WO2022210129A1 - Film capacitor, combined capacitor, inverter and electric vehicle - Google Patents

Film capacitor, combined capacitor, inverter and electric vehicle Download PDF

Info

Publication number
WO2022210129A1
WO2022210129A1 PCT/JP2022/013292 JP2022013292W WO2022210129A1 WO 2022210129 A1 WO2022210129 A1 WO 2022210129A1 JP 2022013292 W JP2022013292 W JP 2022013292W WO 2022210129 A1 WO2022210129 A1 WO 2022210129A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal layer
capacitor
inverter
metal electrode
Prior art date
Application number
PCT/JP2022/013292
Other languages
French (fr)
Japanese (ja)
Inventor
大 清水
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023511036A priority Critical patent/JPWO2022210129A1/ja
Publication of WO2022210129A1 publication Critical patent/WO2022210129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present disclosure relates to film capacitors, coupled capacitors, inverters, and electric vehicles.
  • Patent Document 1 An example of conventional technology is described in Patent Document 1.
  • a metal layer is provided on one surface, and an edge insulating region continuous in a second direction orthogonal to the first direction is provided on one edge of the surface in a first direction.
  • the provided dielectric film is a rectangular parallelepiped film laminate in which a plurality of sheets are laminated, and the planar view position of the edge insulating region overlaps every other sheet, and the planar view position of the edge is every other sheet.
  • a first metal electrode and a second metal electrode Formed on each of a film laminate laminated by reversing the direction of the first direction on the one surface one by one and a pair of end surfaces of the film laminate in the first direction, a first metal electrode and a second metal electrode electrically connected to the metal layer; and a third metal electrode of the first metal electrode and the second metal electrode perpendicular to the first and second directions. and a protective metal layer extending along the first direction from the end in the direction of to the surface of the film laminate.
  • a plurality of film capacitors including the film capacitors described above are connected by bus bars.
  • the inverter of the present disclosure includes a bridge circuit composed of switching elements, and a capacitive section connected to the bridge circuit and including the film capacitor described above.
  • An electric vehicle of the present disclosure includes a power source, the inverter connected to the power source, a motor connected to the inverter, and wheels driven by the motor.
  • FIG. 1 is a plan view of a dielectric film, showing the configuration of the film capacitor of the embodiment;
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the film capacitor of embodiment, Comprising: It is a cross-sectional schematic diagram which shows the laminated state of a film. It is an exploded perspective view showing a manufacturing method of a film capacitor of an embodiment. It is an external appearance perspective view which shows after film lamination.
  • FIG. 3 is an external perspective view showing a metal electrode after thermal spraying; It is the perspective view which notched one part which shows the modification of a film capacitor.
  • 1 is a perspective view schematically showing the configuration of a coupled capacitor;
  • FIG. FIG. 3 is an electric circuit diagram for explaining the configuration of an inverter; 1 is a schematic configuration diagram for explaining the configuration of an electric vehicle;
  • a film capacitor having a configuration that forms the basis of the present disclosure is formed by, for example, winding a metallized film in which a metal film that serves as an electrode is vapor-deposited on the surface of a dielectric film made of polypropylene resin, or by stacking multiple sheets in one direction. It is
  • a metallikon electrode electrically connected to the metal film is provided on each end face of the laminate in which the metallized film is laminated.
  • One metallikon electrode joins with a portion of the metal film, and the other metallikon electrode connects with the remaining metal film.
  • the metallized films are staggered and laminated so that the metal film does not connect with the two metallikon electrodes and short-circuit (see, for example, Patent Document 1).
  • the edge portions where the metallized films are shifted and extended are more likely to be deformed than the central portion where the metallized films overlap each other.
  • the extended portion is elongated and becomes more susceptible to deformation, causing breakage of the deformed portion and the like, resulting in deterioration of the capacitor characteristics.
  • An object of the present disclosure is to provide a film capacitor, a coupled capacitor, an inverter, and an electric vehicle capable of suppressing deterioration of capacitor characteristics.
  • a film capacitor 10 of the embodiment includes a film laminate 4 configured by alternately laminating dielectric films 1 and 2 having a metal layer 3 on one surface of a base film as shown in FIG. 1A.
  • the metal layer 3 is a so-called comb-shaped metal layer, and includes a plurality of strip-shaped metal layers 3a and one common metal layer 3c. 3c is electrically connected.
  • a connection metal layer 3b may be provided between the strip-shaped metal layer 3a and the common metal layer 3c to connect them.
  • the connection metal layer 3b connects the end of each strip-shaped metal layer 3a and the side of the common metal layer 3c.
  • Each strip-shaped metal layer 3a becomes an internal electrode of the capacitor after lamination.
  • the dielectric films 1 and 2 have the same configuration, except that the direction of lamination is reversed.
  • the direction in which the strip-shaped metal layers 3a formed parallel to each other extend is defined as a first direction (x-direction), and the direction in which the parallel strip-shaped metal layers 3a are arranged (the y-direction perpendicular to the x-direction). ) is the second direction.
  • the lamination direction of the films is the third direction (the z-direction in the figure) that is orthogonal to the first direction and the second direction. The details of the film laminate 4 after lamination will be described later.
  • Each strip-shaped metal layer 3a on the surface of the dielectric films 1 and 2 is formed by metal vapor deposition on the base film.
  • a film surface (hereinafter referred to as an insulating margin S) is exposed between the strip-shaped metal layers 3a adjacent to each other in the y-direction, whereby the strip-shaped metal layers 3a are electrically insulated from each other. ing.
  • Each insulating margin S is connected to an edge insulating region T continuous in the y direction on one end side in the x direction.
  • the common metal layer 3c is provided extending in the y-direction on the side opposite to the edge insulating region T of the dielectric films 1 and 2, that is, on the other edge in the first direction.
  • Each band-like metal layer 3a is electrically insulated by an insulating margin S, but by connecting to one common metal layer 3c, the metal layer 3 as a whole is electrically connected.
  • the metal layer 3 has the connection metal layer 3b, the length (width) of the connection metal layer 3b in the y direction is smaller than the length (width) of the strip-shaped metal layer 3a in the y direction.
  • the connection metal layer 3b functions as a fuse for each strip-shaped metal layer 3a.
  • the high-resistance connection metal layer 3b may burn out. , so that the function of the entire film capacitor 10 does not stop.
  • constituent material of the base film of the dielectric films 1 and 2 for example, organic resin materials such as polypropylene, polyethylene terephthalate, polyarylate, and cycloolefin polymer can be used.
  • a constituent material of the metal layer 3 of the dielectric films 1 and 2 a metal material such as aluminum can be used.
  • the dielectric films 1 and 2 are laminated while alternately reversing the directions in the x direction of the dielectric film 1 and the dielectric film 2 adjacent to it in the vertical direction (z direction).
  • the dielectric films 1 and 2 are laminated so that the edge insulating regions T at one end in the x direction of each of the dielectric films 1 and 2 overlap every other film in the x direction.
  • a laminate 4 is obtained.
  • the dielectric films 1 and 2 are laminated so that the common metal layer 3c at the other end of each of the dielectric films 1 and 2 overlaps every other sheet in the x direction.
  • the film laminate 4 is laminated such that the edge portions in the x direction are shifted from each other in plan view.
  • the x-direction edge portion of the dielectric film 1 and the x-direction edge portion of the dielectric film 2 are stacked without being aligned in plan view position. If only the dielectric film 1 is seen in every other film, its edges are even, and if the dielectric film 2 is seen in every other film, its edges are even.
  • one end in the x direction is a shifted portion where only the edge portion where the common metal layer 3c of the dielectric film 1 is located overlaps.
  • the end portion on the other side in the direction is a shifted portion where only the edge portion where the common metal layer 3c of the dielectric film 2 is located is overlapped. 3a and the strip-shaped metal layer 3a of the dielectric film 2 are overlapped.
  • one end face is formed by the edge where the common metal layer 3c of the dielectric film 1 is located, and the other end face is formed by the dielectric film 2. It consists of an edge where the common metal layer 3c is located.
  • Metal electrodes are formed on both end surfaces of the film laminate 4 in the x direction by metal spraying.
  • One of the metallicons formed at both ends in the x direction is called a metallikon 5A (first metal electrode), and the other is called a metallikon 5B (second metal electrode).
  • the metallikon 5A is electrically connected to the common metal layer 3c of the dielectric film 1 at one end face, and is also electrically connected to each strip-shaped metal layer 3a via the common metal layer 3c.
  • the metallikon 5B is electrically connected to the common metal layer 3c of the dielectric film 2 at the other end surface, and is also electrically connected to each strip-like metal layer 3a through the common metal layer 3c.
  • each strip-shaped metal layer 3a can be reliably connected to the metallicons 5A, 5B through the common metal layer 3c.
  • the metal layer 3 of the dielectric film 1 and the metallikon 5B are electrically insulated by the edge insulating region T. As shown in FIG.
  • the edge portion of the dielectric film 1 where the edge insulating region T is located is retreated inward by the shifted portion of the x-direction end portion of the film laminate 4, and a gap is provided between it and the metallikon 5B. Therefore, it is insulated from the metallikon 5B more reliably.
  • the edge insulating region T electrically insulates the metal layer 3 of the dielectric film 2 from the metallikon 5A.
  • the edge portion of the dielectric film 2 where the edge insulating region T is located is retreated inward by the shifted portion of the x-direction end portion of the film laminate 4, and a gap is provided between the dielectric film 2 and the metallikon 5A. Therefore, it is more reliably insulated from the metallikon 5A.
  • the film capacitor 10 is provided with offset portions at both ends of the film laminate 4 in the x direction, thereby sufficiently ensuring insulation from the metallikon of opposite polarity. Only either the dielectric film 1 or the dielectric film 2 is overlapped, and there is also a gap with the metallikon, so that it is easily deformed. At high temperatures, the base film expands due to thermal expansion and becomes more susceptible to deformation. The deformation of the shifted portion includes bending and curving in the z-direction perpendicular to one surface of the base film. Such deformation causes breakage of the film, peeling of the laminate, and the like, and deteriorates the capacitor characteristics.
  • the film capacitor 10 of the present embodiment includes a protective metal layer 11 to suppress deterioration of capacitor characteristics due to such deformation.
  • the protective metal layer 11 extends from the ends of the metallicons 5A and 5B in the z direction to the surface of the film laminate 4 along the x direction.
  • both ends of the metallicons 5A and 5B in the z direction are flat surfaces and are flush with the outer surface of the film laminate 4 in the z direction.
  • the protective metal layer 11 extends along the y-direction so as to cover the boundaries between the metallicons 5A and 5B and the film laminate 4. As shown in FIG.
  • the protective metal layer 11 extends from the metallicons 5A and 5B to the film laminate 4, the portion positioned on the surface of the film laminate 4 overlaps at least a portion of the shifted portion in plan view.
  • Such a protective metal layer 11 can suppress deformation at both ends of the film laminate 4 in the x direction.
  • the protective metal layer 11 enables the film capacitor 10 of the present embodiment to suppress deterioration of capacitor characteristics due to deformation.
  • the protective metal layer 11 is bonded, for example, to the ends of the metallicons 5A and 5B.
  • the protective metal layer 11 may not be bonded to the film laminate 4 .
  • the protective metal layer 11 may be bonded to the ends of the metallicons 5A and 5B via a bonding material such as solder or brazing material.
  • the adhesion strength between the protective metal layer 11 and the metallicons 5A and 5B should be 10 N/mm 2 or more.
  • the adhesion strength is, for example, tensile adhesion strength measured according to JIS H 8402 "Testing method for tensile adhesion strength of thermal spray coating".
  • the protective metal layer 11 may have mechanical strength capable of suppressing deformation of the film laminate 4 .
  • the protective metal layer 11 can be made of a stainless steel plate with a thickness of 0.5 mm or more.
  • the protective metal layer 11 may be made of the same metal material as the metallicons 5A and 5B.
  • the metallicons 5A and 5B are formed by metal spraying, and metal materials such as zinc, tin, and zinc-tin alloys are used.
  • a thin plate member made of the same metal material as the metallicons 5A and 5B is prepared as the protective metal layer 11, and the formation of the metallicons 5A and 5B and the bonding to the protective metal layer 11 can be performed at the same time during metal spraying.
  • the position of the metallikon is fixed.
  • the base film shrinks at a low temperature, tensile force is applied to the metallicons 5A and 5B in the x direction, which may cause cracks.
  • the protective metal layer 11 By bonding the protective metal layer 11 to the ends of the metallicons 5A and 5B, it is possible to suppress the occurrence and propagation of cracks at low temperatures.
  • FIG. 2 to 4 are diagrams schematically explaining the method of manufacturing the film capacitor of the embodiment.
  • the surface of the film has a plurality of strip-shaped metal layers 3a continuous in the x direction and a common metal layer 3c extending in the y direction.
  • a plurality of dielectric films 1 or 2 are alternately reversed in direction in the x direction, that is, in such a manner that the edge insulating regions T overlap every other film in plan view, and the direction in the x direction is set to 1. Stack while flipping each sheet.
  • the dielectric film 1 and the dielectric film 2 have the same configuration, except that the orientation in the x direction is changed. Moreover, as a method of stacking, the long dielectric films 1 and 2 can be stacked and wound around a cylinder or a cylinder having a polygonal cross section, or the like, by a conventionally known method.
  • a virtual line (a two-dot chain line) in FIG. 2 indicates a cutting line after being wound around a cylinder or the like.
  • FIG. 3 is a view of the film laminate 4 after being cut to a predetermined length, viewed from the cut plane (y-direction end face) direction.
  • the dielectric film 1 and the dielectric film 2 which are vertically adjacent are laminated in a state in which their positions are shifted in the x direction (offset state).
  • the common metal layer 3c is exposed on the surface. Since the metal layer 3 is exposed on the upper surface side of the film laminate 4, for example, a cover layer 12 such as a base film is laminated. Note that the cover layer 12 may also be laminated on the lower surface side of the film laminate 4 .
  • the protective metal layers 11 are arranged on the upper and lower surfaces, which are the z-direction surfaces of the film laminate 4 .
  • the protective metal layer 11 may be arranged so as to extend outward from both end surfaces of the film laminate 4 in the x direction. It should be noted that the protective metal layer 11 does not need to be bonded to the top and bottom surfaces of the film laminate 4, and may be temporarily fixed by sandwiching the top and bottom with a jig or the like.
  • metallicons 5A and 5B are formed by metal spraying on both end surfaces of the film laminate 4 in the x direction where the aforementioned common metal layer 3c is exposed.
  • the strip-shaped metal layers 3a on the dielectric films 1 and 2 are electrically connected to the metallicons 5A and 5B through the common metal layer 3c, and function as internal electrodes of the film capacitor 10.
  • FIG. The metallicons 5A and 5B are formed between the protective metal layer 11 arranged on the upper surface side and the protective metal layer 11 arranged on the lower surface side, and the metallicons 5A and 5B and the protective metal layer 11 are joined. .
  • the film laminate 4 is obtained by laminating the dielectric films 1 and 2 while alternately reversing the directions in the x direction, and the dielectric films 1 and 2 have the same configuration. and the directions are different.
  • the film laminate 4 has the same structure as the dielectric film 1 in the above embodiment, but the dielectric film 2 has a metal layer other than the edge insulating region T on one surface of the base film. It may be a planar metal layer of a so-called solid pattern provided over the entire area of .
  • the protective metal layer 11 is in the form of a sheet of thin plate covering the boundary between the metallikons 5A and 5B and the film laminate 4 along the y direction. may be divided in the y direction. Also, the protective metal layer 11 and the film laminate 4 may be adhered via an adhesive or the like.
  • the metallicons 5A and 5B are formed after the protective metal layer 11 is arranged on the surface of the film laminate 4.
  • the present invention is not limited to this. 11 may be bonded to the z-direction ends of the metallicons 5A and 5B.
  • FIG. 5 is a partially cutaway perspective view showing a modification of the film capacitor.
  • Film capacitor A is obtained by covering film capacitor 10 with exterior member 7 in terms of insulation and environmental resistance.
  • the metallikons 5A and 5B are provided with lead wires 6 for external connection.
  • FIG. 5 shows a state in which a part of the exterior member 7 is removed, and the removed portion of the exterior member 7 is indicated by a broken line.
  • FIG. 6 is a perspective view schematically showing the configuration of a coupled capacitor.
  • the coupled capacitor B has a configuration in which a plurality of film capacitors A are connected in parallel by a pair of bus bars 21 and 23 .
  • the busbars 21 and 23 are composed of terminal portions 21a and 23a and lead terminal portions 21b and 23b.
  • the terminal portions 21a and 23a are for external connection, and the lead terminal portions 21b and 23b are connected to the metallicons 5A and 5B of the film capacitor A, respectively.
  • FIG. 7 is an electric circuit diagram for explaining the configuration of the inverter.
  • FIG. 7 shows an example of an inverter C that generates alternating current from rectified direct current.
  • the inverter C of this embodiment includes a bridge circuit 31 and a capacitor section 33, as shown in FIG.
  • the bridge circuit 31 is composed of, for example, switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and diodes.
  • the capacitive section 33 is arranged between the input terminals of the bridge circuit 31 and stabilizes the voltage.
  • the inverter C may include the film capacitors 10 and A or the coupled capacitor B as the capacitive section 33 .
  • the input of this inverter C may be connected to the booster circuit 35 for boosting the voltage of the DC power supply or may be connected to the DC power supply.
  • the bridge circuit 31 is connected to a motor generator (motor M) as a drive source.
  • FIG. 8 is a schematic configuration diagram for explaining the configuration of the electric vehicle.
  • FIG. 8 shows an example of a hybrid electric vehicle (HEV) as the electric vehicle D. As shown in FIG.
  • HEV hybrid electric vehicle
  • An electric vehicle D in FIG. 8 includes a driving motor 41, an engine 43, a transmission 45, an inverter 47, a power supply (battery) 49, front wheels 51a and rear wheels 51b.
  • This electric vehicle D has a motor 41, an engine 43, or both as a drive source.
  • the output of the drive source is transmitted via the transmission 45 to the pair of left and right front wheels 51a.
  • the power supply 49 is connected to the inverter 47 and the inverter 47 is connected to the motor 41 .
  • the electric vehicle D shown in FIG. 8 includes a vehicle ECU 53 and an engine ECU 57 .
  • the vehicle ECU 53 performs overall control of the electric vehicle D as a whole.
  • the engine ECU 57 drives the electric vehicle D by controlling the rotation speed of the engine 43 .
  • the electric vehicle D further includes driving devices such as an ignition key 55 operated by the driver or the like, an accelerator pedal (not shown), and a brake.
  • a drive signal corresponding to the operation of the driving device by the driver or the like is input to the vehicle ECU.
  • the vehicle ECU 53 outputs an instruction signal to the engine ECU 57, the power supply 49, and the inverter 47 as a load based on the drive signal.
  • the engine ECU 57 drives the electric vehicle D by controlling the rotation speed of the engine 43 in response to the instruction signal.
  • An inverter C using the film capacitors A and 10 or the coupled capacitor B of the present embodiment as the capacitance section 33 can be mounted on an electric vehicle D as shown in FIG.
  • the inverter C of this embodiment can be applied not only to the hybrid electric vehicle (HEV) described above, but also to various power conversion application products such as electric vehicles (EV), electric bicycles, generators, and solar cells.
  • EV electric vehicles
  • EB electric bicycles
  • generators generators
  • solar cells solar cells
  • a metal layer is provided on one surface, and an edge insulating region continuous in a second direction orthogonal to the first direction is provided on one edge of the surface in a first direction.
  • the provided dielectric film is a rectangular parallelepiped film laminate in which a plurality of sheets are laminated, and the planar view position of the edge insulating region overlaps every other sheet, and the planar view position of the edge is every other sheet.
  • a first metal electrode and a second metal electrode Formed on each of a film laminate laminated by reversing the direction of the first direction on the one surface one by one and a pair of end surfaces of the film laminate in the first direction, a first metal electrode and a second metal electrode electrically connected to the metal layer; and a third metal electrode of the first metal electrode and the second metal electrode perpendicular to the first and second directions. and a protective metal layer extending along the first direction from the end in the direction of to the surface of the film laminate.
  • a plurality of film capacitors including the film capacitors described above are connected by bus bars.
  • the inverter of the present disclosure includes a bridge circuit composed of switching elements, and a capacitive section connected to the bridge circuit and including the film capacitor described above.
  • An electric vehicle of the present disclosure includes a power source, the inverter connected to the power source, a motor connected to the inverter, and wheels driven by the motor.
  • Reference Signs List 1 2 dielectric film 3 metal layer 3a strip-shaped metal layer 3b connection metal layer 3c common metal layer 4 film laminate 5A metallikon (first metal electrode) 5B metallikon (second metal electrode) 6 lead wire 7 exterior member 10 film capacitor 11 protective metal layer 12 cover layer 21, 23 busbars 21a, 23a terminal portion 21b, 23b lead terminal portion 31 bridge circuit 33 capacitance portion 35 booster circuit 41 motor 43 engine 45 transmission 47 inverter 49 power supply 51a front wheel 51b rear wheel 53 vehicle ECU 55 Ignition key 57 Engine ECU A Film capacitor B Concatenated capacitor C Inverter D Electric vehicle M Motor S Insulation margin T Edge insulation area

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A film capacitor according to the present disclosure includes: a stacked film body obtained by stacking dielectric films and dielectric films inverted in the x direction; and sprayed metal layers formed respectively on a pair of end surfaces of the stacked film body. At both ends of the stacked body in the x direction, each of which has a sprayed metal layer formed thereon, sections are present in which only one plurality of dielectric films overlap and sections are present in which only the other plurality of dielectric films overlap. The film capacitor additionally includes a protective metal layer that extends from z-direction ends of the sprayed metal layers, along the x direction, to the surface of the stacked film body.

Description

フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌Film capacitors, coupled capacitors, inverters and electric vehicles
 本開示は、フィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌に関する。 The present disclosure relates to film capacitors, coupled capacitors, inverters, and electric vehicles.
 従来技術の一例は、特許文献1に記載されている。 An example of conventional technology is described in Patent Document 1.
特開2015-159226号公報JP 2015-159226 A
 本開示のフィルムコンデンサは、一面に金属層が配設され、該一面の第1の方向の一方の縁部に、前記第1の方向に直交する第2の方向に連続する縁部絶縁領域が設けられた誘電体フィルムが、複数枚積層された直方体状のフィルム積層体であって、前記縁部絶縁領域の平面視位置が1枚おきに重なり、前記縁部の平面視位置が1枚ごとにずれるように、前記一面における第1の方向の向きを1枚ごとに反転させて積層されたフィルム積層体と、前記フィルム積層体の前記第1の方向の一対の端面のそれぞれに形成され、前記金属層に電気的に接続される第1金属電極および第2金属電極と、前記第1金属電極および前記第2金属電極の、前記第1の方向および前記第2の方向に直交する第3の方向の端部から前記第1の方向に沿って前記フィルム積層体の表面にまで延びる保護金属層と、を含む。 In the film capacitor of the present disclosure, a metal layer is provided on one surface, and an edge insulating region continuous in a second direction orthogonal to the first direction is provided on one edge of the surface in a first direction. The provided dielectric film is a rectangular parallelepiped film laminate in which a plurality of sheets are laminated, and the planar view position of the edge insulating region overlaps every other sheet, and the planar view position of the edge is every other sheet. Formed on each of a film laminate laminated by reversing the direction of the first direction on the one surface one by one and a pair of end surfaces of the film laminate in the first direction, a first metal electrode and a second metal electrode electrically connected to the metal layer; and a third metal electrode of the first metal electrode and the second metal electrode perpendicular to the first and second directions. and a protective metal layer extending along the first direction from the end in the direction of to the surface of the film laminate.
 本開示の連結型コンデンサは、上記のフィルムコンデンサを含む複数のフィルムコンデンサが、バスバーにより複数個接続されている。 In the coupled capacitor of the present disclosure, a plurality of film capacitors including the film capacitors described above are connected by bus bars.
 本開示のインバータは、スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続され、上記のフィルムコンデンサを含む容量部とを備える。 The inverter of the present disclosure includes a bridge circuit composed of switching elements, and a capacitive section connected to the bridge circuit and including the film capacitor described above.
 本開示の電動車輌は、電源と、該電源に接続された上記のインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備える。 An electric vehicle of the present disclosure includes a power source, the inverter connected to the power source, a motor connected to the inverter, and wheels driven by the motor.
実施形態のフィルムコンデンサの構成を示す図であって、誘電体フィルムの平面図である。1 is a plan view of a dielectric film, showing the configuration of the film capacitor of the embodiment; FIG. 実施形態のフィルムコンデンサの構成を示す図であって、フィルムの積層状態を示す断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the film capacitor of embodiment, Comprising: It is a cross-sectional schematic diagram which shows the laminated state of a film. 実施形態のフィルムコンデンサの作製方法を示す分解斜視図である。It is an exploded perspective view showing a manufacturing method of a film capacitor of an embodiment. フィルム積層後を示す外観斜視図である。It is an external appearance perspective view which shows after film lamination. 金属電極の溶射後を示す外観斜視図である。FIG. 3 is an external perspective view showing a metal electrode after thermal spraying; フィルムコンデンサの変形例を示す、一部が切り欠かれた斜視図である。It is the perspective view which notched one part which shows the modification of a film capacitor. 連結型コンデンサの構成を模式的に示した斜視図である。1 is a perspective view schematically showing the configuration of a coupled capacitor; FIG. インバータの構成を説明するための電気回路図である。FIG. 3 is an electric circuit diagram for explaining the configuration of an inverter; 電動車輌の構成を説明するための概略構成図である。1 is a schematic configuration diagram for explaining the configuration of an electric vehicle; FIG.
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。 The objects, features, and advantages of the present disclosure will become clearer from the detailed description and drawings below.
 本開示の基礎となる構成のフィルムコンデンサは、たとえばポリプロピレン樹脂からなる誘電体フィルムの表面に電極となる金属膜を蒸着した金属化フィルムを、巻回あるいは一方向に複数枚積み重ねて積層して形成されている。 A film capacitor having a configuration that forms the basis of the present disclosure is formed by, for example, winding a metallized film in which a metal film that serves as an electrode is vapor-deposited on the surface of a dielectric film made of polypropylene resin, or by stacking multiple sheets in one direction. It is
 金属化フィルムを積層した積層体の両端面には、金属膜と電気的に接続するメタリコン電極がそれぞれ設けられる。一方のメタリコン電極は、一部の金属膜と接合し、他方のメタリコン電極は、残りの金属膜と接続する。金属膜が2つのメタリコン電極と接続して短絡しないように、金属化フィルムをずらして積層している(例えば、特許文献1参照)。 A metallikon electrode electrically connected to the metal film is provided on each end face of the laminate in which the metallized film is laminated. One metallikon electrode joins with a portion of the metal film, and the other metallikon electrode connects with the remaining metal film. The metallized films are staggered and laminated so that the metal film does not connect with the two metallikon electrodes and short-circuit (see, for example, Patent Document 1).
 特許文献1に記載されたフィルムコンデンサのような構造では、金属化フィルムがずれて延出した端面部分が、金属化フィルム同士が重なっている中央部分に比べて変形しやすい。特に、高温下では、延出部分が伸長してさらに変形しやすくなり、変形部分の破断などが生じてコンデンサ特性が低下する。 In a structure like the film capacitor described in Patent Document 1, the edge portions where the metallized films are shifted and extended are more likely to be deformed than the central portion where the metallized films overlap each other. In particular, under high temperatures, the extended portion is elongated and becomes more susceptible to deformation, causing breakage of the deformed portion and the like, resulting in deterioration of the capacitor characteristics.
 本開示の目的は、コンデンサ特性の低下を抑制できるフィルムコンデンサ、連結型コンデンサ、インバータおよび電動車輌を提供することである。 An object of the present disclosure is to provide a film capacitor, a coupled capacitor, an inverter, and an electric vehicle capable of suppressing deterioration of capacitor characteristics.
 以下、実施形態のフィルムコンデンサについて、図面を参照しつつ説明する。実施形態のフィルムコンデンサ10は、図1Aに示すような、ベースフィルムの一面に、金属層3を有する誘電体フィルム1,2を、交互に積層して構成されるフィルム積層体4を含む。 The film capacitor of the embodiment will be described below with reference to the drawings. A film capacitor 10 of the embodiment includes a film laminate 4 configured by alternately laminating dielectric films 1 and 2 having a metal layer 3 on one surface of a base film as shown in FIG. 1A.
 本実施形態では、金属層3は、いわゆる櫛歯形状の金属層であって、複数の帯状金属層3aと、1つの共通金属層3cと、を含み、帯状金属層3aは、それぞれ共通金属層3cに電気的に接続されている。なお、帯状金属層3aと共通金属層3cとの間に、これらを接続する接続金属層3bをさらに有していてもよい。接続金属層3bは、各帯状金属層3aの端部と、共通金属層3cの側部とを接続している。各帯状金属層3aは、積層後、コンデンサの内部電極となるものである。誘電体フィルム1,2は、積層されたときの向きが反転しているだけで、同じ構成である。 In this embodiment, the metal layer 3 is a so-called comb-shaped metal layer, and includes a plurality of strip-shaped metal layers 3a and one common metal layer 3c. 3c is electrically connected. A connection metal layer 3b may be provided between the strip-shaped metal layer 3a and the common metal layer 3c to connect them. The connection metal layer 3b connects the end of each strip-shaped metal layer 3a and the side of the common metal layer 3c. Each strip-shaped metal layer 3a becomes an internal electrode of the capacitor after lamination. The dielectric films 1 and 2 have the same configuration, except that the direction of lamination is reversed.
 また、各図において、互いに平行に形成された各帯状金属層3aが延びる方向を、第1の方向(x方向)とし、平行な各帯状金属層3aの並び方向(x方向に直交するy方向)を第2の方向とする。フィルムの積層方向は、第1の方向および第2の方向に直交する、第3の方向(図示z方向)である。積層後のフィルム積層体4の詳細は後述する。 In each figure, the direction in which the strip-shaped metal layers 3a formed parallel to each other extend is defined as a first direction (x-direction), and the direction in which the parallel strip-shaped metal layers 3a are arranged (the y-direction perpendicular to the x-direction). ) is the second direction. The lamination direction of the films is the third direction (the z-direction in the figure) that is orthogonal to the first direction and the second direction. The details of the film laminate 4 after lamination will be described later.
 誘電体フィルム1,2の表面の各帯状金属層3aは、ベースフィルムに対する金属蒸着により形成される。y方向に隣接する帯状金属層3aどうしの間には、フィルム面(以下、絶縁マージンS)が露出しており、これにより、各帯状金属層3aは、それぞれ電気的に絶縁された状態となっている。そして、各絶縁マージンSは、x方向の一方の端部側で、y方向に連続する縁部絶縁領域Tに繋がっている。各絶縁マージンSの間隔(ピッチP)は、各帯状金属層3aのy方向の幅P1と各絶縁マージンSのy方向の幅P2とを合わせた値(P=P1+P2)となっている。 Each strip-shaped metal layer 3a on the surface of the dielectric films 1 and 2 is formed by metal vapor deposition on the base film. A film surface (hereinafter referred to as an insulating margin S) is exposed between the strip-shaped metal layers 3a adjacent to each other in the y-direction, whereby the strip-shaped metal layers 3a are electrically insulated from each other. ing. Each insulating margin S is connected to an edge insulating region T continuous in the y direction on one end side in the x direction. The interval (pitch P) between the insulation margins S is the sum of the y-direction width P1 of each strip-shaped metal layer 3a and the y-direction width P2 of each insulation margin S (P=P1+P2).
 共通金属層3cは、誘電体フィルム1,2の縁部絶縁領域Tと反対側、すなわち第1の方向の他方の縁部において、y方向に延びて設けられている。各帯状金属層3aは、絶縁マージンSによって、それぞれ電気的に絶縁されているが、1つの共通金属層3cに接続することで、金属層3全体としては、電気的に接続されている。また、金属層3が、接続金属層3bを有する場合、接続金属層3bは、y方向の長さ(幅)が、帯状金属層3aのy方向の長さ(幅)より小さい。接続金属層3bは、帯状金属層3aごとのヒューズとして機能するものである。例えば、ベースフィルムが絶縁破壊されるなどして帯状金属層3aが他の帯状金属層3aと短絡し、規定以上の電流が流れたような場合に、高抵抗の接続金属層3bが焼き切れることで断線させて、フィルムコンデンサ10全体の機能が停止しないようにしている。 The common metal layer 3c is provided extending in the y-direction on the side opposite to the edge insulating region T of the dielectric films 1 and 2, that is, on the other edge in the first direction. Each band-like metal layer 3a is electrically insulated by an insulating margin S, but by connecting to one common metal layer 3c, the metal layer 3 as a whole is electrically connected. Moreover, when the metal layer 3 has the connection metal layer 3b, the length (width) of the connection metal layer 3b in the y direction is smaller than the length (width) of the strip-shaped metal layer 3a in the y direction. The connection metal layer 3b functions as a fuse for each strip-shaped metal layer 3a. For example, when the strip-shaped metal layer 3a short-circuits with another strip-shaped metal layer 3a due to dielectric breakdown of the base film, etc., and a current exceeding a specified value flows, the high-resistance connection metal layer 3b may burn out. , so that the function of the entire film capacitor 10 does not stop.
 誘電体フィルム1,2のベースフィルムの構成材料としては、例えば、ポリプロピレン、ポリエチレンテレフタレート、ポリアリレート、シクロオレフィンポリマー等の有機樹脂材料を用いることができる。誘電体フィルム1,2の金属層3の構成材料としては、アルミニウム等の金属材料を用いることができる。 As the constituent material of the base film of the dielectric films 1 and 2, for example, organic resin materials such as polypropylene, polyethylene terephthalate, polyarylate, and cycloolefin polymer can be used. As a constituent material of the metal layer 3 of the dielectric films 1 and 2, a metal material such as aluminum can be used.
 誘電体フィルム1,2は、図1Bに示すように、誘電体フィルム1とそれに図示上下(z方向)に隣接する誘電体フィルム2の、x方向の向きを交互に反転させながら積層され、すなわち、誘電体フィルム1,2は、各誘電体フィルム1,2のx方向の一方の端部の縁部絶縁領域Tの平面視位置が、x方向において1枚おきに重なるように積層されてフィルム積層体4とされる。同様に、各誘電体フィルム1,2の他方の端部の共通金属層3cの平面視位置が、x方向において1枚おきに重なるように積層されている。また、フィルム積層体4は、x方向の縁部の平面視位置が1枚ごとにずれるように積層されている。誘電体フィルム1のx方向縁部と、誘電体フィルム2のx方向縁部とを平面視位置で揃えることなく、ずらして積層している。1枚おきに誘電体フィルム1だけを見ると、その縁部は揃っており、1枚おきに誘電体フィルム2を見ると、その縁部は揃っている。フィルム積層体4を平面視したときに、x方向の一方側の端部は、誘電体フィルム1の共通金属層3cが位置する縁部だけが重なっているずらし部となっており、そして、x方向の他方側の端部は、誘電体フィルム2の共通金属層3cが位置する縁部だけが重なっているずらし部となっており、x方向の中央部では、誘電体フィルム1の帯状金属層3aと誘電体フィルム2の帯状金属層3aとが重なっている。すなわち、フィルム積層体4のx方向の両端面のうち、一方の端面は、誘電体フィルム1の共通金属層3cが位置する縁部で構成されており、他方の端面は、誘電体フィルム2の共通金属層3cが位置する縁部で構成されている。 As shown in FIG. 1B, the dielectric films 1 and 2 are laminated while alternately reversing the directions in the x direction of the dielectric film 1 and the dielectric film 2 adjacent to it in the vertical direction (z direction). The dielectric films 1 and 2 are laminated so that the edge insulating regions T at one end in the x direction of each of the dielectric films 1 and 2 overlap every other film in the x direction. A laminate 4 is obtained. Similarly, the dielectric films 1 and 2 are laminated so that the common metal layer 3c at the other end of each of the dielectric films 1 and 2 overlaps every other sheet in the x direction. In addition, the film laminate 4 is laminated such that the edge portions in the x direction are shifted from each other in plan view. The x-direction edge portion of the dielectric film 1 and the x-direction edge portion of the dielectric film 2 are stacked without being aligned in plan view position. If only the dielectric film 1 is seen in every other film, its edges are even, and if the dielectric film 2 is seen in every other film, its edges are even. When the film laminate 4 is viewed from above, one end in the x direction is a shifted portion where only the edge portion where the common metal layer 3c of the dielectric film 1 is located overlaps. The end portion on the other side in the direction is a shifted portion where only the edge portion where the common metal layer 3c of the dielectric film 2 is located is overlapped. 3a and the strip-shaped metal layer 3a of the dielectric film 2 are overlapped. That is, of the x-direction end faces of the film laminate 4, one end face is formed by the edge where the common metal layer 3c of the dielectric film 1 is located, and the other end face is formed by the dielectric film 2. It consists of an edge where the common metal layer 3c is located.
 フィルム積層体4のx方向の両端面には、金属溶射により金属電極(以下、メタリコン)が形成されている。なお、x方向の両端部に形成されるメタリコンの一方をメタリコン5A(第1金属電極)、他方をメタリコン5B(第2金属電極)と呼ぶが、これらは配設位置が異なるだけであり、構成に差異はない。例えば、メタリコン5Aは、一方の端面において誘電体フィルム1の共通金属層3cと電気的に接続しており、共通金属層3cを介して各帯状金属層3aとも電気的に接続している。一方、メタリコン5Bは、他方の端面において誘電体フィルム2の共通金属層3cと電気的に接続しており、共通金属層3cを介して各帯状金属層3aとも電気的に接続している。メタリコン5A,5Bと共通金属層3cとを電気的に接続すれば、共通金属層3cを介して、各帯状金属層3aをメタリコン5A,5Bと確実に接続することができる。また、縁部絶縁領域Tによって誘電体フィルム1の金属層3とメタリコン5Bとは、電気的に絶縁されている。さらに、フィルム積層体4のx方向端部のずらし部によって、誘電体フィルム1の縁部絶縁領域Tが位置する縁部が内方に退避しており、メタリコン5Bとの間に間隙が設けられているので、より確実にメタリコン5Bと絶縁される。同様に、縁部絶縁領域Tによって誘電体フィルム2の金属層3とメタリコン5Aとは、電気的に絶縁されている。さらに、フィルム積層体4のx方向端部のずらし部によって、誘電体フィルム2の縁部絶縁領域Tが位置する縁部が内方に退避しており、メタリコン5Aとの間に間隙が設けられているので、より確実にメタリコン5Aと絶縁される。 Metal electrodes (hereinafter referred to as metallikon) are formed on both end surfaces of the film laminate 4 in the x direction by metal spraying. One of the metallicons formed at both ends in the x direction is called a metallikon 5A (first metal electrode), and the other is called a metallikon 5B (second metal electrode). There is no difference in For example, the metallikon 5A is electrically connected to the common metal layer 3c of the dielectric film 1 at one end face, and is also electrically connected to each strip-shaped metal layer 3a via the common metal layer 3c. On the other hand, the metallikon 5B is electrically connected to the common metal layer 3c of the dielectric film 2 at the other end surface, and is also electrically connected to each strip-like metal layer 3a through the common metal layer 3c. By electrically connecting the metallicons 5A, 5B and the common metal layer 3c, each strip-shaped metal layer 3a can be reliably connected to the metallicons 5A, 5B through the common metal layer 3c. In addition, the metal layer 3 of the dielectric film 1 and the metallikon 5B are electrically insulated by the edge insulating region T. As shown in FIG. Further, the edge portion of the dielectric film 1 where the edge insulating region T is located is retreated inward by the shifted portion of the x-direction end portion of the film laminate 4, and a gap is provided between it and the metallikon 5B. Therefore, it is insulated from the metallikon 5B more reliably. Similarly, the edge insulating region T electrically insulates the metal layer 3 of the dielectric film 2 from the metallikon 5A. Further, the edge portion of the dielectric film 2 where the edge insulating region T is located is retreated inward by the shifted portion of the x-direction end portion of the film laminate 4, and a gap is provided between the dielectric film 2 and the metallikon 5A. Therefore, it is more reliably insulated from the metallikon 5A.
 上記のように、フィルムコンデンサ10は、フィルム積層体4のx方向両端部において、ずらし部を設けることで、逆極性のメタリコンとの絶縁性を十分に確保しているが、ずらし部は、誘電体フィルム1または誘電体フィルム2のいずれかしか重なっておらず、メタリコンとの間隙も存在するために変形しやすくなっている。高温下では、ベースフィルムが熱膨張によって伸長してさらに変形しやすくなる。ずらし部の変形は、ベースフィルムの一面に垂直なz方向への屈曲および湾曲などである。このような変形によって、フィルムの破断、積層体の剥離などが生じ、コンデンサ特性を低下させる。本実施形態のフィルムコンデンサ10は、このような変形によるコンデンサ特性の低下を抑制するために保護金属層11を備える。保護金属層11は、メタリコン5A,5Bのz方向の端部からx方向に沿ってフィルム積層体4の表面にまで延びている。本実施形態のフィルムコンデンサ10は、メタリコン5A,5Bのz方向の両端部が平坦面となっており、フィルム積層体4のz方向の外表面と面一である。保護金属層11は、メタリコン5A,5Bとフィルム積層体4との境界を覆うように、y方向に沿って延びている。保護金属層11は、メタリコン5A,5Bからフィルム積層体4にまで延びることで、フィルム積層体4の表面に位置する部分が、平面視で、ずらし部の少なくとも一部と重なることになる。このような保護金属層11は、フィルム積層体4のx方向両端部における変形を抑えることができる。保護金属層11によって、本実施形態のフィルムコンデンサ10は、変形によるコンデンサ特性の低下を抑制することができる。 As described above, the film capacitor 10 is provided with offset portions at both ends of the film laminate 4 in the x direction, thereby sufficiently ensuring insulation from the metallikon of opposite polarity. Only either the dielectric film 1 or the dielectric film 2 is overlapped, and there is also a gap with the metallikon, so that it is easily deformed. At high temperatures, the base film expands due to thermal expansion and becomes more susceptible to deformation. The deformation of the shifted portion includes bending and curving in the z-direction perpendicular to one surface of the base film. Such deformation causes breakage of the film, peeling of the laminate, and the like, and deteriorates the capacitor characteristics. The film capacitor 10 of the present embodiment includes a protective metal layer 11 to suppress deterioration of capacitor characteristics due to such deformation. The protective metal layer 11 extends from the ends of the metallicons 5A and 5B in the z direction to the surface of the film laminate 4 along the x direction. In the film capacitor 10 of the present embodiment, both ends of the metallicons 5A and 5B in the z direction are flat surfaces and are flush with the outer surface of the film laminate 4 in the z direction. The protective metal layer 11 extends along the y-direction so as to cover the boundaries between the metallicons 5A and 5B and the film laminate 4. As shown in FIG. Since the protective metal layer 11 extends from the metallicons 5A and 5B to the film laminate 4, the portion positioned on the surface of the film laminate 4 overlaps at least a portion of the shifted portion in plan view. Such a protective metal layer 11 can suppress deformation at both ends of the film laminate 4 in the x direction. The protective metal layer 11 enables the film capacitor 10 of the present embodiment to suppress deterioration of capacitor characteristics due to deformation.
 保護金属層11は、例えば、メタリコン5A,5Bの端部と接合されている。保護金属層11は、フィルム積層体4とは接合されていなくてよい。保護金属層11は、メタリコン5A,5Bの端部と接合されていれば、フィルム積層体4と接合されていなくてもずらし部の変形を抑えることができる。保護金属層11は、メタリコン5A,5Bの端部と、はんだまたはろう材などの接合材を介して接合してもよい。フィルム積層体4の変形時には、保護金属層11に対してメタリコン5A,5Bから剥離するz方向の力が加わる。保護金属層11がメタリコン5A,5Bから剥離することを防ぐために、例えば、保護金属層11とメタリコン5A,5Bとの密着強度が10N/mm以上であればよい。密着強度は、例えば、JIS H 8402「溶射皮膜の引張密着強さ試験方法」に準拠して測定した引張密着強さである。 The protective metal layer 11 is bonded, for example, to the ends of the metallicons 5A and 5B. The protective metal layer 11 may not be bonded to the film laminate 4 . As long as the protective metal layer 11 is joined to the ends of the metallicons 5A and 5B, it is possible to suppress the deformation of the shifted portion even if it is not joined to the film laminate 4. FIG. The protective metal layer 11 may be bonded to the ends of the metallicons 5A and 5B via a bonding material such as solder or brazing material. When the film laminate 4 is deformed, a z-direction force is applied to the protective metal layer 11 to separate it from the metallikons 5A and 5B. In order to prevent the protective metal layer 11 from peeling off from the metallicons 5A and 5B, for example, the adhesion strength between the protective metal layer 11 and the metallicons 5A and 5B should be 10 N/mm 2 or more. The adhesion strength is, for example, tensile adhesion strength measured according to JIS H 8402 "Testing method for tensile adhesion strength of thermal spray coating".
 保護金属層11とメタリコン5A,5Bとの密着強度が十分であっても、フィルム積層体4の変形時に保護金属層11に加わるz方向の力で保護金属層11自体が塑性変形するとフィルム積層体4が変形するおそれがある。保護金属層11は、フィルム積層体4の変形を抑えることが可能な機械的強度を有するものであればよい。例えば、ベースフィルムがポリプロピレン製であり、フィルム積層体4の厚さ(z方向寸法)が10mmの場合、保護金属層11は、厚さが0.5mm以上のステンレス鋼板を用いることができる。 Even if the adhesion strength between the protective metal layer 11 and the metallikons 5A and 5B is sufficient, if the protective metal layer 11 itself is plastically deformed by the z-direction force applied to the protective metal layer 11 when the film laminate 4 is deformed, the film laminate will be damaged. 4 may be deformed. The protective metal layer 11 may have mechanical strength capable of suppressing deformation of the film laminate 4 . For example, when the base film is made of polypropylene and the thickness (z-direction dimension) of the film laminate 4 is 10 mm, the protective metal layer 11 can be made of a stainless steel plate with a thickness of 0.5 mm or more.
 保護金属層11は、メタリコン5A,5Bと同種の金属材料で構成されていてもよい。メタリコン5A,5Bは、金属溶射によって形成され、例えば、亜鉛、錫および亜鉛‐錫合金などの金属材料が用いられる。保護金属層11としてメタリコン5A,5Bと同種の金属材料で薄板状の部材を準備しておき、金属溶射時にメタリコン5A,5Bの形成と保護金属層11との接合を同時に行うことができる。 The protective metal layer 11 may be made of the same metal material as the metallicons 5A and 5B. The metallicons 5A and 5B are formed by metal spraying, and metal materials such as zinc, tin, and zinc-tin alloys are used. A thin plate member made of the same metal material as the metallicons 5A and 5B is prepared as the protective metal layer 11, and the formation of the metallicons 5A and 5B and the bonding to the protective metal layer 11 can be performed at the same time during metal spraying.
 フィルムコンデンサ10が、例えば、外装ケースに収容されるような場合、メタリコンの位置が固定される。低温下でベースフィルムが収縮すると、メタリコン5A,5Bには、x方向に引張力が加わり、亀裂が生じるおそれがある。保護金属層11が、メタリコン5A,5Bの端部に接合していることで、低温下での亀裂の発生および亀裂の進展を抑制することができる。 For example, when the film capacitor 10 is housed in an exterior case, the position of the metallikon is fixed. When the base film shrinks at a low temperature, tensile force is applied to the metallicons 5A and 5B in the x direction, which may cause cracks. By bonding the protective metal layer 11 to the ends of the metallicons 5A and 5B, it is possible to suppress the occurrence and propagation of cracks at low temperatures.
 図2~図4は、実施形態のフィルムコンデンサの製造方法について、模式的に説明した図である。積層型のフィルムコンデンサ10の作製においては、まず、図2に示すように、フィルムの表面に、x方向に沿って連続する複数の帯状金属層3aとy方向に延びる共通金属層3cとを有する誘電体フィルム1または誘電体フィルム2を、複数枚、x方向の向きを交互に逆にしながら、すなわち、縁部絶縁領域Tの平面視位置が1枚おきに重なるよう、x方向の向きを1枚ごとに反転させながら積み重ねる。 2 to 4 are diagrams schematically explaining the method of manufacturing the film capacitor of the embodiment. In the production of the laminated film capacitor 10, first, as shown in FIG. 2, the surface of the film has a plurality of strip-shaped metal layers 3a continuous in the x direction and a common metal layer 3c extending in the y direction. A plurality of dielectric films 1 or 2 are alternately reversed in direction in the x direction, that is, in such a manner that the edge insulating regions T overlap every other film in plan view, and the direction in the x direction is set to 1. Stack while flipping each sheet.
 なお、先にも述べたように、誘電体フィルム1と誘電体フィルム2とは、x方向の向きを変えただけであり、構成は同じものである。また、積層する方法としては、長尺の誘電体フィルム1,2を重ねて、円筒または断面多角状の筒に巻き付ける等、従来公知の方法により行うことができる。図2における仮想線(二点鎖線)は、筒等に巻回後の切断線を示す。 As mentioned above, the dielectric film 1 and the dielectric film 2 have the same configuration, except that the orientation in the x direction is changed. Moreover, as a method of stacking, the long dielectric films 1 and 2 can be stacked and wound around a cylinder or a cylinder having a polygonal cross section, or the like, by a conventionally known method. A virtual line (a two-dot chain line) in FIG. 2 indicates a cutting line after being wound around a cylinder or the like.
 図3は、所定長さに切断後のフィルム積層体4を、切断面(y方向端面)方向から見た図である。この図3に示すように、上下に隣接する誘電体フィルム1と誘電体フィルム2とは、x方向に位置をずらせた状態(オフセットした状態)で積層し、フィルム積層体4のx方向の両端面には、共通金属層3cが露出している。フィルム積層体4の上面側では、金属層3が露出することになるので、例えば、ベースフィルム等のカバー層12を積層する。なお、フィルム積層体4の下面側にもカバー層12を積層してもよい。保護金属層11をフィルム積層体4のz方向表面である上下面に配置する。保護金属層11は、フィルム積層体4のx方向両端面から外方に延出するように配置すればよい。なお、保護金属層11は、フィルム積層体4の上下面に接合する必要はなく、冶具などで上下を挟んで一時的に固定すればよい。 FIG. 3 is a view of the film laminate 4 after being cut to a predetermined length, viewed from the cut plane (y-direction end face) direction. As shown in FIG. 3, the dielectric film 1 and the dielectric film 2 which are vertically adjacent are laminated in a state in which their positions are shifted in the x direction (offset state). The common metal layer 3c is exposed on the surface. Since the metal layer 3 is exposed on the upper surface side of the film laminate 4, for example, a cover layer 12 such as a base film is laminated. Note that the cover layer 12 may also be laminated on the lower surface side of the film laminate 4 . The protective metal layers 11 are arranged on the upper and lower surfaces, which are the z-direction surfaces of the film laminate 4 . The protective metal layer 11 may be arranged so as to extend outward from both end surfaces of the film laminate 4 in the x direction. It should be noted that the protective metal layer 11 does not need to be bonded to the top and bottom surfaces of the film laminate 4, and may be temporarily fixed by sandwiching the top and bottom with a jig or the like.
 つぎに、図4に示すように、先に述べた共通金属層3cが露出する、フィルム積層体4のx方向の両端面に、それぞれ、金属溶射によりメタリコン5A,5Bを形成する。これにより、誘電体フィルム1,2上の各帯状金属層3aは、メタリコン5A,5Bに、共通金属層3cを介して電気的に接続され、フィルムコンデンサ10の内部電極として機能するようになる。メタリコン5A,5Bは、上面側に配置された保護金属層11と下面側に配置された保護金属層11との間に形成されるとともに、メタリコン5A,5Bと保護金属層11とが接合される。 Next, as shown in FIG. 4, metallicons 5A and 5B are formed by metal spraying on both end surfaces of the film laminate 4 in the x direction where the aforementioned common metal layer 3c is exposed. As a result, the strip-shaped metal layers 3a on the dielectric films 1 and 2 are electrically connected to the metallicons 5A and 5B through the common metal layer 3c, and function as internal electrodes of the film capacitor 10. FIG. The metallicons 5A and 5B are formed between the protective metal layer 11 arranged on the upper surface side and the protective metal layer 11 arranged on the lower surface side, and the metallicons 5A and 5B and the protective metal layer 11 are joined. .
 上記の実施形態では、フィルム積層体4が、誘電体フィルム1,2を、x方向の向きを交互に反転させながら積層したものであり、誘電体フィルム1と誘電体フィルム2とは、同じ構成であって、向きが異なるというものである。変形例としては、フィルム積層体4は、誘電体フィルム1は、上記の実施形態と同じ構成であるが、誘電体フィルム2は、金属層が、ベースフィルムの一面の、縁部絶縁領域T以外の領域全体に設けられた、いわゆるベタパターンの面状金属層であってもよい。 In the above-described embodiment, the film laminate 4 is obtained by laminating the dielectric films 1 and 2 while alternately reversing the directions in the x direction, and the dielectric films 1 and 2 have the same configuration. and the directions are different. As a modification, the film laminate 4 has the same structure as the dielectric film 1 in the above embodiment, but the dielectric film 2 has a metal layer other than the edge insulating region T on one surface of the base film. It may be a planar metal layer of a so-called solid pattern provided over the entire area of .
 上記の実施形態では、保護金属層11は、メタリコン5A,5Bとフィルム積層体4との境界をy方向に沿って覆う一枚の薄板状であるが、これに限らず、一部が途切れていてもよく、y方向に分割されていてもよい。また、保護金属層11とフィルム積層体4とが、接着剤などを介して接着されていてもよい。 In the above-described embodiment, the protective metal layer 11 is in the form of a sheet of thin plate covering the boundary between the metallikons 5A and 5B and the film laminate 4 along the y direction. may be divided in the y direction. Also, the protective metal layer 11 and the film laminate 4 may be adhered via an adhesive or the like.
 上記の製造方法では、フィルム積層体4の表面に保護金属層11を配置したのち、メタリコン5A,5Bを形成しているが、これに限らず、メタリコン5A,5Bを形成したのち、保護金属層11をメタリコン5A,5Bのz方向端部に接合してもよい。 In the manufacturing method described above, the metallicons 5A and 5B are formed after the protective metal layer 11 is arranged on the surface of the film laminate 4. However, the present invention is not limited to this. 11 may be bonded to the z-direction ends of the metallicons 5A and 5B.
 図5は、フィルムコンデンサの変形例を示す、一部が切り欠かれた斜視図である。フィルムコンデンサAは、絶縁性および耐環境性の点から、フィルムコンデンサ10を外装部材7で被覆したものである。メタリコン5A,5Bには、外部接続用のリード線6が設けられている。図5においては、外装部材7の一部を取り除いた状態を示しており、外装部材7の取り除かれた部分を破線で示している。 FIG. 5 is a partially cutaway perspective view showing a modification of the film capacitor. Film capacitor A is obtained by covering film capacitor 10 with exterior member 7 in terms of insulation and environmental resistance. The metallikons 5A and 5B are provided with lead wires 6 for external connection. FIG. 5 shows a state in which a part of the exterior member 7 is removed, and the removed portion of the exterior member 7 is indicated by a broken line.
 図6は、連結型コンデンサの構成を模式的に示した斜視図である。図6においては構成を分かりやすくするために、ケースおよびモールド用の樹脂を省略して記載している。連結型コンデンサBは、複数個のフィルムコンデンサAが一対のバスバー21、23により並列接続された構成となっている。バスバー21、23は、端子部21a、23aと、引出端子部21b、23bと、により構成されている。端子部21a、23aは外部接続用であり、引出端子部21b、23bは、フィルムコンデンサAのメタリコン5A、5Bにそれぞれ接続される。 FIG. 6 is a perspective view schematically showing the configuration of a coupled capacitor. In FIG. 6, the case and the molding resin are omitted in order to make the configuration easier to understand. The coupled capacitor B has a configuration in which a plurality of film capacitors A are connected in parallel by a pair of bus bars 21 and 23 . The busbars 21 and 23 are composed of terminal portions 21a and 23a and lead terminal portions 21b and 23b. The terminal portions 21a and 23a are for external connection, and the lead terminal portions 21b and 23b are connected to the metallicons 5A and 5B of the film capacitor A, respectively.
 図7は、インバータの構成を説明するための電気回路図である。図7には、整流後の直流から交流を作り出すインバータCの例を示している。本実施形態のインバータCは、図7に示すように、ブリッジ回路31と、容量部33を備えている。ブリッジ回路31は、例えば、IGBT(Insulated Gate Bipolar Transistor)のようなスイッチング素子と、ダイオードにより構成される。容量部33は、ブリッジ回路31の入力端子間に配置され、電圧を安定化する。インバータCは、容量部33として、上記のフィルムコンデンサ10,Aまたは連結型コンデンサBを含んでよい。 FIG. 7 is an electric circuit diagram for explaining the configuration of the inverter. FIG. 7 shows an example of an inverter C that generates alternating current from rectified direct current. The inverter C of this embodiment includes a bridge circuit 31 and a capacitor section 33, as shown in FIG. The bridge circuit 31 is composed of, for example, switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and diodes. The capacitive section 33 is arranged between the input terminals of the bridge circuit 31 and stabilizes the voltage. The inverter C may include the film capacitors 10 and A or the coupled capacitor B as the capacitive section 33 .
 なお、このインバータCの入力は、直流電源の電圧を昇圧する昇圧回路35に接続される場合と、直流電源に接続される場合がある。一方、ブリッジ回路31は駆動源となるモータジェネレータ(モータM)に接続される。 The input of this inverter C may be connected to the booster circuit 35 for boosting the voltage of the DC power supply or may be connected to the DC power supply. On the other hand, the bridge circuit 31 is connected to a motor generator (motor M) as a drive source.
 図8は、電動車輌の構成を説明するための概略構成図である。図8には、電動車輌Dとしてハイブリッド自動車(HEV)の例を示している。 FIG. 8 is a schematic configuration diagram for explaining the configuration of the electric vehicle. FIG. 8 shows an example of a hybrid electric vehicle (HEV) as the electric vehicle D. As shown in FIG.
 図8における電動車輌Dは、駆動用のモータ41、エンジン43、トランスミッション45、インバータ47、電源(電池)49、前輪51aおよび後輪51bを備えている。 An electric vehicle D in FIG. 8 includes a driving motor 41, an engine 43, a transmission 45, an inverter 47, a power supply (battery) 49, front wheels 51a and rear wheels 51b.
 この電動車輌Dは、駆動源としてモータ41またはエンジン43、もしくはその両方を備えている。駆動源の出力は、トランスミッション45を介して左右一対の前輪51aに伝達される。電源49は、インバータ47に接続され、インバータ47はモータ41に接続されている。 This electric vehicle D has a motor 41, an engine 43, or both as a drive source. The output of the drive source is transmitted via the transmission 45 to the pair of left and right front wheels 51a. The power supply 49 is connected to the inverter 47 and the inverter 47 is connected to the motor 41 .
 また、図8に示した電動車輌Dは、車輌ECU53およびエンジンECU57を備えている。車輌ECU53は電動車輌D全体の統括的な制御を行う。エンジンECU57は、エンジン43の回転数を制御し電動車輌Dを駆動する。電動車輌Dは、さらに運転者等に操作されるイグニッションキー55、図示しないアクセルペダル、及びブレーキ等の運転装置を備えている。車輌ECUには、運転者等による運転装置の操作に応じた駆動信号が入力される。この車輌ECU53は、その駆動信号に基づいて指示信号をエンジンECU57、電源49、および負荷としてのインバータ47に出力する。エンジンECU57は、指示信号に応答してエンジン43の回転数を制御し、電動車輌Dを駆動する。本実施形態のフィルムコンデンサA,10または連結型コンデンサBを容量部33として適用したインバータCを、図8に示すような電動車輌Dに搭載することができる。 Also, the electric vehicle D shown in FIG. 8 includes a vehicle ECU 53 and an engine ECU 57 . The vehicle ECU 53 performs overall control of the electric vehicle D as a whole. The engine ECU 57 drives the electric vehicle D by controlling the rotation speed of the engine 43 . The electric vehicle D further includes driving devices such as an ignition key 55 operated by the driver or the like, an accelerator pedal (not shown), and a brake. A drive signal corresponding to the operation of the driving device by the driver or the like is input to the vehicle ECU. The vehicle ECU 53 outputs an instruction signal to the engine ECU 57, the power supply 49, and the inverter 47 as a load based on the drive signal. The engine ECU 57 drives the electric vehicle D by controlling the rotation speed of the engine 43 in response to the instruction signal. An inverter C using the film capacitors A and 10 or the coupled capacitor B of the present embodiment as the capacitance section 33 can be mounted on an electric vehicle D as shown in FIG.
 なお、本実施形態のインバータCは、上記のハイブリッド自動車(HEV)のみならず、電気自動車(EV)や電動自転車、発電機、太陽電池など種々の電力変換応用製品に適用できる。 It should be noted that the inverter C of this embodiment can be applied not only to the hybrid electric vehicle (HEV) described above, but also to various power conversion application products such as electric vehicles (EV), electric bicycles, generators, and solar cells.
 本開示は次の実施の形態が可能である。 The present disclosure enables the following embodiments.
 本開示のフィルムコンデンサは、一面に金属層が配設され、該一面の第1の方向の一方の縁部に、前記第1の方向に直交する第2の方向に連続する縁部絶縁領域が設けられた誘電体フィルムが、複数枚積層された直方体状のフィルム積層体であって、前記縁部絶縁領域の平面視位置が1枚おきに重なり、前記縁部の平面視位置が1枚ごとにずれるように、前記一面における第1の方向の向きを1枚ごとに反転させて積層されたフィルム積層体と、前記フィルム積層体の前記第1の方向の一対の端面のそれぞれに形成され、前記金属層に電気的に接続される第1金属電極および第2金属電極と、前記第1金属電極および前記第2金属電極の、前記第1の方向および前記第2の方向に直交する第3の方向の端部から前記第1の方向に沿って前記フィルム積層体の表面にまで延びる保護金属層と、を含む。 In the film capacitor of the present disclosure, a metal layer is provided on one surface, and an edge insulating region continuous in a second direction orthogonal to the first direction is provided on one edge of the surface in a first direction. The provided dielectric film is a rectangular parallelepiped film laminate in which a plurality of sheets are laminated, and the planar view position of the edge insulating region overlaps every other sheet, and the planar view position of the edge is every other sheet. Formed on each of a film laminate laminated by reversing the direction of the first direction on the one surface one by one and a pair of end surfaces of the film laminate in the first direction, a first metal electrode and a second metal electrode electrically connected to the metal layer; and a third metal electrode of the first metal electrode and the second metal electrode perpendicular to the first and second directions. and a protective metal layer extending along the first direction from the end in the direction of to the surface of the film laminate.
 本開示の連結型コンデンサは、上記のフィルムコンデンサを含む複数のフィルムコンデンサが、バスバーにより複数個接続されている。 In the coupled capacitor of the present disclosure, a plurality of film capacitors including the film capacitors described above are connected by bus bars.
 本開示のインバータは、スイッチング素子により構成されるブリッジ回路と、該ブリッジ回路に接続され、上記のフィルムコンデンサを含む容量部とを備える。 The inverter of the present disclosure includes a bridge circuit composed of switching elements, and a capacitive section connected to the bridge circuit and including the film capacitor described above.
 本開示の電動車輌は、電源と、該電源に接続された上記のインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備える。 An electric vehicle of the present disclosure includes a power source, the inverter connected to the power source, a motor connected to the inverter, and wheels driven by the motor.
 本開示によれば、コンデンサ特性の低下を抑制できる積層型のフィルムコンデンサとすることができる。 According to the present disclosure, it is possible to provide a laminated film capacitor capable of suppressing deterioration of capacitor characteristics.
 本開示によれば、特性低下が抑制されたフィルムコンデンサを用いた連結型コンデンサ、インバータおよび電動車輌とすることができる。 According to the present disclosure, it is possible to provide a coupled capacitor, an inverter, and an electric vehicle using a film capacitor whose characteristic deterioration is suppressed.
 1,2 誘電体フィルム
 3   金属層
 3a  帯状金属層
 3b  接続金属層
 3c  共通金属層
 4   フィルム積層体
 5A  メタリコン(第1金属電極)
 5B  メタリコン(第2金属電極)
 6   リード線
 7   外装部材
 10  フィルムコンデンサ
 11  保護金属層
 12  カバー層
 21,23  バスバー
 21a,23a 端子部
 21b,23b 引出端子部
 31  ブリッジ回路
 33  容量部
 35  昇圧回路
 41  モータ
 43  エンジン
 45  トランスミッション
 47  インバータ
 49  電源
 51a 前輪
 51b 後輪
 53  車輌ECU
 55  イグニッションキー
 57  エンジンECU
 A   フィルムコンデンサ
 B   連結型コンデンサ
 C   インバータ
 D   電動車輌
 M   モータ
 S   絶縁マージン
 T   縁部絶縁領域
Reference Signs List 1, 2 dielectric film 3 metal layer 3a strip-shaped metal layer 3b connection metal layer 3c common metal layer 4 film laminate 5A metallikon (first metal electrode)
5B metallikon (second metal electrode)
6 lead wire 7 exterior member 10 film capacitor 11 protective metal layer 12 cover layer 21, 23 busbars 21a, 23a terminal portion 21b, 23b lead terminal portion 31 bridge circuit 33 capacitance portion 35 booster circuit 41 motor 43 engine 45 transmission 47 inverter 49 power supply 51a front wheel 51b rear wheel 53 vehicle ECU
55 Ignition key 57 Engine ECU
A Film capacitor B Concatenated capacitor C Inverter D Electric vehicle M Motor S Insulation margin T Edge insulation area

Claims (6)

  1.  一面に金属層が配設され、該一面の第1の方向の一方の縁部に、前記第1の方向に直交する第2の方向に連続する縁部絶縁領域が設けられた誘電体フィルムが、複数枚積層された直方体状のフィルム積層体であって、前記縁部絶縁領域の平面視位置が1枚おきに重なり、前記縁部の平面視位置が1枚ごとにずれるように、前記一面における第1の方向の向きを1枚ごとに反転させて積層されたフィルム積層体と、
     前記フィルム積層体の前記第1の方向の一対の端面のそれぞれに形成され、前記金属層に電気的に接続される第1金属電極および第2金属電極と、
     前記第1金属電極および前記第2金属電極の、前記第1の方向および前記第2の方向に直交する第3の方向の端部から前記第1の方向に沿って前記フィルム積層体の表面にまで延びる保護金属層と、を含むフィルムコンデンサ。
    a dielectric film provided with a metal layer on one surface and provided with an edge insulating region continuous in a second direction orthogonal to the first direction on one edge of the one surface in a first direction; A rectangular parallelepiped film laminate in which a plurality of sheets are laminated, wherein the one surface is arranged such that the planar view position of the edge insulating region overlaps every other sheet and the planar view position of the edge is shifted for each sheet A film laminate laminated by reversing the orientation of the first direction in each sheet,
    a first metal electrode and a second metal electrode respectively formed on a pair of end surfaces of the film laminate in the first direction and electrically connected to the metal layer;
    From the ends of the first metal electrode and the second metal electrode in a third direction orthogonal to the first direction and the second direction, along the first direction, to the surface of the film laminate. and a protective metal layer extending to the film capacitor.
  2.  前記保護金属層は、前記第1金属電極および前記第2金属電極の前記端部と接合されている、請求項1記載のフィルムコンデンサ。 The film capacitor according to claim 1, wherein said protective metal layer is joined to said ends of said first metal electrode and said second metal electrode.
  3.  前記保護金属層と、前記第1金属電極および前記第2金属電極とは、同種の金属材料で構成されている、請求項2記載のフィルムコンデンサ。 3. The film capacitor according to claim 2, wherein said protective metal layer, said first metal electrode and said second metal electrode are made of the same kind of metal material.
  4.  複数のフィルムコンデンサと、該複数のフィルムコンデンサを接続するバスバーと、を備え、
     前記フィルムコンデンサが、請求項1~3のいずれか1つに記載のフィルムコンデンサを含む、連結型コンデンサ。
    comprising a plurality of film capacitors and a bus bar connecting the plurality of film capacitors,
    A coupled capacitor, wherein the film capacitor comprises the film capacitor according to any one of claims 1-3.
  5.  スイッチング素子により構成されたブリッジ回路と、該ブリッジ回路に接続された容量部とを備え、
     前記容量部が、請求項1~3のいずれか1つに記載のフィルムコンデンサを含む、インバータ。
    comprising a bridge circuit composed of switching elements and a capacitor connected to the bridge circuit,
    An inverter, wherein the capacitive section includes the film capacitor according to any one of claims 1 to 3.
  6.  電源と、該電源に接続されたインバータと、該インバータに接続されたモータと、該モータにより駆動する車輪と、を備え、
     前記インバータが、請求項5に記載のインバータである、電動車輌。
    A power supply, an inverter connected to the power supply, a motor connected to the inverter, and wheels driven by the motor,
    An electric vehicle, wherein the inverter is the inverter according to claim 5 .
PCT/JP2022/013292 2021-03-29 2022-03-22 Film capacitor, combined capacitor, inverter and electric vehicle WO2022210129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511036A JPWO2022210129A1 (en) 2021-03-29 2022-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-055641 2021-03-29
JP2021055641 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022210129A1 true WO2022210129A1 (en) 2022-10-06

Family

ID=83455309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013292 WO2022210129A1 (en) 2021-03-29 2022-03-22 Film capacitor, combined capacitor, inverter and electric vehicle

Country Status (2)

Country Link
JP (1) JPWO2022210129A1 (en)
WO (1) WO2022210129A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168845A (en) * 1992-11-30 1994-06-14 Marcon Electron Co Ltd Chip type laminated film capacitor
WO2015041126A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Capacitor component, capacitor module, power conversion device, and method for manufacturing capacitor component
WO2015133473A1 (en) * 2014-03-03 2015-09-11 京セラ株式会社 Film capacitor, connected capacitor, inverter and electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168845A (en) * 1992-11-30 1994-06-14 Marcon Electron Co Ltd Chip type laminated film capacitor
WO2015041126A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Capacitor component, capacitor module, power conversion device, and method for manufacturing capacitor component
WO2015133473A1 (en) * 2014-03-03 2015-09-11 京セラ株式会社 Film capacitor, connected capacitor, inverter and electric vehicle

Also Published As

Publication number Publication date
JPWO2022210129A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP4430497B2 (en) Semiconductor module
JP5974622B2 (en) Battery assembly
CN111213217B (en) Film capacitor, connection type capacitor, inverter using the same, and electric vehicle
JP7011053B2 (en) Film capacitors, articulated capacitors, inverters and electric vehicles using them
JP6744486B2 (en) Film capacitor, concatenated capacitor, and inverter and electric vehicle using the same
JP6574922B1 (en) Film capacitors, coupled capacitors, inverters and electric vehicles
JP6688876B2 (en) Film capacitor, concatenated capacitor, and inverter and electric vehicle using the same
JP5975053B2 (en) Capacitor module and power conversion system
JP3996525B2 (en) Assembled battery, assembled battery manufacturing method, and laminated battery
WO2018101260A1 (en) Film capacitor, inverter and electric vehicle
WO2016152800A1 (en) Film capacitor, connected capacitor, inverter and electric vehicle
WO2022210129A1 (en) Film capacitor, combined capacitor, inverter and electric vehicle
WO2023053911A1 (en) Film capacitor, connected capacitor, inverter and electric vehicle
WO2022091710A1 (en) Film capacitor, connection-type capacitor, inverter and electric vehicle
WO2022202193A1 (en) Film capacitor, coupling capacitor, inverter, and electric vehicle
WO2022210130A1 (en) Film capacitor, coupling capacitor, inverter, and electric vehicle
WO2022270391A1 (en) Film capacitor, combined capacitor, inverter and electric vehicle
WO2022202194A1 (en) Film capacitor, combined capacitor, inverter, and electric vehicle
WO2023047993A1 (en) Film capacitor, connection-type capacitor, inverter, and electric vehicle
JP2023141295A (en) Film capacitor, connected capacitor, inverter, and electric vehicle
JP7466650B2 (en) Film capacitor, coupled capacitor, inverter and electric vehicle
JP2023142875A (en) Film capacitor, coupling type capacitor, inverter and electric vehicle
JP7276573B1 (en) Electrical storage device, electric vehicle, packaging container for electrical storage device, and manufacturing method thereof
JP7228027B2 (en) Multilayer capacitors, concatenated capacitors, inverters and electric vehicles
WO2022044725A1 (en) Dielectric film, metallized film, film capacitor and link capacitor using same, inverter, and electric car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511036

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780344

Country of ref document: EP

Kind code of ref document: A1