WO2022210017A1 - Ai分析システム、利用料算出方法、及び、記録媒体 - Google Patents

Ai分析システム、利用料算出方法、及び、記録媒体 Download PDF

Info

Publication number
WO2022210017A1
WO2022210017A1 PCT/JP2022/012557 JP2022012557W WO2022210017A1 WO 2022210017 A1 WO2022210017 A1 WO 2022210017A1 JP 2022012557 W JP2022012557 W JP 2022012557W WO 2022210017 A1 WO2022210017 A1 WO 2022210017A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction accuracy
usage fee
data
user
learning
Prior art date
Application number
PCT/JP2022/012557
Other languages
English (en)
French (fr)
Inventor
和人 市村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2022210017A1 publication Critical patent/WO2022210017A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising

Definitions

  • This disclosure relates to a system that performs learning and analysis using AI (Artificial Intelligence).
  • AI Artificial Intelligence
  • Patent Document 1 discloses that the selected AI engine performs learning with the selected algorithm, the contents of the result analysis process corresponding to the data analysis method to which the selected AI engine and algorithm belong, learning log processed data and discloses an AI execution support device that generates analysis information based on predicted log processing data.
  • AI Learning processing by AI generally requires a very large amount of CPU (Central Processing Unit), GPU (Graphics Processing Unit) and learning time.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • learning time Generally, when providing a service for AI learning to a user, the service operator charges the user a usage fee according to the execution time of the learning process and the amount of usage of the CPU or GPU.
  • the purpose of this disclosure is to provide an AI analysis system that can prevent users from incurring useless usage fees when desired results are not obtained.
  • One aspect of the present disclosure is an AI analysis system comprising: Acquisition means for acquiring desired prediction accuracy from a user terminal; AI analysis means for executing learning processing using learning data and generating an analysis model; prediction accuracy calculation means for calculating the prediction accuracy of the analysis model using evaluation data; a usage fee calculation unit that calculates a usage fee for the learning process, and reduces at least part of the usage fee when the prediction accuracy is lower than the desired prediction accuracy.
  • Another aspect of the present disclosure is a usage fee calculation method, Get the desired prediction accuracy from the user terminal, Execute learning processing using learning data, generate an analysis model, Calculate the prediction accuracy of the analysis model using the evaluation data, A usage fee for the learning process is calculated, and at least part of the usage fee is reduced when the prediction accuracy is lower than the desired prediction accuracy.
  • Yet another aspect of the present disclosure is a recording medium comprising: Get the desired prediction accuracy from the user terminal, Execute learning processing using learning data, generate an analysis model, Calculate the prediction accuracy of the analysis model using the evaluation data,
  • a recording medium recording a program for causing a computer to execute a process of calculating a usage fee for the learning process and reducing at least part of the usage fee when the prediction accuracy is lower than the desired prediction accuracy.
  • FIG. 1 is a block diagram showing the overall configuration of an AI analysis system according to a first embodiment;
  • FIG. It is a block diagram which shows the hardware constitutions of an AI analysis service system.
  • 3 is a block diagram showing the hardware configuration of a user terminal;
  • FIG. It is an AI analysis service system and a block diagram showing functional composition of a user terminal.
  • 4 is a flowchart of AI learning processing; It is a block diagram which shows the structure of the AI analysis system which concerns on 2nd Embodiment.
  • 9 is a flowchart of processing by the AI analysis system according to the second embodiment;
  • FIG. 1 is a block diagram showing the overall configuration of an AI analysis system according to the first embodiment.
  • the AI analysis system 1 is composed of an AI analysis service system (hereinafter simply referred to as “service system”) 100 and a user terminal 200 .
  • service system 100 and user terminal 200 are connected through network 5 .
  • the service system 100 is a system that provides AI learning/prediction services to users, and is typically a server device.
  • the user terminal 200 is a terminal used by a user of the service system 100, and is typically a PC (Personal Computer) or the like.
  • the user concludes a usage contract with the operator of the service system 100, connects to the service system 100 through the user terminal 200, and performs AI learning processing.
  • a user uses an AI engine to perform learning using learning data to generate an analysis model. Also, the user inputs evaluation data into the generated analysis model and evaluates the analysis model.
  • an AI engine refers to an algorithm that generates an analysis model using machine learning according to a predetermined data analysis method, makes predictions based on the analysis model, and a library that implements it.
  • Learning data is data used by the AI engine to create an analysis model, and includes input data and result values.
  • the result value is the analysis result of the analytical model for the input data.
  • the evaluation data is input data used when the AI engine makes a prediction based on the analysis model, and is data for evaluating the performance of the analysis model. Evaluation data includes input data and result values.
  • the operator of the service system 100 basically performs pay-as-you-go charging according to the amount of system usage by users. Specifically, the operator calculates the system usage fee based on the number of CPUs and GPUs used by the user, usage time, and the like.
  • the operator calculates the insurance premium based on the prediction accuracy of the analysis model desired by the user (hereinafter also referred to as "desired prediction accuracy"), and the user charge to. Then, when the prediction accuracy of the analysis model actually generated by the user is lower than the desired prediction accuracy, the operator refunds part or all of the system usage fee to the user. This reimbursement will be funded from insurance premiums.
  • the user can receive a refund of the usage fee if the analysis model generated using the service system 100 does not reach the desired prediction accuracy. Therefore, the user can use the service system 100 without worrying that the usage fee will be wasted if the expected result is not obtained.
  • the insurance premium is charged separately from the system usage fee, but instead, the insurance premium may be included in the system usage fee in advance.
  • FIG. 2 is a block diagram showing the hardware configuration of the service system 100.
  • Service system 100 includes communication unit 101 , processor 102 , memory 103 , recording medium 104 , and database 105 .
  • the communication unit 101 performs data input/output with the user terminal 200 . Specifically, the communication unit 101 receives data used for AI learning from the user terminal 200 . The communication unit 101 also transmits the prediction accuracy of the analysis model generated by AI learning to the user terminal 200 .
  • the processor 102 is a computer such as a CPU, and controls the entire service system 100 by executing a program prepared in advance.
  • the processor 102 may be a GPU or FPGA (Field-Programmable Gate Array).
  • the processor 102 executes AI learning processing, which will be described later.
  • the memory 103 is composed of ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the memory 103 stores information about the analysis model, predicted values based on the analysis model, and the like.
  • the memory 103 is also used as a working memory while the processor 102 is executing various processes.
  • the recording medium 104 is a non-volatile, non-temporary recording medium such as a disk-shaped recording medium or semiconductor memory, and is configured to be detachable from the service system 100 .
  • the recording medium 104 records various programs executed by the processor 102 .
  • a program recorded on the recording medium 104 is loaded into the memory 103 and executed by the processor 102 .
  • the database 105 stores user information of users who use the service system 100, billing information, and the like.
  • FIG. 3 is a block diagram showing the hardware configuration of the user terminal 200. As shown in FIG.
  • the user terminal 200 includes a communication section 201 , a processor 202 , a memory 203 , a display section 204 and an input section 205 .
  • the communication unit 201 inputs and outputs data to and from the service system 100 . Specifically, the communication unit 201 transmits data used for AI learning to the service system 100 .
  • the processor 202 is a computer such as a CPU or GPU, and controls the entire user terminal 200 by executing a program prepared in advance. Specifically, the processor 202 executes AI learning processing, which will be described later.
  • the memory 203 is composed of ROM, RAM, and the like.
  • the memory 203 stores data used for AI learning.
  • the memory 203 is also used as a working memory while the processor 202 is executing various processes.
  • the display unit 204 is, for example, a liquid crystal display device, and displays various information to the user.
  • the input unit 205 is, for example, a keyboard, a mouse, etc., and is used when the user performs various instructions and inputs.
  • FIG. 4 is a block diagram showing functional configurations of the service system 100 and the user terminal 200.
  • the service system 100 includes a data receiving unit 110, a data dividing unit 111, an AI analysis unit 112, an analysis model holding unit 113, an AI prediction unit 114, a prediction accuracy calculation unit 115, and a calculation result It includes a transmission unit 116 , a billing amount calculation unit 117 , and a user data holding unit 118 .
  • the user terminal 200 also includes a data transmission section 210 and a calculation result reception section 211 .
  • the data transmission unit 210 of the user terminal 200 transmits data including input data and result values (hereinafter also referred to as "data with results") to the service system 100. Since data with results includes input data and result values, it can be used both as learning data and as evaluation data.
  • the data transmission unit 210 also transmits the user-determined desired prediction accuracy to the service system 100 .
  • the data receiving unit 110 of the service system 100 receives data with results from the user terminal 200 and outputs it to the data dividing unit 111 .
  • the data receiving unit 110 also outputs the desired prediction accuracy received from the user terminal to the charging amount calculation unit 117 .
  • the data dividing unit 111 randomly divides the data with results into learning data and evaluation data, outputs the learning data to the AI analysis unit 112, and outputs the evaluation data to the AI prediction unit 114 and the prediction accuracy calculation unit 115. Output.
  • the reason why the data dividing unit 111 randomly divides the data with results into the learning data and the evaluation data is to prevent the user from intentionally lowering the prediction accuracy. If it were assumed that the user could arbitrarily select the evaluation data, the user would intentionally select special data that would make it difficult to obtain good prediction accuracy as the evaluation data, thereby lowering the prediction accuracy of the analysis model and reducing the desired accuracy. It is conceivable to try to receive a refund of the usage fee on the grounds that the prediction accuracy is not achieved. In order to prevent this, when evaluating the prediction accuracy of the generated analysis model, the service system 100 calculates the prediction accuracy using randomly selected evaluation data. This prevents the user from intentionally lowering the prediction accuracy and receiving a refund.
  • the AI analysis unit 112 utilizes the AI engine and performs learning using the learning data input from the data division unit 111 to generate an analysis model.
  • the generated analytical model is output to the analytical model holding unit 113 .
  • Analysis model holding unit 113 holds the generated analysis model and outputs it to AI prediction unit 114 .
  • the AI analysis unit 112 may perform analysis using an analysis model and analysis target data input by a user using an AI engine.
  • the AI prediction unit 114 makes predictions using the generated analysis model. Specifically, the AI prediction unit 114 inputs the input data included in the evaluation data input from the data division unit 111 to the analysis model, performs prediction using the analysis model, and calculates the predicted value as a prediction accuracy calculation unit. 115.
  • the prediction accuracy calculation unit 115 calculates the prediction accuracy of the analysis model based on the prediction value input from the AI prediction unit 114. Specifically, the prediction accuracy calculation unit 115 compares the prediction value input from the AI prediction unit 114 and the result value included in the evaluation data input from the data division unit 111, and determines the degree of matching between them. Calculated as prediction accuracy. Then, prediction accuracy calculation section 115 outputs the prediction value and the calculation result of prediction accuracy to calculation result transmission section 116 . In addition, prediction accuracy calculation section 115 outputs the prediction accuracy to billing amount calculation section 117 .
  • the calculation result transmission unit 116 transmits the prediction value, which is the result of prediction by the analysis model, and its prediction accuracy to the calculation result reception unit 211 of the user terminal 200 .
  • the calculation result receiving unit 211 of the user terminal 200 receives the predicted value and the prediction accuracy.
  • the received prediction value and prediction accuracy are displayed on the display unit 204 so that the user can see them.
  • the billing amount calculation unit 117 calculates the billing amount (usage fee) for the user based on the prediction accuracy of the analysis model calculated by the prediction accuracy calculation unit 115, and outputs it to the user data holding unit 118. In this way, the calculated billing amount for the user is stored in the user data holding unit 118 . Note that the operator of the service system 100 bills the user for usage fees according to the charge amount for each user stored in the user data holding unit 118 .
  • the billing amount calculation unit 117 first calculates the system usage fee according to the amount of usage of the service system 100 by the user. In addition, the billing amount calculation unit 117 calculates insurance premiums according to the desired prediction accuracy reported by the user. Here, the billing amount calculation unit 117 sets the insurance premium higher as the desired prediction accuracy declared by the user is higher. This prevents the user from declaring an extremely high desired prediction accuracy and receiving a refund.
  • the billing amount calculation unit 117 sets the full insurance premium as the refund amount.
  • the billing amount calculation unit 117 refunds the insurance premium at a rate corresponding to the actual achievement rate of the prediction accuracy of the analysis model with respect to the user's desired prediction accuracy.
  • the billing amount calculation unit 117 may calculate the usage fee reduced according to the difference between the prediction accuracy and the desired prediction accuracy.
  • the billing amount calculation unit 117 may calculate the refund amount according to the difference between the prediction accuracy and the desired prediction accuracy.
  • the billing amount calculation unit 117 may remit the refund amount calculated as described above to the user's account based on the user's account information registered in advance.
  • financial institution information branch information (branch ID, etc.), account number, user information (user's name, ID, number), etc. are registered in advance as the user's account information.
  • the charging amount calculation unit 117 may refund the refund amount calculated as described above to the credit card based on the user's credit card information registered in advance.
  • the billing amount calculation unit 117 may change the payment amount by credit card based on the user's credit card information registered in advance. In this case, credit card number, password, user information (user's name, ID, number), expiration date of credit card, etc. are registered in advance as the user's credit card information.
  • the data receiving unit 110 is an example of acquisition means
  • the AI analysis unit 112 is an example of AI analysis means
  • the prediction accuracy calculation unit 115 is an example of prediction accuracy calculation means
  • the billing amount calculation unit 117 is an example of the usage fee calculating means
  • the data dividing unit 111 is an example of the data dividing means.
  • FIG. 5 is a flowchart of AI learning processing. This processing is realized by executing a program prepared in advance by the processor 102 shown in FIG. 2 and the processor 202 shown in FIG. 3 and operating as each element of the service system 100 and the user terminal 200 shown in FIG. .
  • the data transmission unit 210 of the user terminal 200 transmits data with results and the user's desired prediction accuracy to the service system 100 (step S11).
  • the data receiving unit 110 receives the data with results and desired prediction accuracy (step S11), and the data dividing unit 111 randomly divides the data with results into learning data and evaluation data (step S12). .
  • the AI analysis unit 112 performs learning by the AI engine using the learning data obtained in step S12 to generate an analysis model (step S13).
  • the AI prediction unit 114 executes prediction using the generated analysis model and the input data of the evaluation data, and outputs a prediction value as a prediction result (step S14).
  • the prediction accuracy calculation unit 115 compares the obtained prediction value with the result value of the evaluation data to calculate the prediction accuracy (step S15).
  • the billing amount calculation unit 117 compares the calculated prediction accuracy with the desired prediction accuracy, and calculates the user's billing amount (step S16). Specifically, the billing amount calculation unit 117 determines whether or not a refund is to be made based on whether or not the calculated prediction accuracy has reached the user's desired prediction accuracy. If there is a refund, the refund amount is determined, and the usage fee is calculated in consideration of the refund amount. Next, the billing amount calculation unit 117 updates the user's billing amount by registering the calculated billing amount in the user data holding unit 118 (step S17). The user is billed for the updated billing amount at a predetermined timing as a usage fee, and if there is a refund, the refund is made.
  • the calculation result transmission unit 116 transmits the predicted value obtained in step S14 and the prediction accuracy obtained in step S15 to the user terminal 200 (step S18).
  • the calculation result receiving unit 211 receives the predicted value and the prediction accuracy (step S19). The user can confirm the received prediction value and prediction accuracy by displaying them on the display unit 205 or the like.
  • the prediction accuracy of the analysis model is calculated using the evaluation data and communicated to the user. Based on the prediction accuracy, it is determined whether or not the usage fee will be refunded, and the usage fee is determined. Therefore, if the generated analysis model does not provide the desired prediction accuracy, the user can receive a refund of the usage fee.
  • FIG. 6 is a block diagram showing the configuration of the AI analysis system according to the second embodiment.
  • the AI analysis system 300 includes acquisition means 301 , AI analysis means 302 , prediction accuracy calculation means 303 , and usage fee calculation means 304 .
  • FIG. 7 is a flowchart of processing by the AI analysis system according to the second embodiment.
  • acquisition means 301 acquires the desired prediction accuracy from the user terminal.
  • AI analysis means 302 executes learning processing using learning data to generate an analysis model.
  • the prediction accuracy calculation means 303 calculates the prediction accuracy of the analysis model using the evaluation data.
  • the usage fee calculator 304 calculates a usage fee for the learning process, and reduces at least part of the usage fee when the prediction accuracy is lower than the desired prediction accuracy.
  • the AI analysis system of the second embodiment if the prediction accuracy of the analysis model obtained by the learning process is lower than the user's desired prediction accuracy, at least part of the usage fee is reduced. Therefore, the user can perform the learning process without worrying about wasting the usage fee.
  • (Appendix 1) Acquisition means for acquiring desired prediction accuracy from a user terminal; AI analysis means for executing learning processing using learning data and generating an analysis model; prediction accuracy calculation means for calculating the prediction accuracy of the analysis model using evaluation data; usage fee calculation means for calculating a usage fee for the learning process, and reducing at least part of the usage fee when the prediction accuracy is lower than the desired prediction accuracy; AI analysis system with.
  • the usage fee calculation means calculates an insurance premium according to the desired prediction accuracy and includes it in the usage fee, and reduces part or all of the usage fee when the prediction accuracy is lower than the desired prediction accuracy.
  • the AI analysis system according to Appendix 1.
  • the acquisition means acquires data with results including input data and result values, 3.
  • the AI analysis system according to appendix 1 or 2, comprising data dividing means for randomly dividing the data with results into the learning data and the evaluation data.
  • Appendix 4 The AI analysis system according to any one of appendices 1 to 3, further comprising prediction accuracy transmission means for transmitting the prediction accuracy and usage fee to the user terminal.
  • the acquisition means acquires account information of the user, 5.
  • the AI analysis system according to any one of claims 1 to 4, further comprising charging means for transferring the amount calculated by said usage fee calculation means to said user's account based on said account information.
  • the acquisition means acquires credit card information of the user, 5.
  • AI analysis system
  • a recording medium recording a program for causing a computer to execute a process of calculating a usage fee for the learning process and reducing at least part of the usage fee when the prediction accuracy is lower than the desired prediction accuracy.
  • AI analysis system 100 AI analysis service system 102 processor 111 data division unit 112 AI analysis unit 113 analysis model holding unit 114 AI prediction unit 115 prediction accuracy calculation unit 117 charging amount calculation unit 200 user terminal 210 data transmission unit 211 calculation result reception Department

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

AI分析システムにおいて、取得手段は、希望予測精度を利用者端末から取得する。AI分析手段は、学習用データを用いて学習処理を実行し、分析モデルを生成する。予測精度算出手段は、評価用データを用いて分析モデルの予測精度を算出する。利用料算出手段は、学習処理に対する利用料を算出し、予測精度が希望予測精度より低い場合に利用料の少なくとも一部を減額する。

Description

AI分析システム、利用料算出方法、及び、記録媒体
 本開示は、AI(Artificial Intelligence)を用いた学習、分析を行うシステムに関する。
 近年、利用者がAIエンジンを用いて分析モデルを生成し、AIを用いた業務アプリケーションなどを開発するためのシステムが提供されている。例えば、特許文献1は、選択されたAIエンジンに選択されたアルゴリズムで学習を実行させ、選択されたAIエンジン及びアルゴリズムが属するデータ分析手法に対応する結果分析処理の内容と、学習ログ加工データ及び予測ログ加工データとに基づいて、分析情報を生成するAI実行支援装置を開示している。
特開2020-52514号公報
 AIによる学習処理は、一般的に非常に多くのCPU(Central Processing Unit)、GPU(Graphics Processing Unit)及び学習時間を必要とする。通常、AIによる学習を行うサービスを利用者に提供する場合、サービス運営者は、学習処理の実行時間、CPUやGPUの使用量の実績に応じて利用者に利用料を課金する。
 利用者は、長時間にわたり多くのCPUやGPUを使って学習処理を行うと、課金額が高額になる。PoC(Proof of Concept:概念実証)の段階で学習と分析モデルの予測精度の評価を繰り返す場合の利用を想定すると、一般的にPoCの段階では何度も学習と予測精度の評価を繰り返すため、上記のような課金方法ではシステムの利用料が高額になる。学習の結果、期待していた予測精度が得られなかった場合には高額な利用料が無駄になってしまうため、利用者は利用料が無駄になることを懸念し、サービスの利用を躊躇してしまう可能性がある。
 本開示の目的は、希望した成果が得られなかった場合に、利用者側に無駄な利用料が発生することを防止することが可能なAI分析システムを提供することにある。
 本開示の1つの観点は、AI分析システムであって、
 希望予測精度を利用者端末から取得する取得手段と、
 学習用データを用いて学習処理を実行し、分析モデルを生成するAI分析手段と、
 評価用データを用いて前記分析モデルの予測精度を算出する予測精度算出手段と、
 前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する利用料算出手段と、を備える。
 本開示の他の観点は、利用料算出方法であって、
 希望予測精度を利用者端末から取得し、
 学習用データを用いて学習処理を実行し、分析モデルを生成し、
 評価用データを用いて前記分析モデルの予測精度を算出し、
 前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する。
 本開示のさらに他の観点は、記録媒体であって、
 希望予測精度を利用者端末から取得し、
 学習用データを用いて学習処理を実行し、分析モデルを生成し、
 評価用データを用いて前記分析モデルの予測精度を算出し、
 前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する処理をコンピュータに実行させるプログラムを記録した記録媒体。
 本開示によれば、希望した成果が得られなかった場合に、利用者側に無駄な利用料が発生することを防止できるAI分析システムを提供できる。
第1実施形態に係るAI分析システムの全体構成を示すブロック図である。 AI分析サービスシステムのハードウェア構成を示すブロック図である。 利用者端末のハードウェア構成を示すブロック図である。 AI分析サービスシステム、及び、利用者端末の機能構成を示すブロック図である。 AI学習処理のフローチャートである。 第2実施形態に係るAI分析システムの構成を示すブロック図である。 第2実施形態に係るAI分析システムによる処理のフローチャートである。
 以下、図面を参照しながら、本開示の好適な実施形態について説明する。
 [全体構成]
 図1は、第1実施形態に係るAI分析システムの全体構成を示すブロック図である。AI分析システム1は、AI分析サービスシステム(以下、単に「サービスシステム」と呼ぶ。)100と、利用者端末200により構成される。サービスシステム100と利用者端末200はネットワーク5を通じて接続される。
 サービスシステム100は、利用者に対してAI学習・予測サービスを提供するシステムであり、典型的にはサーバ装置などである。利用者端末200は、サービスシステム100の利用者が使用する端末であり、典型的にはPC(Personal Computer)などである。
 [AI学習の概要]
 利用者は、サービスシステム100の運営者と利用契約などを結び、利用者端末200を通じてサービスシステム100に接続し、AI学習処理を行う。利用者は、AIエンジンを利用し、学習用データを用いた学習を行って分析モデルを生成する。また、利用者は、生成した分析モデルに評価用データを入力し、分析モデルの評価を行う。
 ここで、AIエンジンとは、所定のデータ分析手法に沿って機械学習を用いた分析モデルを生成し、分析モデルを元に予測を行うアルゴリズム及びそれを実現するライブラリを言う。学習用データは、AIエンジンが分析モデルを作成するために使用するデータであり、入力データと結果値とを含む。結果値は入力データに対する分析モデルの分析結果である。評価用データは、AIエンジンが分析モデルを元に予測を行う際に使用する入力データであり、分析モデルの性能を評価するためのデータである。評価用データは、入力データと結果値とを含む。
 サービスシステム100の運営者は、基本的に利用者によるシステムの利用量に応じた従量型の課金を行う。具体的に、運営者は、利用者が利用したCPUやGPUの数、利用時間などに基づいてシステム利用料を算出する。ここで、本実施形態では、運営者は、利用者が希望する分析モデルの予測精度(以下、「希望予測精度」とも呼ぶ。)に基づいて保険料を算出し、システム利用料と別に利用者に課金する。そして、運営者は、実際に利用者が生成した分析モデルの予測精度が希望予測精度より低かった場合に、システム利用料の一部又は全部を利用者に返金する。この返金は、保険料から賄われる。これにより、利用者はサービスシステム100を利用して生成した分析モデルが希望予測精度に達しない場合には、利用料の返金を受けることができる。よって、利用者は、期待した成果が得られなかった場合に利用料が無駄になるとの心配をすることなく、サービスシステム100を利用することができる。なお、上記の例では、保険料をシステム利用料と別に課金しているが、その代わりに、保険料をシステム利用料に予め組み込んでもよい。
 [ハードウェア構成]
 (サービスシステム)
 図2は、サービスシステム100のハードウェア構成を示すブロック図である。サービスシステム100は、通信部101と、プロセッサ102と、メモリ103と、記録媒体104と、データベース105とを備える。
 通信部101は、利用者端末200との間でデータの入出力を行う。具体的に、通信部101は、AI学習に使用されるデータを利用者端末200から受信する。また、通信部101は、AI学習により生成された分析モデルの予測精度などを利用者端末200へ送信する。
 プロセッサ102は、CPUなどのコンピュータであり、予め用意されたプログラムを実行することにより、サービスシステム100の全体を制御する。なお、プロセッサ102は、GPU又はFPGA(Field-Programmable Gate Array)であってもよい。具体的に、プロセッサ102は、後述するAI学習処理を実行する。
 メモリ103は、ROM(Read Only Memory)、RAM(Random Access Memory)などにより構成される。メモリ103には、分析モデルに関する情報、分析モデルによる予測値などが記憶される。また、メモリ103は、プロセッサ102による各種の処理の実行中に作業メモリとしても使用される。
 記録媒体104は、ディスク状記録媒体、半導体メモリなどの不揮発性で非一時的な記録媒体であり、サービスシステム100に対して着脱可能に構成される。記録媒体104は、プロセッサ102が実行する各種のプログラムを記録している。サービスシステム100が各種の処理を実行する際には、記録媒体104に記録されているプログラムがメモリ103にロードされ、プロセッサ102により実行される。データベース105は、サービスシステム100を利用する利用者の利用者情報、課金情報などを記憶する。
 (利用者端末)
 図3は、利用者端末200のハードウェア構成を示すブロック図である。利用者端末200は、通信部201と、プロセッサ202と、メモリ203と、表示部204と、入力部205とを備える。
 通信部201は、サービスシステム100との間でデータの入出力を行う。具体的に、通信部201は、AI学習に使用されるデータをサービスシステム100へ送信する。
 プロセッサ202は、CPU、GPUなどのコンピュータであり、予め用意されたプログラムを実行することにより、利用者端末200の全体を制御する。具体的に、プロセッサ202は、後述するAI学習処理を実行する。
 メモリ203は、ROM、RAMなどにより構成される。メモリ203には、AI学習に使用されるデータが記憶される。また、メモリ203は、プロセッサ202による各種の処理の実行中に作業メモリとしても使用される。
 表示部204は、例えば液晶表示装置などであり、利用者に各種の情報を表示する。入力部205は、例えばキーボード、マウスなどであり、利用者が各種の指示、入力を行う際に使用される。
 [機能構成]
 次に、サービスシステム100及び利用者端末200の機能構成を説明する。図4は、サービスシステム100及び利用者端末200の機能構成を示すブロック図である。図示のように、サービスシステム100は、データ受信部110と、データ分割部111と、AI分析部112と、分析モデル保持部113と、AI予測部114と、予測精度算出部115と、算出結果送信部116と、課金金額算出部117と、利用者データ保持部118とを備える。また、利用者端末200は、データ送信部210と、算出結果受信部211とを備える。
 利用者端末200のデータ送信部210は、入力データと結果値とを含むデータ(以下、「結果付きデータ」とも呼ぶ。)をサービスシステム100へ送信する。結果付きデータは、入力データと結果値とを含むので、学習用データとしても使用でき、評価用データとしても使用できる。また、データ送信部210は、利用者が決定した希望予測精度をサービスシステム100へ送信する。
 サービスシステム100のデータ受信部110は、利用者端末200から結果付きデータを受信し、データ分割部111へ出力する。また、データ受信部110は、利用者端末から受信した希望予測精度を課金金額算出部117へ出力する。
 データ分割部111は、結果付きデータをランダムに学習用データと評価用データに分割し、学習用データをAI分析部112へ出力し、評価用データをAI予測部114及び予測精度算出部115へ出力する。ここで、データ分割部111が結果付きデータをランダムに学習用データと評価用データに分割するのは、利用者が意図的に予測精度を低下させることを防止するためである。仮に評価用データを利用者が任意に選択できることとすると、利用者は良い予測精度が出にくいような特殊なデータを意図的に評価用データとして選択して分析モデルの予測精度を低下させ、希望予測精度に達しないとして利用料の返金を受けようとすることが考えられる。これを防止するため、生成された分析モデルの予測精度を評価する際には、サービスシステム100側がランダムに選択した評価用データを用いて予測精度を算出する。これにより、利用者が意図的に予測精度を低下させて返金を受けることが防止できる。
 AI分析部112は、AIエンジンを利用し、データ分割部111から入力された学習用データを使用して学習を行って分析モデルを生成する。生成された分析モデルは、分析モデル保持部113に出力される。分析モデル保持部113は、生成された分析モデルを保持するとともに、AI予測部114へ出力する。また、AI分析部112は、AIエンジンを利用して、利用者から入力された分析モデルと分析対象データを用いて、分析してもよい。
 AI予測部114は、生成された分析モデルを用いて予測を行う。具体的には、AI予測部114は、データ分割部111から入力された評価用データに含まれる入力データを分析モデルに入力し、分析モデルを用いた予測を行い、予測値を予測精度算出部115へ出力する。
 予測精度算出部115は、AI予測部114から入力された予測値に基づき、分析モデルの予測精度を算出する。具体的には、予測精度算出部115は、AI予測部114から入力された予測値と、データ分割部111から入力された評価用データに含まれる結果値とを比較し、それらの一致度を予測精度として算出する。そして、予測精度算出部115は、予測値と、予測精度の算出結果とを算出結果送信部116へ出力する。また、予測精度算出部115は、予測精度を課金金額算出部117へ出力する。
 算出結果送信部116は、分析モデルによる予測結果である予測値と、その予測精度とを利用者端末200の算出結果受信部211へ送信する。利用者端末200の算出結果受信部211は、予測値と予測精度とを受信する。なお、受信した予測値及び予測精度は、利用者が見れるように表示部204に表示される。
 課金金額算出部117は、予測精度算出部115が算出した分析モデルの予測精度に基づいて、利用者に対する課金金額(利用料)を算出し、利用者データ保持部118へ出力する。こうして、算出された利用者に対する課金金額は利用者データ保持部118に記憶される。なお、サービスシステム100の運営者は、利用者データ保持部118に記憶された利用者毎の課金金額に従い、利用者に対して利用料の請求などを行う。
 具体的に、課金金額算出部117は、まず利用者によるサービスシステム100の使用量に応じてシステム利用料を算出する。これに加えて、課金金額算出部117は、利用者が申告した希望予測精度に応じて保険料を算出する。ここで、課金金額算出部117は、利用者が申告した希望予測精度が高いほど、保険料を高く設定する。これにより、利用者が極端に高い希望予測精度を申告し、返金を受けることを防止する。
 課金金額算出部117は、予測精度算出部115が算出した実際の予測精度に基づいて返金額を算出する。そして、課金金額算出部117は、利用者に課金する利用料を以下のように決定する。
 (利用料)=(システム利用料)+(保険料)-(返金額)
 なお、返金額の決定方法についてはいくつかの方法が挙げられる。一例では、課金金額算出部117は、生成された分析モデルの予測精度が利用者の希望予測精度より低い場合、保険料の全額を返金額とする。他の例では、課金金額算出部117は、利用者の希望予測精度に対する、実際の分析モデルの予測精度の達成率に応じた割合で保険料を返金する。具体的に、課金金額算出部117は、予測精度と希望予測精度との差分に応じて減額された利用料を算出してもよい。また、課金金額算出部117は、予測精度と希望予測精度との差分に応じた返金額を算出してもよい。
 また、返金の方法についてもいくつかの方法が挙げられる。例えば、課金金額算出部117は、予め登録された利用者の口座情報に基づき、上記のように算出された返金額を利用者の口座に送金してもよい。この場合、利用者の口座情報としては、金融機関情報、支店情報(支店IDなど)、口座番号、利用者情報(利用者の氏名、ID、番号)などが予め登録される。
 別の方法では、課金金額算出部117は、予め登録された利用者のクレジットカード情報に基づき、上記のように算出された返金額をクレジットカードに返金してもよい。または、課金金額算出部117は、予め登録された利用者のクレジットカード情報に基づき、クレジットカードによる支払額を変更してもよい。この場合、利用者のクレジットカード情報としては、クレジットカード番号、暗証番号、利用者情報(利用者の氏名、ID、番号)、クレジットカードの有効期限などが予め登録される。
 上記の構成において、データ受信部110は取得手段の一例であり、AI分析部112はAI分析手段の一例であり、予測精度算出部115は予測精度算出手段の一例であり、課金金額算出部117は利用料算出手段の一例であり、データ分割部111はデータ分割手段の一例である。
 [AI学習処理]
 図5は、AI学習処理のフローチャートである。この処理は、図2に示すプロセッサ102及び図3に示すプロセッサ202が予め用意されたプログラムを実行し、図4に示すサービスシステム100及び利用者端末200の各要素として動作することにより実現される。
 まず、利用者の操作に応じて、利用者端末200のデータ送信部210は結果付きデータ及び利用者の希望予測精度をサービスシステム100へ送信する(ステップS11)。サービスシステム100では、データ受信部110が結果付きデータと希望予測精度を受信し(ステップS11)、データ分割部111が結果付きデータをランダムに学習用データと評価用データに分割する(ステップS12)。
 次に、AI分析部112は、ステップS12で得られた学習用データを用いてAIエンジンによる学習を行い、分析モデルを生成する(ステップS13)。次に、AI予測部114は、生成された分析モデルと、評価用データの入力データとを用いて予測を実行し、予測結果として予測値を出力する(ステップS14)。次に、予測精度算出部115は、得られた予測値を評価用データの結果値と比較し、予測精度を算出する(ステップS15)。
 次に、課金金額算出部117は、算出された予測精度を希望予測精度と比較し、利用者の課金金額を算出する(ステップS16)。具体的には、課金金額算出部117は、算出された予測精度が利用者の希望予測精度に達したか否かに基づき、返金の有無を判定する。また、返金がある場合には返金額を決定し、返金額を考慮して利用料を算出する。次に、課金金額算出部117は、算出された課金金額を利用者データ保持部118に登録することにより、利用者の課金金額を更新する(ステップS17)。利用者に対しては、所定のタイミングで更新された課金金額が利用料として請求され、返金がある場合には返金がなされる。
 また、算出結果送信部116は、ステップS14で得られた予測値と、ステップS15で得られた予測精度とを利用者端末200へ送信する(ステップS18)。利用者端末200では、算出結果受信部211が予測値及び予測精度を受信する(ステップS19)。利用者は、受信した予測値及び予測精度を表示部205に表示するなどして確認することができる。
 こうして、評価用データを用いて分析モデルの予測精度が算出され、利用者に伝えられるとともに、その予測精度に基づいて利用料の返金の有無が判定され、利用料が決定される。よって、生成した分析モデルによって希望の予測精度が得られない場合、利用者は利用料の返金を受けることができる。
 <第2実施形態>
 図6は、第2実施形態に係るAI分析システムの構成を示すブロック図である。AI分析システム300は、取得手段301と、AI分析手段302と、予測精度算出手段303と、利用料算出手段304とを備える。
 図7は、第2実施形態に係るAI分析システムによる処理のフローチャートである。まず、取得手段301は、希望予測精度を利用者端末から取得する。AI分析手段302は、学習用データを用いて学習処理を実行し、分析モデルを生成する。次に、予測精度算出手段303は、評価用データを用いて分析モデルの予測精度を算出する。そして、利用料算出手段304は、学習処理に対する利用料を算出し、予測精度が希望予測精度より低い場合に利用料の少なくとも一部を減額する。
 第2実施形態のAI分析システムによれば、学習処理により得られた分析モデルの予測精度が利用者の希望予測精度より低い場合、利用料の少なくとも一部が減額される。よって、利用者は、利用料が無駄になることを懸念することなく、学習処理を行うことができる。
 その他、上記の各実施形態(変形例を含む、以下同じ)の一部又は全部は、以下の付記のようにも記載され得るが以下には限られない。
 (付記1)
 希望予測精度を利用者端末から取得する取得手段と、
 学習用データを用いて学習処理を実行し、分析モデルを生成するAI分析手段と、
 評価用データを用いて前記分析モデルの予測精度を算出する予測精度算出手段と、
 前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する利用料算出手段と、
 を備えるAI分析システム。
 (付記2)
 前記利用料算出手段は、前記希望予測精度に応じた保険料を算出して前記利用料に算入し、前記予測精度が前記希望予測精度より低い場合、前記利用料の一部又は全部を減額する付記1に記載のAI分析システム。
 (付記3)
 前記取得手段は、入力データ及び結果値を含む結果付きデータを取得し、
 前記結果付きデータをランダムに前記学習用データと前記評価用データに分割するデータ分割手段を備える付記1又は2に記載のAI分析システム。
 (付記4)
 前記予測精度と利用料金を前記利用者端末へ送信する予測精度送信手段を備える付記1乃至3のいずれか一項に記載のAI分析システム。
 (付記5)
 前記利用料算出手段は、前記予測精度と前記希望予測精度の差分に応じて減額された、前記学習処理に対する利用料を算出する請求項1乃至4のいずれか一項に記載のAI分析システム。
 (付記6)
 前記利用量算出手段は、前記予測精度と前記希望予測精度の差分に応じた返金額を算出する請求項1乃至4のいずれか一項に記載のAI分析システム。
 (付記7)
 前記取得手段は、前記ユーザの口座情報を取得し、
 前記口座情報に基づいて、前記利用料算出手段により算出される金額を前記ユーザの口座に送金する課金手段をさらに備える請求項1乃至4のいずれか一項に記載のAI分析システム。
 (付記8)
 前記取得手段は、前記ユーザのクレジットカード情報を取得し、
 前記クレジットカード情報と、前記利用料算出手段により算出される金額とに基づいて、前記ユーザのクレジットカードによる支払額を変更する課金手段をさらに備える請求項1乃至4のいずれか一項に記載のAI分析システム。
 (付記9)
 希望予測精度を利用者端末から取得し、
 学習用データを用いて学習処理を実行し、分析モデルを生成し、
 評価用データを用いて前記分析モデルの予測精度を算出し、
 前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する利用料算出方法。
 (付記10)
 希望予測精度を利用者端末から取得し、
 学習用データを用いて学習処理を実行し、分析モデルを生成し、
 評価用データを用いて前記分析モデルの予測精度を算出し、
 前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する処理をコンピュータに実行させるプログラムを記録した記録媒体。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。すなわち、本願発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。
 この出願は、2021年3月31日に出願された日本出願特願2021-059853を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 AI分析システム
 100 AI分析サービスシステム
 102 プロセッサ
 111 データ分割部
 112 AI分析部
 113 分析モデル保持部
 114 AI予測部
 115 予測精度算出部
 117 課金金額算出部
 200 利用者端末
 210 データ送信部
 211 算出結果受信部

Claims (10)

  1.  希望予測精度を利用者端末から取得する取得手段と、
     学習用データを用いて学習処理を実行し、分析モデルを生成するAI分析手段と、
     評価用データを用いて前記分析モデルの予測精度を算出する予測精度算出手段と、
     前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する利用料算出手段と、
     を備えるAI分析システム。
  2.  前記利用料算出手段は、前記希望予測精度に応じた保険料を算出して前記利用料に算入し、前記予測精度が前記希望予測精度より低い場合、前記利用料の一部又は全部を減額する請求項1に記載のAI分析システム。
  3.  前記取得手段は、入力データ及び結果値を含む結果付きデータを取得し、
     前記結果付きデータをランダムに前記学習用データと前記評価用データに分割するデータ分割手段を備える請求項1又は2に記載のAI分析システム。
  4.  前記予測精度と利用料金を前記利用者端末へ送信する予測精度送信手段を備える請求項1乃至3のいずれか一項に記載のAI分析システム。
  5.  前記利用料算出手段は、前記予測精度と前記希望予測精度の差分に応じて減額された、前記学習処理に対する利用料を算出する請求項1乃至4のいずれか一項に記載のAI分析システム。
  6.  前記利用量算出手段は、前記予測精度と前記希望予測精度の差分に応じた返金額を算出する請求項1乃至4のいずれか一項に記載のAI分析システム。
  7.  前記取得手段は、前記ユーザの口座情報を取得し、
     前記口座情報に基づいて、前記利用料算出手段により算出される金額を前記ユーザの口座に送金する課金手段をさらに備える請求項1乃至4のいずれか一項に記載のAI分析システム。
  8.  前記取得手段は、前記ユーザのクレジットカード情報を取得し、
     前記クレジットカード情報と、前記利用料算出手段により算出される金額とに基づいて、前記ユーザのクレジットカードによる支払額を変更する課金手段をさらに備える請求項1乃至4のいずれか一項に記載のAI分析システム。
  9.  希望予測精度を利用者端末から取得し、
     学習用データを用いて学習処理を実行し、分析モデルを生成し、
     評価用データを用いて前記分析モデルの予測精度を算出し、
     前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する利用料算出方法。
  10.  希望予測精度を利用者端末から取得し、
     学習用データを用いて学習処理を実行し、分析モデルを生成し、
     評価用データを用いて前記分析モデルの予測精度を算出し、
     前記学習処理に対する利用料を算出し、前記予測精度が前記希望予測精度より低い場合に前記利用料の少なくとも一部を減額する処理をコンピュータに実行させるプログラムを記録した記録媒体。
PCT/JP2022/012557 2021-03-31 2022-03-18 Ai分析システム、利用料算出方法、及び、記録媒体 WO2022210017A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059853 2021-03-31
JP2021059853 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210017A1 true WO2022210017A1 (ja) 2022-10-06

Family

ID=83456090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012557 WO2022210017A1 (ja) 2021-03-31 2022-03-18 Ai分析システム、利用料算出方法、及び、記録媒体

Country Status (1)

Country Link
WO (1) WO2022210017A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120330711A1 (en) * 2011-06-27 2012-12-27 Microsoft Corporation Resource management for cloud computing platforms
US20140032249A1 (en) * 2012-05-22 2014-01-30 Empire Technology Development Llc Insurance adjustment for cloud based services
JP2017524183A (ja) * 2014-06-30 2017-08-24 アマゾン・テクノロジーズ・インコーポレーテッド 機械学習サービス
JP2020113319A (ja) * 2018-02-20 2020-07-27 株式会社Abeja 情報処理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120330711A1 (en) * 2011-06-27 2012-12-27 Microsoft Corporation Resource management for cloud computing platforms
US20140032249A1 (en) * 2012-05-22 2014-01-30 Empire Technology Development Llc Insurance adjustment for cloud based services
JP2017524183A (ja) * 2014-06-30 2017-08-24 アマゾン・テクノロジーズ・インコーポレーテッド 機械学習サービス
JP2020113319A (ja) * 2018-02-20 2020-07-27 株式会社Abeja 情報処理システム

Similar Documents

Publication Publication Date Title
US8271899B1 (en) Method and system for self-learning customized application launch based on historical usage
US8655726B1 (en) Method and system for deriving a consumer's shopping habits
US20200380481A1 (en) Autonomous bill pay bot with automatic social overdraft protection
US20150170271A1 (en) System and Method to Request and Collect Information to Determine Personalized Credit
US20230111785A1 (en) Machine-learning techniques to generate recommendations for risk mitigation
US20190096001A1 (en) Platform implementing retrospective loss pooling
JP2019204340A (ja) 給与前払いシステム、給与前払い方法、及びそのプログラム
US20200074539A1 (en) Debt resolution planning platform
US8583548B1 (en) System and method for making payments via a network
US20230222578A1 (en) Generating graphical user interfaces comprising dynamic credit value user interface elements determined from a credit value model
CN109845232A (zh) 数字组件传输
US20180240128A1 (en) Service request matching based on provider compliance state
CN111242604A (zh) 数据处理方法及装置
US20150088727A1 (en) Method for determining creditworthiness for exchange of a projected, future asset
CN113034183A (zh) 定价处理方法、装置、电子设备和存储介质
WO2022210017A1 (ja) Ai分析システム、利用料算出方法、及び、記録媒体
US20150095186A1 (en) Flexible spending account provision system
US20120011039A1 (en) System and method for services management
CN115914363A (zh) 消息推送方法、装置、计算机设备和存储介质
CN110009397A (zh) 一种精准营销的方法及装置
CN115269085A (zh) 手机银行页面展示方法及装置
CN114444120A (zh) 一种基于区块链的融资方法、装置、电子设备和存储介质
CN114240599A (zh) 贷款测算方法、装置、计算机设备和存储介质
CN111242767A (zh) 用户按期还款预测方法、装置及电子设备
WO2020081823A1 (en) System for processing network data records transmitted from distributed terminal devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP