WO2022210178A1 - Vessel - Google Patents

Vessel Download PDF

Info

Publication number
WO2022210178A1
WO2022210178A1 PCT/JP2022/013584 JP2022013584W WO2022210178A1 WO 2022210178 A1 WO2022210178 A1 WO 2022210178A1 JP 2022013584 W JP2022013584 W JP 2022013584W WO 2022210178 A1 WO2022210178 A1 WO 2022210178A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
gas
liquefied gas
boil
downstream
Prior art date
Application number
PCT/JP2022/013584
Other languages
French (fr)
Japanese (ja)
Inventor
晋介 森本
一志 桑畑
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=78509545&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022210178(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to KR1020237031457A priority Critical patent/KR20230146073A/en
Priority to CN202280022659.XA priority patent/CN117098705A/en
Publication of WO2022210178A1 publication Critical patent/WO2022210178A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B17/0027Tanks for fuel or the like ; Accessories therefor, e.g. tank filler caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/02Driving of auxiliaries from propulsion power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0209Hydrocarbon fuels, e.g. methane or acetylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/022Mixing fluids identical fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Definitions

  • Patent Literature 1 discloses an evaporative gas treatment system for a ship or offshore structure that includes a high pressure compression line and a low pressure compression line.
  • the high-pressure compression line compresses the boil-off gas (evaporation gas) generated in the LNG storage tank with a high-pressure compressor.
  • a low pressure compression line compresses the boil-off gas generated in the LNG storage tank with a low pressure compressor. Furthermore, the boil-off gas compressed in the high-pressure compression line and the low-pressure condensate line is supplied to gas consumers including gas engines, GCUs (GAS Combustion Units) and boilers of ships or offshore structures.
  • gas consumers including gas engines, GCUs (GAS Combustion Units) and boilers of ships or offshore structures.
  • Patent Document 1 when boil-off gas is supplied to a gas engine used as a main engine of a ship, the amount of boil-off gas consumed by the main engine varies depending on the rotation speed of the main engine, that is, the sailing speed of the ship. Further, when the boil-off gas is supplied to the generator of the ship, the amount of boil-off gas consumed by the auxiliary equipment is small compared to the amount of boil-off gas consumed by the main equipment. Therefore, the amount of boil-off gas generated in the LNG storage tank and the amount of boil-off gas consumed by the main and auxiliary machines may not be balanced. Moreover, when the boil-off gas is burned in the GCU, the combustion energy of the boil-off gas is not effectively used and is thrown away. Furthermore, there is also a method of re-liquefying the boil-off gas, but in this case, a re-liquefying device is required, leading to an increase in facility costs.
  • the present disclosure has been made to solve the above problems, and aims to provide a ship capable of more efficiently treating boil-off gas.
  • the ship according to the present disclosure includes a hull, a liquefied gas tank, a first line, an upstream pump, a downstream pump, a second line, a compressor, a mixing line, Prepare.
  • the liquefied gas tank is provided on the hull.
  • the liquefied gas tank stores liquefied gas.
  • the first line introduces the liquefied gas in the liquefied gas tank into the main machine.
  • the upstream pump is provided on the first line.
  • the upstream pump pumps the liquefied gas.
  • the downstream pump is provided downstream of the upstream pump in the first line.
  • the downstream pump pumps the liquefied gas at a higher pressure than the upstream pump.
  • the second line introduces boil-off gas generated by evaporation of the liquefied gas in the liquefied gas tank to the auxiliary machine.
  • the compressor is provided on the second line.
  • the compressor pumps the boil-off gas at a pressure higher than the discharge side of the upstream pump and lower than the discharge side of the downstream pump.
  • the mixing line connects an intermediate portion of the first line between the upstream pump and the downstream pump and a portion of the second line downstream of the compressor.
  • the mixing line is capable of mixing the boil-off gas of the second line with the liquefied gas of the first line.
  • boil-off gas can be treated more efficiently.
  • FIG. 1 is a side view of a vessel according to an embodiment of the present disclosure
  • FIG. 1 is a diagram showing the configuration of a fuel supply system provided on a ship according to a first embodiment of the present disclosure
  • FIG. Fig. 2 is a diagram showing the configuration of a fuel supply system provided on a ship according to a second embodiment of the present disclosure
  • ⁇ First Embodiment> (Overall configuration of ship) 1 is a side view of a vessel according to an embodiment of the present disclosure; FIG.
  • a ship 1 of this embodiment mainly includes a hull 2, a liquefied gas tank 10, a main engine 21, an auxiliary engine 22, and a fuel supply system 30A.
  • the ship type of the ship 1 is not limited to a specific one.
  • the ship type of the ship 1 is, for example, a carrier of liquefied gas such as liquefied natural gas (LNG), carbon dioxide, or ammonia, a ferry, a RORO ship (Roll-on/Roll-off ship), or a PCTC (Pure Car & Truck Carrier). etc. can be exemplified.
  • LNG liquefied natural gas
  • CORO ship Roll-on/Roll-off ship
  • PCTC PCTC
  • the hull 2 has a pair of sides 3A and 3B and a hull 4 that form its outer shell.
  • the shipboard sides 3A, 3B are provided with a pair of shipboard skins forming the starboard and port sides, respectively.
  • the ship's bottom 4 includes a ship's bottom shell plate that connects the sides 3A and 3B.
  • the pair of sides 3A and 3B and the bottom 4 form a U-shaped outer shell of the hull 2 in a cross section perpendicular to the fore-and-aft direction FA.
  • the hull 2 further includes an upper deck 5, which is a through deck arranged on the uppermost layer.
  • a superstructure 7 is formed on the upper deck 5 .
  • a living quarter and the like are provided in the upper structure 7 .
  • a cargo space (not shown) for loading cargo is provided on the bow side of the bow-stern direction FA from the upper structure 7 .
  • a main engine 21 and an auxiliary engine 22 are provided inside the hull 2 .
  • the main machine 21 and the auxiliary machine 22 use liquefied gas as fuel.
  • This embodiment exemplifies a case where the main machine 21 and the auxiliary machine 22 use LNG as fuel.
  • the main engine 21 exerts a propulsive force for sailing the ship 1 .
  • the main engine 21 rotates the screw 9 provided outside the stern 2b of the hull 2, for example.
  • Examples of the main machine 21 include a steam turbine boiler, a gas turbine, a reciprocating engine, and the like.
  • the auxiliary machine 22 generates power used within the ship 1 .
  • the ship 1 of this embodiment includes, as the auxiliary machine 22, a generator engine for driving a generator (not shown).
  • Examples of the auxiliary machine 22 include a gas turbine and a reciprocating engine. Rotational energy generated by the auxiliary machine 22 is converted into electrical energy by the generator and supplied to various parts inside the hull 2 .
  • the liquefied gas tank 10 stores LNG as fuel for the main machine 21 and the auxiliary machine 22 .
  • the liquefied gas tank 10 in this embodiment is arranged on the upper deck 5 . Note that the arrangement of the liquefied gas tank 10 is not limited to the upper deck 5 .
  • the liquefied gas tank 10 may be arranged within the hull 2, for example.
  • the fuel supply system 30A supplies LNG as fuel to the main machine 21 and the auxiliary machine 22 .
  • the fuel supply system 30A includes a first line 31, a second line 32, a mixing line 33A, and a waste line .
  • the first line 31 connects the liquefied gas tank 10 and the main engine 21 .
  • the first line 31 forms a flow path that guides the liquefied gas LG stored in the liquefied gas tank 10 to the main engine 21 .
  • the first line 31 is provided with an upstream pump 41, a downstream pump 42, and an evaporator 46, respectively.
  • the upstream pump 41 pumps the liquefied gas LG stored in the liquefied gas tank 10 toward the main engine 21 .
  • the upstream pump 41 is provided in the first line 31 inside the liquefied gas tank 10 .
  • the upstream pump 41 of the present embodiment is arranged in the lower part of the liquefied gas tank 10, and is provided at the upstream end of the first line 31 in the direction in which the liquefied gas LG flows in the first line 31. .
  • the downstream pump 42 is arranged downstream of the upstream pump 41 in the flow direction of the liquefied gas LG in the first line 31 .
  • the downstream pump 42 pumps the liquefied gas LG toward the main engine 21 at a pressure higher than that of the upstream pump 41 .
  • the evaporator 46 is arranged downstream of the downstream pump 42 in the first line 31 in the flow direction of the liquefied gas LG in the first line 31 .
  • the evaporator 46 evaporates the liquefied gas LG pressure-fed by the downstream pump 42 .
  • the liquefied gas LG vaporized by this evaporator 46 is sent to the main engine 21 .
  • the first line 31 further comprises an offset vent 48.
  • the offset vent 48 is provided upstream of the downstream pump 42 in the flow direction of the liquefied gas LG in the first line 31 .
  • the offset vent 48 is elastically deformable in the fore-and-aft direction FA according to at least thermal contraction due to the internal fluid and expansion and contraction deformation of the hull 2 in the fore-and-aft direction FA. That is, the offset vent 48 absorbs thermal contraction due to the internal fluid and expansion/contraction deformation of the hull 2 in the fore-and-aft direction FA by elastically deforming in this way.
  • the offset vent 48 has at least one bend 48k.
  • the offset vent 48 of this embodiment has a plurality of bent portions 48k, and the plurality of bent portions 48k form a rectangular wave shape. By providing the plurality of bent portions 48k, the liquefied gas LG flowing inside the offset vent 48 meanders.
  • the offset vent 48 in this embodiment is provided with the bent portion 48k, so that it can be easily elastically deformed in the fore-and-aft direction FA according to the expansion and contraction deformation of the hull 2 in the fore-and-aft direction FA.
  • the offset vent 48 is provided on the downstream side of the first line 31 in the flow direction of the liquefied gas LG from the junction 31j of the mixing line 33A and the first line 31 .
  • the second line 32 connects the gas phase inside the liquefied gas tank 10 and the auxiliary machine 22 .
  • natural heat input from the outside evaporates the liquefied gas LG in a liquid state to generate a boil-off gas BOG.
  • the second line 32 introduces the boil-off gas BOG generated within the liquefied gas tank 10 to the auxiliary machine 22 .
  • the second line 32 is provided with a compressor 44 and a first heat exchanger 45, respectively.
  • the compressor 44 compresses and sends out the boil-off gas BOG generated in the liquefied gas tank 10 .
  • the pressure of the boil-off gas BOG compressed by the compressor 44 is higher than the pressure on the discharge side of the upstream pump 41 provided in the first line 31 and lower than the pressure on the discharge side of the downstream pump 42 .
  • the first heat exchanger 45 is provided in the second line 32 downstream of the compressor 44 in the flow direction of the boil-off gas BOG in the second line 32 .
  • the first heat exchanger 45 heat-exchanges water, such as seawater introduced from the outside of the hull 2 as a refrigerant, and the boil-off gas BOG compressed by the compressor 44 .
  • the mixing line 33A includes a confluence portion 31j at an intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31, and a downstream side of the compressor 44 and the first heat exchanger 45 in the second line 32. 32s.
  • the mixing line 33A joins part of the boil-off gas BOG that has passed through the compressor 44 and the first heat exchanger 45 in the second line 32 to the liquefied gas LG in the first line 31 from the junction 31j.
  • Part of the boil-off gas BOG is mixed with the liquefied gas LG of the first line 31 by allowing a part of the boil-off gas BOG to join the liquefied gas LG of the first line 31 in this manner.
  • the waste line 34 branches from a portion 32 s downstream of the compressor 44 and the first heat exchanger 45 in the second line 32 to reach the waste line 34 .
  • the waste line 34 forms a flow path for sending part of the boil-off gas BOG that has passed through the compressor 44 and the first heat exchanger 45 in the second line 32 to the GCU 23 .
  • the boil-off gas BOG fed into the GCU 23 is disposed of by being burned by the GCU 23.
  • the liquefied gas LG stored in the liquefied gas tank 10 is introduced into the main engine 21 through the first line 31.
  • the liquefied gas LG is LNG
  • the liquefied gas LG at about -163°C is stored in the liquefied gas tank 10, for example.
  • the liquefied gas LG is pressurized by the upstream pump 41 to a pressure of 0.5 MPaG and about -150°C, for example.
  • the pressurized liquefied gas LG is further pressurized by the downstream pump 42 to a higher pressure, for example, about 30 MPaG and -120.degree.
  • the liquefied gas LG pressurized by the downstream pump 42 is vaporized by the evaporator 46 and introduced into the main engine 21 .
  • the liquefied gas LG introduced into the main engine 21 is consumed by being burned in the main engine 21 .
  • the boil-off gas BOG generated by evaporation of the liquefied gas LG in the liquefied gas tank 10 has a pressure of, for example, about 0.05 MPaG.
  • the boil-off gas BOG is introduced from the gas phase of the liquefied gas tank 10 through the second line 32 into the compressor 44 . Then, the boil-off gas BOG is compressed by the compressor 44 to, for example, 0.6 MPaG and about 100°C.
  • the boil-off gas BOG that has passed through the compressor 44 is heat-exchanged with water such as seawater in the first heat exchanger 45, so that the temperature is about normal temperature, for example, about 0.6 MPaG and about 30°C.
  • the boil-off gas BOG that has passed through the first heat exchanger 45 is introduced into the auxiliary machine 22 .
  • the boil-off gas BOG introduced into the auxiliary machine 22 is consumed by being burned in the auxiliary machine 22 .
  • the boil-off gas BOG exceeding the consumption of the boil-off gas BOG in the auxiliary machine 22 passes through the mixing line 33A, and flows from the confluence portion 31j of the intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31 to the first line. 31 and mixed with the liquefied gas LG.
  • the boil-off gas BOG flowing from the second line 32 to the mixing line 33A is compressed by the compressor 44, and is higher than the discharge side of the upstream pump 41 and lower than the discharge side of the downstream pump 42. pressure (for example, 0.6 MPaG).
  • the liquefied gas LG in the first line 31 has a pressure on the discharge side of the upstream pump 41 (for example, 0.5 MPaG ). That is, the pressure of the boil-off gas BOG flowing from the mixing line 33A is higher than the pressure of the liquefied gas LG in the first line 31 . Therefore, the boil-off gas BOG in the mixing line 33A smoothly joins the liquefied gas LG in the first line 31 due to these pressure differences.
  • the liquefied gas LG is pressurized by the upstream pump 41 to raise its temperature to, for example, about ⁇ 150° C., which is lower than the saturation temperature (for example, about ⁇ 134° C.) after pressurization (for example, 0.5 MPaG). Due to the temperature, the boil-off gas BOG flowing from the mixing line 33A cools and condenses. The boil-off gas BOG mixed with the liquefied gas LG in this manner is sent to the main engine 21 and burned together with the liquefied gas LG.
  • the surplus boil-off gas BOG is sent to the GCU 23 through the disposal line 34.
  • the GCU 23 disposes of the surplus boil-off gas BOG as described above.
  • the downstream pump 42 is provided downstream of the upstream pump 41 in the first line 31 and pumps the liquefied gas LG at a higher pressure than the upstream pump 41, and the liquefied gas tank and a second line 32 for introducing the boil-off gas BOG generated by evaporating the liquefied gas LG in the auxiliary machine 22 .
  • the second line 32 is provided with a compressor that pumps the boil-off gas BOG at a pressure higher than the discharge side of the upstream pump 41 and lower than the discharge side of the downstream pump 42.
  • the amount of boil-off gas BOG burned by the GCU 23 can be suppressed by burning the surplus boil-off gas BOG that cannot be consumed by the auxiliary machine 22 by the main machine 21. Therefore, the boil-off gas BOG can be treated more efficiently.
  • the ship 1 of the above embodiment further includes a first heat exchanger 45 arranged downstream of the compressor 44 in the second line 32 and performing heat exchange with water such as seawater outside the hull 2. ing.
  • a first heat exchanger 45 arranged downstream of the compressor 44 in the second line 32 and performing heat exchange with water such as seawater outside the hull 2. ing.
  • the temperature of the boil-off gas BOG flowing into the first line 31 from the second line 32 through the mixing line 33A is changed to normal temperature by heat exchange with water such as seawater in the first heat exchanger 45, for example. to some extent. Therefore, the temperature of the liquefied gas LG in the first line 31 after being mixed with the boil-off gas BOG is increased. Therefore, the amount of energy required for vaporizing the liquefied gas LG in the evaporator 46 in order to burn it in the main engine 21 after passing through the downstream pump 42 can be reduced. In this respect as well, the boil-off gas BOG can be treated more efficiently.
  • the first line 31 further has at least one bent portion 48k downstream of the junction 31j between the first line 31 and the mixing lines 33A and 33B.
  • the first line 31 is further arranged downstream of the confluence 31j between the first line 31 and the mixing lines 33A and 33B.
  • An offset vent 48 is provided to absorb the expansion and contraction deformation of the body, and the bent portion 48k constitutes a part of the offset vent 48.
  • the bent portion 48k of the offset vent 48 provided in the first line 31 to absorb the thermal contraction due to the internal fluid and the expansion and contraction deformation of the hull 2 in the fore-and-aft direction FA is used to mix the boil-off gas BOG and the liquefied gas LG.
  • can be effectively used to promote As a result, there is no need to separately provide a stirrer or an additional bending portion 48k for promoting the mixing of the boil-off gas BOG and the liquefied gas LG, and cost increases can be suppressed.
  • a fuel supply system 30B in the ship 1 of this embodiment includes a second heat exchanger 49 in addition to the configuration of the fuel supply system 30A in the first embodiment.
  • the second heat exchanger 49 mixes the boil-off gas BOG flowing in the mixing line 33B and the liquefied gas LG flowing downstream of the downstream pump 42 in the first line 31, that is, the liquefied gas LG after being mixed with the boil-off gas BOG. heat exchange between
  • the temperature of the liquefied gas LG in the first line 31 that has passed through the downstream pump 42 is, for example, about -110°C.
  • the temperature of the boil-off gas BOG in the mixing line 33B is lowered, for example, from 30°C to -50°C.
  • the temperature of the liquefied gas LG flowing downstream of the downstream pump 42 in the first line 31 can be increased.
  • the mass flow rate of the boil-off gas BOG condensed with the liquefied gas LG in the first line 31 can be increased. can.
  • the second heat exchanger 49 that exchanges heat between the mixing line 33B and the portion downstream of the downstream pump 42 in the first line 31 is provided.
  • the boil-off gas BOG can be treated more efficiently.
  • auxiliary machine 22 is exemplified as a generator engine.
  • the case where the first heat exchanger 45 and the offset vent 48 are provided has been described. good.
  • the bent portion 48k may have any shape that promotes mixing, and is not limited to being bent in a rectangular wave shape.
  • the bent portion 48k may be bent in a sawtooth shape or curved in a spiral shape, for example.
  • the installation number of the main machine 21 and the auxiliary machine 22, and an installation position can be changed suitably.
  • the numerical values of the pressure and temperature of the liquefied gas LG and the boil-off gas BOG in each part of the fuel supply systems 30A and 30B shown in the above embodiment are merely examples.
  • LNG was used as an example of the liquefied gas to be burned in the main engine 21 and the auxiliary engine 22, but if it can be burned in the main engine 21 and the auxiliary engine 22, a liquefied gas other than LNG can be used. There may be.
  • an equipment configuration without the evaporator 46 is possible.
  • seawater is used as the heat exchange coolant in the first heat exchanger 45, fresh water or glycol water that can be used in the ship may be used.
  • a ship 1 includes a hull 2, a liquefied gas tank 10 provided in the hull 2 and storing a liquefied gas LG, and introducing the liquefied gas LG in the liquefied gas tank 10 into a main engine 21.
  • the accessory includes a generator engine.
  • Liquefied gas LG includes LNG.
  • the liquefied gas LG stored in the liquefied gas tank 10 is introduced into the main engine 21 through the first line 31 .
  • the liquefied gas LG is pressurized by the upstream pump 41 and then further pressurized to a higher pressure by the downstream pump 42 and introduced into the main engine 21 .
  • the liquefied gas LG introduced into the main engine 21 is consumed by being burned in the main engine 21 after being vaporized.
  • Boil-off gas BOG generated by evaporating the liquefied gas LG in the liquefied gas tank 10 is introduced into the auxiliary machine 22 through the second line 32 .
  • the boil-off gas BOG introduced into the auxiliary machine 22 is consumed by being burned in the auxiliary machine 22 .
  • the boil-off gas BOG exceeding the consumption of the boil-off gas BOG in the auxiliary machine 22 passes through the mixing lines 33A and 33B, and flows through the first line 31 at an intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31. It is mixed with the liquefied gas LG.
  • the boil-off gas BOG flowing from the second line 32 into the mixing lines 33A and 33B is compressed by the compressor 44, and is higher than the discharge side of the upstream pump 41 and higher than the discharge side of the downstream pump 42. is considered to be low pressure.
  • the liquefied gas LG in the first line 31 is at the discharge side pressure of the upstream pump 41 at the portion where the boil-off gas BOG flows into the first line 31 from the mixing lines 33A and 33B.
  • the pressure of the boil-off gas BOG flowing from the mixing lines 33A and 33B is higher than the pressure of the liquefied gas LG in the first line 31 . Therefore, the boil-off gas BOG flowing into the first line 31 from the mixing lines 33A and 33B is mixed with the liquefied gas LG in the first line 31 in the intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31. be done.
  • the temperature of the liquefied gas LG is increased by being pressurized by the upstream pump 41, the temperature is lower than the saturation temperature after pressurization, so the boil-off gas BOG flowing from the mixing lines 33A and 33B is cooled and condensed. do.
  • the boil-off gas BOG mixed with the liquefied gas LG in this manner is sent to the main engine 21 and burned together with the liquefied gas LG.
  • the amount of boil-off gas BOG to be burned in the GCU 23 can be suppressed. Therefore, the boil-off gas BOG can be treated more efficiently.
  • the ship 1 according to the second aspect is the ship 1 of (1), is arranged downstream of the compressor 44 in the second line 32, and performs heat exchange with the refrigerant.
  • a heat exchanger 45 is further provided.
  • the temperature of the boil-off gas BOG flowing from the second line 32 through the mixing lines 33A and 33B into the first line 31 has risen to about normal temperature due to heat exchange with the refrigerant in the first heat exchanger 45. Therefore, the temperature of the liquefied gas LG in the first line 31 after mixing with the boil-off gas BOG can be increased. Therefore, the amount of energy required for vaporizing the liquefied gas LG for combustion in the main engine 21 after passing through the downstream pump 42 can be reduced. In this respect as well, the boil-off gas BOG can be treated more efficiently.
  • the ship 1 according to the third aspect is the ship 1 of (1) or (2), wherein the first line 31 is a junction of the first line 31 and the mixing lines 33A and 33B. It has at least one bent portion 48k downstream of 31j.
  • the flow of the liquefied gas LG in the first line 31 into which the boil-off gas BOG has flowed from the mixing lines 33A and 33B is stirred by passing through the bent portion 48k. This promotes mixing of the boil-off gas BOG and the liquefied gas LG.
  • the ship 1 according to the fourth aspect is the ship 1 of (3), wherein the first line 31 is located downstream of a junction 31j between the first line 31 and the mixing lines 33A and 33B.
  • An offset vent 48 is provided on the side to absorb thermal contraction due to the internal fluid and expansion and contraction deformation of the hull 2 in the fore-and-aft direction, and the bent portion 48k constitutes a part of the offset vent 48. As shown in FIG.
  • the offset vent 48 provided in the first line 31 for absorbing thermal contraction due to the internal fluid and expansion and contraction deformation of the hull 2 in the fore and aft direction. Flexure 48k can be utilized. Therefore, there is no need to separately provide the bent portion 48k for promoting the mixing of the boil-off gas BOG and the liquefied gas LG, and cost increases can be suppressed.
  • the ship 1 according to the fifth aspect is the ship 1 according to any one of (1) to (4), and the mixing line 33B and the downstream pump 42 in the first line 31 are It further comprises a second heat exchanger 49 that exchanges heat with the downstream portion.
  • the temperature of the boil-off gas BOG sent from the mixing line 33B to the first line 31 is lowered by heat exchange by the second heat exchanger 49 downstream of the downstream pump 42 .
  • the volume of the boil-off gas BOG is reduced, and the mass flow rate of the boil-off gas BOG mixed with the liquefied gas LG in the first line 31 from the mixing line 33B can be increased.
  • the boil-off gas can be treated more efficiently.

Abstract

The present invention provides a vessel comprising a first line through which a liquified gas from a liquified gas tank is introduced into propulsion machinery, an upstream pump which is provided on the first line and which pumps the liquified gas, a downstream pump which is provided downstream of the upstream pump on the first line and which pumps the liquified gas at a higher pressure than the upstream pump, a second line through which boil-off gas inside the liquified gas tank is introduced into auxiliary machinery, a compressor which is provided on the second line and which pumps the boil-off gas at a pressure higher than the discharge side of the upstream pump and lower than the discharge side of the downstream pump, and a mixing line connecting an intermediate portion between the upstream and downstream pumps on the first line to a portion downstream of the compressor on the second line, the mixing line allowing the boil-off gas in the second line to mix with the liquified gas in the first line.

Description

船舶vessel
 本開示は、船舶に関する。
 本願は、2021年3月31日に日本に出願された特願2021-060225号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to ships.
This application claims priority to Japanese Patent Application No. 2021-060225 filed in Japan on March 31, 2021, the contents of which are incorporated herein.
 液化ガスを運搬する船舶等では、ガスタンクに収容した液化ガスが外部からの自然入熱等によって気化して、いわゆるボイルオフガスが生成される。ボイルオフガスが生成されると、タンク内の圧力が上昇する。タンク内の圧力の過度な上昇を抑えるためにボイルオフガスを処理する様々な方法が提案されている。
 例えば、特許文献1には、高圧圧縮ラインと、低圧圧縮ラインと、を備えた船舶又は海洋構造物の蒸発ガス処理システムが開示されている。高圧圧縮ラインは、LNG貯蔵タンクで発生するボイルオフガス(蒸発ガス)を高圧圧縮機で圧縮する。低圧圧縮ラインは、LNG貯蔵タンクで発生するボイルオフガスを低圧圧縮機で圧縮する。さらに、高圧圧縮ラインと低圧凝縮ラインで圧縮されたボイルオフガスは、船舶又は海洋構造物のガスエンジン、GCU(GAS Combustion Unit)、ボイラーを含むガス消費先に供給される。
2. Description of the Related Art In a ship or the like that transports liquefied gas, the liquefied gas stored in a gas tank is vaporized by natural heat input from the outside, and so-called boil-off gas is generated. As boil-off gas is produced, the pressure in the tank increases. Various methods have been proposed for treating the boil-off gas to prevent excessive pressure build-up in the tank.
For example, Patent Literature 1 discloses an evaporative gas treatment system for a ship or offshore structure that includes a high pressure compression line and a low pressure compression line. The high-pressure compression line compresses the boil-off gas (evaporation gas) generated in the LNG storage tank with a high-pressure compressor. A low pressure compression line compresses the boil-off gas generated in the LNG storage tank with a low pressure compressor. Furthermore, the boil-off gas compressed in the high-pressure compression line and the low-pressure condensate line is supplied to gas consumers including gas engines, GCUs (GAS Combustion Units) and boilers of ships or offshore structures.
日本国特許第6366727号公報Japanese Patent No. 6366727
 しかしながら、特許文献1において、例えば船舶の主機として用いられるガスエンジンにボイルオフガスを供給する場合、主機で消費されるボイルオフガスの量は、主機の回転数、すなわち船舶の航行速度に応じて異なる。また、ボイルオフガスを、船舶の発電機に供給する場合、補機で消費されるボイルオフガスの量は、主機で消費されるボイルオフガスの量に比較すれば少ない。そのため、LNG貯蔵タンクで発生するボイルオフガスの量と、主機や補機で消費されるボイルオフガスの量とのバランスが取れない場合がある。
 また、ボイルオフガスをGCUで燃焼させる場合、ボイルオフガスの燃焼エネルギーを有効利用せずに捨てることになる。
 さらに、ボイルオフガスを再液化させる手法もあるが、この場合、再液化装置が必要となり、設備コストの上昇に繋がる。
However, in Patent Document 1, for example, when boil-off gas is supplied to a gas engine used as a main engine of a ship, the amount of boil-off gas consumed by the main engine varies depending on the rotation speed of the main engine, that is, the sailing speed of the ship. Further, when the boil-off gas is supplied to the generator of the ship, the amount of boil-off gas consumed by the auxiliary equipment is small compared to the amount of boil-off gas consumed by the main equipment. Therefore, the amount of boil-off gas generated in the LNG storage tank and the amount of boil-off gas consumed by the main and auxiliary machines may not be balanced.
Moreover, when the boil-off gas is burned in the GCU, the combustion energy of the boil-off gas is not effectively used and is thrown away.
Furthermore, there is also a method of re-liquefying the boil-off gas, but in this case, a re-liquefying device is required, leading to an increase in facility costs.
 本開示は、上記課題を解決するためになされたものであって、ボイルオフガスの処理を、より効率良く行うことができる船舶を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a ship capable of more efficiently treating boil-off gas.
 上記課題を解決するために、本開示に係る船舶は、船体と、液化ガスタンクと、第一ラインと、上流側ポンプと、下流側ポンプと、第二ラインと、圧縮機と、混合ラインと、を備える。前記液化ガスタンクは、前記船体に備えられる。前記液化ガスタンクは、液化ガスを貯留する。前記第一ラインは、前記液化ガスタンクの前記液化ガスを主機に導入する。前記上流側ポンプは、前記第一ラインに備えられる。前記上流側ポンプは、前記液化ガスを圧送する。前記下流側ポンプは、前記第一ラインにおける前記上流側ポンプよりも下流側に備えられる。前記下流側ポンプは、前記液化ガスを前記上流側ポンプよりも高い圧力で圧送する。前記第二ラインは、前記液化ガスタンク内で前記液化ガスが蒸発することで生成されたボイルオフガスを補機に導入する。前記圧縮機は、前記第二ラインに備えられる。前記圧縮機は、前記ボイルオフガスを前記上流側ポンプの吐出側よりも高く、かつ前記下流側ポンプの吐出側よりも低い圧力で圧送する。前記混合ラインは、前記第一ラインにおける前記上流側ポンプと前記下流側ポンプとの中間部と前記第二ラインにおける前記圧縮機よりも下流側の部分とを接続する。前記混合ラインは、前記第二ラインの前記ボイルオフガスを前記第一ラインの前記液化ガスに混合可能である。 In order to solve the above problems, the ship according to the present disclosure includes a hull, a liquefied gas tank, a first line, an upstream pump, a downstream pump, a second line, a compressor, a mixing line, Prepare. The liquefied gas tank is provided on the hull. The liquefied gas tank stores liquefied gas. The first line introduces the liquefied gas in the liquefied gas tank into the main machine. The upstream pump is provided on the first line. The upstream pump pumps the liquefied gas. The downstream pump is provided downstream of the upstream pump in the first line. The downstream pump pumps the liquefied gas at a higher pressure than the upstream pump. The second line introduces boil-off gas generated by evaporation of the liquefied gas in the liquefied gas tank to the auxiliary machine. The compressor is provided on the second line. The compressor pumps the boil-off gas at a pressure higher than the discharge side of the upstream pump and lower than the discharge side of the downstream pump. The mixing line connects an intermediate portion of the first line between the upstream pump and the downstream pump and a portion of the second line downstream of the compressor. The mixing line is capable of mixing the boil-off gas of the second line with the liquefied gas of the first line.
 本開示の船舶によれば、ボイルオフガスの処理を、より効率良く行うことができる。 According to the ship of the present disclosure, boil-off gas can be treated more efficiently.
本開示の実施形態に係る船舶の側面図である。1 is a side view of a vessel according to an embodiment of the present disclosure; FIG. 本開示の第一実施形態に係る船舶に備えられた燃料供給システムの構成を示す図である。1 is a diagram showing the configuration of a fuel supply system provided on a ship according to a first embodiment of the present disclosure; FIG. 本開示の第二実施形態に係る船舶に備えられた燃料供給システムの構成を示す図である。Fig. 2 is a diagram showing the configuration of a fuel supply system provided on a ship according to a second embodiment of the present disclosure;
 以下、本開示の実施形態に係る船舶について、図面を参照して説明する。
<第一実施形態>
(船舶の全体構成)
 図1は、本開示の実施形態に係る船舶の側面図である。
 図1に示すように、この実施形態の船舶1は、船体2と、液化ガスタンク10と、主機21と、補機22と、燃料供給システム30Aと、を主に備えている。船舶1の船種は、特定のものに限られない。船舶1の船種は、例えば、液化天然ガス(LNG)、二酸化炭素、アンモニア等の液化ガスの運搬船、フェリー、RORO船(Roll-on/Roll-off船)、PCTC(Pure Car & Truck Carrier)等を例示できる。
Hereinafter, ships according to embodiments of the present disclosure will be described with reference to the drawings.
<First Embodiment>
(Overall configuration of ship)
1 is a side view of a vessel according to an embodiment of the present disclosure; FIG.
As shown in FIG. 1, a ship 1 of this embodiment mainly includes a hull 2, a liquefied gas tank 10, a main engine 21, an auxiliary engine 22, and a fuel supply system 30A. The ship type of the ship 1 is not limited to a specific one. The ship type of the ship 1 is, for example, a carrier of liquefied gas such as liquefied natural gas (LNG), carbon dioxide, or ammonia, a ferry, a RORO ship (Roll-on/Roll-off ship), or a PCTC (Pure Car & Truck Carrier). etc. can be exemplified.
 船体2は、その外殻をなす、一対の舷側3A,3Bと、船底4と、を有している。舷側3A,3Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底4は、これら舷側3A,3Bを接続する船底外板を備える。これら一対の舷側3A,3B及び船底4により、船体2の外殻は、船首尾方向FAに直交する断面において、U字状を成している。 The hull 2 has a pair of sides 3A and 3B and a hull 4 that form its outer shell. The shipboard sides 3A, 3B are provided with a pair of shipboard skins forming the starboard and port sides, respectively. The ship's bottom 4 includes a ship's bottom shell plate that connects the sides 3A and 3B. The pair of sides 3A and 3B and the bottom 4 form a U-shaped outer shell of the hull 2 in a cross section perpendicular to the fore-and-aft direction FA.
 船体2は、最も上層に配置される全通甲板である上甲板5を更に備えている。この上甲板5上には、上部構造7が形成されている。上部構造7内には、居住区等が設けられている。本実施形態の船舶1では、例えば、上部構造7よりも船首尾方向FAの船首側に、貨物を搭載するカーゴスペース(図示無し)が設けられている。 The hull 2 further includes an upper deck 5, which is a through deck arranged on the uppermost layer. A superstructure 7 is formed on the upper deck 5 . A living quarter and the like are provided in the upper structure 7 . In the ship 1 of this embodiment, for example, a cargo space (not shown) for loading cargo is provided on the bow side of the bow-stern direction FA from the upper structure 7 .
(主機、補機の構成)
 主機21、及び補機22は、船体2内に設けられている。主機21、及び補機22は、液化ガスを燃料とする。この実施形態では、主機21、及び補機22がLNGを燃料とする場合を例示する。
 主機21は、船舶1を航行させる推進力を発揮する。主機21は、例えば、船体2の船尾2bの外部に設けられたスクリュー9を回転駆動させる。主機21としては、蒸気タービン用ボイラー、ガスタービン、レシプロエンジン等を例示できる。
(Construction of main and auxiliary machines)
A main engine 21 and an auxiliary engine 22 are provided inside the hull 2 . The main machine 21 and the auxiliary machine 22 use liquefied gas as fuel. This embodiment exemplifies a case where the main machine 21 and the auxiliary machine 22 use LNG as fuel.
The main engine 21 exerts a propulsive force for sailing the ship 1 . The main engine 21 rotates the screw 9 provided outside the stern 2b of the hull 2, for example. Examples of the main machine 21 include a steam turbine boiler, a gas turbine, a reciprocating engine, and the like.
 補機22は、船舶1内で使用される動力を発生する。本実施形態の船舶1は、補機22として、発電機(図示せず)を駆動させるための発電機用エンジンを備えている。補機22としては、例えばガスタービンやレシプロエンジン等を例示できる。補機22で発生した回転エネルギーは、発電機で電気エネルギーに変換され、船体2内各部へ供給される。 The auxiliary machine 22 generates power used within the ship 1 . The ship 1 of this embodiment includes, as the auxiliary machine 22, a generator engine for driving a generator (not shown). Examples of the auxiliary machine 22 include a gas turbine and a reciprocating engine. Rotational energy generated by the auxiliary machine 22 is converted into electrical energy by the generator and supplied to various parts inside the hull 2 .
(液化ガスタンクの構成)
 液化ガスタンク10は、主機21や補機22の燃料となるLNGを貯留する。この実施形態における液化ガスタンク10は、上甲板5上に配置されている。なお、液化ガスタンク10の配置は、上甲板5上に限られない。液化ガスタンク10は、例えば、船体2内に配置されていてもよい。
(Configuration of liquefied gas tank)
The liquefied gas tank 10 stores LNG as fuel for the main machine 21 and the auxiliary machine 22 . The liquefied gas tank 10 in this embodiment is arranged on the upper deck 5 . Note that the arrangement of the liquefied gas tank 10 is not limited to the upper deck 5 . The liquefied gas tank 10 may be arranged within the hull 2, for example.
(燃料供給システムの構成)
 燃料供給システム30Aは、主機21、及び補機22に対し、燃料となるLNGを供給する。図2に示すように、燃料供給システム30Aは、第一ライン31と、第二ライン32と、混合ライン33Aと、廃棄ライン34と、を備えている。
(Configuration of fuel supply system)
The fuel supply system 30A supplies LNG as fuel to the main machine 21 and the auxiliary machine 22 . As shown in FIG. 2, the fuel supply system 30A includes a first line 31, a second line 32, a mixing line 33A, and a waste line .
 第一ライン31は、液化ガスタンク10と主機21とを接続している。第一ライン31は、液化ガスタンク10内に貯留された液化ガスLGを主機21に導く流路を形成している。この第一ライン31には、上流側ポンプ41と、下流側ポンプ42と、蒸発器46と、がそれぞれ設けられている。 The first line 31 connects the liquefied gas tank 10 and the main engine 21 . The first line 31 forms a flow path that guides the liquefied gas LG stored in the liquefied gas tank 10 to the main engine 21 . The first line 31 is provided with an upstream pump 41, a downstream pump 42, and an evaporator 46, respectively.
 上流側ポンプ41は、液化ガスタンク10内に貯留された液化ガスLGを、主機21に向けて圧送する。上流側ポンプ41は、液化ガスタンク10内の第一ライン31に設けられている。本実施形態の上流側ポンプ41は、液化ガスタンク10内の下部に配置されるとともに、第一ライン31における液化ガスLGの流れる方向において、第一ライン31の上流側の端部に設けられている。 The upstream pump 41 pumps the liquefied gas LG stored in the liquefied gas tank 10 toward the main engine 21 . The upstream pump 41 is provided in the first line 31 inside the liquefied gas tank 10 . The upstream pump 41 of the present embodiment is arranged in the lower part of the liquefied gas tank 10, and is provided at the upstream end of the first line 31 in the direction in which the liquefied gas LG flows in the first line 31. .
 下流側ポンプ42は、第一ライン31における液化ガスLGの流れ方向において、上流側ポンプ41よりも下流側に配置されている。下流側ポンプ42は、液化ガスLGを上流側ポンプ41よりも高い圧力で、主機21に向けて圧送する。 The downstream pump 42 is arranged downstream of the upstream pump 41 in the flow direction of the liquefied gas LG in the first line 31 . The downstream pump 42 pumps the liquefied gas LG toward the main engine 21 at a pressure higher than that of the upstream pump 41 .
 蒸発器46は、第一ライン31において下流側ポンプ42よりも、第一ライン31における液化ガスLGの流れ方向の下流側に配置されている。蒸発器46は、下流側ポンプ42によって圧送されてきた液化ガスLGを気化させる。この蒸発器46により気化された液化ガスLGが、主機21に送り込まれる。 The evaporator 46 is arranged downstream of the downstream pump 42 in the first line 31 in the flow direction of the liquefied gas LG in the first line 31 . The evaporator 46 evaporates the liquefied gas LG pressure-fed by the downstream pump 42 . The liquefied gas LG vaporized by this evaporator 46 is sent to the main engine 21 .
 第一ライン31は、更に、オフセットベント48を備えている。オフセットベント48は、下流側ポンプ42よりも、第一ライン31における液化ガスLGの流れ方向の上流側に設けられている。オフセットベント48は、少なくとも内部流体による熱収縮および船首尾方向FAにおける船体2の伸縮変形に応じて、船首尾方向FAに弾性変形可能となっている。つまり、オフセットベント48は、このように弾性変形することで内部流体による熱収縮および船首尾方向FAの船体2の伸縮変形分を吸収している。 The first line 31 further comprises an offset vent 48. The offset vent 48 is provided upstream of the downstream pump 42 in the flow direction of the liquefied gas LG in the first line 31 . The offset vent 48 is elastically deformable in the fore-and-aft direction FA according to at least thermal contraction due to the internal fluid and expansion and contraction deformation of the hull 2 in the fore-and-aft direction FA. That is, the offset vent 48 absorbs thermal contraction due to the internal fluid and expansion/contraction deformation of the hull 2 in the fore-and-aft direction FA by elastically deforming in this way.
 オフセットベント48は、少なくとも一つの屈曲部48kを有している。本実施形態のオフセットベント48は、複数の屈曲部48kを備えており、これら複数の屈曲部48kによって矩形波状をなしている。これら複数の屈曲部48kを設けることで、オフセットベント48内を流れる液化ガスLGが蛇行することとなる。そして、この実施形態におけるオフセットベント48は、屈曲部48kを備えることで、船体2の船首尾方向FAの伸縮変形に応じて、容易に船首尾方向FAに弾性変形可能になっている。オフセットベント48は、混合ライン33Aと第一ライン31との合流部31jよりも、第一ライン31における液化ガスLGの流れ方向の下流側に備えられている。 The offset vent 48 has at least one bend 48k. The offset vent 48 of this embodiment has a plurality of bent portions 48k, and the plurality of bent portions 48k form a rectangular wave shape. By providing the plurality of bent portions 48k, the liquefied gas LG flowing inside the offset vent 48 meanders. The offset vent 48 in this embodiment is provided with the bent portion 48k, so that it can be easily elastically deformed in the fore-and-aft direction FA according to the expansion and contraction deformation of the hull 2 in the fore-and-aft direction FA. The offset vent 48 is provided on the downstream side of the first line 31 in the flow direction of the liquefied gas LG from the junction 31j of the mixing line 33A and the first line 31 .
 第二ライン32は、液化ガスタンク10内の気相と、補機22と、を接続する。液化ガスタンク10内では、外部からの自然入熱によって、液状態の液化ガスLGが蒸発し、ボイルオフガスBOGが発生する。第二ライン32は、液化ガスタンク10内で発生したボイルオフガスBOGを、補機22に導入する。 The second line 32 connects the gas phase inside the liquefied gas tank 10 and the auxiliary machine 22 . In the liquefied gas tank 10, natural heat input from the outside evaporates the liquefied gas LG in a liquid state to generate a boil-off gas BOG. The second line 32 introduces the boil-off gas BOG generated within the liquefied gas tank 10 to the auxiliary machine 22 .
 第二ライン32には、圧縮機44と、第一熱交換器45と、がそれぞれ設けられている。
 圧縮機44は、液化ガスタンク10で発生したボイルオフガスBOGを圧縮して送り出す。圧縮機44により圧縮されたボイルオフガスBOGの圧力は、第一ライン31に設けられた上流側ポンプ41の吐出側の圧力よりも高く、かつ下流側ポンプ42の吐出側の圧力よりも低い。
The second line 32 is provided with a compressor 44 and a first heat exchanger 45, respectively.
The compressor 44 compresses and sends out the boil-off gas BOG generated in the liquefied gas tank 10 . The pressure of the boil-off gas BOG compressed by the compressor 44 is higher than the pressure on the discharge side of the upstream pump 41 provided in the first line 31 and lower than the pressure on the discharge side of the downstream pump 42 .
 第一熱交換器45は、第二ライン32におけるボイルオフガスBOGの流れる方向において、圧縮機44よりも下流側の第二ライン32に設けられている。第一熱交換器45は、冷媒である船体2の外部から導入した海水等の水と、圧縮機44により圧縮されたボイルオフガスBOGとを熱交換する。 The first heat exchanger 45 is provided in the second line 32 downstream of the compressor 44 in the flow direction of the boil-off gas BOG in the second line 32 . The first heat exchanger 45 heat-exchanges water, such as seawater introduced from the outside of the hull 2 as a refrigerant, and the boil-off gas BOG compressed by the compressor 44 .
 混合ライン33Aは、第一ライン31における上流側ポンプ41と下流側ポンプ42との中間部の合流部31jと、第二ライン32における圧縮機44、及び第一熱交換器45よりも下流側の部分32sとを接続している。混合ライン33Aは、第二ライン32において圧縮機44及び第一熱交換器45を経たボイルオフガスBOGの一部を、合流部31jから第一ライン31の液化ガスLGに合流させる。このように第一ライン31の液化ガスLGにボイルオフガスBOGの一部を合流させることにより、ボイルオフガスBOGの一部が第一ライン31の液化ガスLGに混合される。 The mixing line 33A includes a confluence portion 31j at an intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31, and a downstream side of the compressor 44 and the first heat exchanger 45 in the second line 32. 32s. The mixing line 33A joins part of the boil-off gas BOG that has passed through the compressor 44 and the first heat exchanger 45 in the second line 32 to the liquefied gas LG in the first line 31 from the junction 31j. Part of the boil-off gas BOG is mixed with the liquefied gas LG of the first line 31 by allowing a part of the boil-off gas BOG to join the liquefied gas LG of the first line 31 in this manner.
 廃棄ライン34は、第二ライン32における圧縮機44及び第一熱交換器45よりも下流側の部分32sから分岐して廃棄ライン34に至っている。廃棄ライン34は、第二ライン32において圧縮機44及び第一熱交換器45を経たボイルオフガスBOGの一部を、GCU23に送り込む流路を形成している。GCU23に送り込まれたボイルオフガスBOGは、GCU23により燃焼することで処分される。 The waste line 34 branches from a portion 32 s downstream of the compressor 44 and the first heat exchanger 45 in the second line 32 to reach the waste line 34 . The waste line 34 forms a flow path for sending part of the boil-off gas BOG that has passed through the compressor 44 and the first heat exchanger 45 in the second line 32 to the GCU 23 . The boil-off gas BOG fed into the GCU 23 is disposed of by being burned by the GCU 23.
 このような燃料供給システム30Aでは、液化ガスタンク10に貯留された液化ガスLGが、第一ライン31を通して主機21に導入される。ここで、液化ガスLGが、LNGである場合、液化ガスタンク10内には、例えば、-163℃程度の液化ガスLGが貯留されている。第一ライン31において、液化ガスLGは、上流側ポンプ41で昇圧され、例えば圧力0.5MPaG、-150℃程度となる。この昇圧された液化ガスLGは、下流側ポンプ42で、さらに高い圧力に昇圧され、例えば30MPaG、-120℃程度となる。そして、下流側ポンプ42で昇圧された液化ガスLGは、蒸発器46で気化され、主機21に導入される。主機21に導入された液化ガスLGは、主機21で燃焼されることで消費される。 In such a fuel supply system 30A, the liquefied gas LG stored in the liquefied gas tank 10 is introduced into the main engine 21 through the first line 31. Here, when the liquefied gas LG is LNG, the liquefied gas LG at about -163°C is stored in the liquefied gas tank 10, for example. In the first line 31, the liquefied gas LG is pressurized by the upstream pump 41 to a pressure of 0.5 MPaG and about -150°C, for example. The pressurized liquefied gas LG is further pressurized by the downstream pump 42 to a higher pressure, for example, about 30 MPaG and -120.degree. The liquefied gas LG pressurized by the downstream pump 42 is vaporized by the evaporator 46 and introduced into the main engine 21 . The liquefied gas LG introduced into the main engine 21 is consumed by being burned in the main engine 21 .
 また、液化ガスタンク10内における液化ガスLGの蒸発により発生したボイルオフガスBOGは、例えば、0.05MPaG程度の圧力となる。ボイルオフガスBOGは、液化ガスタンク10の気相から第二ライン32を通して圧縮機44に導入される。そして、ボイルオフガスBOGは、圧縮機44で圧縮され、例えば、0.6MPaG、100℃程度となる。圧縮機44を経たボイルオフガスBOGは、第一熱交換器45で海水等の水と熱交換することで、常温程度、例えば、0.6MPaG、30℃程度となる。この第一熱交換器45を経たボイルオフガスBOGは、補機22に導入される。補機22に導入されたボイルオフガスBOGは、補機22で燃焼されることで消費される。 Also, the boil-off gas BOG generated by evaporation of the liquefied gas LG in the liquefied gas tank 10 has a pressure of, for example, about 0.05 MPaG. The boil-off gas BOG is introduced from the gas phase of the liquefied gas tank 10 through the second line 32 into the compressor 44 . Then, the boil-off gas BOG is compressed by the compressor 44 to, for example, 0.6 MPaG and about 100°C. The boil-off gas BOG that has passed through the compressor 44 is heat-exchanged with water such as seawater in the first heat exchanger 45, so that the temperature is about normal temperature, for example, about 0.6 MPaG and about 30°C. The boil-off gas BOG that has passed through the first heat exchanger 45 is introduced into the auxiliary machine 22 . The boil-off gas BOG introduced into the auxiliary machine 22 is consumed by being burned in the auxiliary machine 22 .
 補機22におけるボイルオフガスBOGの消費量を上回るボイルオフガスBOGは、混合ライン33Aを通し、第一ライン31における上流側ポンプ41と下流側ポンプ42との中間部の合流部31jから、第一ライン31に合流し、液化ガスLGに混合される。このとき、第二ライン32から混合ライン33Aに流れ込むボイルオフガスBOGは、圧縮機44で圧縮されることによって、上流側ポンプ41の吐出側よりも高く、かつ下流側ポンプ42の吐出側よりも低い圧力(例えば0.6MPaG)となる。ボイルオフガスBOGが混合ライン33Aから第一ライン31に流れ込む部分(言い換えれば、合流部31j近傍)において、第一ライン31の液化ガスLGは、上流側ポンプ41の吐出側の圧力(例えば0.5MPaG)である。つまり、混合ライン33Aから流れ込むボイルオフガスBOGの圧力の方が、第一ライン31の液化ガスLGの圧力よりも高い。そのため、これら圧力差によって、混合ライン33AのボイルオフガスBOGは、第一ライン31の液化ガスLG中に円滑に合流する。また、液化ガスLGは上流側ポンプ41で加圧されることで例えば-150℃程度まで昇温するが、加圧後(例えば0.5MPaG)における飽和温度(例えば-134℃程度)よりも低い温度であるため、混合ライン33Aから流れ込むボイルオフガスBOGは冷却され凝縮する。このようにして液化ガスLGに混合されたボイルオフガスBOGは、液化ガスLGとともに主機21に送り込まれて燃焼される。 The boil-off gas BOG exceeding the consumption of the boil-off gas BOG in the auxiliary machine 22 passes through the mixing line 33A, and flows from the confluence portion 31j of the intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31 to the first line. 31 and mixed with the liquefied gas LG. At this time, the boil-off gas BOG flowing from the second line 32 to the mixing line 33A is compressed by the compressor 44, and is higher than the discharge side of the upstream pump 41 and lower than the discharge side of the downstream pump 42. pressure (for example, 0.6 MPaG). In the portion where the boil-off gas BOG flows from the mixing line 33A into the first line 31 (in other words, near the confluence portion 31j), the liquefied gas LG in the first line 31 has a pressure on the discharge side of the upstream pump 41 (for example, 0.5 MPaG ). That is, the pressure of the boil-off gas BOG flowing from the mixing line 33A is higher than the pressure of the liquefied gas LG in the first line 31 . Therefore, the boil-off gas BOG in the mixing line 33A smoothly joins the liquefied gas LG in the first line 31 due to these pressure differences. In addition, the liquefied gas LG is pressurized by the upstream pump 41 to raise its temperature to, for example, about −150° C., which is lower than the saturation temperature (for example, about −134° C.) after pressurization (for example, 0.5 MPaG). Due to the temperature, the boil-off gas BOG flowing from the mixing line 33A cools and condenses. The boil-off gas BOG mixed with the liquefied gas LG in this manner is sent to the main engine 21 and burned together with the liquefied gas LG.
 また、補機22,及び主機21におけるボイルオフガスBOGの消費量を上回るボイルオフガスBOGが第二ライン32を流れている場合、余剰分のボイルオフガスBOGは、廃棄ライン34を通してGCU23に送り込まれる。GCU23では、余剰分のボイルオフガスBOGが上述した通り処分される。 Also, when the amount of boil-off gas BOG that exceeds the amount of boil-off gas BOG consumed by the auxiliary machine 22 and the main machine 21 flows through the second line 32, the surplus boil-off gas BOG is sent to the GCU 23 through the disposal line 34. The GCU 23 disposes of the surplus boil-off gas BOG as described above.
(作用効果)
 上記実施形態の船舶1では、船体2と、船体2に備えられ、液化ガスLGを貯留する液化ガスタンク10と、液化ガスタンク10の液化ガスLGを主機21に導入する第一ライン31と、第一ライン31に備えられて液化ガスLGを圧送する上流側ポンプ41と、を備えている。更に、上記実施形態の船舶1では、第一ライン31における上流側ポンプ41よりも下流側に備えられ、液化ガスLGを上流側ポンプ41よりも高い圧力で圧送する下流側ポンプ42と、液化ガスタンク10内で液化ガスLGが蒸発することで生成されたボイルオフガスBOGを補機22に導入する第二ライン32と、を備えている。更に、上記実施形態の船舶1では、第二ライン32に備えられ、ボイルオフガスBOGを上流側ポンプ41の吐出側よりも高く、かつ下流側ポンプ42の吐出側よりも低い圧力で圧送する圧縮機44と、第一ライン31における上流側ポンプ41と下流側ポンプ42との中間部と第二ライン32における圧縮機44よりも下流側の部分とを接続し、第二ライン32のボイルオフガスBOGを第一ライン31の液化ガスLGに混合可能な混合ライン33Aと、を備えている。
(Effect)
In the ship 1 of the above embodiment, the hull 2, the liquefied gas tank 10 provided in the hull 2 and storing the liquefied gas LG, the first line 31 for introducing the liquefied gas LG in the liquefied gas tank 10 to the main engine 21, the first and an upstream pump 41 that is provided in the line 31 and pressure-feeds the liquefied gas LG. Furthermore, in the ship 1 of the above embodiment, the downstream pump 42 is provided downstream of the upstream pump 41 in the first line 31 and pumps the liquefied gas LG at a higher pressure than the upstream pump 41, and the liquefied gas tank and a second line 32 for introducing the boil-off gas BOG generated by evaporating the liquefied gas LG in the auxiliary machine 22 . Furthermore, in the ship 1 of the above embodiment, the second line 32 is provided with a compressor that pumps the boil-off gas BOG at a pressure higher than the discharge side of the upstream pump 41 and lower than the discharge side of the downstream pump 42. 44, an intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31 and a portion downstream of the compressor 44 in the second line 32, and the boil-off gas BOG in the second line 32 is connected. and a mixing line 33A that can be mixed with the liquefied gas LG of the first line 31.
 このような船舶1によれば、補機22で消費しきれない余剰のボイルオフガスBOGを、主機21で燃焼させることによって、GCU23で燃焼させるボイルオフガスBOGの量を抑えることができる。したがって、ボイルオフガスBOGの処理を、より効率良く行うことが可能となる。 According to such a ship 1, the amount of boil-off gas BOG burned by the GCU 23 can be suppressed by burning the surplus boil-off gas BOG that cannot be consumed by the auxiliary machine 22 by the main machine 21. Therefore, the boil-off gas BOG can be treated more efficiently.
 上記実施形態の船舶1では、更に、第二ライン32における圧縮機44よりも下流側に配置され、船体2の外部の海水等の水との熱交換を行う第一熱交換器45、を備えている。
 このようにすることで、第二ライン32から混合ライン33Aを経て第一ライン31に流れ込むボイルオフガスBOGの温度が、第一熱交換器45における海水等の水との熱交換によって、例えば、常温程度となる。そのため、ボイルオフガスBOGと混合された後の第一ライン31の液化ガスLGの温度が高められる。したがって、下流側ポンプ42を経た後、主機21で燃焼させるために液化ガスLGを蒸発器46で気化させる際に必要なエネルギー量が少なくて済む。この点においても、ボイルオフガスBOGの処理を、より効率良く行うことが可能となる。
The ship 1 of the above embodiment further includes a first heat exchanger 45 arranged downstream of the compressor 44 in the second line 32 and performing heat exchange with water such as seawater outside the hull 2. ing.
By doing so, the temperature of the boil-off gas BOG flowing into the first line 31 from the second line 32 through the mixing line 33A is changed to normal temperature by heat exchange with water such as seawater in the first heat exchanger 45, for example. to some extent. Therefore, the temperature of the liquefied gas LG in the first line 31 after being mixed with the boil-off gas BOG is increased. Therefore, the amount of energy required for vaporizing the liquefied gas LG in the evaporator 46 in order to burn it in the main engine 21 after passing through the downstream pump 42 can be reduced. In this respect as well, the boil-off gas BOG can be treated more efficiently.
 上記実施形態の船舶1では、更に、第一ライン31が、第一ライン31と混合ライン33A、33Bとの合流部31jよりも下流側に、少なくとも一つの屈曲部48kを有している。
 このようにすることで、混合ライン33AからボイルオフガスBOGが流れ込んだ第一ライン31の液化ガスLGの流れが、屈曲部48kを通ることで蛇行して攪拌される。したがって、ボイルオフガスBOGと液化ガスLGとの混合を促進することが可能となる。
In the ship 1 of the above embodiment, the first line 31 further has at least one bent portion 48k downstream of the junction 31j between the first line 31 and the mixing lines 33A and 33B.
By doing so, the flow of the liquefied gas LG in the first line 31 into which the boil-off gas BOG has flowed from the mixing line 33A meanders and is stirred by passing through the bent portion 48k. Therefore, it is possible to promote mixing of the boil-off gas BOG and the liquefied gas LG.
 上記実施形態の船舶1では、更に、第一ライン31は、第一ライン31と混合ライン33A、33Bとの合流部31jよりも下流側に、内部流体による熱収縮および船体2の船首尾方向FAの伸縮変形を吸収するオフセットベント48が備えられ、屈曲部48kが、オフセットベント48の一部を構成している。
 したがって、内部流体による熱収縮および船体2の船首尾方向FAの伸縮変形を吸収するために第一ライン31に設けられたオフセットベント48の屈曲部48kを、ボイルオフガスBOGと液化ガスLGとの混合を促進させるために有効利用することができる。その結果、ボイルオフガスBOGと液化ガスLGとの混合を促進させるための攪拌器や追加の屈曲部48kを別途設ける必要が無く、コスト上昇を抑えることができる。
In the ship 1 of the above-described embodiment, the first line 31 is further arranged downstream of the confluence 31j between the first line 31 and the mixing lines 33A and 33B. An offset vent 48 is provided to absorb the expansion and contraction deformation of the body, and the bent portion 48k constitutes a part of the offset vent 48. As shown in FIG.
Therefore, the bent portion 48k of the offset vent 48 provided in the first line 31 to absorb the thermal contraction due to the internal fluid and the expansion and contraction deformation of the hull 2 in the fore-and-aft direction FA is used to mix the boil-off gas BOG and the liquefied gas LG. can be effectively used to promote As a result, there is no need to separately provide a stirrer or an additional bending portion 48k for promoting the mixing of the boil-off gas BOG and the liquefied gas LG, and cost increases can be suppressed.
<第二実施形態>
 次に、本開示に係る船舶の第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態と第二熱交換器の構成のみが異なるので、第一実施形態と同一部分に同一符号を付して説明するとともに、重複説明を省略する。
 この実施形態の船舶1における燃料供給システム30Bは、上記第一実施形態における燃料供給システム30Aの構成に加えて、第二熱交換器49を備えている。第二熱交換器49は、混合ライン33Bを流れるボイルオフガスBOGと、第一ライン31における下流側ポンプ42よりも下流側を流れる液化ガスLG、すなわちボイルオフガスBOGと混合された後の液化ガスLGとの間で熱交換を行う。
<Second embodiment>
Next, a second embodiment of the ship according to the present disclosure will be described. In the second embodiment described below, only the configuration of the second heat exchanger differs from that of the first embodiment, so the same parts as in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. do.
A fuel supply system 30B in the ship 1 of this embodiment includes a second heat exchanger 49 in addition to the configuration of the fuel supply system 30A in the first embodiment. The second heat exchanger 49 mixes the boil-off gas BOG flowing in the mixing line 33B and the liquefied gas LG flowing downstream of the downstream pump 42 in the first line 31, that is, the liquefied gas LG after being mixed with the boil-off gas BOG. heat exchange between
 下流側ポンプ42を経た第一ライン31内の液化ガスLGは、温度が、例えば-110℃程度となっている。第二熱交換器49で、この液化ガスLGと熱交換を行うことで、混合ライン33B内のボイルオフガスBOGは、例えば30℃から-50℃程度に温度が低下する。これにより、第一ライン31における下流側ポンプ42よりも下流側を流れる液化ガスLGを昇温させることができる。また、合流部31jで混合ライン33Bから第一ライン31に送り込まれるボイルオフガスBOGの温度が低下するため、第一ライン31の液化ガスLGで凝縮されるボイルオフガスBOGの質量流量を増加させることができる。 The temperature of the liquefied gas LG in the first line 31 that has passed through the downstream pump 42 is, for example, about -110°C. By exchanging heat with this liquefied gas LG in the second heat exchanger 49, the temperature of the boil-off gas BOG in the mixing line 33B is lowered, for example, from 30°C to -50°C. As a result, the temperature of the liquefied gas LG flowing downstream of the downstream pump 42 in the first line 31 can be increased. In addition, since the temperature of the boil-off gas BOG sent from the mixing line 33B to the first line 31 decreases at the junction 31j, the mass flow rate of the boil-off gas BOG condensed with the liquefied gas LG in the first line 31 can be increased. can.
 上記第二実施形態の船舶1によれば、混合ライン33Bと、第一ライン31における下流側ポンプ42よりも下流側の部分との間で熱交換を行う第二熱交換器49を備えていることで、第一実施形態と同様に、ボイルオフガスBOGの処理を、より効率良く行うことが可能となる。 According to the ship 1 of the second embodiment, the second heat exchanger 49 that exchanges heat between the mixing line 33B and the portion downstream of the downstream pump 42 in the first line 31 is provided. Thus, as in the first embodiment, the boil-off gas BOG can be treated more efficiently.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 上記実施形態では、補機22として、発電機用エンジンを例示したが、これに限るものではなく、補機22として、発電機用エンジン以外の用途のものを採用してもよい。
(Other embodiments)
As described above, the embodiments of the present disclosure have been described in detail with reference to the drawings, but the specific configuration is not limited to these embodiments, and design changes etc. within the scope of the present disclosure are also included. .
In the above-described embodiment, the auxiliary machine 22 is exemplified as a generator engine.
 さらに、上記実施形態では、第一熱交換器45、オフセットベント48を備える場合について説明したが、第一熱交換器45やオフセットベント48は、必要に応じて設ければよく、省略してもよい。また、オフセットベント48が矩形波状に屈曲された屈曲部48kを備える場合について説明したが、屈曲部48kは混合が促進される形状であれば良く、矩形波状に屈曲される場合に限られない。屈曲部48kは、例えば、鋸歯状に屈曲させたり、らせん状に湾曲させたりしてもよい。 Furthermore, in the above embodiment, the case where the first heat exchanger 45 and the offset vent 48 are provided has been described. good. Moreover, although the case where the offset vent 48 has the bent portion 48k that is bent in a rectangular wave shape has been described, the bent portion 48k may have any shape that promotes mixing, and is not limited to being bent in a rectangular wave shape. The bent portion 48k may be bent in a sawtooth shape or curved in a spiral shape, for example.
 また、主機21や補機22の設置台数、設置位置は適宜変更可能である。
 また、上記実施形態で示した、燃料供給システム30A、30Bの各部における液化ガスLGやボイルオフガスBOGの圧力や温度の数値は一例に過ぎない。
 また、上記実施形態では、主機21や補機22で燃焼させる液化ガスとして、LNGを例に挙げたが、主機21や補機22で燃焼させることができるのであれば、LNG以外の液化ガスであってもよい。液化ガスの種類によっては、蒸発器46を装備しない機器構成もあり得る。
 また、第一熱交換器45における熱交換の冷媒としては海水の例を挙げたが、船内で使用可能な例えば清水やグリコール水を用いても良い。
Moreover, the installation number of the main machine 21 and the auxiliary machine 22, and an installation position can be changed suitably.
Further, the numerical values of the pressure and temperature of the liquefied gas LG and the boil-off gas BOG in each part of the fuel supply systems 30A and 30B shown in the above embodiment are merely examples.
Further, in the above-described embodiment, LNG was used as an example of the liquefied gas to be burned in the main engine 21 and the auxiliary engine 22, but if it can be burned in the main engine 21 and the auxiliary engine 22, a liquefied gas other than LNG can be used. There may be. Depending on the type of liquefied gas, an equipment configuration without the evaporator 46 is possible.
In addition, although seawater is used as the heat exchange coolant in the first heat exchanger 45, fresh water or glycol water that can be used in the ship may be used.
<付記>
 各実施形態に記載の船舶1は、例えば以下のように把握される。
<Appendix>
The ship 1 described in each embodiment is understood, for example, as follows.
(1)第1の態様に係る船舶1は、船体2と、前記船体2に備えられ、液化ガスLGを貯留する液化ガスタンク10と、前記液化ガスタンク10の前記液化ガスLGを主機21に導入する第一ライン31と、前記第一ライン31に備えられて前記液化ガスLGを圧送する上流側ポンプ41と、前記第一ライン31における前記上流側ポンプ41よりも下流側に備えられ、前記液化ガスLGを前記上流側ポンプ41よりも高い圧力で圧送する下流側ポンプ42と、前記液化ガスタンク10内で前記液化ガスLGが蒸発することで生成されたボイルオフガスBOGを補機22に導入する第二ライン32と、前記第二ライン32に備えられ、前記ボイルオフガスBOGを前記上流側ポンプ41の吐出側よりも高く、かつ前記下流側ポンプ42の吐出側よりも低い圧力で圧送する圧縮機44と、前記第一ライン31における前記上流側ポンプ41と前記下流側ポンプ42との中間部と前記第二ライン32における前記圧縮機44よりも下流側の部分とを接続し、前記第二ライン32の前記ボイルオフガスBOGを前記第一ライン31の前記液化ガスLGに混合可能な混合ライン33A、33Bと、を備える。
 補機としては、発電機用エンジンが挙げられる。
 液化ガスLGとしては、LNGが挙げられる。
(1) A ship 1 according to a first aspect includes a hull 2, a liquefied gas tank 10 provided in the hull 2 and storing a liquefied gas LG, and introducing the liquefied gas LG in the liquefied gas tank 10 into a main engine 21. a first line 31, an upstream pump 41 provided in the first line 31 for pumping the liquefied gas LG, and a downstream side of the upstream pump 41 in the first line 31, the liquefied gas A downstream pump 42 for pumping LG at a pressure higher than that of the upstream pump 41; line 32, and a compressor 44 provided in the second line 32 for pumping the boil-off gas BOG at a pressure higher than the discharge side of the upstream pump 41 and lower than the discharge side of the downstream pump 42; , connecting an intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31 and a portion downstream of the compressor 44 in the second line 32, Mixing lines 33A and 33B capable of mixing the boil-off gas BOG with the liquefied gas LG of the first line 31 are provided.
The accessory includes a generator engine.
Liquefied gas LG includes LNG.
 この船舶1は、液化ガスタンク10に貯留された液化ガスLGが、第一ライン31を通して主機21に導入される。第一ライン31において、液化ガスLGは、上流側ポンプ41で昇圧された後、下流側ポンプ42で、さらに高い圧力に昇圧されて主機21に導入される。主機21に導入された液化ガスLGは、気化された後、主機21で燃焼されることで消費される。
 液化ガスタンク10内で液化ガスLGが蒸発することで生成されたボイルオフガスBOGは、第二ライン32を通して補機22に導入される。補機22に導入されたボイルオフガスBOGは、補機22で燃焼されることで消費される。
 補機22におけるボイルオフガスBOGの消費量を上回るボイルオフガスBOGは、混合ライン33A、33Bを通し、第一ライン31における上流側ポンプ41と下流側ポンプ42との中間部で、第一ライン31の液化ガスLGに混合される。このとき、第二ライン32から混合ライン33A、33Bに流れ込むボイルオフガスBOGは、圧縮機44で圧縮されることによって、上流側ポンプ41の吐出側よりも高く、かつ下流側ポンプ42の吐出側よりも低い圧力とされている。混合ライン33A、33BからボイルオフガスBOGが第一ライン31に流れ込む部分において、第一ライン31の液化ガスLGは、上流側ポンプ41の吐出側の圧力である。つまり、混合ライン33A、33Bから流れ込むボイルオフガスBOGの圧力が、第一ライン31の液化ガスLGの圧力よりも高い。このため、第一ライン31における上流側ポンプ41と下流側ポンプ42との中間部で、混合ライン33A、33Bから第一ライン31に流れ込むボイルオフガスBOGが、第一ライン31の液化ガスLGに混合される。また、液化ガスLGは上流側ポンプ41で加圧されることで昇温するものの、加圧後における飽和温度よりも低い温度であるため、混合ライン33A、33Bから流れ込むボイルオフガスBOGは冷却され凝縮する。このようにして液化ガスLGに混合されたボイルオフガスBOGは、液化ガスLGとともに主機21に送り込まれて燃焼される。
 このように、補機22で消費しきれない余剰のボイルオフガスBOGを、主機21で燃焼させることによって、GCU23で燃焼させるボイルオフガスBOGの量を抑えることができる。したがって、ボイルオフガスBOGの処理を、より効率良く行うことが可能となる。
In the ship 1 , the liquefied gas LG stored in the liquefied gas tank 10 is introduced into the main engine 21 through the first line 31 . In the first line 31 , the liquefied gas LG is pressurized by the upstream pump 41 and then further pressurized to a higher pressure by the downstream pump 42 and introduced into the main engine 21 . The liquefied gas LG introduced into the main engine 21 is consumed by being burned in the main engine 21 after being vaporized.
Boil-off gas BOG generated by evaporating the liquefied gas LG in the liquefied gas tank 10 is introduced into the auxiliary machine 22 through the second line 32 . The boil-off gas BOG introduced into the auxiliary machine 22 is consumed by being burned in the auxiliary machine 22 .
The boil-off gas BOG exceeding the consumption of the boil-off gas BOG in the auxiliary machine 22 passes through the mixing lines 33A and 33B, and flows through the first line 31 at an intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31. It is mixed with the liquefied gas LG. At this time, the boil-off gas BOG flowing from the second line 32 into the mixing lines 33A and 33B is compressed by the compressor 44, and is higher than the discharge side of the upstream pump 41 and higher than the discharge side of the downstream pump 42. is considered to be low pressure. The liquefied gas LG in the first line 31 is at the discharge side pressure of the upstream pump 41 at the portion where the boil-off gas BOG flows into the first line 31 from the mixing lines 33A and 33B. That is, the pressure of the boil-off gas BOG flowing from the mixing lines 33A and 33B is higher than the pressure of the liquefied gas LG in the first line 31 . Therefore, the boil-off gas BOG flowing into the first line 31 from the mixing lines 33A and 33B is mixed with the liquefied gas LG in the first line 31 in the intermediate portion between the upstream pump 41 and the downstream pump 42 in the first line 31. be done. Although the temperature of the liquefied gas LG is increased by being pressurized by the upstream pump 41, the temperature is lower than the saturation temperature after pressurization, so the boil-off gas BOG flowing from the mixing lines 33A and 33B is cooled and condensed. do. The boil-off gas BOG mixed with the liquefied gas LG in this manner is sent to the main engine 21 and burned together with the liquefied gas LG.
In this way, by burning the surplus boil-off gas BOG that cannot be consumed by the auxiliary machine 22 in the main machine 21, the amount of boil-off gas BOG to be burned in the GCU 23 can be suppressed. Therefore, the boil-off gas BOG can be treated more efficiently.
(2)第2の態様に係る船舶1は、(1)の船舶1であって、前記第二ライン32における前記圧縮機44よりも下流側に配置され、冷媒との熱交換を行う第一熱交換器45、をさらに備える。 (2) The ship 1 according to the second aspect is the ship 1 of (1), is arranged downstream of the compressor 44 in the second line 32, and performs heat exchange with the refrigerant. A heat exchanger 45 is further provided.
 これにより、第二ライン32から混合ライン33A、33Bを経て第一ライン31に流れ込むボイルオフガスBOGは、第一熱交換器45における冷媒との熱交換によって、温度が常温程度まで上昇している。このため、ボイルオフガスBOGが混合した後の第一ライン31の液化ガスLGの温度を高めることができる。したがって、下流側ポンプ42を経た後、主機21で燃焼させるために液化ガスLGを気化させる際に必要なエネルギー量が少なくて済む。この点においても、ボイルオフガスBOGの処理を、より効率良く行うことが可能となる。 As a result, the temperature of the boil-off gas BOG flowing from the second line 32 through the mixing lines 33A and 33B into the first line 31 has risen to about normal temperature due to heat exchange with the refrigerant in the first heat exchanger 45. Therefore, the temperature of the liquefied gas LG in the first line 31 after mixing with the boil-off gas BOG can be increased. Therefore, the amount of energy required for vaporizing the liquefied gas LG for combustion in the main engine 21 after passing through the downstream pump 42 can be reduced. In this respect as well, the boil-off gas BOG can be treated more efficiently.
(3)第3の態様に係る船舶1は、(1)又は(2)の船舶1であって、前記第一ライン31は、前記第一ライン31と前記混合ライン33A、33Bとの合流部31jよりも下流側に、少なくとも一つの屈曲部48kを有する。 (3) The ship 1 according to the third aspect is the ship 1 of (1) or (2), wherein the first line 31 is a junction of the first line 31 and the mixing lines 33A and 33B. It has at least one bent portion 48k downstream of 31j.
 これにより、混合ライン33A、33BからボイルオフガスBOGが流れ込んだ第一ライン31の液化ガスLGの流れが、屈曲部48kを通ることで攪拌される。これにより、ボイルオフガスBOGと液化ガスLGとの混合が促進される。 As a result, the flow of the liquefied gas LG in the first line 31 into which the boil-off gas BOG has flowed from the mixing lines 33A and 33B is stirred by passing through the bent portion 48k. This promotes mixing of the boil-off gas BOG and the liquefied gas LG.
(4)第4の態様に係る船舶1は、(3)の船舶1であって、前記第一ライン31は、前記第一ライン31と前記混合ライン33A、33Bとの合流部31jよりも下流側に、内部流体による熱収縮および前記船体2の船首尾方向の伸縮変形を吸収するオフセットベント48が備えられ、前記屈曲部48kは、前記オフセットベント48の一部を構成する。 (4) The ship 1 according to the fourth aspect is the ship 1 of (3), wherein the first line 31 is located downstream of a junction 31j between the first line 31 and the mixing lines 33A and 33B. An offset vent 48 is provided on the side to absorb thermal contraction due to the internal fluid and expansion and contraction deformation of the hull 2 in the fore-and-aft direction, and the bent portion 48k constitutes a part of the offset vent 48. As shown in FIG.
 これにより、ボイルオフガスBOGと液化ガスLGとの混合を促進させるため、内部流体による熱収縮および船体2の船首尾方向の伸縮変形を吸収するために第一ライン31に設けられたオフセットベント48の屈曲部48kを利用することができる。したがって、ボイルオフガスBOGと液化ガスLGとの混合を促進させるために屈曲部48kを別途設ける必要が無く、コスト上昇を抑えることができる。 As a result, in order to promote mixing of the boil-off gas BOG and the liquefied gas LG, the offset vent 48 provided in the first line 31 for absorbing thermal contraction due to the internal fluid and expansion and contraction deformation of the hull 2 in the fore and aft direction. Flexure 48k can be utilized. Therefore, there is no need to separately provide the bent portion 48k for promoting the mixing of the boil-off gas BOG and the liquefied gas LG, and cost increases can be suppressed.
(5)第5の態様に係る船舶1は、(1)から(4)の何れか一つの船舶1であって、前記混合ライン33Bと、前記第一ライン31における前記下流側ポンプ42よりも下流側の部分との間で熱交換を行う第二熱交換器49、をさらに備える。 (5) The ship 1 according to the fifth aspect is the ship 1 according to any one of (1) to (4), and the mixing line 33B and the downstream pump 42 in the first line 31 are It further comprises a second heat exchanger 49 that exchanges heat with the downstream portion.
 これにより、混合ライン33Bから第一ライン31へと送られるボイルオフガスBOGの温度が、下流側ポンプ42よりも下流側の部分での第二熱交換器49による熱交換で、低下する。これにより、ボイルオフガスBOGの体積が減少し、混合ライン33Bから第一ライン31の液化ガスLGに混合されるボイルオフガスBOGの質量流量を増加させることができる。 As a result, the temperature of the boil-off gas BOG sent from the mixing line 33B to the first line 31 is lowered by heat exchange by the second heat exchanger 49 downstream of the downstream pump 42 . As a result, the volume of the boil-off gas BOG is reduced, and the mass flow rate of the boil-off gas BOG mixed with the liquefied gas LG in the first line 31 from the mixing line 33B can be increased.
 上記態様によれば、ボイルオフガスの処理を、より効率良く行うことができる。 According to the above aspect, the boil-off gas can be treated more efficiently.
1…船舶 2…船体 2b…船尾 3A、3B…舷側 4…船底 5…上甲板 7…上部構造 9…スクリュー 10…液化ガスタンク 21…主機 22…補機 30A、30B…燃料供給システム 31…第一ライン 31j…合流部 32…第二ライン 32s…部分 33A…混合ライン 33B…混合ライン 34…廃棄ライン 41…上流側ポンプ 42…下流側ポンプ 44…圧縮機 45…第一熱交換器 46…蒸発器 48…オフセットベント 48k…屈曲部 49…第二熱交換器 FA…船首尾方向 BOG…ボイルオフガス LG…液化ガス 1... Ship 2... Hull 2b... Stern 3A, 3B... Broadside 4... Bottom 5... Upper deck 7... Superstructure 9... Screw 10... Liquefied gas tank 21... Main engine 22... Auxiliary machine 30A, 30B... Fuel supply system 31... Primary Line 31j Merging section 32 Second line 32s Part 33A Mixing line 33B Mixing line 34 Waste line 41 Upstream pump 42 Downstream pump 44 Compressor 45 First heat exchanger 46 Evaporator 48...Offset vent 48k...Bent part 49...Second heat exchanger FA...Aft direction BOG...Boil off gas LG...Liquefied gas

Claims (5)

  1.  船体と、
     前記船体に備えられ、液化ガスを貯留する液化ガスタンクと、
     前記液化ガスタンクの前記液化ガスを主機に導入する第一ラインと、
     前記第一ラインに備えられて前記液化ガスを圧送する上流側ポンプと、
     前記第一ラインにおける前記上流側ポンプよりも下流側に備えられ、前記液化ガスを前記上流側ポンプよりも高い圧力で圧送する下流側ポンプと、
     前記液化ガスタンク内で前記液化ガスが蒸発することで生成されたボイルオフガスを補機に導入する第二ラインと、
     前記第二ラインに備えられ、前記ボイルオフガスを前記上流側ポンプの吐出側よりも高く、かつ前記下流側ポンプの吐出側よりも低い圧力で圧送する圧縮機と、
     前記第一ラインにおける前記上流側ポンプと前記下流側ポンプとの中間部と前記第二ラインにおける前記圧縮機よりも下流側の部分とを接続し、前記第二ラインの前記ボイルオフガスを前記第一ラインの前記液化ガスに混合可能な混合ラインと、を備える
    船舶。
    a hull;
    a liquefied gas tank that is provided in the hull and stores liquefied gas;
    a first line for introducing the liquefied gas in the liquefied gas tank into the main machine;
    an upstream pump provided in the first line for pumping the liquefied gas;
    a downstream pump provided downstream of the upstream pump in the first line and pumping the liquefied gas at a pressure higher than that of the upstream pump;
    a second line for introducing boil-off gas generated by evaporation of the liquefied gas in the liquefied gas tank into the auxiliary machine;
    a compressor provided in the second line for pumping the boil-off gas at a pressure higher than the discharge side of the upstream pump and lower than the discharge side of the downstream pump;
    An intermediate portion between the upstream pump and the downstream pump in the first line and a portion downstream of the compressor in the second line are connected, and the boil-off gas in the second line is transferred to the first line. and a mixing line mixable with said liquefied gas in the line.
  2.  前記第二ラインにおける前記圧縮機よりも下流側に配置され、冷媒との熱交換を行う第一熱交換器、をさらに備える
     請求項1に記載の船舶。
    The ship according to claim 1, further comprising a first heat exchanger arranged downstream of the compressor in the second line and performing heat exchange with refrigerant.
  3.  前記第一ラインは、前記第一ラインと前記混合ラインとの合流部よりも下流側に、少なくとも一つの屈曲部を有する
     請求項1又は2に記載の船舶。
    The ship according to claim 1 or 2, wherein the first line has at least one bent portion downstream of a junction of the first line and the mixing line.
  4.  前記第一ラインは、前記第一ラインと前記混合ラインとの合流部よりも下流側に、内部流体による熱収縮および前記船体の船首尾方向の伸縮変形を吸収するオフセットベントが備えられ、
     前記屈曲部は、前記オフセットベントの一部を構成する
     請求項3に記載の船舶。
    The first line has an offset vent that absorbs thermal contraction due to internal fluid and expansion and contraction deformation of the hull in the bow and stern direction downstream of the confluence of the first line and the mixing line,
    4. A vessel according to claim 3, wherein said bend forms part of said offset vent.
  5.  前記混合ラインと、前記第一ラインにおける前記下流側ポンプよりも下流側の部分との間で熱交換を行う第二熱交換器、をさらに備える
     請求項1から4の何れか一項に記載の船舶。
    5. The apparatus according to any one of claims 1 to 4, further comprising a second heat exchanger that exchanges heat between the mixing line and a portion of the first line downstream of the downstream pump. vessel.
PCT/JP2022/013584 2021-03-31 2022-03-23 Vessel WO2022210178A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237031457A KR20230146073A (en) 2021-03-31 2022-03-23 Ship
CN202280022659.XA CN117098705A (en) 2021-03-31 2022-03-23 ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060225 2021-03-31
JP2021060225A JP6966661B1 (en) 2021-03-31 2021-03-31 Ship

Publications (1)

Publication Number Publication Date
WO2022210178A1 true WO2022210178A1 (en) 2022-10-06

Family

ID=78509545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013584 WO2022210178A1 (en) 2021-03-31 2022-03-23 Vessel

Country Status (4)

Country Link
JP (1) JP6966661B1 (en)
KR (1) KR20230146073A (en)
CN (1) CN117098705A (en)
WO (1) WO2022210178A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023157592A (en) * 2022-04-15 2023-10-26 三菱造船株式会社 Vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209000A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Vessel, liquefied fuel gas transfer device and liquefied fuel gas transfer method
JP6389404B2 (en) * 2014-09-12 2018-09-12 川崎重工業株式会社 Gas supply system and ship equipped with the same
JP2018531833A (en) * 2015-10-16 2018-11-01 クライオスター・ソシエテ・パール・アクシオンス・サンプリフィエ Method and apparatus for treating boil-off gas for the purpose of supplying at least one engine
JP2019011735A (en) * 2017-06-30 2019-01-24 三井E&S造船株式会社 Liquefaction gas fuel supply system
KR20200067716A (en) * 2018-12-04 2020-06-12 한국조선해양 주식회사 liquefaction system of boil-off gas and ship having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366727U (en) 1986-10-20 1988-05-06
JP2018103955A (en) * 2016-12-28 2018-07-05 川崎重工業株式会社 Ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209000A (en) * 2012-03-30 2013-10-10 Mitsubishi Heavy Ind Ltd Vessel, liquefied fuel gas transfer device and liquefied fuel gas transfer method
JP6389404B2 (en) * 2014-09-12 2018-09-12 川崎重工業株式会社 Gas supply system and ship equipped with the same
JP2018531833A (en) * 2015-10-16 2018-11-01 クライオスター・ソシエテ・パール・アクシオンス・サンプリフィエ Method and apparatus for treating boil-off gas for the purpose of supplying at least one engine
JP2019011735A (en) * 2017-06-30 2019-01-24 三井E&S造船株式会社 Liquefaction gas fuel supply system
KR20200067716A (en) * 2018-12-04 2020-06-12 한국조선해양 주식회사 liquefaction system of boil-off gas and ship having the same

Also Published As

Publication number Publication date
CN117098705A (en) 2023-11-21
JP6966661B1 (en) 2021-11-17
KR20230146073A (en) 2023-10-18
JP2022156499A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
CN112437738B (en) Gas treatment system and vessel comprising a gas treatment system
KR102474904B1 (en) Gas treatment system and ship having the same
KR102450533B1 (en) Volatile organic compounds treatment system and ship having the same
KR102649335B1 (en) Gas treatment system and ship having the same
CN108473180A (en) The manufacturing method of floating Liquefied Hydrocarbon Flash Gas Compression Skid System
KR101559407B1 (en) A ship
WO2022210178A1 (en) Vessel
CN110431075B (en) Floating body
KR101824421B1 (en) Fuel gas supply system
KR102436050B1 (en) Gas treatment system and ship having the same
KR102040003B1 (en) Fuel gas treating system in ships
WO2017200388A1 (en) Natural gas power plant arrangement
KR20220112889A (en) Fuel Supply System and Method For Ship
WO2024018873A1 (en) Floating body
KR102513005B1 (en) Boil-Off Gas Treatment System And Method For Ship
KR20150083665A (en) Vent master unit and lng carrier having the same
KR102271760B1 (en) Fuel Supplying System And Method For Ship
KR102601311B1 (en) System and Method of Controlling Pressure in Cargo Tank for Vessels
KR102601310B1 (en) System and Method of Controlling Pressure in Cargo Tank for Vessels
JP3231536U (en) LNG Evaporative Gas Reliquefaction System for Small and Medium-sized LNG Fuel Propulsion Ships
KR102372229B1 (en) Treatment system of liquefied gas and vessel having the same
KR102647308B1 (en) Re-gasifying System And Method For Regasification Ship
KR20230051376A (en) Fuel Supply System And Method For Ship
KR20220090812A (en) Re-gasifying System And Method For Regasification Ship
KR20220116997A (en) Arrangement Method In Ship consuming Variety Fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237031457

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031457

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280022659.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780393

Country of ref document: EP

Kind code of ref document: A1