WO2022209853A1 - Polyisocyanurate foam - Google Patents

Polyisocyanurate foam Download PDF

Info

Publication number
WO2022209853A1
WO2022209853A1 PCT/JP2022/011614 JP2022011614W WO2022209853A1 WO 2022209853 A1 WO2022209853 A1 WO 2022209853A1 JP 2022011614 W JP2022011614 W JP 2022011614W WO 2022209853 A1 WO2022209853 A1 WO 2022209853A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
weight
foam
polyisocyanurate foam
polyisocyanurate
Prior art date
Application number
PCT/JP2022/011614
Other languages
French (fr)
Japanese (ja)
Inventor
聖 末谷
Original Assignee
株式会社東洋クオリティワン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東洋クオリティワン filed Critical 株式会社東洋クオリティワン
Publication of WO2022209853A1 publication Critical patent/WO2022209853A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Definitions

  • the present invention relates to polyisocyanurate foams.
  • shock absorbing materials are installed inside the doors, around the ceiling, and inside the pillars of the car.
  • shock absorbing materials for example, rigid polyurethane foams and thermoplastic resin bead foams are known.
  • shock absorbing materials installed in today's automobiles are required not only to have high shock absorption performance (buckling property), but also to have excellent sound absorption performance in order to increase the quietness inside the vehicle.
  • rigid polyurethane foams and thermoplastic resin bead foams generally have a closed cell structure, even if they have a predetermined impact absorption performance, they may be inferior in sound absorption performance.
  • Techniques for increasing the open-cell structure in order to improve the sound absorption performance of foams are known, but the impact-absorbing performance is inferior unless the open-cell structure is increased and the hardness of the foam is adjusted appropriately. Sometimes.
  • An object of the present invention is to provide a polyisocyanurate foam having excellent buckling property and predetermined sound absorbing performance.
  • a polyisocyanurate foam is provided.
  • a polyisocyanurate foam is obtained by foaming in a reaction system containing a polyol, a polyisocyanate, a foam stabilizer, a catalyst and a blowing agent.
  • the polyol has a weight average molecular weight in the range of 3000 to 12000 and an ethylene oxide content of 50% by weight or more, and a polyol having a weight average molecular weight of 1000 to 8000 and an ethylene oxide content of less than 20% by weight.
  • the isocyanate index in the reaction system is 200 or more and 350 or less. Hysteresis loss rate is 90% or more.
  • the hysteresis loss rate is obtained by cutting out a measurement sample having dimensions of 50 mm ⁇ 50 mm ⁇ 50 mm from the polyisocyanurate foam, and applying a load of 5 N to the measurement sample using a 80 ⁇ compressor. Compress the polyisocyanurate foam along the foam height direction, and compress the measurement sample along the foam height direction at a rate of 50 mm/min until the thickness displacement from the reference thickness reaches 70%. Immediately thereafter, the measurement sample is returned along the foam height direction at a speed of 50 mm/min until the thickness displacement from the reference thickness reaches 0%.
  • FIG. 2 is a cross-sectional view schematically showing a cross section of the polyisocyanurate foam shown in FIG. 1 along line II-II.
  • FIG. 2 is a cross-sectional view schematically showing a cross section of the polyisocyanurate foam shown in FIG. 1 along line III-III.
  • 4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples.
  • 4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples.
  • 4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples.
  • 4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples.
  • 4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples.
  • the impact absorption performance and sound absorption performance of polyisocyanurate foams vary depending on various factors, but in order to achieve the desired impact absorption performance and sound absorption performance, it is necessary to make the polyisocyanurate foams communicate with each other to a certain extent. . As a result, sound waves can easily propagate through the foam, and vibrational energy can be easily converted into thermal energy, thereby improving sound absorption performance. If the degree of communication is excessive or insufficient, the sound absorbing performance of the polyisocyanate foam deviates from the sound absorbing performance required by the present invention. In addition, in order to achieve high impact absorption performance, the polyisocyanurate foam, which is a porous elastic body, must have well-balanced hardness, density, communication, and the like.
  • the polyisocyanurate foam according to the embodiment is obtained by foaming in a reaction system containing two types of polyols having different properties and exhibiting a relatively high isocyanate index of 200 or more and 350 or less.
  • a reaction system containing two types of polyols having different properties and exhibiting a relatively high isocyanate index of 200 or more and 350 or less.
  • the two polyols randomly react with isocyanate.
  • uniform polyisocyanurate foams tend not to be formed as compared with, for example, the reaction of one type of polyol with isocyanate.
  • Homogeneous polyisocyanurate foams are understood here to be membrane-rich foams.
  • Each of the two polyols acts as a factor that degrades the uniformity of the foam in the formation of a myriad of urethane linkages. In other words, when two kinds of polyols having different properties are reacted with an isocyanate, there is a tendency to obtain a polyiso
  • a nurate structure is a structure in which three molecules of isocyanate form a ring. Therefore, the nurate structure also acts as a factor that lowers uniformity among countless urethane bonds. As a result, there are fewer membranes in the polyisocyanurate foam and a more open-ended foam is formed.
  • the polyisocyanurate foam according to the embodiment is communicated to a certain extent even when a separate communicating agent is not added to the reaction system, and as a result, it has a predetermined sound absorption performance. is doing.
  • no communication agent is added to the reaction system, it is advantageous from the viewpoint of cost and has the advantage of facilitating the handling of the polyol liquid during the production of the polyisocyanurate foam.
  • a communicating agent having poor hydrophilicity is used, it tends to separate from other components, resulting in poor handling.
  • the foam obtained as described above has many nurate structures.
  • the polyisocyanurate foam becomes stiffer.
  • a polyisocyanurate foam having a certain degree of hardness in addition to moderate communication can achieve excellent impact absorption performance, that is, a high hysteresis loss rate (90% or more).
  • the polyisocyanurate foams according to embodiments exhibit excellent buckling properties.
  • An increase in the nurate structure is preferred because it also increases the flame resistance and heat resistance of the polyisocyanurate foam.
  • the hysteresis loss rate of the polyisocyanurate foam may be 92% or higher, or 94% or higher. According to one example, the hysteresis loss rate is 99.0% or less. Although it cannot be determined only from the hysteresis loss rate, if the hysteresis loss rate is excessively high, there is a possibility that the predetermined sound absorption performance cannot be achieved.
  • the predetermined sound absorption performance means that the target polyisocyanurate foam has a normal incidence sound absorption coefficient of 40% or more in the entire frequency range of 1000 Hz to 3150 Hz in the normal incidence sound absorption coefficient measurement described later. do.
  • the isocyanate index in the reaction system is less than 200, the nurate structure may be insufficient and the hysteresis loss rate may be less than 90%. If the isocyanate index is more than 350, the moldability of the foam may deteriorate, and the desired sound absorbing performance may not be achieved.
  • the hysteresis loss rate of polyisocyanurate foam can be measured by the following method.
  • a measurement sample having dimensions of 50 mm x 50 mm x 50 mm is cut out from the polyisocyanurate foam to be measured.
  • This sample is compressed using a compressor of 80 ⁇ to a reference thickness position where a load of 5N is applied.
  • the polyisocyanurate foam as a measurement sample is compressed along the foam height direction.
  • the measurement sample is compressed at a speed of 50 mm/min until the thickness displacement from this reference thickness reaches 70%.
  • the position where the thickness displacement reaches 70% is, in other words, the position where the thickness of the measurement sample in the compressed portion is 30% of the reference thickness.
  • the measurement sample After compressing until the thickness displacement reaches 70%, the measurement sample is immediately placed in a state where no pressure is applied, and the measurement sample is pressed at a speed of 50 mm / min until the thickness displacement from the reference thickness reaches 0%. return.
  • the position where the thickness displacement reaches 0% is, in other words, the position where the thickness of the measurement sample is the same as the reference thickness.
  • Equation 1 The hysteresis loss rate is calculated according to Equation 1 below. (S1-S2)/S1 ⁇ 100 (1)
  • S1 is the sum of the stresses during compression from the reference thickness to the position where the thickness displacement reaches 70%
  • S2 is the return from the position where the thickness displacement reaches 70% to the reference thickness. It is the sum of the stresses at time.
  • the polyisocyanurate foam according to the embodiment is obtained by foaming in a reaction system containing polyol, polyisocyanate, foam stabilizer, catalyst and foaming agent.
  • the reaction system may further contain other additives such as antioxidants, plasticizers and the like.
  • the reaction system may consist of only polyol, polyisocyanate, foam stabilizer, catalyst and blowing agent. In this case, for example, although the reaction system does not contain a communicating agent, the communicating effect can be obtained for the reason described above.
  • the isocyanate index is in the range of 200 or more and 350 or less, the foam has many nurate structures, and the hysteresis loss rate of the polyisocyanurate foam can be 90% or more. From the viewpoint of realizing a three-dimensional shape and facilitating control of the cell structure, molding is preferable as the manufacturing method because it enables a three-dimensional uneven shape.
  • Polyol Polyol (also referred to as a polyol component) has a weight average molecular weight in the range of 3000 to 12000 and an ethylene oxide content of 50% by weight or more, and a polyol A having a weight average molecular weight of 1000 to 8000, and a polyol B having an ethylene oxide content of less than 20% by weight.
  • the polyol component may contain other polyols different from polyol A and polyol B.
  • the polyol component may consist of polyol A and polyol B only.
  • Polyol A has a weight average molecular weight within the range of 3000 to 12000 and an ethylene oxide content of 50% by weight or more. Since Polyol A contains ethylene oxide in an amount of 50% by weight or more, it has high polarity and high hydrophilicity.
  • Polyol B has a weight average molecular weight of 1000 to 8000 and an ethylene oxide content of less than 20% by weight. Polyol B, which has a low ethylene oxide content, has a low polarity compared to polyol A, and thus has low hydrophilicity. Since polyol A and polyol B have different properties, they have low compatibility among polyols.
  • the weight average molecular weight of polyol A is preferably in the range of 3000 or more and 9000 or less, more preferably in the range of 7000 or more and 9000 or less. When the weight average molecular weight of polyol A is less than 3000, the polyisocyanurate foam becomes highly brittle and may be unsuitable as a molded product.
  • the ethylene oxide content of polyol A is preferably 60% by weight or more and 90% by weight or less, more preferably 65% by weight or more and 85% by weight or less.
  • the hydroxyl value of Polyol A is, for example, 18 mgKOH/g or more and 52 mgKOH/g or less. Polyol A is, for example, a polyether polyol.
  • the ratio of the weight of polyol A to the weight of the polyol component is, for example, within the range of 50% to 90% by weight. When the ratio is within this range, good moldability, sound absorption performance and impact absorption performance can be achieved. When the ratio of polyol A is relatively high, the buckling property of the obtained polyisocyanurate foam tends to increase, for example, the stress at the time of return after compression tends to be small, which is preferable.
  • the weight ratio of polyol A to the weight of the polyol component is preferably in the range of 65% to 85% by weight, more preferably in the range of 70% to 80% by weight.
  • the weight average molecular weight of polyol B is preferably in the range of 2000 or more and 8000 or less, more preferably in the range of 2500 or more and 7000 or less. If the weight average molecular weight of polyol B exceeds 8000, the hardness may be insufficient and the buckling property may be deteriorated.
  • the ethylene oxide content of polyol B may be 0% by weight. That is, the ethylene oxide content of polyol B can be 0% or more and less than 20% by weight.
  • Polyol B which has a low ethylene oxide content, has a low polarity compared to polyol A, and thus has low hydrophilicity. Since polyol A and polyol B have different properties, they have low compatibility among polyols.
  • polyol B If the ethylene oxide content of polyol B is 20% by weight or more, the compatibility with polyol A is high, so the degree of communication may be insufficient.
  • the hydroxyl value of Polyol B is, for example, 20 mgKOH/g or more and 90 mgKOH/g or less.
  • the ratio of the weight of polyol B to the weight of the polyol component is, for example, within the range of 10% by weight to 50% by weight. When the ratio is within this range, good moldability, sound absorption performance and impact absorption performance can be achieved.
  • the weight ratio of polyol B to the weight of the polyol component is preferably in the range of 15% to 35% by weight, more preferably in the range of 20% to 30% by weight.
  • the blending ratio of polyol A and polyol B in the polyol component can be determined by appropriately combining the multiple numerical ranges described above.
  • the ratio of the total weight of polyol A and polyol B to the weight of the polyol component is preferably 80% by weight or more, more preferably 90% by weight or more.
  • the weight average molecular weight of polyol can be measured by size exclusion chromatography (SEC).
  • diphenylmethane diisocyanate As polyisocyanate, it is preferable to use diphenylmethane diisocyanate (MDI).
  • Diphenylmethane diisocyanate may be monomeric MDI, polymeric MDI, or mixtures thereof.
  • the polyisocyanate may contain only one type of MDI, or may contain two or more types. MDI is excellent in terms of molding because it has better curability than toluene diisocyanate (TDI).
  • Foam Stabilizer The type of foam stabilizer is not particularly limited as long as the resulting polyisocyanurate foam has a hysteresis loss rate of 90% or more, but it may be a silicone foam stabilizer. In this case, since the foam stabilizing power is enhanced, the foaming gas generated by the reaction can be easily retained, and the effect of enhancing the moldability can be obtained.
  • the content of the foam stabilizer in the reaction system is, for example, within the range of 0.5 to 15 parts by weight with respect to 100 parts by weight of the polyol component. If the content of the foam stabilizer in the reaction system is too low, it will be difficult to retain the generated foaming gas, and moldability will tend to deteriorate. If the amount is too large, the foam-stabilizing power tends to be too high, resulting in a decrease in sound absorption performance.
  • the content of the foam stabilizer in the reaction system is preferably in the range of 1.0 to 3.0 parts by weight with respect to 100 parts by weight of the polyol component.
  • Catalyst As a catalyst, a resin catalyst, an isocyanurate catalyst (trimerization catalyst), a surface reforming catalyst, a foaming catalyst, and the like can be used. As each catalyst, a known catalyst used for that purpose can be used.
  • the resinification catalyst is used, for example, in an amount of 1 to 5 parts by weight based on the weight of the polyol component.
  • the isocyanurating catalyst is used, for example, in an amount of 1 to 5 parts by weight based on the weight of the polyol component.
  • the surface modification catalyst is used, for example, in an amount of 0.5 to 3 parts by weight based on the weight of the polyol component.
  • the foaming catalyst is used, for example, in an amount of 0.1 to 1 part by weight based on the weight of the polyol component.
  • DEA diethanolamine
  • DEA has OH groups at both ends and a secondary amine in the center. By cross-linking these OH groups and NH groups with the NCO groups possessed by the isocyanate, the strength of the skeleton of the resulting polyisocyanurate foam is increased, so that moldability is improved or stabilized, and peeling of the skin can be suppressed. .
  • foaming agent any known foaming agent used for producing general polyisocyanurate foams or polyurethane foams can be used.
  • the blowing agent in the present invention is water.
  • the content of the foaming agent in the reaction system is preferably in the range of 5 to 20 parts by weight with respect to 100 parts by weight of the polyol component.
  • auxiliary blowing agents may also be added. Examples of auxiliary blowing agents include freon and dichloromethane.
  • plasticizers and antioxidants can be added.
  • the plasticizer can adjust the hardness and cell structure of the polyisocyanurate foam and improve the moldability.
  • Antioxidants can suppress scorch.
  • Other additives are used, for example, in amounts of 3 to 30 parts by weight based on the weight of the polyol component.
  • Other additives can be used without limitation as long as they are used in the production of general polyisocyanurate foams or polyurethane foams.
  • the density of polyisocyanurate foams is, for example, in the range from 50 kg/m 3 to 100 kg/m 3 .
  • the compressive stress at 10% deformation of the polyisocyanurate foam is, for example, within the range of 0.5 kgf/cm 2 to 4.0 kgf/cm 2 .
  • the normal incident sound absorption coefficient of the polyisocyanurate foam is preferably 40% or more, more preferably 45% or more, over the entire frequency range of 1000 Hz to 3150 Hz.
  • the normal incidence sound absorption coefficient is an index for evaluating sound absorption performance.
  • polyisocyanurate foam is used as a shock absorbing material for the lower limbs of automobiles, etc.
  • the normal incidence sound absorption coefficient is within the above range, it is difficult for the occupants of automobiles, etc., to perceive low-frequency noise. . Therefore, the occupants can be comfortable during the ride.
  • the normal incident sound absorption coefficient of polyisocyanurate foam is measured by the following method. First, a cylindrical polyisocyanurate foam lump having a diameter of 29 mm (29 ⁇ ) and a thickness of 15 mm is prepared as an object for measuring the sound absorption coefficient. The mass can be prepared, for example, using a punching machine with a 29 ⁇ punching die. In order to calculate the average value of the measurement results of the sound absorption coefficient, five such blocks are prepared.
  • the normal incidence acoustic measurement system is a system for measuring the sound absorption coefficient of the material, acoustic impedance related items, and , the transmission loss can be measured. Start up the normal incidence acoustic measurement system, calibrate the microphone, and complete preparations for sound absorption measurement.
  • the lump is set at a predetermined position inside the duct so that the sound is incident along the direction parallel to the thickness direction of the lump, and the sound absorption coefficient is measured.
  • the sound absorption coefficient is measured according to JIS A 1405:1994.
  • the normal incident sound absorption coefficients are measured at frequencies of 500 Hz, 630 Hz, 800 Hz, 1000 Hz, 1250 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, 4000 Hz, 5000 Hz and 6300 Hz.
  • the normal incidence sound absorption coefficient at each frequency can be determined.
  • a line graph can be created in which the horizontal axis indicates frequency (Hz) and the vertical axis indicates sound absorption coefficient (%).
  • the line graph is called a "sound absorption coefficient graph”.
  • the sound absorption coefficient graphs shown in FIGS. 8 to 11, which will be described later, are logarithmic graphs.
  • the normal incidence sound absorption coefficient is 40% or more in the entire frequency range of 1000 Hz to 3150 Hz. can be assumed to exist.
  • the shape and dimensions of the polyisocyanurate foam according to the embodiment are not particularly limited. An example of the shape of polyisocyanurate foam will be described with reference to FIGS. 1 to 3. FIG.
  • FIG. 1 is a plan view schematically showing an example of polyisocyanurate foam.
  • the case where the polyisocyanurate foam is used as a lower leg impact absorbing material (foot panel) is illustrated as an example.
  • FIG. 2 is a schematic cross-sectional view of the polyisocyanurate foam shown in FIG. 1 taken along line II--II.
  • FIG. 3 is a schematic cross-sectional view of the polyisocyanurate foam shown in FIG. 1 taken along line III--III.
  • the lower leg shock absorbing material 10 includes a first portion 1, a second portion 2, and a thick portion 3.
  • the first part 1 , the second part 2 and the thick part 3 are integrally formed by molding using one mold to form the lower leg shock absorbing material 10 .
  • the lower leg shock absorber 10 can be mounted, for example, on the floor of an automobile.
  • a floor mat for example, is laid on the leg shock absorbing material 10 mounted on the floor of an automobile, and both feet of the occupant are placed on the leg shock absorbing material via the floor mat.
  • the first portion 1 and the second portion 2 are thinner than the thick portion 3.
  • the second portion 2 has a substantially rectangular parallelepiped shape and has an end surface defined by a boundary portion 4 .
  • the first portion 1 and the thick portion 3 extend from the end face of the second portion 2 .
  • the lower leg shock absorbing material 10 is curved so that the boundary portion 4 between the second portion 2 and the first portion 1 and the thick portion 3 forms a valley.
  • the boundary portion 4 forms a trough on one side of the lower leg shock absorbing material 10 and forms a peak on the other side.
  • the lower leg shock absorbing material 10 has a surface 5 in which the second portion 2, the first portion 1 and the thick portion 3 form a valley.
  • the lower leg shock absorbing material 10 has the second portion 2 and the back surface 6 where the first portion 1 and the thick portion 3 form a peak.
  • the thick portion 3 has a convex shape on the surface 5 . That is, the thick portion 3 has a structure in which the surface 5 protrudes from the surface of the first portion 1 on the basis of the surface of the first portion 1 .
  • polyisocyanurate foam is used as a shock absorbing material for lower limbs, but the use of the polyisocyanurate foam is not particularly limited, and uses that require buckling property and sound absorption performance.
  • Polyisocyanurate foam can be used for door interior cushioning materials, head protection materials, floor raising materials, tool boxes, luggage boxes, ceiling materials, seat core materials, sun visor core materials, pillar core materials, etc. can be done.
  • a polyisocyanurate foam having a desired shape can be obtained by cutting the foam.
  • polyisocyanurate foams according to Examples 1 to 34 were produced by molding.
  • the mixing ratio of each raw material is shown in parts by weight.
  • the "isocyanate index" is the active hydroxyl group equivalent (concentration) in the polyol, materials containing other active hydroxyl group equivalents (concentration), and the isocyanate group equivalent in the polyisocyanate with respect to the sum of the hydroxyl group equivalents (concentration) of water ( concentration).
  • Substance name Diethyl glycol dioleate (18) SF2962: Dow Corning Toray Co., Ltd. (19) VORASURF 1280: Toray Co., Ltd. Dow Corning Co., Ltd. (20) Irganox 1135: BASF Japan Co., Ltd. Application: Antioxidant (21) Sumidur 44 V 20 L: Sumika Covestro Urethane Co., Ltd.
  • Example 1 A polyol-containing mixture was prepared in a disposable cup by blending the raw materials other than the polyisocyanate, ie, the polyol component, additives, catalyst and blowing agent, according to the formulation shown in Table 1 (by hand foaming).
  • the polyol component according to Example 1 includes QB8000 corresponding to polyol A and T-3000S corresponding to polyol B. Let the obtained polyol containing mixture be A liquid. The temperature of liquid A was adjusted to 37°C ⁇ 2°C. Also, a polyisocyanate was prepared as the B liquid, and the temperature of the B liquid was adjusted to 37°C ⁇ 2°C.
  • a sample-making mold with internal dimensions of 350 mm in width, 350 mm in depth, and 70 mm in height is prepared, and the mold is heated to a temperature range of 65°C to 70°C to maintain the temperature. The temperature was measured using a surface thermometer.
  • the mold consists of a cylindrical lower mold with a bottom that is open only at the top, and an upper mold that can close the top.
  • B liquid was added to A liquid prepared in the disposable cup, and the mixture was stirred and mixed for 5 seconds to obtain a mixed solution.
  • the weight part of the A liquid containing the said polyol component was 120.5 weight part
  • the weight part of the B liquid was 77.3 weight part.
  • the resulting mixed solution was immediately put into the lower mold, and the upper surface of the lower mold was closed with the upper mold to cure for 6 minutes. During this time, the surface temperature of the mold is maintained at 65.degree. C. to 70.degree. Thereafter, the mold was removed from the mold and allowed to stand at room temperature for 2 days to obtain a polyisocyanurate foam having dimensions of 350 mm ⁇ 350 mm ⁇ 70 mm.
  • Examples 2-9) A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the isocyanate index was changed as shown in Table 1 by changing the amount of polyisocyanate in the formulation as shown in Table 1. rice field.
  • Example 10-20 A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the mixing ratio of QB8000 corresponding to polyol A and T-3000S corresponding to polyol B was changed as shown in Table 1.
  • Example 2-6 A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the type and blending amount of the polyol used were changed as shown in Table 2.
  • Example 27-33 A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the types of polyols and foam stabilizers used and their blending amounts were changed as shown in Table 2.
  • Example 34 A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the formulation of liquid A was changed as shown in Table 2 and the isocyanate index was changed to 150.
  • ⁇ Moldability evaluation> The moldability (curability) of the polyisocyanurate foam according to each example was evaluated by sensory evaluation. " ⁇ " indicates that the foam is in good condition at the time of demolding, and “ ⁇ ” indicates that the cell structure is rough or that the foam is missing, and the polyisocyanurate foam is collapsed or severe. The case where the cure was insufficient was evaluated as "x". Examples of the breakdown of the evaluation "x" include, for example, when demolding is attempted, strings are drawn, the foam is ragged and brittle, or the cells inside the foam are collapsed and depressed.
  • hysteresis loss rate (%) was measured according to the method described in the embodiment.
  • a sample with a hysteresis loss rate of 90% or more was rated as "good", and a sample with a hysteresis loss rate of less than 90% was rated as "x".
  • the hysteresis loss ratio was not measured for those with an evaluation of "x" in the moldability evaluation, because the hysteresis loss rate could not be measured appropriately.
  • "-" indicates an example in which measurement was not performed.
  • ⁇ Density measurement> The density of the polyisocyanurate foam according to each example was measured and found to be 60 kg/m 3 in all cases. Density was evaluated according to the measurement method specified in JIS K 7222:2005.
  • Figures 4-8 show the stress/displacement curves for each example.
  • the horizontal axis indicates displacement (%) and the vertical axis indicates stress (kgf/cm 2 ).
  • a hysteresis loss rate was calculated from the obtained stress/displacement curve.
  • 9 to 13 are sound absorption coefficient graphs showing the results of normal incidence sound absorption coefficient measurements for each example. In the sound absorption coefficient graph, the horizontal axis indicates frequency (Hz) and the vertical axis indicates sound absorption coefficient (%).
  • FIG. 4 shows the stress/displacement curves for Examples 1 to 9 with different isocyanate indexes.
  • the nurate structure increases, so it can be seen that the polyisocyanurate foam tends to harden.
  • the stress at the time of return was small, and the impact absorption performance was high.
  • FIG. 9 shows sound absorption coefficient graphs according to Examples 1 to 9.
  • the polyisocyanurate foams according to Examples 1 to 6 achieved sound absorption coefficients of 40% or more over the entire range of 1000 Hz to 3150 Hz.
  • the communication was also appropriate, and the sound absorbing performance aimed at by the present invention was achieved.
  • the cell structure was rough and the communication was excessive, so it is considered that they were out of the range of the predetermined sound absorption performance.
  • FIG. 5 shows stress/displacement curves for Examples 14 to 20.
  • Examples 14 to 20 show the results when the weight ratio of polyol A to polyol B is gradually changed. Examples with a low ratio of polyol A tended to have a low hysteresis loss rate. Examples 17 to 20 with a hysteresis loss rate exceeding 90% are found to be excellent in shock absorption performance.
  • FIG. 10 shows a sound absorption coefficient graph according to Examples 14 to 20.
  • the polyisocyanurate foams according to Examples 15 to 18 achieved a sound absorption coefficient of 40% or more over the entire range of 1000Hz to 3150Hz. Examples 17 and 18, in which the number of parts of polyol A in the polyol component was in the range of 70 parts by weight to 80 parts by weight, showed excellent sound absorption even in the low frequency range.
  • Fig. 6 shows stress/displacement curves for examples in which the type of polyol used as the polyol component is changed.
  • FIG. 11 shows a sound absorption coefficient graph according to Examples 21, 22 and 26.
  • All examples are examples containing polyol A and polyol B that satisfy the predetermined weight average molecular weight and ethylene oxide content, so they achieve a sound absorption coefficient of 40% or more not only in the range of 1000 Hz to 3150 Hz but also in a wide frequency range. did.
  • Fig. 7 shows stress/displacement curves for examples in which the type of polyol used as the polyol component is changed.
  • the polyisocyanurate foams according to Examples 4, 27, 28, 30, 31 and 33 obtained by a reaction system comprising Polyol A and Polyol B satisfying a given weight average molecular weight and ethylene oxide content, The moldability was excellent, and the hysteresis loss rate was 90% or more.
  • 12 shows sound absorption coefficient graphs according to Examples 4, 27, 28, 30, 31 and 33. In FIG.
  • All examples are examples containing polyol A and polyol B that satisfy the predetermined weight average molecular weight and ethylene oxide content, so they achieve a sound absorption coefficient of 40% or more not only in the range of 1000 Hz to 3150 Hz but also in a wide frequency range. did.
  • FIG. 8 shows the stress/displacement curve according to Example 34.
  • FIG. 13 shows a sound absorption coefficient graph according to Example 34.
  • the isocyanate index is low and/or the type of other components included in the reaction system
  • the hysteresis loss rate will be less than 90%.
  • the polyisocyanurate foam according to Example 34 achieved a sound absorption coefficient of 40% or more not only within the range of 1000 Hz to 3150 Hz, but also over a wide frequency range.
  • the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, if the problem can be solved and effects can be obtained, the configuration with the constituent elements deleted can be extracted as an invention.

Abstract

In an embodiment of the present invention, a polyisocyanurate foam is provided. The polyisocyanurate foam is obtained by foaming a reaction system containing a polyol, a polyisocyanate, a foam stabilizer, a catalyst, and a foaming agent. The polyol includes a polyol A that has a weight average molecular weight within a range of 3000-12000 and has an ethylene oxide content of 50 wt% or more, and a polyol B that has a weight average molecular weight of 1000-8000 and has an ethylene oxide content less than 20 wt%. In the reaction system, the isocyanate index is 200-350. The coefficient of hystereisis loss is 90% or more.

Description

ポリイソシアヌレートフォームpolyisocyanurate foam
 本発明は、ポリイソシアヌレートフォームに関する。 The present invention relates to polyisocyanurate foams.
 従来、自動車乗車時の外部からの衝撃に対して乗客の安全を守る為、自動車のドア内部、天井周り、ピラー内部に衝撃吸収材が装着されている。衝撃吸収材としては、例えば、硬質ポリウレタンフォーム、及び、熱可塑性樹脂ビーズの発泡体からなるものが知られている。  Conventionally, in order to protect the safety of passengers against external impacts when riding in a car, shock absorbing materials are installed inside the doors, around the ceiling, and inside the pillars of the car. As shock absorbing materials, for example, rigid polyurethane foams and thermoplastic resin bead foams are known.
 今日の自動車に備え付けられる衝撃吸収材には、高い衝撃吸収性能(座屈性)のみならず、車内の静粛性を高めるために優れた吸音性能を有することが求められている。硬質ポリウレタンフォーム及び熱可塑性樹脂ビーズの発泡体は、一般的に独立気泡構造からなるため、所定の衝撃吸収性能を有している場合であっても吸音性能に劣る場合があった。発泡体の吸音性能を高めるために連続気泡構造を増加させる技術は知られているが、連続気泡構造を増加させるのと同時に、発泡体の硬さを適切に調整しなければ衝撃吸収性能が劣る場合がある。 The shock absorbing materials installed in today's automobiles are required not only to have high shock absorption performance (buckling property), but also to have excellent sound absorption performance in order to increase the quietness inside the vehicle. Since rigid polyurethane foams and thermoplastic resin bead foams generally have a closed cell structure, even if they have a predetermined impact absorption performance, they may be inferior in sound absorption performance. Techniques for increasing the open-cell structure in order to improve the sound absorption performance of foams are known, but the impact-absorbing performance is inferior unless the open-cell structure is increased and the hardness of the foam is adjusted appropriately. Sometimes.
日本国特開2013-047338号公報Japanese Patent Application Laid-Open No. 2013-047338 日本国特開2005-272806号公報Japanese Patent Application Laid-Open No. 2005-272806 日本国特許第4461453号Japanese Patent No. 4461453
 本発明は、上記事情に鑑みてなされ、座屈性に優れ、所定の吸音性能を有するポリイソシアヌレートフォームを提供することを目的とする。 An object of the present invention is to provide a polyisocyanurate foam having excellent buckling property and predetermined sound absorbing performance.
 本発明の一側面によると、ポリイソシアヌレートフォームが提供される。ポリイソシアヌレートフォームは、ポリオール、ポリイソシアネート、整泡剤、触媒及び発泡剤を含む反応系で発泡させて得られる。ポリオールは、重量平均分子量が3000~12000の範囲内にあり、エチレンオキシド含有量が50重量%以上であるポリオールAと、重量平均分子量が1000~8000であり、エチレンオキシド含有量が20重量%未満のポリオールBとを含む。反応系におけるイソシアネートインデックスは200以上350以下である。ヒステリシスロス率は90%以上である。ヒステリシスロス率は、ポリイソシアヌレートフォームから50mm×50mm×50mmの寸法を有する測定用試料を切り出すことと、測定用試料を、80φの圧縮子を用いて5Nの荷重が負荷される基準厚みまで、ポリイソシアヌレートフォームの発泡高さ方向に沿って圧縮することと、基準厚みからの厚みの変位が70%に達するまで、50mm/minの速度で測定用試料を発泡高さ方向に沿って圧縮した後、直ちに、基準厚みからの厚みの変位が0%に達するまで、50mm/minの速度で測定用試料を発泡高さ方向に沿って戻すこととを含む方法で測定される。 According to one aspect of the present invention, a polyisocyanurate foam is provided. A polyisocyanurate foam is obtained by foaming in a reaction system containing a polyol, a polyisocyanate, a foam stabilizer, a catalyst and a blowing agent. The polyol has a weight average molecular weight in the range of 3000 to 12000 and an ethylene oxide content of 50% by weight or more, and a polyol having a weight average molecular weight of 1000 to 8000 and an ethylene oxide content of less than 20% by weight. B. The isocyanate index in the reaction system is 200 or more and 350 or less. Hysteresis loss rate is 90% or more. The hysteresis loss rate is obtained by cutting out a measurement sample having dimensions of 50 mm × 50 mm × 50 mm from the polyisocyanurate foam, and applying a load of 5 N to the measurement sample using a 80 φ compressor. Compress the polyisocyanurate foam along the foam height direction, and compress the measurement sample along the foam height direction at a rate of 50 mm/min until the thickness displacement from the reference thickness reaches 70%. Immediately thereafter, the measurement sample is returned along the foam height direction at a speed of 50 mm/min until the thickness displacement from the reference thickness reaches 0%.
 本発明によると、座屈性に優れ、所定の吸音性能を有するポリイソシアヌレートフォームを提供することができる。 According to the present invention, it is possible to provide a polyisocyanurate foam that has excellent buckling properties and a predetermined sound absorption performance.
ポリイソシアヌレートフォームの一例を概略的に示す平面図。The top view which shows an example of a polyisocyanurate foam roughly. 図1に示すポリイソシアヌレートフォームのII-II線に沿った断面を概略的に示す断面図。FIG. 2 is a cross-sectional view schematically showing a cross section of the polyisocyanurate foam shown in FIG. 1 along line II-II. 図1に示すポリイソシアヌレートフォームのIII-III線に沿った断面を概略的に示す断面図。FIG. 2 is a cross-sectional view schematically showing a cross section of the polyisocyanurate foam shown in FIG. 1 along line III-III. 実施例に係るポリイソシアヌレートフォームに関する応力/変位曲線を示すグラフ。4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 実施例に係るポリイソシアヌレートフォームに関する応力/変位曲線を示すグラフ。4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 実施例に係るポリイソシアヌレートフォームに関する応力/変位曲線を示すグラフ。4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 実施例に係るポリイソシアヌレートフォームに関する応力/変位曲線を示すグラフ。4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 実施例に係るポリイソシアヌレートフォームに関する応力/変位曲線を示すグラフ。4 is a graph showing stress/displacement curves for polyisocyanurate foams according to the examples; 実施例に係るポリイソシアヌレートフォームに関する垂直入射吸音率の測定結果を示す吸音率グラフ。4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples. 実施例に係るポリイソシアヌレートフォームに関する垂直入射吸音率の測定結果を示す吸音率グラフ。4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples. 実施例に係るポリイソシアヌレートフォームに関する垂直入射吸音率の測定結果を示す吸音率グラフ。4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples. 実施例に係るポリイソシアヌレートフォームに関する垂直入射吸音率の測定結果を示す吸音率グラフ。4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples. 実施例に係るポリイソシアヌレートフォームに関する垂直入射吸音率の測定結果を示す吸音率グラフ。4 is a sound absorption coefficient graph showing measurement results of normal incident sound absorption coefficients for polyisocyanurate foams according to Examples.
 以下、実施の形態について適宜図面を参照して説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。 Hereinafter, embodiments will be described with reference to the drawings as appropriate. In addition, the same code|symbol shall be attached|subjected to the common structure through embodiment, and the overlapping description is abbreviate|omitted. In addition, each drawing is a schematic diagram for explaining the embodiments and promoting understanding thereof, and there are places where the shapes, dimensions, ratios, etc. are different from the actual device, but these are the following explanations and known techniques. Consideration can be taken into consideration and the design can be changed as appropriate.
 ポリイソシアヌレートフォームの衝撃吸収性能及び吸音性能は種々のファクターに応じて変化するが、所定の衝撃吸収性能及び吸音性能を両立するためには、ポリイソシアヌレートフォームを一定程度連通化させる必要がある。その結果、音波がフォーム内を伝播しやすくなり、振動エネルギーが熱エネルギーに変換されやすくなるため吸音性能が向上する。連通化の度合いが過剰であるか又は不足している場合、ポリイソシアネートフォームの吸音性能は、本発明の求める吸音性能から外れてしまう。また、高い衝撃吸収性能を実現するためには、多孔質弾性体であるポリイソシアヌレートフォームの硬さ、密度及び連通化などがバランス良く構成されていなければならない。 The impact absorption performance and sound absorption performance of polyisocyanurate foams vary depending on various factors, but in order to achieve the desired impact absorption performance and sound absorption performance, it is necessary to make the polyisocyanurate foams communicate with each other to a certain extent. . As a result, sound waves can easily propagate through the foam, and vibrational energy can be easily converted into thermal energy, thereby improving sound absorption performance. If the degree of communication is excessive or insufficient, the sound absorbing performance of the polyisocyanate foam deviates from the sound absorbing performance required by the present invention. In addition, in order to achieve high impact absorption performance, the polyisocyanurate foam, which is a porous elastic body, must have well-balanced hardness, density, communication, and the like.
 実施形態に係るポリイソシアヌレートフォームは、互いに性状が異なる2種のポリオールを含み、且つ、200以上350以下という比較的高いイソシアネートインデックスを示す反応系で発泡させて得られるものである。互いに性状が異なる2種のポリオールを反応させると、2種のポリオールがランダムにイソシアネートと反応することとなる。この場合、例えば1種類のポリオールがイソシアネートと反応する場合と比較して、均一なポリイソシアヌレートフォームが形成されない傾向にある。均一なポリイソシアヌレートフォームとは、ここでは、膜が多いフォームであることを意味する。無数のウレタン結合が形成される中で、2種のポリオールのそれぞれは、互いにフォームの均一性を低下させる因子として作用する。つまり、互いに性状が異なる2種のポリオールをイソシアネートと反応させると、より連通化したポリイソシアヌレートフォームが得られる傾向にある。 The polyisocyanurate foam according to the embodiment is obtained by foaming in a reaction system containing two types of polyols having different properties and exhibiting a relatively high isocyanate index of 200 or more and 350 or less. When two polyols having different properties are reacted, the two polyols randomly react with isocyanate. In this case, uniform polyisocyanurate foams tend not to be formed as compared with, for example, the reaction of one type of polyol with isocyanate. Homogeneous polyisocyanurate foams are understood here to be membrane-rich foams. Each of the two polyols acts as a factor that degrades the uniformity of the foam in the formation of a myriad of urethane linkages. In other words, when two kinds of polyols having different properties are reacted with an isocyanate, there is a tendency to obtain a polyisocyanurate foam that is more interconnected.
 反応系においてイソシアネートインデックスを200以上350以下の範囲内とすることにより、過剰量のイソシアネートが系内に存在することとなる。このため、イソシアネート量がより少ない場合と比較して、余ったイソシアネート同士がヌレート化(三量化)して、より多くのヌレート構造を形成する。ヌレート構造は、三分子のイソシアネートが環状をなした構造である。そのため、ヌレート構造も、無数のウレタン結合の中では均一性を低下させる因子として作用する。その結果、ポリイソシアヌレートフォーム中の膜が減り、より連通化したフォームが形成される。 By setting the isocyanate index in the reaction system within the range of 200 or more and 350 or less, an excessive amount of isocyanate is present in the system. Therefore, the remaining isocyanate is nurated (trimerized) to form more nurate structures than when the amount of isocyanate is smaller. A nurate structure is a structure in which three molecules of isocyanate form a ring. Therefore, the nurate structure also acts as a factor that lowers uniformity among countless urethane bonds. As a result, there are fewer membranes in the polyisocyanurate foam and a more open-ended foam is formed.
 このように、実施形態に係るポリイソシアヌレートフォームは、反応系に対して別途連通化剤を添加しない場合であっても一定程度連通化されたものであり、その結果、所定の吸音性能を有している。反応系に連通化剤を添加しない場合、コストの観点で有利であると共に、ポリイソシアヌレートフォーム製造時にポリオール液のハンドリング(取扱い性)が容易になるメリットがある。具体的には、例えば親水性に乏しい連通化剤を用いると、他の成分と分離しやすいためハンドリングに劣る傾向がある。但し、実施形態に係る反応系に対して連通化剤を添加することも可能である。 As described above, the polyisocyanurate foam according to the embodiment is communicated to a certain extent even when a separate communicating agent is not added to the reaction system, and as a result, it has a predetermined sound absorption performance. is doing. When no communication agent is added to the reaction system, it is advantageous from the viewpoint of cost and has the advantage of facilitating the handling of the polyol liquid during the production of the polyisocyanurate foam. Specifically, for example, if a communicating agent having poor hydrophilicity is used, it tends to separate from other components, resulting in poor handling. However, it is also possible to add a communicating agent to the reaction system according to the embodiment.
 また、反応系におけるイソシアネートインデックスを200以上350以下の範囲内としているため、上記の通り得られるフォームは多くのヌレート構造を有している。ヌレート構造の増加に伴いポリイソシアヌレートフォームは硬くなる。適度な連通化に加えて、一定の硬度を有するポリイソシアヌレートフォームによれば、優れた衝撃吸収性能、即ち高いヒステリシスロス率(90%以上)を達成することができる。言い換えれば、実施形態に係るポリイソシアヌレートフォームは、優れた座屈性を示す。ヌレート構造が増加すると、ポリイソシアヌレートフォームの耐炎性及び耐熱性も高まるため好ましい。 In addition, since the isocyanate index in the reaction system is within the range of 200 or more and 350 or less, the foam obtained as described above has many nurate structures. As the nurate structure increases, the polyisocyanurate foam becomes stiffer. A polyisocyanurate foam having a certain degree of hardness in addition to moderate communication can achieve excellent impact absorption performance, that is, a high hysteresis loss rate (90% or more). In other words, the polyisocyanurate foams according to embodiments exhibit excellent buckling properties. An increase in the nurate structure is preferred because it also increases the flame resistance and heat resistance of the polyisocyanurate foam.
 ポリイソシアヌレートフォームのヒステリシスロス率は、92%以上であってもよく、94%以上であってもよい。一例によれば、ヒステリシスロス率は99.0%以下である。ヒステリシスロス率のみから断定することはできないが、ヒステリシスロス率が過剰に高い場合、所定の吸音性能を達成できない可能性がある。なお、所定の吸音性能とは、後述する垂直入射吸音率測定において、対象となるポリイソシアヌレートフォームが、周波数1000Hz~3150Hzの範囲の全域において、40%以上の垂直入射吸音率を有することを意味する。 The hysteresis loss rate of the polyisocyanurate foam may be 92% or higher, or 94% or higher. According to one example, the hysteresis loss rate is 99.0% or less. Although it cannot be determined only from the hysteresis loss rate, if the hysteresis loss rate is excessively high, there is a possibility that the predetermined sound absorption performance cannot be achieved. The predetermined sound absorption performance means that the target polyisocyanurate foam has a normal incidence sound absorption coefficient of 40% or more in the entire frequency range of 1000 Hz to 3150 Hz in the normal incidence sound absorption coefficient measurement described later. do.
 反応系におけるイソシアネートインデックスが200未満であると、ヌレート構造が不足して、ヒステリシスロス率が90%未満となる可能性がある。イソシアネートインデックスが350超であると、フォームの成形性が低下し、所定の吸音性能を達成できない可能性がある。 If the isocyanate index in the reaction system is less than 200, the nurate structure may be insufficient and the hysteresis loss rate may be less than 90%. If the isocyanate index is more than 350, the moldability of the foam may deteriorate, and the desired sound absorbing performance may not be achieved.
 <ヒステリシスロス率の測定方法>
 下記の方法でポリイソシアヌレートフォームのヒステリシスロス率を測定することができる。
<Method for measuring hysteresis loss rate>
The hysteresis loss rate of polyisocyanurate foam can be measured by the following method.
 まず、測定対象のポリイソシアヌレートフォームから50mm×50mm×50mmの寸法を有する測定用試料を切り出す。この試料を、80φの圧縮子を用いて、5Nの荷重が負荷される基準厚みの位置まで圧縮する。その際、測定用試料としてのポリイソシアヌレートフォームの発泡高さ方向に沿って圧縮する。次に、この基準厚みからの厚みの変位が70%に達するまで、50mm/minの速度で測定用試料を圧縮する。厚みの変位が70%に達する位置は、言い換えると、圧縮されている部分における測定用試料の厚みが、基準厚みに対して30%の厚みとなる位置である。 First, a measurement sample having dimensions of 50 mm x 50 mm x 50 mm is cut out from the polyisocyanurate foam to be measured. This sample is compressed using a compressor of 80φ to a reference thickness position where a load of 5N is applied. At that time, the polyisocyanurate foam as a measurement sample is compressed along the foam height direction. Next, the measurement sample is compressed at a speed of 50 mm/min until the thickness displacement from this reference thickness reaches 70%. The position where the thickness displacement reaches 70% is, in other words, the position where the thickness of the measurement sample in the compressed portion is 30% of the reference thickness.
 厚みの変位が70%に達するまで圧縮した後、直ちに、測定用試料に圧力を加えない状態とし、上記基準厚みからの厚みの変位が0%に達するまで、50mm/minの速度で測定用試料を戻す。厚みの変位が0%に達する位置は、言い換えると、測定用試料の厚みが、基準厚みと同一の厚みとなる位置である。 After compressing until the thickness displacement reaches 70%, the measurement sample is immediately placed in a state where no pressure is applied, and the measurement sample is pressed at a speed of 50 mm / min until the thickness displacement from the reference thickness reaches 0%. return. The position where the thickness displacement reaches 0% is, in other words, the position where the thickness of the measurement sample is the same as the reference thickness.
 ヒステリシスロス率は、下記式1に従って算出する。 
 (S1-S2)/S1×100・・・(1)
 ここで、S1は、基準厚みから厚みの変位が70%に達する位置までの圧縮を行う際の応力の総和であり、S2は、厚みの変位が70%に達した位置から基準厚みまでの戻り時の応力の総和である。
The hysteresis loss rate is calculated according to Equation 1 below.
(S1-S2)/S1×100 (1)
Here, S1 is the sum of the stresses during compression from the reference thickness to the position where the thickness displacement reaches 70%, and S2 is the return from the position where the thickness displacement reaches 70% to the reference thickness. It is the sum of the stresses at time.
 実施形態に係るポリイソシアヌレートフォームは、ポリオール、ポリイソシアネート、整泡剤、触媒及び発泡剤を含む反応系で発泡させて得られる。反応系は、酸化防止剤、可塑剤などの他の添加剤を更に含んでいてもよい。反応系は、ポリオール、ポリイソシアネート、整泡剤、触媒及び発泡剤のみからなっていてもよい。この場合、例えば、反応系は連通化剤を含まないが、前述した理由で連通化効果が得られる。また、イソシアネートインデックスを200以上350以下の範囲内とすると、フォームは多くのヌレート構造を有し、ポリイソシアヌレートフォームのヒステリシスロス率は90%以上でありうる。三次元形状を実現し、気泡の構造を制御しやすくする観点から、製造方法としては、凹凸形状の3次元形状が可能であるモールド成形が好ましい。 The polyisocyanurate foam according to the embodiment is obtained by foaming in a reaction system containing polyol, polyisocyanate, foam stabilizer, catalyst and foaming agent. The reaction system may further contain other additives such as antioxidants, plasticizers and the like. The reaction system may consist of only polyol, polyisocyanate, foam stabilizer, catalyst and blowing agent. In this case, for example, although the reaction system does not contain a communicating agent, the communicating effect can be obtained for the reason described above. Moreover, when the isocyanate index is in the range of 200 or more and 350 or less, the foam has many nurate structures, and the hysteresis loss rate of the polyisocyanurate foam can be 90% or more. From the viewpoint of realizing a three-dimensional shape and facilitating control of the cell structure, molding is preferable as the manufacturing method because it enables a three-dimensional uneven shape.
 各原料について、以下に説明する。 Each raw material is explained below.
 (1)ポリオール
 ポリオール(ポリオール成分とも呼ぶ)は、重量平均分子量が3000~12000の範囲内にあり、エチレンオキシド含有量が50重量%以上であるポリオールAと、重量平均分子量が1000~8000であり、エチレンオキシド含有量が20重量%未満のポリオールBとを含む。ポリオール成分は、ポリオールAともポリオールBとも異なる他のポリオールを含んでいてもよい。ポリオール成分は、ポリオールA及びポリオールBのみからなっていてもよい。
(1) Polyol Polyol (also referred to as a polyol component) has a weight average molecular weight in the range of 3000 to 12000 and an ethylene oxide content of 50% by weight or more, and a polyol A having a weight average molecular weight of 1000 to 8000, and a polyol B having an ethylene oxide content of less than 20% by weight. The polyol component may contain other polyols different from polyol A and polyol B. The polyol component may consist of polyol A and polyol B only.
 ポリオールAは、重量平均分子量が3000~12000の範囲内にあり、エチレンオキシド含有量が50重量%以上である。ポリオールAは、エチレンオキシドを50重量%以上の量で含有しているため、極性が高く、高い親水性を有する。一方、ポリオールBは、重量平均分子量が1000~8000であり、エチレンオキシド含有量が20重量%未満である。エチレンオキシド含有量が少ないポリオールBは、ポリオールAと比較して極性が低いため、親水性も低い。ポリオールA及びポリオールBは、互いに性状が異なるため、ポリオールとしての分類の中では相溶性が低い。 Polyol A has a weight average molecular weight within the range of 3000 to 12000 and an ethylene oxide content of 50% by weight or more. Since Polyol A contains ethylene oxide in an amount of 50% by weight or more, it has high polarity and high hydrophilicity. Polyol B, on the other hand, has a weight average molecular weight of 1000 to 8000 and an ethylene oxide content of less than 20% by weight. Polyol B, which has a low ethylene oxide content, has a low polarity compared to polyol A, and thus has low hydrophilicity. Since polyol A and polyol B have different properties, they have low compatibility among polyols.
 ポリオールAの重量平均分子量は、3000以上9000以下の範囲内にあることが好ましく、7000以上9000以下の範囲内にあることがより好ましい。ポリオールAの重量平均分子量が3000未満である場合、ポリイソシアヌレートフォームの脆性が高くなり、成型品として不適切な可能性がある。ポリオールAのエチレンオキシド含有量は、好ましくは60重量%以上90重量%以下であり、より好ましくは65重量%以上85重量%以下である。ポリオールAの水酸基価は、例えば18mgKOH/g以上52mgKOH/g以下である。ポリオールAは、例えば、ポリエーテルポリオールである。 The weight average molecular weight of polyol A is preferably in the range of 3000 or more and 9000 or less, more preferably in the range of 7000 or more and 9000 or less. When the weight average molecular weight of polyol A is less than 3000, the polyisocyanurate foam becomes highly brittle and may be unsuitable as a molded product. The ethylene oxide content of polyol A is preferably 60% by weight or more and 90% by weight or less, more preferably 65% by weight or more and 85% by weight or less. The hydroxyl value of Polyol A is, for example, 18 mgKOH/g or more and 52 mgKOH/g or less. Polyol A is, for example, a polyether polyol.
 ポリオール成分の重量に占めるポリオールAの重量の割合は、例えば50重量%~90重量%の範囲内にある。当該割合がこの範囲内にある場合、良好な成形性、吸音性能及び衝撃吸収性能を達成することができる。ポリオールAの割合が比較的高い場合、得られるポリイソシアヌレートフォームの座屈性が高まる、例えば、圧縮後の戻り時の応力が小さい傾向があるため好ましい。ポリオール成分の重量に占めるポリオールAの重量の割合は、好ましくは65重量%~85重量%の範囲内にあり、より好ましくは70重量%~80重量%の範囲内にある。 The ratio of the weight of polyol A to the weight of the polyol component is, for example, within the range of 50% to 90% by weight. When the ratio is within this range, good moldability, sound absorption performance and impact absorption performance can be achieved. When the ratio of polyol A is relatively high, the buckling property of the obtained polyisocyanurate foam tends to increase, for example, the stress at the time of return after compression tends to be small, which is preferable. The weight ratio of polyol A to the weight of the polyol component is preferably in the range of 65% to 85% by weight, more preferably in the range of 70% to 80% by weight.
 ポリオールBの重量平均分子量は、2000以上8000以下の範囲内にあることが好ましく、2500以上7000以下の範囲内にあることがより好ましい。ポリオールBの重量平均分子量が8000を超えると、硬さが不足し、座屈性が劣る可能性がある。ポリオールBのエチレンオキシド含有量は、0重量%であってもよい。つまり、ポリオールBのエチレンオキシド含有量は、0重量%以上20重量%未満でありうる。エチレンオキシド含有量が少ないポリオールBは、ポリオールAと比較して極性が低いため、親水性も低い。ポリオールA及びポリオールBは、互いに性状が異なるため、ポリオールとしての分類の中では相溶性が低い。ポリオールBのエチレンオキシド含有量が20重量%以上になると、ポリオールAとの相溶性が高いため、連通化の度合いが不足する可能性がある。ポリオールBの水酸基価は、例えば20mgKOH/g以上90mgKOH/g以下である。 The weight average molecular weight of polyol B is preferably in the range of 2000 or more and 8000 or less, more preferably in the range of 2500 or more and 7000 or less. If the weight average molecular weight of polyol B exceeds 8000, the hardness may be insufficient and the buckling property may be deteriorated. The ethylene oxide content of polyol B may be 0% by weight. That is, the ethylene oxide content of polyol B can be 0% or more and less than 20% by weight. Polyol B, which has a low ethylene oxide content, has a low polarity compared to polyol A, and thus has low hydrophilicity. Since polyol A and polyol B have different properties, they have low compatibility among polyols. If the ethylene oxide content of polyol B is 20% by weight or more, the compatibility with polyol A is high, so the degree of communication may be insufficient. The hydroxyl value of Polyol B is, for example, 20 mgKOH/g or more and 90 mgKOH/g or less.
 ポリオール成分の重量に占めるポリオールBの重量の割合は、例えば10重量%~50重量%の範囲内にある。当該割合がこの範囲内にある場合、良好な成形性、吸音性能及び衝撃吸収性能を達成することができる。ポリオール成分の重量に占めるポリオールBの重量の割合は、好ましくは15重量%~35重量%の範囲内にあり、より好ましくは20重量%~30重量%の範囲内にある。 The ratio of the weight of polyol B to the weight of the polyol component is, for example, within the range of 10% by weight to 50% by weight. When the ratio is within this range, good moldability, sound absorption performance and impact absorption performance can be achieved. The weight ratio of polyol B to the weight of the polyol component is preferably in the range of 15% to 35% by weight, more preferably in the range of 20% to 30% by weight.
 ポリオール成分に占める、ポリオールA及びポリオールBの配合割合は、上述した複数の数値範囲の中から適宜組み合わせて決定することができる。 The blending ratio of polyol A and polyol B in the polyol component can be determined by appropriately combining the multiple numerical ranges described above.
 ポリオール成分が他のポリオールを含む場合、ポリオール成分の重量に占めるポリオールA及びポリオールBの合計重量の割合は、80重量%以上であることが好ましく、90重量%以上であることがより好ましい。 When the polyol component contains other polyols, the ratio of the total weight of polyol A and polyol B to the weight of the polyol component is preferably 80% by weight or more, more preferably 90% by weight or more.
 ポリオールの重量平均分子量は、サイズ排除クロマトグラフィー(SEC: Size Exclusion Chromatography)によって測定することが可能である。 The weight average molecular weight of polyol can be measured by size exclusion chromatography (SEC).
 (2)ポリイソシアネート
 ポリイソシアネートとしては、ジフェニルメタンジイソシアネート(MDI:Methylenediphenyl diisocyanate)を使用することが好ましい。ジフェニルメタンジイソシアネートは、モノメリックMDIであってもよく、ポリメリックMDIであってもよく、それらの混合物であってもよい。ポリイソシアネートは、MDIを1種類のみ含んでいてもよく、2種類以上含んでいてもよい。MDIは、トルエンジイソシアネート(TDI:Toluene diisocyanate)と比較して良好なキュア性を持っているため、成形面で優れている。
(2) Polyisocyanate As polyisocyanate, it is preferable to use diphenylmethane diisocyanate (MDI). Diphenylmethane diisocyanate may be monomeric MDI, polymeric MDI, or mixtures thereof. The polyisocyanate may contain only one type of MDI, or may contain two or more types. MDI is excellent in terms of molding because it has better curability than toluene diisocyanate (TDI).
 (3)整泡剤
 整泡剤の種類は、得られるポリイソシアヌレートフォームのヒステリシスロス率が90%以上である限り特に制限されないが、シリコーン系整泡剤であり得る。この場合、整泡力が高まることで反応によって発生する発泡ガスを保持しやすくなり、成形性を高める効果が得られる。
(3) Foam Stabilizer The type of foam stabilizer is not particularly limited as long as the resulting polyisocyanurate foam has a hysteresis loss rate of 90% or more, but it may be a silicone foam stabilizer. In this case, since the foam stabilizing power is enhanced, the foaming gas generated by the reaction can be easily retained, and the effect of enhancing the moldability can be obtained.
 反応系における整泡剤の含有量は、ポリオール成分100重量部に対して、例えば0.5重量部~15重量部の範囲内にある。反応系における整泡剤の含有量が少なすぎると発生する発泡ガスを保持しにくく、成形性が悪化する傾向にある。多すぎる場合には、整泡力が高くなりすぎるために吸音性能が低下する傾向がある。反応系における整泡剤の含有量は、ポリオール成分100重量部に対して、好ましくは1.0重量部~3.0重量部の範囲内にある。 The content of the foam stabilizer in the reaction system is, for example, within the range of 0.5 to 15 parts by weight with respect to 100 parts by weight of the polyol component. If the content of the foam stabilizer in the reaction system is too low, it will be difficult to retain the generated foaming gas, and moldability will tend to deteriorate. If the amount is too large, the foam-stabilizing power tends to be too high, resulting in a decrease in sound absorption performance. The content of the foam stabilizer in the reaction system is preferably in the range of 1.0 to 3.0 parts by weight with respect to 100 parts by weight of the polyol component.
 (4)触媒
 触媒として、樹脂化触媒、イソシアヌレート化触媒(三量化触媒)、表面改質触媒、及び、泡化触媒等を使用することができる。それぞれの触媒として、その用途で使用されている公知の触媒を使用することができる。
(4) Catalyst As a catalyst, a resin catalyst, an isocyanurate catalyst (trimerization catalyst), a surface reforming catalyst, a foaming catalyst, and the like can be used. As each catalyst, a known catalyst used for that purpose can be used.
 樹脂化触媒は、例えば、ポリオール成分の重量に対して1重量部~5重量部の量で使用する。イソシアヌレート化触媒は、例えば、ポリオール成分の重量に対して1重量部~5重量部の量で使用する。表面改質触媒は、例えば、ポリオール成分の重量に対して0.5重量部~3重量部の量で使用する。泡化触媒は、例えば、ポリオール成分の重量に対して0.1重量部~1重量部の量で使用する。 The resinification catalyst is used, for example, in an amount of 1 to 5 parts by weight based on the weight of the polyol component. The isocyanurating catalyst is used, for example, in an amount of 1 to 5 parts by weight based on the weight of the polyol component. The surface modification catalyst is used, for example, in an amount of 0.5 to 3 parts by weight based on the weight of the polyol component. The foaming catalyst is used, for example, in an amount of 0.1 to 1 part by weight based on the weight of the polyol component.
 表面改質触媒としては、ジエタノールアミン(DEA)を使用することが好ましい。DEAは両端にOH基を、中心に2級アミンを有している。これらOH基及びNH基と、イソシアネートが有するNCO基とが架橋することで、得られるポリイソシアヌレートフォームの骨格の強度が高まるため、成形性が向上或いは安定し、スキン剥がれを抑制することもできる。 It is preferable to use diethanolamine (DEA) as the surface modification catalyst. DEA has OH groups at both ends and a secondary amine in the center. By cross-linking these OH groups and NH groups with the NCO groups possessed by the isocyanate, the strength of the skeleton of the resulting polyisocyanurate foam is increased, so that moldability is improved or stabilized, and peeling of the skin can be suppressed. .
 (5)発泡剤
 発泡剤としては、一般的なポリイソシアヌレートフォーム又はポリウレタンフォームの製造に用いる公知のものであれば使用することができる。本発明における発泡剤は水である。反応系における発泡剤の含有量は、ポリオール成分100重量部に対して、好ましくは5重量部~20重量部の範囲内にある。水以外に、通常使用される補助発泡剤を更に添加してもよい。補助発泡剤の例は、フロン及びジクロロメタンを含む。
(5) Foaming Agent As the foaming agent, any known foaming agent used for producing general polyisocyanurate foams or polyurethane foams can be used. The blowing agent in the present invention is water. The content of the foaming agent in the reaction system is preferably in the range of 5 to 20 parts by weight with respect to 100 parts by weight of the polyol component. In addition to water, commonly used auxiliary blowing agents may also be added. Examples of auxiliary blowing agents include freon and dichloromethane.
 (6)他の添加剤
 他の添加剤として、例えば可塑剤や酸化防止剤を添加することができる。可塑剤により、ポリイソシアヌレートフォームの硬さ及びセル構造を調整したり、成形性を向上させたりすることができる。酸化防止剤は、スコーチを抑制することができる。他の添加剤は、例えば、ポリオール成分の重量に対して3重量部~30重量部の量で使用する。他の添加剤については、一般的なポリイソシアヌレートフォーム又はポリウレタンフォームの製造に用いるものであれば制限無く使用することができる。
(6) Other Additives As other additives, for example, plasticizers and antioxidants can be added. The plasticizer can adjust the hardness and cell structure of the polyisocyanurate foam and improve the moldability. Antioxidants can suppress scorch. Other additives are used, for example, in amounts of 3 to 30 parts by weight based on the weight of the polyol component. Other additives can be used without limitation as long as they are used in the production of general polyisocyanurate foams or polyurethane foams.
 ポリイソシアヌレートフォームの密度は、例えば50kg/m3~100kg/m3の範囲内にある。 The density of polyisocyanurate foams is, for example, in the range from 50 kg/m 3 to 100 kg/m 3 .
 ポリイソシアヌレートフォームの変形10%時の圧縮応力は、例えば、0.5kgf/cm2~4.0kgf/cm2の範囲内にある。 The compressive stress at 10% deformation of the polyisocyanurate foam is, for example, within the range of 0.5 kgf/cm 2 to 4.0 kgf/cm 2 .
 本発明における、ポリイソシアヌレートフォームの垂直入射吸音率は、周波数1000Hz~3150Hzの範囲の全域において40%以上であることが好ましく、45%以上であることがより好ましい。垂直入射吸音率は、吸音性能を評価する指標となる。一例としてポリイソシアヌレートフォームが自動車等の下肢部衝撃吸収材として用いられた場合には、垂直入射吸音率が前述の範囲内にあると、自動車等の乗員は低周波数帯域の騒音を知覚しにくい。それ故、乗員は、乗車中に快適に過ごすことができる。 In the present invention, the normal incident sound absorption coefficient of the polyisocyanurate foam is preferably 40% or more, more preferably 45% or more, over the entire frequency range of 1000 Hz to 3150 Hz. The normal incidence sound absorption coefficient is an index for evaluating sound absorption performance. As an example, when polyisocyanurate foam is used as a shock absorbing material for the lower limbs of automobiles, etc., if the normal incidence sound absorption coefficient is within the above range, it is difficult for the occupants of automobiles, etc., to perceive low-frequency noise. . Therefore, the occupants can be comfortable during the ride.
 <垂直入射吸音率の測定>
 ポリイソシアヌレートフォームの垂直入射吸音率は、下記方法で測定する。 
 まず、吸音率の測定対象として、直径が29mm(29φ)であり、厚みが15mmの円柱形状を有するポリイソシアヌレートフォーム塊状物を用意する。塊状物は、例えば、29φの打ち抜き型を備える打ち抜き機を用いて用意することができる。吸音率の測定結果の平均値を算出するために、この塊状物を5個用意する。
<Measurement of Normal Incidence Sound Absorption Coefficient>
The normal incident sound absorption coefficient of polyisocyanurate foam is measured by the following method.
First, a cylindrical polyisocyanurate foam lump having a diameter of 29 mm (29φ) and a thickness of 15 mm is prepared as an object for measuring the sound absorption coefficient. The mass can be prepared, for example, using a punching machine with a 29φ punching die. In order to calculate the average value of the measurement results of the sound absorption coefficient, five such blocks are prepared.
 吸音率の計測装置としては、リオン株式会社製のアコースティックダクト・伝達関数法 垂直入射音響計測システム9301型、或いは、この装置と等価な機能を有する装置を使用する。垂直入射音響計測システムは、音響管(アコースティックダクト)の内部で吸音材又は遮音材に音を垂直に入射して、反射音又は透過音を捉えて、材料の吸音率、音響インピーダンス関連項目、及び、透過損失を計測することができる。垂直入射音響計測システムを起動し、マイクロホンの校正を行い、吸音率測定の準備を完了する。 As a measuring device for the sound absorption coefficient, use the Acoustic Duct/Transfer Function Method Vertical Incidence Acoustic Measurement System Model 9301 manufactured by Rion Co., Ltd., or a device with an equivalent function. The normal incidence acoustic measurement system is a system for measuring the sound absorption coefficient of the material, acoustic impedance related items, and , the transmission loss can be measured. Start up the normal incidence acoustic measurement system, calibrate the microphone, and complete preparations for sound absorption measurement.
 塊状物の厚み方向と平行な方向に沿って音が入射するように、塊状物をダクト内部の所定位置にセットして、吸音率を測定する。吸音率測定は、JIS A 1405:1994に準拠して行う。塊状物が意匠面を有している場合には、この意匠面に対して音が入射するように塊状物をセットする。  The lump is set at a predetermined position inside the duct so that the sound is incident along the direction parallel to the thickness direction of the lump, and the sound absorption coefficient is measured. The sound absorption coefficient is measured according to JIS A 1405:1994. When the lump has a design surface, the lump is set so that the sound is incident on the design surface.
 そして、周波数が500Hz、630Hz、800Hz、1000Hz、1250Hz、1600Hz、2000Hz、2500Hz、3150Hz、4000Hz、5000Hz及び6300Hzの場合の垂直入射吸音率をそれぞれ測定する。この測定を、5個の塊状物のそれぞれに対して行い、上記の各周波数における垂直入射吸音率の平均値を算出することにより、各周波数における垂直入射吸音率を決定することができる。この測定結果に基づいて、横軸に周波数(Hz)、縦軸に吸音率(%)を示す折れ線グラフを作成することができる。本願明細書においては、当該折れ線グラフを「吸音率グラフ」と呼ぶ。後述する図8~図11に係る吸音率グラフは、対数グラフである。 Then, the normal incident sound absorption coefficients are measured at frequencies of 500 Hz, 630 Hz, 800 Hz, 1000 Hz, 1250 Hz, 1600 Hz, 2000 Hz, 2500 Hz, 3150 Hz, 4000 Hz, 5000 Hz and 6300 Hz. By performing this measurement for each of the five lumps and calculating the average value of the normal incidence sound absorption coefficient at each frequency, the normal incidence sound absorption coefficient at each frequency can be determined. Based on the measurement results, a line graph can be created in which the horizontal axis indicates frequency (Hz) and the vertical axis indicates sound absorption coefficient (%). In the specification of the present application, the line graph is called a "sound absorption coefficient graph". The sound absorption coefficient graphs shown in FIGS. 8 to 11, which will be described later, are logarithmic graphs.
 上記測定において、1000Hz、1250Hz、1600Hz、2000Hz、2500Hz及び3150Hzの全ての周波数における吸音率が40%以上である場合に、周波数1000Hz~3150Hzの範囲の全域において、垂直入射吸音率が40%以上であると見なすことができる。 In the above measurement, when the sound absorption coefficient at all frequencies of 1000 Hz, 1250 Hz, 1600 Hz, 2000 Hz, 2500 Hz and 3150 Hz is 40% or more, the normal incidence sound absorption coefficient is 40% or more in the entire frequency range of 1000 Hz to 3150 Hz. can be assumed to exist.
 実施形態に係るポリイソシアヌレートフォームの形状及び寸法は特に制限されない。ポリイソシアヌレートフォームの形状の一例を、図1~図3を参照しながら説明する。 The shape and dimensions of the polyisocyanurate foam according to the embodiment are not particularly limited. An example of the shape of polyisocyanurate foam will be described with reference to FIGS. 1 to 3. FIG.
 図1は、ポリイソシアヌレートフォームの一例を概略的に示す平面図である。図1では、ポリイソシアヌレートフォームが下肢部衝撃吸収材(フットパネル)である場合を一例として描いている。図2は、図1に示すポリイソシアヌレートフォームのII-II線に沿った断面を概略的に示す断面図である。図3は、図1に示すポリイソシアヌレートフォームのIII-III線に沿った断面を概略的に示す断面図である。 FIG. 1 is a plan view schematically showing an example of polyisocyanurate foam. In FIG. 1, the case where the polyisocyanurate foam is used as a lower leg impact absorbing material (foot panel) is illustrated as an example. FIG. 2 is a schematic cross-sectional view of the polyisocyanurate foam shown in FIG. 1 taken along line II--II. FIG. 3 is a schematic cross-sectional view of the polyisocyanurate foam shown in FIG. 1 taken along line III--III.
 下肢部衝撃吸収材10は、第1部分1と、第2部分2と、肉厚部3とを備えている。第1部分1、第2部分2及び肉厚部3は、1つの金型を用いたモールド成形により一体成形されて下肢部衝撃吸収材10を構成している。下肢部衝撃吸収材10は、例えば、自動車のフロア部に搭載されうる。自動車のフロア部に搭載された下肢部衝撃吸収材10上には、例えばフロアマットが敷かれ、乗員の両足は、フロアマットを介して下肢部衝撃吸収材上に置かれる。 The lower leg shock absorbing material 10 includes a first portion 1, a second portion 2, and a thick portion 3. The first part 1 , the second part 2 and the thick part 3 are integrally formed by molding using one mold to form the lower leg shock absorbing material 10 . The lower leg shock absorber 10 can be mounted, for example, on the floor of an automobile. A floor mat, for example, is laid on the leg shock absorbing material 10 mounted on the floor of an automobile, and both feet of the occupant are placed on the leg shock absorbing material via the floor mat.
 第1部分1及び第2部分2は、肉厚部3と比較して肉厚が薄い。第2部分2は、略直方体形状であり、境界部4で規定される端面を有している。第2部分2が有する端面から第1部分1及び肉厚部3が伸びている。下肢部衝撃吸収材10は、第2部分2と、第1部分1及び肉厚部3との境界部4が谷となるように湾曲している。境界部4は、下肢部衝撃吸収材10の一方の面においては谷を形成しているが、他方の面においては山を形成している。 The first portion 1 and the second portion 2 are thinner than the thick portion 3. The second portion 2 has a substantially rectangular parallelepiped shape and has an end surface defined by a boundary portion 4 . The first portion 1 and the thick portion 3 extend from the end face of the second portion 2 . The lower leg shock absorbing material 10 is curved so that the boundary portion 4 between the second portion 2 and the first portion 1 and the thick portion 3 forms a valley. The boundary portion 4 forms a trough on one side of the lower leg shock absorbing material 10 and forms a peak on the other side.
 下肢部衝撃吸収材10は、第2部分2と、第1部分1及び肉厚部3とが谷を形成している表面5を有する。下肢部衝撃吸収材10は、第2部分2と、第1部分1及び肉厚部3とが山を形成している裏面6を有する。肉厚部3は、表面5において凸形状を有している。即ち、肉厚部3は、表面5において、第1部分1の表面を基準として、第1部分1の表面よりもせり出した構造を有している。 The lower leg shock absorbing material 10 has a surface 5 in which the second portion 2, the first portion 1 and the thick portion 3 form a valley. The lower leg shock absorbing material 10 has the second portion 2 and the back surface 6 where the first portion 1 and the thick portion 3 form a peak. The thick portion 3 has a convex shape on the surface 5 . That is, the thick portion 3 has a structure in which the surface 5 protrudes from the surface of the first portion 1 on the basis of the surface of the first portion 1 .
 図1~図3は、ポリイソシアヌレートフォームが下肢部衝撃吸収材である場合を一例として説明したが、ポリイソシアヌレートフォームの用途は特に限定されず、座屈性及び吸音性能が要求される用途に好適に使用される。ポリイソシアヌレートフォームは、例えば、ドア内装緩衝材、頭部保護材、フロア嵩上げ材、ツールボックス、ラゲージボックス、天井材、シート芯材、サンバイザー芯材、ピラー芯材等の用途で使用することができる。発泡体を切削することで、所望の形状のポリイソシアヌレートフォームを得ることができる。 1 to 3 illustrate the case where the polyisocyanurate foam is used as a shock absorbing material for lower limbs, but the use of the polyisocyanurate foam is not particularly limited, and uses that require buckling property and sound absorption performance. is preferably used for Polyisocyanurate foam can be used for door interior cushioning materials, head protection materials, floor raising materials, tool boxes, luggage boxes, ceiling materials, seat core materials, sun visor core materials, pillar core materials, etc. can be done. A polyisocyanurate foam having a desired shape can be obtained by cutting the foam.
 [実施例]
 以下に実施例を説明するが、実施形態は、以下に記載される実施例に限定されるものではない。
[Example]
Examples are described below, but embodiments are not limited to the examples described below.
 下記表1及び表2に示す配合処方に従って、例1~例34に係るポリイソシアヌレートフォームをモールド成形にて製造した。表中、各原料の配合割合は、重量部にて示されている。但し、「イソシアネートインデックス」は、ポリオール中の活性水酸基当量(濃度)、他の活性水酸基当量(濃度)を含む材料、及び、水の水酸基当量(濃度)の総和に対するポリイソシアネート中のイソシアネート基当量(濃度)を示している。 According to the formulations shown in Tables 1 and 2 below, polyisocyanurate foams according to Examples 1 to 34 were produced by molding. In the table, the mixing ratio of each raw material is shown in parts by weight. However, the "isocyanate index" is the active hydroxyl group equivalent (concentration) in the polyol, materials containing other active hydroxyl group equivalents (concentration), and the isocyanate group equivalent in the polyisocyanate with respect to the sum of the hydroxyl group equivalents (concentration) of water ( concentration).
 表1及び表2に記載の「原料名」の詳細は以下のとおりである。 The details of the "raw material names" listed in Tables 1 and 2 are as follows.
 (1)QB8000:東邦化学工業株式会社製(重量平均分子量8000、ポリオキシエチレン含有量80重量%、水酸基価28)
 (2)T-3000S:三井化学SKCポリウレタン株式会社(重量平均分子量3000、ポリオキシエチレン含有量0重量%、水酸基価56)
 (3)V8010G:ダウ・ケミカル製(重量平均分子量3000、ポリオキシエチレン含有量9重量%、水酸基価56)
 (4)EP-901P:三井化学SKCポリウレタン株式会社製(重量平均分子量7000、ポリオキシエチレン含有量15重量%、水酸基価23)
 (5)CP1421:ダウ・ケミカル製(重量平均分子量5000、ポリオキシエチレン含有量75重量%、水酸基価33.5)
 (6)FA166:三洋化成工業株式会社製(重量平均分子量6700、ポリオキシエチレン含有量70重量%、水酸基価25)
 (7)T-5000D:三井化学SKCポリウレタン株式会社製(重量平均分子量5000、ポリオキシエチレン含有量0重量%、水酸基価33.7)
 (8)V4701:ダウ・ケミカル製(重量平均分子量5000、ポリオキシエチレン含有量10重量%~12重量%、水酸基価33.7)
 (9)KC745:三洋化成工業株式会社製(重量平均分子量5000、ポリオキシエチレン含有量20重量%~25重量%、水酸基価33.7)
 (10)EP-505S:三井化学SKCポリウレタン株式会社製(重量平均分子量3000、ポリオキシエチレン含有量70重量%~75重量%、水酸基価51)
 (11)JEFFCAT DPA:ハンツマン・ジャパン株式会社製
物質名:1,1'-[[3-(ジメチルアミノ)プロピル]イミノ]ビス(2-プロパノール)
用途:樹脂化触媒
 (12)TMR7:エアプロダクツジャパン株式会社製
用途:三量化触媒
 (13)DEA:ジエタノールアミン(Diethanolamine)
用途:表面改質触媒
 (14)NE300:エボニック・ジャパン株式会社製
用途:泡化触媒
 (15)Niax catalyst A-1:モメンティブ・パフォーマンス・マテリアルズ・インク社製
用途:泡化触媒
 (16)B8228:エボニック・ジャパン株式会社製
 (17)EM ALEX DEG-di-O:日本乳化剤株式会社製
物質名:ジオレイン酸ジエチルグリコール
 (18)SF2962:東レ・ダウコーニング株式会社製
 (19)VORASURF 1280:東レ・ダウコーニング株式会社製
 (20)Irganox1135:BASFジャパン株式会社製
用途:酸化防止剤
 (21)スミジュール 44 V 20 L:住化コベストロウレタン株式会社製。
(1) QB8000: manufactured by Toho Chemical Industry Co., Ltd. (weight average molecular weight 8000, polyoxyethylene content 80% by weight, hydroxyl value 28)
(2) T-3000S: Mitsui Chemicals SKC Polyurethane Co., Ltd. (weight average molecular weight 3000, polyoxyethylene content 0% by weight, hydroxyl value 56)
(3) V8010G: manufactured by Dow Chemical (weight average molecular weight 3000, polyoxyethylene content 9% by weight, hydroxyl value 56)
(4) EP-901P: manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd. (weight average molecular weight 7000, polyoxyethylene content 15% by weight, hydroxyl value 23)
(5) CP1421: manufactured by Dow Chemical (weight average molecular weight 5000, polyoxyethylene content 75% by weight, hydroxyl value 33.5)
(6) FA166: manufactured by Sanyo Chemical Industries, Ltd. (weight average molecular weight 6700, polyoxyethylene content 70% by weight, hydroxyl value 25)
(7) T-5000D: manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd. (weight average molecular weight 5000, polyoxyethylene content 0% by weight, hydroxyl value 33.7)
(8) V4701: manufactured by Dow Chemical (weight average molecular weight 5000, polyoxyethylene content 10% to 12% by weight, hydroxyl value 33.7)
(9) KC745: manufactured by Sanyo Chemical Industries, Ltd. (weight average molecular weight 5000, polyoxyethylene content 20% to 25% by weight, hydroxyl value 33.7)
(10) EP-505S: manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd. (weight average molecular weight 3000, polyoxyethylene content 70% to 75% by weight, hydroxyl value 51)
(11) JEFFCAT DPA: Huntsman Japan Co., Ltd. Substance name: 1,1'-[[3-(dimethylamino)propyl]imino]bis(2-propanol)
Application: Resin catalyst (12) TMR7: Air Products Japan Co., Ltd. Application: Trimerization catalyst (13) DEA: Diethanolamine
Application: Surface modification catalyst (14) NE300: Manufactured by Evonik Japan KK Application: Foaming catalyst (15) Niax catalyst A-1: Manufactured by Momentive Performance Materials, Inc. Application: Foaming catalyst (16) B8228 : Evonik Japan Co., Ltd. (17) EM ALEX DEG-di-O: Nippon Emulsion Co., Ltd. Substance name: Diethyl glycol dioleate (18) SF2962: Dow Corning Toray Co., Ltd. (19) VORASURF 1280: Toray Co., Ltd. Dow Corning Co., Ltd. (20) Irganox 1135: BASF Japan Co., Ltd. Application: Antioxidant (21) Sumidur 44 V 20 L: Sumika Covestro Urethane Co., Ltd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (例1)
 表1に示す配合処方に従って(ハンド発泡により)、ポリイソシアネート以外の原料、即ち、ポリオール成分、添加剤、触媒及び発泡剤を配合してポリオール含有混合物をディスポカップ内で調製した。例1に係るポリオール成分は、ポリオールAに該当するQB8000と、ポリオールBに該当するT-3000Sとを含む。得られたポリオール含有混合物をA液とする。A液を37℃±2℃となるように温度調節した。また、B液としてポリイソシアネートを準備し、B液を37℃±2℃となるように温度調節した。
(Example 1)
A polyol-containing mixture was prepared in a disposable cup by blending the raw materials other than the polyisocyanate, ie, the polyol component, additives, catalyst and blowing agent, according to the formulation shown in Table 1 (by hand foaming). The polyol component according to Example 1 includes QB8000 corresponding to polyol A and T-3000S corresponding to polyol B. Let the obtained polyol containing mixture be A liquid. The temperature of liquid A was adjusted to 37°C ± 2°C. Also, a polyisocyanate was prepared as the B liquid, and the temperature of the B liquid was adjusted to 37°C ± 2°C.
 内寸が、幅350mm、奥行き350mm及び高さ70mmのサンプル作製用金型を用意し、当該金型を65℃~70℃の温度範囲となるように加熱して温度を維持しておく。なお、温度の測定は表面温度計で行った。金型は、上面のみが開口した有底各筒形状の下型と、この上面を閉塞させることが可能な上型とからなる。 A sample-making mold with internal dimensions of 350 mm in width, 350 mm in depth, and 70 mm in height is prepared, and the mold is heated to a temperature range of 65°C to 70°C to maintain the temperature. The temperature was measured using a surface thermometer. The mold consists of a cylindrical lower mold with a bottom that is open only at the top, and an upper mold that can close the top.
 次いで、ディスポカップ内に準備したA液に対してB液を添加し、5秒間に亘って撹拌及び混合して混合溶液を得た。ここで、ポリオール成分の合計重量部を100とした場合に、当該ポリオール成分を含むA液の重量部は120.5重量部であり、B液の重量部は77.3重量部であった。得られた混合溶液を、直ちに金型の下型に投入して、上型を用いて下型の上面を閉塞して6分間に亘りキュアした。この間、金型の表面温度は65℃~70℃となるように温度を維持しておく。その後、金型から脱型して、常温にて2日間に亘り静置して、350mm×350mm×70mmの寸法を有するポリイソシアヌレートフォームを得た。 Next, B liquid was added to A liquid prepared in the disposable cup, and the mixture was stirred and mixed for 5 seconds to obtain a mixed solution. Here, when the total weight part of the polyol component is 100, the weight part of the A liquid containing the said polyol component was 120.5 weight part, and the weight part of the B liquid was 77.3 weight part. The resulting mixed solution was immediately put into the lower mold, and the upper surface of the lower mold was closed with the upper mold to cure for 6 minutes. During this time, the surface temperature of the mold is maintained at 65.degree. C. to 70.degree. Thereafter, the mold was removed from the mold and allowed to stand at room temperature for 2 days to obtain a polyisocyanurate foam having dimensions of 350 mm×350 mm×70 mm.
 (例2~9)
 配合処方に占めるポリイソシアネートの配合量を表1に示す通りに変更することにより、イソシアネートインデックスを表1に示す通りに変更したことを除いて、例1と同様の方法でポリイソシアヌレートフォームを得た。
(Examples 2-9)
A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the isocyanate index was changed as shown in Table 1 by changing the amount of polyisocyanate in the formulation as shown in Table 1. rice field.
 (例10~20)
 ポリオールAに該当するQB8000と、ポリオールBに該当するT-3000Sとの配合比率を表1に示す通りに変更したことを除いて、例1と同様の方法でポリイソシアヌレートフォームを得た。
(Examples 10-20)
A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the mixing ratio of QB8000 corresponding to polyol A and T-3000S corresponding to polyol B was changed as shown in Table 1.
 (例21~26)
 使用するポリオールの種類及び配合量を表2に示す通りに変更したことを除いて、例1と同様の方法でポリイソシアヌレートフォームを得た。
(Examples 21-26)
A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the type and blending amount of the polyol used were changed as shown in Table 2.
 (例27~33)
 使用するポリオール及び整泡剤の種類、並びに、これらの配合量を表2に示す通りに変更したことを除いて、例1と同様の方法でポリイソシアヌレートフォームを得た。
(Examples 27-33)
A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the types of polyols and foam stabilizers used and their blending amounts were changed as shown in Table 2.
 (例34)
 A液の処方を表2に示した通りに変更し、イソシアネートインデックスを150に変更したことを除いて、例1と同様の方法でポリイソシアヌレートフォームを得た。
(Example 34)
A polyisocyanurate foam was obtained in the same manner as in Example 1, except that the formulation of liquid A was changed as shown in Table 2 and the isocyanate index was changed to 150.
 <成形性評価>
 各例に係るポリイソシアヌレートフォームについて、官能評価にて成形性(キュア性)を評価した。脱型時のフォームの状態が良好なものを「○」とし、セル構造が荒い、あるいは欠肉が発生しているものを「△」とし、ポリイソシアヌレートフォームが崩壊している、又は、重度のキュア不足状態である場合を「×」と評価した。評価「×」の内訳としては、例えば、脱型を試みると糸をひく、フォームがぼろぼろで脆い、又は、フォーム内部のセルが崩壊及び陥没している等が挙げられる。
<Moldability evaluation>
The moldability (curability) of the polyisocyanurate foam according to each example was evaluated by sensory evaluation. "○" indicates that the foam is in good condition at the time of demolding, and "△" indicates that the cell structure is rough or that the foam is missing, and the polyisocyanurate foam is collapsed or severe. The case where the cure was insufficient was evaluated as "x". Examples of the breakdown of the evaluation "x" include, for example, when demolding is attempted, strings are drawn, the foam is ragged and brittle, or the cells inside the foam are collapsed and depressed.
 <ヒステリシスロス率測定>
 各例に係るポリイソシアヌレートフォームについて、実施形態において記載した方法に従ってヒステリシスロス率(%)を測定した。ヒステリシスロス率が90%以上のものを「○」とし、90%未満のものを「×」とした。但し、上記成形性評価において評価が「×」のものに関しては、適切にヒステリシスロス率測定ができないため、測定を行わなかった。表1及び表2の「ヒステリシスロス率」の行において、測定を行わなかった例は「‐」で示している。
<Hysteresis loss rate measurement>
For the polyisocyanurate foam according to each example, the hysteresis loss rate (%) was measured according to the method described in the embodiment. A sample with a hysteresis loss rate of 90% or more was rated as "good", and a sample with a hysteresis loss rate of less than 90% was rated as "x". However, the hysteresis loss ratio was not measured for those with an evaluation of "x" in the moldability evaluation, because the hysteresis loss rate could not be measured appropriately. In the row of "hysteresis loss rate" in Tables 1 and 2, "-" indicates an example in which measurement was not performed.
 <吸音性能評価>
 実施形態において記載した垂直入射吸音率の測定方法に従って、各例に係るポリイソシアヌレートフォームの吸音性能を評価した。周波数1000Hz~3150Hzの範囲の全域において、垂直入射吸音率が40%以上であるものを「○」とし、周波数1000Hz~3150Hzの範囲において垂直入射吸音率が40%未満である帯域を有するものを「×」と評価した。但し、上記成形性評価において評価が「×」のものに関しては、適切に吸音性能を評価することができないため、評価を行わなかった。表1及び表2の「吸音性能」の行において、評価を行わなかった例は「‐」で示している。
<Sound absorption performance evaluation>
The sound absorption performance of the polyisocyanurate foam according to each example was evaluated according to the method for measuring the normal incidence sound absorption coefficient described in the embodiment. Those with a normal incidence sound absorption coefficient of 40% or more in the entire frequency range of 1000Hz to 3150Hz are marked with "○", and those with a band with a normal incidence sound absorption coefficient of less than 40% in the frequency range of 1000Hz to 3150Hz with "○". x” was evaluated. However, in the evaluation of formability, evaluation was not carried out for those evaluated as "x" because the sound absorption performance could not be evaluated appropriately. In the row of "sound absorption performance" in Tables 1 and 2, examples that were not evaluated are indicated by "-".
 <密度測定>
 各例に係るポリイソシアヌレートフォームについて、密度を測定したところ、いずれも60kg/m3であった。密度は、JIS K 7222:2005に規定される測定方法に準拠して評価した。
<Density measurement>
The density of the polyisocyanurate foam according to each example was measured and found to be 60 kg/m 3 in all cases. Density was evaluated according to the measurement method specified in JIS K 7222:2005.
 表1及び表2に示しているように、例1~例9、例14~例22及び例26~例34に係るポリイソシアヌレートフォームは、実用的な成形性を有していた。つまり、これら例は成形性の評価が「〇」又は「△」であったため、各種評価を行うことが可能であった。 As shown in Tables 1 and 2, the polyisocyanurate foams according to Examples 1 to 9, Examples 14 to 22, and Examples 26 to 34 had practical moldability. In other words, since these examples were evaluated for moldability as "good" or "fair", it was possible to perform various evaluations.
 図4~図8に、各例に関する応力/変位曲線を示す。図4~図8に示す応力/変位曲線において、横軸は変位(%)を、縦軸は応力(kgf/cm2)を示している。得られた応力/変位曲線からヒステリシスロス率を算出した。また、図9~13は、各例に関する垂直入射吸音率測定の結果を示す吸音率グラフである。吸音率グラフでは、横軸に周波数(Hz)を、縦軸に吸音率(%)を示している。 Figures 4-8 show the stress/displacement curves for each example. In the stress/displacement curves shown in FIGS. 4 to 8, the horizontal axis indicates displacement (%) and the vertical axis indicates stress (kgf/cm 2 ). A hysteresis loss rate was calculated from the obtained stress/displacement curve. 9 to 13 are sound absorption coefficient graphs showing the results of normal incidence sound absorption coefficient measurements for each example. In the sound absorption coefficient graph, the horizontal axis indicates frequency (Hz) and the vertical axis indicates sound absorption coefficient (%).
 図4には、イソシアネートインデックスをそれぞれ変化させた例1~例9に係る応力/変位曲線を示している。イソシアネートインデックスが大きくなるにつれてヌレート構造が増えるため、ポリイソシアヌレートフォームが硬くなる傾向が読み取れる。とりわけ、例4~例6においては戻り時の応力が小さく、衝撃吸収性能が高かった。また、図9は、例1~例9に係る吸音率グラフを示している。例1~例6に係るポリイソシアヌレートフォームは、1000Hz~3150Hzの範囲内の全域に亘って40%以上の吸音率を達成した。例1~例6は、ヌレート構造の含有量が適切であったため連通化も適切であり、本発明の目的とする吸音性能を達成した。例7~例9は、セル構造が荒く連通化が過剰であったため、所定の吸音性能の範囲から外れたと考えられる。 FIG. 4 shows the stress/displacement curves for Examples 1 to 9 with different isocyanate indexes. As the isocyanate index increases, the nurate structure increases, so it can be seen that the polyisocyanurate foam tends to harden. In particular, in Examples 4 to 6, the stress at the time of return was small, and the impact absorption performance was high. FIG. 9 shows sound absorption coefficient graphs according to Examples 1 to 9. In FIG. The polyisocyanurate foams according to Examples 1 to 6 achieved sound absorption coefficients of 40% or more over the entire range of 1000 Hz to 3150 Hz. In Examples 1 to 6, since the content of the nurate structure was appropriate, the communication was also appropriate, and the sound absorbing performance aimed at by the present invention was achieved. In Examples 7 to 9, the cell structure was rough and the communication was excessive, so it is considered that they were out of the range of the predetermined sound absorption performance.
 図5には、例14~例20に係る応力/変位曲線を示している。例14~例20は、ポリオールAと、ポリオールBとの重量比率を徐々に変化させた場合の結果を示している。ポリオールAの比率が低い例では、ヒステリシスロス率も低い傾向があった。ヒステリシスロス率が90%を超える例17~例20は、衝撃吸収性能に優れていることが分かる。また、図10は、例14~例20に係る吸音率グラフを示している。例15~例18に係るポリイソシアヌレートフォームは、1000Hz~3150Hzの範囲内の全域に亘って40%以上の吸音率を達成した。ポリオール成分に占めるポリオールAの部数が70重量部~80重量部の範囲内にある例17~例18では、低周波数帯域においても優れた吸音率を示した。 FIG. 5 shows stress/displacement curves for Examples 14 to 20. Examples 14 to 20 show the results when the weight ratio of polyol A to polyol B is gradually changed. Examples with a low ratio of polyol A tended to have a low hysteresis loss rate. Examples 17 to 20 with a hysteresis loss rate exceeding 90% are found to be excellent in shock absorption performance. Also, FIG. 10 shows a sound absorption coefficient graph according to Examples 14 to 20. In FIG. The polyisocyanurate foams according to Examples 15 to 18 achieved a sound absorption coefficient of 40% or more over the entire range of 1000Hz to 3150Hz. Examples 17 and 18, in which the number of parts of polyol A in the polyol component was in the range of 70 parts by weight to 80 parts by weight, showed excellent sound absorption even in the low frequency range.
 図6には、ポリオール成分として使用するポリオールの種類を種々変更した例に係る応力/変位曲線を示している。所定の重量平均分子量及びエチレンオキシド含有量を満たすポリオールA及びポリオールBを含む反応系により得られた、例4、例21、例22及び例26に係るポリイソシアヌレートフォームは、成形性に優れており、ヒステリシスロス率も90%以上であった。また、図11は、例21、例22及び例26に係る吸音率グラフを示している。いずれの例も、所定の重量平均分子量及びエチレンオキシド含有量を満たすポリオールA及びポリオールBを含む例であるため、1000Hz~3150Hzの範囲内のみならず、幅広い周波数帯域において40%以上の吸音率を達成した。 Fig. 6 shows stress/displacement curves for examples in which the type of polyol used as the polyol component is changed. The polyisocyanurate foams according to Examples 4, 21, 22 and 26, which were obtained from reaction systems containing polyol A and polyol B that satisfy a predetermined weight average molecular weight and ethylene oxide content, were excellent in moldability. , the hysteresis loss rate was also 90% or more. Also, FIG. 11 shows a sound absorption coefficient graph according to Examples 21, 22 and 26. In FIG. All examples are examples containing polyol A and polyol B that satisfy the predetermined weight average molecular weight and ethylene oxide content, so they achieve a sound absorption coefficient of 40% or more not only in the range of 1000 Hz to 3150 Hz but also in a wide frequency range. did.
 図7には、ポリオール成分として使用するポリオールの種類を種々変更した例に係る応力/変位曲線を示している。所定の重量平均分子量及びエチレンオキシド含有量を満たすポリオールA及びポリオールBを含む反応系により得られた、例4、例27、例28、例30、例31、例33に係るポリイソシアヌレートフォームは、成形性に優れており、ヒステリシスロス率も90%以上であった。また、図12は、例4、例27、例28、例30、例31、例33に係る吸音率グラフを示している。いずれの例も、所定の重量平均分子量及びエチレンオキシド含有量を満たすポリオールA及びポリオールBを含む例であるため、1000Hz~3150Hzの範囲内のみならず、幅広い周波数帯域において40%以上の吸音率を達成した。 Fig. 7 shows stress/displacement curves for examples in which the type of polyol used as the polyol component is changed. The polyisocyanurate foams according to Examples 4, 27, 28, 30, 31 and 33 obtained by a reaction system comprising Polyol A and Polyol B satisfying a given weight average molecular weight and ethylene oxide content, The moldability was excellent, and the hysteresis loss rate was 90% or more. 12 shows sound absorption coefficient graphs according to Examples 4, 27, 28, 30, 31 and 33. In FIG. All examples are examples containing polyol A and polyol B that satisfy the predetermined weight average molecular weight and ethylene oxide content, so they achieve a sound absorption coefficient of 40% or more not only in the range of 1000 Hz to 3150 Hz but also in a wide frequency range. did.
 図8には、例34に係る応力/変位曲線を示している。また、図13は、例34に係る吸音率グラフを示している。例34から、例えば下記の事項が読み取れる。即ち、所定の重量平均分子量及びエチレンオキシド含有量を満たすポリオールA及びポリオールBを含むポリオール成分を使用した場合であっても、イソシアネートインデックスが低いか、及び/又は、反応系が含む他の成分の種類及び部数を適切に制御していない場合には、ヒステリシスロス率が90%未満となる。但し、図13に示すように、例34に係るポリイソシアヌレートフォームは、1000Hz~3150Hzの範囲内のみならず、幅広い周波数帯域において40%以上の吸音率を達成した。 FIG. 8 shows the stress/displacement curve according to Example 34. Also, FIG. 13 shows a sound absorption coefficient graph according to Example 34. As shown in FIG. From Example 34, for example, the following can be read. That is, even when using a polyol component containing polyol A and polyol B that satisfy a predetermined weight average molecular weight and ethylene oxide content, the isocyanate index is low and/or the type of other components included in the reaction system And if the number of copies is not properly controlled, the hysteresis loss rate will be less than 90%. However, as shown in FIG. 13, the polyisocyanurate foam according to Example 34 achieved a sound absorption coefficient of 40% or more not only within the range of 1000 Hz to 3150 Hz, but also over a wide frequency range.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 It should be noted that the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, if the problem can be solved and effects can be obtained, the configuration with the constituent elements deleted can be extracted as an invention.
 1…第1部分、2…第2部分、3…肉厚部、4…境界部、5…表面、6…裏面、10…下肢部衝撃吸収材。 1... First part, 2... Second part, 3... Thick part, 4... Boundary part, 5... Front surface, 6... Back surface, 10... Impact absorbing material for lower limbs.

Claims (7)

  1.  ポリオール、ポリイソシアネート、整泡剤、触媒及び発泡剤を含む反応系で発泡させて得られるポリイソシアヌレートフォームであって、
     前記ポリオールは、重量平均分子量が3000~12000の範囲内にあり、エチレンオキシド含有量が50重量%以上であるポリオールAと、重量平均分子量が1000~8000であり、エチレンオキシド含有量が20重量%未満のポリオールBとを含み、
     前記反応系におけるイソシアネートインデックスは200以上350以下であり、
     ヒステリシスロス率は90%以上であり、
     前記ヒステリシスロス率は、
      前記ポリイソシアヌレートフォームから50mm×50mm×50mmの寸法を有する測定用試料を切り出すことと、
      前記測定用試料を、80φの圧縮子を用いて5Nの荷重が負荷される基準厚みまで、前記ポリイソシアヌレートフォームの発泡高さ方向に沿って圧縮することと、
      前記基準厚みからの厚みの変位が70%に達するまで、50mm/minの速度で前記測定用試料を前記発泡高さ方向に沿って圧縮した後、直ちに、前記基準厚みからの厚みの変位が0%に達するまで、50mm/minの速度で前記測定用試料を前記発泡高さ方向に沿って戻すことと
    を含む方法で測定されるポリイソシアヌレートフォーム。
    A polyisocyanurate foam obtained by foaming in a reaction system containing a polyol, a polyisocyanate, a foam stabilizer, a catalyst and a blowing agent,
    The polyols are polyol A having a weight average molecular weight in the range of 3000 to 12000 and an ethylene oxide content of 50% by weight or more, and polyol A having a weight average molecular weight of 1000 to 8000 and an ethylene oxide content of less than 20% by weight. and a polyol B,
    The isocyanate index in the reaction system is 200 or more and 350 or less,
    The hysteresis loss rate is 90% or more,
    The hysteresis loss rate is
    cutting a measurement sample having dimensions of 50 mm×50 mm×50 mm from the polyisocyanurate foam;
    Compressing the measurement sample along the foaming height direction of the polyisocyanurate foam to a reference thickness at which a load of 5 N is applied using an 80φ compressor;
    Immediately after compressing the measurement sample along the foam height direction at a speed of 50 mm / min until the thickness displacement from the reference thickness reaches 70%, the thickness displacement from the reference thickness is 0. and returning the measurement sample along the foam height direction at a speed of 50 mm/min until the polyisocyanurate foam reaches %.
  2.  前記ポリオールの重量に占める前記ポリオールAの重量の割合は、65重量%~85重量%の範囲内にある請求項1に記載のポリイソシアヌレートフォーム。 The polyisocyanurate foam according to claim 1, wherein the weight ratio of said polyol A to the weight of said polyol is in the range of 65% by weight to 85% by weight.
  3.  前記ポリオールの重量に占める前記ポリオールBの重量の割合は、15重量%~35重量%の範囲内にある請求項1又は2に記載のポリイソシアヌレートフォーム。 The polyisocyanurate foam according to claim 1 or 2, wherein the weight ratio of the polyol B to the weight of the polyol is in the range of 15% by weight to 35% by weight.
  4.  前記ポリオールAの重量平均分子量は、3000~9000の範囲内にある請求項1~3の何れか1項に記載のポリイソシアヌレートフォーム。 The polyisocyanurate foam according to any one of claims 1 to 3, wherein the polyol A has a weight average molecular weight in the range of 3,000 to 9,000.
  5.  前記整泡剤は、シリコーン系整泡剤である請求項1~4の何れか1項に記載のポリイソシアヌレートフォーム。 The polyisocyanurate foam according to any one of claims 1 to 4, wherein the foam stabilizer is a silicone foam stabilizer.
  6.  前記発泡剤は水である請求項1~5の何れか1項に記載のポリイソシアヌレートフォーム。 The polyisocyanurate foam according to any one of claims 1 to 5, wherein the foaming agent is water.
  7.  前記反応系は、前記ポリオール、前記ポリイソシアネート、前記整泡剤、前記発泡剤及び前記触媒のみからなる請求項1~6の何れか1項に記載のポリイソシアヌレートフォーム。
     
    The polyisocyanurate foam according to any one of claims 1 to 6, wherein the reaction system comprises only the polyol, the polyisocyanate, the foam stabilizer, the blowing agent and the catalyst.
PCT/JP2022/011614 2021-03-29 2022-03-15 Polyisocyanurate foam WO2022209853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054683 2021-03-29
JP2021054683A JP2022152057A (en) 2021-03-29 2021-03-29 polyisocyanurate foam

Publications (1)

Publication Number Publication Date
WO2022209853A1 true WO2022209853A1 (en) 2022-10-06

Family

ID=83458899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011614 WO2022209853A1 (en) 2021-03-29 2022-03-15 Polyisocyanurate foam

Country Status (2)

Country Link
JP (1) JP2022152057A (en)
WO (1) WO2022209853A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133812A1 (en) * 2011-03-30 2012-10-04 旭硝子株式会社 Polyether polyol and soft polyurethane foam production method and sheet
JP2016204403A (en) * 2015-04-15 2016-12-08 三井化学株式会社 Manufacturing method of foam polyurethane elastomer, foam polyurethane elastomer and buffer material
JP2020063410A (en) * 2018-10-15 2020-04-23 株式会社東北イノアック Polyisocyanurate foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133812A1 (en) * 2011-03-30 2012-10-04 旭硝子株式会社 Polyether polyol and soft polyurethane foam production method and sheet
JP2016204403A (en) * 2015-04-15 2016-12-08 三井化学株式会社 Manufacturing method of foam polyurethane elastomer, foam polyurethane elastomer and buffer material
JP2020063410A (en) * 2018-10-15 2020-04-23 株式会社東北イノアック Polyisocyanurate foam

Also Published As

Publication number Publication date
JP2022152057A (en) 2022-10-12

Similar Documents

Publication Publication Date Title
US8133419B2 (en) Method for making automotive headliners
JP5754977B2 (en) Cushion pad and manufacturing method thereof
KR101916508B1 (en) composition for manufacturing polyurethane foam and molded article thereof
WO2017104605A1 (en) Seat pad
EP1651430B1 (en) Foam laminate product and process for production thereof
JP6823982B2 (en) Seat pad
KR20130048057A (en) Highly comport automotive polyurethane seat resin
JP5986838B2 (en) Sound absorbing shock absorber and method for manufacturing the same
KR20150024464A (en) Functional polyurethane foam
JP2014167115A (en) Polyurethane foam formulation, product and method
WO2022209853A1 (en) Polyisocyanurate foam
JP7113011B2 (en) Flexible polyurethane foam composition, flexible polyurethane foam and vehicle seat pad
CN102725330A (en) Method for making low density polyurethane foam for sound and vibration absorption
CN113248678A (en) Sound-absorbing polyurethane foam
JP6746448B2 (en) Polyol composition and flexible polyurethane foam
JP5717791B2 (en) Manufacturing method of vehicle seat pad and vehicle seat pad
JP2018039321A (en) Vehicular floor silencer, and manufacturing method of vehicular floor silencer
JP2021000451A (en) Vehicular seat base material, and vehicular seat
EP3854840A1 (en) Sound absorbing urethane foam
JP7220009B2 (en) Method for producing low-resilience polyurethane foam, composition for low-resilience polyurethane foam, and low-resilience polyurethane foam
JP2020519488A (en) Method for producing foam laminate having concave surface and laminate produced thereby
JP7414061B2 (en) Polyurethane foam and soundproofing materials for vehicles
KR102270004B1 (en) Flexible polyurethane composition, flexible polyurethane foam for cushioning material and automotive seat having the same
JP7284595B2 (en) Polyurethane foam for seat pad, seat pad for automobile, and method for producing polyurethane foam for seat pad
KR20240021322A (en) Manufacturing method of flame retardant flexable polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780074

Country of ref document: EP

Kind code of ref document: A1