a process of switching the control applied to the home delivery robot 2 from the control for moving to a preset destination to the movement control P11 for detecting the magnetic marker 10 .
  • the control unit 32 When the interrupt process P21 (FIG. 16) is started, the control unit 32 first stores the position (an example of the interrupted position) and orientation of the home delivery robot 2 at that time (S401). Then, the control unit 32 refers to the two-dimensional map stored in the map DB 34 and searches for the magnetic marker 10 with the lowest movement cost from the current position (S402). Here, the movement cost increases as the distance increases, and when crossing floors, it is a cost that is more expensive than movement on the same floor. In the above step S402, the movement cost necessary for the home delivery robot 2 to move is obtained for each of the arranged magnetic markers 10 to which the home delivery robot 2 moves. Set as a detection target.
  • the control unit 32 calculates a route to return to the original position and orientation stored in step S401 via the position of the magnetic marker 10. (S403).
  • the control unit 32 applies movement control P11 to the home delivery robot 2 so that it can move along the newly set route.
  • This movement control P11 is the same control as the movement control of the first embodiment.
  • the control unit 32 repeatedly executes the movement control P11 until it reaches the arrangement position of the magnetic marker 10 (S404: NO ⁇ S415: NO). After that, when reaching the arrangement position of the magnetic marker 10 (S404: YES), the control unit 32 executes the reset process P12 (FIG. 13).
  • this reset process P12 is a process of identifying the absolute position and absolute orientation of the home delivery robot 2 and resetting the amount of variation (amount of displacement, amount of variation in orientation) estimated by the IMU 22 to zero. .
  • the elapsed time after the reset process is also reset to zero.
  • the control unit 32 resumes the movement control P11.
  • This movement control P11 is continuously executed until the original position (an example of the interrupt position) and heading stored in step 401 can be restored (S404: NO ⁇ S405: NO).
  • the control unit 32 terminates the interrupt processing and switches to the original movement control (FIG. 15).
  • the home delivery robot 2 detects the magnetic marker 10 as needed and executes reset processing at any time. There is no When the home delivery robot 2 returns to the entrance 58, if there is any parcel 100 left in the receiving box 4B, the delivery robot 2 can immediately go to the receiving box 4B. Further, by adopting the configuration of this example, it becomes possible to receive a plurality of parcels 4B from a plurality of receiving boxes 4B and deliver the parcels 100 to a plurality of dwelling units 56 without returning to the entrance 58 . Other configurations and effects are the same as those of the first embodiment.
  • Example 3 This example is an example in which the system of Example 2 is applied to a system that executes the work of spraying agricultural chemicals on a field 600 . This content will be described with reference to FIGS. 17 to 24.
  • FIG. 3 This example is an example in which the system of Example 2 is applied to a system that executes the work of spraying agricultural chemicals on a field 600 . This content will be described with reference to FIGS. 17 to 24.
  • FIG. 3 Example 3
  • the system 1 (Fig. 17) of this example is an example of a system in which the drone 2 autonomously flies and sprays agricultural chemicals on the field 600.
  • this system 1 several mark posts 6 are erected around a field 600 as marks.
  • a magnetic marker 10 is provided on the upper end surface of each mark post 6 (FIG. 18).
  • the magnetic marker 10 is formed into a columnar shape from a ferrite plastic magnet in which magnetic powder such as iron oxide is dispersed in a polymeric material as a base material.
  • the magnetic force of this magnetic marker 10 is equivalent to that of the magnetic marker of the first embodiment.
  • the magnetic marker 10 is embedded in a hole drilled in the upper end surface of the mark post 6 .
  • a sheet-like RFID tag 15 is attached to the end surface of the magnetic marker 10 .
  • the RFID tag 15 can wirelessly output tag information including position information and identification information of the mark post 6 .
  • the topography of the field 600 is specified, and a three-dimensional map in which the position of each mark post 6 is specified is managed.
  • Mark post identification information is attached to the position of each mark post 6 on the three-dimensional map.
  • each area in the field 600 is associated with information such as the type of cultivated crops.
  • Drone 2 (Fig. 19) is an example of a mobile object capable of autonomous flight using inertial navigation.
  • the drone 2 is a multicopter with four rotor blades 2P around the body 2B.
  • the drone 2 can fly by individually controlling the four rotor blades 2P.
  • the size of the body 2B of the drone 2 is approximately 30 cm in the longitudinal direction and approximately 20 cm in width.
  • the body 2B of the drone 2 includes a control unit 32, a front camera 383, an ultrasonic sensor 384, a sensor array 21 including a plurality of magnetic sensors, a tag reader 321 communicating with the RFID tag 15, a GPS unit 381 and an IMU 22. and other positioning units are installed.
  • the control unit 32 includes a route setting section that sets a route for the drone 2 to move, a control section that moves the drone 2 along the route, a communication circuit section that executes communication with an external server device (not shown), and a map DB. (database), etc.
  • the map DB is constructed using the storage area of the internal memory of the control unit 32 .
  • the map DB stores the above three-dimensional map data.
  • the communication circuit unit receives instruction information including geographical information for specifying a work target area and information such as work content from an external server device (not shown).
  • the route setting unit sets a flight route by referring to map data based on instruction information received from the outside.
  • the front camera 383 is a camera for photographing the front.
  • Control unit 32 detects mark post 6 by, for example, performing image processing on the image captured by front camera 383 .
  • the GPS unit 381 is a unit that measures an absolute position using GPS (Global Positioning System), which is a kind of GNSS (Global Navigation Satellite System).
  • the IMU 22 has a gyro sensor that measures angular velocity around three orthogonal axes, an acceleration sensor that measures acceleration in three axial directions, an electronic compass, and the like.
  • the angular velocity and acceleration measured by the IMU 22 can be used for attitude control of the drone 2, and can also be used for autonomous flight by inertial navigation.
  • the tag reader 321 is a communication unit that wirelessly communicates with the RFID tag 15 held by the magnetic marker 10 (see FIG. 18).
  • the tag reader 321 wirelessly transmits power necessary for operating the RFID tag 15 to operate the RFID tag 15 and receives tag information output by the RFID tag 15 .
  • the tag information includes position information and identification information of the corresponding mark post 6 (magnetic marker 10).
  • the control unit 32 as a data reading section should refer to the storage area of the map DB, which is a database, and read the position information of the magnetic marker 10 associated with the identification information included in the tag information.
  • FIG. 20 is a flow chart showing the flow of the overall processing of pesticide spraying work by the drone 2.
  • FIG. 21 is a reference diagram during the description of FIG.
  • FIG. 22 is a flow chart of flight control applied to the drone 2.
  • FIG. 23 is a flowchart showing the flow of interrupt processing for executing reset processing.
  • FIG. 24 is a flowchart showing the flow of reset processing.
  • the drone 2 waits in a parking area (not shown) until instruction information is received from the outside (S501: NO). Note that, while the drone 2 is parked, the absolute position and absolute azimuth of the drone 2 are specified. Moreover, the amount of variation estimated by the IMU 22 is also reset to zero.
  • the control unit 32 receives instruction information from the outside (S501: YES)
  • the control unit 32 calculates and sets a route R (FIG. 21) for efficiently flying within the work area (600A) related to the instruction information (S502).
  • the control unit 32 repeatedly executes the flight control P31 (described later with reference to FIG. 22) until the work related to the instruction information is completed (S503: NO).
  • the control unit 32 determines whether or not the elapsed time after the start of flight is within a threshold value (S601). During flight control P31, if the elapsed time after the start of flight is within the threshold (S601: YES), the IMU 22 estimates the position and orientation of the drone 2 (S602). At this time, the IMU 22 estimates the position and orientation of the drone 2 by adding the amount of displacement or the amount of change in orientation to the absolute position and absolute orientation specified while the drone is parked.
  • the position and orientation estimated by the IMU 22 in step S602 are the positions or orientations on the three-dimensional map stored in the map DB.
  • the control unit 32 identifies the deviation of the position and orientation estimated by the IMU 22 from the preset control target path R (see FIG. 21) (S603).
  • the deviation is the deviation of the position of the drone 2 estimated in step S602 above, and the deviation of the azimuth of the drone 2 estimated similarly.
  • the control unit 32 individually controls the four rotors 2P so that the drone 2 can fly along the route R (FIG. 21) based on the identified position and orientation deviations (S604).
  • the control unit 32 executes the interrupt process P21.
  • the control unit 32 first stores the position and orientation of the drone 2 at that time (S701). Then, the control unit 32 refers to the three-dimensional map of the field 600 and selects the mark post 6 closest to the current position as the destination (S702).
  • control unit 32 When the control unit 32 selects the destination mark post 6, the control unit 32 calculates and sets a route via the mark post 6 to return to the original position and bearing stored in step S701 (S703). ). The control unit 32 applies flight controls P31 to the drone 2 so that it can move along the newly established path.
  • the control unit 32 repeatedly executes the flight control P31 until the destination mark post 6 is reached (S704: NO ⁇ S715: NO). After that, when the destination mark post 6 is reached (S704: YES), the control unit 32 executes the reset process P12.
  • This reset process P12 is a process of specifying the absolute position and absolute azimuth of the drone 2 and resetting the variation amount (displacement amount, azimuth variation amount) estimated by the IMU 22 to zero.
  • the content of the reset process P12 is substantially the same as the reset process of the second embodiment. In the reset process P12, the elapsed time after the start of flight is also reset to zero.
  • the reset process P12 (FIG. 24) is executed after reaching above the mark post 6.
  • the control unit 32 first executes the detection process of the magnetic marker 10 (S800).
  • the control unit 32 controls the drone 2 to fly over the mark post 6 until the magnetic marker 10 is detected (S801: NO), thereby searching for the magnetic marker 10 (S811).
  • the control unit 32 adjusts the position of the drone 2 so that the magnetic sensor C8 positioned in the center of the sensor array 21 is positioned right above the magnetic marker 10. is executed (S802).
  • the azimuth which is the orientation of the drone 2
  • the position of the magnetic sensor C8 is controlled to be, for example, directly above the magnetic marker 10 and at a height of 10 cm. The height from the magnetic marker 10 can be grasped by measuring the distance to the upper surface of the marker post 6 with the ultrasonic sensor 384 .
  • the control unit 32 acquires tag information wirelessly output from the RFID tag 15 when the magnetic sensor C8 is positioned directly above the magnetic marker 10 at a height of 10 cm (S803). As described above, this tag information includes position information and identification information of the mark post 6 . Control unit 32 identifies the position of mark post 6 as the absolute position of drone 2 (S804). As the altitude of the drone 2, the height obtained by adding 10 cm to the height of the upper end surface of the mark post 6 is specified.
  • the control unit 32 acquires a forward image showing two or more mark posts 6 by the forward camera 383 (S805).
  • the control unit 32 detects the mark post 6 in the image by performing image processing on this forward image.
  • the control unit 32 identifies the absolute orientation of the airframe 2B based on the position of the mark post 6 in the image (S806).
  • the control unit 32 resets the amount of displacement and the amount of fluctuation in orientation estimated by the IMU 22 to zero (S807).
  • the drone 2 can automatically perform the pesticide spraying work while repeating the reset process as needed. If the reset process P12 for resetting the amount of variation estimated by the IMU 22 to zero is executed as needed, the positioning error due to inertial navigation does not become excessive.
  • the configuration of this example can be widely applied, for example, to exterior inspections of structures such as buildings and bridges using the drone 2.
  • the configuration of this example may also be applied to agricultural machines that perform farm work while moving within a predetermined area, such as a cultivator that plows a field and a combine harvester that harvests rice or wheat.
  • the configuration of this example may also be applied to a cleaning robot that cleans a predetermined area.
  • the configuration of this example may also be applied to an underwater drone for underwater exploration.
  • the configuration of this example may also be applied to heavy machinery for mining natural resources, heavy machinery for civil engineering work, vehicles for transporting earth and sand, and the like.
  • control unit 32 may be configured so as to be able to receive information such as real-time weather conditions such as wind speed and rainfall, and flight positions of other drones 2 from the outside at any time.
  • information such as real-time weather conditions such as wind speed and rainfall, and flight positions of other drones 2 from the outside at any time.
  • a dynamic map reflecting real-time weather conditions and the like can be constructed, and flight control using the dynamic map becomes possible.
  • Other configurations and effects are the same as those of the first or second embodiment.
  • Example 4 This example is an example in which the method for specifying the orientation (absolute orientation) of the home delivery robot 2 is modified based on the system 1 of the first embodiment. This content will be described with reference to FIG.
  • a magnetic marker (main marker) 10M without an RFID tag is adopted instead of the magnetic marker with an RFID tag in Example 1, and a magnetic marker (sub-marker) 10S is used for this main marker 10M. is attached.
  • the sub-marker 10S is detectable by the home delivery robot 2 and is an auxiliary marker for specifying the approach direction of the home delivery robot 2 with respect to the main marker 10M.
  • the main marker 10M is arranged near the center of the waiting space (reference numeral 505 in FIG. 1).
  • the sub-marker 10S is arranged on the movement route that the home delivery robot 2 always passes when returning to the standby space, regardless of the difference in the movement route. When returning to the waiting space, the delivery robot 2 can always detect the sub-marker 10S and the main marker 10M in this order.
  • the main marker 10M and the sub-marker 10S have different magnetic polarities detected by the home delivery robot 2 so that the home delivery robot 2 can easily distinguish between them.
  • the main marker 10M is the N pole
  • the sub marker 10S is the S pole.
  • the orientation of the sub-marker 10S with respect to the main marker 10M is the orientation specified on the two-dimensional map.
  • the azimuth connecting the main marker 10M and the sub-marker 10S is the reference azimuth for specifying the absolute azimuth of the home delivery robot 2 .
  • a marker span M, which is the distance between the main marker 10M and the sub-marker 10S, is 30 cm.
  • the delivery robot 2 when the delivery robot 2 returns to the waiting space, the delivery robot 2 is controlled so as to enter the waiting space by linear movement.
  • the approach direction of the home delivery robot 2 to the standby space varies depending on the route set at that time, but is within a certain range of azimuthal variation.
  • the sub-marker 10S is arranged at a position such that the sensor array 21 passes right above it regardless of the variations in the approach direction of the home delivery robot 2 with respect to the waiting space.
  • the orientation of the robot 2 may change.
  • the marker span M of 30 cm is a sufficiently short distance that can ignore the influence of possible changes in the orientation of the home delivery robot 2 in this way.
  • the movement direction of the delivery robot 2 that is, the The orientation (orientation, absolute orientation) can be specified. Specifically, it is possible to identify the deviation angle Ax of the azimuth (front-rear direction) of the home delivery robot 2 with reference to the direction dir connecting the main marker 10M and the sub-marker 10S.
  • the deviation angle Ax can be calculated using the lateral deviation amount with respect to the main marker 10M and the sub-marker 10S, as shown in the following formula.
  • the amount of lateral deviation with respect to the sub-marker 10S detected first is assumed to be OF1
  • the amount of lateral deviation with respect to the main marker 10M detected later is assumed to be OF2.
  • the lateral deviation amounts OF1 and OF2 are defined to be positive or negative values with the center of the delivery robot 2 in the width direction (the position of the magnetic sensor C8) as a boundary.
  • the marker span M of the two magnetic markers 10 is known. Therefore, if the time difference between the detection points is known, the moving speed can be specified with high accuracy. If the moving speed is known, the speed error obtained by integrating the acceleration measured by the IMU 22 can be specified. Based on the speed estimation error, the zero point of acceleration, the error correction of the calculated value, the adjustment of the correction coefficient in the speed calculation process, the setting of constants such as the initial value and the integral constant applied to the speed calculation process. Adjustment etc. becomes possible. Other configurations and effects are the same as those of the first embodiment.

Abstract

This system (1), which includes a delivery robot (2) that moves through an entrance (58) or a corridor (50) of an apartment building (5) in order to distribute packages (100) delivered by a vendor to individual doors (56), is a system of moving bodies with which it is possible to maintain high positioning accuracy by using autonomous navigation such as inertial navigation, wherein: the delivery robot (2) estimates the amount of displacement associated with movement, and moves while estimating the post-movement position by adding the estimated displacement amount to the initial position of the delivery robot (2) when starting to move; or, once a magnetic marker (10) placed in a waiting space (505) has been detected, the delivery robot (2) specifies the absolute position and resets the estimated displacement amount to zero.

Description

システムsystem
 本発明は、移動体が空間内を移動するシステムに関する。 The present invention relates to a system in which a moving object moves in space.
 従来より、例えば、自律的な自動走行により予め定められた空間内を移動する車両が実用化されている(例えば、特許文献1参照。)。このような車両としては、例えば、工場内の無人搬送車や、施設内の移動車両など、がある。例えば、これらの車両は、GPS(Global Positioning System)等を利用して自車位置を測位しながら予め定められたルートに沿って移動する。 Conventionally, for example, vehicles that move within a predetermined space by autonomous automatic driving have been put into practical use (see Patent Document 1, for example). Such vehicles include, for example, automated guided vehicles in factories and mobile vehicles in facilities. For example, these vehicles use GPS (Global Positioning System) or the like to move along a predetermined route while measuring the position of the vehicle.
 例えば、工場内の建屋間の移動など、屋外を移動する車両であれば、衛星電波を比較的安定して受信でき、GPSを利用して自車位置を測位可能である。一方、例えば、工場などの屋内環境では、衛星電波の受信状態が良好ではないため、GPSによる測位が難しくなるという実情がある。そこで、工場などの屋内環境に適用するシステムとして、慣性航法によって自車位置を推定しながら目的地に向けて無人搬送車を自動走行させるシステムの提案もある。慣性航法では、例えば、加速度を二重積分することで車両の移動量を推定したり、ヨーレート(角速度)の積分により車両の回頭角(方位の変動量)を推定している。 For example, a vehicle that moves outdoors, such as between buildings in a factory, can receive satellite radio waves relatively stably, and can use GPS to determine the position of the vehicle. On the other hand, for example, in an indoor environment such as a factory, the reception condition of satellite radio waves is not good, so the actual situation is that positioning by GPS becomes difficult. Therefore, as a system that can be applied to indoor environments such as factories, there is a proposal for a system that automatically drives an unmanned guided vehicle toward a destination while estimating the position of the vehicle using inertial navigation. In inertial navigation, for example, the amount of movement of the vehicle is estimated by double integrating the acceleration, and the turning angle (amount of change in direction) of the vehicle is estimated by integrating the yaw rate (angular velocity).
特開2020-135619号公報JP 2020-135619 A
 しかしながら、前記従来の慣性航法を利用するシステムでは、次のような問題がある。すなわち、加速度あるいはヨーレートを積分して移動量や回頭角を推定する際、積分による誤差の累積が不可避であり、累積誤差に起因して測位の精度が損なわれるおそれがあるという問題がある。 However, the system using conventional inertial navigation has the following problems. That is, when estimating the amount of movement or the turning angle by integrating the acceleration or yaw rate, the accumulation of errors due to integration is unavoidable, and there is a possibility that the accuracy of positioning may be impaired due to the accumulated errors.
 本発明は、前記従来の問題点に鑑みてなされたものであり、慣性航法等の自律航法を利用する移動体のシステムにおいて、測位精度を高く維持できるシステムを提供しようとするものである。 The present invention has been made in view of the conventional problems described above, and aims to provide a system that can maintain high positioning accuracy in a mobile system that uses autonomous navigation such as inertial navigation.
 本発明は、移動体が空間内を移動するシステムであって、
 周辺に磁気を作用する磁気マーカが前記空間に配設されている一方、前記移動体には、作用する磁気の大きさを計測する磁気センサが搭載されており、
 前記移動体を移動させる制御部と、
 前記磁気センサによる計測値に処理を施すことで磁気マーカを検出する検出部と、
 前記移動体の移動に伴う位置的な変動量及び方位的な変動量のうちの少なくともいずれか一方の変動量を推定する変動量推定部と、
 該変動量推定部が推定した変動量を、前記移動体が移動を開始したときの位置あるいは方位に足し合わせることで、前記移動体の移動後の位置あるいは方位を推定する測位部と、を備え、
 該変動量推定部は、前記磁気マーカが検出されたときに前記変動量をゼロリセットするシステムにある。
The present invention is a system in which a moving object moves in space,
A magnetic marker that exerts magnetism on the periphery is arranged in the space, while the moving body is equipped with a magnetic sensor that measures the magnitude of the acting magnetism,
a control unit that moves the moving body;
a detection unit that detects a magnetic marker by processing values measured by the magnetic sensor;
a variation estimation unit for estimating at least one of a positional variation and an azimuth variation associated with movement of the moving object;
a positioning unit for estimating the position or orientation of the mobile object after movement by adding the amount of variation estimated by the variation amount estimation unit to the position or orientation of the mobile object when the mobile object started to move. ,
The variation estimator is in a system that resets the variation to zero when the magnetic marker is detected.
 本発明のシステムは、磁気マーカが配設された空間内を移動体が移動するためのシステムである。このシステムでは、移動体の移動に伴う変動量が推定され、変動量を利用して移動体の位置あるいは方位が推定される。このシステムでは、磁気マーカの検出に応じて、変動量推定部が推定する移動体の変動量がゼロリセットされる。 The system of the present invention is a system for moving a moving body in a space in which magnetic markers are arranged. This system estimates the amount of variation that accompanies the movement of the mobile object, and uses the amount of variation to estimate the position or orientation of the mobile object. In this system, the variation amount of the moving object estimated by the variation estimation unit is reset to zero in response to the detection of the magnetic marker.
 本発明のシステムでは、磁気マーカが検出されたとき、変動量のゼロリセットによって変動量に含まれる誤差の累積を断ち切ることができる。それ故、このシステムでは、移動体の変動量の推定精度を高く維持することが可能であり、移動体の位置あるいは方位を精度高く推定可能である。 In the system of the present invention, when a magnetic marker is detected, it is possible to cut off the accumulation of errors contained in the variation amount by resetting the variation amount to zero. Therefore, in this system, it is possible to maintain high accuracy in estimating the amount of variation of the moving object, and to estimate the position or orientation of the moving object with high accuracy.
 以上のように、本発明のシステムは、移動体の測位精度を高く維持できる優れた特性のシステムである。 As described above, the system of the present invention is a system with excellent characteristics that can maintain high positioning accuracy of mobile objects.
実施例1における、システムの説明図。Explanatory drawing of the system in Example 1. FIG. 実施例1における、荷受ボックス及び宅配ボックスの側面から見た説明図。FIG. 2 is an explanatory view of the receiving box and the delivery box as viewed from the side in the first embodiment; 実施例1における、磁気マーカの説明図。FIG. 4 is an explanatory diagram of a magnetic marker in Example 1; 実施例1における、RFIDタグの正面図。1 is a front view of an RFID tag in Example 1. FIG. 実施例1における、宅配ロボットの斜視図。1 is a perspective view of a home delivery robot in Embodiment 1. FIG. 実施例1における、宅配ロボットの底面図。2 is a bottom view of the home delivery robot in Embodiment 1. FIG. 実施例1における、宅配ロボットの電気的構成を示すブロック図。FIG. 2 is a block diagram showing an electrical configuration of the home delivery robot according to the first embodiment; FIG. 実施例1における、磁気マーカを通過する際の前後方向の磁気計測値の変化を例示する説明図。FIG. 5 is an explanatory diagram illustrating changes in magnetic measurement values in the front-rear direction when passing through a magnetic marker in Example 1; 実施例1における、幅方向に配列された磁気センサCnによる幅方向の磁気計測値の分布を例示する説明図。FIG. 5 is an explanatory diagram illustrating the distribution of magnetic measurement values in the width direction by the magnetic sensors Cn arranged in the width direction according to the first embodiment; 実施例1における、システムの全体処理の流れを示すフロー図。FIG. 2 is a flowchart showing the flow of overall system processing in the first embodiment; 実施例1における、宅配ロボットによる荷物の積み込み動作の説明図。FIG. 4 is an explanatory diagram of a loading operation of a parcel by a home delivery robot in the first embodiment; 実施例1における、宅配ロボットの移動制御の流れを示すフロー図。FIG. 2 is a flow chart showing the flow of movement control of a home delivery robot according to the first embodiment; 実施例1における、宅配ロボットによるリセット処理の流れを示すフロー図。FIG. 4 is a flowchart showing the flow of reset processing by the home delivery robot in the first embodiment; 実施例2における、マンションの構造図。Structural drawing of the condominium in Example 2. FIG. 実施例2における、宅配ロボットの移動制御の流れを示すフロー図。FIG. 10 is a flowchart showing the movement control flow of the home delivery robot in the second embodiment; 実施例2における、割込処理の流れを示すフロー図。FIG. 10 is a flowchart showing the flow of interrupt processing in the second embodiment; 実施例3における、システムの説明図。Explanatory drawing of the system in Example 3. FIG. 実施例3における、マークポストを示す斜視図。FIG. 11 is a perspective view showing a mark post in Example 3; 実施例3における、ドローンの上面図。The top view of the drone in Example 3. FIG. 実施例3における、システムの全体処理の流れを示すフロー図。FIG. 10 is a flowchart showing the flow of overall system processing in the third embodiment; 実施例3における、作業対象エリアおよび制御目標の経路を示す説明図。FIG. 11 is an explanatory diagram showing a work target area and a route of a control target in Example 3; 実施例3における、ドローンの飛行制御の流れを示すフロー図。FIG. 11 is a flow chart showing the flow of flight control of a drone in Embodiment 3; 実施例3における、割込処理の流れを示すフロー図。FIG. 11 is a flowchart showing the flow of interrupt processing in the third embodiment; 実施例3における、リセット処理の流れを示すフロー図。FIG. 11 is a flowchart showing the flow of reset processing in the third embodiment; 実施例4における、宅配ロボット2の方位を特定する方法の説明図。FIG. 11 is an explanatory diagram of a method for specifying the direction of the home delivery robot 2 in the fourth embodiment;
 本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
 本例は、マンション5等の集合住宅の各戸56に、宅配便等の荷物100を宅配ロボット2が配達するシステム1に関する例である。以下、この内容について、図1~図13を用いて説明する。
Embodiments of the present invention will be specifically described using the following examples.
(Example 1)
This example relates to a system 1 in which a home delivery robot 2 delivers a package 100 such as a home delivery service to each house 56 of a collective housing such as an apartment 5 . This content will be described below with reference to FIGS. 1 to 13. FIG.
 システム1における宅配ロボット2は、図1のごとく、慣性航法によりマンション5内を自律的に移動する移動体の一例である。宅配ロボット2は、荷受け場所の一例であるエントランス58に設けられた荷受ボックス4Bに届いた荷物100を、各戸(各住戸)56の宅配ボックス4Aまで運搬する。システム1では、エントランス58の隅に設けられた宅配ロボット2の待機スペース505に磁気マーカ10が配設されている。宅配ロボット2は、磁気マーカ10の検出に応じて、測位のために慣性航法によって推定する変動量をリセットする。 The delivery robot 2 in the system 1 is an example of a moving body that autonomously moves within the condominium 5 by inertial navigation, as shown in FIG. The delivery robot 2 transports the package 100 that has arrived at the delivery box 4B provided at the entrance 58, which is an example of a delivery location, to the delivery box 4A of each house (each dwelling unit) 56. In the system 1 , a magnetic marker 10 is arranged in a waiting space 505 for the home delivery robot 2 provided at the corner of the entrance 58 . When the magnetic marker 10 is detected, the home delivery robot 2 resets the amount of variation estimated by inertial navigation for positioning.
 本例のマンション5は、エレベータ52を備える例えば5階建の集合住宅である。1階にエントランス58が設けられていることを除けば、マンション5の各階の構造は似通っている。各階では、直線的に設けられた通路50に面して各戸56が横並びで配列されている。マンション5の居住者は、1階の出入り口580からエントランス58に入ることができ、エントランス58に設けられたエレベータ52を利用して上階に移動できる。 The condominium 5 in this example is, for example, a five-story housing complex with an elevator 52 . The structure of each floor of the condominium 5 is similar except that the entrance 58 is provided on the first floor. On each floor, each house 56 is arranged side by side facing the passage 50 provided linearly. A resident of the condominium 5 can enter the entrance 58 from the doorway 580 on the first floor, and use the elevator 52 provided at the entrance 58 to move upstairs.
 出入口580に対面するエントランス58の壁581には、宅配業者が荷物を配達するための複数の荷受ボックス4Bが横並びで設置される。荷受ボックス4Bは、壁581の一部をなし、マンション5の外及びエントランス58の両方に面するように壁581に埋め込まれている。 On the wall 581 of the entrance 58 facing the doorway 580, a plurality of receiving boxes 4B for delivery of packages by a home delivery company are installed side by side. The receiving box 4B forms part of the wall 581 and is embedded in the wall 581 so as to face both the outside of the condominium 5 and the entrance 58 .
 各戸56では、通路50に面する玄関ドア560の側方に、荷物100を受け取るための宅配ボックス4Aが設けられている。宅配ボックス4Aは、各戸56と通路50とを仕切る壁561の一部をなし、各戸56の室内及び通路50の両方に面するように壁561に埋め込まれている。 In each door 56, a delivery box 4A for receiving the package 100 is provided on the side of the entrance door 560 facing the passage 50. The delivery box 4A forms part of the wall 561 that separates each door 56 from the passage 50, and is embedded in the wall 561 so as to face both the interior of each door 56 and the passage 50. FIG.
 本例のシステム1では、マンション5内の共用スペースをなす通路50やエントランス58等、居住者が自由に行き来できる空間が、宅配ロボット2が移動する空間となっている。例えば1階の住戸56に荷物100を配達する場合、宅配ロボット2は、1階のエントランス58から出発して通路50を利用して配達先の住戸56に至る。また、例えば、2階以上の住戸56に荷物100を配達する場合、宅配ロボット2は、1階のエントランス58からエレベータ52に乗り込み、エレベータ52を利用して目的の階に移動する。 In the system 1 of this example, the space where the residents can freely come and go, such as the corridor 50 and the entrance 58 forming the common space in the condominium 5, is the space in which the home delivery robot 2 moves. For example, when delivering a package 100 to a dwelling unit 56 on the first floor, the home delivery robot 2 starts from the entrance 58 on the first floor and uses the passageway 50 to reach the dwelling unit 56 of the delivery destination. Further, for example, when delivering the package 100 to a dwelling unit 56 on the second floor or higher, the home delivery robot 2 enters the elevator 52 from the entrance 58 on the first floor and uses the elevator 52 to move to the target floor.
 上記のごとく、システム1では、荷受ボックス4Bが設置されたエントランス58の隅に、宅配ロボット2の待機スペース505が設けられている。待機スペース505には、磁気マーカ10が配設されている。宅配ロボット2は、磁気マーカ10を利用して、待機スペース505における待機位置を調整する。なお、この待機位置は、後述する移動制御(図12を参照。)における宅配ロボット2の初期位置及び初期方位となっている。 As described above, in the system 1, the waiting space 505 for the home delivery robot 2 is provided at the corner of the entrance 58 where the receiving box 4B is installed. A magnetic marker 10 is arranged in the standby space 505 . The home delivery robot 2 uses the magnetic marker 10 to adjust its standby position in the standby space 505 . This standby position is the initial position and initial orientation of the home delivery robot 2 in movement control (see FIG. 12), which will be described later.
 以下、マンション5側の設備である宅配ボックス4A、荷受ボックス4B、エレベータ52の各構成を説明し、続いて、磁気マーカ10、及び宅配ロボット2の構成を順番に説明する。その後、システム1の動作の内容を説明する。 The configurations of the home delivery box 4A, the receiving box 4B, and the elevator 52, which are facilities on the condominium 5 side, will be described below, and then the configurations of the magnetic marker 10 and the home delivery robot 2 will be described in order. After that, the contents of the operation of the system 1 will be explained.
(宅配ボックス)
 宅配ボックス4Aは、図1及び図2のごとく、マンション5の各戸56に設置されるロッカー型の設備である。なお、図2は、荷受ボックス4Bと共用の説明図である。同図中の符号471及び472は、荷受ボックス4Bのみが備える構成を示し、宅配ボックス4Aが具備しない構成の符号である。上記のごとく、宅配ボックス4Aは、各戸56の玄関ドア560の脇の壁561に埋め込まれて設置される。宅配ボックス4Aは、各戸56の通路50側の外壁面に対して略面一をなすと共に、各戸56の玄関などの室内をなす内壁面に対して略面一をなしている。なお、図2中、A側が通路50側であり、B側が各戸56の室内側である。
(Delivery box)
The delivery box 4A is a locker-type facility installed in each house 56 of the condominium 5, as shown in FIGS. In addition, FIG. 2 is an explanatory diagram shared with the receiving box 4B. Reference numerals 471 and 472 in the figure indicate the configuration provided only by the receiving box 4B, and are the reference numerals for the configuration not provided by the home delivery box 4A. As described above, the delivery box 4A is embedded in the wall 561 beside the entrance door 560 of each house 56 and installed. The home delivery box 4A is substantially flush with the outer wall surface of each door 56 on the passage 50 side, and is substantially flush with the inner wall surface of the room such as the entrance of each door 56. - 特許庁In addition, in FIG. 2, the A side is the passage 50 side, and the B side is the interior side of each door 56. As shown in FIG.
 宅配ボックス4Aは、図2のごとく、荷物100を収納するための荷物収納部40を備えている。宅配ボックス4Aでは、荷物収納部40の下側をなす基部43に、コントローラ400や図示しないモータ等が収容されている。室内側(B側)に面する宅配ボックス4Aの前面では、荷物100の存否を表示するためのランプ451が上端部に配置されている。また、荷物収納部40の下側の隣接する位置に、暗証番号等を入力するためのテンキー452が配設されている。ランプ451及びテンキー452は、荷物100の配達を居住者に報知したり居住者が操作したりする居住者向けのインターフェースである。 The home delivery box 4A is equipped with a package storage section 40 for storing packages 100, as shown in FIG. In the home delivery box 4A, a base portion 43 forming the lower side of the parcel storage portion 40 accommodates a controller 400, a motor (not shown), and the like. A lamp 451 for indicating the presence or absence of the package 100 is arranged at the upper end of the front surface of the delivery box 4A facing the indoor side (B side). In addition, a numeric keypad 452 for inputting a personal identification number or the like is arranged at a position adjacent to the lower side of the baggage storage section 40 . The lamp 451 and numeric keypad 452 are an interface for the resident that notifies the resident of the delivery of the package 100 and is operated by the resident.
 図2のごとく、荷物収納部40は、壁561を貫く方向に対面する一対の開口部41、42を備えている。各開口部41、42には、昇降可能なスライドドア411、421が設けられている。開口部41、42は、スライドドア411、421の昇降動作により開閉する。荷物収納部40の底面は、並列して配列された複数本の搬送ローラ403によって形成されている。各搬送ローラ403は、各開口部41、42の開口面に対して平行な棒状をなし、回転自在に取り付けられている。搬送ローラ403は、荷物100の搬入や搬出を容易にするために役立つ。なお、宅配ボックス4Aの搬送ローラ403には、モータ等は接続されてなく、荷物100の動きに従動して回転するのみである。 As shown in FIG. 2, the luggage storage section 40 has a pair of openings 41 and 42 facing each other in a direction penetrating through the wall 561 . The openings 41 and 42 are provided with slide doors 411 and 421 that can be raised and lowered. The openings 41 and 42 are opened and closed by the vertical movement of the slide doors 411 and 421 . The bottom surface of the baggage storage section 40 is formed by a plurality of conveying rollers 403 arranged in parallel. Each conveying roller 403 has a bar shape parallel to the opening surfaces of the openings 41 and 42 and is rotatably mounted. The transport rollers 403 are useful for facilitating the loading and unloading of the load 100 . It should be noted that the transport rollers 403 of the home delivery box 4A are not connected to a motor or the like, and only rotate following the movement of the parcel 100. As shown in FIG.
 コントローラ400は、スライドドア411、421を昇降させるモータ(図示略)やランプ451の点灯状態等を制御するためのユニットである。このコントローラ400は、宅配ロボット2との間で情報をやり取りする通信機能を備えているほか、テンキー452で入力された情報を取り込み可能なように構成されている。 The controller 400 is a unit for controlling motors (not shown) that move the slide doors 411 and 421 up and down, the lighting state of the lamp 451, and the like. The controller 400 has a communication function for exchanging information with the home delivery robot 2, and is configured to be able to take in information input with a numeric keypad 452. FIG.
 コントローラ400は、宅配ロボット2から受信する要求信号(オープン要求信号、クローズ要求信号)に応じて通路50側(A側)のスライドドア411を昇降させ、開口部41を開閉させる。また、コントローラ400は、テンキー452を利用して正しい暗証番号が入力されたとき、室内側(B側)のスライドドア421を駆動して開口部42を開口させる。コントローラ400は、荷物100が取り出されると、この開口部42を閉じるようにスライドドア421を駆動する。 The controller 400 raises and lowers the slide door 411 on the passage 50 side (side A) according to the request signal (open request signal, close request signal) received from the home delivery robot 2 to open and close the opening 41 . Further, when the correct password is input using the numeric keypad 452 , the controller 400 drives the slide door 421 on the indoor side (side B) to open the opening 42 . The controller 400 drives the slide door 421 to close the opening 42 when the baggage 100 is taken out.
(荷受ボックス)
 荷受ボックス4Bは、図1及び図2のごとく、宅配業者等が荷物100を配達するためのロッカー型の設備である。なお、上記のごとく、図2は、宅配ボックス4Aと共用の説明図である。同図中の符号451及び452は、宅配ボックス4Aが備える構成を示しており、荷受ボックス4Bが具備しない構成の符号である。
(receiving box)
As shown in FIGS. 1 and 2, the receiving box 4B is a locker-type facility for delivery of packages 100 by a delivery company or the like. As described above, FIG. 2 is an explanatory diagram shared with the home delivery box 4A. Reference numerals 451 and 452 in the figure indicate the components provided in the home delivery box 4A and the components not provided in the receiving box 4B.
 上記のごとく、各荷受ボックス4Bは、宅配業者等がエントランス58に入らずに荷物100を配達できるよう、図2中A側の面がエントランス58部分の外壁面と略面一をなす状態で、壁581に埋め込まれて設置されている。各荷受ボックス4Bの図2におけるB側の面は、屋内であるエントランス58に露出している。 As described above, each receiving box 4B has a surface on the A side in FIG. It is embedded in the wall 581 and installed. The B-side surface in FIG. 2 of each receiving box 4B is exposed to the entrance 58 which is indoors.
 以下、宅配ボックス4Aとの相違点を中心として、荷受ボックス4Bの説明を記載する。荷受ボックス4Bの搬送ローラ403は、モータ駆動される点において、宅配ボックス4Aとは相違している。荷受ボックス4Bは、搬送ローラ403の回転により荷物100の搬出が可能である。 The description of the receiving box 4B will be described below, focusing on the differences from the delivery box 4A. The conveying rollers 403 of the receiving box 4B are different from the delivery box 4A in that they are driven by a motor. The load receiving box 4B can carry out the load 100 by rotating the transport roller 403 .
 マンション5の外側に当たる屋外側(A側)に面する荷受ボックス4Bの前面では、荷物100の存否を表示するためのランプ471が上端部に配置され、荷物収納部40の下側の隣接する位置に押ボタン472が配設されている。ランプ471及び押ボタン472は、宅配業者向けのインターフェースである。押ボタン472は、開口部41を開けるために宅配業者が操作するボタンである。ランプ471は、荷物100を収納しているか否かを宅配業者に報知するためのランプである。 On the front surface of the receiving box 4B facing the outdoor side (A side) corresponding to the outside of the condominium 5, a lamp 471 for indicating the presence or absence of the luggage 100 is arranged at the upper end, and is positioned adjacent to the lower side of the luggage storage section 40. A push button 472 is arranged in the . A lamp 471 and a push button 472 are interfaces for the courier. The push button 472 is a button operated by the delivery company to open the opening 41 . The lamp 471 is a lamp for notifying the delivery company whether or not the parcel 100 is stored.
 荷受ボックス4Bは、図示しない無線開錠機構を有している。無線開錠機構は、宅配業者等が所持する無線キー(図示略)が近づいたときに開錠するように構成されている。荷受ボックス4Bのコントローラ400は、無線開錠機構が開錠している状態で上記の押ボタン472が操作されたとき、スライドドア411を下降させて屋外側(A側)の開口部41を開口させる。コントローラ400は、荷物100が搬入されると、スライドドア411を上昇させて開口部41を閉じる。 The receiving box 4B has a wireless unlocking mechanism (not shown). The wireless unlocking mechanism is configured to unlock when a wireless key (not shown) possessed by a home delivery company or the like approaches. When the push button 472 is operated while the wireless unlocking mechanism is unlocked, the controller 400 of the receiving box 4B lowers the slide door 411 to open the opening 41 on the outdoor side (side A). Let The controller 400 raises the slide door 411 and closes the opening 41 when the load 100 is carried in.
 荷受ボックス4Bのコントローラ400は、宅配ボックス4Aのコントローラと同様、宅配ロボット2との間で情報をやり取りする通信機能を備えている。コントローラ400は、宅配ロボット2から受信する要求信号(オープン要求信号、クローズ要求信号)に応じてエントランス58側(B側)のスライドドア421を昇降して、開口部42を開閉する。また、コントローラ400は、宅配ロボット2から受信する引渡要求信号に応じて搬送ローラ403を回転させ、宅配ロボット2に向けて荷物100を搬出する。 The controller 400 of the receiving box 4B has a communication function for exchanging information with the home delivery robot 2, like the controller of the delivery box 4A. The controller 400 raises and lowers the slide door 421 on the side of the entrance 58 (side B) to open and close the opening 42 in response to request signals (open request signal, close request signal) received from the home delivery robot 2 . In addition, the controller 400 rotates the transport rollers 403 in response to a delivery request signal received from the home delivery robot 2 to carry out the parcel 100 toward the home delivery robot 2 .
 荷受ボックス4Bのコントローラ400は、荷物収納部40に荷物100が収納されているとき、荷受ボックス4Bの識別情報であるボックス番号や荷受時刻を含む荷受信号を無線電波により外部出力する。荷受信号は、宅配ロボット2に対する出力信号である。宅配ロボット2側では、荷受信号の受信に応じて、送信元の荷受ボックス4Bに荷物100が配達されていることを把握できる。 When the package 100 is stored in the package storage unit 40, the controller 400 of the package receiving box 4B externally outputs a package receipt signal including the box number and the package receipt time, which are identification information of the package receiving box 4B. A receipt signal is an output signal to the home delivery robot 2 . On the delivery robot 2 side, it can be grasped that the parcel 100 has been delivered to the consignment receiving box 4B of the transmission source in response to the reception of the consignment reception signal.
(エレベータ)
 エレベータ52は、居住者が利用するエレベータであり、例えば、エントランス58に設けられる。本例のシステム1における宅配ロボット2は、階を跨いで移動する際、エレベータ52を利用する。エレベータ52は、移動体の例示である宅配ロボット2を、別の階(別の場所)へ搬送可能な運搬装置の一例である。
(elevator)
The elevator 52 is an elevator used by residents, and is provided at an entrance 58, for example. The delivery robot 2 in the system 1 of this example uses the elevator 52 when moving across floors. The elevator 52 is an example of a transport device capable of transporting the home delivery robot 2, which is an example of a mobile object, to another floor (another location).
 宅配ロボット2の利用に対応するため、エレベータ52は、宅配ロボット2との間で情報をやり取りする通信機能を備えている。具体的には、エレベータ52の昇降かご(図示略)、及び各階の操作パネル520に、図示しない通信ユニットがそれぞれ組み込まれている。エレベータ52は、各階の操作パネル520の前に宅配ロボット2が位置したとき、宅配ロボット2との通信によりその旨を検知し、昇降かごをその階に停止させるための制御を実行する。 In order to support the use of the home delivery robot 2, the elevator 52 has a communication function for exchanging information with the home delivery robot 2. Specifically, a communication unit (not shown) is incorporated in the elevator car (not shown) of the elevator 52 and the operation panel 520 on each floor. When the home delivery robot 2 is positioned in front of the operation panel 520 of each floor, the elevator 52 detects this through communication with the home delivery robot 2 and executes control to stop the elevator car on that floor.
 昇降かごの通信ユニットは、扉の開閉情報を宅配ロボット2に送信可能であると共に、昇降かごに乗り込み完了した旨の情報を宅配ロボット2から受信可能である。さらに、昇降かごの通信ユニットは、目的階の情報を宅配ロボット2から受信可能である。エレベータ52は、宅配ロボット2から目的階の情報を取得すると、昇降かごをその階まで移動して停止させるための制御を実行する。 The communication unit of the elevator car can transmit door opening/closing information to the home delivery robot 2, and can receive information from the home delivery robot 2 indicating that the passenger has boarded the elevator car. Furthermore, the communication unit of the elevator car can receive the information of the destination floor from the home delivery robot 2 . When the elevator 52 acquires information on the destination floor from the home delivery robot 2, the elevator 52 executes control to move the elevator car to that floor and stop it.
(磁気マーカ)
 磁気マーカ10は、図3のごとく、周辺に磁気を作用する磁気発生源としてのマーカである。上記の通り、本例のシステム1では、エントランス58の宅配ロボット2の待機スペース505に磁気マーカ10が配置されている。なお、磁気マーカ10の配設位置としては、本例のエントランス58に代えて、あるいは加えて、宅配ロボット2が待機スペース505に戻る際に必ず通る経路上の位置や、宅配ロボット2が待機スペース505から荷受ボックス4Bに向かって移動する際に必ず通過する経路上の位置や、エレベータ52前の位置や、通路50の中間的な位置、等であっても良い。
(magnetic marker)
The magnetic marker 10 is, as shown in FIG. 3, a marker as a magnetism generating source that exerts magnetism on its surroundings. As described above, in the system 1 of this example, the magnetic marker 10 is arranged in the waiting space 505 of the entrance 58 for the home delivery robot 2 . As for the arrangement position of the magnetic marker 10, instead of or in addition to the entrance 58 of this example, the position on the route that the home delivery robot 2 always passes when returning to the waiting space 505, or the waiting space where the home delivery robot 2 travels. It may be a position on the route that must be passed when moving from 505 toward the receiving box 4B, a position in front of the elevator 52, an intermediate position in the passage 50, or the like.
 磁気マーカ10は、図3のごとく、直径100mm、厚さ2mmのシート状をなしている。磁気マーカ10は、エントランス58や通路50等の床面5Sに貼付可能である。磁気マーカ10は、厚さ1mmの磁石シート10Sを2枚貼り合わせたシート体である。磁石シート10Sは、磁性材料である酸化鉄の磁粉を基材である高分子材料中に分散させたフェライトラバーマグネット(磁石)である。 The magnetic marker 10 has a sheet shape with a diameter of 100 mm and a thickness of 2 mm, as shown in FIG. The magnetic marker 10 can be attached to the floor surface 5S of the entrance 58, passage 50, or the like. The magnetic marker 10 is a sheet body in which two magnet sheets 10S having a thickness of 1 mm are pasted together. The magnet sheet 10S is a ferrite rubber magnet (magnet) in which magnetic particles of iron oxide, which is a magnetic material, are dispersed in a polymer material, which is a base material.
 なお、磁気マーカ10の表面に、防滑性や耐摩耗性を高める保護層を設けることも良い。保護層としては、例えば、ガラス繊維に樹脂を含浸させた複合材料による層を採用することも良い。磁気マーカ10の裏面に、接着層を設け、剥離紙を貼付しておくことも良い。この場合には、剥離紙を剥がしとることで、磁気マーカ10を直ちに施工できる。 It is also possible to provide a protective layer on the surface of the magnetic marker 10 to improve anti-slip properties and wear resistance. As the protective layer, for example, a layer made of a composite material in which glass fibers are impregnated with a resin may be employed. An adhesive layer may be provided on the back surface of the magnetic marker 10, and a release paper may be pasted thereon. In this case, the magnetic marker 10 can be applied immediately by peeling off the release paper.
 本例の磁気マーカ10では、2枚の磁石シート10Sの間に、シート状のRFIDタグ(Radio Frequency Identification Tag、無線タグ)15(図4)が挟み込まれている。RFIDタグ15は、例えばPET(PolyEthylene Terephthalate)フィルムから切り出したタグシート150の表面にICチップ157が実装されたシート状の電子部品である。タグシート150の表面には、ループコイル151及びアンテナ153の印刷パターンが設けられている。ループコイル151は、外部からの電磁誘導によって励磁電流が発生する受電コイルである。アンテナ153は、前述したタグ情報等を無線送信するための送信アンテナである。 In the magnetic marker 10 of this example, a sheet-like RFID tag (Radio Frequency Identification Tag, wireless tag) 15 (Fig. 4) is sandwiched between two magnetic sheets 10S. The RFID tag 15 is a sheet-like electronic component in which an IC chip 157 is mounted on the surface of a tag sheet 150 cut from, for example, a PET (PolyEthylene Terephthalate) film. A printed pattern of a loop coil 151 and an antenna 153 is provided on the surface of the tag sheet 150 . The loop coil 151 is a receiving coil that generates an exciting current by electromagnetic induction from the outside. Antenna 153 is a transmission antenna for wirelessly transmitting the above-described tag information and the like.
 RFIDタグ15は、無線による外部給電により動作し、タグ情報を無線通信により出力する電子部品である。特に、本例のRFIDタグ15は、磁気マーカ10の周囲の構造情報を含むタグ情報を送信する。構造情報は、宅配ロボット2が移動する空間の構造を表す情報であって、対応する磁気マーカ10を中心とした周囲環境を表す情報である。本例では、磁気マーカ10を中心とした周囲環境において、鉛直方向の境界(縦エッジという。)がどのように分布するかのパターンを表す構造情報を例示する。この構造情報では、基準方位に基づく各縦エッジの方位的(角度的)な偏差が特定されている。構造情報は、宅配ロボット2の方位(向き、絶対方位)を特定するために利用される。 The RFID tag 15 is an electronic component that operates by wireless external power supply and outputs tag information through wireless communication. In particular, the RFID tag 15 of this example transmits tag information including structural information around the magnetic marker 10 . The structural information is information representing the structure of the space in which the home delivery robot 2 moves, and is information representing the surrounding environment around the corresponding magnetic marker 10 . In this example, structural information representing a pattern of distribution of boundaries in the vertical direction (referred to as vertical edges) in the surrounding environment around the magnetic marker 10 is exemplified. This structural information specifies the azimuthal (angular) deviation of each longitudinal edge based on the reference orientation. The structural information is used to specify the orientation (orientation, absolute orientation) of the home delivery robot 2 .
 縦エッジは、例えば、荷受ボックス4Bと内壁面との鉛直方向の境界や、隣合う荷受ボックス4Bの境目をなす鉛直方向の境界や、エントランス58と通路50との接続箇所に生じる壁の角部や、エレベータ52の扉と壁との鉛直方向の境界など、で現れる。RFIDタグ15が出力する構造情報は、例えば、真北など特定の方位を基準とした縦エッジの方位(角度)の情報を含んでいる。 The vertical edge is, for example, the vertical boundary between the receiving box 4B and the inner wall surface, the vertical boundary forming the boundary between the adjacent receiving boxes 4B, or the corner of the wall formed at the connection point between the entrance 58 and the passage 50. , a vertical boundary between the door of the elevator 52 and the wall, and the like. The structural information output by the RFID tag 15 includes, for example, information on the direction (angle) of the vertical edge based on a specific direction such as true north.
 なお、上記のごとく、磁石シート10Sは、酸化鉄の磁粉を高分子材料中に分散させたシート状の磁石である。この磁石シート10Sは、導電性が低く無線給電時に渦電流等が生じ難いという電気的特性を有する。それ故、RFIDタグ15は、2枚の磁石シート10Sに挟まれた状態であっても、無線伝送された電力を効率良く受電できると共に、タグ情報を確実性高く送信できる。 Note that, as described above, the magnet sheet 10S is a sheet-shaped magnet in which iron oxide magnetic powder is dispersed in a polymer material. The magnet sheet 10S has electrical properties such that eddy currents and the like are less likely to occur during wireless power feeding due to its low electrical conductivity. Therefore, even when the RFID tag 15 is sandwiched between the two magnetic sheets 10S, the RFID tag 15 can efficiently receive wirelessly transmitted power and can transmit tag information with high reliability.
(宅配ロボット)
 宅配ロボット2は、図5のごとく、縦型の小型冷蔵庫のような外形状を呈する移動ロボットである。宅配ロボット2の寸法は、高さ1.2m、前後方向の長さと横幅が70cmの箱型をなし、前側に面する正面に、荷物100を出し入れするための開口部241が設けられている。宅配ロボット2は、駆動輪26を有しており、自走が可能である。なお、図5は、開口部241が開いた状態を示している。
(Delivery robot)
The home delivery robot 2 is a mobile robot having an external shape like a vertical small refrigerator, as shown in FIG. The home delivery robot 2 has a box shape with a height of 1.2 m and a length and width of 70 cm in the front-rear direction. The home delivery robot 2 has drive wheels 26 and is self-propelled. Note that FIG. 5 shows a state in which the opening 241 is open.
 宅配ロボット2の正面には、画像センサ322(図7参照。)を構成するカメラ322C、及び障害物等を検知する物体検知ユニット323が配設されている。カメラ322C及び物体検知ユニット323は、いずれも、宅配ロボット2の正面の中心線2C上に位置している。カメラ322Cは、開口部241を取り囲む枠のうち、開口部241の上側に当たる位置に埋設されている。物体検知ユニット323は、開口部241の下方に配設されている。また、宅配ロボット2の下端、外周4カ所の角部には、超音波を利用して物体を検知する超音波センサ325が配設されている。 A camera 322C that constitutes an image sensor 322 (see FIG. 7) and an object detection unit 323 that detects obstacles and the like are arranged in front of the home delivery robot 2 . Both the camera 322C and the object detection unit 323 are positioned on the front center line 2C of the home delivery robot 2 . The camera 322</b>C is embedded at a position above the opening 241 in the frame surrounding the opening 241 . The object detection unit 323 is arranged below the opening 241 . Ultrasonic sensors 325 for detecting objects using ultrasonic waves are arranged at the lower end of the home delivery robot 2 and at four corners on the periphery.
 カメラ322Cは、宅配ロボット2の前方を撮影するカメラである。カメラ322Cは、宅配ロボット2の前後方向の軸に対して光軸が平行をなすように調整されている。カメラ322Cによる前方画像は、前方の監視のために利用されるほか、鉛直方向の境界である縦エッジを抽出するために利用される。詳しくは後述するが、前方画像から抽出された縦エッジは、宅配ロボット2の方位(絶対方位)を特定するために利用される。 The camera 322C is a camera that captures the front of the home delivery robot 2. The camera 322</b>C is adjusted so that its optical axis is parallel to the longitudinal axis of the delivery robot 2 . The forward image from the camera 322C is used not only for monitoring the forward direction, but also for extracting vertical edges, which are boundaries in the vertical direction. Although details will be described later, the vertical edge extracted from the front image is used to specify the orientation (absolute orientation) of the home delivery robot 2 .
 物体検知ユニット323は、レーザ光を利用して物体を検知するライダーユニットである。物体検知ユニット323は、図示を省略するレーザ光源、レーザ光の方向を変更するスキャナ、及び処理回路等を含めて構成されている。物体検知ユニット323は、床面5Sに沿う断面の外周縁が略円弧状をなすよう、宅配ロボット2の正面から湾曲凸状に突出する状態で配設されている。物体検知ユニット323の湾曲凸状の前面は、レーザ光が通過可能な透光窓によって形成されている。物体検知ユニット323は、水平方向における180度に近い範囲をレーザ光で走査することで、前側の障害物や前方の構造などを検知する。 The object detection unit 323 is a lidar unit that detects objects using laser light. The object detection unit 323 includes a laser light source (not shown), a scanner for changing the direction of laser light, a processing circuit, and the like. The object detection unit 323 is arranged in a curved convex shape protruding from the front surface of the home delivery robot 2 so that the outer peripheral edge of the cross section along the floor surface 5S forms a substantially arcuate shape. A curved convex front surface of the object detection unit 323 is formed by a translucent window through which laser light can pass. The object detection unit 323 scans a horizontal range of approximately 180 degrees with a laser beam to detect an obstacle in front, a structure in front, and the like.
 宅配ロボット2では、図5のごとく、荷物100を収納するための収納部24が上部に設けられている。宅配ロボット2の正面の開口部241は、収納部24の荷物100を出したり、収納部24に荷物100を入れたりするための開口部分である。底面の地上高や天井の地上高や横幅等、収納部24の寸法仕様は、荷物収納部40の寸法仕様とほぼ同じになっている(図2参照。)。このように収納部24の寸法仕様を設定すれば、収納部24と、荷受ボックス4Bおよび宅配ボックス4Aと、の間での荷物100の受け渡しが容易になる。 In the home delivery robot 2, as shown in FIG. 5, a storage section 24 for storing the package 100 is provided at the top. An opening 241 in front of the home delivery robot 2 is an opening for taking out the package 100 from the storage section 24 and putting the package 100 into the storage section 24 . The dimensional specifications of the storage section 24, such as the ground clearance of the bottom surface, the ground clearance of the ceiling, the width, etc., are substantially the same as the dimensional specifications of the luggage storage section 40 (see FIG. 2). By setting the dimensional specifications of the storage section 24 in this manner, delivery of the package 100 between the storage section 24 and the receiving box 4B and the home delivery box 4A is facilitated.
 収納部24の開口部241には、昇降可能なスライドドア242が取り付られている。開口部241は、スライドドア242の下降により開口し、スライドドア242の上昇により閉じられる。収納部24の底面は、並列して配列された複数本の棒状の搬送ローラ243によって形成されている。各搬送ローラ243は、開口部241の開口面に対して平行をなし、図示しないモータにより回転駆動される。宅配ロボット2は、搬送ローラ243の回転に応じて荷物100を搬送し、荷受ボックス4Bからの荷物100の引き受けや、各戸56の宅配ボックス4Aへの荷物100の引き渡しを実行する。 A sliding door 242 that can be raised and lowered is attached to the opening 241 of the storage section 24 . The opening 241 is opened by lowering the sliding door 242 and closed by raising the sliding door 242 . The bottom surface of the storage section 24 is formed by a plurality of rod-shaped conveying rollers 243 arranged in parallel. Each transport roller 243 is parallel to the opening surface of the opening 241 and is rotationally driven by a motor (not shown). The home delivery robot 2 conveys the parcel 100 according to the rotation of the conveying roller 243, receives the parcel 100 from the parcel receiving box 4B, and delivers the parcel 100 to the home delivery box 4A of each house 56.
 収納部24の天井には、コードリーダ324(図7参照。)を構成するカメラ324Cが配設されている。このカメラ324Cは、荷物100の上面に印刷あるいは貼付された2次元コードを撮影するためのカメラである。2次元コードの撮影画像は、コードリーダ324に入力され、配達先の宛名、部屋番号等の記録情報(宛先情報)が、2次元コードから読み出される。 A camera 324C constituting a code reader 324 (see FIG. 7) is installed on the ceiling of the storage section 24. This camera 324</b>C is a camera for photographing the two-dimensional code printed or attached on the top surface of the package 100 . The photographed image of the two-dimensional code is input to the code reader 324, and recorded information (destination information) such as the delivery address and room number is read from the two-dimensional code.
 宅配ロボット2は、底面を示す図6のごとく、左右一対の駆動輪26L・Rと、前後一対の従動輪27F・Rと、を備えている。左右一対の駆動輪26L・Rは、宅配ロボット2の前後方向の中央に位置している。前後一対の従動輪27F・Rは、宅配ロボット2の幅方向の中央に位置している。 The delivery robot 2 includes a pair of left and right drive wheels 26L and R and a pair of front and rear driven wheels 27F and R, as shown in FIG. The pair of left and right driving wheels 26L and 26R are positioned at the center of the home delivery robot 2 in the front-rear direction. The pair of front and rear driven wheels 27F and 27R are positioned at the center of the home delivery robot 2 in the width direction.
 駆動輪26L・Rは、モータ260L・Rによって個別に回転駆動される車輪である。従動輪27F・Rは、任意の方向に転動可能な自在車輪である。例えば、モータ260L・Rによる個別の回転駆動により駆動輪26L・Rに回転差を設定すれば、その回転差に応じて、例えば宅配ロボット2が円弧状の軌跡に沿うように移動できる。例えば、左右の駆動輪26R、26Lを逆向きに回転させれば、宅配ロボット2がその場で回転できる。 The drive wheels 26L/R are wheels that are individually rotationally driven by motors 260L/R. The driven wheels 27F/R are free wheels that can roll in any direction. For example, if a difference in rotation is set for the drive wheels 26L and 26L by driving the motors 260L and 260R individually, the home delivery robot 2 can move along an arc-shaped locus according to the difference in rotation. For example, by rotating the left and right drive wheels 26R and 26L in opposite directions, the home delivery robot 2 can be rotated on the spot.
 また、宅配ロボット2の底面には、図6のごとく、磁気マーカ10のRFIDタグ15と通信するタグリーダ321、磁気や角速度(ヨーレート)等を計測する計測ユニット20が取り付けられている。 Also, on the bottom surface of the home delivery robot 2, as shown in FIG. 6, a tag reader 321 that communicates with the RFID tag 15 of the magnetic marker 10 and a measurement unit 20 that measures magnetism, angular velocity (yaw rate), and the like are attached.
 タグリーダ321は、RFIDタグ15が無線出力する情報を読み取る情報読取部として機能する。タグリーダ321は、RFIDタグ15の動作に必要な電力を無線で送電し、RFIDタグ15が送信するタグ情報を受信する。本例のシステム1において、RFIDタグ15は、周囲の構造情報をタグ情報として出力する。 The tag reader 321 functions as an information reading unit that reads information wirelessly output by the RFID tag 15 . The tag reader 321 wirelessly transmits power necessary for operating the RFID tag 15 and receives tag information transmitted by the RFID tag 15 . In the system 1 of this example, the RFID tag 15 outputs surrounding structural information as tag information.
 計測ユニット20は、図6及び図7のごとく、磁気センサCn(n=1~15)が一直線上に配列されたセンサアレイ21と、IMU(Inertia Measurement Unit)22と、が一体化されたユニットである。計測ユニット20は、全長65cmの棒状をなし、宅配ロボット2の幅方向に沿って取り付けられる。前後方向における計測ユニット20の取付位置は、左右一対の駆動輪26L・Rと、前側の従動輪27Fと、の中間辺りである。また、床面5S(図1参照。)を基準とした計測ユニット20の取付高さは、約50mmである。 As shown in FIGS. 6 and 7, the measurement unit 20 is a unit in which a sensor array 21 in which magnetic sensors Cn (n=1 to 15) are arranged in a straight line and an IMU (Inertia Measurement Unit) 22 are integrated. is. The measurement unit 20 has a rod shape with a total length of 65 cm and is attached along the width direction of the home delivery robot 2 . The mounting position of the measurement unit 20 in the front-rear direction is midway between the pair of left and right drive wheels 26L and R and the front driven wheel 27F. Moreover, the mounting height of the measurement unit 20 with respect to the floor surface 5S (see FIG. 1) is approximately 50 mm.
 IMU22は、慣性航法により宅配ロボット2の位置及び方位(向き)を推定するための慣性航法ユニットである。IMU22は、宅配ロボット2の移動に伴う変動量を推定する変動量推定部としての機能、推定された変動量を利用して宅配ロボット2の位置、方位を推定する測位部としての機能、等を備えている。IMU22は、前後方向及び幅方向の加速度を計測する2軸加速度センサ222、角速度(ヨーレート)を計測するジャイロセンサ223、等を備えている。 The IMU 22 is an inertial navigation unit for estimating the position and orientation (orientation) of the home delivery robot 2 by inertial navigation. The IMU 22 functions as a variation estimation unit for estimating the variation associated with the movement of the home delivery robot 2, as a positioning unit for estimating the position and orientation of the delivery robot 2 using the estimated variation, and the like. I have it. The IMU 22 includes a biaxial acceleration sensor 222 that measures acceleration in the longitudinal direction and width direction, a gyro sensor 223 that measures angular velocity (yaw rate), and the like.
 IMU22は、移動を開始した後のヨーレートを積分することで、宅配ロボット2の方位の(累積)変動量を推定する。そして、IMU22は、推定した方位の変動量を、宅配ロボット2の移動開始時点の方位(初期方位)に足し合わせることで、宅配ロボット2の時々刻々の方位を推定する。 The IMU 22 estimates the (cumulative) amount of change in the direction of the home delivery robot 2 by integrating the yaw rate after it starts moving. Then, the IMU 22 estimates the moment-by-moment orientation of the home delivery robot 2 by adding the estimated amount of change in orientation to the orientation (initial orientation) of the home delivery robot 2 when it starts moving.
 また、IMU22は、移動中の期間を十分に短い時間的な区間に分割し、区間毎の2次元的な変位量(位置的な変動量)を推定する。この区間は、例えば、後で参照する図12の移動制御による繰り返し制御の1回のループの処理時間に相当する時間的な区間である。IMU22は、各区間について、前後方向及び幅方向の加速度をそれぞれ二重積分することで2次元的な変位量を求める。 Also, the IMU 22 divides the period of movement into sufficiently short time intervals and estimates the two-dimensional displacement amount (positional variation amount) for each interval. This interval is, for example, a temporal interval corresponding to the processing time of one loop of repetitive control by movement control in FIG. 12, which will be referred to later. The IMU 22 obtains a two-dimensional displacement amount by double-integrating accelerations in the front-rear direction and in the width direction for each section.
 IMU22は、各区間の宅配ロボット2の方位(例えば、平均値や中央値など。)に沿って各区間の2次元的な変位量を累積することにより、移動開始後の区間毎の2次元的な変位量を推定する。そして、IMU22は、移動開始時点の宅配ロボット2の位置(初期位置)を基準として、移動開始後の2次元的な変位量の分だけずらした位置を、時々刻々の宅配ロボット2の位置として推定する。 The IMU 22 accumulates the two-dimensional displacement amount of each section along the direction of the home delivery robot 2 in each section (for example, average value, median value, etc.). Estimate the amount of displacement. Then, the IMU 22 estimates a position shifted from the position (initial position) of the home delivery robot 2 at the start of movement by the amount of two-dimensional displacement after the start of movement as the momentary position of the home delivery robot 2. do.
 計測ユニット20のセンサアレイ21は、棒状の計測ユニット20の長手方向に沿って一直線上に配列された15個の磁気センサCn(nは1~15の整数)と、図示しないCPU等を内蔵した検出処理回路212と、を備えている。検出処理回路212は、磁気マーカ10を検出する検出部の一例をなしている。検出処理回路212は、磁気センサCnの計測値に処理を施すことで磁気マーカ10の検出を実行する。本例のセンサアレイ21では、15個の磁気センサCnが4cmの等間隔で配置されている。 The sensor array 21 of the measurement unit 20 includes 15 magnetic sensors Cn (n is an integer of 1 to 15) arranged in a straight line along the longitudinal direction of the rod-shaped measurement unit 20, and a CPU (not shown). and a detection processing circuit 212 . The detection processing circuit 212 is an example of a detection section that detects the magnetic marker 10 . The detection processing circuit 212 executes detection of the magnetic marker 10 by processing the measurement value of the magnetic sensor Cn. In the sensor array 21 of this example, 15 magnetic sensors Cn are arranged at regular intervals of 4 cm.
 磁気センサCnは、アモルファスワイヤなどの感磁体のインピーダンスが外部磁界に応じて敏感に変化するという公知のMI効果(Magneto Impedance Effect)を利用して磁気を検出するセンサである。磁気センサCnは、アモルファスワイヤなどの感磁体に沿って作用する磁気成分を検出し、その磁気成分の大きさ(磁気計測値)を表すセンサ信号を出力する。 The magnetic sensor Cn is a sensor that detects magnetism using the well-known MI effect (Magneto Impedance Effect), in which the impedance of a magnetosensitive material such as an amorphous wire changes sensitively according to an external magnetic field. The magnetic sensor Cn detects a magnetic component acting along a magnetosensitive body such as an amorphous wire, and outputs a sensor signal representing the magnitude of the magnetic component (magnetism measurement value).
 本例の磁気センサCnでは、感磁体(図示略)が直交する2軸方向に沿って配置されている。磁気センサCnは、直交する2軸方向に作用する磁気成分の検出が可能である。なお、本例では、センサアレイ21の各磁気センサCnが、宅配ロボット2の前後方向及び幅方向の磁気成分を検出するよう、センサアレイ21に対する各磁気センサCnの組込み、及び宅配ロボット2に対するセンサアレイ21の取付がなされている。 In the magnetic sensor Cn of this example, magnetosensitive bodies (not shown) are arranged along two orthogonal axial directions. The magnetic sensor Cn is capable of detecting magnetic components acting in two orthogonal directions. In this example, each magnetic sensor Cn of the sensor array 21 is incorporated into the sensor array 21 and the sensor for the home delivery robot 2 so that each magnetic sensor Cn of the sensor array 21 detects the magnetic components in the longitudinal direction and the width direction of the home delivery robot 2 . An array 21 is attached.
 検出処理回路212(図7)は、磁気マーカ10を検出するためのマーカ検出処理などを実行する演算回路である。この検出処理回路212は、各種の演算を実行するCPU(central processing unit)、ROM(read only memory)やRAM(random access memory)などのメモリ素子等を利用して構成されている。 The detection processing circuit 212 (FIG. 7) is an arithmetic circuit that executes marker detection processing for detecting the magnetic marker 10 and the like. The detection processing circuit 212 is configured using memory devices such as a CPU (central processing unit) that executes various calculations, a ROM (read only memory) and a RAM (random access memory).
 検出処理回路212は、磁気センサCnが出力するセンサ信号(磁気計測値、計測値)を取得してマーカ検出処理を実行し、マーカ検出処理の結果を制御ユニット32に入力する。なお、マーカ検出処理の内容については、宅配ロボット2の電気的構成の説明に続いて詳細に説明する。 The detection processing circuit 212 acquires the sensor signal (magnetism measurement value, measurement value) output by the magnetic sensor Cn, executes marker detection processing, and inputs the result of the marker detection processing to the control unit 32 . The contents of the marker detection process will be described in detail following the description of the electrical configuration of the home delivery robot 2 .
 宅配ロボット2は、図7のごとく、制御ユニット32を中心として電気的に構成されている。制御ユニット32は、宅配ロボット2を自走させるための移動制御(図12参照。)や、慣性航法により推定された変動量のリセット処理(図13参照。)などの各種の内部処理、等を実行するユニットである。 The home delivery robot 2 is electrically configured around a control unit 32 as shown in FIG. The control unit 32 performs movement control (see FIG. 12) for self-running the home delivery robot 2, and various internal processes such as reset processing (see FIG. 13) of the amount of variation estimated by inertial navigation. It is the unit that executes.
 制御ユニット32には、各種のセンサ類、情報を読み取るための情報リーダ、モータ260L・Rなどのモータ類、記憶媒体であるハードディスク装置、等が電気的に接続されている。ハードディスク装置の記憶領域には、地図データベース(地図DB)34が設けられている。 The control unit 32 is electrically connected to various sensors, an information reader for reading information, motors such as the motors 260L and 260R, a hard disk device as a storage medium, and the like. A map database (map DB) 34 is provided in the storage area of the hard disk device.
 センサ類としては、上記の物体検知ユニット323、前方を撮影する上記のカメラ322C(図5参照。)を含む画像センサ322、周囲の障害物を検知する超音波センサ325、磁気や加速度等を計測する計測ユニット20等がある。情報リーダとしては、上記のタグリーダ321、上記のカメラ324C(図5参照。)を含むコードリーダ324等がある。 Sensors include the object detection unit 323, the image sensor 322 including the camera 322C (see FIG. 5) for photographing the front, an ultrasonic sensor 325 for detecting surrounding obstacles, and measuring magnetism, acceleration, and the like. There is a measurement unit 20 or the like that Information readers include the tag reader 321 and the code reader 324 including the camera 324C (see FIG. 5).
 地図DB34は、宅配ロボット2が移動可能な通路50やエントランス58等の構造が示された2次元地図が格納されたデータベースである。上記の通り、地図DB34は、ハードディスク装置の記憶領域を利用して構築されている。2次元地図は、マンション5のフロア毎に用意されている。 The map DB 34 is a database that stores a two-dimensional map that shows the structure of the passage 50, the entrance 58, etc. where the delivery robot 2 can move. As described above, the map DB 34 is constructed using the storage area of the hard disk device. A two-dimensional map is prepared for each floor of the condominium 5 .
 例えば、1階の2次元地図では、各戸56の宅配ボックス4A、各荷受ボックス4B、エレベータ52、宅配ロボット2の待機スペース505、磁気マーカ10の配設位置、等の絶対位置が特定されている。地図DB34は、磁気マーカ10の位置情報を記憶するデータベースの一例をなしている。2階以上の階の2次元地図では、各戸56の宅配ボックス4A、エレベータ52、等の絶対位置が特定されている。ここで、絶対位置とは、マンション5内の絶対位置である。 For example, in the two-dimensional map of the first floor, the absolute positions of the home delivery box 4A of each house 56, each receiving box 4B, the elevator 52, the waiting space 505 of the home delivery robot 2, the position of the magnetic marker 10, etc. are specified. . The map DB 34 is an example of a database that stores position information of the magnetic markers 10 . In the two-dimensional map of the second floor and above, the absolute positions of the delivery box 4A of each house 56, the elevator 52, etc. are specified. Here, the absolute position is an absolute position within the condominium 5 .
 1階の2次元地図上で特定された荷受ボックス4Bの各位置には、識別情報であるボックス番号がひも付けられている。宅配ロボット2は、荷受ボックス4Bが送信する上記の荷受信号に含まれるボックス番号を利用し、送信元の荷受ボックス4Bの2次元地図(1階)上の位置を特定する。 A box number, which is identification information, is attached to each position of the receiving box 4B specified on the two-dimensional map of the first floor. The home delivery robot 2 uses the box number included in the receipt signal transmitted by the receipt box 4B to identify the position of the receipt box 4B, which is the sender, on the two-dimensional map (first floor).
 各階の2次元地図において特定された各戸56の宅配ボックス4Aの位置には、部屋番号等の固有情報がひも付けられている。宅配ロボット2は、部屋番号等の固有情報を利用して配達先の階を特定すると共に、その階の2次元地図上で、対応する宅配ボックス4Aが所在する位置を特定する。 Specific information such as the room number is attached to the position of the delivery box 4A of each house 56 specified in the two-dimensional map of each floor. The home delivery robot 2 identifies the floor of the delivery destination using unique information such as the room number, and also identifies the position where the corresponding home delivery box 4A is located on the two-dimensional map of that floor.
 制御ユニット32(図7)は、各種の演算を実行するCPU、ROMやRAMなどのメモリ素子等が実装された電子基板(図示略)を含めて構成されている。制御ユニット32は、ROM等に記憶されたプログラムをCPUに実行させることにより、各種の機能を実現する。制御ユニット32が実現する機能としては、宅配ロボット2が移動する経路を設定する経路設定部、経路に沿って宅配ロボット2を移動させる制御部、外部機器との通信を実行する通信回路部、等としての機能がある。 The control unit 32 (FIG. 7) includes an electronic board (not shown) on which a CPU that executes various calculations, memory elements such as ROM and RAM, etc. are mounted. The control unit 32 implements various functions by causing the CPU to execute programs stored in the ROM or the like. The functions realized by the control unit 32 include a route setting section that sets the route along which the home delivery robot 2 moves, a control section that moves the home delivery robot 2 along the route, a communication circuit section that executes communication with external devices, and the like. There is a function as
 経路設定部は、移動先の目的地が定まったとき、宅配ロボット2が所在する位置から目的地に至る経路を演算により求めて設定する。経路としては、例えば、待機スペース505から荷受ボックス4Bに至る経路、荷受ボックス4Bから配達先の住戸56の宅配ボックス4Aに至る経路、配達先の住戸56の宅配ボックス4Aから待機スペース505に至る経路、などの経路がある。なお、経路上に障害物が存在する場合には、障害物を迂回して元の経路に復帰するための経路が随時、演算により求められて設定される。 When the destination of the destination is determined, the route setting unit calculates and sets the route from the position where the home delivery robot 2 is located to the destination. The routes include, for example, a route from the waiting space 505 to the receiving box 4B, a route from the receiving box 4B to the home delivery box 4A of the dwelling unit 56 of the delivery destination, and a route from the home delivery box 4A of the dwelling unit 56 of the delivery destination to the waiting space 505. , and so on. If there is an obstacle on the route, a route for bypassing the obstacle and returning to the original route is calculated and set at any time.
 なお、経路設定部が設定する経路は、地図DB34の2次元地図上の線分によって表される経路である。例えば、2次元地図上の宅配ロボット2の位置を特定できれば、経路設定部によって設定された経路との偏差を特定できる。また、2次元地図上の宅配ロボット2の方位を特定できれば、同経路に対する方位的な偏差を特定できる。 The route set by the route setting unit is a route represented by a line segment on the two-dimensional map of the map DB 34. For example, if the position of the delivery robot 2 on the two-dimensional map can be specified, the deviation from the route set by the route setting unit can be specified. Also, if the direction of the home delivery robot 2 on the two-dimensional map can be specified, the deviation in direction from the same route can be specified.
 制御部は、経路設定部により設定された経路に沿って宅配ロボット2を移動させるための制御を実行する。制御部は、上記のモータ260L・Rを制御して駆動輪26L・Rを回転させることで、宅配ロボット2を自走させる。制御部は、経路設定部により設定された経路を基準とした宅配ロボット2の位置的な偏差や、経路の方向に対する宅配ロボットの方位的な偏差、等を解消するように制御し、これにより、経路に沿うように宅配ロボット2を自走させる。 The control unit executes control for moving the home delivery robot 2 along the route set by the route setting unit. The control unit controls the motors 260L and 260R to rotate the driving wheels 26L and 26L, thereby causing the home delivery robot 2 to run on its own. The control unit controls to eliminate the positional deviation of the home delivery robot 2 based on the route set by the route setting unit, the azimuthal deviation of the home delivery robot with respect to the direction of the route, and the like. A home delivery robot 2 is self-propelled along a route.
 通信回路部は、宅配ボックス4A、荷受ボックス4B、エレベータ52の通信ユニット(図示略)、等の外部機器との間で通信を実行する。通信回路部は、例えば、荷受ボックス4Bに対しては、開口部42を開閉させたり、荷物100を搬出させるための信号を送信する。例えば、宅配ボックス4Aに対しては、開口部41を開閉させるための信号を送信する。また例えば、エレベータ52の通信ユニットに対しては、宅配ロボット2が所在する階に昇降かごを停止させるための信号や、昇降かごを目的の階に向かわせるための信号を送信する。さらに、通信回路部は、エレベータ52の通信ユニットから、停止している階の情報を取得する。これにより、上記の制御部は、運搬装置の一例をなすエレベータ52による宅配ロボット2の搬送先の位置(搬送位置)の一例として、搬送先のフロアー(階数)を特定可能である。 The communication circuit unit communicates with external devices such as the delivery box 4A, the receiving box 4B, and the communication unit (not shown) of the elevator 52. The communication circuit unit, for example, transmits a signal for opening and closing the opening 42 and carrying out the package 100 to the receiving box 4B. For example, a signal for opening and closing the opening 41 is transmitted to the delivery box 4A. Further, for example, to the communication unit of the elevator 52, a signal for stopping the elevator car on the floor where the home delivery robot 2 is located and a signal for directing the elevator car to the target floor are transmitted. Further, the communication circuit unit acquires the information of the stopped floor from the communication unit of the elevator 52 . As a result, the control unit can specify the destination floor (floor number) as an example of the transport destination position (transport position) of the home delivery robot 2 by the elevator 52, which is an example of the transport device.
 ここで、センサアレイ21(計測ユニット20)によるマーカ検出処理の内容について、図8及び図9を参照しながら説明する。 Here, the contents of marker detection processing by the sensor array 21 (measurement unit 20) will be described with reference to FIGS. 8 and 9. FIG.
 前述した通り、センサアレイ21の各磁気センサCnは、宅配ロボット2の前後方向及び幅方向の磁気成分を計測可能である。例えばこの磁気センサが、前進して磁気マーカ10の真上を通過するとき、前後方向の磁気計測値は、図8のごとく磁気マーカ10の前後で正負が反転すると共に、磁気マーカ10の真上の位置でゼロを交差するように変化する。 As described above, each magnetic sensor Cn of the sensor array 21 can measure magnetic components in the front-rear direction and width direction of the home delivery robot 2 . For example, when this magnetic sensor moves forward and passes directly above the magnetic marker 10, the magnetic measurement value in the front-rear direction reverses the positive and negative values before and after the magnetic marker 10 as shown in FIG. changes to cross zero at the position of .
 宅配ロボット2の走行中では、いずれかの磁気センサCnが検出する前後方向の磁気計測値について、その正負が反転するゼロクロスZcが生じたとき、計測ユニット20が磁気マーカ10の真上に位置すると判断できる。検出処理回路212は、このように計測ユニット20が磁気マーカ10の真上に位置し、前後方向の磁気計測値のゼロクロスZcが生じたとき、磁気マーカ10を検出したと判断する。 While the home delivery robot 2 is running, when a zero cross Zc in which the polarity of the magnetic measurement value in the front-rear direction detected by any of the magnetic sensors Cn occurs, the measurement unit 20 is positioned directly above the magnetic marker 10. I can judge. The detection processing circuit 212 determines that the magnetic marker 10 is detected when the measurement unit 20 is positioned directly above the magnetic marker 10 and the zero crossing Zc of the magnetic measurement value in the front-rear direction occurs.
 例えば、センサアレイ21を構成する磁気センサCnと同じ仕様の磁気センサについて、磁気マーカ10の真上を通過する幅方向の仮想線に沿う移動を想定する。この場合、図9のごとく、磁気マーカ10を挟んだ両側で幅方向の磁気計測値の正負が反転すると共に、磁気マーカ10の真上の位置でゼロを交差するように変化する。15個の磁気センサCnを幅方向に配列したセンサアレイ21(計測ユニット20)の場合であれば、磁気マーカ10を介してどちらの側にあるかによって磁気センサCnが検出する幅方向の磁気計測値の正負が異なってくる。 For example, a magnetic sensor having the same specifications as the magnetic sensor Cn forming the sensor array 21 is assumed to move along an imaginary line in the width direction passing directly above the magnetic marker 10 . In this case, as shown in FIG. 9, the positive and negative of the magnetic measurement value in the width direction are reversed on both sides of the magnetic marker 10, and the value changes so as to cross zero at the position directly above the magnetic marker 10. FIG. In the case of the sensor array 21 (measurement unit 20) in which 15 magnetic sensors Cn are arranged in the width direction, the magnetic measurement in the width direction detected by the magnetic sensor Cn depends on which side of the magnetic marker 10 it is on. The positive and negative values are different.
 センサアレイ21の各磁気センサCnの幅方向の磁気計測値を例示する図9の分布に基づけば、幅方向の磁気計測値の正負が反転するゼロクロスZcを挟んで隣り合う2つの磁気センサCnの中間の位置、あるいは幅方向の磁気計測値がゼロであって両外側の磁気センサCnの磁気計測値の正負が反転している磁気センサCnの直下の位置が、幅方向における磁気マーカ10の位置となる。 Based on the distribution of FIG. 9 exemplifying the magnetic measurement value in the width direction of each magnetic sensor Cn of the sensor array 21, the two magnetic sensors Cn adjacent to each other across the zero cross Zc where the positive and negative of the magnetic measurement value in the width direction are reversed. The position of the magnetic marker 10 in the width direction is the intermediate position or the position directly below the magnetic sensor Cn where the magnetic measurement value in the width direction is zero and the magnetic measurement values of the magnetic sensors Cn on both outer sides are reversed. becomes.
 なお、検出処理回路212は、計測ユニット20の中央の位置(磁気センサC8の位置)に対する磁気マーカ10の幅方向の位置の偏差を、磁気マーカ10に対する宅配ロボット2の横ずれ量として計測可能である。例えば、図9の場合であれば、ゼロクロスZcの位置がC9とC10との中間辺りのC9.5に相当する位置となっている。上記のように磁気センサC9とC10の間隔は4cmであるから、磁気マーカ10に対する横ずれ量は、計測ユニット2の中央に位置する磁気センサC8を基準として(9.5-8)×4cm=6cmとなる。 The detection processing circuit 212 can measure the deviation of the position of the magnetic marker 10 in the width direction with respect to the central position of the measurement unit 20 (the position of the magnetic sensor C8) as the amount of lateral displacement of the home delivery robot 2 with respect to the magnetic marker 10. . For example, in the case of FIG. 9, the position of the zero cross Zc is a position corresponding to C9.5, which is midway between C9 and C10. Since the distance between the magnetic sensors C9 and C10 is 4 cm as described above, the amount of lateral deviation with respect to the magnetic marker 10 is (9.5−8)×4 cm=6 cm with the magnetic sensor C8 positioned at the center of the measurement unit 2 as a reference. becomes.
 次に、上記のように構成されたシステム1の動作について、図10~図13を参照して説明する。以下、(1)システムの全体処理、(2)宅配ロボットの移動制御、(3)慣性航法のリセット処理、の順に説明する。図10は、システム1による全体処理の流れを示すフロー図である。図11は、図10の説明において参照される図である。図12は、宅配ロボット2を自走させるための移動制御の内容を示すフロー図である。図13は、慣性航法が推定した移動に伴う変動量(変位量、方位の変動量)のリセット処理の流れを示すフロー図である。 Next, the operation of the system 1 configured as described above will be described with reference to FIGS. 10 to 13. FIG. Hereinafter, (1) overall system processing, (2) home delivery robot movement control, and (3) inertial navigation reset processing will be described in this order. FIG. 10 is a flowchart showing the flow of overall processing by system 1. As shown in FIG. 11 is a diagram referred to in the description of FIG. 10. FIG. FIG. 12 is a flowchart showing the content of movement control for causing the home delivery robot 2 to run on its own. FIG. 13 is a flow chart showing the flow of reset processing of the amount of variation (displacement amount, azimuth variation amount) associated with movement estimated by inertial navigation.
(1)システムの全体処理
 システム1の全体処理(図10)は、宅配ロボット2が、荷受ボックス4Bに配達された荷物100を受け取り、住戸56の宅配ボックス4Aに配達するまで、の一連の処理である。前述したように、待機中の宅配ロボット2は、マンション5のエントランス58の待機スペース505(図1参照。)にて、宅配業者による荷物100の配達を待っている。詳しくは後述するが、待機スペース505での待機中に、上記の(3)慣性航法のリセット処理(図13)が実行される。
(1) Overall processing of the system The overall processing of the system 1 (FIG. 10) is a series of processes from the delivery robot 2 receiving the package 100 delivered to the receiving box 4B to delivering it to the delivery box 4A of the dwelling unit 56. is. As described above, the home delivery robot 2 on standby waits for delivery of the parcel 100 by the home delivery company in the waiting space 505 (see FIG. 1) of the entrance 58 of the condominium 5 . Although details will be described later, the above (3) inertial navigation reset process (FIG. 13) is executed while waiting in the waiting space 505 .
 制御ユニット32は、図10のごとく、待機スペース505において、いずれかの荷受ボックス4Bからの上記の荷受信号の受信を待機する(S101:NO)。上記のごとく、この荷受信号は、荷物100が配達された荷受ボックス4Bのボックス番号(識別情報)等を含む信号である。制御ユニット32は、荷受信号を受信すると(S301:YES)、荷受信号に含まれるボックス番号に係る荷受ボックス4Bに至るまでの経路を演算により決定する(S102)。そして、制御ユニット32は、演算により決定された経路に沿って宅配ロボット2を移動させるための移動制御P11を実行する。なお、慣性航法による移動制御P11の内容については、図12を用いて後述する。 As shown in FIG. 10, the control unit 32 waits in the standby space 505 to receive the above-mentioned receipt signal from any of the receipt boxes 4B (S101: NO). As described above, the receipt signal is a signal including the box number (identification information) of the receipt box 4B to which the package 100 has been delivered. When the control unit 32 receives the receipt signal (S301: YES), it determines the route to the receipt box 4B corresponding to the box number included in the receipt signal (S102). Then, the control unit 32 executes movement control P11 for moving the home delivery robot 2 along the route determined by the calculation. The content of the inertial navigation-based movement control P11 will be described later with reference to FIG.
 制御ユニット32は、荷受信号の送信元の荷受ボックス4Bに宅配ロボット2が到着するまで、移動制御P11を繰り返し実行する(S104:NO)。なお、荷受ボックス4Bに対する宅配ロボット2の到着位置は、荷受ボックス4Bの開口部42に対して、正面の開口部241が隙間少なく対面する位置である(図11)。制御ユニット32は、宅配ロボット2がこの到着位置に達すると(S104:YES)、移動制御P11を終了させる。 The control unit 32 repeatedly executes the movement control P11 until the home delivery robot 2 arrives at the consignment receiving box 4B that sent the consignment receiving signal (S104: NO). The arrival position of the home delivery robot 2 with respect to the receiving box 4B is a position where the front opening 241 faces the opening 42 of the receiving box 4B with a small gap (FIG. 11). When the delivery robot 2 reaches this arrival position (S104: YES), the control unit 32 terminates the movement control P11.
 制御ユニット32は、荷受ボックス4Bに対して宅配ロボット2が隙間少なく対面する上記の到着位置(図11参照。)において、荷物100の積み込みを実行する(S104:Yes→S105)。荷物100の積み込みの際、制御ユニット32は、スライドドア242を下降させて開口部241を開口させると共に、荷受ボックス4Bに対し、開口部42の開口を求めるオープン要求信号を送信する。 The control unit 32 loads the package 100 at the arrival position (see FIG. 11) where the home delivery robot 2 faces the receiving box 4B with a small gap (S104: Yes→S105). When the cargo 100 is loaded, the control unit 32 lowers the slide door 242 to open the opening 241 and transmits an open request signal requesting opening of the opening 42 to the cargo receiving box 4B.
 荷受ボックス4Bは、オープン要求信号の受信に応じて、スライドドア421を下降させ、開口部42を開口させる。荷受ボックス4Bは、開口部42を開口させた後、荷物100を開口部42から搬出できるよう、搬送ローラ403を回転駆動する。このとき、荷受ボックス4Bの搬送ローラ403と同期して、宅配ロボット2の搬送ローラ243を回転駆動すると良い。荷受ボックス4Bの搬送ローラ403と、宅配ロボット2の搬送ローラ243と、が同期して回転すれば、荷受ボックス4Bから宅配ロボット2へ、よりスムーズに荷物100を搬送できる。 The receiving box 4B lowers the sliding door 421 and opens the opening 42 in response to receiving the open request signal. After opening the opening 42 , the receiving box 4</b>B rotates the conveying roller 403 so that the cargo 100 can be carried out from the opening 42 . At this time, it is preferable to rotationally drive the transport roller 243 of the home delivery robot 2 in synchronization with the transport roller 403 of the receiving box 4B. If the transport rollers 403 of the delivery box 4B and the transport rollers 243 of the home delivery robot 2 rotate synchronously, the package 100 can be transported from the delivery box 4B to the home delivery robot 2 more smoothly.
 宅配ロボット2による荷物100の積み込みが終わると、制御ユニット32は、スライドドア242を上昇させて開口部241を閉じると共に、開口部42を閉じさせるための上記のクローズ要求信号を荷受ボックス4Bに向けて送信する。荷受ボックス4Bは、クローズ要求信号の受信に応じて、スライドドア421を上昇させて開口部42を閉じる。これにより、宅配ロボット2による荷物100の積み込みが完了する。 When the home delivery robot 2 finishes loading the package 100, the control unit 32 raises the slide door 242 to close the opening 241, and directs the close request signal for closing the opening 42 to the receiving box 4B. to send. The receiving box 4B raises the slide door 421 and closes the opening 42 in response to receiving the close request signal. This completes the loading of the parcel 100 by the home delivery robot 2 .
 荷物100の積み込みを完了すると、制御ユニット32は、荷物100に印刷等された2次元コードから記録情報を読み取るよう、コードリーダ324を制御する(S106)。上記のごとく、2次元コードには、荷物100の配達先の宛名や部屋番号等の宛先情報が記録されている。コードリーダ324は、制御ユニット32による制御に応じて、まず、収納部24の天井に設けられたカメラ324C(図5参照。)によって荷物100の上面に印刷等された2次元コードのコード画像を取得する。そして、コードリーダ324は、このコード画像に処理を施して2次元コードの記録情報である宛先情報を読み取る。 When the loading of the cargo 100 is completed, the control unit 32 controls the code reader 324 to read the recorded information from the two-dimensional code printed on the cargo 100 (S106). As described above, the two-dimensional code records destination information such as the delivery address of the parcel 100 and the room number. In accordance with the control by the control unit 32, the code reader 324 first reads a code image of a two-dimensional code printed on the upper surface of the package 100 by means of a camera 324C (see FIG. 5) provided on the ceiling of the storage section 24. get. The code reader 324 then processes the code image to read the destination information, which is the recorded information of the two-dimensional code.
 制御ユニット32は、配達先の宛先情報を取得すると、地図DB34に格納された2次元地図を参照して、配達先の宅配ボックス4Aまでの経路を演算する(S107)。そして、制御ユニット32は、演算により決定された経路に沿って宅配ロボット2を移動させるための移動制御P11(図12を参照して後述する。)を実行する。 When the control unit 32 acquires the destination information of the delivery destination, it refers to the two-dimensional map stored in the map DB 34 and calculates the route to the home delivery box 4A of the delivery destination (S107). Then, the control unit 32 executes movement control P11 (described later with reference to FIG. 12) for moving the home delivery robot 2 along the route determined by the calculation.
 制御ユニット32は、宅配ロボット2が配達先の宅配ボックス4Aに到着するまで、移動制御P11を繰り返し実行する(S109:NO)。なお、宅配ボックス4Aに対する宅配ロボット2の到着位置は、宅配ボックス4Aの開口部41に対して、正面の開口部241が隙間少なく対面する位置である。制御ユニット32は、宅配ロボット2がこの到着位置に達すると(S109:YES)、移動制御P11を終了させる。 The control unit 32 repeatedly executes the movement control P11 until the delivery robot 2 reaches the delivery destination delivery box 4A (S109: NO). The arrival position of the home delivery robot 2 with respect to the home delivery box 4A is a position where the front opening 241 faces the opening 41 of the home delivery box 4A with a small gap. When the delivery robot 2 reaches this arrival position (S109: YES), the control unit 32 terminates the movement control P11.
 制御ユニット32は、宅配ボックス4Aに対して宅配ロボット2が隙間少なく対面する上記の到着位置において、荷物100の引渡しを実行する(S109:Yes→S110)。制御ユニット32は、スライドドア242を下降させて開口部241を開口させると共に、宅配ボックス4Aに対し、開口部41の開口を求めるオープン要求信号を送信する。 The control unit 32 delivers the parcel 100 at the arrival position where the home delivery robot 2 faces the home delivery box 4A with a small gap (S109: Yes→S110). The control unit 32 lowers the slide door 242 to open the opening 241 and transmits an open request signal requesting opening of the opening 41 to the delivery box 4A.
 宅配ボックス4Aは、オープン要求信号の受信に応じて、スライドドア411を下降させ、開口部41を開口させる。制御ユニット32は、搬送ローラ243を回転駆動することにより宅配ボックス4Aに向けて荷物100を搬送する。上記のごとく、宅配ボックス4Aの搬送ローラ403は、回転自在のローラであり、荷物100の移動に従動して回転する。それ故、宅配ロボット2は、宅配ボックス4Aに向けて、抵抗少なく荷物100を搬送可能である。 The delivery box 4A lowers the slide door 411 and opens the opening 41 in response to receiving the open request signal. The control unit 32 conveys the parcel 100 toward the home delivery box 4A by driving the conveying roller 243 to rotate. As described above, the transport roller 403 of the home delivery box 4A is a rotatable roller that rotates following the movement of the parcel 100. As shown in FIG. Therefore, the home delivery robot 2 can carry the parcel 100 toward the home delivery box 4A with little resistance.
 制御ユニット32は、宅配ボックス4Aへの荷物100の引渡しが完了すると(S110)、スライドドア242を上昇させて開口部241を閉じると共に、開口部41を閉じさせるための上記のクローズ要求信号を宅配ボックス4Aに送信する。宅配ボックス4Aは、クローズ要求信号の受信に応じて、スライドドア411を上昇させて開口部41を閉じる。これにより、宅配ボックス4Aへの荷物100の引渡しが完了する。 When the delivery of the package 100 to the delivery box 4A is completed (S110), the control unit 32 raises the slide door 242 to close the opening 241, and issues the close request signal for closing the opening 41. Send to Box 4A. Delivery box 4A raises slide door 411 and closes opening 41 in response to receiving the close request signal. This completes the delivery of the parcel 100 to the home delivery box 4A.
 続いて、制御ユニット32は、待機スペース505に戻るための経路を演算により決定する(S111)。そして、制御ユニット32は、演算により決定された経路に沿って宅配ロボット2を移動させるための移動制御P11(図12を参照して後述する。)を実行する。 Subsequently, the control unit 32 determines a route for returning to the waiting space 505 by calculation (S111). Then, the control unit 32 executes movement control P11 (described later with reference to FIG. 12) for moving the home delivery robot 2 along the route determined by the calculation.
 制御ユニット32は、待機スペース505に到着するまで、移動制御P11を繰り返し実行する(S113:NO)。制御ユニット32は、宅配ロボット2が待機スペース505に戻ると(S113:YES)、図13を参照して後述するリセット処理P12を実行する。 The control unit 32 repeatedly executes the movement control P11 until it reaches the waiting space 505 (S113: NO). When the home delivery robot 2 returns to the standby space 505 (S113: YES), the control unit 32 executes reset processing P12, which will be described later with reference to FIG.
 制御ユニット32は、荷受ボックス4Bに配達された全ての荷物100を各戸56に配達し終わるまで、図10の全体処理を繰り返し実行する。なお、宅配ロボット2は、上記の荷受信号に含まれる荷受時刻の早い順で、各戸56に荷物100を配達する。荷受ボックス4Bに配達された荷物100を全て配達すると、宅配ロボット2は、待機スペース505において待機する状態に移行する。 The control unit 32 repeats the overall processing of FIG. 10 until all packages 100 delivered to the receiving box 4B are delivered to each house 56. The delivery robot 2 delivers the parcels 100 to each house 56 in the order of earliest parcel reception time included in the parcel reception signal. After delivering all the parcels 100 delivered to the parcel receiving box 4B, the home delivery robot 2 shifts to a waiting state in the waiting space 505.例文帳に追加
(2)移動制御
 図10中の3か所の移動制御P11は、慣性航法によって位置を測位しながら自走により宅配ロボット2を移動させるための制御である。各移動制御P11は、宅配ロボット2が目的地に到着するまで、繰り返し実行される。この移動制御P11の内容について、図12を参照して説明する。
(2) Movement Control Three movement controls P11 in FIG. 10 are controls for moving the home delivery robot 2 by self-running while positioning by inertial navigation. Each movement control P11 is repeatedly executed until the home delivery robot 2 arrives at the destination. The contents of this movement control P11 will be described with reference to FIG.
 移動制御P11(図12)では、宅配ロボット2の位置及び方位の推定がIMU22によって繰り返し実行される(S201)。上記の通り、IMU22は、ヨーレートを積分して方位の変動量を推定し、移動開始時点の宅配ロボット2の方位に対して、推定された方位の変動量を足し合わせることにより、時々刻々の方位を推定する。また、移動制御P11の1回のループの処理時間に相当する十分に短い時間的な各区間について、前後方向及び幅方向の加速度をそれぞれ二重積分することで2次元的な変位量を推定する。 In the movement control P11 (FIG. 12), the IMU 22 repeatedly estimates the position and orientation of the home delivery robot 2 (S201). As described above, the IMU 22 integrates the yaw rate to estimate the azimuth fluctuation amount, and adds the estimated azimuth fluctuation amount to the azimuth of the home delivery robot 2 at the start of movement, thereby to estimate In addition, for each sufficiently short time interval corresponding to the processing time of one loop of the movement control P11, the two-dimensional displacement amount is estimated by double integrating the acceleration in the longitudinal direction and the width direction. .
 IMU22は、各区間の宅配ロボット2の方位(例えば、平均値や中央値など。)に沿って各区間の2次元的な変位量を累積することにより、移動開始後の2次元的な変位量を推定する。そして、IMU22は、移動開始時点の宅配ロボット2の位置を基準として、移動開始後の2次元的な変位量の分だけずらした位置を、宅配ロボット2の位置として推定する。 The IMU 22 accumulates the two-dimensional displacement amount of each section along the direction of the home delivery robot 2 in each section (for example, average value, median value, etc.), thereby calculating the two-dimensional displacement amount after the start of movement. to estimate Then, the IMU 22 estimates the position of the home delivery robot 2 as the position shifted from the position of the home delivery robot 2 at the start of movement by the amount of two-dimensional displacement after the start of movement.
 なお、移動開始時点の宅配ロボット2の初期位置及び初期方位は、次に説明するリセット処理P12で特定される絶対位置あるいは絶対方位である。IMU22が推定する変動量は、図10中の1か所目の移動制御P11から2か所目の移動制御P11に引き継がれ、さらに、3か所目の移動制御P11に引き継がれる。 The initial position and initial orientation of the home delivery robot 2 at the start of movement are absolute positions or absolute orientations specified in reset processing P12 described below. The variation amount estimated by the IMU 22 is handed over from the first movement control P11 to the second movement control P11 in FIG. 10, and further handed over to the third movement control P11.
 ステップS201においてIMU22が推定する位置及び方位は、地図DB34に格納された2次元地図における絶対位置あるいは絶対方位である。制御ユニット32は、IMU22が推定した位置及び方位について、予め設定された制御目標の経路に対する偏差を特定する(S202)。ここで、制御目標の経路は、図10中の経路演算S102、S107、S111により求められる経路である。偏差は、上記のステップS201で推定された宅配ロボット2の位置の経路に対する位置的な偏差、及び同様に推定された宅配ロボット2の方位の経路の方向に対する方位的な偏差である。 The position and orientation estimated by the IMU 22 in step S201 are absolute positions or absolute orientations on the two-dimensional map stored in the map DB34. The control unit 32 identifies the deviation of the position and orientation estimated by the IMU 22 from the preset control target path (S202). Here, the control target path is a path obtained by path calculations S102, S107, and S111 in FIG. The deviation is the positional deviation of the position of the home delivery robot 2 estimated in step S201 above and the azimuthal deviation of the direction of the home delivery robot 2 estimated in the same way.
 制御ユニット32は、特定された位置および方位の偏差に基づいて、宅配ロボット2が設定された経路上を移動できるよう、モータ260R、260Lを個別に制御する(S203)。なお、カメラ322Cや物体検知ユニット323により人や経路上の障害物等が検出された場合、制御ユニット32は、駆動輪26R、26Lの回転を停止させたり、迂回する制御を実行する。迂回する制御において、制御ユニット32は、迂回ルートの演算や、迂回ルートに沿って宅配ロボット2を移動させるための制御を実行する。迂回ルートは、図10の経路演算S102、S107、S111により設定された経路から外れて障害物等を迂回し、元の経路に戻るための経路である。 The control unit 32 individually controls the motors 260R and 260L so that the home delivery robot 2 can move on the set route based on the specified position and orientation deviation (S203). When a person, an obstacle on the route, or the like is detected by the camera 322C or the object detection unit 323, the control unit 32 stops the rotation of the drive wheels 26R and 26L or executes control to detour. In the detour control, the control unit 32 performs calculation of the detour route and control for moving the delivery robot 2 along the detour route. A detour route is a route that deviates from the route set by route calculations S102, S107, and S111 in FIG. 10, avoids obstacles, and returns to the original route.
(3)リセット処理
 リセット処理P12(図13)は、慣性航法によって推定された位置及び方位の変動量をゼロリセットすることで、これらの変動量に含まれる累積誤差の影響を排除するための処理である。上記のごとく、IMU22は、宅配ロボット2の位置や方位を推定する際、ヨーレートの積分や、加速度の二重積分、等を実行している。一般的に、積分演算は、誤差を累積して蓄積する傾向がある演算である。
(3) Reset process The reset process P12 (Fig. 13) is a process for eliminating the effects of cumulative errors contained in these fluctuation amounts by resetting to zero the amount of variation in the position and orientation estimated by inertial navigation. is. As described above, when estimating the position and orientation of the home delivery robot 2, the IMU 22 performs yaw rate integration, acceleration double integration, and the like. In general, integral operations are operations that tend to accumulate errors cumulatively.
 2軸ジャイロセンサ223によるヨーレートや2軸加速度センサ222による加速度の計測値には、温度や経年によるドリフトによる誤差等が含まれ易く、さらに、積分演算によって求められる変動量では誤差が累積的に蓄積され得る。変動量中の誤差は、宅配ロボット2の移動距離や移動時間が長くなればなるほど、累積されて拡大し得る。 The yaw rate measured by the 2-axis gyro sensor 223 and the acceleration measured by the 2-axis acceleration sensor 222 are likely to include errors due to drift due to temperature and aging, and furthermore, errors accumulate cumulatively in the amount of fluctuation obtained by integral calculation. can be The errors in the fluctuation amount can accumulate and expand as the moving distance and moving time of the home delivery robot 2 increase.
 リセット処理P12によれば、慣性航法によって推定された変動量をゼロリセットすることで、誤差の累積を一旦、断ち切ることができる。そして、変動量の中で、累積した誤差に起因する影響を解消できる。リセット処理P12では、IMU22が推定する位置的な変動量である変位量、及び方位的な変動量、をゼロリセットできる。さらに、このリセット処理P12においては、磁気マーカ10を利用して、宅配ロボット2の絶対位置および絶対方位が特定され、図10中の移動制御P11において、初期位置、初期方位として利用される。 According to the reset process P12, by resetting the amount of variation estimated by inertial navigation to zero, it is possible to temporarily cut off the accumulation of errors. Then, it is possible to eliminate the influence caused by the accumulated error in the amount of variation. In the reset process P12, the displacement amount, which is the positional variation amount estimated by the IMU 22, and the azimuth variation amount can be reset to zero. Further, in this reset process P12, the magnetic marker 10 is used to identify the absolute position and absolute orientation of the home delivery robot 2, which are used as the initial position and initial orientation in the movement control P11 in FIG.
 リセット処理P12(図13)は、エントランス58に設けられた待機スペース505に宅配ロボット2が戻っている状態で実行される。リセット処理P12において制御ユニット32は、まず、磁気マーカ10を検出するためのマーカ検出処理P13を実行する。制御ユニット32は、磁気マーカ10を検出するまで(S301:NO)、待機スペース505の内側で宅配ロボット2を小刻みに移動させ、これにより磁気マーカ10を探索する(S311)。 The reset process P12 (FIG. 13) is executed while the home delivery robot 2 has returned to the waiting space 505 provided at the entrance 58. In the reset process P<b>12 , the control unit 32 first executes a marker detection process P<b>13 for detecting the magnetic marker 10 . The control unit 32 moves the home delivery robot 2 in small steps inside the waiting space 505 until the magnetic marker 10 is detected (S301: NO), thereby searching for the magnetic marker 10 (S311).
 制御ユニット32は、磁気マーカ10が検出されると(S301:YES)、センサアレイ21の中央に位置する磁気センサC8が磁気マーカ10の真上に位置するように、宅配ロボット2の位置を調整するという位置合わせを実行する(S302)。具体的には、制御ユニット32は、図8のゼロクロスZcに当たる位置にセンサアレイ21が位置し、かつ、図9のゼロクロスZcの位置に磁気センサC8が位置するように、宅配ロボット2の位置合わせを実行する(S302)。なお、このとき、宅配ロボット2の向きである方位は、任意であり、磁気センサC8を磁気マーカ10の真上に位置させるという位置合わせのみが、制御の対象となる。 When the magnetic marker 10 is detected (S301: YES), the control unit 32 adjusts the position of the home delivery robot 2 so that the magnetic sensor C8 positioned in the center of the sensor array 21 is positioned right above the magnetic marker 10. Alignment is executed (S302). Specifically, the control unit 32 aligns the home delivery robot 2 so that the sensor array 21 is positioned at the zero cross Zc in FIG. 8 and the magnetic sensor C8 is positioned at the zero cross Zc in FIG. (S302). At this time, the orientation of the home delivery robot 2 is arbitrary, and only the positioning of the magnetic sensor C8 directly above the magnetic marker 10 is controlled.
 制御ユニット32は、磁気センサC8が磁気マーカ10の真上に位置するとき、磁気マーカ10の配設位置を宅配ロボット2の位置(絶対位置)として特定する(S303)。なお、磁気マーカ10の配設位置は、上記のごとく、2次元地図上で特定されている。また、制御ユニット32は、磁気マーカ10に設けられたRFIDタグ15のタグ情報を取得するよう、タグリーダ321を制御する(S304)。なお、上述の通り、タグ情報は、磁気マーカ10の周囲の縦エッジの分布パターンを表す構造情報である。この構造情報では、マンション5の2次元地図上で定められた基準方位に基づく各縦エッジの方位的な偏差が特定されている。 When the magnetic sensor C8 is positioned right above the magnetic marker 10, the control unit 32 specifies the position of the magnetic marker 10 as the position (absolute position) of the home delivery robot 2 (S303). It should be noted that the arrangement positions of the magnetic markers 10 are specified on the two-dimensional map as described above. Also, the control unit 32 controls the tag reader 321 to acquire the tag information of the RFID tag 15 provided on the magnetic marker 10 (S304). As described above, the tag information is structural information representing the distribution pattern of vertical edges around the magnetic marker 10 . In this structural information, the orientational deviation of each vertical edge based on the reference orientation determined on the two-dimensional map of the condominium 5 is specified.
 制御ユニット32は、前方を監視する画像センサ322、及び物体検知ユニット323を制御し、前方の環境中の縦エッジの抽出を試みる(S305)。例えば、制御ユニット32は、カメラ322Cが撮影した前方画像に対して、高周波成分を強調するエッジング処理などの画像処理を施すことで、縦エッジの成分を強調可能である。さらに、エッジング処理を施した処理画像に対して、例えば、閾値以上の輝度の画素値を1とし閾値未満の輝度の画素値をゼロとする2値化処理等を施すことで、前方画像中の縦エッジを抽出する。そして、制御ユニット32は、宅配ロボット2の前後方向の軸を基準として、前方の環境中の各縦エッジの方位的な分布パターンを特定する。 The control unit 32 controls the image sensor 322 that monitors the front and the object detection unit 323, and attempts to extract vertical edges in the environment ahead (S305). For example, the control unit 32 can emphasize vertical edge components by performing image processing such as edging processing for emphasizing high-frequency components on the forward image captured by the camera 322C. Furthermore, the processed image subjected to the edging process is subjected to, for example, a binarization process in which the pixel value of luminance equal to or higher than the threshold is set to 1 and the pixel value of luminance less than the threshold is set to 0, so that the image in the front image is Extract vertical edges. Then, the control unit 32 identifies the azimuth distribution pattern of each vertical edge in the forward environment with reference to the longitudinal axis of the home delivery robot 2 .
 制御ユニット32は、タグ情報に係る構造情報が表す縦エッジの第1の分布パターンと、上記のステップS305で抽出した前方の縦エッジの角度的な第2の分布パターンと、の相関を調べることにより、宅配ロボット2の方位を特定する(S306)。具体的には、制御ユニット32は、構造情報に係る基準方位に対し、宅配ロボット2の前後方向の軸を角度的にずらしながら、第1の分布パターンと第2の分布パターンとの相関度合いを調べる。そして、制御ユニット32は、第1の分布パターンに対して第2の分布パターンが最も一致しており、相関が最も高くなるときの方位的な偏差を特定する。この方位的な偏差は、構造情報に係る基準方位に対する宅配ロボット2の前後方向の軸の角度的な偏差である。この方位的な偏差に基づけば、構造情報に係る基準方位を基準として宅配ロボット2の前後方向の軸の絶対方位を特定できる。 The control unit 32 examines the correlation between the first distribution pattern of vertical edges represented by the structural information related to the tag information and the second angular distribution pattern of front vertical edges extracted in step S305. , the direction of the home delivery robot 2 is specified (S306). Specifically, the control unit 32 adjusts the degree of correlation between the first distribution pattern and the second distribution pattern while angularly shifting the axis of the home delivery robot 2 in the front-rear direction with respect to the reference orientation related to the structural information. investigate. The control unit 32 then identifies the azimuthal deviation when the second distribution pattern is most consistent with the first distribution pattern and has the highest correlation. This azimuth deviation is the angular deviation of the longitudinal axis of the home delivery robot 2 with respect to the reference azimuth related to the structural information. Based on this azimuth deviation, the absolute azimuth of the longitudinal axis of the home delivery robot 2 can be identified with reference to the reference azimuth related to the structural information.
 制御ユニット32は、宅配ロボット2の絶対位置及び絶対方位を特定できると、ヨーレートの積分により推定された方位の変動量や、加速度の二重積分によって推定された変位量など、IMU22が推定した変動量をゼロリセットする(S307)。また、制御ユニット32は、リセット処理P12で特定した宅配ロボット2の絶対位置及び絶対方位を、移動開始前の初期位置あるいは初期方位として記憶する。 When the control unit 32 can identify the absolute position and absolute orientation of the home delivery robot 2, the control unit 32 determines the amount of fluctuation estimated by the IMU 22, such as the amount of change in orientation estimated by integration of the yaw rate and the amount of displacement estimated by double integration of acceleration. The amount is reset to zero (S307). The control unit 32 also stores the absolute position and absolute orientation of the home delivery robot 2 specified in the reset process P12 as the initial position or initial orientation before starting movement.
 制御ユニット32は、IMU22が推定した変動量をゼロリセットすると(S307)、そのままの姿勢で新たな荷物100の配達を待機するよう、宅配ロボット2を制御する。なお、これに代えて、宅配ロボット2の位置や方位を調整することも良い。この調整の際、IMU22によって推定された変位量や方位の変動量を記憶しておけば良い。 When the control unit 32 resets the amount of variation estimated by the IMU 22 to zero (S307), it controls the home delivery robot 2 to wait for the delivery of a new parcel 100 in the same posture. Alternatively, the position and orientation of the home delivery robot 2 may be adjusted. At the time of this adjustment, the amount of displacement and the amount of change in orientation estimated by the IMU 22 may be stored.
 以上のように構成された本例のシステム1は、宅配ロボット2が慣性航法による自律的な自走によりマンション5内を移動するシステムである。このシステム1では、慣性航法が推定する変動量である2次元的な変位量や方位の変動量が、磁気マーカ10の検出に応じてゼロリセットされる。 The system 1 of this example configured as described above is a system in which the home delivery robot 2 moves within the condominium 5 by autonomous self-propulsion using inertial navigation. In this system 1 , the two-dimensional displacement amount and the azimuth variation amount, which are the amount of variation estimated by inertial navigation, are reset to zero according to the detection of the magnetic marker 10 .
 宅配ロボット2が磁気マーカ10を検出した場合には、磁気マーカ10の配設位置に基づいて宅配ロボット2の絶対位置を特定可能である。このように磁気マーカ10の検出により絶対位置が特定された後の移動に伴う2次元的な変位量や方位の変動量については、慣性航法によってゼロスタートで推定される。それ故、磁気マーカ10を検出した場合には、慣性航法により推定された過去の2次元的な変位量や方位の変動量を測位のために利用する必要がなくなる。 When the delivery robot 2 detects the magnetic marker 10, the absolute position of the delivery robot 2 can be identified based on the position of the magnetic marker 10. After the absolute position is specified by detecting the magnetic marker 10 in this way, the two-dimensional displacement amount and the azimuth variation amount accompanying the movement are estimated from zero start by inertial navigation. Therefore, when the magnetic marker 10 is detected, there is no need to use the past two-dimensional displacement amount or azimuth variation amount estimated by inertial navigation for positioning.
 磁気マーカ10を検出する毎に、慣性航法により推定された過去の2次元的な変位量や方位の変動量をゼロリセットすれば、ヨーレートの積分や加速度の二重積分に起因する誤差の累積を一旦、断ち切ることができる。それ故、本例のシステム1では、慣性航法による推定誤差が無限に累積されるおそれがなく、慣性航法による測位誤差が過大になる状況を未然に回避できる。 Every time the magnetic marker 10 is detected, if the past two-dimensional displacement amount and azimuth variation amount estimated by inertial navigation are reset to zero, the accumulation of errors due to the integral of the yaw rate and the double integral of the acceleration can be eliminated. You can cut it off once. Therefore, in the system 1 of the present embodiment, there is no possibility that estimation errors due to inertial navigation will accumulate infinitely, and situations in which positioning errors due to inertial navigation become excessive can be avoided.
 特に、本例の構成では、宅配ロボット2が荷物100を配達する都度、戻って来る待機スペース505に磁気マーカ10が配設されている。そのため、システム1では、荷物100を1個、配達するごとに、必ず、慣性航法により推定された変動量をゼロリセットできる。それ故、このシステム1では、荷物100の配達中に、慣性航法による測位の精度が極端に悪化するおそれがなく、荷物100を各戸56に確実性高く配達できる。 In particular, in the configuration of this example, the magnetic marker 10 is arranged in the standby space 505 to which the home delivery robot 2 returns each time it delivers the parcel 100 . Therefore, the system 1 can always reset the amount of variation estimated by inertial navigation to zero each time one parcel 100 is delivered. Therefore, in this system 1, there is no possibility that the accuracy of positioning by inertial navigation will deteriorate significantly while the package 100 is being delivered, and the package 100 can be delivered to each house 56 with high reliability.
 なお、本例では、待機スペース505のみに磁気マーカ10を配設する構成を例示している。この構成に代えて、あるいは加えて、宅配ロボット2が通過する頻度が高い箇所に磁気マーカ10を配設することも良い。例えば、エレベータ52前のエレベータホール525(図1参照。)などは、宅配ロボット2が階を移動する際に必ず通過する箇所である。そこで、エレベータホール525に磁気マーカ10を配設することも良い。あるいは、各階の通路50のうち、エレベータ52と、エレベータ52に最も近い住戸56と、を結ぶ区間に、磁気マーカ10を配設することも良い。通路50上のこの区間は、各階のいずれかの住戸56に荷物100を配達する際に、宅配ロボット2が必ず通過する箇所である。さらに例えば、エレベータ52の床面に磁気マーカ10を配設することも良い。この場合には、宅配ロボット2がエレベータ52を利用する都度、慣性航法による変動量のリセットが可能になる。エレベータ52は、高さ方向に移動する一方、水平面内での移動はない。それ故、エレベータ52の床面に磁気マーカ10を配設した場合、各階の2次元地図上での位置の特定が可能である。一方、高さ方向の位置、すなわち宅配ロボット2が所在する階の選択については、上記の通り、目的階の情報を出力する側の宅配ロボット2側で特定可能である。なお、エレベータ52の床面は、エレベータ52が宅配ロボット2を受け入れるエリアの例示である。 Note that this example illustrates a configuration in which the magnetic markers 10 are arranged only in the standby space 505 . Instead of or in addition to this configuration, the magnetic markers 10 may be arranged at locations where the home delivery robot 2 frequently passes. For example, the elevator hall 525 (see FIG. 1) in front of the elevator 52 is a place that the home delivery robot 2 must pass through when moving between floors. Therefore, it is also preferable to dispose the magnetic marker 10 in the elevator hole 525 . Alternatively, the magnetic marker 10 may be arranged in the section connecting the elevator 52 and the dwelling unit 56 closest to the elevator 52 in the corridor 50 on each floor. This section on the passageway 50 is a section through which the home delivery robot 2 must pass when delivering the package 100 to one of the dwelling units 56 on each floor. Further, for example, the magnetic marker 10 may be arranged on the floor surface of the elevator 52 . In this case, each time the home delivery robot 2 uses the elevator 52, it is possible to reset the amount of variation due to inertial navigation. Elevator 52 moves in the vertical direction while there is no movement in the horizontal plane. Therefore, when the magnetic marker 10 is arranged on the floor surface of the elevator 52, it is possible to specify the position of each floor on the two-dimensional map. On the other hand, the position in the height direction, that is, the selection of the floor where the delivery robot 2 is located can be specified by the delivery robot 2 side that outputs the information on the destination floor, as described above. Note that the floor surface of the elevator 52 is an example of an area where the elevator 52 receives the home delivery robot 2 .
(実施例2)
 本例は、実施例1に基づいて、宅配ロボット2が必要に応じて磁気マーカ10の検出を実行するように制御の仕様が変更された例である。この内容について、実施例1の説明に用いた図7及び図14~図16を参照して説明する。
(Example 2)
This example is an example in which the control specifications are changed based on the first example so that the home delivery robot 2 detects the magnetic marker 10 as necessary. This content will be described with reference to FIGS. 7 and 14 to 16 used to describe the first embodiment.
 本例の構成では、図14のごとく、マンション5内の複数の箇所に、磁気マーカ10が配設されている。磁気マーカ10は、例えば、各階のエレベータホール525の隅などに配設されている。各エレベータホール525における磁気マーカ10の位置は、各階の2次元地図上で特定されている。 In the configuration of this example, as shown in FIG. 14, magnetic markers 10 are arranged at a plurality of locations within the condominium 5 . The magnetic markers 10 are arranged, for example, in corners of elevator halls 525 on each floor. The position of the magnetic marker 10 in each elevator hall 525 is specified on the two-dimensional map of each floor.
 宅配ロボット2が備える制御ユニット32(図7)は、実施例1の構成に加えて、IMU22が推定する変動量(変位量及び方位の変動量)に含まれる誤差の度合いを表す指標値を求める誤差推定部としての機能を備えている。制御部としての制御ユニット32は、誤差推定部が求めた指標値に関する閾値処理の結果に応じて、宅配ロボット2に適用する制御の切替を実行する。本例の制御ユニット32は、指標値が閾値以上になったか、あるいは閾値を超えた場合に、磁気マーカ10の配設位置に宅配ロボット2を到達させるための制御に切り替える。 In addition to the configuration of the first embodiment, the control unit 32 (FIG. 7) provided in the home delivery robot 2 obtains an index value representing the degree of error included in the amount of variation (the amount of displacement and the amount of variation in direction) estimated by the IMU 22. It has a function as an error estimator. The control unit 32 as a control section switches the control applied to the home delivery robot 2 according to the result of threshold processing for the index value obtained by the error estimating section. The control unit 32 of this example switches to control for causing the home delivery robot 2 to reach the position where the magnetic marker 10 is arranged when the index value becomes equal to or greater than the threshold value or exceeds the threshold value.
 ここで、IMU22が推定する変動量に含まれる誤差は、計測されたヨーレートや加速度を積分する処理によって累積的に増加する傾向にある。磁気マーカ10を利用して絶対位置や絶対方位が特定された時点(リセット処理の時点)は、IMU22が変動量をゼロスタートで推定する際の開始時点となるので、この時点における変動量の誤差はゼロである。一方、この時点からの経過時間や、磁気マーカ10を利用して特定された絶対位置から移動した距離、が長くなれば、IMU22が推定する変動量に含まれる誤差が累積的に大きくなる。 Here, the error included in the amount of variation estimated by the IMU 22 tends to cumulatively increase due to the process of integrating the measured yaw rate and acceleration. The time when the absolute position and absolute orientation are specified using the magnetic marker 10 (the time of the reset process) is the time when the IMU 22 starts estimating the amount of change from zero. is zero. On the other hand, if the elapsed time from this point or the distance moved from the absolute position specified using the magnetic marker 10 increases, the error included in the amount of variation estimated by the IMU 22 increases cumulatively.
 本例は、IMU22による誤差の変動量に含まれる誤差の度合いを表す指標値として、磁気マーカ10を利用して絶対位置や絶対方位が特定された時点からの経過時間を採用した例である。指標値としては、経過時間に代えて、あるいは加えて、磁気マーカ10を利用して特定された絶対位置からの移動距離を採用することも良い。 This example is an example in which the elapsed time from the time when the absolute position and absolute orientation are identified using the magnetic marker 10 is used as an index value representing the degree of error included in the amount of error variation by the IMU 22 . As the index value, instead of or in addition to the elapsed time, a moving distance from the absolute position specified using the magnetic marker 10 may be used.
 本例の移動制御(図15)では、実施例1の図12の移動制御に基づき、リセット処理後の経過時間に関する閾値判断のステップS211、及び閾値処理の結果に応じて実行される割込処理P21が追加されている。経過時点が閾値以内の場合は(S211:YES)、実施例1と同様の制御が実行される。一方、リセット処理後の経過時間が閾値を超えると(S211:NO)、割込処理P21が割り込みで実行される。この割込処理P21は、宅配ロボット2に適用する制御を、予め設定された目的地に移動するための制御から、磁気マーカ10を検出させるための移動制御P11に切り替える処理である。 In the movement control of this example (FIG. 15), based on the movement control of FIG. 12 of the first embodiment, step S211 for threshold judgment regarding the elapsed time after the reset processing and the interrupt processing executed according to the result of the threshold processing P21 has been added. If the elapsed time is within the threshold (S211: YES), control similar to that of the first embodiment is executed. On the other hand, when the elapsed time after the reset process exceeds the threshold (S211: NO), the interrupt process P21 is executed as an interrupt. This interrupt process P21 is a process of switching the control applied to the home delivery robot 2 from the control for moving to a preset destination to the movement control P11 for detecting the magnetic marker 10 .
 割込処理P21(図16)が開始されると、制御ユニット32は、まず、その時点の宅配ロボット2の位置(割込位置の例示。)及び方位を記憶する(S401)。そして、制御ユニット32は、地図DB34に格納された2次元地図を参照し、現在位置からの移動コストが最も低い磁気マーカ10を検索する(S402)。ここで、移動コストは、距離が長いほど大きくなり、階を跨ぐ場合には同じ階での移動に比べて割高となるようなコストである。上記のステップS402では、宅配ロボット2が移動する配置された各磁気マーカ10について、宅配ロボット2が移動するために必要な移動コストが求められ、移動コストが最も小さい磁気マーカ10が移動制御P11による検出対象に設定される。 When the interrupt process P21 (FIG. 16) is started, the control unit 32 first stores the position (an example of the interrupted position) and orientation of the home delivery robot 2 at that time (S401). Then, the control unit 32 refers to the two-dimensional map stored in the map DB 34 and searches for the magnetic marker 10 with the lowest movement cost from the current position (S402). Here, the movement cost increases as the distance increases, and when crossing floors, it is a cost that is more expensive than movement on the same floor. In the above step S402, the movement cost necessary for the home delivery robot 2 to move is obtained for each of the arranged magnetic markers 10 to which the home delivery robot 2 moves. Set as a detection target.
 制御ユニット32は、目的地とする磁気マーカ10が見つかると、その磁気マーカ10の配設位置を経由し、上記のステップS401で記憶した元の位置及び方位に復帰するための経路を演算により求めて設定する(S403)。制御ユニット32は、新たに設定された経路に沿って移動できるよう、宅配ロボット2に移動制御P11を適用する。なお、この移動制御P11は、実施例1の移動制御と同様の制御である。 When the magnetic marker 10 serving as the destination is found, the control unit 32 calculates a route to return to the original position and orientation stored in step S401 via the position of the magnetic marker 10. (S403). The control unit 32 applies movement control P11 to the home delivery robot 2 so that it can move along the newly set route. This movement control P11 is the same control as the movement control of the first embodiment.
 制御ユニット32は、磁気マーカ10の配設位置に到達するまで(S404:NO→S415:NO)、移動制御P11を繰り返し実行する。その後、磁気マーカ10の配設位置に到達すると(S404:YES)、制御ユニット32は、リセット処理P12(図13)を実行する。このリセット処理P12は、実施例1で説明した通り、宅配ロボット2の絶対位置及び絶対方位を特定すると共に、IMU22が推定する変動量(変位量、方位の変動量)をゼロリセットする処理である。さらに、実施例2のリセット処理では、リセット処理後の経過時間もゼロリセットされる。 The control unit 32 repeatedly executes the movement control P11 until it reaches the arrangement position of the magnetic marker 10 (S404: NO→S415: NO). After that, when reaching the arrangement position of the magnetic marker 10 (S404: YES), the control unit 32 executes the reset process P12 (FIG. 13). As described in the first embodiment, this reset process P12 is a process of identifying the absolute position and absolute orientation of the home delivery robot 2 and resetting the amount of variation (amount of displacement, amount of variation in orientation) estimated by the IMU 22 to zero. . Furthermore, in the reset process of the second embodiment, the elapsed time after the reset process is also reset to zero.
 制御ユニット32は、リセット処理P12が終了すると、移動制御P11を再開する。この移動制御P11は、上記のステップ401で記憶した元の位置(割込位置の例示。)及び方位に復帰できるまで(S404:NO→S405:NO)、継続的に実行される。その後、宅配ロボット2が元の位置及び方位に復帰できると(S415:YES)、制御ユニット32は、割込処理を終了し、元の移動制御(図15)への切替を実行する。 When the reset process P12 ends, the control unit 32 resumes the movement control P11. This movement control P11 is continuously executed until the original position (an example of the interrupt position) and heading stored in step 401 can be restored (S404: NO→S405: NO). After that, when the home delivery robot 2 can return to its original position and orientation (S415: YES), the control unit 32 terminates the interrupt processing and switches to the original movement control (FIG. 15).
 本例の構成では、宅配ロボット2が随時、必要に応じて磁気マーカ10を検出してリセット処理を実行するため、荷物100を住戸56に配達する毎に待機スペース505(図1)に戻る必要がない。宅配ロボット2は、エントランス58に戻った際、荷受ボックス4Bに荷物100が残っていれば、直ちに、その荷受ボックス4Bに向かうことが可能である。さらに、本例の構成を採用すれば、複数の荷受ボックス4Bから複数の荷物4Bを受け取り、エントランス58に戻ることなく、複数の住戸56に荷物100を配達する運用が可能になる。
 なお、その他の構成及び作用効果については、実施例1と同様である。
In the configuration of this example, the home delivery robot 2 detects the magnetic marker 10 as needed and executes reset processing at any time. There is no When the home delivery robot 2 returns to the entrance 58, if there is any parcel 100 left in the receiving box 4B, the delivery robot 2 can immediately go to the receiving box 4B. Further, by adopting the configuration of this example, it becomes possible to receive a plurality of parcels 4B from a plurality of receiving boxes 4B and deliver the parcels 100 to a plurality of dwelling units 56 without returning to the entrance 58 .
Other configurations and effects are the same as those of the first embodiment.
(実施例3)
 本例は、実施例2のシステムを、畑600に農薬を散布する作業を実行するシステムに応用した例である。この内容について、図17~図24を参照して説明する。
(Example 3)
This example is an example in which the system of Example 2 is applied to a system that executes the work of spraying agricultural chemicals on a field 600 . This content will be described with reference to FIGS. 17 to 24. FIG.
 本例のシステム1(図17)は、ドローン2が自律的に飛行し、畑600に農薬を散布するシステムの例である。このシステム1では、畑600の周りに、目印となるマークポスト6が数カ所、立設されている。各マークポスト6(図18)の上端面には、磁気マーカ10が配設されている。 The system 1 (Fig. 17) of this example is an example of a system in which the drone 2 autonomously flies and sprays agricultural chemicals on the field 600. In this system 1, several mark posts 6 are erected around a field 600 as marks. A magnetic marker 10 is provided on the upper end surface of each mark post 6 (FIG. 18).
 磁気マーカ10は、酸化鉄などの磁粉を基材である高分子材料中に分散させたフェライトプラスチックマグネットを柱状に成形したものである。この磁気マーカ10の磁力は、実施例1の磁気マーカと同等である。磁気マーカ10は、マークポスト6の上端面に穿設された穴に埋設されている。磁気マーカ10の端面には、シート状のRFIDタグ15が貼付されている。RFIDタグ15は、マークポスト6の位置情報及び識別情報を含むタグ情報を無線出力可能である。 The magnetic marker 10 is formed into a columnar shape from a ferrite plastic magnet in which magnetic powder such as iron oxide is dispersed in a polymeric material as a base material. The magnetic force of this magnetic marker 10 is equivalent to that of the magnetic marker of the first embodiment. The magnetic marker 10 is embedded in a hole drilled in the upper end surface of the mark post 6 . A sheet-like RFID tag 15 is attached to the end surface of the magnetic marker 10 . The RFID tag 15 can wirelessly output tag information including position information and identification information of the mark post 6 .
 システム1では、畑600の地形が特定されていると共に、各マークポスト6の位置が特定された3次元地図が管理されている。3次元地図上の各マークポスト6の位置には、マークポストの識別情報がひも付けられている。さらに、3次元地図上では、畑600の中のエリア毎に、栽培されている作物の種類の情報などがひも付けられている。 In the system 1, the topography of the field 600 is specified, and a three-dimensional map in which the position of each mark post 6 is specified is managed. Mark post identification information is attached to the position of each mark post 6 on the three-dimensional map. Furthermore, on the three-dimensional map, each area in the field 600 is associated with information such as the type of cultivated crops.
 ドローン2(図19)は、慣性航法による自律的な飛行が可能な移動体の一例である。ドローン2は、機体2Bの周りに4つの回転翼2Pを備えるマルチコプターである。ドローン2は、4つの回転翼2Pの個別制御により飛行可能である。なお、ドローン2の機体2Bの大きさは、前後約30cm、幅約20cmである。 Drone 2 (Fig. 19) is an example of a mobile object capable of autonomous flight using inertial navigation. The drone 2 is a multicopter with four rotor blades 2P around the body 2B. The drone 2 can fly by individually controlling the four rotor blades 2P. In addition, the size of the body 2B of the drone 2 is approximately 30 cm in the longitudinal direction and approximately 20 cm in width.
 ドローン2の機体2Bには、図19のごとく、制御ユニット32、前方カメラ383、超音波センサ384、複数の磁気センサを含むセンサアレイ21、RFIDタグ15と通信するタグリーダ321、GPSユニット381やIMU22などの測位ユニット、等が搭載されている。 As shown in FIG. 19, the body 2B of the drone 2 includes a control unit 32, a front camera 383, an ultrasonic sensor 384, a sensor array 21 including a plurality of magnetic sensors, a tag reader 321 communicating with the RFID tag 15, a GPS unit 381 and an IMU 22. and other positioning units are installed.
 制御ユニット32は、ドローン2が移動する経路を設定する経路設定部、経路に沿ってドローン2を移動させる制御部、外部のサーバ装置(図示略)との通信を実行する通信回路部、地図DB(データベース)、等としての機能を備えている。地図DBは、制御ユニット32の内部メモリの記憶領域を利用して構築されている。この地図DBには、上記の3次元地図のデータが格納されている。通信回路部は、作業対象エリアを特定するための地理的な情報や、作業内容等の情報、等を含む指示情報を、外部のサーバ装置(図示略)から受信する。経路設定部は、外部から受信した指示情報に基づいて地図データを参照し、飛行する経路を設定する。 The control unit 32 includes a route setting section that sets a route for the drone 2 to move, a control section that moves the drone 2 along the route, a communication circuit section that executes communication with an external server device (not shown), and a map DB. (database), etc. The map DB is constructed using the storage area of the internal memory of the control unit 32 . The map DB stores the above three-dimensional map data. The communication circuit unit receives instruction information including geographical information for specifying a work target area and information such as work content from an external server device (not shown). The route setting unit sets a flight route by referring to map data based on instruction information received from the outside.
 前方カメラ383は、前方を撮影するためのカメラである。制御ユニット32は、たとえば、前方カメラ383による撮影画像に画像処理を施すことにより、マークポスト6を検出する。GPSユニット381は、GNSS(Global Navigation Satellite System)の一種であるGPS(Global Positioning System)を利用して絶対位置を測定するユニットである。 The front camera 383 is a camera for photographing the front. Control unit 32 detects mark post 6 by, for example, performing image processing on the image captured by front camera 383 . The GPS unit 381 is a unit that measures an absolute position using GPS (Global Positioning System), which is a kind of GNSS (Global Navigation Satellite System).
 IMU22は、直交する3軸回りの角速度を計測するジャイロセンサや、3軸方向の加速度を計測する加速度センサや、電子コンパス等を有している。IMU22が計測する角速度や加速度は、ドローン2の姿勢制御に利用可能であるほか、慣性航法による自律飛行に利用できる。変動量推定部の一例をなすIMU22は、角速度の積分等によりドローン2の方位の変動量を推定し、加速度の二重積分等によりドローン2の変位量(位置的な変動量)を推定する。 The IMU 22 has a gyro sensor that measures angular velocity around three orthogonal axes, an acceleration sensor that measures acceleration in three axial directions, an electronic compass, and the like. The angular velocity and acceleration measured by the IMU 22 can be used for attitude control of the drone 2, and can also be used for autonomous flight by inertial navigation. The IMU 22, which is an example of a variation estimating unit, estimates the amount of variation in the orientation of the drone 2 by integrating angular velocity or the like, and estimates the amount of displacement (positional variation) of the drone 2 by double integrating acceleration or the like.
 タグリーダ321は、磁気マーカ10(図18参照。)に保持されたRFIDタグ15と無線で通信する通信ユニットである。タグリーダ321は、RFIDタグ15の動作に必要な電力を無線で送信してRFIDタグ15を動作させ、RFIDタグ15が出力するタグ情報を受信する。上記のごとく、タグ情報には、対応するマークポスト6(磁気マーカ10)の位置情報及び識別情報が含まれている。 The tag reader 321 is a communication unit that wirelessly communicates with the RFID tag 15 held by the magnetic marker 10 (see FIG. 18). The tag reader 321 wirelessly transmits power necessary for operating the RFID tag 15 to operate the RFID tag 15 and receives tag information output by the RFID tag 15 . As described above, the tag information includes position information and identification information of the corresponding mark post 6 (magnetic marker 10).
 なお、タグ情報について、磁気マーカ10の位置情報を除外する一方、制御ユニット32の地図DBに、磁気マーカ10の識別情報をひも付けた位置情報を記憶させておくと良い。この場合、データ読出部としての制御ユニット32が、データベースである地図DBの記憶領域を参照して、タグ情報に含まれる識別情報がひも付けられた磁気マーカ10の位置情報を読み出すと良い。 Regarding the tag information, while excluding the position information of the magnetic marker 10, it is preferable to store the position information associated with the identification information of the magnetic marker 10 in the map DB of the control unit 32. In this case, the control unit 32 as a data reading section should refer to the storage area of the map DB, which is a database, and read the position information of the magnetic marker 10 associated with the identification information included in the tag information.
 次に、本例のシステム1の動作について図20~図24を参照して説明する。図20は、ドローン2による農薬散布作業の全体処理の流れを示すフロー図である。図21は、図20の説明中の参照図である。図22は、ドローン2に適用される飛行制御のフロー図である。図23は、リセット処理を実行するための割込処理の流れを示すフロー図である。図24は、リセット処理の流れを示すフロー図である。 Next, the operation of the system 1 of this example will be described with reference to FIGS. 20 to 24. FIG. FIG. 20 is a flow chart showing the flow of the overall processing of pesticide spraying work by the drone 2. As shown in FIG. FIG. 21 is a reference diagram during the description of FIG. FIG. 22 is a flow chart of flight control applied to the drone 2. FIG. FIG. 23 is a flowchart showing the flow of interrupt processing for executing reset processing. FIG. 24 is a flowchart showing the flow of reset processing.
 ドローン2は、外部から指示情報を受信するまで(S501:NO)、図示しない駐機エリアにて待機している。なお、駐機中では、ドローン2の絶対位置及び絶対方位が特定された状態にある。また、IMU22が推定する変動量もゼロにリセットされた状態にある。制御ユニット32は、外部から指示情報を受信すると(S501:YES)、指示情報に係る作業対象エリア(600A)内を効率良く飛行する経路R(図21)を演算により求めて設定する(S502)。制御ユニット32は、指示情報に係る作業が終了するまで(S503:NO)、飛行制御P31(図22を参照して後述する。)を繰り返し実行する。 The drone 2 waits in a parking area (not shown) until instruction information is received from the outside (S501: NO). Note that, while the drone 2 is parked, the absolute position and absolute azimuth of the drone 2 are specified. Moreover, the amount of variation estimated by the IMU 22 is also reset to zero. When the control unit 32 receives instruction information from the outside (S501: YES), the control unit 32 calculates and sets a route R (FIG. 21) for efficiently flying within the work area (600A) related to the instruction information (S502). . The control unit 32 repeatedly executes the flight control P31 (described later with reference to FIG. 22) until the work related to the instruction information is completed (S503: NO).
 飛行制御P31(図22)において、制御ユニット32は、飛行開始後の経過時間が閾値以内か否かを判断する(S601)。飛行制御P31の実行中では、飛行開始後の経過時間が閾値以内であれば(S601:YES)、IMU22によりドローン2の位置及び方位が推定される(S602)。このとき、IMU22は、駐機中に特定された絶対位置及び絶対方位に対して、変位量あるいは方位の変動量を足し合わせることで、ドローン2の位置及び方位を推定する。 In the flight control P31 (Fig. 22), the control unit 32 determines whether or not the elapsed time after the start of flight is within a threshold value (S601). During flight control P31, if the elapsed time after the start of flight is within the threshold (S601: YES), the IMU 22 estimates the position and orientation of the drone 2 (S602). At this time, the IMU 22 estimates the position and orientation of the drone 2 by adding the amount of displacement or the amount of change in orientation to the absolute position and absolute orientation specified while the drone is parked.
 ステップS602においてIMU22が推定する位置及び方位は、地図DBに格納された3次元地図における位置あるいは方位である。制御ユニット32は、IMU22が推定した位置及び方位について、予め設定された制御目標の経路R(図21参照。)に対する偏差を特定する(S603)。偏差は、上記のステップS602で推定されたドローン2の位置の偏差、及び同様に推定されたドローン2の方位の偏差である。制御ユニット32は、特定された位置および方位の偏差に基づいて、ドローン2が経路R(図21)に沿って飛行できるよう、4つの回転翼2Pを個別に制御する(S604)。一方、上記のステップS601において、飛行開始後の経過時間が閾値を超えたと判断された場合(S601:NO)、制御ユニット32は、割込処理P21を実行する。 The position and orientation estimated by the IMU 22 in step S602 are the positions or orientations on the three-dimensional map stored in the map DB. The control unit 32 identifies the deviation of the position and orientation estimated by the IMU 22 from the preset control target path R (see FIG. 21) (S603). The deviation is the deviation of the position of the drone 2 estimated in step S602 above, and the deviation of the azimuth of the drone 2 estimated similarly. The control unit 32 individually controls the four rotors 2P so that the drone 2 can fly along the route R (FIG. 21) based on the identified position and orientation deviations (S604). On the other hand, if it is determined in step S601 that the elapsed time after the start of flight has exceeded the threshold (S601: NO), the control unit 32 executes the interrupt process P21.
 割込処理P21(図23)において、制御ユニット32は、まず、その時点のドローン2の位置及び方位を記憶する(S701)。そして、制御ユニット32は、畑600の3次元地図を参照し、現在の位置から最も近いマークポスト6を目的地として選択する(S702)。 In the interrupt process P21 (Fig. 23), the control unit 32 first stores the position and orientation of the drone 2 at that time (S701). Then, the control unit 32 refers to the three-dimensional map of the field 600 and selects the mark post 6 closest to the current position as the destination (S702).
 制御ユニット32は、目的地のマークポスト6を選択すると、そのマークポスト6を経由し、上記のステップS701で記憶した元の位置及び方位に復帰するための経路を演算により求めて設定する(S703)。制御ユニット32は、新たに設定された経路に沿って移動できるよう、ドローン2に飛行制御P31を適用する。 When the control unit 32 selects the destination mark post 6, the control unit 32 calculates and sets a route via the mark post 6 to return to the original position and bearing stored in step S701 (S703). ). The control unit 32 applies flight controls P31 to the drone 2 so that it can move along the newly established path.
 制御ユニット32は、目的地のマークポスト6に到達するまで(S704:NO→S715:NO)、飛行制御P31を繰り返し実行する。その後、目的地のマークポスト6に到達すると(S704:YES)、制御ユニット32は、リセット処理P12を実行する。このリセット処理P12は、ドローン2の絶対位置及び絶対方位を特定すると共に、IMU22が推定する変動量(変位量、方位の変動量)をゼロリセットする処理である。リセット処理P12の内容は、実施例2のリセット処理とほぼ同様の処理である。リセット処理P12では、飛行開始後の経過時間もゼロリセットされる。 The control unit 32 repeatedly executes the flight control P31 until the destination mark post 6 is reached (S704: NO→S715: NO). After that, when the destination mark post 6 is reached (S704: YES), the control unit 32 executes the reset process P12. This reset process P12 is a process of specifying the absolute position and absolute azimuth of the drone 2 and resetting the variation amount (displacement amount, azimuth variation amount) estimated by the IMU 22 to zero. The content of the reset process P12 is substantially the same as the reset process of the second embodiment. In the reset process P12, the elapsed time after the start of flight is also reset to zero.
 リセット処理P12(図24)は、マークポスト6の上空に到達してから実行される。リセット処理において制御ユニット32は、まず、磁気マーカ10の検出処理を実行する(S800)。制御ユニット32は、磁気マーカ10を検出するまで(S801:NO)、マークポスト6の上空を飛行するようにドローン2を制御し、これにより磁気マーカ10をサーチする(S811)。 The reset process P12 (FIG. 24) is executed after reaching above the mark post 6. In the reset process, the control unit 32 first executes the detection process of the magnetic marker 10 (S800). The control unit 32 controls the drone 2 to fly over the mark post 6 until the magnetic marker 10 is detected (S801: NO), thereby searching for the magnetic marker 10 (S811).
 制御ユニット32は、磁気マーカ10が検出されると(S801:YES)、センサアレイ21の中央に位置する磁気センサC8が磁気マーカ10の真上に位置するように、ドローン2の位置を調整するという位置合わせを実行する(S802)。なお、このとき、ドローン2の向きである方位は、任意であり、磁気マーカ10に対する磁気センサC8の位置合わせのみが、制御の対象となる。磁気センサC8の位置は、例えば、磁気マーカ10の直上、10cmの高さとなるように制御される。磁気マーカ10からの高さは、マーカポスト6の上面との距離を超音波センサ384により計測することで把握できる。 When the magnetic marker 10 is detected (S801: YES), the control unit 32 adjusts the position of the drone 2 so that the magnetic sensor C8 positioned in the center of the sensor array 21 is positioned right above the magnetic marker 10. is executed (S802). At this time, the azimuth, which is the orientation of the drone 2, is arbitrary, and only the alignment of the magnetic sensor C8 with respect to the magnetic marker 10 is subject to control. The position of the magnetic sensor C8 is controlled to be, for example, directly above the magnetic marker 10 and at a height of 10 cm. The height from the magnetic marker 10 can be grasped by measuring the distance to the upper surface of the marker post 6 with the ultrasonic sensor 384 .
 制御ユニット32は、磁気センサC8が磁気マーカ10の直上、10cmの高さに位置するとき、RFIDタグ15が無線出力するタグ情報を取得する(S803)。上記の通り、このタグ情報には、マークポスト6の位置情報及び識別情報が含まれている。制御ユニット32は、マークポスト6の位置を、ドローン2の絶対位置として特定する(S804)。なお、ドローン2の高度としては、マークポスト6の上端面の高さに10cmを加えた高さが特定される。 The control unit 32 acquires tag information wirelessly output from the RFID tag 15 when the magnetic sensor C8 is positioned directly above the magnetic marker 10 at a height of 10 cm (S803). As described above, this tag information includes position information and identification information of the mark post 6 . Control unit 32 identifies the position of mark post 6 as the absolute position of drone 2 (S804). As the altitude of the drone 2, the height obtained by adding 10 cm to the height of the upper end surface of the mark post 6 is specified.
 さらに、制御ユニット32は、磁気センサC8が磁気マーカ10の直上に位置するとき、前方カメラ383により、2本以上のマークポスト6が映っている前方画像を取得する(S805)。制御ユニット32は、この前方画像に画像処理を施すことで、画像中のマークポスト6を検出する。そして、制御ユニット32は、画像中のマークポスト6の位置に基づいて、機体2Bの絶対方位を特定する(S806)。このようにドローン2の位置及び方位を特定できると、制御ユニット32は、IMU22が推定した変位量及び方位の変動量をゼロリセットする(S807)。 Further, when the magnetic sensor C8 is positioned directly above the magnetic marker 10, the control unit 32 acquires a forward image showing two or more mark posts 6 by the forward camera 383 (S805). The control unit 32 detects the mark post 6 in the image by performing image processing on this forward image. Then, the control unit 32 identifies the absolute orientation of the airframe 2B based on the position of the mark post 6 in the image (S806). When the position and orientation of the drone 2 can be identified in this way, the control unit 32 resets the amount of displacement and the amount of fluctuation in orientation estimated by the IMU 22 to zero (S807).
 本例のシステム1によれば、ドローン2が必要に応じて随時、リセット処理を繰り返しながら、農薬散布作業を自動で実行できる。IMU22が推定する変動量をゼロリセットするリセット処理P12を随時、実行すれば、慣性航法による測位誤差が過大になることがない。 According to the system 1 of this example, the drone 2 can automatically perform the pesticide spraying work while repeating the reset process as needed. If the reset process P12 for resetting the amount of variation estimated by the IMU 22 to zero is executed as needed, the positioning error due to inertial navigation does not become excessive.
 なお、本例の構成は、例えば、ドローン2による建物や橋梁などの構造物の外観検査等に幅広く適用できる。さらに、畑を耕す耕運機や、稲や麦の刈り取り用のコンバイン等、予め定められたエリア内で移動しながら農作業を実行する農業機械に、本例の構成を適用することも良い。さらに、予め定められたエリアを清掃する掃除ロボットに、本例の構成を適用することも良い。さらに、水中探査のための水中ドローンに、本例の構成を適用することも良い。さらに、天然資源を採掘する重機や、土木作業を担う重機や、土砂などを運搬する車両等に、本例の構成を適用することも良い。 It should be noted that the configuration of this example can be widely applied, for example, to exterior inspections of structures such as buildings and bridges using the drone 2. Furthermore, the configuration of this example may also be applied to agricultural machines that perform farm work while moving within a predetermined area, such as a cultivator that plows a field and a combine harvester that harvests rice or wheat. Furthermore, the configuration of this example may also be applied to a cleaning robot that cleans a predetermined area. Furthermore, the configuration of this example may also be applied to an underwater drone for underwater exploration. Furthermore, the configuration of this example may also be applied to heavy machinery for mining natural resources, heavy machinery for civil engineering work, vehicles for transporting earth and sand, and the like.
 また、風速や降水量などのリアルタイムの気象状況や、他のドローン2の飛行位置などを外部から随時、受信可能なように、制御ユニット32を構成することも良い。この場合には、リアルタイムの気象状況等が反映されたダイナミックマップを構築でき、ダイナミックマップを利用した飛行制御が可能になる。
 なお、その他の構成及び作用効果については、実施例1あるいは実施例2と同様である。
Also, the control unit 32 may be configured so as to be able to receive information such as real-time weather conditions such as wind speed and rainfall, and flight positions of other drones 2 from the outside at any time. In this case, a dynamic map reflecting real-time weather conditions and the like can be constructed, and flight control using the dynamic map becomes possible.
Other configurations and effects are the same as those of the first or second embodiment.
(実施例4)
 本例は、実施例1のシステム1に基づいて、宅配ロボット2の方位(絶対方位)を特定するための方法を変更した例である。この内容について、図25を参照して説明する。
 本例のシステム1では、実施例1におけるRFIDタグを備える磁気マーカに代えて、RFIDタグなしの磁気マーカ(メインマーカ)10Mを採用すると共に、このメインマーカ10Mに対して磁気マーカ(サブマーカ)10Sが付設されている構成を採用している。このサブマーカ10Sは、宅配ロボット2が検出可能であって、メインマーカ10Mに対する宅配ロボット2の進入方位を特定するための補助的なマーカである。
(Example 4)
This example is an example in which the method for specifying the orientation (absolute orientation) of the home delivery robot 2 is modified based on the system 1 of the first embodiment. This content will be described with reference to FIG.
In the system 1 of this example, a magnetic marker (main marker) 10M without an RFID tag is adopted instead of the magnetic marker with an RFID tag in Example 1, and a magnetic marker (sub-marker) 10S is used for this main marker 10M. is attached. The sub-marker 10S is detectable by the home delivery robot 2 and is an auxiliary marker for specifying the approach direction of the home delivery robot 2 with respect to the main marker 10M.
 メインマーカ10Mは、待機スペース(図1中の符号505)の中央近くに配設されている。サブマーカ10Sは、移動経路の違いに依らず、宅配ロボット2が待機スペースに戻る際に必ず通過する移動ルート上に配設されている。宅配ロボット2は、待機スペースに戻る際、必ず、サブマーカ10Sとメインマーカ10Mとを、この順番で検出できる。なお、宅配ロボット2側での区別が容易になるよう、メインマーカ10Mとサブマーカ10Sとで、宅配ロボット2側で検出する磁極性が異なっている。本例では、メインマーカ10MがN極、サブマーカ10SがS極となっている。 The main marker 10M is arranged near the center of the waiting space (reference numeral 505 in FIG. 1). The sub-marker 10S is arranged on the movement route that the home delivery robot 2 always passes when returning to the standby space, regardless of the difference in the movement route. When returning to the waiting space, the delivery robot 2 can always detect the sub-marker 10S and the main marker 10M in this order. Note that the main marker 10M and the sub-marker 10S have different magnetic polarities detected by the home delivery robot 2 so that the home delivery robot 2 can easily distinguish between them. In this example, the main marker 10M is the N pole, and the sub marker 10S is the S pole.
 メインマーカ10Mに対するサブマーカ10Sの方位は、2次元地図上で特定された方位である。メインマーカ10Mとサブマーカ10Sとを結ぶ方位は、宅配ロボット2の絶対方位を特定するための基準方位となる。メインマーカ10Mとサブマーカ10Sとの距離であるマーカスパンMは、30cmである。 The orientation of the sub-marker 10S with respect to the main marker 10M is the orientation specified on the two-dimensional map. The azimuth connecting the main marker 10M and the sub-marker 10S is the reference azimuth for specifying the absolute azimuth of the home delivery robot 2 . A marker span M, which is the distance between the main marker 10M and the sub-marker 10S, is 30 cm.
 なお、本例の構成では、宅配ロボット2が待機スペースに戻る際、直線的な移動により待機スペースに進入するように宅配ロボット2が制御される。また、待機スペースに対する宅配ロボット2の進入方向は、そのときに設定されている経路に応じて異なるが、一定の方位的なばらつきの範囲内に収められる。サブマーカ10Sは、待機スペースに対する宅配ロボット2の進入方向の上記のばらつきに依らず、センサアレイ21が真上を通過するような位置に配設されている。 In the configuration of this example, when the delivery robot 2 returns to the waiting space, the delivery robot 2 is controlled so as to enter the waiting space by linear movement. In addition, the approach direction of the home delivery robot 2 to the standby space varies depending on the route set at that time, but is within a certain range of azimuthal variation. The sub-marker 10S is arranged at a position such that the sensor array 21 passes right above it regardless of the variations in the approach direction of the home delivery robot 2 with respect to the waiting space.
 直線的に移動するように宅配ロボット2が制御されている最中であっても、駆動輪26のわずかなスリップや、駆動輪26L・Rの外径のわずかな違い、等に起因し、宅配ロボット2の方位が変動するおそれがある。30cmのマーカスパンMは、このように宅配ロボット2の方位が変動するおそれの影響を無視し得る十分に短い距離である。 Even while the home delivery robot 2 is being controlled to move linearly, due to a slight slip of the driving wheels 26, a slight difference in the outer diameters of the driving wheels 26L and 26R, etc., The orientation of the robot 2 may change. The marker span M of 30 cm is a sufficiently short distance that can ignore the influence of possible changes in the orientation of the home delivery robot 2 in this way.
 本例の構成では、30cmのマーカスパンMで配置された2個の磁気マーカ10(メインマーカ10M及びサブマーカ10S)を宅配ロボット2が通過する際、宅配ロボット2の移動方向、すなわち宅配ロボット2の方位(向き、絶対方位)を特定可能である。具体的には、メインマーカ10Mとサブマーカ10Sとを結ぶ方向dirを基準として、宅配ロボット2の方位(前後方向)のずれ角Axを特定できる。 In the configuration of this example, when the delivery robot 2 passes two magnetic markers 10 (the main marker 10M and the sub-marker 10S) arranged with a marker span M of 30 cm, the movement direction of the delivery robot 2, that is, the The orientation (orientation, absolute orientation) can be specified. Specifically, it is possible to identify the deviation angle Ax of the azimuth (front-rear direction) of the home delivery robot 2 with reference to the direction dir connecting the main marker 10M and the sub-marker 10S.
 ずれ角Axは、以下の式の通り、メインマーカ10M及びサブマーカ10Sに対する横ずれ量を利用して演算可能である。ここで、待機スペースに宅配ロボット2が戻る際に先に検出されるサブマーカ10Sに対する横ずれ量をOF1、後に検出するメインマーカ10Mに対する横ずれ量をOF2とする。ただし、横ずれ量OF1、OF2は、宅配ロボット2の幅方向中央(磁気センサC8の位置)を境に正または負の値となるよう定義する。ずれ角Axを利用すれば、メインマーカ10Mとサブマーカ10Sとを結ぶ既知の方向dirを基準として、宅配ロボット2の絶対方位を特定できる。 The deviation angle Ax can be calculated using the lateral deviation amount with respect to the main marker 10M and the sub-marker 10S, as shown in the following formula. Here, when the delivery robot 2 returns to the standby space, the amount of lateral deviation with respect to the sub-marker 10S detected first is assumed to be OF1, and the amount of lateral deviation with respect to the main marker 10M detected later is assumed to be OF2. However, the lateral deviation amounts OF1 and OF2 are defined to be positive or negative values with the center of the delivery robot 2 in the width direction (the position of the magnetic sensor C8) as a boundary. By using the deviation angle Ax, the absolute orientation of the home delivery robot 2 can be identified with reference to the known direction dir connecting the main marker 10M and the sub-marker 10S.
 横ずれ量の変化 OFd=|OF2-OF1|
 ずれ角 Ax=arcsin(OFd/M)
Change in lateral deviation OFd = |OF2-OF1|
Deviation angle Ax = arcsin (OFd/M)
 なお、2個の磁気マーカ10(メインマーカ10M、サブマーカ10S)を利用して特定された絶対方位と、IMU22が推定する絶対方位と、を比較することも良い。この比較によれば、IMU22が推定する方位に含まれる誤差(推定誤差という。)の特定が可能になる。推定誤差に基づけば、ヨーレートのゼロ点や、演算値の誤差補正や、方位の演算処理における補正係数の調整や、方位の演算処理に適用する初期値などの定数の設定や調整等が可能となる。 It is also possible to compare the absolute orientation specified using the two magnetic markers 10 (main marker 10M, sub-marker 10S) and the absolute orientation estimated by the IMU 22 . According to this comparison, it is possible to specify an error (referred to as an estimated error) included in the direction estimated by the IMU 22 . Based on the estimated error, it is possible to set or adjust the zero point of the yaw rate, the error correction of the calculated value, the adjustment of the correction coefficient in the azimuth calculation process, and the setting and adjustment of constants such as the initial value applied to the azimuth calculation process. Become.
 また、2個の磁気マーカ10は、マーカスパンMが既知である。そのため、検出時点の時間差がわかれば、移動速度を精度高く特定できる。移動速度がわかれば、IMU22が計測する加速度を積分して求める速度の誤差を特定できる。速度の推定誤差に基づけば、加速度のゼロ点や、演算値の誤差補正や、速度の演算処理における補正係数の調整や、速度の演算処理に適用する初期値や積分定数などの定数の設定や調整等が可能になる。
 なお、その他の構成及び作用効果については、実施例1と同様である。
Also, the marker span M of the two magnetic markers 10 is known. Therefore, if the time difference between the detection points is known, the moving speed can be specified with high accuracy. If the moving speed is known, the speed error obtained by integrating the acceleration measured by the IMU 22 can be specified. Based on the speed estimation error, the zero point of acceleration, the error correction of the calculated value, the adjustment of the correction coefficient in the speed calculation process, the setting of constants such as the initial value and the integral constant applied to the speed calculation process. Adjustment etc. becomes possible.
Other configurations and effects are the same as those of the first embodiment.
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。 Although the specific examples of the present invention have been described in detail above as examples, these specific examples merely disclose an example of the technology included in the scope of claims. Needless to say, the scope of claims should not be construed to be limited by the configurations and numerical values of specific examples. The scope of claims encompasses techniques in which the above-described specific examples are variously modified, changed, or appropriately combined using known techniques and knowledge of those skilled in the art.
 1 システム
 10 磁気マーカ
 10M メインマーカ
 10S サブマーカ(補助的なマーカ)
 100 荷物
 15 RFIDタグ(無線タグ)
 2 移動体(宅配ロボット、ドローン)
 20 計測ユニット
 21 センサアレイ
 Cn 磁気センサ
 212 検出処理回路(検出部)
 22 IMU(変動量推定部、測位部)
 32 制御ユニット(経路設定部、制御部、通信回路部、誤差推定部)
 321 タグリーダ(情報読取部)
 34 地図データベース(地図DB、データベース)
 4A 宅配ボックス
 4B 荷受ボックス
 5 マンション
 5S 床面
 50 通路
 505 待機スペース
 52 エレベータ
 525 エレベータホール
 58 エントランス(荷受け場所)
 6 マークポスト
1 system 10 magnetic marker 10M main marker 10S sub-marker (auxiliary marker)
100 Baggage 15 RFID tag (wireless tag)
2 Mobile objects (delivery robots, drones)
20 measurement unit 21 sensor array Cn magnetic sensor 212 detection processing circuit (detection unit)
22 IMU (fluctuation estimation unit, positioning unit)
32 control unit (path setting unit, control unit, communication circuit unit, error estimation unit)
321 tag reader (information reading unit)
34 map database (map DB, database)
4A Delivery box 4B Receipt box 5 Condominium 5S Floor 50 Passage 505 Waiting space 52 Elevator 525 Elevator hall 58 Entrance (receiving place)
6 mark post

Claims (13)

  1.  移動体が空間内を移動するシステムであって、
     周辺に磁気を作用する磁気マーカが前記空間に配置されている一方、前記移動体には、作用する磁気の大きさを計測する磁気センサが搭載されており、
     前記移動体を移動させる制御部と、
     前記磁気センサによる計測値に処理を施すことで磁気マーカを検出する検出部と、
     前記移動体の移動に伴う位置的な変動量及び方位的な変動量のうちの少なくともいずれか一方の変動量を推定する変動量推定部と、
     該変動量推定部が推定した変動量を、前記移動体が移動を開始したときの位置あるいは方位に足し合わせることで、前記移動体の移動後の位置あるいは方位を推定する測位部と、を備え、
     該変動量推定部は、前記磁気マーカが検出されたときに前記変動量をゼロリセットするシステム。
    A system in which a moving body moves in space,
    A magnetic marker that exerts magnetism on the periphery is arranged in the space, and a magnetic sensor that measures the magnitude of the acting magnetism is mounted on the moving body,
    a control unit that moves the moving body;
    a detection unit that detects a magnetic marker by processing values measured by the magnetic sensor;
    a variation estimation unit for estimating at least one of a positional variation and an azimuth variation associated with movement of the moving body;
    a positioning unit for estimating the position or orientation of the mobile object after movement by adding the amount of variation estimated by the variation amount estimation unit to the position or orientation of the mobile object when the mobile object started to move. ,
    The variation estimating unit resets the variation to zero when the magnetic marker is detected.
  2.  請求項1において、前記変動量推定部が推定する変動量に含まれる誤差の度合いを表す指標値を求める誤差推定部を備え、
     前記制御部は、前記指標値に関する閾値処理の結果に応じて、前記移動体に適用する制御を切り替えるシステム。
    2. The method according to claim 1, comprising an error estimating unit that obtains an index value representing the degree of error contained in the amount of variation estimated by the variation estimating unit,
    A system in which the control unit switches control to be applied to the moving object according to a result of threshold processing regarding the index value.
  3.  請求項2において、前記制御部は、前記指標値が閾値以上になったか、あるいは閾値を超えた場合に、前記移動体に適用する制御を前記磁気マーカを検出させるための移動制御に切り替える割込処理を実行するシステム。 3. The controller according to claim 2, wherein when the index value becomes equal to or exceeds a threshold value, the control unit switches the control applied to the moving object to movement control for detecting the magnetic marker. A system that performs a process.
  4.  請求項3において、前記制御部は、前記割込処理により前記移動制御に切り替えた際の前記移動体の位置である割込位置を記憶し、
     前記割込処理の実行後に前記移動体が前記割込位置に戻ったとき、当該割込処理を終了して元の制御への切替を実行するように構成されているシステム。
    4. The control unit according to claim 3, wherein the control unit stores an interrupt position that is the position of the moving object when switching to the movement control by the interrupt process,
    A system configured to end the interrupt process and switch to the original control when the moving object returns to the interrupt position after executing the interrupt process.
  5.  請求項3または4において、前記制御部は、前記割込処理を実行するに当たって、前記空間に配置された磁気マーカについて前記移動体が移動するために必要な移動コストを求め、当該移動コストが最も小さい磁気マーカを前記移動制御による検出対象に設定するシステム。 5. According to claim 3, when executing the interrupt process, the control unit obtains a movement cost necessary for the moving body to move with respect to the magnetic markers placed in the space, and determines that the movement cost is the lowest. A system for setting a small magnetic marker as a detection target by the movement control.
  6.  請求項1~5のいずれか1項において、前記移動体は、予め定められた荷受け場所で荷物を受け取った後、空間内の通路を移動して指定された場所に前記荷物を運搬するための車両であるシステム。 6. In any one of claims 1 to 5, the moving body receives a package at a predetermined receiving location and then moves along a path in the space to carry the package to a specified location. A system that is a vehicle.
  7.  請求項1~6のいずれか1項において、前記磁気マーカは、磁気発生源である磁石と、該磁気マーカの配設位置を特定可能な情報を無線出力可能な無線タグと、を備えており、
     前記移動体は、前記無線タグが無線出力する情報を読み取る情報読取部を備えているシステム。
    7. The magnetic marker according to any one of claims 1 to 6, wherein the magnetic marker comprises a magnet as a magnetism generating source, and a wireless tag capable of wirelessly outputting information capable of specifying an arrangement position of the magnetic marker. ,
    A system in which the moving object includes an information reading unit that reads information wirelessly output from the wireless tag.
  8.  請求項7において、前記無線タグが無線出力する情報には、前記空間の構造を表す情報であって、対応する磁気マーカの周囲環境を表す構造情報が含まれるシステム。 A system according to claim 7, wherein the information wirelessly output by the wireless tag includes information representing the structure of the space and structural information representing the surrounding environment of the corresponding magnetic marker.
  9.  請求項8において、前記構造情報は、少なくとも、前記空間の構造を形成する境界のうち、対応する磁気マーカを中心とした周囲の鉛直方向の境界の分布を表す縦エッジ情報を含む情報であり、
     前記移動体は、周囲環境を構成する鉛直方向の境界を表す縦エッジを抽出するユニットを備えているシステム。
    9. In claim 8, the structural information is information including at least vertical edge information representing a distribution of boundaries in the vertical direction around the corresponding magnetic marker among the boundaries forming the structure of the space,
    A system in which the moving body includes a unit for extracting vertical edges representing vertical boundaries that constitute the surrounding environment.
  10.  請求項1~9のいずれか1項において、前記磁気マーカの配設位置を特定可能な位置情報を記憶するデータベースと、
     いずれかの磁気マーカが検出されたとき、前記データベースの記憶領域を参照して当該磁気マーカの配設位置を特定可能な位置情報を読み出すデータ読出部と、を含むシステム。
    10. The database according to any one of claims 1 to 9, which stores position information capable of specifying the arrangement position of the magnetic marker;
    a data reading unit that, when any magnetic marker is detected, refers to the storage area of the database and reads position information that can specify the arrangement position of the magnetic marker.
  11.  請求項1~10のいずれか1項において、前記磁気マーカには、前記移動体が検出可能であって、当該磁気マーカに対する前記移動体の進入方位を特定するための補助的なマーカが付設されているシステム。 11. The magnetic marker according to any one of claims 1 to 10, wherein the moving body is detectable and is provided with an auxiliary marker for specifying an approach direction of the moving body with respect to the magnetic marker. system.
  12.  請求項1~11のいずれか1項において、前記空間には、前記移動体が待機するための待機スペースが設けられ、当該待機スペースに前記移動体が検出可能なように磁気マーカが配置されているシステム。 12. The system according to any one of claims 1 to 11, wherein a waiting space for the moving body to wait is provided in the space, and a magnetic marker is arranged in the waiting space so that the moving body can be detected. system.
  13.  請求項1~12のいずれか1項において、前記空間には、前記移動体を搬送可能な運搬装置が設けられ、前記運搬装置が前記移動体を受け入れるエリアには、前記移動体が検出可能なように磁気マーカが配設されており、
     前記制御部は、前記運搬装置による前記移動体の搬送先の位置を特定可能であるシステム。
    13. The space according to any one of claims 1 to 12, wherein a transporting device capable of transporting the moving object is provided in the space, and an area in which the transporting device receives the moving object is capable of detecting the moving object. Magnetic markers are arranged as
    A system in which the control unit can identify a position of a transport destination of the moving body by the transport device.
PCT/JP2022/013662 2021-04-01 2022-03-23 System WO2022210194A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511078A JPWO2022210194A5 (en) 2022-03-23 System and mobile object control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062778 2021-04-01
JP2021-062778 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022210194A1 true WO2022210194A1 (en) 2022-10-06

Family

ID=83456751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013662 WO2022210194A1 (en) 2021-04-01 2022-03-23 System

Country Status (1)

Country Link
WO (1) WO2022210194A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097767A (en) * 2011-11-07 2013-05-20 Incorporated Educational Institution Meisei Independent movement support device for seriously disabled person
WO2017209112A1 (en) * 2016-06-03 2017-12-07 愛知製鋼株式会社 Position capture method and system
JP2019137521A (en) * 2018-02-12 2019-08-22 愛知製鋼株式会社 Vehicular system
US20200101855A1 (en) * 2018-10-01 2020-04-02 Samsung Electronics Co., Ltd. Robot with vehicle charging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097767A (en) * 2011-11-07 2013-05-20 Incorporated Educational Institution Meisei Independent movement support device for seriously disabled person
WO2017209112A1 (en) * 2016-06-03 2017-12-07 愛知製鋼株式会社 Position capture method and system
JP2019137521A (en) * 2018-02-12 2019-08-22 愛知製鋼株式会社 Vehicular system
US20200101855A1 (en) * 2018-10-01 2020-04-02 Samsung Electronics Co., Ltd. Robot with vehicle charging

Also Published As

Publication number Publication date
JPWO2022210194A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
KR102242713B1 (en) Moving robot and contorlling method and a terminal
JP6973393B2 (en) Mobile guidance systems, mobiles, guidance devices and computer programs
US9020679B2 (en) Robotic ordering and delivery system software and methods
CN109725636B (en) System and method for automatically following front object by automatic driving vehicle and tracking system
CN110998467A (en) Model for determining lowering point at transport position
US11656633B2 (en) Determining method of article transfer place, determining method of landing place, article transfer system, and information processing device
EP3682191A2 (en) Automatic routing of autonomous vehicles intra-facility movement
US10330480B1 (en) Deployable sensors
AU2018311699B2 (en) Systems and methods for navigation path determination for unmanned vehicles
AU2015243644A1 (en) Method for delivering a shipment by an unmanned transport device
EP3919238B1 (en) Mobile robot and control method therefor
KR20200015877A (en) Moving robot and contorlling method thereof
US20220137628A1 (en) Localization system for a driverless vehicle
US20210302967A1 (en) Station apparatus and moving robot system
KR101680051B1 (en) Unmanned Transportation System based on linetracing of Ceiling type for interlocking with unmanned drone and Unmanned transportation service method using the same
JP6712682B1 (en) Arrangement location determination method, transportation system, and information processing apparatus
US10322802B1 (en) Deployable sensors
JP7280174B2 (en) Control method and goods delivery system
WO2022210194A1 (en) System
KR102446517B1 (en) Auto guided vehicle capable of autonomous driving in indoor and outdoor environments
TWI813077B (en) Driving control system, control method, and control device
EP4270139A1 (en) Unmanned vehicle and delivery system
JP6637209B1 (en) Control method, article delivery system, landing system, and information processing device
JP7437181B2 (en) In-building conveyance system and building structure
KR101682509B1 (en) Unmanned Transportation System based on linetracing of Ceiling type and Unmanned transportation service method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780408

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023511078

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780408

Country of ref document: EP

Kind code of ref document: A1