WO2022209850A1 - Suppression device and suppression method - Google Patents

Suppression device and suppression method Download PDF

Info

Publication number
WO2022209850A1
WO2022209850A1 PCT/JP2022/011594 JP2022011594W WO2022209850A1 WO 2022209850 A1 WO2022209850 A1 WO 2022209850A1 JP 2022011594 W JP2022011594 W JP 2022011594W WO 2022209850 A1 WO2022209850 A1 WO 2022209850A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
liquid
cargo
refrigerator
tank
Prior art date
Application number
PCT/JP2022/011594
Other languages
French (fr)
Japanese (ja)
Inventor
直子 仲村
篤志 神谷
Original Assignee
株式会社前川製作所
日揮グローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所, 日揮グローバル株式会社 filed Critical 株式会社前川製作所
Publication of WO2022209850A1 publication Critical patent/WO2022209850A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases

Definitions

  • the present invention relates to a suppressing device and suppressing method for suppressing the generation of BOG.
  • liquefied gas such as liquefied natural gas and liquid hydrogen
  • BOG blow-off gas
  • the amount of BOG generated increases compared to when it is not received due to the vaporization of the received liquid due to the heat input in the cargo pump and receiving piping.
  • the liquefied gas received from the cargo tank is called cargo liquid
  • the liquefied gas stored in the storage tank is called heel liquid.
  • Patent Document 1 a treatment method for re-liquefying the generated BOG has been conventionally known (for example, Patent Document 1 below).
  • a reliquefaction system for reliquefying BOG involves pressurizing with a compressor and then cooling with a heat exchanger to liquefy it, or injecting BOG into the liquefied gas to be sent out to liquefy it. , and then pumping with a pump is common.
  • this system is complicated, there are problems such as a reduction in reliability and an increase in the size of the device.
  • the present invention was invented to solve the above problems, and an object of the present invention is to provide a suppressing device and suppressing method capable of suppressing the generation of BOG.
  • a suppressing device that achieves the above object is a suppressing device that suppresses BOG that occurs when cargo liquid is received from a cargo tank to a storage tank.
  • the suppression device includes a refrigerator arranged on a path connecting the cargo tank and the storage tank, and a suppressing device provided inside the storage tank, capable of feeding the heel liquid in the storage tank toward the refrigerator. a pump;
  • a suppression method for achieving the above object includes: a refrigerator arranged between a path connecting a cargo tank and a storage tank; and a pump that feeds the heel liquid in the storage tank, and a suppressing device that suppresses BOG that occurs when cargo liquid is received from the cargo tank to the storage tank.
  • the suppression method comprises the steps of cooling the cargo liquid to a subcooled state by the refrigerator when the cargo liquid is received in the storage tank, and transferring the cooled cargo liquid to the storage tank.
  • the cargo liquid when the cargo liquid is received from the cargo tank to the storage tank, the cargo liquid is cooled to a subcooled state by the refrigerator, and then the cargo liquid, the heel liquid, or both are transferred to the storage tank. Since the liquid is sent, it is possible to reduce the occurrence of BOG at the time of receiving.
  • FIG. 4 is a state diagram for explaining a subcool state; FIG. It is a figure for demonstrating one suppression method of the suppression apparatus which concerns on 1st Embodiment. It is a figure for demonstrating the 2 suppression method of the suppression apparatus which concerns on 1st Embodiment. It is a figure for demonstrating the three suppression methods of the suppression apparatus which concerns on 1st Embodiment.
  • FIG. 5 is a schematic diagram showing a restraining device according to a second embodiment of the invention; It is a figure for demonstrating the suppression method of the suppression apparatus which concerns on 2nd Embodiment.
  • FIG. 3 is a schematic diagram showing a restraining device according to a third embodiment of the invention; It is a schematic diagram showing a modification of a restraining device concerning a 3rd embodiment.
  • FIG. 1 A first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • FIG. 1 the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
  • FIG. 1 is a schematic plan view showing a restraining device 1 according to the first embodiment of the invention.
  • FIG. 2 is a state diagram for explaining the subcool state.
  • the suppression device 1 is a device that suppresses BOG generated when liquefied gas is received from the cargo tank T1 to the storage tank T2.
  • the liquefied gas is not particularly limited, but examples include LNG (liquefied natural gas), LPG (liquefied petroleum gas), liquid hydrogen, and liquefied nitrogen.
  • the suppression device 1 includes a first route (corresponding to a route) 10 connecting a cargo tank T1 and a storage tank T2, and a bypass route 20 provided to branch off from the first route 10. , a refrigerator 30 arranged on a first path 10, a pump 40 provided in a storage tank T2, a second path 50 connecting the pump 40 and the first path 10, and a storage tank branched from the second path 50.
  • a third path 60 for sending the liquefied gas in the tank T2 to the outside, a measuring unit 70 for measuring the temperature of the liquefied gas at three locations in the storage tank T2 in the height direction, and the operation of the refrigerator 30 are controlled. and a controller (not shown).
  • Cargo tank T1 is a cargo liquid cargo.
  • Cargo tank T1 is, for example, the cargo of a ship.
  • the storage tank T2 stores the residual heel liquid.
  • the cargo liquid in the cargo tank T1 is sent to the storage tank T2 through the first path 10 at a predetermined timing.
  • a first valve 11 and a junction 12 are arranged in the first path 10, as shown in FIG.
  • the first valve 11 is arranged on the cargo tank T1 side with respect to the junction 12 .
  • the first valve 11 can control the amount of liquefied gas sent from the cargo tank T1 to the storage tank T2.
  • the first route 10 is piping.
  • the confluence portion 12 is arranged in the refrigerator 30 of the first valve 11 .
  • the confluence section 12 is arranged so that the liquefied gas from the cargo tank T1 and the liquefied gas from the storage tank T2 are mixed, and the mixed liquefied gas returns to the storage tank T2 via the refrigerator 30. .
  • the end 10A of the first path 10 on the side of the storage tank T2 is desirably located near the center of the storage tank T2, as shown in FIG.
  • the bypass route 20 is provided so as to branch off from the first route 10 .
  • a bypass valve 21 is arranged in the bypass path 20 as shown in FIG.
  • the bypass valve 21 can adjust the amount of the liquefied gas that has flowed through the confluence section 12 and flows into the bypass route 20 .
  • the bypass route 20 By providing the bypass route 20 in this way, the cargo liquid from the cargo tank T ⁇ b>1 can be passed through the bypass route 20 . Therefore, when the cargo liquid is sufficiently cooled to a subcooled state, it is not necessary to pass through the first path 10 cooled by the refrigerator 30 .
  • the refrigerator 30 subcools the cargo liquid received from the cargo tank T1 and/or the heel liquid sent by the pump 40 from the storage tank T2.
  • the subcool state will be described below with reference to the state diagram of FIG.
  • Liquefied gas is normally in a saturated state at the boundary between the liquid phase and the gas phase indicated by the black circles in Figure 2.
  • the refrigerator 30 By cooling the liquefied gas in this saturated state with the refrigerator 30, it moves from the black circle to the white circle on the left, and enters a subcooled state. Since the liquefied gas in the subcooled state is in a completely liquid state, the generation of BOG can be suppressed.
  • the refrigerator 30 is not particularly limited as long as it can cool the liquefied gas to a subcooled state.
  • a reverse Brayton cycle or Stirling cycle refrigerator 30 can be used.
  • the chiller 30 can be, for example, -165°C to -162°C by cooling the saturated liquefied gas at -160°C.
  • the pump 40 is provided near the bottom of the storage tank T2, as shown in FIG.
  • the pump 40 is provided to send the heel liquid in the storage tank T2 to the outside through the third path 60.
  • the pump 40 is also provided to return the liquefied gas in the storage tank T2 to the confluence section 12 via the second path 50 and mix it with the cargo liquid from the cargo tank T1.
  • a known pump can be used as the pump 40 .
  • a second path 50 connects the pump 40 and the first path 10 .
  • a second valve 51 is arranged in the second path 50 as shown in FIG. The second valve 51 can control the amount of the heel liquid sent from the storage tank T2 by the pump 40 to the confluence portion 12 side.
  • the second path 50 is piping.
  • the third path 60 is a path for sending the heel liquid in the storage tank T2 to the outside.
  • a third valve 61 is arranged in the third path 60, as shown in FIG. The third valve 61 can control the amount of the heel liquid sent from the storage tank T2 by the pump 40 to the outside.
  • the third route 60 is piping.
  • the measurement unit 70 measures the temperature at three points P1, P2, and P3 in the height direction inside the storage tank T2. Note that the number of measurement points in the height direction is not limited to three, and may be two or more. A known thermometer can be used as the measuring unit 70 . In addition to the temperature, the measurement unit 70 may be able to measure the height of the location where the temperature is measured.
  • the controller controls opening and closing of the first valve 11, the bypass valve 21, the second valve 51, and the third valve 61.
  • the controller controls driving of the pump 40 .
  • the control unit controls the operation of refrigerator 30 based on the temperature measured by measurement unit 70 .
  • a control part is CPU, for example.
  • FIG. 3 is a diagram for explaining one suppression method of the suppression device 1 according to the first embodiment.
  • FIG. 4 is a diagram for explaining two suppression methods of the suppression device 1 according to the first embodiment.
  • FIG. 5 is a diagram for explaining three suppression methods of the suppression device 1 according to the first embodiment.
  • One suppression method is a suppression method at the time of receiving liquefied gas, in which the heel liquid in the storage tank T2 and the cargo liquid from the cargo tank T1 are mixed, and the mixed liquefied gas is cooled by the refrigerator 30. It is characterized by being in a subcool state.
  • the path through which the liquefied gas passes is indicated by a thick line.
  • the control section drives the pump 40 to feed the heel liquid in the storage tank T2 to the confluence section 12.
  • the controller opens the first valve 11 so that the cargo liquid from the cargo tank T1 is sent to the confluence section 12 .
  • the heel liquid in the storage tank T2 and the cargo liquid from the cargo tank T1 are mixed and sent to the refrigerator 30.
  • the mixed liquefied gas is cooled to a subcooled state in the refrigerator 30 and sent into the storage tank T2.
  • the third valve 61 may be in either open or closed state.
  • the liquefied gas that has not been cooled by the refrigerator 30 is sent into the storage tank T2
  • the liquefied gas evaporates when received by the cargo pump or the receiving pipe due to the heat input, resulting in a large amount of BOG. occurs in
  • the mixed liquefied gas is cooled to a subcooled state and sent into the storage tank T2, so the generation of BOG can be preferably suppressed.
  • the second suppression method is a suppression method when receiving liquefied gas, and is characterized in that only the heel liquid from the cargo tank T1 is cooled by the refrigerator 30 to be in a subcooled state.
  • the paths through which heel liquid and cargo liquid pass are indicated by thick lines.
  • the control unit opens the first valve 11 to send the cargo liquid from the cargo tank T1 to the refrigerator 30 via the junction section 12 .
  • the cargo liquid from the cargo tank T1 is cooled to a subcooled state in the refrigerator 30 and sent into the storage tank T2.
  • the third valve 61 may be in either open or closed state.
  • the cargo liquid from the cargo tank T1 is cooled to a subcooled state and sent into the storage tank T2, so the generation of BOG can be preferably suppressed.
  • the third suppressing method is a suppressing method in a steady state (when not receiving), and is characterized in that only the heel liquid in the storage tank T2 is cooled by the refrigerator 30 to be in a subcooled state.
  • the paths through which heel liquid and cargo liquid pass are indicated by thick lines.
  • control unit drives the pump 40 to feed the liquefied gas in the storage tank T2 to the confluence unit 12. Then, the heel liquid in the storage tank T2 is sent to the refrigerator 30, cooled to a subcooled state in the refrigerator 30, and sent to the storage tank T2. It should be noted that the third valve 61 may be in either open or closed state.
  • the measuring unit 70 measures the temperature of the liquefied gas at three points P1, P2, and P3 in the height direction in the storage tank T2 and the height of the place where the temperature is measured, and cools the liquefied gas to a subcooled state. Check if it is
  • the control unit When the temperature in the storage tank T2 is measured by the measurement unit 70, the control unit preferably turns off the operation of the refrigerator 30 when the heel liquid is surely cooled to a subcooled state. When the temperature in the storage tank T2 is measured by the measuring unit 70, and the temperature rises and the heel liquid approaches saturation, the control unit preferably turns on the operation of the refrigerator 30. . By controlling the operation of the refrigerator 30 by the control unit in this way, the refrigerator 30 does not need to be operated all the time, and the operation efficiency of the refrigerator 30 is improved.
  • the operation of the refrigerator 30 may be controlled as follows. That is, the surplus power is used to turn on the refrigerator 30 to reliably cool the liquefied gas to a subcooled state. Then, when the electricity is insufficient, the refrigerator 30 is turned off. By using it in this way, variable renewable energy (solar power generation and wind power generation) can be effectively utilized.
  • the fourth suppression method is a suppression method for suppressing the occurrence of stratification when cargo liquid having a density different from that of the heel liquid in the storage tank T2 is received.
  • control unit Before receiving the cargo liquid from the cargo tank T1, the control unit cools the heel liquid in the storage tank T2 with the refrigerator 30 to increase the degree of subcooling in the same manner as in the third control method described above.
  • the density of the heel liquid in the storage tank T2 is increased by increasing the degree of subcooling, and the density can be substantially the same as that of the cargo liquid from the cargo tank T1. Therefore, stratification of the liquefied gas in the storage tank T2 can be suitably suppressed.
  • the substantially same density of the heel liquid in the storage tank T2 and the cargo liquid from the cargo tank T1 does not have to be completely the same, as long as the density difference is within a range that does not cause stratification in the storage tank T2. good.
  • the control unit cools the cargo liquid from the cargo tank T1 with the refrigerator 30 to increase the degree of subcooling and sends it into the storage tank T2.
  • the density of the cargo liquid from the cargo tank T1 increases as the degree of subcooling increases, and the density can be made substantially the same as that of the heel liquid in the storage tank T2. Therefore, stratification of the liquefied gas can be suitably suppressed.
  • the suppression device 1 is a suppression device 1 that suppresses BOG that occurs when cargo liquid is received from the cargo tank T1 to the storage tank T2.
  • the suppression device 1 includes a refrigerator 30 arranged on a first path 10 connecting a cargo tank T1 and a storage tank T2, and a heel liquid in the storage tank T2 provided inside the storage tank T2 toward the refrigerator 30. and a pump 40 capable of feeding the According to the suppression device 1 configured as described above, when the cargo liquid is received from the cargo tank T1 to the storage tank T2, the liquefied gas is cooled to a subcooled state by the refrigerator 30, and the cargo liquid, heel liquid, or its Since both are sent to the storage tank T2, it is possible to reduce the occurrence of BOG during reception.
  • the suppression device 1 further has a bypass route 20 that branches off from the first route 10 that connects the cargo tank T1 and the storage tank T2. According to the suppression device 1 configured in this manner, the liquefied gas from the cargo tank T1 can be passed through the bypass route 20 . Therefore, when the cargo liquid or the heel liquid or both of them are sufficiently cooled to a subcooled state, there is no need to pass through the first path 10 cooled by the refrigerator 30 .
  • the suppression device 1 further has a measurement unit 70 that measures temperatures at three points P1, P2, and P3 in the height direction inside the storage tank T2. According to the suppressing device 1 configured in this manner, the temperature in the storage tank T2 is measured by the measuring unit 70, and it can be confirmed whether the heel liquid is cooled to a subcooled state. Then, when the heel liquid is surely cooled to the subcooled state, the control unit turns off the operation of the refrigerator 30 . Then, when the heel liquid is close to being saturated, the control unit turns on the operation of the refrigerator 30 . Therefore, there is no need to keep the refrigerator 30 on all the time, and the operating efficiency of the refrigerator 30 is improved.
  • FIG. 6 is a schematic diagram showing a restraining device 2 according to a second embodiment of the invention.
  • the suppressing device 2 according to the second embodiment differs from the suppressing device 1 according to the first embodiment in the configuration of the first path 110 .
  • the suppression device 2 includes a first path (corresponding to a path) 110 connecting the cargo tank T1 and the storage tank T2, and a refrigerator 30 arranged on the first path 110.
  • a pump 40 provided in the storage tank T2; a second path 50 connecting the pump 40 and the first path 10; It has a third path 60 , a measurement unit (not shown) that measures the temperature of the heel liquid at three locations in the storage tank T ⁇ b>2 , and a control unit that controls the operation of the refrigerator 30 .
  • the liquefied gas of interest is LNG.
  • the first path 110 includes an upper path 111 that feeds the heel liquid cooled by the refrigerator 30 to the upper side of the storage tank T2, and a frozen liquid to the lower side of the storage tank T2. and a lower passageway 112 for conveying heel liquid cooled by machine 30 .
  • the upper path 111 and the lower path 112 are provided with regulating valves 113 and 114, respectively, for adjusting the amount of liquid sent to the storage tank T2.
  • the suppressing method of the suppressing device 2 according to the second embodiment is a suppressing method for suppressing the rollover phenomenon when the heel liquid is stratified in the storage tank T2.
  • the paths through which heel liquid and cargo liquid pass are indicated by thick lines.
  • the "rollover phenomenon” means that in the stratified storage tank T2, convection occurs inside each layer due to heat input from the outside, and mass transfer and heat transfer do not proceed through the boundary between the layers.
  • the density difference gradually decreases, and after a certain period of time the densities of the upper and lower layers become equal, and when the boundary between the upper and lower layers disappears, the heat accumulated in the lower layer is released in a short time in the form of a large amount of BOG generation.
  • the control unit drives the pump 40 to feed the liquefied gas in the storage tank T2 to the confluence unit 12. Then, the heel liquid in the storage tank T2 is sent to the refrigerator 30 and cooled in the refrigerator 30 to a subcooled state.
  • the liquefied gas that has been cooled to a subcooled state by the refrigerator 30 has its flow rate adjusted by the regulating valves 113 and 114, and flows through the upper path 111 and the lower path 112 to the upper layer heel liquid and the lower layer heel liquid in the storage tank T2. returned to the liquid.
  • the third valve 61 may be in either open or closed state.
  • the upper path 111 may be replaced with a top feed pipe, which is an upper receiving pipe.
  • the lower passageway 112 may be replaced by a lower receiving piping, a bottom feed tube or a jet mixing nozzle.
  • the heel liquid of the lower layer As a result, it is possible to suppress the generation of BOG from the upper layer of the heel liquid and prevent the density from increasing.
  • the decrease in density can be suppressed by suppressing the increase in the liquid temperature of the heel liquid due to heat input with the subcooled cargo liquid, the heel liquid, or both. Therefore, it is possible to suitably prevent the occurrence of rollover phenomenon caused by equal densities of the layered upper layer and the lower layer.
  • FIG. 8 is a schematic diagram showing a restraining device 3 according to a third embodiment of the invention.
  • the suppressing device 3 according to the third embodiment differs from the suppressing device 1 according to the first embodiment in that a plurality of storage tanks T2 are provided.
  • the heel liquid in one storage tank T21 is cooled by the refrigerator 30 to a subcooled state. Specifically, it is preferable to use the surplus electric power to turn on the refrigerator 30 to reliably cool the heel liquid in the one storage tank T21 to a subcooled state.
  • the pump 40 sends the heel liquid in the subcooled one storage tank T21 to the cargo liquid receiving pipes of the other storage tanks T22 and T23, as illustrated in FIG. As a result, it is possible to suppress the occurrence of BOG during reception in the other storage tanks T22 and T23.
  • the suppression device 3 configured as described above, by storing the subcooled heel fluid in the one storage tank T21, it functions as an electric power storage system that stores renewable energy power as the subcooled heel fluid. can be made
  • the suppression device 1 has the bypass path 20 .
  • the suppression device may not be provided with a bypass path.
  • the suppressing devices 1 and 2 are provided with the measurement unit 70, and the measurement unit 70 measures the temperatures at three points P1, P2, and P3 in the storage tank T2 in the height direction.
  • the measuring unit may be configured to continuously measure the temperature in the height direction inside the storage tank T2, the height at the location where the temperature is measured, and the density.
  • the first route 110 has the upper route 111 and the lower route 112 .
  • the first path may be only the upper path 111 or only the lower path 112 . In the case of this configuration, it is difficult to prevent the occurrence of the rollover phenomenon, but the time until the occurrence of the rollover phenomenon can be extended. By eliminating the stratification can be eliminated.
  • 1, 2 suppression device, 10, 110 first route, 20 bypass path, 30 refrigerator, 40 pumps, 50 second route, 60 third route, 70 measuring unit, 111 upper path, 112 lower path, 113 regulating valve, 114 regulating valve, T1 cargo tank, T2 storage tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

[Problem] To provide a suppression device and a suppression method with which BOG generation can be suppressed when a low-temperature liquefied gas is received. [Solution] This suppression device 1 has: a refrigerator 30 disposed in a path 10 which connects a cargo tank T1 and a storage tank T2; and a pump 40 which is provided inside the storage tank and can feed, toward the refrigerator, a liquid heel inside the storage tank.

Description

抑制装置および抑制方法Suppression device and suppression method
 本発明は、BOGの発生を抑制する抑制装置および抑制方法に関する。 The present invention relates to a suppressing device and suppressing method for suppressing the generation of BOG.
 液化天然ガスや液体水素等の低温液化ガス(以下、液化ガスとも称する)は、貯蔵タンクの外部からの入熱によって温められることで、BOG(ボイルオフガス)が発生している。このBOGの発生に伴って、貯蔵タンク内の圧力上昇が招かれる。 Low-temperature liquefied gas (hereinafter also referred to as liquefied gas) such as liquefied natural gas and liquid hydrogen is heated by heat input from the outside of the storage tank, and BOG (boil-off gas) is generated. Accompanying the generation of this BOG is an increase in pressure within the storage tank.
 また、液化ガスを積み荷であるカーゴタンクから貯蔵タンクに受け入れる際、カーゴポンプや受入配管での入熱による受入液の気化によって、非受け入れ時に比べて、BOGの発生量が増加する。なお、カーゴタンクから受け入れる液化ガスをカーゴ液、また貯蔵タンクに貯蔵している液化ガスをヒール液と呼ぶ。 Also, when receiving liquefied gas from cargo tanks into storage tanks, the amount of BOG generated increases compared to when it is not received due to the vaporization of the received liquid due to the heat input in the cargo pump and receiving piping. The liquefied gas received from the cargo tank is called cargo liquid, and the liquefied gas stored in the storage tank is called heel liquid.
 これに関連して、従来から、発生したBOGを再液化する処理方法が知られている(例えば下記の特許文献1)。 In relation to this, a treatment method for re-liquefying the generated BOG has been conventionally known (for example, Patent Document 1 below).
特開平10-19199号公報JP-A-10-19199
 一般的に、BOGを再液化するための再液化システムは、圧縮機で昇圧した後、熱交換器などで冷却して液化したり、送出される液化ガスにBOGを注入して液化したりし、その後ポンプで圧送する方法が一般的である。しかし、このシステムではシステムが煩雑になるため、信頼性の低減や装置の大型化などが課題となる。 In general, a reliquefaction system for reliquefying BOG involves pressurizing with a compressor and then cooling with a heat exchanger to liquefy it, or injecting BOG into the liquefied gas to be sent out to liquefy it. , and then pumping with a pump is common. However, since this system is complicated, there are problems such as a reduction in reliability and an increase in the size of the device.
 さらに、液化ガスのBOGを冷凍機で再液化する場合、極低温の冷却温度が要求されるため熱効率が低下する。このため、冷凍機を稼働するための動力が増加するという問題がある。また、送出される液化ガスのBOGを注入する場合は、送出される液化ガスの流量で液化できるBOGの流量が制限される。送出される液化ガスが無いとBOGの再液化は出来ないという課題がある。 Furthermore, when re-liquefying the liquefied gas BOG with a refrigerator, a cryogenic cooling temperature is required, which reduces the thermal efficiency. Therefore, there is a problem that the power for operating the refrigerator increases. Moreover, when injecting BOG of the liquefied gas to be delivered, the flow rate of BOG that can be liquefied is limited by the flow rate of the liquefied gas to be delivered. There is a problem that the BOG cannot be reliquefied without the liquefied gas to be delivered.
 以上から、発生したBOGを再液化する方法ではなく、BOGの発生を抑制することが求められている。 From the above, it is required to suppress the generation of BOG rather than to reliquefy the generated BOG.
 本発明は、上記課題を解決するために発明されたものであり、BOGの発生を抑制することのできる抑制装置および抑制方法を提供することを目的とする。 The present invention was invented to solve the above problems, and an object of the present invention is to provide a suppressing device and suppressing method capable of suppressing the generation of BOG.
 上記目的を達成する本発明に係る抑制装置は、カーゴタンクから貯蔵タンクにカーゴ液を受け入れる際に発生するBOGを抑制する抑制装置である。抑制装置は、前記カーゴタンクおよび前記貯蔵タンクを連結する経路に配置された冷凍機と、前記貯蔵タンクの内部に設けられ、前記冷凍機に向けて前記貯蔵タンク内のヒール液を送液可能なポンプと、を有する。 A suppressing device according to the present invention that achieves the above object is a suppressing device that suppresses BOG that occurs when cargo liquid is received from a cargo tank to a storage tank. The suppression device includes a refrigerator arranged on a path connecting the cargo tank and the storage tank, and a suppressing device provided inside the storage tank, capable of feeding the heel liquid in the storage tank toward the refrigerator. a pump;
 また、上記目的を達成する本発明に係る抑制方法は、カーゴタンクおよび貯蔵タンクを連結する経路の間に配置された冷凍機と、前記貯蔵タンクの内部に設けられ、前記冷凍機に向けて前記貯蔵タンク内のヒール液を送液するポンプと、を有する抑制装置によって、前記カーゴタンクから前記貯蔵タンクにカーゴ液を受け入れる際に発生するBOGを抑制する抑制方法である。抑制方法は、前記カーゴ液を前記貯蔵タンクに受け入れる際に、前記冷凍機によって前記カーゴ液をサブクール状態まで冷却する工程と、冷却された前記カーゴ液を前記貯蔵タンクに送液する工程と、を有する。 Further, a suppression method according to the present invention for achieving the above object includes: a refrigerator arranged between a path connecting a cargo tank and a storage tank; and a pump that feeds the heel liquid in the storage tank, and a suppressing device that suppresses BOG that occurs when cargo liquid is received from the cargo tank to the storage tank. The suppression method comprises the steps of cooling the cargo liquid to a subcooled state by the refrigerator when the cargo liquid is received in the storage tank, and transferring the cooled cargo liquid to the storage tank. have.
 上述の抑制装置および抑制方法によれば、カーゴタンクから貯蔵タンクにカーゴ液を受け入れる際に、冷凍機によってカーゴ液をサブクール状態まで冷却した状態で、カーゴ液かヒール液あるいはその両方を貯蔵タンクに送液するため、受入れ時のBOGの発生を低減することができる。 According to the suppression device and suppression method described above, when the cargo liquid is received from the cargo tank to the storage tank, the cargo liquid is cooled to a subcooled state by the refrigerator, and then the cargo liquid, the heel liquid, or both are transferred to the storage tank. Since the liquid is sent, it is possible to reduce the occurrence of BOG at the time of receiving.
本発明の第1実施形態に係る抑制装置を示す概略図である。It is a schematic diagram showing a restraining device concerning a 1st embodiment of the present invention. サブクール状態を説明するための図であって、状態図を示す図である。FIG. 4 is a state diagram for explaining a subcool state; FIG. 第1実施形態に係る抑制装置の一の抑制方法を説明するための図である。It is a figure for demonstrating one suppression method of the suppression apparatus which concerns on 1st Embodiment. 第1実施形態に係る抑制装置の二の抑制方法を説明するための図である。It is a figure for demonstrating the 2 suppression method of the suppression apparatus which concerns on 1st Embodiment. 第1実施形態に係る抑制装置の三の抑制方法を説明するための図である。It is a figure for demonstrating the three suppression methods of the suppression apparatus which concerns on 1st Embodiment. 本発明の第2実施形態に係る抑制装置を示す概略図である。FIG. 5 is a schematic diagram showing a restraining device according to a second embodiment of the invention; 第2実施形態に係る抑制装置の抑制方法を説明するための図である。It is a figure for demonstrating the suppression method of the suppression apparatus which concerns on 2nd Embodiment. 本発明の第3実施形態に係る抑制装置を示す概略図である。FIG. 3 is a schematic diagram showing a restraining device according to a third embodiment of the invention; 第3実施形態に係る抑制装置の変形例を示す概略図である。It is a schematic diagram showing a modification of a restraining device concerning a 3rd embodiment.
 <第1実施形態>
 本発明の第1実施形態を、図1、図2を参照しつつ説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
<First embodiment>
A first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. In the description of the drawings, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 図1は、本発明の第1実施形態に係る抑制装置1を示す概略平面図である。図2は、サブクール状態を説明するための図であって、状態図を示す図である。 FIG. 1 is a schematic plan view showing a restraining device 1 according to the first embodiment of the invention. FIG. 2 is a state diagram for explaining the subcool state.
 第1実施形態に係る抑制装置1は、カーゴタンクT1から貯蔵タンクT2に液化ガスを受け入れる際に発生するBOGを抑制する装置である。ここで、液化ガスとは特に限定されないが、LNG(液化天然ガス)、LPG(液化石油ガス)、液体水素、液化窒素等を挙げることができる。 The suppression device 1 according to the first embodiment is a device that suppresses BOG generated when liquefied gas is received from the cargo tank T1 to the storage tank T2. Here, the liquefied gas is not particularly limited, but examples include LNG (liquefied natural gas), LPG (liquefied petroleum gas), liquid hydrogen, and liquefied nitrogen.
 抑制装置1は、図1に示すように、カーゴタンクT1および貯蔵タンクT2を連結する第1経路(経路に相当)10と、第1経路10に対して分岐するように設けられるバイパス経路20と、第1経路10に配置される冷凍機30と、貯蔵タンクT2内に設けられるポンプ40と、ポンプ40および第1経路10を連結する第2経路50と、第2経路50から分岐されて貯蔵タンクT2内の液化ガスを外部に送るための第3経路60と、貯蔵タンクT2内の高さ方向の3か所における液化ガスの温度を測定する測定部70と、冷凍機30の運転を制御する制御部(不図示)と、を有する。 As shown in FIG. 1, the suppression device 1 includes a first route (corresponding to a route) 10 connecting a cargo tank T1 and a storage tank T2, and a bypass route 20 provided to branch off from the first route 10. , a refrigerator 30 arranged on a first path 10, a pump 40 provided in a storage tank T2, a second path 50 connecting the pump 40 and the first path 10, and a storage tank branched from the second path 50. A third path 60 for sending the liquefied gas in the tank T2 to the outside, a measuring unit 70 for measuring the temperature of the liquefied gas at three locations in the storage tank T2 in the height direction, and the operation of the refrigerator 30 are controlled. and a controller (not shown).
 カーゴタンクT1は、カーゴ液の積み荷である。カーゴタンクT1は、例えば船の積み荷である。貯蔵タンクT2には、残液であるヒール液が貯蔵されている。カーゴタンクT1のカーゴ液は、所定のタイミングで第1経路10を介して、貯蔵タンクT2に送液される。 Cargo tank T1 is a cargo liquid cargo. Cargo tank T1 is, for example, the cargo of a ship. The storage tank T2 stores the residual heel liquid. The cargo liquid in the cargo tank T1 is sent to the storage tank T2 through the first path 10 at a predetermined timing.
 第1経路10には、図1に示すように、第1弁11および合流部12が配置されている。第1弁11は、合流部12に対して、カーゴタンクT1側に配置されている。第1弁11は、カーゴタンクT1から貯蔵タンクT2へ送る液化ガスの量を制御することができる。第1経路10は、配管である。 A first valve 11 and a junction 12 are arranged in the first path 10, as shown in FIG. The first valve 11 is arranged on the cargo tank T1 side with respect to the junction 12 . The first valve 11 can control the amount of liquefied gas sent from the cargo tank T1 to the storage tank T2. The first route 10 is piping.
 合流部12は、第1弁11の冷凍機30に配置されている。合流部12は、カーゴタンクT1からの液化ガス、および貯蔵タンクT2からの液化ガスが混合されて、混合された液化ガスが冷凍機30を介して、貯蔵タンクT2に戻るように配置されている。 The confluence portion 12 is arranged in the refrigerator 30 of the first valve 11 . The confluence section 12 is arranged so that the liquefied gas from the cargo tank T1 and the liquefied gas from the storage tank T2 are mixed, and the mixed liquefied gas returns to the storage tank T2 via the refrigerator 30. .
 本実施形態において、第1経路10の貯蔵タンクT2側の端部10Aは、図1に示すように、貯蔵タンクT2の中心付近に位置するのが望ましい。 In this embodiment, the end 10A of the first path 10 on the side of the storage tank T2 is desirably located near the center of the storage tank T2, as shown in FIG.
 バイパス経路20は、第1経路10に対して分岐するように設けられる。バイパス経路20には、図1に示すように、バイパス弁21が配置されている。バイパス弁21は、合流部12を流れた液化ガスの、バイパス経路20に流れる量を調整することができる。このようにバイパス経路20が設けられることによって、バイパス経路20にカーゴタンクT1からのカーゴ液を通過させることができる。したがって、カーゴ液が十分にサブクール状態まで冷却されている場合、冷凍機30によって冷却する第1経路10を通過させる必要が無い。 The bypass route 20 is provided so as to branch off from the first route 10 . A bypass valve 21 is arranged in the bypass path 20 as shown in FIG. The bypass valve 21 can adjust the amount of the liquefied gas that has flowed through the confluence section 12 and flows into the bypass route 20 . By providing the bypass route 20 in this way, the cargo liquid from the cargo tank T<b>1 can be passed through the bypass route 20 . Therefore, when the cargo liquid is sufficiently cooled to a subcooled state, it is not necessary to pass through the first path 10 cooled by the refrigerator 30 .
 冷凍機30は、カーゴタンクT1から受け入れるカーゴ液および/または貯蔵タンクT2からポンプ40によって送液されたヒール液をサブクール状態にする。以下、図2の状態図を参照して、サブクール状態について説明する。 The refrigerator 30 subcools the cargo liquid received from the cargo tank T1 and/or the heel liquid sent by the pump 40 from the storage tank T2. The subcool state will be described below with reference to the state diagram of FIG.
 液化ガスは、通常、図2の黒丸で示す液相および気相の境界の飽和状態にある。この飽和状態にある液化ガスを冷凍機30で冷却することによって、黒丸の箇所から左側の白丸の箇所に移動して、サブクール状態となる。サブクール状態にある液化ガスは、完全に液体の状態にあるため、BOGが発生することを抑制できる。 Liquefied gas is normally in a saturated state at the boundary between the liquid phase and the gas phase indicated by the black circles in Figure 2. By cooling the liquefied gas in this saturated state with the refrigerator 30, it moves from the black circle to the white circle on the left, and enters a subcooled state. Since the liquefied gas in the subcooled state is in a completely liquid state, the generation of BOG can be suppressed.
 冷凍機30としては、液化ガスをサブクール状態まで冷却することのできるものであれば特に限定されないが、例えば、逆ブレイトンサイクルやスターリングサイクルの冷凍機30を用いることができる。冷凍機30は、例えば、-160℃にある飽和状態の液化ガスを冷却することによって、-165℃~-162℃とすることができる。 The refrigerator 30 is not particularly limited as long as it can cool the liquefied gas to a subcooled state. For example, a reverse Brayton cycle or Stirling cycle refrigerator 30 can be used. The chiller 30 can be, for example, -165°C to -162°C by cooling the saturated liquefied gas at -160°C.
 ポンプ40は、図1に示すように、貯蔵タンクT2の底部近傍に設けられる。ポンプ40は、貯蔵タンクT2内のヒール液を、第3経路60を介して、外部に送液するために設けられる。また、ポンプ40は、貯蔵タンクT2内の液化ガスを、第2経路50を介して、合流部12に戻して、カーゴタンクT1からのカーゴ液と混合させるために設けられる。ポンプ40としては、公知のものを用いることができる。 The pump 40 is provided near the bottom of the storage tank T2, as shown in FIG. The pump 40 is provided to send the heel liquid in the storage tank T2 to the outside through the third path 60. As shown in FIG. The pump 40 is also provided to return the liquefied gas in the storage tank T2 to the confluence section 12 via the second path 50 and mix it with the cargo liquid from the cargo tank T1. A known pump can be used as the pump 40 .
 第2経路50は、ポンプ40および第1経路10を連結する。第2経路50には、図1に示すように、第2弁51が配置されている。第2弁51は、ポンプ40によって貯蔵タンクT2から送液されたヒール液の合流部12側へ送る量を制御することができる。第2経路50は、配管である。 A second path 50 connects the pump 40 and the first path 10 . A second valve 51 is arranged in the second path 50 as shown in FIG. The second valve 51 can control the amount of the heel liquid sent from the storage tank T2 by the pump 40 to the confluence portion 12 side. The second path 50 is piping.
 第3経路60は、貯蔵タンクT2内のヒール液を外部に送るための経路である。第3経路60には、図1に示すように、第3弁61が配置されている。第3弁61は、ポンプ40によって貯蔵タンクT2から送液されたヒール液を外部に送る量を制御することができる。第3経路60は、配管である。 The third path 60 is a path for sending the heel liquid in the storage tank T2 to the outside. A third valve 61 is arranged in the third path 60, as shown in FIG. The third valve 61 can control the amount of the heel liquid sent from the storage tank T2 by the pump 40 to the outside. The third route 60 is piping.
 測定部70は、図1に示すように、貯蔵タンクT2内の高さ方向の3箇所P1、P2、P3における温度を測定する。なお、高さ方向の測定箇所は3箇所に限定されず、2か所以上であればよい。測定部70としては、公知の温度計を用いることができる。なお、測定部70は、温度に加えて、温度を測定した場所の高さを測定可能であってもよい。 As shown in FIG. 1, the measurement unit 70 measures the temperature at three points P1, P2, and P3 in the height direction inside the storage tank T2. Note that the number of measurement points in the height direction is not limited to three, and may be two or more. A known thermometer can be used as the measuring unit 70 . In addition to the temperature, the measurement unit 70 may be able to measure the height of the location where the temperature is measured.
 制御部は、第1弁11、バイパス弁21、第2弁51、第3弁61の開閉を制御する。制御部は、ポンプ40の駆動を制御する。制御部は、測定部70によって測定される温度に基づいて、冷凍機30の運転を制御する。制御部は、例えばCPUである。 The controller controls opening and closing of the first valve 11, the bypass valve 21, the second valve 51, and the third valve 61. The controller controls driving of the pump 40 . The control unit controls the operation of refrigerator 30 based on the temperature measured by measurement unit 70 . A control part is CPU, for example.
 次に、図3~図5を参照して、第1実施形態に係る抑制装置1の抑制方法について説明する。図3は、第1実施形態に係る抑制装置1の一の抑制方法を説明するための図である。図4は、第1実施形態に係る抑制装置1の二の抑制方法を説明するための図である。図5は、第1実施形態に係る抑制装置1の三の抑制方法を説明するための図である。 Next, a suppression method of the suppression device 1 according to the first embodiment will be described with reference to FIGS. 3 to 5. FIG. FIG. 3 is a diagram for explaining one suppression method of the suppression device 1 according to the first embodiment. FIG. 4 is a diagram for explaining two suppression methods of the suppression device 1 according to the first embodiment. FIG. 5 is a diagram for explaining three suppression methods of the suppression device 1 according to the first embodiment.
 まず、図3を参照して、第1実施形態に係る抑制装置1の一の抑制方法について説明する。一の抑制方法は、液化ガスの受け入れ時における抑制方法であって、貯蔵タンクT2内のヒール液およびカーゴタンクT1からのカーゴ液を混合して、混合された液化ガスを冷凍機30で冷却してサブクール状態にする点が特徴である。図3において、液化ガスが通過する経路を太線で示す。 First, with reference to FIG. 3, one suppression method of the suppression device 1 according to the first embodiment will be described. One suppression method is a suppression method at the time of receiving liquefied gas, in which the heel liquid in the storage tank T2 and the cargo liquid from the cargo tank T1 are mixed, and the mixed liquefied gas is cooled by the refrigerator 30. It is characterized by being in a subcool state. In FIG. 3, the path through which the liquefied gas passes is indicated by a thick line.
 まず、制御部は、ポンプ40を駆動して、貯蔵タンクT2内のヒール液を合流部12まで送液する。一方、制御部は第1弁11を開くことによって、カーゴタンクT1からのカーゴ液が合流部12まで送液される。そして、合流部12において、貯蔵タンクT2内にあったヒール液およびカーゴタンクT1からのカーゴ液が混合して、冷凍機30に送液される。混合された液化ガスは、冷凍機30において、サブクール状態まで冷却されて、貯蔵タンクT2内に送液される。なお、第3弁61は開閉どちらの状態でもよい。 First, the control section drives the pump 40 to feed the heel liquid in the storage tank T2 to the confluence section 12. On the other hand, the controller opens the first valve 11 so that the cargo liquid from the cargo tank T1 is sent to the confluence section 12 . At the confluence portion 12, the heel liquid in the storage tank T2 and the cargo liquid from the cargo tank T1 are mixed and sent to the refrigerator 30. The mixed liquefied gas is cooled to a subcooled state in the refrigerator 30 and sent into the storage tank T2. It should be noted that the third valve 61 may be in either open or closed state.
 ここで例えば、冷凍機30によって冷却されていない液化ガスが、貯蔵タンクT2内に送液されると、カーゴポンプや受入配管での入熱による受け入れ時に液化ガスが気化することで、BOGが大量に発生する。 Here, for example, when the liquefied gas that has not been cooled by the refrigerator 30 is sent into the storage tank T2, the liquefied gas evaporates when received by the cargo pump or the receiving pipe due to the heat input, resulting in a large amount of BOG. occurs in
 これに対して、一の抑制方法によれば、混合された液化ガスをサブクール状態まで冷却して貯蔵タンクT2内に送液するため、BOGの発生を好適に抑制することができる。 On the other hand, according to the first suppression method, the mixed liquefied gas is cooled to a subcooled state and sent into the storage tank T2, so the generation of BOG can be preferably suppressed.
 次に、図4を参照して、第1実施形態に係る抑制装置1の二の抑制方法について説明する。二の抑制方法は、液化ガスの受け入れ時における抑制方法であって、カーゴタンクT1からのヒール液のみを冷凍機30で冷却してサブクール状態にする点が特徴である。図4において、ヒール液およびカーゴ液が通過する経路を太線で示す。 Next, the second suppression method of the suppression device 1 according to the first embodiment will be described with reference to FIG. The second suppression method is a suppression method when receiving liquefied gas, and is characterized in that only the heel liquid from the cargo tank T1 is cooled by the refrigerator 30 to be in a subcooled state. In FIG. 4, the paths through which heel liquid and cargo liquid pass are indicated by thick lines.
 まず、制御部は、第1弁11を開くことによって、カーゴタンクT1からのカーゴ液を、合流部12を介して、冷凍機30に送液する。カーゴタンクT1からのカーゴ液は、冷凍機30において、サブクール状態まで冷却されて、貯蔵タンクT2内に送液される。なお、第3弁61は開閉どちらの状態でもよい。 First, the control unit opens the first valve 11 to send the cargo liquid from the cargo tank T1 to the refrigerator 30 via the junction section 12 . The cargo liquid from the cargo tank T1 is cooled to a subcooled state in the refrigerator 30 and sent into the storage tank T2. It should be noted that the third valve 61 may be in either open or closed state.
 このように二の抑制方法によれば、カーゴタンクT1からのカーゴ液をサブクール状態まで冷却して貯蔵タンクT2内に送液するため、BOGの発生を好適に抑制することができる。 Thus, according to the second suppression method, the cargo liquid from the cargo tank T1 is cooled to a subcooled state and sent into the storage tank T2, so the generation of BOG can be preferably suppressed.
 次に、図5を参照して、第1実施形態に係る抑制装置1の三の抑制方法について説明する。三の抑制方法は、定常時(非受け入れ時)における抑制方法であって、貯蔵タンクT2内にあったヒール液のみを冷凍機30で冷却してサブクール状態にする点が特徴である。図5において、ヒール液およびカーゴ液が通過する経路を太線で示す。 Next, with reference to FIG. 5, three suppression methods of the suppression device 1 according to the first embodiment will be described. The third suppressing method is a suppressing method in a steady state (when not receiving), and is characterized in that only the heel liquid in the storage tank T2 is cooled by the refrigerator 30 to be in a subcooled state. In FIG. 5, the paths through which heel liquid and cargo liquid pass are indicated by thick lines.
 まず、制御部は、ポンプ40を駆動して、貯蔵タンクT2内の液化ガスを合流部12まで送液する。そして、貯蔵タンクT2内にあったヒール液は冷凍機30に送液され、冷凍機30においてサブクール状態まで冷却されて、貯蔵タンクT2内に送液される。なお、第3弁61は開閉どちらの状態でもよい。 First, the control unit drives the pump 40 to feed the liquefied gas in the storage tank T2 to the confluence unit 12. Then, the heel liquid in the storage tank T2 is sent to the refrigerator 30, cooled to a subcooled state in the refrigerator 30, and sent to the storage tank T2. It should be noted that the third valve 61 may be in either open or closed state.
 このとき、測定部70は、貯蔵タンクT2内の高さ方向の3箇所P1、P2、P3における液化ガスの温度と温度を測定した場所の高さを測定して、液化ガスがサブクール状態まで冷却されているかを確認する。 At this time, the measuring unit 70 measures the temperature of the liquefied gas at three points P1, P2, and P3 in the height direction in the storage tank T2 and the height of the place where the temperature is measured, and cools the liquefied gas to a subcooled state. Check if it is
 測定部70によって貯蔵タンクT2内の温度を測定した際に、ヒール液が確実にサブクール状態まで冷却されている場合、制御部は、冷凍機30の運転をオフにすることが好ましい。そして、測定部70によって貯蔵タンクT2内の温度を測定した際に、温度が上昇してヒール液が飽和状態に近づいている場合、制御部は、冷凍機30の運転をオンにすることが好ましい。このように、制御部が冷凍機30の運転を制御することによって、冷凍機30を常に運転する必要がなくなり、冷凍機30の運転効率が向上する。 When the temperature in the storage tank T2 is measured by the measurement unit 70, the control unit preferably turns off the operation of the refrigerator 30 when the heel liquid is surely cooled to a subcooled state. When the temperature in the storage tank T2 is measured by the measuring unit 70, and the temperature rises and the heel liquid approaches saturation, the control unit preferably turns on the operation of the refrigerator 30. . By controlling the operation of the refrigerator 30 by the control unit in this way, the refrigerator 30 does not need to be operated all the time, and the operation efficiency of the refrigerator 30 is improved.
 なお、上記の使用方法とは異なり、以下のように冷凍機30の運転を制御してもよい。すなわち、余剰電力を用いて、冷凍機30をオンにして、液化ガスをサブクール状態まで確実に冷却する。そして、電気が不足しているときに、冷凍機30をオフにする。このように使用することによって、変動性再生可能エネルギー(太陽光発電や風力発電)を有効的に活用することができる。 Note that, unlike the above method of use, the operation of the refrigerator 30 may be controlled as follows. That is, the surplus power is used to turn on the refrigerator 30 to reliably cool the liquefied gas to a subcooled state. Then, when the electricity is insufficient, the refrigerator 30 is turned off. By using it in this way, variable renewable energy (solar power generation and wind power generation) can be effectively utilized.
 次に、第1実施形態に係る抑制装置1の四の抑制方法について説明する。この場合は対象となる液化ガスはLNGである。四の抑制方法は、貯蔵タンクT2内のヒール液とは異なる密度のカーゴ液を受け入れる際に、層状化が発生することを抑制する抑制方法である。 Next, four suppression methods of the suppression device 1 according to the first embodiment will be described. In this case, the liquefied gas of interest is LNG. The fourth suppression method is a suppression method for suppressing the occurrence of stratification when cargo liquid having a density different from that of the heel liquid in the storage tank T2 is received.
 まず、カーゴタンクT1からのカーゴ液が、貯蔵タンクT2内のヒール液よりも重質である場合について説明する。 First, the case where the cargo liquid from the cargo tank T1 is heavier than the heel liquid in the storage tank T2 will be described.
 制御部は、カーゴタンクT1からカーゴ液を受け入れる前に、上述した三の抑制方法と同様に、貯蔵タンクT2内のヒール液を冷凍機30によって冷却して、サブクール度を大きくする。 Before receiving the cargo liquid from the cargo tank T1, the control unit cools the heel liquid in the storage tank T2 with the refrigerator 30 to increase the degree of subcooling in the same manner as in the third control method described above.
 次に、カーゴタンクT1からカーゴ液を受け入れる。このとき、貯蔵タンクT2内のヒール液は、サブクール度を大きくすることによって密度が上昇し、カーゴタンクT1からのカーゴ液の密度と略同一にすることができる。したがって、貯蔵タンクT2内の液化ガスの層状化を好適に抑制することができる。 Next, receive the cargo liquid from the cargo tank T1. At this time, the density of the heel liquid in the storage tank T2 is increased by increasing the degree of subcooling, and the density can be substantially the same as that of the cargo liquid from the cargo tank T1. Therefore, stratification of the liquefied gas in the storage tank T2 can be suitably suppressed.
 ここで、貯蔵タンクT2内のヒール液およびカーゴタンクT1からのカーゴ液の密度が略同一とは、完全に同一でなくてもよく、貯蔵タンクT2内で層状化しない密度差の範囲であればよい。 Here, the substantially same density of the heel liquid in the storage tank T2 and the cargo liquid from the cargo tank T1 does not have to be completely the same, as long as the density difference is within a range that does not cause stratification in the storage tank T2. good.
 次に、カーゴタンクT1からのカーゴ液が、貯蔵タンクT2内のヒール液よりも軽質である場合について説明する。 Next, a case where the cargo liquid from the cargo tank T1 is lighter than the heel liquid in the storage tank T2 will be described.
 制御部は、上述した二の抑制方法と同様に、カーゴタンクT1からのカーゴ液を冷凍機30によって冷却して、サブクール度を大きくして、貯蔵タンクT2内に送る。このとき、カーゴタンクT1からのカーゴ液は、サブクール度が大きくなることによって密度が上昇し、貯蔵タンクT2内のヒール液の密度と略同一にすることができる。したがって、液化ガスの層状化を好適に抑制することができる。 Similarly to the second control method described above, the control unit cools the cargo liquid from the cargo tank T1 with the refrigerator 30 to increase the degree of subcooling and sends it into the storage tank T2. At this time, the density of the cargo liquid from the cargo tank T1 increases as the degree of subcooling increases, and the density can be made substantially the same as that of the heel liquid in the storage tank T2. Therefore, stratification of the liquefied gas can be suitably suppressed.
 以上説明したように、第1実施形態に係る抑制装置1は、カーゴタンクT1から貯蔵タンクT2にカーゴ液を受け入れる際に発生するBOGを抑制する抑制装置1である。抑制装置1は、カーゴタンクT1および貯蔵タンクT2を連結する第1経路10に配置された冷凍機30と、貯蔵タンクT2の内部に設けられ、冷凍機30に向けて貯蔵タンクT2内のヒール液を送液可能なポンプ40と、を有する。このように構成された抑制装置1によれば、カーゴタンクT1から貯蔵タンクT2にカーゴ液を受け入れる際に、冷凍機30によって液化ガスをサブクール状態まで冷却した状態で、カーゴ液かヒール液あるいはその両方を貯蔵タンクT2に送液するため、受入れ時のBOGの発生を低減することができる。 As described above, the suppression device 1 according to the first embodiment is a suppression device 1 that suppresses BOG that occurs when cargo liquid is received from the cargo tank T1 to the storage tank T2. The suppression device 1 includes a refrigerator 30 arranged on a first path 10 connecting a cargo tank T1 and a storage tank T2, and a heel liquid in the storage tank T2 provided inside the storage tank T2 toward the refrigerator 30. and a pump 40 capable of feeding the According to the suppression device 1 configured as described above, when the cargo liquid is received from the cargo tank T1 to the storage tank T2, the liquefied gas is cooled to a subcooled state by the refrigerator 30, and the cargo liquid, heel liquid, or its Since both are sent to the storage tank T2, it is possible to reduce the occurrence of BOG during reception.
 また、抑制装置1は、カーゴタンクT1および貯蔵タンクT2が連結される第1経路10に対して、分岐するように設けられるバイパス経路20をさらに有する。このように構成された抑制装置1によれば、バイパス経路20にカーゴタンクT1からの液化ガスを通過させることができる。したがって、カーゴ液かヒール液あるいはその両方が十分にサブクール状態まで冷却されている場合、冷凍機30によって冷却する第1経路10を通過させる必要が無い。 In addition, the suppression device 1 further has a bypass route 20 that branches off from the first route 10 that connects the cargo tank T1 and the storage tank T2. According to the suppression device 1 configured in this manner, the liquefied gas from the cargo tank T1 can be passed through the bypass route 20 . Therefore, when the cargo liquid or the heel liquid or both of them are sufficiently cooled to a subcooled state, there is no need to pass through the first path 10 cooled by the refrigerator 30 .
 また、抑制装置1は、貯蔵タンクT2内の高さ方向の3個所P1、P2、P3における温度を測定する測定部70をさらに有する。このように構成された抑制装置1によれば、測定部70によって貯蔵タンクT2内の温度を測定して、ヒール液がサブクール状態まで冷却されているかを確認することができる。そして、ヒール液が確実にサブクール状態まで冷却されている場合、制御部は、冷凍機30の運転をオフにする。そして、ヒール液が飽和状態に近づいている場合、制御部は、冷凍機30の運転をオンにする。したがって、冷凍機30を常にオンにする必要が無く、冷凍機30の運転効率が向上する。 In addition, the suppression device 1 further has a measurement unit 70 that measures temperatures at three points P1, P2, and P3 in the height direction inside the storage tank T2. According to the suppressing device 1 configured in this manner, the temperature in the storage tank T2 is measured by the measuring unit 70, and it can be confirmed whether the heel liquid is cooled to a subcooled state. Then, when the heel liquid is surely cooled to the subcooled state, the control unit turns off the operation of the refrigerator 30 . Then, when the heel liquid is close to being saturated, the control unit turns on the operation of the refrigerator 30 . Therefore, there is no need to keep the refrigerator 30 on all the time, and the operating efficiency of the refrigerator 30 is improved.
 <第2実施形態>
 次に、図6を参照して、本発明の第2実施形態に係る抑制装置2の構成について説明する。なお、第1実施形態と同様の構成については、同一の符号を付してその説明を省略する。図6は、本発明の第2実施形態に係る抑制装置2を示す概略図である。第2実施形態に係る抑制装置2は、第1経路110の構成の点において第1実施形態に係る抑制装置1の構成と異なる。
<Second embodiment>
Next, with reference to FIG. 6, the configuration of the suppression device 2 according to the second embodiment of the present invention will be described. In addition, the same code|symbol is attached|subjected about the structure similar to 1st Embodiment, and the description is abbreviate|omitted. FIG. 6 is a schematic diagram showing a restraining device 2 according to a second embodiment of the invention. The suppressing device 2 according to the second embodiment differs from the suppressing device 1 according to the first embodiment in the configuration of the first path 110 .
 第2実施形態に係る抑制装置2は、図6に示すように、カーゴタンクT1および貯蔵タンクT2を連結する第1経路(経路に相当)110と、第1経路110に配置される冷凍機30と、貯蔵タンクT2内に設けられるポンプ40と、ポンプ40および第1経路10を連結する第2経路50と、第2経路50から分岐されて貯蔵タンクT2内のヒール液を外部に送るための第3経路60と、貯蔵タンクT2内の3か所におけるヒール液の温度を測定する測定部(図示省略)と、冷凍機30の運転を制御する制御部と、を有する。この場合は対象となる液化ガスはLNGである。 As shown in FIG. 6, the suppression device 2 according to the second embodiment includes a first path (corresponding to a path) 110 connecting the cargo tank T1 and the storage tank T2, and a refrigerator 30 arranged on the first path 110. a pump 40 provided in the storage tank T2; a second path 50 connecting the pump 40 and the first path 10; It has a third path 60 , a measurement unit (not shown) that measures the temperature of the heel liquid at three locations in the storage tank T<b>2 , and a control unit that controls the operation of the refrigerator 30 . In this case, the liquefied gas of interest is LNG.
 第1経路110は、図6に示すように、貯蔵タンクT2のうち上方側に、冷凍機30によって冷却されたヒール液を送液する上方経路111と、貯蔵タンクT2のうち下方側に、冷凍機30によって冷却されたヒール液を送液する下方経路112と、を有する。 As shown in FIG. 6, the first path 110 includes an upper path 111 that feeds the heel liquid cooled by the refrigerator 30 to the upper side of the storage tank T2, and a frozen liquid to the lower side of the storage tank T2. and a lower passageway 112 for conveying heel liquid cooled by machine 30 .
 上方経路111および下方経路112には、貯蔵タンクT2へ送液する量を調整する調整弁113、114がそれぞれ設けられている。 The upper path 111 and the lower path 112 are provided with regulating valves 113 and 114, respectively, for adjusting the amount of liquid sent to the storage tank T2.
 次に、図7を参照して、第2実施形態に係る抑制装置2の一の抑制方法について説明する。第2実施形態に係る抑制装置2の抑制方法は、貯蔵タンクT2内においてヒール液が層状化している場合に、ロールオーバー現象が生じることを抑制する抑制方法である。図7において、ヒール液およびカーゴ液が通過する経路を太線で示す。 Next, one suppression method of the suppression device 2 according to the second embodiment will be described with reference to FIG. The suppressing method of the suppressing device 2 according to the second embodiment is a suppressing method for suppressing the rollover phenomenon when the heel liquid is stratified in the storage tank T2. In FIG. 7, the paths through which heel liquid and cargo liquid pass are indicated by thick lines.
 ここで、「ロールオーバー現象」とは、層状化した貯蔵タンクT2内において、外部からの入熱により各層の内部でそれぞれ対流が起こり、層の境界を通して物質移動および熱移動が進まず上下層間の密度差が次第に減少し、一定時間経過後に上下層の密度が等しくなることで上下層の境界が消滅するとき、下層に蓄積された熱が多量のBOG発生という形で短時間に開放される現象をいう。 Here, the "rollover phenomenon" means that in the stratified storage tank T2, convection occurs inside each layer due to heat input from the outside, and mass transfer and heat transfer do not proceed through the boundary between the layers. The density difference gradually decreases, and after a certain period of time the densities of the upper and lower layers become equal, and when the boundary between the upper and lower layers disappears, the heat accumulated in the lower layer is released in a short time in the form of a large amount of BOG generation. Say.
 まず、制御部は、ポンプ40を駆動して、貯蔵タンクT2内の液化ガスを合流部12まで送液する。そして、貯蔵タンクT2内にあったヒール液は冷凍機30に送液され、冷凍機30においてサブクール状態まで冷却される。冷凍機30によってサブクール状態まで冷却された液化ガスは、調整弁113、114によって流量が調整されて、上方経路111および下方経路112を介して、貯蔵タンクT2内の上層のヒール液および下層のヒール液に戻される。なお、第3弁61は開閉どちらの状態でもよい。 First, the control unit drives the pump 40 to feed the liquefied gas in the storage tank T2 to the confluence unit 12. Then, the heel liquid in the storage tank T2 is sent to the refrigerator 30 and cooled in the refrigerator 30 to a subcooled state. The liquefied gas that has been cooled to a subcooled state by the refrigerator 30 has its flow rate adjusted by the regulating valves 113 and 114, and flows through the upper path 111 and the lower path 112 to the upper layer heel liquid and the lower layer heel liquid in the storage tank T2. returned to the liquid. It should be noted that the third valve 61 may be in either open or closed state.
 また、上方経路111は、上方受入配管であるトップフィード管に替えてもよい。同様に、下方経路112は、下方受入配管であるボトムフィード管またはジェットミキシングノズルに替えてもよい。 Also, the upper path 111 may be replaced with a top feed pipe, which is an upper receiving pipe. Similarly, the lower passageway 112 may be replaced by a lower receiving piping, a bottom feed tube or a jet mixing nozzle.
 これによって、上層のヒール液から、BOGが発生することを抑制でき、密度が上昇することを防止できる。一方、下層のヒール液において、入熱によるヒール液の液温の上昇を、サブクール状態のカーゴ液かヒール液あるいはその両方で抑制することによって、密度の低下を抑制することができる。したがって、層状化した上層と下層の密度が等しくなることに起因して生じるロールオーバー現象の発生を好適に防止できる。 As a result, it is possible to suppress the generation of BOG from the upper layer of the heel liquid and prevent the density from increasing. On the other hand, in the heel liquid of the lower layer, the decrease in density can be suppressed by suppressing the increase in the liquid temperature of the heel liquid due to heat input with the subcooled cargo liquid, the heel liquid, or both. Therefore, it is possible to suitably prevent the occurrence of rollover phenomenon caused by equal densities of the layered upper layer and the lower layer.
 <第3実施形態>
 次に、図8を参照して、本発明の第3実施形態に係る抑制装置3の構成について説明する。なお、第1実施形態と同様の構成については、同一の符号を付してその説明を省略する。図8は、本発明の第3実施形態に係る抑制装置3を示す概略図である。第3実施形態に係る抑制装置3は、貯蔵タンクT2が複数設けられる点において第1実施形態に係る抑制装置1の構成と異なる。
<Third Embodiment>
Next, with reference to FIG. 8, the configuration of the suppression device 3 according to the third embodiment of the present invention will be described. In addition, the same code|symbol is attached|subjected about the structure similar to 1st Embodiment, and the description is abbreviate|omitted. FIG. 8 is a schematic diagram showing a restraining device 3 according to a third embodiment of the invention. The suppressing device 3 according to the third embodiment differs from the suppressing device 1 according to the first embodiment in that a plurality of storage tanks T2 are provided.
 第3実施形態に係る抑制装置3において、貯蔵タンクT2は、図8に示すように、3つ設けられている。 In the suppression device 3 according to the third embodiment, three storage tanks T2 are provided as shown in FIG.
 3つの貯蔵タンクT2のうち、一の貯蔵タンクT21内のヒール液は、冷凍機30によってサブクール状態に冷却される。具体的には、余剰電力を用いて、冷凍機30をオンにして、一の貯蔵タンクT21内のヒール液をサブクール状態まで確実に冷却することが好ましい。 Of the three storage tanks T2, the heel liquid in one storage tank T21 is cooled by the refrigerator 30 to a subcooled state. Specifically, it is preferable to use the surplus electric power to turn on the refrigerator 30 to reliably cool the heel liquid in the one storage tank T21 to a subcooled state.
 そして、ポンプ40によって、サブクール状態にされた一の貯蔵タンクT21内のヒール液を、図8に例示するように、他の貯蔵タンクT22、T23のカーゴ液の受入配管に送液する。これによって、他の貯蔵タンクT22、T23における受け入れ時のBOGの発生を抑制することができる。 Then, the pump 40 sends the heel liquid in the subcooled one storage tank T21 to the cargo liquid receiving pipes of the other storage tanks T22 and T23, as illustrated in FIG. As a result, it is possible to suppress the occurrence of BOG during reception in the other storage tanks T22 and T23.
 以上のように構成された抑制装置3によれば、一の貯蔵タンクT21にサブクール状態のヒール液を貯蔵することによって、再生可能エネルギーの電力をサブクール状態のヒール液として貯蔵する電力貯蔵システムとして機能させることができる。 According to the suppression device 3 configured as described above, by storing the subcooled heel fluid in the one storage tank T21, it functions as an electric power storage system that stores renewable energy power as the subcooled heel fluid. can be made
 なお、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲内で種々改変することができる。 It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims.
 例えば、上述した第1実施形態では、抑制装置1は、バイパス経路20を有した。しかしながら、抑制装置には、バイパス経路が設けられていなくてもよい。 For example, in the first embodiment described above, the suppression device 1 has the bypass path 20 . However, the suppression device may not be provided with a bypass path.
 また、上述した実施形態では、抑制装置1、2は、測定部70が設けられて、測定部70は、貯蔵タンクT2内の高さ方向の3箇所P1、P2、P3の温度を測定した。しかしながら、測定部は、貯蔵タンクT2内の高さ方向の温度、温度を測定した場所の高さ、密度を連続的に測定できる構成であってもよい。 In addition, in the above-described embodiments, the suppressing devices 1 and 2 are provided with the measurement unit 70, and the measurement unit 70 measures the temperatures at three points P1, P2, and P3 in the storage tank T2 in the height direction. However, the measuring unit may be configured to continuously measure the temperature in the height direction inside the storage tank T2, the height at the location where the temperature is measured, and the density.
 また、上述した第2実施形態では、第1経路110は、上方経路111および下方経路112を有した。しかしながら、第1経路は、上方経路111のみ、または下方経路112のみであってもよい。この構成の場合、ロールオーバー現象の発生を防止することは困難であるが、ロールオーバー現象の発生までの時間を延ばすことができ、その間に、下層のヒール液をポンプ40で払いだして、下層をなくすことで層状化を消滅させることができる。 Also, in the second embodiment described above, the first route 110 has the upper route 111 and the lower route 112 . However, the first path may be only the upper path 111 or only the lower path 112 . In the case of this configuration, it is difficult to prevent the occurrence of the rollover phenomenon, but the time until the occurrence of the rollover phenomenon can be extended. By eliminating the stratification can be eliminated.
 また、上述した第3実施形態では、カーゴタンクT1からのカーゴ液の受け入れ時におけるBOGの発生の抑制について説明した。しかしながら、これに限定されず、図9に示すように、定常時(非受け入れ時)におけるBOGの発生の抑制にも適用することができる。 Also, in the above-described third embodiment, suppression of the generation of BOG during reception of cargo liquid from the cargo tank T1 has been described. However, it is not limited to this, and as shown in FIG. 9, it can also be applied to suppress the generation of BOG during a steady state (during non-reception).
 本出願は、2021年3月29日に出願された日本国特許出願第2021-055279号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2021-055279 filed on March 29, 2021, the disclosure of which is incorporated by reference in its entirety.
  1、2  抑制装置、
  10、110  第1経路、
  20  バイパス経路、
  30  冷凍機、
  40  ポンプ、
  50  第2経路、
  60  第3経路、
  70  測定部、
  111 上方経路、
  112 下方経路、
  113 調整弁、
  114 調整弁、
  T1  カーゴタンク、
  T2  貯蔵タンク。
1, 2 suppression device,
10, 110 first route,
20 bypass path,
30 refrigerator,
40 pumps,
50 second route,
60 third route,
70 measuring unit,
111 upper path,
112 lower path,
113 regulating valve,
114 regulating valve,
T1 cargo tank,
T2 storage tank.

Claims (7)

  1.  カーゴタンクから貯蔵タンクにカーゴ液を受け入れる際に発生するBOGを抑制する抑制装置であって、
     前記カーゴタンクおよび前記貯蔵タンクを連結する経路に配置された冷凍機と、
     前記貯蔵タンクの内部に設けられ、前記冷凍機に向けて前記貯蔵タンク内のヒール液を送液可能なポンプと、を有する、抑制装置。
    A suppression device for suppressing BOG generated when cargo liquid is received from a cargo tank to a storage tank,
    a refrigerator arranged on a path connecting the cargo tank and the storage tank;
    and a pump provided inside the storage tank and capable of feeding the heel liquid in the storage tank toward the refrigerator.
  2.  前記カーゴタンクと前記貯蔵タンクを連結する前記経路に対して、分岐するように設けられるバイパス経路をさらに有する、請求項1に記載の抑制装置。 The suppressing device according to claim 1, further comprising a bypass route that branches off from the route that connects the cargo tank and the storage tank.
  3.  前記貯蔵タンク内の高さ方向の複数個所における温度を測定する測定部をさらに有する、請求項1または2に記載の抑制装置。 The suppressing device according to claim 1 or 2, further comprising a measuring unit that measures temperatures at a plurality of points in the height direction inside the storage tank.
  4.  前記カーゴタンクおよび前記貯蔵タンクを連結する前記経路は、
     前記貯蔵タンクのうち上方側に、前記冷凍機によって冷却された液化ガスを送液する上方経路と、
     前記貯蔵タンクのうち下方側に、前記冷凍機によって冷却された前記液化ガスを送液する下方経路と、を有し、
     前記上方経路および前記下方経路には、前記貯蔵タンクへ送液する量を調整する調整弁が設けられている、請求項1~3のいずれか1項に記載の抑制装置。
    the path connecting the cargo tank and the storage tank,
    an upper path for feeding the liquefied gas cooled by the refrigerator to the upper side of the storage tank;
    a lower path for feeding the liquefied gas cooled by the refrigerator on the lower side of the storage tank,
    The suppression device according to any one of claims 1 to 3, wherein said upper path and said lower path are provided with adjustment valves for adjusting the amount of liquid supplied to said storage tank.
  5.  前記貯蔵タンクは、複数設けられ、
     一の貯蔵タンク内の前記ヒール液は、前記冷凍機によってサブクール状態にされ、
     前記ポンプによって、サブクール状態にされた前記一の貯蔵タンク内の前記ヒール液を、他の貯蔵タンク内に送液する、請求項1~4のいずれか1項に記載の抑制装置。
    A plurality of the storage tanks are provided,
    The heel liquid in one storage tank is subcooled by the refrigerator,
    The suppressing device according to any one of claims 1 to 4, wherein the heel liquid in the one storage tank subcooled by the pump is sent to another storage tank.
  6.  カーゴタンクおよび貯蔵タンクを連結する経路の間に配置された冷凍機と、前記貯蔵タンクの内部に設けられ、前記冷凍機に向けて前記貯蔵タンク内のヒール液を送液するポンプと、を有する抑制装置によって、前記カーゴタンクから前記貯蔵タンクにカーゴ液を受け入れる際に発生するBOGを抑制する抑制方法であって、
     前記カーゴ液を前記貯蔵タンクに受け入れる際に、前記冷凍機によって前記カーゴ液をサブクール状態まで冷却する工程と、
     冷却された前記カーゴ液を前記貯蔵タンクに送液する工程と、を有する抑制方法。
    a refrigerator arranged between a path connecting a cargo tank and a storage tank; and a pump provided inside the storage tank for feeding the heel liquid in the storage tank toward the refrigerator. A suppression method for suppressing BOG generated when cargo liquid is received from the cargo tank to the storage tank by a suppression device,
    cooling the cargo liquid to a subcooled state by the refrigerator when the cargo liquid is received in the storage tank;
    and sending the cooled cargo liquid to the storage tank.
  7.  前記ポンプによって、前記貯蔵タンク内の前記ヒール液を前記冷凍機に送液することによって、前記貯蔵タンク内にあった前記ヒール液をサブクール状態まで冷却する工程と、
     サブクール状態まで冷却された、前記貯蔵タンク内にあった前記ヒール液を、サブクール状態まで冷却された前記カーゴタンクからの前記カーゴ液に混合する工程と、
     混合された前記ヒール液および前記カーゴ液を前記貯蔵タンクに送液する工程と、をさらに有する、請求項6に記載の抑制方法。
    cooling the heel liquid in the storage tank to a subcooled state by sending the heel liquid in the storage tank to the refrigerator by the pump;
    mixing the heel liquid that has been in the storage tank that has been cooled to a subcooled state with the cargo liquid from the cargo tank that has been cooled to a subcooled state;
    7. The control method of claim 6, further comprising the step of feeding said mixed heel liquid and said cargo liquid to said storage tank.
PCT/JP2022/011594 2021-03-29 2022-03-15 Suppression device and suppression method WO2022209850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021055279A JP2022152490A (en) 2021-03-29 2021-03-29 Inhibition device and inhibition method
JP2021-055279 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209850A1 true WO2022209850A1 (en) 2022-10-06

Family

ID=83459005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011594 WO2022209850A1 (en) 2021-03-29 2022-03-15 Suppression device and suppression method

Country Status (3)

Country Link
JP (1) JP2022152490A (en)
TW (1) TW202240097A (en)
WO (1) WO2022209850A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113521A (en) * 1978-02-24 1979-09-05 Bridgestone Liquefied Gas Co Liquefied gas forwarding facilities
JPH08159393A (en) * 1994-12-09 1996-06-21 Tokyo Gas Co Ltd Method for suppressing bog generated in liquefied gas storing tank, and therefor
JPH08200596A (en) * 1995-01-25 1996-08-06 Ishikawajima Harima Heavy Ind Co Ltd Facility for receiving liquid in low-temperature tank
JP2000179798A (en) * 1998-12-18 2000-06-27 Tokyo Gas Co Ltd Method for preventing roll-over from being generated inside low-temperature liquefied gas storage tank
JP2007504414A (en) * 2003-09-01 2007-03-01 クライオスター・ソシエテ・パール・アクシオンス・サンプリフィエ Controlled storage of liquefied gas
JP2009209996A (en) * 2008-03-03 2009-09-17 Ihi Corp Extremely low temperature liquefaction propellant filling device and method
WO2014135702A2 (en) * 2013-03-08 2014-09-12 Linde Aktiengesellschaft Lng transfer terminal and corresponding method
US20190024847A1 (en) * 2015-12-31 2019-01-24 Shell Oil Company Liquefied fuel gas system and method
JP2019043318A (en) * 2017-08-31 2019-03-22 川崎重工業株式会社 Determination device and determination method
JP2019163804A (en) * 2018-03-19 2019-09-26 三井E&S造船株式会社 Tank pressure control system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113521A (en) * 1978-02-24 1979-09-05 Bridgestone Liquefied Gas Co Liquefied gas forwarding facilities
JPH08159393A (en) * 1994-12-09 1996-06-21 Tokyo Gas Co Ltd Method for suppressing bog generated in liquefied gas storing tank, and therefor
JPH08200596A (en) * 1995-01-25 1996-08-06 Ishikawajima Harima Heavy Ind Co Ltd Facility for receiving liquid in low-temperature tank
JP2000179798A (en) * 1998-12-18 2000-06-27 Tokyo Gas Co Ltd Method for preventing roll-over from being generated inside low-temperature liquefied gas storage tank
JP2007504414A (en) * 2003-09-01 2007-03-01 クライオスター・ソシエテ・パール・アクシオンス・サンプリフィエ Controlled storage of liquefied gas
JP2009209996A (en) * 2008-03-03 2009-09-17 Ihi Corp Extremely low temperature liquefaction propellant filling device and method
WO2014135702A2 (en) * 2013-03-08 2014-09-12 Linde Aktiengesellschaft Lng transfer terminal and corresponding method
US20190024847A1 (en) * 2015-12-31 2019-01-24 Shell Oil Company Liquefied fuel gas system and method
JP2019043318A (en) * 2017-08-31 2019-03-22 川崎重工業株式会社 Determination device and determination method
JP2019163804A (en) * 2018-03-19 2019-09-26 三井E&S造船株式会社 Tank pressure control system

Also Published As

Publication number Publication date
JP2022152490A (en) 2022-10-12
TW202240097A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
KR101326091B1 (en) Bog reliquefaction apparatus and lng bogreliquefaction method
KR20200113222A (en) Use of cryogenic heat pumps and cryogenic heat pumps for liquefied gas treatment
KR102162164B1 (en) Gas treatment system and ship having the same
KR102647309B1 (en) Refrigerant Charging System And Method For Reliquefaction Cycle
WO2013175906A1 (en) Method for re-liquefying boil-off gas generated at liquid hydrogen storage tank
KR102120584B1 (en) Tank Cooling System, Liquefaction System and Ship having the same
CN113260811B (en) Gas treatment system equipped with a receiving terminal of a regasification unit and corresponding gas treatment method
KR102632400B1 (en) Gas processing system for vessel and gas processing method using the same
WO2022209850A1 (en) Suppression device and suppression method
KR102213508B1 (en) Mixed Refrigerant Charging System And Method For Ship
KR20220080774A (en) Fuel Supply System And Method For Ship
KR101302028B1 (en) Boil-Off Gas Reliquefaction System
KR102613977B1 (en) Gas treatment system and ship having the same
KR20210042722A (en) A Vessel
US20240159460A1 (en) Method for cooling a heat exchanger of a gas supply system for a gas-consuming apparatus of a ship
KR102376279B1 (en) Boil-Off Gas Reliquefaction System for Ship and Operation Method Thereof
KR102098875B1 (en) Open Type Liquefied Gas Regasification System and Method
KR101996285B1 (en) Boil-Off Gas Reliquefaction System and Method
KR102538600B1 (en) Boil-Off Gas Reliquefaction System And Operation Method for Ship
KR102521170B1 (en) Boil-Off Gas Reliquefaction System And Method For Ship
KR102538598B1 (en) Leakage Detection System For Reliquefaction System In Ship
RU2773575C2 (en) Cryogenic heat pump and its use in liquefied gas processing
KR102384713B1 (en) System and method for treating boil-off gas of ship
KR102504713B1 (en) Boil-Off Gas Reliquefaction System And Method For Ship
KR102057786B1 (en) Marine Structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780071

Country of ref document: EP

Kind code of ref document: A1