WO2022209959A1 - Light emission device - Google Patents

Light emission device Download PDF

Info

Publication number
WO2022209959A1
WO2022209959A1 PCT/JP2022/012302 JP2022012302W WO2022209959A1 WO 2022209959 A1 WO2022209959 A1 WO 2022209959A1 JP 2022012302 W JP2022012302 W JP 2022012302W WO 2022209959 A1 WO2022209959 A1 WO 2022209959A1
Authority
WO
WIPO (PCT)
Prior art keywords
holes
irradiation device
light irradiation
light
heat radiating
Prior art date
Application number
PCT/JP2022/012302
Other languages
French (fr)
Japanese (ja)
Inventor
浩明 渡邊
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN202280025883.4A priority Critical patent/CN117136337A/en
Publication of WO2022209959A1 publication Critical patent/WO2022209959A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a light irradiation device that includes an LED (Light Emitting Diode) as a light source and emits linear light, and more particularly to a light irradiation device that includes a heat dissipation member that dissipates heat emitted from the LED.
  • LED Light Emitting Diode
  • Patent Document 1 describes an ultraviolet irradiation head (light irradiation device) in which a large number of ultraviolet LED elements are arranged in a row.
  • the substrate on which the ultraviolet LED elements are arranged is thermally connected to a heat sink on which a large number of plate-like fins are formed, and is formed so that only the base end portion of the heat sink (part of the plate-like fins) is exposed. Outside air is taken in through the ventilation openings to cool the plate-like fins and further cool the ultraviolet LED elements.
  • the present invention has been made in view of the above circumstances, and it is possible to suppress the occurrence of pressure loss (intake loss) at the vent and efficiently cool the heat sink (heat radiation part) and the LED element (light source). It is an object of the present invention to provide a light irradiation device that is
  • the light irradiation device of the present invention irradiates a line of light extending in a first direction and having a predetermined line width in a second direction perpendicular to the first direction onto an irradiation surface.
  • a substrate defined by a first direction and a second direction; a plurality of light sources that emit light in a third direction; and a plurality of heat radiation fins standing at predetermined pitches along the first direction, and thermally coupled to the back side of the substrate.
  • a housing that accommodates at least the heat radiating portion and forms a wind tunnel through which cooling air for cooling the heat radiating fins flows; At least one of the side surfaces facing the second direction of the housing exhausts the cooling air to the outside through between the plurality of heat radiation fins, or allows the cooling air to flow from the outside between the plurality of heat radiation fins.
  • a vent is formed through which air is sucked, A is the total area of the opening of the vent, h is the height of the vent in the third direction, and h is the height of the plurality of heat dissipating fins in the third direction.
  • H be the width
  • W be the width in the first direction in which the plurality of heat radiating fins are formed
  • t be the thickness of each heat radiating fin in the first direction
  • n be the number of the plurality of heat radiating fins. It is characterized by satisfying the following conditional expressions (1) and (2).
  • the pressure loss (intake loss) at the vent is suppressed, and a sufficient amount of air is supplied to the heat radiating fins at a sufficient wind speed.
  • the light source can be uniformly and sufficiently cooled.
  • a plurality of through-holes formed in a manner of z (where z is an integer of 2 or more) along the third direction and x rows (where x is an integer of 2 or more) along the first direction. preferably configured. Further, in this case, it is desirable that the opening areas of the plurality of through-holes decrease toward the direction opposite to the third direction. Further, it is preferable that the through-holes in odd-numbered rows among the x-rows are shifted along the third direction with respect to the through-holes in even-numbered rows, and that the plurality of through-holes are arranged in a staggered manner as a whole. Moreover, it is desirable that at least a portion of the plurality of through holes be arranged to face the plurality of heat radiating fins.
  • the heat sink is arranged to face at least a part of the plurality of through holes, guides the air sucked from the plurality of through holes to the plurality of heat radiating fins, or guides the air exhausted from the plurality of heat radiating fins to the plurality of through holes. It is desirable to have a baffle plate that leads to
  • the pitch of the plurality of light sources in the first direction be greater than or equal to the pitch of the plurality of heat radiation fins in the first direction.
  • the vent is formed only on one side surface of the housing, the plurality of heat radiation fins are arranged close to one side, and a space is provided between the other side surface of the housing and the plurality of heat radiation fins. is formed, and it is desirable to have a drive circuit to drive a plurality of light sources in space. Also, in this case, it is desirable that the wind tunnel is composed of a first wind tunnel and a second wind tunnel that are bisected in the second direction by the drive circuit.
  • a filter that is arranged to block the air vent and absorbs ink mist.
  • the light includes a wavelength that acts on the ultraviolet curable resin.
  • the occurrence of pressure loss (intake loss) at the vent is suppressed, so that a light irradiation device capable of efficiently cooling the heat radiating part and the plurality of light sources is realized.
  • FIG. 1 is a diagram illustrating the configuration of a light irradiation device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the configuration of the light irradiation device according to the first embodiment of the present invention.
  • 3A and 3B are schematic diagrams for explaining airflow generated in the housing of the light irradiation device according to the first embodiment of the present invention.
  • FIG. FIG. 4 is a diagram showing a modification of the intake port of the light irradiation device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating the configuration of a light irradiation device according to a second embodiment of the present invention.
  • FIG. 6 is a diagram illustrating the configuration of a light irradiation device according to a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram for explaining the airflow generated inside the housing of the light irradiation device according to the second embodiment of the present invention.
  • FIG. 8 is a diagram illustrating the configuration of a light irradiation device according to a third embodiment of the present invention.
  • FIG. 9 is a diagram illustrating the configuration of a light irradiation device according to a third embodiment of the present invention.
  • 10A and 10B are schematic diagrams for explaining the airflow generated inside the housing of the light irradiation device according to the third embodiment of the present invention.
  • FIG. 1 and 2 are diagrams for explaining the configuration of the light irradiation device 1 according to the first embodiment of the present invention
  • FIG. 1(a) is a perspective view of the light irradiation device 1 according to the embodiment of the present invention.
  • 1(b) is a plan view of the light irradiation device 1 of FIG. 1(a).
  • FIG. 2(a) is a cross-sectional view along the line AA in FIG. 1(b)
  • FIG. 2(b) is a cross-sectional view along the line BB in FIG. 2(a)
  • FIG. ) is an enlarged view of part C in FIG. 2(b).
  • the light irradiation device 1 of the present embodiment is a light source device that is mounted in a printing device or the like and cures ultraviolet curable ink or ultraviolet curable resin. ) to emit linear ultraviolet light.
  • the direction in which the LED elements 210 are arranged is the X-axis direction (first direction)
  • the direction in which the LED elements 210 emit ultraviolet light is the Z-axis direction ( 3rd direction)
  • a direction orthogonal to the X-axis direction and the Z-axis direction are defined as the Y-axis direction (second direction).
  • the light irradiation device 1 of this embodiment includes a housing 100 , a light source unit 200 (light source section), a control board 300 (drive circuit), and a heat dissipation member 400 .
  • the housing 100 is a thin box-shaped member that houses the light source unit 200, the control board 300, and the heat dissipation member 400.
  • the housing 100 has a glass window 105 attached to the front surface of the housing 100 through which ultraviolet light is emitted, and a housing.
  • Two exhaust fans 110 (cooling fans) are provided on the back of the body 100 to exhaust the air in the housing 100, and the upper surface of the housing 100 has an intake port 102 ( vent) is formed. As shown in FIG.
  • the intake port 102 of this embodiment is configured by arranging seven circular through holes 102a to 102g along the Z-axis direction in 19 rows in the X-axis direction. It is The through-holes 102a-102g in odd-numbered rows are shifted in the Z-axis direction with respect to the through-holes 102a-102g in even-numbered rows, and the plurality of through-holes 102a-102g are arranged in a zigzag pattern as a whole.
  • the through holes 102a to 102d up to the fourth from the positive side in the Z-axis direction have the same hole diameter (for example, a diameter of 5 mm), and the hole diameters of the through holes 102e to 102g are larger than the hole diameters of the through holes 102a to 102d. are also gradually becoming smaller (eg, 4 mm, 3 mm, and 2 mm in diameter, respectively).
  • the intake port 102 of this embodiment is configured such that the opening area decreases from the + side toward the - side in the Z-axis direction.
  • the through holes 102a to 102d are arranged so as to face radiation fins 420, which will be described later, and the radiation fins 420 are exposed from the through holes 102a to 102d.
  • a baffle plate 107 extending from the upper surface of the housing 100 toward the end surface of the radiation fins 420 on the Z-axis direction - side. are placed.
  • the baffle plate 107 is a dogleg-shaped metal thin plate member that is arranged to face the through holes 102 e to 102 g and guides the air taken in through the through holes 102 e to 102 g to the heat radiating fins 420 .
  • the light source unit 200 includes a rectangular substrate 205 defined by the X-axis direction and the Y-axis direction, and a plurality of (for example, 100) LED elements 210 (light sources) having the same characteristics.
  • the plurality of LED elements 210 are aligned in the Z-axis direction, for example, 50 (X-axis direction) ⁇ 2 rows (Y-axis direction) at predetermined pitches on the surface of the substrate 205 . , and electrically connected to the substrate 205 .
  • the “pitch” at which the plurality of LED elements 210 are arranged means the distance between the centers of adjacent LED elements 210, and the pitch may differ between the X-axis direction and the Y-axis direction.
  • the board 205 is connected to a control board 300 (to be described later) by a cable (not shown), and each LED element 210 is supplied with a drive current from the control board 300 via the board 205 .
  • each LED element 210 When a drive current is supplied to each LED element 210, each LED element 210 emits ultraviolet light (for example, a wavelength of 365 nm) of a light amount corresponding to the drive current, and a line parallel to the X-axis direction is emitted from the light source unit 200. shaped ultraviolet light is emitted. The line-shaped ultraviolet light emitted from the light source unit 200 passes through the window 105 and is emitted toward the object to be irradiated.
  • ultraviolet light for example, a wavelength of 365 nm
  • the control board 300 has a circuit board 301 and a plurality of electronic components (not shown) arranged on one surface (Y-axis direction - side surface) of the circuit board 301.
  • the LED elements 210 of the light source unit 200 is an electronic circuit board that controls the light emission of the light irradiation device 1 as a whole.
  • the control board 300 receives a signal input by a user through a user interface (not shown), performs ON/OFF control and brightness control of the light source unit 200, and outputs error information to the outside through the user interface.
  • the heat dissipation member 400 is a member that dissipates heat emitted from the light source unit 200 .
  • the heat dissipating member 400 of this embodiment includes a rectangular plate-shaped metal (for example, copper or aluminum) heat dissipating plate 410 and the other end surface of the heat dissipating plate 410 (the surface opposite to the surface on which the light source unit 200 is mounted). ) and a plurality of radiation fins 420 integrally formed by brazing, soldering, skiving, or the like, and erected at predetermined pitches in the X-axis direction (FIGS. 2A and 2B )).
  • the “pitch” at which the plurality of radiating fins 420 stand means the distance between the centers of adjacent radiating fins 420 .
  • Radiation fins 420 are rectangular metal plates (eg, copper, aluminum, etc.) that are erected so as to protrude from radiation plate 410 in a direction opposite to the Z-axis direction, and radiate heat transferred to radiation plate 410 into the air. , metals such as iron and magnesium, and alloys containing these).
  • the pitch in the X-axis direction of the plurality of radiating fins 420 is narrower than the pitch in the X-axis direction of the plurality of LED elements 210 .
  • air from the outside is taken into the housing 100 from the intake port 102, and the taken-in air flows on the surface of each heat radiation fin 420 as cooling air.
  • the air heated by 420 is quickly exhausted by exhaust fan 110 .
  • the light source unit 200 and the heat dissipation member 400 of the present embodiment are arranged and fixed on the front side (on the + side in the Z-axis direction) in the housing 100. ing.
  • each LED element 210 is arranged at a position facing the window 105, and the end 420a of each heat dissipation fin 420 on the + side in the Y-axis direction. abuts on the top surface of the housing 100, and a space S is formed between the negative side end 420b in the Y-axis direction and the bottom surface of the housing 100.
  • a wind tunnel ⁇ is formed on the rear side of each radiation fin 420 (the negative side in the Z-axis direction) through which cooling air flows after cooling the radiation fins 420 .
  • at least the end of the control board 300 on the positive side in the Z-axis direction is disposed in the space S, and one side of the circuit board 301 (Y-axis direction A wind tunnel ⁇ is formed through which cooling air flows for cooling a plurality of electronic components (not shown) arranged on the negative side). That is, the control board 300 divides the space inside the housing 100 into two in the Y-axis direction to form the wind tunnel ⁇ (first wind tunnel) and the wind tunnel ⁇ (second wind tunnel).
  • each LED element 210 of the present embodiment the drive current supplied to each LED element 210 is adjusted so as to emit ultraviolet light with a substantially uniform amount of light.
  • Ultraviolet light has a substantially uniform light amount distribution in the X-axis direction.
  • the light source unit 200 and the heat dissipation member 400 extend in the X-axis direction, if the temperature of the LED element 210 of the light source unit 200 differs in the X-axis direction, the amount of light varies. Therefore, there is a problem that the heat radiating member 400 must be cooled uniformly and sufficiently. Therefore, in order to solve such a problem, in the present embodiment, a sufficient amount of air is supplied to the heat radiating fins 420 of the heat radiating member 400, and a sufficient wind speed is obtained.
  • the height h is higher than the height H of the radiation fins 420 in the Z-axis direction, and the total area A of the openings of the intake port 102 is configured to be larger than the area B of the ventilable region of the radiation fins 420. (details will be described later).
  • the pressure loss (intake loss) at the intake port 102 is reduced, and the heat radiating member 400 can be uniformly and sufficiently cooled.
  • FIG. 3A and 3B are schematic diagrams for explaining the airflow generated inside the housing 100.
  • FIG. 3 is a diagram in which an arrow indicating the direction of the airflow is added to FIG. 2(a).
  • the light irradiation device 1 of this embodiment includes an exhaust fan 110 on the back of the housing 100, and an air intake 102 is formed on the top of the housing 100 by a plurality of through holes 102a to 102g. It is Therefore, when the exhaust fan 110 rotates, the air inside the housing 100 is exhausted from the exhaust fan 110, so that the inside of the housing 100 becomes a negative pressure, and the air outside the housing 100 is discharged from the through holes 102a to 102g. As it is taken in, an air current indicated by solid line arrows in FIG. 3 is generated in the housing 100 . More specifically, as shown in FIG.
  • the total area A of the openings of the intake port 102 (that is, the sum of the opening areas of the plurality of through holes 102a to 102g) is the ventilation of the heat radiating fins 420. It is configured to be larger than the area B of the possible region.
  • the relationship of the total area A of the openings of the intake port 102 in this embodiment can be expressed by the following conditional expression (1).
  • the following conditional expression (2) is obtained from the relationship between the height h of the intake port 102 in the Z-axis direction and the height H of the radiation fins 420 in the Z-axis direction.
  • the diameters of the through holes 102a to 102d of the present embodiment are larger than the diameters of the through holes 102e to 102g, and the opening area is configured to decrease from the + side to the - side in the Z axis direction. Therefore, a sufficient amount of cooling air to cool the radiation fins 420 flows from the through-holes 102a to 102d (that is, over the entire height of the radiation fins 420 in the Z-axis direction) in a direction opposite to the Y-axis direction. part of it flows into the space S. Therefore, the cooling air is reliably supplied to the radiation fins 420, and the cooling air is also reliably supplied to the wind tunnel ⁇ .
  • the light irradiation device 1 of the present embodiment is a device that irradiates ultraviolet light, but is not limited to such a configuration, and irradiation light in other wavelength ranges (for example, visible light such as white light,
  • the present invention can also be applied to a device that irradiates infrared light or the like.
  • baffle plate 107 of the present embodiment is a V-shaped thin plate member, any form may be used as long as the air taken in through the through holes 102e to 102g can be guided to the heat radiating fins 420. I don't mind.
  • the through holes 102a to 102d are arranged to face the radiating fins 420, and the radiating fins 420 are exposed from the through holes 102a to 102d. It is sufficient if a sufficient amount of cooling air can be supplied, and at least a part of the through holes 102 a to 102 d are arranged so as to face the heat radiating fins 420 .
  • the inside of the housing 100 is made negative pressure by the exhaust fan 110, and the air is drawn into the housing 100 from the intake port 102.
  • an intake fan may be used instead of the exhaust fan 110 .
  • the direction of the airflow in the housing 100 is reversed, and the air is exhausted from the through holes 102a to 102g. (Intake loss) is small, and the heat radiating member 400 can be uniformly and sufficiently cooled.
  • the intake port 102 of the present embodiment is configured by arranging seven circular through holes 102a to 102g along the Z-axis direction in 19 rows in the X-axis direction, It is not limited to such a configuration, and is configured in a manner of z pieces (z is an integer of 2 or more) along the Z-axis direction and x rows (x is an integer of 2 or more) along the X-axis direction. Just do it.
  • FIG. 4 is a diagram showing a modification of the intake port 102 of this embodiment.
  • the air inlet 102 may be configured with a plurality of square through holes
  • the air inlet 102 may be configured with a plurality of hexagonal through holes.
  • the intake port 102 may be configured with a plurality of rhombus-shaped (including a square rotated by 45 degrees) through-holes.
  • FIG. 5(a) is a perspective view of the light irradiation device 2 according to the embodiment of the present invention.
  • 5(b) is a plan view of the light irradiation device 2 of FIG. 5(a).
  • 6(a) is a cross-sectional view taken along line DD of FIG. 5(b)
  • FIG. 6(b) is a cross-sectional view taken along line EE of FIG. 6(a)
  • FIG. ) is an enlarged view of part F in FIG. 6(b).
  • an intake port 102A for taking in air from the outside is formed on the upper surface and the lower surface of the housing 100A. It differs from the light irradiation device 1 of the first embodiment in that it includes a baffle plate 107A.
  • Each intake port 102A of the present embodiment is configured by arranging nine circular through holes 102aA to 102iA along the Z-axis direction in 21 rows in the X-axis direction. The odd-numbered through holes 102aA to 102iA are shifted in the Z-axis direction with respect to the even-numbered through holes 102aA to 102iA.
  • the intake port 102A of this embodiment is also configured such that the opening area decreases from the + side to the - side in the Z-axis direction.
  • the through holes 102aA to 102eA are arranged to face the heat radiation fins 420A, and the heat radiation fins 420A are exposed from the through holes 102aA to 102eA.
  • FIG. 1 shows that the intake port 102A of this embodiment is also configured such that the opening area decreases from the + side to the - side in the Z-axis direction.
  • a pair of conductors extending from the top and bottom surfaces of the housing 100A toward the end surface of the radiation fin 420A on the negative side in the Z-axis direction is provided inside the housing 100A of the present embodiment.
  • a wind plate 107A is arranged inside the housing 100A of the present embodiment.
  • Each baffle plate 107A is arranged to face the through holes 102fA to 102iA, and is configured to guide the air taken in through the through holes 102fA to 102iA to the heat radiating fins 420A.
  • the light irradiation device 2 of this embodiment includes an exhaust fan 110A inside the housing 100A.
  • the light source unit 200A includes a rectangular substrate 205A defined by the X-axis direction and the Y-axis direction, and 50 (X-axis direction) ⁇ 10 rows (Y-axis direction). and an LED element 210A arranged on a substrate 205A.
  • the heat radiation member 400A is brazed to the rectangular heat radiation plate 410A and the other end surface of the heat radiation plate 410A (the surface opposite to the surface on which the light source unit 200A is placed).
  • Each radiation fin 420A has an end portion 420aA on the positive side in the Y-axis direction facing the upper surface of the housing 100A, and an end portion 420bA on the negative side in the Y-axis direction facing the housing 100A. facing the bottom surface of the A wind tunnel ⁇ through which cooling air flows after cooling the radiation fins 420A is formed behind each radiation fin 420A (the negative side in the Z-axis direction).
  • FIG. 7 is a schematic diagram illustrating the relationship between the heat radiating member 400A and the airflow generated inside the housing 100A.
  • FIG. 7 is a diagram in which an arrow indicating the direction of the airflow is added to FIG. 6(a).
  • each intake port 102A in the Z-axis direction is set so that pressure loss (intake loss) does not occur in the through holes 102aA to 102iA. is higher than the height H (FIG. 6(b)) of the direction, and the total area A of the openings of the air inlets 102A (that is, the sum of the opening areas of the plurality of through-holes 102aA to 102iA) is enough for the heat dissipation fins 420A to ventilate. It is configured to be larger than the area B of the region. That is, as in the first embodiment, the width of the radiation fins 420A in the X-axis direction is defined as the ventilation width W (FIG. 6B), and the thickness of the radiation fins 420A in the X-axis direction is t ( 6(c)), and when the number of radiating fins 420A is n, the conditional expressions (1) and (2) are satisfied.
  • the air that has flowed between the radiation fins 420A flows through the wind tunnel ⁇ and is exhausted from the exhaust fan 110A.
  • the pressure loss (intake loss) at each intake port 102A can be reduced, and the heat dissipation member 400A can be cooled uniformly and sufficiently.
  • FIG. 8 and 9 are diagrams for explaining the configuration of the light irradiation device 3 according to the third embodiment of the present invention
  • FIG. 8(a) is a perspective view of the light irradiation device 3 according to the embodiment of the present invention.
  • 8(b) is a plan view of the light irradiation device 3 of FIG. 8(a).
  • 9(a) is a cross-sectional view taken along line GG of FIG. 8(b)
  • FIG. 9(b) is a cross-sectional view taken along line HH of FIG. 9(a)
  • FIG. ) is an enlarged view of part I in FIG. 9(b).
  • the top panel 101B of the housing 100B protrudes upward (Y-axis direction + side), and the top panel 101B protrudes inside (Y-axis direction ⁇ side).
  • the top panel 101B protrudes inside (Y-axis direction ⁇ side).
  • a filter 500 is sandwiched between the top panel 101B and the inner wall 108B so as to block the intake port 102B, which is different from the light irradiation device 1 of the first embodiment.
  • the filter 500 is, for example, a paper filter, and has a function of absorbing ink mist around the intake port 102B. According to the configuration of this embodiment, even if the light irradiation device 3 is arranged in a space filled with ink mist, the ink mist can be absorbed by the filter 500, so that the ink mist does not enter the housing 100B. Intrusion can be prevented.
  • the intake port 102B of this embodiment is configured by arranging 10 circular through-holes 102aB to 102jB along the Z-axis direction in 19 rows in the X-axis direction.
  • the odd-numbered through holes 102aB to 102jB are shifted in the Z-axis direction with respect to the even-numbered through holes 102aB to 102jB, and the sixth through-holes 102aB to 102fB from the positive side in the Z-axis direction have the same hole diameter.
  • the intake port 102B of this embodiment is also configured such that the opening area decreases from the + side to the - side in the Z-axis direction.
  • Through holes 102aB to 102jB are arranged to face filter 500, and filter 500 is exposed from through holes 102aB to 102jB. Further, as shown in FIG.
  • a baffle plate 107B extending from the inner wall 108B toward the end face of the radiation fin 420 on the Z-axis direction - side is arranged.
  • the baffle plate 107B is a dogleg-shaped metal thin plate member that is arranged to face the inner wall 108B, takes in the air from the through holes 102aB to 102jB, and guides the air that has passed through the filter 500 to the heat radiating fins 420.
  • a through hole (not shown) is formed in the inner wall 108B so that all the air that has passed through the filter 500 is guided to the air guide plate 107B through the inner wall 108B.
  • FIG. 10 is a schematic diagram explaining the airflow generated inside the housing 100B.
  • FIG. 10 is a diagram in which an arrow indicating the direction of the airflow is added to FIG. 9(a).
  • the exhaust fan 110 rotates, the air inside the housing 100B is exhausted from the exhaust fan 110, so that the pressure inside the housing 100B becomes negative. , the air outside the housing 100B is taken in through the through holes 102aB to 102jB, and air currents indicated by solid arrows in FIG. 10 are generated in the housing 100B. More specifically, as shown in FIG. 10, air is taken in from through holes 102aB to 102jB in a direction opposite to the Y-axis direction, and the taken-in air passes through filter 500 and inner wall 108B to baffle plate 107B. , and flow between the heat radiating fins 420 .
  • the configuration of the present embodiment can also reduce the pressure loss (intake loss) at each intake port 102B (that is, the through holes 102aB to 102jB) and the filter 500, as in the first embodiment. , the heat radiating member 400 can be uniformly and sufficiently cooled.

Abstract

The purpose of the present invention is to provide a light emission device which suppresses the occurrence of a pressure loss at vents and which can efficiently cool a heat dissipation unit and a light source. A light emission device (1) which emits line-shaped light comprises: a light source unit (200) having a plurality of light sources on a substrate; a heat dissipation unit (400) having a plurality of heat dissipation fins (420) and thermally coupled to the back surface side of the substrate; a casing (100) receiving the heat dissipation unit and forming a wind tunnel in which cooling air for cooling the heat dissipation fins flows; and a cooling fan (110) for generating the cooling air, and is characterized in that at least one side surface of the casing has vents formed so as to exhaust the cooling air through the plurality of heat dissipation fins to the outside and that the relationships of A>H×(W-(t×n)) and h>H are satisfied where A is the total area of the openings of the vents, h is the height of the vents, H is the height of the plurality of heat dissipation fins, W is the width with which the plurality of heat dissipation fins are formed, t is the thickness of each heat dissipation fin, and n is the number of the plurality of heat dissipation fins.

Description

光照射装置Light irradiation device
 この発明は、光源としてLED(Light Emitting Diode)を備え、ライン状の光を照射する光照射装置に関し、特に、LEDから発せられる熱を放熱する放熱部材を備えた光照射装置に関する。 The present invention relates to a light irradiation device that includes an LED (Light Emitting Diode) as a light source and emits linear light, and more particularly to a light irradiation device that includes a heat dissipation member that dissipates heat emitted from the LED.
 従来、紫外光の照射によって硬化するUVインクを用いて印刷を行なう印刷装置が知られている。このような印刷装置では、ヘッドのノズルから媒体にインクを吐出した後、その材料を硬化させる目的で紫外線照射装置が利用されている。
 このような紫外線照射装置では、近年、照射ヘッドの光源に多数の紫外線LED素子を集合させて構成したものがあるが、紫外線LED素子は自身の発熱等により周囲温度が変化すると自身が発する紫外線強度が変化するため、多数のLED素子を集合させるものでは特に、安定した紫外線を得るためには光源と併せて放熱構造が備えられている(例えば、特許文献1)。
2. Description of the Related Art Conventionally, there has been known a printing apparatus that performs printing using UV ink that is cured by being irradiated with ultraviolet light. In such a printing apparatus, an ultraviolet irradiation device is used for the purpose of curing the material after ink is ejected from the nozzles of the head onto the medium.
In recent years, such an ultraviolet irradiation device has been constructed by assembling a large number of ultraviolet LED elements in the light source of the irradiation head. Therefore, in order to obtain stable ultraviolet rays, a heat radiation structure is provided together with a light source, especially in a device in which a large number of LED elements are assembled (for example, Patent Document 1).
 特許文献1には、多数の紫外線LED素子が列状に配列された紫外線照射ヘッド(光照射装置)が記載されている。紫外線LED素子が配置された基板は、多数の板状フィンが形成されたヒートシンクと熱的に接続されており、ヒートシンクの基端部(板状フィンの一部)のみが露出するように形成された通気口から外部の空気を取り込んで、板状フィンを冷却し、さらには紫外線LED素子を冷却している。 Patent Document 1 describes an ultraviolet irradiation head (light irradiation device) in which a large number of ultraviolet LED elements are arranged in a row. The substrate on which the ultraviolet LED elements are arranged is thermally connected to a heat sink on which a large number of plate-like fins are formed, and is formed so that only the base end portion of the heat sink (part of the plate-like fins) is exposed. Outside air is taken in through the ventilation openings to cool the plate-like fins and further cool the ultraviolet LED elements.
特開2015-149415号公報JP 2015-149415 A
 特許文献1に記載の光照射装置のように、ヒートシンクの基端部のみが露出するように通気口を形成すると、外部から取り込まれた空気(つまり、冷却風)は、多数の板状フィンの表面を確実に通ることとなる。
 しかしながら、特許文献1に記載の構成は、板状フィンの一部が露出するように通気口を設けてはいるものの、実際に装置内部に取り込まれる空気は、板状フィンの間の隙間を通る必要があるため、通気口に臨む板状フィンの開口面積の総和によって取り込まれる空気の量や風速が決定されてしまい、通気口で圧力損失(吸気損失)が発生してしまうという問題がある。
 また、通気口で圧力損失(吸気損失)が発生してしまうと、放熱フィンに十分な量の空気が供給されず、また十分な風速が得られないため、ヒートシンクを効率よく冷却できず、紫外線LED素子の冷却も不十分なものとなる。
As in the light irradiation device described in Patent Literature 1, if the ventilation holes are formed so that only the base end portion of the heat sink is exposed, the air taken in from the outside (that is, the cooling air) flows through the many plate-like fins. It will definitely pass through the surface.
However, in the configuration described in Patent Document 1, although a vent is provided so that a part of the plate-like fins is exposed, the air that is actually taken into the device passes through the gaps between the plate-like fins. Therefore, the amount of air taken in and the wind speed are determined by the sum of the opening areas of the plate-like fins facing the vent, and there is a problem that pressure loss (intake loss) occurs at the vent.
In addition, if pressure loss (intake loss) occurs at the vent, a sufficient amount of air cannot be supplied to the radiation fins and a sufficient wind speed cannot be obtained, so the heat sink cannot be efficiently cooled, and ultraviolet rays Cooling of the LED element is also insufficient.
 本発明は、上記の事情に鑑みてなされたものであり、通気口での圧力損失(吸気損失)の発生を抑え、ヒートシンク(放熱部)及びLED素子(光源)を効率よく冷却することが可能な光照射装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is possible to suppress the occurrence of pressure loss (intake loss) at the vent and efficiently cool the heat sink (heat radiation part) and the LED element (light source). It is an object of the present invention to provide a light irradiation device that is
 上記目的を達成するため、本発明の光照射装置は、照射面上に、第1方向に延び、かつ、第1方向と直交する第2方向に所定の線幅を有するライン状の光を照射する光照射装置であって、第1方向と第2方向とで規定される基板と、基板の表面に第1方向に沿って所定のピッチ毎に配置され第1方向及び第2方向と直交する第3方向に光を出射する複数の光源と、を有する光源部と、第1方向に沿って所定のピッチ毎に立設する複数の放熱フィンを有し、基板の裏面側に熱的に結合された放熱部と、少なくとも放熱部を収容すると共に、放熱フィンを冷却する冷却風が流れる風洞を形成する筐体と、風洞内に、第3方向又は第3方向と相反する方向に冷却風を生成する冷却ファンと、を備え、筐体の第2方向に対向する側面の少なくとも一方は、冷却風が複数の放熱フィン間を通って外部に排気される、又は外部から複数の放熱フィン間を通って吸気されるように形成された通気口を有し、通気口の開口の総面積をAとし、通気口の第3方向の高さをhとし、複数の放熱フィンの第3方向の高さをHとし、複数の放熱フィンが形成されている第1方向の幅をWとし、各放熱フィンの第1方向の厚さをtとし、複数の放熱フィンの枚数をnとしたときに、以下の条件式(1)、(2)を満たすことを特徴とする。
     A>H×(W-(t×n)) ・・・ (1)
     h>H ・・・ (2)
In order to achieve the above object, the light irradiation device of the present invention irradiates a line of light extending in a first direction and having a predetermined line width in a second direction perpendicular to the first direction onto an irradiation surface. a substrate defined by a first direction and a second direction; a plurality of light sources that emit light in a third direction; and a plurality of heat radiation fins standing at predetermined pitches along the first direction, and thermally coupled to the back side of the substrate. a housing that accommodates at least the heat radiating portion and forms a wind tunnel through which cooling air for cooling the heat radiating fins flows; At least one of the side surfaces facing the second direction of the housing exhausts the cooling air to the outside through between the plurality of heat radiation fins, or allows the cooling air to flow from the outside between the plurality of heat radiation fins. A vent is formed through which air is sucked, A is the total area of the opening of the vent, h is the height of the vent in the third direction, and h is the height of the plurality of heat dissipating fins in the third direction. Let H be the width, W be the width in the first direction in which the plurality of heat radiating fins are formed, t be the thickness of each heat radiating fin in the first direction, and n be the number of the plurality of heat radiating fins. It is characterized by satisfying the following conditional expressions (1) and (2).
A>H×(W−(t×n)) (1)
h>H (2)
 このような構成によれば、通気口での圧力損失(吸気損失)が抑えられるため、放熱フィンに十分な量で、かつ十分な風速の空気が供給されるため、放熱部を介して複数の光源を均一かつ十分に冷却することができる。 With such a configuration, the pressure loss (intake loss) at the vent is suppressed, and a sufficient amount of air is supplied to the heat radiating fins at a sufficient wind speed. The light source can be uniformly and sufficiently cooled.
 また、通気口が、第3方向に沿ってz個(zは2以上の整数)、第1方向に沿ってx列(xは2以上の整数)の態様で形成された複数の貫通孔によって構成されていることが望ましい。また、この場合、複数の貫通孔の開口面積が、第3方向と相反する方向に向かうにつれて小さくなるように構成することが望ましい。
 また、x列のうち、奇数列の貫通孔が偶数列の貫通孔に対して第3方向に沿ってシフトしており、複数の貫通孔が全体として千鳥状に配置されていることが望ましい。
 また、複数の貫通孔の少なくとも一部が、複数の放熱フィンと対向して配置されていることが望ましい。
In addition, a plurality of through-holes formed in a manner of z (where z is an integer of 2 or more) along the third direction and x rows (where x is an integer of 2 or more) along the first direction. preferably configured. Further, in this case, it is desirable that the opening areas of the plurality of through-holes decrease toward the direction opposite to the third direction.
Further, it is preferable that the through-holes in odd-numbered rows among the x-rows are shifted along the third direction with respect to the through-holes in even-numbered rows, and that the plurality of through-holes are arranged in a staggered manner as a whole.
Moreover, it is desirable that at least a portion of the plurality of through holes be arranged to face the plurality of heat radiating fins.
 また、複数の貫通孔の少なくとも一部と対向するように配置され、複数の貫通孔から吸気された空気を複数の放熱フィンに導く、又は複数の放熱フィンから排気された空気を複数の貫通孔に導く導風板を備えることが望ましい。 Also, the heat sink is arranged to face at least a part of the plurality of through holes, guides the air sucked from the plurality of through holes to the plurality of heat radiating fins, or guides the air exhausted from the plurality of heat radiating fins to the plurality of through holes. It is desirable to have a baffle plate that leads to
 また、複数の光源の第1方向のピッチが、複数の放熱フィンの第1方向のピッチ以上となるように構成されていることが望ましい。 Also, it is desirable that the pitch of the plurality of light sources in the first direction be greater than or equal to the pitch of the plurality of heat radiation fins in the first direction.
 また、通気口は、筐体の側面の一方面のみに形成され、複数の放熱フィンは、一方面に近接して配置され、筐体の側面の他方面と複数の放熱フィンとの間に空間が形成され、空間内に複数の光源を駆動する駆動回路を有することが望ましい。また、この場合、風洞が、駆動回路によって第2方向に二分された第1風洞と第2風洞から構成されることが望ましい。 Further, the vent is formed only on one side surface of the housing, the plurality of heat radiation fins are arranged close to one side, and a space is provided between the other side surface of the housing and the plurality of heat radiation fins. is formed, and it is desirable to have a drive circuit to drive a plurality of light sources in space. Also, in this case, it is desirable that the wind tunnel is composed of a first wind tunnel and a second wind tunnel that are bisected in the second direction by the drive circuit.
 また、通気口を塞ぐように配置され、インキミストを吸着するフィルタを備えることが望ましい。 In addition, it is desirable to have a filter that is arranged to block the air vent and absorbs ink mist.
 また、光が、紫外線硬化型樹脂に作用する波長を含む光であることが望ましい。 In addition, it is desirable that the light includes a wavelength that acts on the ultraviolet curable resin.
 以上のように、本発明によれば、通気口での圧力損失(吸気損失)の発生が抑えられるため、放熱部及び複数の光源を効率よく冷却することが可能な光照射装置が実現される。 As described above, according to the present invention, the occurrence of pressure loss (intake loss) at the vent is suppressed, so that a light irradiation device capable of efficiently cooling the heat radiating part and the plurality of light sources is realized. .
図1は、本発明の第1の実施形態に係る光照射装置の構成を説明する図である。FIG. 1 is a diagram illustrating the configuration of a light irradiation device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る光照射装置の構成を説明する図である。FIG. 2 is a diagram illustrating the configuration of the light irradiation device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る光照射装置の筐体内に発生する気流を説明する模式図である。3A and 3B are schematic diagrams for explaining airflow generated in the housing of the light irradiation device according to the first embodiment of the present invention. FIG. 図4は、本発明の第1の実施形態に係る光照射装置の吸気口の変形例を示す図である。FIG. 4 is a diagram showing a modification of the intake port of the light irradiation device according to the first embodiment of the present invention. 図5は、本発明の第2の実施形態に係る光照射装置の構成を説明する図である。FIG. 5 is a diagram illustrating the configuration of a light irradiation device according to a second embodiment of the present invention. 図6は、本発明の第2の実施形態に係る光照射装置の構成を説明する図である。FIG. 6 is a diagram illustrating the configuration of a light irradiation device according to a second embodiment of the present invention. 図7は、本発明の第2の実施形態に係る光照射装置の筐体内に発生する気流を説明する模式図である。FIG. 7 is a schematic diagram for explaining the airflow generated inside the housing of the light irradiation device according to the second embodiment of the present invention. 図8は、本発明の第3の実施形態に係る光照射装置の構成を説明する図である。FIG. 8 is a diagram illustrating the configuration of a light irradiation device according to a third embodiment of the present invention. 図9は、本発明の第3の実施形態に係る光照射装置の構成を説明する図である。FIG. 9 is a diagram illustrating the configuration of a light irradiation device according to a third embodiment of the present invention. 図10は、本発明の第3の実施形態に係る光照射装置の筐体内に発生する気流を説明する模式図である。10A and 10B are schematic diagrams for explaining the airflow generated inside the housing of the light irradiation device according to the third embodiment of the present invention.
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
(第1の実施形態)
 図1及び図2は、本発明の第1の実施形態に係る光照射装置1の構成を説明する図であり、図1(a)は、本発明の実施形態に係る光照射装置1の斜視図であり、図1(b)は、図1(a)の光照射装置1の平面図である。また、図2(a)は、図1(b)のA-A線断面図であり、図2(b)は、図2(a)のB-B線断面図であり、図2(c)は、図2(b)のC部拡大図である。本実施形態の光照射装置1は、印刷装置等に搭載されて、紫外線硬化型インキや紫外線硬化型樹脂を硬化させる光源装置であり、照射対象物の上方に配置され、照射対象物(照射面)に対してライン状の紫外光を出射する。なお、本明細書においては、図1の座標に示すように、後述するLED素子210の配列方向をX軸方向(第1方向)、LED素子210が紫外光を出射する方向をZ軸方向(第3方向)、ならびにX軸方向及びZ軸方向に直交する方向をY軸方向(第2方向)と定義して説明する。
(First embodiment)
1 and 2 are diagrams for explaining the configuration of the light irradiation device 1 according to the first embodiment of the present invention, and FIG. 1(a) is a perspective view of the light irradiation device 1 according to the embodiment of the present invention. 1(b) is a plan view of the light irradiation device 1 of FIG. 1(a). Further, FIG. 2(a) is a cross-sectional view along the line AA in FIG. 1(b), FIG. 2(b) is a cross-sectional view along the line BB in FIG. 2(a), and FIG. ) is an enlarged view of part C in FIG. 2(b). The light irradiation device 1 of the present embodiment is a light source device that is mounted in a printing device or the like and cures ultraviolet curable ink or ultraviolet curable resin. ) to emit linear ultraviolet light. In this specification, as shown by the coordinates in FIG. 1, the direction in which the LED elements 210 are arranged (described later) is the X-axis direction (first direction), and the direction in which the LED elements 210 emit ultraviolet light is the Z-axis direction ( 3rd direction), and a direction orthogonal to the X-axis direction and the Z-axis direction are defined as the Y-axis direction (second direction).
 図1に示すように、本実施形態の光照射装置1は、筐体100と、光源ユニット200(光源部)と、制御基板300(駆動回路)と、放熱部材400と、を備えている。
 筐体100は、光源ユニット200、制御基板300、放熱部材400を収容する薄い箱形の部材であり、筐体100の前面に取り付けられ紫外光が出射されるガラス製の窓部105と、筐体100の背面に設けられ筐体100内の空気を排気する2つの排気ファン110(冷却ファン)とを備え、筐体100の上面には、筐体100に外部から空気を取り込む吸気口102(通気口)が形成されている。
 図1(b)に示すように、本実施形態の吸気口102は、Z軸方向に沿って並ぶ7個の円形の貫通孔102a~102gが、X軸方向に19列配置されることによって構成されている。奇数列の貫通孔102a~102gは、偶数列の貫通孔102a~102gに対してZ軸方向にシフトしており、複数の貫通孔102a~102gは、全体として千鳥状に配置されている。
 また、Z軸方向+側から4個目までの貫通孔102a~102dは、同じ孔径(例えば、直径5mm)になっており、貫通孔102e~102gの孔径は、貫通孔102a~102dの孔径よりも徐々に小さく(例えば、それぞれ直径4mm、3mm、2mm)なっている。つまり、本実施形態の吸気口102は、Z軸方向+側から-側に向かうにつれて開口面積が小さくなるように構成されている。なお、貫通孔102a~102dは、後述する放熱フィン420と対向するように配置され、貫通孔102a~102dからは放熱フィン420が露出している。
 また、図2(a)に示すように、本実施形態の筐体100の内部には、筐体100の上面から放熱フィン420のZ軸方向-側の端面に向かって延びる導風板107が配置されている。導風板107は、貫通孔102e~102gと対向するように配置され、貫通孔102e~102gから取り込まれる空気を放熱フィン420に導く、くの字状の金属製の薄板部材である。
As shown in FIG. 1 , the light irradiation device 1 of this embodiment includes a housing 100 , a light source unit 200 (light source section), a control board 300 (drive circuit), and a heat dissipation member 400 .
The housing 100 is a thin box-shaped member that houses the light source unit 200, the control board 300, and the heat dissipation member 400. The housing 100 has a glass window 105 attached to the front surface of the housing 100 through which ultraviolet light is emitted, and a housing. Two exhaust fans 110 (cooling fans) are provided on the back of the body 100 to exhaust the air in the housing 100, and the upper surface of the housing 100 has an intake port 102 ( vent) is formed.
As shown in FIG. 1B, the intake port 102 of this embodiment is configured by arranging seven circular through holes 102a to 102g along the Z-axis direction in 19 rows in the X-axis direction. It is The through-holes 102a-102g in odd-numbered rows are shifted in the Z-axis direction with respect to the through-holes 102a-102g in even-numbered rows, and the plurality of through-holes 102a-102g are arranged in a zigzag pattern as a whole.
Further, the through holes 102a to 102d up to the fourth from the positive side in the Z-axis direction have the same hole diameter (for example, a diameter of 5 mm), and the hole diameters of the through holes 102e to 102g are larger than the hole diameters of the through holes 102a to 102d. are also gradually becoming smaller (eg, 4 mm, 3 mm, and 2 mm in diameter, respectively). In other words, the intake port 102 of this embodiment is configured such that the opening area decreases from the + side toward the - side in the Z-axis direction. The through holes 102a to 102d are arranged so as to face radiation fins 420, which will be described later, and the radiation fins 420 are exposed from the through holes 102a to 102d.
Further, as shown in FIG. 2(a), inside the housing 100 of the present embodiment, there is a baffle plate 107 extending from the upper surface of the housing 100 toward the end surface of the radiation fins 420 on the Z-axis direction - side. are placed. The baffle plate 107 is a dogleg-shaped metal thin plate member that is arranged to face the through holes 102 e to 102 g and guides the air taken in through the through holes 102 e to 102 g to the heat radiating fins 420 .
 光源ユニット200は、X軸方向とY軸方向で規定される矩形状の基板205と、同じ特性を有する複数(例えば、100個)のLED素子210(光源)とを備えている。 The light source unit 200 includes a rectangular substrate 205 defined by the X-axis direction and the Y-axis direction, and a plurality of (for example, 100) LED elements 210 (light sources) having the same characteristics.
 複数のLED素子210は、Z軸方向に光軸が揃えられた状態で、所定のピッチ毎に、例えば、50個(X軸方向)×2列(Y軸方向)の態様で基板205の表面に配置され、基板205と電気的に接続されている。なお、複数のLED素子210が配置される「ピッチ」とは、隣接するLED素子210の中心間距離を意味し、X軸方向とY軸方向とでピッチが異なっていてもよい。
 基板205は、後述する制御基板300と不図示のケーブルによって接続されており、各LED素子210には、基板205を介して制御基板300からの駆動電流が供給されるようになっている。各LED素子210に駆動電流が供給されると、各LED素子210からは駆動電流に応じた光量の紫外光(例えば、波長365nm)が出射され、光源ユニット200からはX軸方向に平行なライン状の紫外光が出射される。そして、光源ユニット200から出射されるライン状の紫外光は、窓部105を通って照射対象物に対して出射される。
The plurality of LED elements 210 are aligned in the Z-axis direction, for example, 50 (X-axis direction)×2 rows (Y-axis direction) at predetermined pitches on the surface of the substrate 205 . , and electrically connected to the substrate 205 . The “pitch” at which the plurality of LED elements 210 are arranged means the distance between the centers of adjacent LED elements 210, and the pitch may differ between the X-axis direction and the Y-axis direction.
The board 205 is connected to a control board 300 (to be described later) by a cable (not shown), and each LED element 210 is supplied with a drive current from the control board 300 via the board 205 . When a drive current is supplied to each LED element 210, each LED element 210 emits ultraviolet light (for example, a wavelength of 365 nm) of a light amount corresponding to the drive current, and a line parallel to the X-axis direction is emitted from the light source unit 200. shaped ultraviolet light is emitted. The line-shaped ultraviolet light emitted from the light source unit 200 passes through the window 105 and is emitted toward the object to be irradiated.
 制御基板300は、回路基板301と、回路基板301の一方面(Y軸方向-側の面)に配置された複数の電子部品(不図示)と、を有し、光源ユニット200のLED素子210の発光を制御すると共に、光照射装置1全体を制御する電子回路基板である。制御基板300は、ユーザが不図示のユーザインターフェースを介して入力する信号を受信し、光源ユニット200のON/OFF制御や輝度制御を行ったり、ユーザインターフェースを介して外部にエラー情報を出力する。 The control board 300 has a circuit board 301 and a plurality of electronic components (not shown) arranged on one surface (Y-axis direction - side surface) of the circuit board 301. The LED elements 210 of the light source unit 200 is an electronic circuit board that controls the light emission of the light irradiation device 1 as a whole. The control board 300 receives a signal input by a user through a user interface (not shown), performs ON/OFF control and brightness control of the light source unit 200, and outputs error information to the outside through the user interface.
 放熱部材400は、光源ユニット200から発せられた熱を放熱する部材である。本実施形態の放熱部材400は、矩形板状の金属製(例えば、銅、アルミニウム)の放熱板410と、放熱板410の他端面(光源ユニット200が載置される面とは反対側の面)にロウ付け、半田付け、或いはスカイブ加工等によって一体形成され、X軸方向に所定のピッチ毎に立設する複数の放熱フィン420と、で構成されている(図2(a)、(b))。なお、複数の放熱フィン420が立設する「ピッチ」とは、隣接する放熱フィン420の中心間距離を意味する。
 放熱フィン420は、放熱板410からZ軸方向と相反する方向に突出するように立設し、放熱板410に伝わった熱を空気中に放熱する、矩形板状の金属(例えば、銅、アルミニウム、鉄、マグネシウム等の金属やこれらを含む合金等)の部材である。なお、複数の放熱フィン420のX軸方向のピッチは、複数のLED素子210のX軸方向のピッチよりも狭い。また、詳細は後述するが、本実施形態においては、吸気口102から筐体100内に外部からの空気が取り込まれ、取り込まれた空気が冷却風として各放熱フィン420の表面を流れ、放熱フィン420によって加熱された空気が、排気ファン110によって速やかに排気されるようになっている。
The heat dissipation member 400 is a member that dissipates heat emitted from the light source unit 200 . The heat dissipating member 400 of this embodiment includes a rectangular plate-shaped metal (for example, copper or aluminum) heat dissipating plate 410 and the other end surface of the heat dissipating plate 410 (the surface opposite to the surface on which the light source unit 200 is mounted). ) and a plurality of radiation fins 420 integrally formed by brazing, soldering, skiving, or the like, and erected at predetermined pitches in the X-axis direction (FIGS. 2A and 2B )). In addition, the “pitch” at which the plurality of radiating fins 420 stand means the distance between the centers of adjacent radiating fins 420 .
Radiation fins 420 are rectangular metal plates (eg, copper, aluminum, etc.) that are erected so as to protrude from radiation plate 410 in a direction opposite to the Z-axis direction, and radiate heat transferred to radiation plate 410 into the air. , metals such as iron and magnesium, and alloys containing these). The pitch in the X-axis direction of the plurality of radiating fins 420 is narrower than the pitch in the X-axis direction of the plurality of LED elements 210 . Further, although the details will be described later, in the present embodiment, air from the outside is taken into the housing 100 from the intake port 102, and the taken-in air flows on the surface of each heat radiation fin 420 as cooling air. The air heated by 420 is quickly exhausted by exhaust fan 110 .
 なお、図2(a)に示すように、本実施形態の光源ユニット200と放熱部材400は、筐体100内において、前側に(Z軸方向+側に)配置されて固定されるようになっている。そして、光源ユニット200と放熱部材400が筐体100内に固定されたとき、各LED素子210が窓部105と対向する位置に配置され、各放熱フィン420のY軸方向+側の端部420aが筐体100の上面に当接し、Y軸方向-側の端部420bと筐体100の底面との間には空間Sが形成されるようになっている。
 また、各放熱フィン420の後側(Z軸方向-側)には、放熱フィン420を冷却した後の冷却風が流れる風洞αが形成されている。
 また、空間Sには、少なくとも制御基板300のZ軸方向+側の端部が配置され、制御基板300の下側(Y軸方向-側)には、回路基板301の一方面(Y軸方向-側の面)に配置された複数の電子部品(不図示)を冷却するための冷却風が流れる風洞βが形成されている。つまり、制御基板300によって筐体100内部の空間がY軸方向に二分され、風洞α(第1風洞)と風洞β(第2風洞)が形成されている。
In addition, as shown in FIG. 2A, the light source unit 200 and the heat dissipation member 400 of the present embodiment are arranged and fixed on the front side (on the + side in the Z-axis direction) in the housing 100. ing. When the light source unit 200 and the heat dissipation member 400 are fixed in the housing 100, each LED element 210 is arranged at a position facing the window 105, and the end 420a of each heat dissipation fin 420 on the + side in the Y-axis direction. abuts on the top surface of the housing 100, and a space S is formed between the negative side end 420b in the Y-axis direction and the bottom surface of the housing 100. As shown in FIG.
A wind tunnel α is formed on the rear side of each radiation fin 420 (the negative side in the Z-axis direction) through which cooling air flows after cooling the radiation fins 420 .
In addition, at least the end of the control board 300 on the positive side in the Z-axis direction is disposed in the space S, and one side of the circuit board 301 (Y-axis direction A wind tunnel β is formed through which cooling air flows for cooling a plurality of electronic components (not shown) arranged on the negative side). That is, the control board 300 divides the space inside the housing 100 into two in the Y-axis direction to form the wind tunnel α (first wind tunnel) and the wind tunnel β (second wind tunnel).
 本実施形態の各LED素子210は、略一様な光量の紫外光を出射するように各LED素子210に供給される駆動電流が調整されており、光照射装置1から出射されるライン状の紫外光は、X軸方向において略均一な光量分布を有している。 In each LED element 210 of the present embodiment, the drive current supplied to each LED element 210 is adjusted so as to emit ultraviolet light with a substantially uniform amount of light. Ultraviolet light has a substantially uniform light amount distribution in the X-axis direction.
 各LED素子210に駆動電流が流れ、各LED素子210から紫外光が出射されると、LED素子210の自己発熱により温度が上昇するが、各LED素子210で発生した熱は、基板205及び放熱板410を介して、放熱フィン420に速やかに伝導(移動)し、各放熱フィン420から周辺の空気中に放熱される。そして、放熱フィン420によって加熱された空気は、排気ファン110を通って速やかに排気されるようになっている。 When a drive current flows through each LED element 210 and ultraviolet light is emitted from each LED element 210, the temperature rises due to self-heating of the LED element 210. Through the plate 410 , the heat is quickly conducted (moved) to the radiating fins 420 and radiated from each radiating fin 420 into the surrounding air. The air heated by the radiation fins 420 is quickly exhausted through the exhaust fan 110 .
 ここで、本実施形態の構成においては、光源ユニット200と放熱部材400がX軸方向に延びているところ、X軸方向において光源ユニット200のLED素子210の温度が異なると、光量にばらつきが生じてしまうため、放熱部材400を均一かつ十分に冷却しなければならないという課題があった。そこで、かかる課題を解決するため、本実施形態においては、放熱部材400の放熱フィン420に十分な量の空気を供給すると共に、十分な風速が得られるように、吸気口102のZ軸方向の高さhが、放熱フィン420のZ軸方向の高さHよりも高く、かつ吸気口102の開口の総面積Aが、放熱フィン420の通風可能領域の面積Bよりも大きくなるように構成した(詳細は後述)。そして、これによって吸気口102での圧力損失(吸気損失)を少なくし、放熱部材400を均一かつ十分に冷却可能にしている。 Here, in the configuration of the present embodiment, since the light source unit 200 and the heat dissipation member 400 extend in the X-axis direction, if the temperature of the LED element 210 of the light source unit 200 differs in the X-axis direction, the amount of light varies. Therefore, there is a problem that the heat radiating member 400 must be cooled uniformly and sufficiently. Therefore, in order to solve such a problem, in the present embodiment, a sufficient amount of air is supplied to the heat radiating fins 420 of the heat radiating member 400, and a sufficient wind speed is obtained. The height h is higher than the height H of the radiation fins 420 in the Z-axis direction, and the total area A of the openings of the intake port 102 is configured to be larger than the area B of the ventilable region of the radiation fins 420. (details will be described later). Thus, the pressure loss (intake loss) at the intake port 102 is reduced, and the heat radiating member 400 can be uniformly and sufficiently cooled.
 以下、本発明の特徴部分である、放熱部材400の冷却作用について説明する。図3は、筐体100内に発生する気流を説明する模式図である。なお、図3は、図2(a)に気流の向きを示す矢印を追加した図である。 The cooling action of the heat radiating member 400, which is a feature of the present invention, will be described below. 3A and 3B are schematic diagrams for explaining the airflow generated inside the housing 100. FIG. In addition, FIG. 3 is a diagram in which an arrow indicating the direction of the airflow is added to FIG. 2(a).
 図3に示すように、本実施形態の光照射装置1は、筐体100の背面に排気ファン110を備え、筐体100の上面には、複数の貫通孔102a~102gによって吸気口102が形成されている。従って、排気ファン110が回ると、排気ファン110からは筐体100の内部の空気が排気されるため、筐体100内が負圧となり、筐体100の外側の空気が貫通孔102a~102gから取り込まれて、筐体100内には、図3中、実線の矢印で示す気流が発生する。より具体的には、図3に示すように、放熱フィン420に面する貫通孔102a~102dには、Y軸方向と相反する方向に気流が発生し、導風板107に面する貫通孔102e~102gには、導風板107に沿うように気流が発生し、それぞれ各放熱フィン420間に流入する。
 このように、本実施形態においては、筐体100の上面に形成された複数の貫通孔102a~102gから取り込まれた空気が、全て各放熱フィン420間に流入するが、
吸気口102(つまり、貫通孔102a~102g)での圧力損失(吸気損失)が発生しないように、吸気口102のZ軸方向の高さh(図1(b))が、放熱フィン420のZ軸方向の高さH(図2(b))よりも高く、吸気口102の開口の総面積A(つまり、複数の貫通孔102a~102gの開口面積の和)が、放熱フィン420の通風可能領域の面積Bよりも大きくなるように構成している。
 ここで、放熱フィン420の通風可能領域の面積Bは、放熱フィン420が形成されているX軸方向の幅を通風可能幅W(図2(b))とし、各放熱フィン420のX軸方向の厚さをt(図2(c))とし、放熱フィン420の枚数をnとすると、
     B=H×(W-(t×n)) で表すことができる。
 従って、本実施形態における、吸気口102の開口の総面積Aの関係は、以下の条件式(1)で表すことができる。
     A>H×(W-(t×n)) ・・・ (1)
 また、上述の吸気口102のZ軸方向の高さhと、放熱フィン420のZ軸方向の高さHの関係から、以下の条件式(2)が得られる。
     h>H ・・・ (2)
 このように、吸気口102の開口の総面積A(つまり、複数の貫通孔102a~102gの開口面積の和)が、放熱フィン420の通風可能領域の面積Bよりも大きくなるように構成すると(つまり、条件式(1)及び(2)を満たすように構成すると)、ベルヌーイの定理により吸気口102での動圧が放熱フィン420での動圧よりも小さくなるため、筐体100内に流入する冷却風の流量を確保しつつ、放熱フィン420を流れる冷却風の風速を確保する(吸気口での風速に対して相対的に高める)ことができる。
As shown in FIG. 3, the light irradiation device 1 of this embodiment includes an exhaust fan 110 on the back of the housing 100, and an air intake 102 is formed on the top of the housing 100 by a plurality of through holes 102a to 102g. It is Therefore, when the exhaust fan 110 rotates, the air inside the housing 100 is exhausted from the exhaust fan 110, so that the inside of the housing 100 becomes a negative pressure, and the air outside the housing 100 is discharged from the through holes 102a to 102g. As it is taken in, an air current indicated by solid line arrows in FIG. 3 is generated in the housing 100 . More specifically, as shown in FIG. 3, through holes 102a to 102d facing heat radiating fins 420, an airflow is generated in a direction opposite to the Y-axis direction, and through hole 102e facing air guide plate 107 is generated. 102g, an airflow is generated along the airflow guide plate 107 and flows between the heat radiation fins 420, respectively.
As described above, in the present embodiment, all the air taken in from the plurality of through holes 102a to 102g formed in the upper surface of the housing 100 flows between the heat radiation fins 420.
The height h (FIG. 1(b)) of the intake port 102 in the Z-axis direction is set so that the pressure loss (intake loss) does not occur at the intake port 102 (that is, the through holes 102a to 102g). It is higher than the height H in the Z-axis direction (FIG. 2B), and the total area A of the openings of the intake port 102 (that is, the sum of the opening areas of the plurality of through holes 102a to 102g) is the ventilation of the heat radiating fins 420. It is configured to be larger than the area B of the possible region.
Here, the area B of the ventilable region of the radiation fins 420 is the width in the X-axis direction where the radiation fins 420 are formed, and the ventilation width W (FIG. 2(b)). is the thickness of t (FIG. 2(c)) and n is the number of radiation fins 420,
B=H×(W−(t×n)).
Therefore, the relationship of the total area A of the openings of the intake port 102 in this embodiment can be expressed by the following conditional expression (1).
A>H×(W−(t×n)) (1)
Moreover, the following conditional expression (2) is obtained from the relationship between the height h of the intake port 102 in the Z-axis direction and the height H of the radiation fins 420 in the Z-axis direction.
h>H (2)
In this way, if the total area A of the openings of the intake port 102 (that is, the sum of the opening areas of the plurality of through holes 102a to 102g) is configured to be larger than the area B of the ventilable region of the radiation fins 420 ( That is, if the conditional expressions (1) and (2) are satisfied, the dynamic pressure at the intake port 102 becomes smaller than the dynamic pressure at the heat radiation fins 420 according to Bernoulli's theorem. While ensuring the flow rate of the cooling air, the wind speed of the cooling air flowing through the heat radiating fins 420 can be ensured (increased relative to the wind speed at the intake port).
 そして、各放熱フィン420の間(つまり、各放熱フィン420の表面)を流れた空気の一部は、回路基板301の上方(Y軸方向+側)に形成された風洞αを流れて排気ファン110から排気され、残りの空気は、空間Sを通って、回路基板301の下方(Y軸方向-側)に流れ込み、風洞βを流れて排気ファン110から排気される。このため、各放熱フィン420が略均一に冷却されると共に、回路基板301の一方面(風洞βに面する面)に配置された複数の電子部品も冷却される。
 なお、上述したように、本実施形態の貫通孔102a~102dの孔径が、貫通孔102e~102gの孔径よりも大きく、Z軸方向+側から-側に向かって開口面積が小さくなるように構成されているため、放熱フィン420を冷却するために十分な量の冷却風が、貫通孔102a~102dから(つまり、放熱フィン420のZ軸方向の高さ全体に亘って)Y軸方向と相反する方向に流れ、その一部が空間Sに流れ込む。このため、放熱フィン420に確実に冷却風が供給されると共に、風洞βにも確実に冷却風が供給されることとなる。
Part of the air that has flowed between the radiation fins 420 (that is, the surfaces of the radiation fins 420) flows through a wind tunnel α formed above the circuit board 301 (the positive side in the Y-axis direction), and flows through the exhaust fan. 110 , the remaining air passes through the space S, flows below the circuit board 301 (Y-axis direction − side), flows through the wind tunnel β, and is exhausted from the exhaust fan 110 . Therefore, each heat radiation fin 420 is cooled substantially uniformly, and the plurality of electronic components arranged on one side (the side facing the wind tunnel β) of the circuit board 301 is also cooled.
As described above, the diameters of the through holes 102a to 102d of the present embodiment are larger than the diameters of the through holes 102e to 102g, and the opening area is configured to decrease from the + side to the - side in the Z axis direction. Therefore, a sufficient amount of cooling air to cool the radiation fins 420 flows from the through-holes 102a to 102d (that is, over the entire height of the radiation fins 420 in the Z-axis direction) in a direction opposite to the Y-axis direction. part of it flows into the space S. Therefore, the cooling air is reliably supplied to the radiation fins 420, and the cooling air is also reliably supplied to the wind tunnel β.
 以上が本実施形態の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。 Although the present embodiment has been described above, the present invention is not limited to the above configuration, and various modifications are possible within the scope of the technical idea of the present invention.
 例えば、本実施形態の光照射装置1は、紫外光を照射する装置としたが、このような構成に限定されるものではなく、他の波長域の照射光(例えば白色光などの可視光、赤外光等)を照射する装置にも本発明を適用することができる。 For example, the light irradiation device 1 of the present embodiment is a device that irradiates ultraviolet light, but is not limited to such a configuration, and irradiation light in other wavelength ranges (for example, visible light such as white light, The present invention can also be applied to a device that irradiates infrared light or the like.
 また、本実施形態の導風板107は、くの字状の薄板部材としたが、貫通孔102e~102gから取り込まれた空気を放熱フィン420に導くことができれば、いかなる態様のものであっても構わない。 Further, although the baffle plate 107 of the present embodiment is a V-shaped thin plate member, any form may be used as long as the air taken in through the through holes 102e to 102g can be guided to the heat radiating fins 420. I don't mind.
 また、本実施形態においては、貫通孔102a~102dが放熱フィン420と対向するように配置され、貫通孔102a~102dからは放熱フィン420が露出しているとしたが、放熱フィン420に対して十分な量の冷却風を供給することができればよく、少なくとも貫通孔102a~102dの一部が放熱フィン420と対向するように配置されていればよい。 Further, in the present embodiment, the through holes 102a to 102d are arranged to face the radiating fins 420, and the radiating fins 420 are exposed from the through holes 102a to 102d. It is sufficient if a sufficient amount of cooling air can be supplied, and at least a part of the through holes 102 a to 102 d are arranged so as to face the heat radiating fins 420 .
 また、本実施形態においては、排気ファン110によって、筐体100内を負圧とし、吸気口102から筐体100内に空気が取り込まれるとしたが、このような構成に限定されるものではなく、排気ファン110に代えて吸気ファンを用いてもよい。この場合、筐体100内の気流の向きは逆となり、貫通孔102a~102gから空気が排気されることとなるが、本実施形態と同様、排気口となる貫通孔102a~102gでの圧力損失(吸気損失)が少なく、放熱部材400を均一かつ十分に冷却することができる。 Further, in the present embodiment, the inside of the housing 100 is made negative pressure by the exhaust fan 110, and the air is drawn into the housing 100 from the intake port 102. However, the configuration is not limited to this. , an intake fan may be used instead of the exhaust fan 110 . In this case, the direction of the airflow in the housing 100 is reversed, and the air is exhausted from the through holes 102a to 102g. (Intake loss) is small, and the heat radiating member 400 can be uniformly and sufficiently cooled.
 また、本実施形態の吸気口102は、Z軸方向に沿って並ぶ7個の円形の貫通孔102a~102gが、X軸方向に19列配置されることによって構成されているとしたが、このような構成に限定されるものではなく、Z軸方向に沿ってz個(zは2以上の整数)、X軸方向に沿ってx列(xは2以上の整数)の態様で構成されればよい。 Further, although the intake port 102 of the present embodiment is configured by arranging seven circular through holes 102a to 102g along the Z-axis direction in 19 rows in the X-axis direction, It is not limited to such a configuration, and is configured in a manner of z pieces (z is an integer of 2 or more) along the Z-axis direction and x rows (x is an integer of 2 or more) along the X-axis direction. Just do it.
 また、本実施形態の吸気口102は、複数の円形の貫通孔102a~102gで構成されるとしたが、必ずしもこのような構成に限定されるものではない。図4は、本実施形態の吸気口102の変形例を示す図である。図4(a)に示すように、吸気口102は、四角形状の複数の貫通孔で構成されてもよく、図4(b)に示すように、吸気口102は、六角形状の複数の貫通孔で構成されてもよく、図4(c)に示すように、吸気口102は、菱形(45度回転させた四角形を含む)状の複数の貫通孔で構成されてもよい。 Also, although the intake port 102 of the present embodiment is configured with a plurality of circular through holes 102a to 102g, it is not necessarily limited to such a configuration. FIG. 4 is a diagram showing a modification of the intake port 102 of this embodiment. As shown in FIG. 4(a), the air inlet 102 may be configured with a plurality of square through holes, and as shown in FIG. 4(b), the air inlet 102 may be configured with a plurality of hexagonal through holes. Alternatively, as shown in FIG. 4(c), the intake port 102 may be configured with a plurality of rhombus-shaped (including a square rotated by 45 degrees) through-holes.
(第2の実施形態)
 図5及び図6は、本発明の第2の実施形態に係る光照射装置2の構成を説明する図であり、図5(a)は、本発明の実施形態に係る光照射装置2の斜視図であり、図5(b)は、図5(a)の光照射装置2の平面図である。また、図6(a)は、図5(b)のD-D線断面図であり、図6(b)は、図6(a)のE-E線断面図であり、図6(c)は、図6(b)のF部拡大図である。
(Second embodiment)
5 and 6 are diagrams for explaining the configuration of the light irradiation device 2 according to the second embodiment of the present invention. FIG. 5(a) is a perspective view of the light irradiation device 2 according to the embodiment of the present invention. 5(b) is a plan view of the light irradiation device 2 of FIG. 5(a). 6(a) is a cross-sectional view taken along line DD of FIG. 5(b), FIG. 6(b) is a cross-sectional view taken along line EE of FIG. 6(a), and FIG. ) is an enlarged view of part F in FIG. 6(b).
 図5及び図6に示すように、本実施形態の光照射装置2は、筐体100Aの上面及び下面に外部から空気を取り込む吸気口102Aが形成されており、筐体100Aの内部に、一対の導風板107Aを備える点で第1の実施形態の光照射装置1と異なっている。
 なお、本実施形態の各吸気口102Aは、Z軸方向に沿って並ぶ9個の円形の貫通孔102aA~102iAが、X軸方向に21列配置されることによって構成されている。奇数列の貫通孔102aA~102iAは、偶数列の貫通孔102aA~102iAに対してZ軸方向にシフトしており、Z軸方向+側から5個目までの貫通孔102aA~102eAは、同じ孔径(例えば、直径5mm)になっており、貫通孔102fA~102iAの孔径は、貫通孔102aA~102eAの孔径よりも徐々に小さく(例えば、それぞれ直径4mm、3mm、2mm、1mm)なっている。つまり、第1の実施形態と同様、本実施形態の吸気口102Aも、Z軸方向+側から-側に向かって開口面積が小さくなるように構成されている。なお、貫通孔102aA~102eAは、放熱フィン420Aと対向するように配置され、貫通孔102aA~102eAからは放熱フィン420Aが露出している。
 また、図6(a)に示すように、本実施形態の筐体100Aの内部には、筐体100Aの上面及び底面から放熱フィン420AのZ軸方向-側の端面に向かって延びる一対の導風板107Aが配置されている。各導風板107Aは、貫通孔102fA~102iAと対向するように配置され、貫通孔102fA~102iAから取り込まれる空気を放熱フィン420Aに導くように構成されている。
As shown in FIGS. 5 and 6, in the light irradiation device 2 of the present embodiment, an intake port 102A for taking in air from the outside is formed on the upper surface and the lower surface of the housing 100A. It differs from the light irradiation device 1 of the first embodiment in that it includes a baffle plate 107A.
Each intake port 102A of the present embodiment is configured by arranging nine circular through holes 102aA to 102iA along the Z-axis direction in 21 rows in the X-axis direction. The odd-numbered through holes 102aA to 102iA are shifted in the Z-axis direction with respect to the even-numbered through holes 102aA to 102iA. (eg, 5 mm in diameter), and the diameters of the through holes 102fA to 102iA are gradually smaller than the diameters of the through holes 102aA to 102eA (eg, diameters of 4 mm, 3 mm, 2 mm, and 1 mm, respectively). That is, as in the first embodiment, the intake port 102A of this embodiment is also configured such that the opening area decreases from the + side to the - side in the Z-axis direction. The through holes 102aA to 102eA are arranged to face the heat radiation fins 420A, and the heat radiation fins 420A are exposed from the through holes 102aA to 102eA.
In addition, as shown in FIG. 6A, inside the housing 100A of the present embodiment, a pair of conductors extending from the top and bottom surfaces of the housing 100A toward the end surface of the radiation fin 420A on the negative side in the Z-axis direction is provided. A wind plate 107A is arranged. Each baffle plate 107A is arranged to face the through holes 102fA to 102iA, and is configured to guide the air taken in through the through holes 102fA to 102iA to the heat radiating fins 420A.
 また、図6に示すように、本実施形態の光照射装置2は、筐体100A内に排気ファン110Aを備えている。
 また、光照射装置2においては、光源ユニット200Aは、X軸方向とY軸方向で規定される矩形状の基板205Aと、50個(X軸方向)×10列(Y軸方向)の態様で基板205A上に配置されたLED素子210Aとを備えている。
 また、光照射装置2においては、放熱部材400Aは、矩形板状の放熱板410Aと、放熱板410Aの他端面(光源ユニット200Aが載置される面とは反対側の面)にロウ付けされた複数の放熱フィン420Aとで構成されており、各放熱フィン420AのY軸方向+側の端部420aAが筐体100Aの上面に対向し、Y軸方向-側の端部420bAが筐体100Aの底面と対向するようになっている。
 また、各放熱フィン420Aの後側(Z軸方向-側)には、放熱フィン420Aを冷却した後の冷却風が流れる風洞γが形成されている。
Further, as shown in FIG. 6, the light irradiation device 2 of this embodiment includes an exhaust fan 110A inside the housing 100A.
In the light irradiation device 2, the light source unit 200A includes a rectangular substrate 205A defined by the X-axis direction and the Y-axis direction, and 50 (X-axis direction)×10 rows (Y-axis direction). and an LED element 210A arranged on a substrate 205A.
In the light irradiation device 2, the heat radiation member 400A is brazed to the rectangular heat radiation plate 410A and the other end surface of the heat radiation plate 410A (the surface opposite to the surface on which the light source unit 200A is placed). Each radiation fin 420A has an end portion 420aA on the positive side in the Y-axis direction facing the upper surface of the housing 100A, and an end portion 420bA on the negative side in the Y-axis direction facing the housing 100A. facing the bottom surface of the
A wind tunnel γ through which cooling air flows after cooling the radiation fins 420A is formed behind each radiation fin 420A (the negative side in the Z-axis direction).
 図7は、放熱部材400Aと筐体100A内に発生する気流との関係を説明する模式図である。なお、図7は、図6(a)に気流の向きを示す矢印を追加した図である。 FIG. 7 is a schematic diagram illustrating the relationship between the heat radiating member 400A and the airflow generated inside the housing 100A. In addition, FIG. 7 is a diagram in which an arrow indicating the direction of the airflow is added to FIG. 6(a).
 図7に示すように、本実施形態の光照射装置2において、排気ファン110Aが回ると、排気ファン110Aからは筐体100Aの内部の空気が排気されるため、筐体100A内が負圧となり、筐体100Aの外側の空気が貫通孔102aA~102iAから取り込まれて、筐体100A内には、図7中、実線の矢印で示す気流が発生する。より具体的には、図7に示すように、筐体100Aの上面の貫通孔102aA~102iAには、Y軸方向と相反する方向に気流が発生し、導風板107Aに面する貫通孔102aA~102iAには、導風板107Aに沿うように気流が発生し、それぞれ各放熱フィン420A間に流入する。同様に、筐体100Aの底面の貫通孔102aA~102iAには、Y軸方向に気流が発生し、導風板107Aに面する貫通孔102aA~102iAには、導風板107Aに沿うように気流が発生し、それぞれ各放熱フィン420A間に流入する。
 このように、本実施形態においては、筐体100Aの上面及び底面に形成された複数の貫通孔102aA~102iAから取り込まれた空気が、全て各放熱フィン420A間に流入するが、各吸気口102A(つまり、貫通孔102aA~102iA)での圧力損失(吸気損失)が発生しないように、各吸気口102AのZ軸方向の高さh(図5(b))が、放熱フィン420AのZ軸方向の高さH(図6(b))よりも高く、各吸気口102Aの開口の総面積A(つまり、複数の貫通孔102aA~102iAの開口面積の和)が、放熱フィン420Aの通風可能領域の面積Bよりも大きくなるように構成している。つまり、第1の実施形態と同様、放熱フィン420Aが形成されているX軸方向の幅を通風可能幅W(図6(b))とし、放熱フィン420AのX軸方向の厚さをt(図6(c))とし、放熱フィン420Aの枚数をnとしたときに、上記条件式(1)及び(2)を満たすように構成されている。
As shown in FIG. 7, in the light irradiation device 2 of the present embodiment, when the exhaust fan 110A rotates, the air inside the housing 100A is exhausted from the exhaust fan 110A, so that the pressure inside the housing 100A becomes negative. , the air outside the housing 100A is taken in through the through holes 102aA to 102iA, and an air current indicated by solid line arrows in FIG. 7 is generated in the housing 100A. More specifically, as shown in FIG. 7, through holes 102aA to 102iA on the upper surface of housing 100A, an airflow is generated in a direction opposite to the Y-axis direction, and through hole 102aA faces air guide plate 107A. 102iA, an airflow is generated along the baffle plate 107A, and flows between the heat radiating fins 420A. Similarly, through holes 102aA to 102iA on the bottom surface of housing 100A generate an airflow in the Y-axis direction, and through holes 102aA to 102iA facing baffle plate 107A, airflow flows along baffle plate 107A. are generated and flow between the radiation fins 420A.
As described above, in the present embodiment, all of the air taken in from the plurality of through holes 102aA to 102iA formed in the top and bottom surfaces of the housing 100A flows between the radiating fins 420A, but each air inlet 102A (That is, the height h (FIG. 5(b)) of each intake port 102A in the Z-axis direction is set so that pressure loss (intake loss) does not occur in the through holes 102aA to 102iA. is higher than the height H (FIG. 6(b)) of the direction, and the total area A of the openings of the air inlets 102A (that is, the sum of the opening areas of the plurality of through-holes 102aA to 102iA) is enough for the heat dissipation fins 420A to ventilate. It is configured to be larger than the area B of the region. That is, as in the first embodiment, the width of the radiation fins 420A in the X-axis direction is defined as the ventilation width W (FIG. 6B), and the thickness of the radiation fins 420A in the X-axis direction is t ( 6(c)), and when the number of radiating fins 420A is n, the conditional expressions (1) and (2) are satisfied.
 そして、各放熱フィン420Aの間(つまり、各放熱フィン420Aの表面)を流れた空気は、風洞γを流れて排気ファン110Aから排気される。
 このように、本実施形態の構成によっても、第1の実施形態と同様、各吸気口102A(つまり、貫通孔102aA~102iA)での圧力損失(吸気損失)を少なくすることができ、放熱部材400Aを均一かつ十分に冷却することができる。
Then, the air that has flowed between the radiation fins 420A (that is, the surfaces of the radiation fins 420A) flows through the wind tunnel γ and is exhausted from the exhaust fan 110A.
Thus, with the configuration of the present embodiment, as in the first embodiment, the pressure loss (intake loss) at each intake port 102A (that is, the through holes 102aA to 102iA) can be reduced, and the heat dissipation member 400A can be cooled uniformly and sufficiently.
(第3の実施形態)
 図8及び図9は、本発明の第3の実施形態に係る光照射装置3の構成を説明する図であり、図8(a)は、本発明の実施形態に係る光照射装置3の斜視図であり、図8(b)は、図8(a)の光照射装置3の平面図である。また、図9(a)は、図8(b)のG-G線断面図であり、図9(b)は、図9(a)のH-H線断面図であり、図9(c)は、図9(b)のI部拡大図である。
(Third embodiment)
8 and 9 are diagrams for explaining the configuration of the light irradiation device 3 according to the third embodiment of the present invention, and FIG. 8(a) is a perspective view of the light irradiation device 3 according to the embodiment of the present invention. 8(b) is a plan view of the light irradiation device 3 of FIG. 8(a). 9(a) is a cross-sectional view taken along line GG of FIG. 8(b), FIG. 9(b) is a cross-sectional view taken along line HH of FIG. 9(a), and FIG. ) is an enlarged view of part I in FIG. 9(b).
 図8及び図9に示すように、本実施形態の光照射装置3は、筐体100Bの上面パネル101Bが上方(Y軸方向+側)に突出し、上面パネル101Bの内側(Y軸方向-側)に上面パネル101Bと平行な内壁108Bが形成されている。そして、上面パネル101Bと内壁108Bとの間に、吸気口102Bを塞ぐようにフィルタ500が狭持されている点で第1の実施形態の光照射装置1と異なっている。 As shown in FIGS. 8 and 9, in the light irradiation device 3 of the present embodiment, the top panel 101B of the housing 100B protrudes upward (Y-axis direction + side), and the top panel 101B protrudes inside (Y-axis direction − side). ) is formed with an inner wall 108B parallel to the top panel 101B. A filter 500 is sandwiched between the top panel 101B and the inner wall 108B so as to block the intake port 102B, which is different from the light irradiation device 1 of the first embodiment.
 フィルタ500は、例えば、紙製のフィルタであり、吸気口102Bの周辺のインキミストを吸着する機能を有している。本実施形態の構成によれば、光照射装置3がインキミストの充満する空間内に配置されたとしても、フィルタ500によってインキミストを吸着することができるため、筐体100B内へのインキミストの侵入を防止することができる。 The filter 500 is, for example, a paper filter, and has a function of absorbing ink mist around the intake port 102B. According to the configuration of this embodiment, even if the light irradiation device 3 is arranged in a space filled with ink mist, the ink mist can be absorbed by the filter 500, so that the ink mist does not enter the housing 100B. Intrusion can be prevented.
 なお、本実施形態の吸気口102Bは、Z軸方向に沿って並ぶ10個の円形の貫通孔102aB~102jBが、X軸方向に19列配置されることによって構成されている。奇数列の貫通孔102aB~102jBは、偶数列の貫通孔102aB~102jBに対してZ軸方向にシフトしており、Z軸方向+側から6個目までの貫通孔102aB~102fBは、同じ孔径(例えば、直径5mm)になっており、貫通孔102gB~102jBの孔径は、貫通孔102aB~102fBの孔径よりも徐々に小さく(例えば、それぞれ直径4mm、3mm、2mm、1mm)なっている。つまり、第1の実施形態と同様、本実施形態の吸気口102Bも、Z軸方向+側から-側に向かって開口面積が小さくなるように構成されている。なお、貫通孔102aB~102jBは、フィルタ500と対向するように配置され、貫通孔102aB~102jBからはフィルタ500が露出している。
 また、図9(a)に示すように、本実施形態の筐体100Bの内部には、内壁108Bから放熱フィン420のZ軸方向-側の端面に向かって延びる導風板107Bが配置されている。導風板107Bは、内壁108Bと対向するように配置され、貫通孔102aB~102jBから取り込まれ、フィルタ500を通過した空気を放熱フィン420に導く、くの字状の金属製の薄板部材である。なお、内壁108Bには不図示の貫通孔が形成されており、フィルタ500を通過した空気は全て内壁108Bを通って導風板107Bに導かれるようになっている。
The intake port 102B of this embodiment is configured by arranging 10 circular through-holes 102aB to 102jB along the Z-axis direction in 19 rows in the X-axis direction. The odd-numbered through holes 102aB to 102jB are shifted in the Z-axis direction with respect to the even-numbered through holes 102aB to 102jB, and the sixth through-holes 102aB to 102fB from the positive side in the Z-axis direction have the same hole diameter. (eg, 5 mm in diameter), and the diameters of the through holes 102gB to 102jB are gradually smaller than the diameters of the through holes 102aB to 102fB (eg, diameters of 4 mm, 3 mm, 2 mm, and 1 mm, respectively). That is, as in the first embodiment, the intake port 102B of this embodiment is also configured such that the opening area decreases from the + side to the - side in the Z-axis direction. Through holes 102aB to 102jB are arranged to face filter 500, and filter 500 is exposed from through holes 102aB to 102jB.
Further, as shown in FIG. 9A, inside the housing 100B of the present embodiment, a baffle plate 107B extending from the inner wall 108B toward the end face of the radiation fin 420 on the Z-axis direction - side is arranged. there is The baffle plate 107B is a dogleg-shaped metal thin plate member that is arranged to face the inner wall 108B, takes in the air from the through holes 102aB to 102jB, and guides the air that has passed through the filter 500 to the heat radiating fins 420. . A through hole (not shown) is formed in the inner wall 108B so that all the air that has passed through the filter 500 is guided to the air guide plate 107B through the inner wall 108B.
 図10は、筐体100B内に発生する気流を説明する模式図である。なお、図10は、図9(a)に気流の向きを示す矢印を追加した図である。 FIG. 10 is a schematic diagram explaining the airflow generated inside the housing 100B. In addition, FIG. 10 is a diagram in which an arrow indicating the direction of the airflow is added to FIG. 9(a).
 図10に示すように、本実施形態の光照射装置3において、排気ファン110が回ると、排気ファン110からは筐体100Bの内部の空気が排気されるため、筐体100B内が負圧となり、筐体100Bの外側の空気が貫通孔102aB~102jBから取り込まれて、筐体100B内には、図10中、実線の矢印で示す気流が発生する。より具体的には、図10に示すように、貫通孔102aB~102jBからY軸方向と相反する方向に空気が取り込まれ、取り込まれた空気はフィルタ500、内壁108Bを通って導風板107Bに沿って流れ、各放熱フィン420間に流入する。
 このように、本実施形態においては、筐体100Bの上面パネル101Bに形成された複数の貫通孔102aB~102jBから取り込まれた空気が、全て各放熱フィン420間に流入するが、吸気口102B(つまり、貫通孔102aB~102jB)及びフィルタ500での圧力損失(吸気損失)が発生しないように、吸気口102BのZ軸方向の高さh(図8(b))が、放熱フィン420のZ軸方向の高さH(図9(b))よりも高く、吸気口102Bの開口の総面積A(つまり、複数の貫通孔102aB~102jBの開口面積の和)が、放熱フィン420の通風可能領域の面積Bよりも大きくなるように構成している。つまり、第1の実施形態と同様、上記条件式(1)及び(2)を満たすように構成されている。
 このように、本実施形態の構成によっても、第1の実施形態と同様、各吸気口102B(つまり、貫通孔102aB~102jB)及びフィルタ500での圧力損失(吸気損失)を少なくすることができ、放熱部材400を均一かつ十分に冷却することができる。
As shown in FIG. 10, in the light irradiation device 3 of the present embodiment, when the exhaust fan 110 rotates, the air inside the housing 100B is exhausted from the exhaust fan 110, so that the pressure inside the housing 100B becomes negative. , the air outside the housing 100B is taken in through the through holes 102aB to 102jB, and air currents indicated by solid arrows in FIG. 10 are generated in the housing 100B. More specifically, as shown in FIG. 10, air is taken in from through holes 102aB to 102jB in a direction opposite to the Y-axis direction, and the taken-in air passes through filter 500 and inner wall 108B to baffle plate 107B. , and flow between the heat radiating fins 420 .
As described above, in the present embodiment, all of the air taken in from the plurality of through holes 102aB to 102jB formed in the top panel 101B of the housing 100B flows between the radiation fins 420, but the air intake 102B ( That is, the height h (FIG. 8(b)) of the intake port 102B in the Z-axis direction should be set so that the pressure loss (intake loss) in the through holes 102aB to 102jB) and the filter 500 does not occur. It is higher than the axial height H (FIG. 9B), and the total area A of the openings of the intake port 102B (that is, the sum of the opening areas of the plurality of through holes 102aB to 102jB) is sufficient for the heat dissipation fins 420 to ventilate. It is configured to be larger than the area B of the region. That is, as in the first embodiment, the configuration satisfies the above conditional expressions (1) and (2).
As described above, the configuration of the present embodiment can also reduce the pressure loss (intake loss) at each intake port 102B (that is, the through holes 102aB to 102jB) and the filter 500, as in the first embodiment. , the heat radiating member 400 can be uniformly and sufficiently cooled.
 なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 It should be noted that the embodiments disclosed this time are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the scope and meaning of equivalents of the scope of the claims.
1     :光照射装置
2     :光照射装置
3     :光照射装置
100   :筐体
100A  :筐体
100B  :筐体
101B  :上面パネル
102   :吸気口
102A  :吸気口
102B  :吸気口
102a  :貫通孔
102aA :貫通孔
102aB :貫通孔
102b  :貫通孔
102bA :貫通孔
102bB :貫通孔
102c  :貫通孔
102cA :貫通孔
102cB :貫通孔
102d  :貫通孔
102dA :貫通孔
102dB :貫通孔
102e  :貫通孔
102eA :貫通孔
102eB :貫通孔
102f  :貫通孔
102fA :貫通孔
102fB :貫通孔
102g  :貫通孔
102gA :貫通孔
102gB :貫通孔
102hA :貫通孔
102hB :貫通孔
102iA :貫通孔
102iB :貫通孔
102jB :貫通孔
105   :窓部
107   :導風板
107A  :導風板
107B  :導風板
108B  :内壁
110   :排気ファン
110A  :排気ファン
200   :光源ユニット
200A  :光源ユニット
205   :基板
205A  :基板
210   :LED素子
210A  :LED素子
300   :制御基板
301   :回路基板
400   :放熱部材
400A  :放熱部材
410   :放熱板
410A  :放熱板
420   :放熱フィン
420A  :放熱フィン
420a  :端部
420aA :端部
420b  :端部
420bA :端部
500   :フィルタ
1: light irradiation device 2: light irradiation device 3: light irradiation device 100: housing 100A: housing 100B: housing 101B: top panel 102: intake port 102A: intake port 102B: intake port 102a: through hole 102aA: penetration Hole 102aB : Through hole 102b : Through hole 102bA : Through hole 102bB : Through hole 102c : Through hole 102cA : Through hole 102cB : Through hole 102d : Through hole 102dA : Through hole 102dB : Through hole 102e : Through hole 102eA : Through hole 102eB : Through hole 102f : Through hole 102fA : Through hole 102fB : Through hole 102g : Through hole 102gA : Through hole 102gB : Through hole 102hA : Through hole 102hB : Through hole 102iA : Through hole 102iB : Through hole 102jB : Through hole 105 : Window Portion 107: Air guide plate 107A: Air guide plate 107B: Air guide plate 108B: Inner wall 110: Exhaust fan 110A: Exhaust fan 200: Light source unit 200A: Light source unit 205: Board 205A: Board 210: LED element 210A: LED element 300 : control board 301 : circuit board 400 : heat dissipation member 400A : heat dissipation member 410 : heat dissipation plate 410A : heat dissipation plate 420 : heat dissipation fin 420A : heat dissipation fin 420a : end 420aA : end 420b : end 420bA : end 500 : filter

Claims (11)

  1.  照射面上に、第1方向に延び、かつ、前記第1方向と直交する第2方向に所定の線幅を有するライン状の光を照射する光照射装置であって、
     前記第1方向と前記第2方向とで規定される基板と、前記基板の表面に前記第1方向に沿って所定のピッチ毎に配置され、前記第1方向及び前記第2方向と直交する第3方向に前記光を出射する複数の光源と、を有する光源部と、
     前記第1方向に沿って所定のピッチ毎に立設する複数の放熱フィンを有し、前記基板の裏面側に熱的に結合された放熱部と、
     少なくとも前記放熱部を収容すると共に、前記放熱フィンを冷却する冷却風が流れる風洞を形成する筐体と、
     前記風洞内に、前記第3方向又は前記第3方向と相反する方向に前記冷却風を生成する冷却ファンと、
    を備え、
     前記筐体の前記第2方向に対向する側面の少なくとも一方は、前記冷却風が前記複数の放熱フィン間を通って外部に排気される、又は外部から前記複数の放熱フィン間を通って吸気されるように形成された通気口を有し、
     前記通気口の開口の総面積をAとし、前記通気口の前記第3方向の高さをhとし、前記複数の放熱フィンの前記第3方向の高さをHとし、前記複数の放熱フィンが形成されている前記第1方向の幅をWとし、前記各放熱フィンの前記第1方向の厚さをtとし、前記複数の放熱フィンの枚数をnとしたときに、以下の条件式(1)、(2)を満たすことを特徴とする光照射装置。
         A>H×(W-(t×n)) ・・・ (1)
         h>H ・・・ (2)
    A light irradiation device that irradiates an irradiation surface with linear light that extends in a first direction and has a predetermined line width in a second direction perpendicular to the first direction,
    a substrate defined by the first direction and the second direction; a light source unit including a plurality of light sources that emit the light in three directions;
    a heat radiating portion having a plurality of heat radiating fins erected at predetermined pitches along the first direction and thermally coupled to the rear surface side of the substrate;
    a housing that houses at least the heat dissipating portion and forms a wind tunnel through which cooling air that cools the heat dissipating fins flows;
    a cooling fan that generates the cooling air in the third direction or in a direction opposite to the third direction in the wind tunnel;
    with
    At least one of the side surfaces of the housing facing in the second direction allows the cooling air to be exhausted to the outside through between the plurality of heat radiating fins, or to be taken in from the outside through between the plurality of heat radiating fins. having a vent formed to
    Let A be the total area of the openings of the vents, let h be the height of the vents in the third direction, let H be the height of the plurality of heat radiating fins in the third direction, and let the plurality of heat radiating fins The following conditional expression (1 ) and (2) are satisfied.
    A>H×(W−(t×n)) (1)
    h>H (2)
  2.  前記通気口が、前記第3方向に沿ってz個(zは2以上の整数)、前記第1方向に沿ってx列(xは2以上の整数)の態様で形成された複数の貫通孔によって構成されていることを特徴とする請求項1に記載の光照射装置。 A plurality of through-holes in which the vent holes are formed in z (z is an integer of 2 or more) along the third direction and x rows (x is an integer of 2 or more) along the first direction. 2. The light irradiation device according to claim 1, characterized by comprising:
  3.  前記複数の貫通孔の開口面積が、前記第3方向と相反する方向に向かうにつれて小さくなることを特徴とする請求項2に記載の光照射装置。 3. The light irradiation device according to claim 2, wherein the opening areas of the plurality of through-holes decrease in the direction opposite to the third direction.
  4.  前記x列のうち、奇数列の貫通孔が偶数列の貫通孔に対して前記第3方向に沿ってシフトしており、前記複数の貫通孔が全体として千鳥状に配置されていることを特徴とする請求項2又は請求項3に記載の光照射装置。 The through-holes in odd-numbered rows among the x-rows are shifted along the third direction with respect to the through-holes in even-numbered rows, and the plurality of through-holes are arranged in a zigzag pattern as a whole. 4. The light irradiation device according to claim 2 or 3.
  5.  前記複数の貫通孔の少なくとも一部が、前記複数の放熱フィンと対向して配置されていることを特徴とする請求項2から請求項4のいずれか一項に記載の光照射装置。 The light irradiation device according to any one of claims 2 to 4, characterized in that at least part of the plurality of through holes are arranged to face the plurality of heat radiation fins.
  6.  前記複数の貫通孔の少なくとも一部と対向するように配置され、前記複数の貫通孔から吸気された空気を前記複数の放熱フィンに導く、又は前記複数の放熱フィンから排気された空気を前記複数の貫通孔に導く導風板を備えることを特徴とする請求項2から請求項5のいずれか一項に記載の光照射装置。 arranged to face at least a part of the plurality of through-holes, guides the air sucked from the plurality of through-holes to the plurality of heat radiating fins, or guides the air exhausted from the plurality of heat radiating fins to the plurality of heat radiating fins; 6. The light irradiation device according to any one of claims 2 to 5, further comprising a baffle plate that guides the through hole.
  7.  前記複数の光源の前記第1方向のピッチが、複数の放熱フィンの前記第1方向のピッチ以上であることを特徴とする請求項1から請求項6のいずれか一項に記載の光照射装置。 The light irradiation device according to any one of claims 1 to 6, wherein the pitch of the plurality of light sources in the first direction is equal to or greater than the pitch of the plurality of radiation fins in the first direction. .
  8.  前記通気口は、前記筐体の側面の一方面のみに形成され、
     前記複数の放熱フィンは、前記一方面に近接して配置され、
     前記筐体の側面の他方面と前記複数の放熱フィンとの間に空間が形成され、
     前記空間内に前記複数の光源を駆動する駆動回路を有する、
    ことを特徴とする請求項1から請求項7のいずれか一項に記載の光照射装置。
    The vent is formed only on one side surface of the housing,
    The plurality of heat radiation fins are arranged close to the one surface,
    A space is formed between the other side surface of the housing and the plurality of heat radiating fins,
    Having a driving circuit for driving the plurality of light sources in the space,
    The light irradiation device according to any one of claims 1 to 7, characterized in that:
  9.  前記風洞が、前記駆動回路によって前記第2方向に二分された第1風洞と第2風洞から構成されることを特徴とする請求項8に記載の光照射装置。 The light irradiation device according to claim 8, wherein the wind tunnel is composed of a first wind tunnel and a second wind tunnel that are divided in the second direction by the drive circuit.
  10.  前記通気口を塞ぐように配置され、インキミストを吸着するフィルタを備えることを特徴とする請求項1から請求項9のいずれか一項に記載の光照射装置。 The light irradiation device according to any one of claims 1 to 9, further comprising a filter arranged so as to block the air vent and absorbing ink mist.
  11.  前記光が、紫外線硬化型樹脂に作用する波長を含む光であることを特徴とする請求項1から請求項10のいずれか一項に記載の光照射装置。 The light irradiation device according to any one of claims 1 to 10, wherein the light includes a wavelength that acts on the ultraviolet curable resin.
PCT/JP2022/012302 2021-03-31 2022-03-17 Light emission device WO2022209959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280025883.4A CN117136337A (en) 2021-03-31 2022-03-17 Light irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062299A JP2022157844A (en) 2021-03-31 2021-03-31 Light irradiation device
JP2021-062299 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209959A1 true WO2022209959A1 (en) 2022-10-06

Family

ID=83458731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012302 WO2022209959A1 (en) 2021-03-31 2022-03-17 Light emission device

Country Status (3)

Country Link
JP (1) JP2022157844A (en)
CN (1) CN117136337A (en)
WO (1) WO2022209959A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103335A (en) * 2013-11-22 2015-06-04 ウシオ電機株式会社 Light source device
JP2015149415A (en) * 2014-02-06 2015-08-20 パナソニック デバイスSunx株式会社 ultraviolet irradiation head and ultraviolet irradiation device
JP2017060912A (en) * 2015-09-24 2017-03-30 東芝ライテック株式会社 Ultraviolet irradiation module, and ultraviolet irradiation device
JP2017135190A (en) * 2016-01-26 2017-08-03 岩崎電気株式会社 Irradiation device and heat radiation unit
JP2018010868A (en) * 2016-07-01 2018-01-18 アイリスオーヤマ株式会社 LED lighting device
JP2018206591A (en) * 2017-06-02 2018-12-27 ウシオ電機株式会社 Light emitting device
JP2019149424A (en) * 2018-02-26 2019-09-05 京セラ株式会社 Light irradiation apparatus and printing apparatus
JP2020102558A (en) * 2018-12-24 2020-07-02 Hoya株式会社 Light irradiation device
JP2020202346A (en) * 2019-06-13 2020-12-17 Hoya株式会社 Light source device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103335A (en) * 2013-11-22 2015-06-04 ウシオ電機株式会社 Light source device
JP2015149415A (en) * 2014-02-06 2015-08-20 パナソニック デバイスSunx株式会社 ultraviolet irradiation head and ultraviolet irradiation device
JP2017060912A (en) * 2015-09-24 2017-03-30 東芝ライテック株式会社 Ultraviolet irradiation module, and ultraviolet irradiation device
JP2017135190A (en) * 2016-01-26 2017-08-03 岩崎電気株式会社 Irradiation device and heat radiation unit
JP2018010868A (en) * 2016-07-01 2018-01-18 アイリスオーヤマ株式会社 LED lighting device
JP2018206591A (en) * 2017-06-02 2018-12-27 ウシオ電機株式会社 Light emitting device
JP2019149424A (en) * 2018-02-26 2019-09-05 京セラ株式会社 Light irradiation apparatus and printing apparatus
JP2020102558A (en) * 2018-12-24 2020-07-02 Hoya株式会社 Light irradiation device
JP2020202346A (en) * 2019-06-13 2020-12-17 Hoya株式会社 Light source device

Also Published As

Publication number Publication date
CN117136337A (en) 2023-11-28
JP2022157844A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
KR101848318B1 (en) Light illuminating apparatus
KR102653321B1 (en) Light irradiating device
JP5940116B2 (en) Light irradiation device
KR101985823B1 (en) Light irradiation apparatus
JP6832910B2 (en) Light irradiation device
JP6659651B2 (en) Light irradiation device
JP6006379B2 (en) Light irradiation device
WO2022209959A1 (en) Light emission device
WO2013106579A1 (en) Lamp ventilation system
JP6666512B1 (en) Light irradiation device and printing device
JP6997652B2 (en) Light source device
JP2017159657A (en) Light irradiation device
WO2020158738A1 (en) Light irradiation device and printing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780179

Country of ref document: EP

Kind code of ref document: A1