WO2022209613A1 - Silver nanowire manufacturing method - Google Patents

Silver nanowire manufacturing method Download PDF

Info

Publication number
WO2022209613A1
WO2022209613A1 PCT/JP2022/009791 JP2022009791W WO2022209613A1 WO 2022209613 A1 WO2022209613 A1 WO 2022209613A1 JP 2022009791 W JP2022009791 W JP 2022009791W WO 2022209613 A1 WO2022209613 A1 WO 2022209613A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver nanowires
silver
water
specific resistance
reprecipitation
Prior art date
Application number
PCT/JP2022/009791
Other languages
French (fr)
Japanese (ja)
Inventor
葵 長谷川
繁 山木
正彦 鳥羽
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2022209613A1 publication Critical patent/WO2022209613A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a method for producing silver nanowires.
  • silver nanowires have attracted attention as a raw material for highly transparent and highly conductive thin films that can replace the ITO (indium tin oxide) films used in transparent electrodes such as touch panels.
  • Such silver nanowires are generally produced by a so-called polyol reduction method in which a silver compound is heated in the presence of polyvinylpyrrolidone and a polyol such as ethylene glycol (Patent Document 1, Non-Patent Document 1).
  • the synthetic solution contains a polyol solvent, a polymer used as a structure-directing agent, and by-product silver nanoparticles.
  • a polyol solvent a polymer used as a structure-directing agent
  • by-product silver nanoparticles degrade the transparency of the transparent conductive film, so it is desirable to remove them as much as possible.
  • the so-called reprecipitation method is suitable for large-scale purification.
  • acetone is used as a poor solvent and water (ion-exchanged water) is used as a good solvent, and the steps of precipitation/supernatant removal/resuspension are repeated several times to obtain a dispersion mainly containing silver nanowires. disclosed.
  • an object of the present invention is to provide a method for producing silver nanowires that can reduce the number of reprecipitation washings and efficiently remove silver nanoparticles from a coarse dispersion containing silver nanowires and silver nanoparticles. to do.
  • the present invention includes the following embodiments.
  • the reprecipitation washing step includes (c′) adding water having a specific resistance of less than 3.3 M ⁇ cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid.
  • step (c) When absorption based on silver nanoparticles near 405 nm is observed in the supernatant liquid generated in step (a) in a series of operations from the second time onwards, in step (c) after that, the specific resistance value is 18 M ⁇ cm or more.
  • the silver nanowires when producing silver nanowires by purifying a silver nanowire coarse dispersion containing silver nanowires and silver nanoparticles using a reprecipitation method, the silver nanowires are washed with a smaller number of reprecipitation washings than before. can be manufactured.
  • FIG. 10 is a diagram showing absorption spectrum measurement results of supernatant liquids removed in each supernatant removal step (b) in a series of operations of 3rd to 8th reprecipitation washings in the reprecipitation washing step of Example 4;
  • the method for producing silver nanowires according to the present embodiment includes a coarse dispersion preparation step of preparing a coarse dispersion containing silver nanowires and silver nanoparticles, and reprecipitation to refine the silver nanowires in the coarse dispersion. and a reprecipitation washing step, wherein the reprecipitation washing step has a series of operations consisting of the following steps (a), (b), and (c), and the series of operations is repeated multiple times. do.
  • the method for producing silver nanowires according to the present embodiment first has a coarse dispersion preparation step of preparing a coarse dispersion containing silver nanowires and silver nanoparticles.
  • This coarse dispersion preparation step includes a step of synthesizing the desired silver nanowires.
  • the process for synthesizing silver nanowires is not particularly limited, and known methods can be applied.
  • a first solution containing an ionic derivative containing a polyol as a solvent
  • a second solution containing a metal salt (silver nitrate) is added to the total number of moles of halogen atoms of the ionic derivative in the first solution and the number of metal atoms of the metal salt supplied for 1 minute.
  • the reaction pressure is usually normal pressure (atmospheric pressure).
  • the reaction solvent used in the above polyol reduction method includes polyols used as reducing agents, such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1 , 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, glycerin, etc., and at least one selected from the group consisting of these is preferred. Dihydric alcohols are more preferable from the viewpoint of avoiding high viscosity, and among these, ethylene glycol and propylene glycol are more preferable from the viewpoint of economy.
  • the reaction solution after the synthesis reaction contains by-produced silver nanoparticles in addition to the ionic derivative, structure-directing agent, and solvent used in the synthesis together with the desired silver nanowires.
  • Synthetic silver nanowires are metallic silver with diameters on the order of nanometers, and are conductive materials with linear shapes (including hollow tubular silver nanotubes).
  • the metal silver of the silver nanowire does not contain a metal oxide in terms of conductive performance, but if air oxidation cannot be avoided, a part (at least a part of the surface) may contain a silver oxide. .
  • the length (diameter) in the minor axis direction of the silver nanowires is preferably an average of 5 nm or more and 90 nm or less, more preferably an average of 10 nm or more and 85 nm or less, still more preferably an average of 10 nm or more and 70 nm or less, particularly preferably an average of 10 nm or more and 50 nm or less.
  • the length in the major axis direction is preferably 1 ⁇ m or more and 100 ⁇ m or less on average, more preferably 5 ⁇ m or more and 95 ⁇ m or less on average, still more preferably 5 ⁇ m or more and 70 ⁇ m or less on average, and particularly preferably 5 ⁇ m or more and 50 ⁇ m or less on average.
  • the term “silver nanowire” means that the aspect ratio represented by a/b is 5 or more, where a is the length in the major axis direction and b is the length (diameter) in the minor axis direction. It is preferably 10 or more, more preferably 50 or more, and even more preferably 100 or more.
  • the term “silver nanoparticles” as used herein means particles other than the above-mentioned “silver nanowires", has an aspect ratio of less than 5, and is a by-product of the synthesis of silver nanowires. It means a particulate one excluding "silver nanowires”.
  • the ionic derivative is a component that contributes to the growth of metal wires (silver nanowires), and can be applied as long as it is a compound that dissolves in a solvent and can dissociate halogen ions.
  • compounds are preferred.
  • Halogen ions are preferably at least one of chloride ions, bromide ions, and iodine ions, and more preferably contain a compound capable of dissociating chloride ions.
  • Halides of quaternary ammonium salts include quaternary alkylammonium salts having a total number of carbon atoms of 4 to 20 in the molecule (four alkyl groups are bonded to the nitrogen atom of the quaternary ammonium salt, and each alkyl group is which may be the same or different) are preferred, for example, quaternary ammonium chloride such as tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride, octyltrimethylammonium chloride, hexadecyltrimethylammonium chloride Chlorides, and quaternary ammonium bromides such as tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, o
  • Ammonium salts obtained by reacting quaternary ammonium hydroxide with hydrogen chloride, hydrogen bromide, and hydrogen iodide can also be used. Since these are in a gaseous state at room temperature, they may be neutralized using an aqueous solution thereof in a polyol solvent, and water and excess hydrogen halide can be distilled off by heating after neutralization.
  • halides of quaternary alkylammonium salts having 4 to 16 total carbon atoms in the molecule are more preferable in terms of solubility and efficiency of use, and the longest alkyl chain attached to the nitrogen atom has the highest number of carbon atoms.
  • Halides of quaternary alkylammonium salts having a molecular weight of 12 or less, more preferably 8 or less, are more preferable in terms of efficiency in use because the molecular weight does not become particularly large.
  • tetramethylammonium chloride tetramethylammonium bromide, tetraethylammonium chloride, tetraethylammonium bromide, tetrapropylammonium chloride, tetrapropylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium bromide, Octyltrimethylammonium chloride and octyltrimethylammonium bromide are particularly preferred.
  • metal halides examples include alkali metal halides, alkaline earth metal halides, and metal halides of groups 3 to 12 of the long periodic table.
  • Alkali metal halides include alkali metal chlorides such as lithium chloride, sodium chloride and potassium chloride, alkali metal bromides such as lithium bromide, sodium bromide and potassium bromide, lithium iodide, sodium iodide and potassium iodide. and alkali metal iodides such as Alkaline earth metal halides include magnesium chloride, magnesium bromide and calcium chloride.
  • Metal halides of groups 3 to 12 of the long periodic table include ferric chloride, cupric chloride, ferric bromide, and cupric bromide. Any one of these may be used alone, or two or more of them may be used in combination.
  • a compound that dissociates chloride ions for the production of silver nanowires.
  • a compound that dissociates chlorine ions and at least one of a compound that dissociates bromide ions and a compound that dissociates iodine ions in combination.
  • the molar ratio of (A)/(B) is preferably 2-8, more preferably 3-6.
  • the structure-directing agent used in the synthesis is a compound that has the function of one-dimensionally defining the growth direction of the metal particles during synthesis.
  • the structure-directing agent preferentially or selectively adsorbs to specific crystal planes of the target grain and controls the growth orientation by suppressing the growth of the adsorbed planes.
  • This growth orientation can be controlled by adding a structure-directing agent to the polyols and adsorbing it on the surface of the silver nanowires to be produced.
  • the structure-directing agent is preferably a polymer having a weight-average molecular weight of more than 1,000, more preferably 2,000 or more, and even more preferably 10,000 or more.
  • the weight average molecular weight of the structure-directing agent is preferably 1,500,000 or less, more preferably 1,000,000 or less, and even more preferably 500,000 or less.
  • the structure-directing agent include poly-N-vinylpyrrolidone (PVP) and a 1:1 copolymer of N-vinylpyrrolidone and vinyl acetate.
  • the structure-directing agent controls the wire-like growth of silver nanowires during synthesis of silver nanowires, and also has the effect of preventing aggregation of the generated silver nanowires.
  • the structure directing agent is preferably contained in the coarse dispersion of silver nanowires in an amount of 0.5% by mass or more, more preferably 0.7 to 7% by mass, and still more preferably 1.0 to 5% by mass. By making it 0.5% by mass or more, aggregation does not occur even when a high-concentration dispersion such as a silver concentration of 1.0% or more is handled. On the other hand, if the concentration of the structure-directing agent is too high, the subsequent purification step will be prolonged and the productivity will be lowered.
  • the polyol in the silver nanowire crude dispersion which is the reaction solution obtained by the synthesis, is too large, the amount of the sedimentation solvent used in the reprecipitation washing step described later will increase, so the polyol is distilled off as necessary. Then, the silver nanowires may be concentrated to some extent (concentration step). However, if the distillation is carried out at an excessively high temperature, there is a risk of aggregation, so it is preferable to carry out the distillation at a pressure of 100 mmHg or less and a temperature of 150° C. or less.
  • a poor solvent for example, ethyl acetate
  • a sedimentation solvent for example, ethyl acetate
  • sedimenting silver nanowires and removing a polyol and a sedimentation solvent
  • concentration step is not essential and may be omitted.
  • the step of reprecipitating and washing the silver nanowires in the coarse dispersion prepared in the coarse dispersion preparing step is repeated multiple times.
  • the reprecipitation washing step consists of a series of steps (a), (b) and (c) below. That is, a series of steps performed in the order of (a) ⁇ (b) ⁇ (c) are repeated multiple times.
  • the re-dispersed liquid obtained in the (c) re-dispersion step is used in place of the coarsely dispersed liquid.
  • the coarse dispersion obtained by synthesizing silver nanowires contains, in addition to the target metal nanowires, a synthesis solvent, a polymer used as a structure-directing agent, and silver nanoparticles produced as a by-product during synthesis. Therefore, it is necessary to remove these impurities. Since the silver nanowires, silver nanoparticles, and the like are dispersed in the coarse dispersion, first, a sedimentation solvent is added to the coarse dispersion to sediment the precipitate containing the silver nanowires (precipitation step). Sedimentation of the precipitate can be performed by standing. The standing time is preferably 5 to 20 minutes. If the standing time is too short from this range, the precipitate may not settle completely, and if it is too long, aggregation may occur. The precipitate contains some silver nanoparticles along with the silver nanowires.
  • the precipitating solvent is a poor solvent in which the structure-directing agent has low solubility, and is preferably at least one of ketone-based solvents and organic ester-based solvents.
  • organic ester solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, allyl acetate, n-butyl acetate, ethyl propionate, and propylene glycol monomethyl ether acetate.
  • these solvents acetone, methyl ethyl ketone, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, and propylene glycol monomethyl ether acetate are preferred from the viewpoint of sedimentation of metal nanowires and solubility in polyols.
  • the amount of the precipitation solvent to be used is preferably 50 to 2000 parts by mass, more preferably 70 to 600 parts by mass based on 100 parts by mass of the crude silver nanowire dispersion used.
  • a dispersant (among polymer dispersants, a nonionic dispersant that dissolves in a poor solvent) may be added to the sedimentation solvent (poor solvent).
  • examples include higher alcohol ethers, alkylphenyl ethers, fatty acid esters, polyhydric alcohol fatty acid ester derivatives, polyoxyethylene polyoxypropylene glycol, and glycerol fatty acid esters.
  • a supernatant is produced by producing a precipitate containing silver nanowires in the above (a) sedimentation step.
  • This supernatant contains silver nanoparticles by-produced during the synthesis of silver nanowires, a structure-directing agent dissolved in the dispersion medium (synthesis solvent) of the coarse dispersion, a sedimentation solvent, and the like.
  • a supernatant containing at least part of the silver nanoparticles is separated from the precipitate and removed (supernatant removing step).
  • a method for removing the supernatant is not particularly limited. For example, it can be removed by decantation treatment, or it can be removed by suction with a pump.
  • the sediment in the residue after separating and removing the supernatant contains some silver nanoparticles that have sedimented together with the silver nanowires.
  • water having a specific resistance of 3.3 M ⁇ cm or more is added to the precipitate, so that the silver nanowires and silver nanoparticles contained in the precipitate are separated with a good solvent.
  • a redispersed liquid is obtained by redispersing in a certain amount of water (redispersion step).
  • the good solvent means a dispersion medium capable of uniformly dispersing silver nanowires and silver nanoparticles, and a solvent capable of satisfactorily dissolving a structure-directing agent.
  • the silver nanoparticles mixed with the silver nanowires in the precipitate can be efficiently redispersed. can. From the results of Examples and Comparative Examples described later, the present inventors found that by controlling the resistivity value of water, the number of times of reprecipitation washing (repeating a series of steps (a), (b), and (c)) was higher than before. It has been found that n can be reduced.
  • the specific resistance value of this water is 3.3 M ⁇ cm or more, preferably 5.0 M ⁇ cm or more, and more preferably 18 M ⁇ cm water, so-called ultrapure water.
  • the silver nanowire ratio (number of silver nanowires/total number of particles) is 90 even if reprecipitation washing is repeated an industrially acceptable number of times, for example, 15 times. % not reached.
  • the purification method of the water is not particularly limited.
  • distillation of tap water (tap water), purification using an RO (reverse osmosis) membrane, ion exchange resin, or a combination thereof can be mentioned.
  • RO reverse osmosis
  • ion exchange resin ion exchange resin
  • the above water repeats reprecipitation washing (operation of a series of steps (a), (b), and (c)) n times (n represents an integer of 2 or more), and the same ratio is used in all steps (c) n times.
  • Waters of different resistivity values can be used, but combinations of waters of different resistivity values can also be used. It is preferable to use ultrapure water having a specific resistance of 18 M ⁇ cm or more at least once in the second and subsequent (c) redispersion steps. For example, in the initial stage when the structure-directing agent is mainly removed, ion-exchanged water with a specific resistance of 3.3 M ⁇ cm or more but a relatively small specific resistance is added to the silver nanoparticles in the (a) sedimentation step.
  • ultrapure water that has a relatively high specific resistance value of 18 M ⁇ cm or more after starting to be dispersed in the resulting supernatant.
  • specific resistance of water the greater the effect of dispersing the silver nanoparticles in the supernatant.
  • concentration of the structure-directing agent contained in the coarse dispersion is first reduced. begins to color, so when combining (a) when coloration is observed in the supernatant liquid generated in the sedimentation process, (c) after the re-dispersion process, use water with a high specific resistance value (high cost) is desirable.
  • the specific resistance in the (c) redispersion step after the m th time It is preferable to use water with a large value (high cost), for example, water with a specific resistance of 18 M ⁇ cm or more.
  • the coloration of the dispersion corresponds to the appearance of absorption based on silver nanoparticles around 405 nm by absorption spectrometry of the dispersion.
  • the supernatant liquid obtained in the (b) supernatant removing step can be used as a sample.
  • the amount of water used in the above (c) redispersion step is 25 to 400 parts by weight, preferably 30 to 300 parts by weight, relative to 1 part by weight of silver in the residual liquid containing the precipitated silver nanowires. It is preferably from 50 to 200 parts by mass. If it is less than 25 parts by mass, the concentration of the silver nanowires is too high, making it difficult to redisperse them uniformly. Labor is required.
  • the same precipitation solvent can be used in the n-time precipitation step (a), but a different precipitation solvent can be used for each number of times.
  • the amount of the precipitation solvent used in the nth precipitation step (a) is 50 parts by weight with respect to 100 parts by weight of the water used in the (n-1)th redispersion step (c) performed before that. to 500 parts by mass, more preferably 70 to 300 parts by mass.
  • the amount of the sedimentation solvent used in the first sedimentation step (a) is the same as the amount used in the n-th sedimentation step (a) when water is contained in the coarse dispersion prepared in the coarse dispersion preparation step. Equivalent amounts are preferred.
  • the precipitate containing the silver nanowires will settle by adding the precipitation solvent.
  • the amount of the precipitation solvent added is preferably 50 to 500 parts by mass, more preferably 70 to 300 parts by mass, per 100 parts by mass of the crude dispersion. If the coarse dispersion contains no water, it is preferred to use butyl acetate as the precipitating solvent.
  • the silver nanowire ratio is measured by the method described in Examples below.
  • the reprecipitation washing step may include steps other than steps (a), (b), and (c) within a range that does not impair the effects of the present invention.
  • Other steps include (c′) a redispersion step of adding water having a specific resistance of less than 3.3 M ⁇ cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid. be done.
  • a series of operations [(a) ⁇ (b) ⁇ (c′)] may be included within a range of preferably 10 times or less, but it is better not to include step (c′). This is preferable because it can reduce the number of times of a series of operations.
  • Silver concentration is determined using the Volhard method. About 1 g of the sample is weighed into a beaker, and 4 mL of nitric acid (1+1) and 20 mL of pure water are added. Cover the beaker with a watch glass and heat on a hot plate to 150° C. to dissolve the solids. After confirming the dissolution, the heating is stopped and the mixture is allowed to cool. The inner surface of the watch glass and the wall surface of the beaker are washed with pure water to make the liquid volume about 50 mL.
  • the silver concentration is calculated according to the following formula.
  • Silver concentration (% by mass) ⁇ (V x c) x 107.9/1000 ⁇ /m m: Weight of sample (g)
  • V Amount of ammonium thiocyanate aqueous solution consumed for titration up to the endpoint (mL)
  • c concentration of ammonium thiocyanate aqueous solution (0.01 mol/L)
  • Nitric acid (1+1), ammonium iron sulfate (III), and ammonium thiocyanate were all reagents manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • Ammonium iron (III) sulfate (3% nitric acid) was prepared by mixing 5.17 g of ammonium iron (III) sulfate, 170 g of pure water and 2.00 g of nitric acid.
  • the 0.01 mol/L ammonium thiocyanate aqueous solution was prepared by adding pure water to 38.06 mg of ammonium thiocyanate to make the total amount 50 mL.
  • the silver nanowires/aqueous dispersion obtained in step (c) during each series of operations in the reprecipitation washing step was diluted with methanol 300 times by mass to dilute the silver nanowires.
  • a dispersion is made.
  • One drop of the silver nanowire dilute dispersion is dropped on a clean glass plate and dried on a hot plate at 90°C.
  • the glass plate is observed with a laser microscope (Keyence VK-X200) at a magnification of 3000 (measurement field: 260 ⁇ m ⁇ 200 ⁇ m) to count the number of silver nanowires and silver nanoparticles.
  • a ratio of silver nanowires in the dispersion (number of silver nanowires/(number of silver nanowires + number of silver nanoparticles)) is calculated.
  • Tap water was purified with a distilled water manufacturing apparatus RFD280NC (manufactured by ADVANTEC). As the specific resistance value, the value displayed on the monitor of the device was recorded. Distilled water and ultrapure water obtained by further purifying the distilled water can be produced by this apparatus.
  • Coarse dispersion liquid preparation step Synthesis example 1 ⁇ Production of coarse dispersion of silver nanowires> 667 g of propylene glycol (manufactured by AGC Co., Ltd.) was weighed into a 1 L plastic container, 22.5 g (0.13 mol) of silver nitrate (manufactured by Toyo Kagaku Kogyo Co., Ltd.) was added as a metal salt, and the mixture was stirred for 2 hours at room temperature under light shielding. A silver nitrate solution (second solution) was prepared.
  • Silver nanowires were synthesized by connecting the previously prepared silver nitrate solution (second solution) to a metering pump and dropping it into the first solution at a temperature of 150° C. over 2.5 hours. After completion of the dropwise addition, heating and stirring was continued for 30 minutes to complete the reaction.
  • the silver concentration of the obtained silver nanowire coarse dispersion was measured using the titration method (Volhardt method), it was 0.4% by mass.
  • the shape of the contained silver nanowires was observed at arbitrarily 100 points using an SEM (JSM-7000F manufactured by JEOL Ltd.), and when measured, the average diameter was 24 nm and the average length was 13 ⁇ m.
  • the resulting coarse dispersion of silver nanowires was directly used as a coarse dispersion in the reprecipitation cleaning step in each of the following examples and comparative examples.
  • Example 3 As a good solvent (water) added in step (c), 24 g of ultrapure water with a specific resistance value of 18.2 M ⁇ cm was added for the first three times, and the remaining times until the silver nanowire ratio reached >90%. Silver nanowires were purified in the same manner as in Example 1, except that 24 g of ion-exchanged water A having an average specific resistance of 10 M ⁇ cm (3.3 to 15 M ⁇ cm) was used. As in Example 1, the number of series of operations (steps (a), (b), and (c)) until the silver nanowire ratio reached >90% was recorded as the number of reprecipitation washings. The results are shown in Table 1.
  • Example 4 As a good solvent (water) added in step (c), 24 g of ion-exchanged water A with an average specific resistance value of 10 M ⁇ cm (3.3 to 15 M ⁇ cm) is used for the first three times, and the silver nanowire ratio is >90%. Silver nanowires were purified in the same manner as in Example 1 except that 24 g of ultrapure water with a specific resistance of 18.2 M ⁇ cm was used for the remaining number of times until reaching the target. As in Example 1, the number of series of operations (steps (a), (b), and (c)) until the silver nanowire ratio reached >90% was recorded as the number of reprecipitation washings. The results are shown in Table 1.
  • Example 5 As a good solvent (water) to be added in step (c), 0.1 mg of sodium chloride (manufactured by Junsei Chemical Co., Ltd.) dissolved in 1500 g of ultrapure water with a specific resistance of 18.2 M ⁇ cm has a specific resistance of 5.0 M ⁇ cm. Silver nanowires were purified in the same manner as in Example 1 except that 24 g of water was used. As in Example 1, the number of series of operations (steps (a), (b), and (c)) until the silver nanowire ratio reached >90% was recorded as the number of reprecipitation washings. The results are shown in Table 1.
  • step (c′) a redispersion step of adding water having a specific resistance of less than 3.3 M ⁇ cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid.
  • water water
  • silver nanoparticles were prepared in the same manner as in Example 1 except that 24 g of ion-exchanged water B with an average specific resistance of 2.0 M ⁇ cm (1.5 to 2.5 M ⁇ cm) was used. Refined wire. The reprecipitation washing was repeated nine times, but the silver nanowire ratio did not reach >90%. The results are shown in Table 1.
  • step (c′) a redispersion step of adding water having a specific resistance of less than 3.3 M ⁇ cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid.
  • the silver nanowires were purified in the same manner as in Example 1, except that 24 g of tap water having a specific resistance of 0.005 M ⁇ cm was used as the good solvent (water) to be added. The reprecipitation washing was repeated nine times, but the silver nanowire ratio did not reach >90%. The results are shown in Table 1.
  • step (c′) a redispersion step of adding water having a specific resistance of less than 3.3 M ⁇ cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid.
  • the silver nanowires were purified in the same manner as in Example 1, except that 24 g of distilled water with a specific resistance of 0.1 M ⁇ cm was used as the good solvent (water) to be added. The reprecipitation washing was repeated nine times, but the silver nanowire ratio did not reach >90%. The results are shown in Table 1.
  • Comparative example 4 After the implementation of Comparative Example 1, the good solvent (water) added in step (c) was washed again by reprecipitation using deionized water A with an average specific resistance value of 10 M ⁇ cm (3.3 to 15 M ⁇ cm) for 10 times. repeated times. The results are shown in Table 1.
  • step (c′) a redispersion step of adding water having a specific resistance of less than 3.3 M ⁇ cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid.
  • water As a good solvent (water) to be added, 24 g of water with a specific resistance value of 0.8 M ⁇ cm in which 0.9 mg of sodium chloride (manufactured by Junsei Chemical Co., Ltd.) is dissolved in 1500 g of ultrapure water of 18.2 M ⁇ cm was used.
  • Silver nanowires were purified in the same manner as in Example 1 except for the above. The reprecipitation washing was repeated nine times, but the silver nanowire ratio did not reach >90%. The results are shown in Table 1.
  • Example 1 using water with a specific resistance value of 3.3 M ⁇ cm or more in the step (c), the silver nanowire ratio reached >90%, whereas the specific resistance value was less than 3.3 M ⁇ cm.
  • Comparative Examples 1 to 3 and 5 using water the silver nanowire ratio did not reach 90% with the same number of washings, and it was confirmed that by-product nanoparticles could not be removed. Regardless of the presence or absence of purification of water and the purification method, it can be said that the nanoparticle removal efficiency changes depending on the specific resistance value.
  • Example 2 which uses ultrapure water with particularly high purity, the silver nanowire ratio reaches >90% with fewer washings than in Example 1, which uses only normal ion-exchanged water.
  • Example 3 when comparing Example 3 and Example 4 in which ion-exchanged water and ultrapure water are combined, it is found that the structure-directing agent is the threshold value rather than using ultrapure water in the first half, in which a large amount of the structure-directing agent remains and the silver nanoparticles are difficult to remove. It was possible to efficiently remove the nanoparticles with a smaller number of washings in the second half when the nanoparticles were more easily dispersed in the supernatant liquid. In Example 2 and Example 4, the cleaning efficiency was substantially the same.
  • step (c′) was performed instead of step (c) (repeating a series of operations of step (a) ⁇ step (b) ⁇ step (c′)), and the silver nanowire ratio peaked out.
  • Reprecipitation washing a series of operations of step (a) ⁇ step (b) ⁇ step (c)
  • the silver nanowire ratio improved, it did not reach 90%. From this, it can be said that it is effective to use high-purity water with a large specific resistance value throughout the re-precipitation washing (in all re-dispersion steps).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

[Problem] To provide a silver nanowire manufacturing method by which silver nanoparticles can be efficiently removed from a coarse dispersion liquid containing silver nanowires and the silver nanoparticles. [Solution] A silver nanowire manufacturing method characterized by including a coarse dispersion liquid preparation step for preparing a coarse dispersion liquid containing silver nanowires and silver nanoparticles and a reprecipitation/cleaning step for refining the silver nanowires in the coarse dispersion liquid by means of a reprecipitation method, wherein in the reprecipitation/cleaning step, a series of operations, which comprise (a) a precipitation step for causing silver nanowire-containing precipitates to precipitate by adding a precipitation solvent to the coarse dispersion liquid or to a redispersion liquid described below, (b) a supernatant removal step for removing a supernatant containing at least some of the silver nanoparticles formed by the precipitation of the precipitates, and (c) a redispersion step for obtaining a redispersion liquid by redispersing the precipitates in water by adding water having a specific resistance value of 3.3 MΩ·cm or higher to the remaining precipitates, are repeated several times.

Description

銀ナノワイヤーの製造方法Method for producing silver nanowires
 本発明は、銀ナノワイヤーの製造方法に関する。 The present invention relates to a method for producing silver nanowires.
 タッチパネル等の透明電極に使用されるITO(酸化インジウムスズ)膜の代替となる高透明性・高導電性薄膜の原料として、銀ナノワイヤーが近年注目されている。斯かる銀ナノワイヤーは、一般に、ポリビニルピロリドンとエチレングリコール等のポリオールの存在下に銀化合物を加熱する、いわゆるポリオール還元法によって製造されている(特許文献1、非特許文献1)。  In recent years, silver nanowires have attracted attention as a raw material for highly transparent and highly conductive thin films that can replace the ITO (indium tin oxide) films used in transparent electrodes such as touch panels. Such silver nanowires are generally produced by a so-called polyol reduction method in which a silver compound is heated in the presence of polyvinylpyrrolidone and a polyol such as ethylene glycol (Patent Document 1, Non-Patent Document 1).
 ポリオール還元法で銀ナノワイヤーを製造した場合、合成液中には金属ナノワイヤー以外に、ポリオール溶媒、構造規定剤として用いるポリマー、副生する銀ナノ粒子などが混在するため、不要物を除去する必要がある。特に副生する銀ナノ粒子は透明導電膜の透明性を悪化させるため、できるだけ除去することが望ましい。 When silver nanowires are produced by the polyol reduction method, in addition to the metal nanowires, the synthetic solution contains a polyol solvent, a polymer used as a structure-directing agent, and by-product silver nanoparticles. There is a need. In particular, by-produced silver nanoparticles degrade the transparency of the transparent conductive film, so it is desirable to remove them as much as possible.
 銀ナノワイヤーの精製には合成により得られた銀ナノワイヤーの分散液をろ過(全量ろ過)や遠心沈降する方法が知られている。しかし、この方法では単離時に銀ナノワイヤーに応力がかかるために、大スケールでの製造になるほど銀ナノワイヤーが凝集しやすく再分散が困難になるという問題があった。 A known method for purifying silver nanowires is filtration (dead end filtration) or centrifugal sedimentation of the dispersion of silver nanowires obtained by synthesis. However, in this method, since stress is applied to the silver nanowires during isolation, there is a problem that the silver nanowires tend to agglomerate and re-dispersion becomes difficult as the production scale increases.
 大スケールでの精製にはいわゆる再沈殿法が適している。例えば特許文献2では貧溶媒にアセトン、良溶媒に水(イオン交換水)を用い、沈殿/上澄み除去/再懸濁の工程を数度繰り返すことで銀ナノワイヤーを主として含む分散液を得る方法が開示されている。 The so-called reprecipitation method is suitable for large-scale purification. For example, in Patent Document 2, acetone is used as a poor solvent and water (ion-exchanged water) is used as a good solvent, and the steps of precipitation/supernatant removal/resuspension are repeated several times to obtain a dispersion mainly containing silver nanowires. disclosed.
 しかし、再沈殿法ではナノ粒子等の副生物を十分除去するために沈殿/上澄み除去/再懸濁の工程を繰り返す必要があり、さらに銀ナノワイヤーを主として含む分散液中の構造規定剤が閾値以下にならないと銀ナノ粒子は上澄み中に分散されず、洗浄回数が嵩むという課題がある。 However, in the reprecipitation method, it is necessary to repeat the steps of precipitation/supernatant removal/resuspension in order to sufficiently remove by-products such as nanoparticles. If it is not below, the silver nanoparticles will not be dispersed in the supernatant, and there is a problem that the number of times of washing increases.
米国特許第7,585,349号明細書U.S. Pat. No. 7,585,349 特表2013-502515号公報Japanese translation of PCT publication No. 2013-502515
 したがって、本発明の課題は、再沈洗浄回数を減らし、銀ナノワイヤーと銀ナノ粒子とを含む粗分散液から効率的に銀ナノ粒子を除去することが可能な銀ナノワイヤーの製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for producing silver nanowires that can reduce the number of reprecipitation washings and efficiently remove silver nanoparticles from a coarse dispersion containing silver nanowires and silver nanoparticles. to do.
 上記目的を達成するために、本発明者らが検討した結果、再沈殿法で使用する良溶媒として水を使用し、さらにその水の比抵抗値を一定以上とすると、再沈洗浄回数を低減できる効果があることを見出した。すなわち、本発明は、以下の実施態様を含む。 In order to achieve the above object, as a result of investigation by the present inventors, the number of reprecipitation washings can be reduced by using water as a good solvent for the reprecipitation method and setting the specific resistance value of the water to a certain level or more. I found that it works. That is, the present invention includes the following embodiments.
 [1]銀ナノワイヤーと銀ナノ粒子を含む粗分散液を準備する粗分散液準備工程と、再沈殿法により前記粗分散液中の銀ナノワイヤーを精製する再沈洗浄工程と、を含み、前記再沈洗浄工程が以下の工程(a)(b)(c)からなる一連の操作を複数回反復することを特徴とする銀ナノワイヤーの製造方法:(a)前記粗分散液又は後記再分散液に沈降溶媒を加えることによって銀ナノワイヤーを含む沈殿物を沈降させる沈降工程;(b)前記沈殿物が沈殿することにより生じた、銀ナノ粒子の少なくとも一部を含む上澄み液を除去する上澄み除去工程;(c)残存する沈殿物に比抵抗値3.3MΩ・cm以上の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程。 [1] including a coarse dispersion preparation step of preparing a coarse dispersion containing silver nanowires and silver nanoparticles, and a reprecipitation washing step of purifying the silver nanowires in the coarse dispersion by a reprecipitation method, A method for producing silver nanowires, wherein the reprecipitation washing step repeats a series of operations consisting of the following steps (a), (b), and (c) multiple times: (a) the coarse dispersion or the reprecipitation described later; A sedimentation step of sedimenting a precipitate containing silver nanowires by adding a sedimentation solvent to the dispersion; (b) removing a supernatant liquid containing at least a portion of the silver nanoparticles produced by the sedimentation of the precipitate; (c) a redispersion step of adding water having a resistivity of 3.3 MΩ·cm or more to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid;
 [2]前記工程(a)(b)(c)からなる一連の操作を、再分散液中の銀ナノワイヤー数/全粒子数>90%になるまで反復する、[1]に記載の銀ナノワイヤーの製造方法。 [2] The silver according to [1], wherein the series of operations consisting of steps (a), (b), and (c) is repeated until the number of silver nanowires in the redispersion/total number of particles>90%. A method for producing nanowires.
 [3]前記再沈洗浄工程が、(c’)残存する沈殿物に比抵抗値3.3MΩ・cm未満の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程を含まない、[1]又は[2]に記載の銀ナノワイヤーの製造方法。 [3] The reprecipitation washing step includes (c′) adding water having a specific resistance of less than 3.3 MΩ·cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid. The method for producing silver nanowires according to [1] or [2], which does not include a dispersion step.
 [4]前記工程(a)(b)(c)からなる一連の操作をn回反復する内、2回目以降の(c)再分散工程において少なくとも1回比抵抗値18MΩ・cm以上の水を用いる、[1]~[3]のいずれか一に記載の銀ナノワイヤーの製造方法。 [4] Repeating the series of operations consisting of the steps (a), (b) and (c) n times, water having a specific resistance of 18 MΩ cm or more is added at least once in the second and subsequent (c) redispersion steps. The method for producing silver nanowires according to any one of [1] to [3].
 [5]2回目以降の一連の操作における工程(a)において生じた上澄み液に、405nm付近の銀ナノ粒子に基づく吸収が認められたとき以降の工程(c)で比抵抗値18MΩ・cm以上の水を用いる、[4]に記載の銀ナノワイヤーの製造方法。 [5] When absorption based on silver nanoparticles near 405 nm is observed in the supernatant liquid generated in step (a) in a series of operations from the second time onwards, in step (c) after that, the specific resistance value is 18 MΩ cm or more. The method for producing silver nanowires according to [4], wherein the water of
 [6]前記粗分散液準備工程が、ポリオール還元法で銀ナノワイヤーを合成する工程を含む、[1]~[5]のいずれか一に記載の銀ナノワイヤーの製造方法。 [6] The method for producing silver nanowires according to any one of [1] to [5], wherein the rough dispersion preparation step includes a step of synthesizing silver nanowires by a polyol reduction method.
 [7]前記沈降溶媒がケトン系溶媒、有機エステル系溶媒の少なくとも1種である、[1]~[6]のいずれか一に記載の銀ナノワイヤーの製造方法。 [7] The method for producing silver nanowires according to any one of [1] to [6], wherein the precipitation solvent is at least one of a ketone solvent and an organic ester solvent.
 [8]前記沈降溶媒が、アセトン、メチルエチルケトン、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸プロピレングリコールモノメチルエーテルからなる群から選択される少なくとも1種である、[7]に記載の銀ナノワイヤーの製造方法。 [8] The precipitation solvent is at least one selected from the group consisting of acetone, methyl ethyl ketone, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, and propylene glycol monomethyl ether acetate. ] The manufacturing method of the silver nanowire as described in .
 本発明によれば、銀ナノワイヤーおよび銀ナノ粒子を含む銀ナノワイヤー粗分散液を再沈殿法を用いて精製して銀ナノワイヤーを製造する際、従来より少ない再沈洗浄回数で銀ナノワイヤーを製造することができる。 According to the present invention, when producing silver nanowires by purifying a silver nanowire coarse dispersion containing silver nanowires and silver nanoparticles using a reprecipitation method, the silver nanowires are washed with a smaller number of reprecipitation washings than before. can be manufactured.
実施例4の再沈洗浄工程において、再沈洗浄回数3~8回目の一連操作における各上澄み除去工程(b)で除去した上澄み液の吸収スペクトル測定結果を示す図である。FIG. 10 is a diagram showing absorption spectrum measurement results of supernatant liquids removed in each supernatant removal step (b) in a series of operations of 3rd to 8th reprecipitation washings in the reprecipitation washing step of Example 4;
 以下、本発明を実施するための形態(以下、実施形態という)を説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.
 本実施形態にかかる銀ナノワイヤーの製造方法は、銀ナノワイヤーと銀ナノ粒子を含む粗分散液を準備する粗分散液準備工程と、再沈殿法により前記粗分散液中の銀ナノワイヤーを精製する再沈洗浄工程と、を含み、前記再沈洗浄工程が以下の工程(a)(b)(c)からなる一連の操作を有し、該一連の操作を複数回反復することを特徴とする。
(a)前記粗分散液又は後記再分散液に沈降溶媒を加えることによって銀ナノワイヤーを含む沈殿物を沈降させる沈降工程;
(b)前記沈殿物が沈殿することにより生じた銀ナノ粒子の少なくとも一部を含む上澄み液を除去する上澄み除去工程;
(c)残存する沈殿物に比抵抗値3.3MΩ・cm以上の水を添加することにより沈殿物を水に再分散させる再分散工程。
The method for producing silver nanowires according to the present embodiment includes a coarse dispersion preparation step of preparing a coarse dispersion containing silver nanowires and silver nanoparticles, and reprecipitation to refine the silver nanowires in the coarse dispersion. and a reprecipitation washing step, wherein the reprecipitation washing step has a series of operations consisting of the following steps (a), (b), and (c), and the series of operations is repeated multiple times. do.
(a) a sedimentation step of precipitating a precipitate containing silver nanowires by adding a precipitating solvent to the coarse dispersion or the redispersion described later;
(b) a supernatant removing step of removing a supernatant containing at least part of the silver nanoparticles produced by the precipitation of the precipitate;
(c) a redispersion step of redispersing the precipitate in water by adding water having a specific resistance of 3.3 MΩ·cm or more to the remaining precipitate;
(粗分散液準備工程)
 本実施形態にかかる銀ナノワイヤーの製造方法は、まず銀ナノワイヤーと銀ナノ粒子を含む粗分散液を準備する粗分散液準備工程を有する。この粗分散液準備工程は、目的とする銀ナノワイヤーの合成工程を含む。銀ナノワイヤーの合成工程としては、特に制限はなく、公知の方法を適用可能である。
(Crude dispersion preparation step)
The method for producing silver nanowires according to the present embodiment first has a coarse dispersion preparation step of preparing a coarse dispersion containing silver nanowires and silver nanoparticles. This coarse dispersion preparation step includes a step of synthesizing the desired silver nanowires. The process for synthesizing silver nanowires is not particularly limited, and known methods can be applied.
 例えば、ポリオール(Poly-ol)還元法を用いて、ポリ-N-ビニルピロリドン存在下で硝酸銀を還元することによって合成することができる(Chem.Mater.,2002,14,4736参照)。好ましくは、本出願人が先にWO2017/057326にて開示している製造方法、すなわち、イオン性誘導体を含む第一溶液(溶媒としてポリオールを含む)を80~200℃に保ち、上記第一溶液に、金属塩(硝酸銀)を含む第二溶液(溶媒としてポリオールを含む)を、上記第一溶液中のイオン性誘導体のハロゲン原子の総モル数と1分間に供給される金属塩の金属原子のモル数とのモル比(1分間に供給される金属塩の金属原子のモル数/イオン性誘導体のハロゲン原子の総モル数)が10より小さくなるように、好ましくは1以下、より好ましくは0.22以下となるように、かつ、上記第一溶液中のイオン性誘導体のハロゲン原子の総モル数と金属塩の金属原子のモル数とのモル比(金属塩の金属原子のモル数/イオン性誘導体のハロゲン原子の総モル数)が10より小さくなるように供給し、構造規定剤として、N-ビニルピロリドンに由来するモノマー単位を含む(共)重合体を上記第一溶液または上記第二溶液の少なくとも一方に入れておく方法を適用することができる。反応圧力は通常常圧(大気圧)である。 For example, it can be synthesized by reducing silver nitrate in the presence of poly-N-vinylpyrrolidone using a poly-ol reduction method (see Chem. Mater., 2002, 14, 4736). Preferably, the production method previously disclosed in WO2017/057326 by the present applicant, that is, a first solution containing an ionic derivative (containing a polyol as a solvent) is kept at 80 to 200 ° C., and the first solution is Then, a second solution (containing a polyol as a solvent) containing a metal salt (silver nitrate) is added to the total number of moles of halogen atoms of the ionic derivative in the first solution and the number of metal atoms of the metal salt supplied for 1 minute. preferably 1 or less, more preferably 0, so that the molar ratio (moles of metal atoms in the metal salt supplied per minute/total number of moles of halogen atoms in the ionic derivative) is less than 10 .22 or less, and the molar ratio between the total number of moles of halogen atoms in the ionic derivative in the first solution and the number of moles of metal atoms in the metal salt (the number of moles of metal atoms in the metal salt/ion (total number of moles of halogen atoms in the organic derivative) is less than 10, and a (co)polymer containing a monomer unit derived from N-vinylpyrrolidone is added as a structure-directing agent to the first solution or the second solution. A method of keeping in at least one of the solutions can be applied. The reaction pressure is usually normal pressure (atmospheric pressure).
 上記ポリオール還元法で使用される反応溶媒は、還元剤として使用されるポリオール類、例えばエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、グリセリン等が挙げられ、これらからなる群より選択される少なくとも一種であることが好ましい。高粘度にならないという観点で2価アルコールがより好ましく、その中でもエチレングリコール、プロピレングリコールが経済性の点でさらに好ましい。合成反応後の反応液には、目的とする銀ナノワイヤーとともに合成に使用したイオン性誘導体、構造規定剤、溶媒以外に、副生した銀ナノ粒子が含まれる。 The reaction solvent used in the above polyol reduction method includes polyols used as reducing agents, such as ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1 , 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, glycerin, etc., and at least one selected from the group consisting of these is preferred. Dihydric alcohols are more preferable from the viewpoint of avoiding high viscosity, and among these, ethylene glycol and propylene glycol are more preferable from the viewpoint of economy. The reaction solution after the synthesis reaction contains by-produced silver nanoparticles in addition to the ionic derivative, structure-directing agent, and solvent used in the synthesis together with the desired silver nanowires.
 合成で得られる銀ナノワイヤーは、径がナノメーターオーダーのサイズを有する金属銀であり、線状(中空のチューブ状である銀ナノチューブを含む)の形状を有する導電性材料である。また、銀ナノワイヤーの金属銀は導電性能の点では金属酸化物を含まないほうが好ましいが、空気酸化が避けられない場合には一部(表面の少なくとも一部)に銀酸化物を含んでもよい。上記銀ナノワイヤーの短軸方向の長さ(径)は好ましくは平均5nm以上90nm以下、より好ましくは平均10nm以上85nm以下、さらに好ましくは平均10nm以上70nm以下、特に好ましくは平均10nm以上50nm以下、かつ長軸方向の長さは好ましくは平均1μm以上100μm以下、より好ましくは平均5μm以上95μm以下、さらに好ましくは平均5μm以上70μm以下、特に好ましくは平均5μm以上50μm以下である。本明細書において「銀ナノワイヤー」とは、長軸方向の長さをa、短軸方向の長さ(径)をbとするとき、a/bで表されるアスペクト比が5以上であるものを意味し、10以上であることが好ましく、50以上であることがより好ましく、100以上であることがさらに好ましい。また、本明細書において「銀ナノ粒子」とは、上記「銀ナノワイヤー」を除いた粒子状のものを意味し、アスペクト比が5未満であり、銀ナノワイヤーの合成により副生する、上記「銀ナノワイヤー」を除いた粒子状のものを意味する。 Synthetic silver nanowires are metallic silver with diameters on the order of nanometers, and are conductive materials with linear shapes (including hollow tubular silver nanotubes). In addition, it is preferable that the metal silver of the silver nanowire does not contain a metal oxide in terms of conductive performance, but if air oxidation cannot be avoided, a part (at least a part of the surface) may contain a silver oxide. . The length (diameter) in the minor axis direction of the silver nanowires is preferably an average of 5 nm or more and 90 nm or less, more preferably an average of 10 nm or more and 85 nm or less, still more preferably an average of 10 nm or more and 70 nm or less, particularly preferably an average of 10 nm or more and 50 nm or less. The length in the major axis direction is preferably 1 μm or more and 100 μm or less on average, more preferably 5 μm or more and 95 μm or less on average, still more preferably 5 μm or more and 70 μm or less on average, and particularly preferably 5 μm or more and 50 μm or less on average. As used herein, the term “silver nanowire” means that the aspect ratio represented by a/b is 5 or more, where a is the length in the major axis direction and b is the length (diameter) in the minor axis direction. It is preferably 10 or more, more preferably 50 or more, and even more preferably 100 or more. In addition, the term "silver nanoparticles" as used herein means particles other than the above-mentioned "silver nanowires", has an aspect ratio of less than 5, and is a by-product of the synthesis of silver nanowires. It means a particulate one excluding "silver nanowires".
 上記イオン性誘導体は、金属のワイヤー(銀ナノワイヤー)の成長に寄与する成分であり、溶媒に溶解してハロゲンイオンを解離できる化合物であれば適用でき、4級アンモニウム塩のハロゲン化物、金属ハロゲン化物が好適である。ハロゲンイオンとしては塩素イオン、臭素イオン、ヨウ素イオンの少なくとも一つであることが好ましく、塩素イオンを解離できる化合物を含むことがより好ましい。 The ionic derivative is a component that contributes to the growth of metal wires (silver nanowires), and can be applied as long as it is a compound that dissolves in a solvent and can dissociate halogen ions. compounds are preferred. Halogen ions are preferably at least one of chloride ions, bromide ions, and iodine ions, and more preferably contain a compound capable of dissociating chloride ions.
 4級アンモニウム塩のハロゲン化物としては、分子内の総炭素原子数が4~20の4級アルキルアンモニウム塩(4級アンモニウム塩の窒素原子に4つのアルキル基が結合しており、各アルキル基は同一でも異なっていても良い)のハロゲン化物が好ましく、例えば、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラプロピルアンモニウム、塩化テトラブチルアンモニウム、塩化オクチルトリメチルアンモニウム、塩化ヘキサデシルトリメチルアンモニウム等の4級アンモニウム塩化物や、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラプロピルアンモニウム、臭化テトラブチルアンモニウム、臭化オクチルトリメチルアンモニウム、臭化ヘキサデシルトリメチルアンモニウム等の4級アンモニウム臭化物等が挙げられる。これらのいずれかを単独で使用しても2種類以上を組み合わせて使用してもよい。また、4級アンモニウムヒドロキシドと塩化水素、臭化水素、ヨウ化水素を反応させてアンモニウム塩にしたものを使用することができる。これらは室温で気体状態であるので、ポリオール溶媒中でそれらの水溶液を用いて中和しても良く、中和後に加熱することにより水や余分なハロゲン化水素を留去することもできる。 Halides of quaternary ammonium salts include quaternary alkylammonium salts having a total number of carbon atoms of 4 to 20 in the molecule (four alkyl groups are bonded to the nitrogen atom of the quaternary ammonium salt, and each alkyl group is which may be the same or different) are preferred, for example, quaternary ammonium chloride such as tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrabutylammonium chloride, octyltrimethylammonium chloride, hexadecyltrimethylammonium chloride Chlorides, and quaternary ammonium bromides such as tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, octyltrimethylammonium bromide, and hexadecyltrimethylammonium bromide. Any one of these may be used alone, or two or more of them may be used in combination. Ammonium salts obtained by reacting quaternary ammonium hydroxide with hydrogen chloride, hydrogen bromide, and hydrogen iodide can also be used. Since these are in a gaseous state at room temperature, they may be neutralized using an aqueous solution thereof in a polyol solvent, and water and excess hydrogen halide can be distilled off by heating after neutralization.
 これらの中でも、分子内の総炭素原子数が4~16の4級アルキルアンモニウム塩のハロゲン化物が溶解性や使用効率の点でより好ましく、窒素原子に付くアルキル鎖で最も長いもので炭素原子数が12以下のもの、さらに好ましくは8以下である4級アルキルアンモニウム塩のハロゲン化物が特に分子量がそれほど大きくならず、使用効率の点でさらに好ましい。得られるワイヤー形状の観点から、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、塩化テトラプロピルアンモニウム、臭化テトラプロピルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、塩化オクチルトリメチルアンモニウム、臭化オクチルトリメチルアンモニウムが特に好ましい。 Among these, halides of quaternary alkylammonium salts having 4 to 16 total carbon atoms in the molecule are more preferable in terms of solubility and efficiency of use, and the longest alkyl chain attached to the nitrogen atom has the highest number of carbon atoms. Halides of quaternary alkylammonium salts having a molecular weight of 12 or less, more preferably 8 or less, are more preferable in terms of efficiency in use because the molecular weight does not become particularly large. From the viewpoint of the wire shape obtained, tetramethylammonium chloride, tetramethylammonium bromide, tetraethylammonium chloride, tetraethylammonium bromide, tetrapropylammonium chloride, tetrapropylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium bromide, Octyltrimethylammonium chloride and octyltrimethylammonium bromide are particularly preferred.
 金属ハロゲン化物としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、長周期律表の第3族から第12族の金属ハロゲン化物が挙げられる。 Examples of metal halides include alkali metal halides, alkaline earth metal halides, and metal halides of groups 3 to 12 of the long periodic table.
 アルカリ金属ハロゲン化物としては、塩化リチウム、塩化ナトリウム、塩化カリウムなどのアルカリ金属塩化物、臭化リチウム、臭化ナトリウム、臭化カリウムなどのアルカリ金属臭化物、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどのアルカリ金属ヨウ化物などが挙げられる。アルカリ土類金属ハロゲン化物としては、塩化マグネシウム、臭化マグネシウム、塩化カルシウムが挙げられる。長周期律表の第3族から第12族の金属ハロゲン化物としては、塩化第二鉄、塩化第二銅、臭化第二鉄、臭化第二銅が挙げられる。これらのいずれかを単独で使用しても2種類以上を組み合わせて使用してもよい。 Alkali metal halides include alkali metal chlorides such as lithium chloride, sodium chloride and potassium chloride, alkali metal bromides such as lithium bromide, sodium bromide and potassium bromide, lithium iodide, sodium iodide and potassium iodide. and alkali metal iodides such as Alkaline earth metal halides include magnesium chloride, magnesium bromide and calcium chloride. Metal halides of groups 3 to 12 of the long periodic table include ferric chloride, cupric chloride, ferric bromide, and cupric bromide. Any one of these may be used alone, or two or more of them may be used in combination.
 これらの中でも塩素イオンを解離する化合物を含むことが特に銀ナノワイヤーの生成に好ましい。また、細い径の銀ナノワイヤーを得るためには塩素イオンを解離する化合物と、臭素イオンを解離する化合物及びヨウ素イオンを解離する化合物の少なくとも一方とを併用することが好ましい。塩素イオンを解離する化合物の塩素原子の総モル数を(A)、臭素イオンを解離する化合物の臭素原子及びヨウ素イオンを解離する化合物のヨウ素原子の総モル数を(B)とした場合、(A)/(B)のモル比が大きくなるとワイヤー径が太くなり、小さくなるとワイヤー径は細くなるものの小さくなり過ぎると球状粉の副生率が高くなる傾向がある。したがって、(A)/(B)のモル比は、2~8が好ましく、3~6がより好ましい。 Among these, it is particularly preferable to contain a compound that dissociates chloride ions for the production of silver nanowires. In order to obtain silver nanowires with a small diameter, it is preferable to use a compound that dissociates chlorine ions and at least one of a compound that dissociates bromide ions and a compound that dissociates iodine ions in combination. When the total number of moles of chlorine atoms in the compound that dissociates chlorine ions is (A), and the total number of moles of iodine atoms in the compound that dissociates bromine atoms and iodine ions is (B), ( When the molar ratio of A)/(B) increases, the wire diameter increases, and when it decreases, the wire diameter decreases. Therefore, the molar ratio of (A)/(B) is preferably 2-8, more preferably 3-6.
 合成に使用される構造規定剤は、合成時に金属粒子の成長方向を一次元に規定する機能を有する化合物であり、構造規定剤を用いることによって、粒子形成工程において形成される銀ナノワイヤーの比率を高めることができる。多くの場合、構造規定剤は、対象となる粒子の特定の結晶面に優先的あるいは選択的に吸着して、吸着面の成長を抑制することによって成長方位を制御する。この成長方位の制御は、ポリオール類中に構造規定剤を添加しておき、生成する銀ナノワイヤーの表面に吸着させることにより行うことができる。この構造規定剤としては、重量平均分子量が1000より大きいポリマーである構造規定剤が好ましく、2000以上の構造規定剤がより好ましく、10000以上の構造規定剤がさらに好ましい。一方、構造規定剤の重量平均分子量が大きすぎると、銀ナノワイヤーが凝集する可能性が高くなる。従って、上記構造規定剤の重量平均分子量は150万以下が好ましく、100万以下がより好ましく、50万以下がさらに好ましい。上記構造規定剤の種類としては、例えばポリ-N-ビニルピロリドン(PVP)、N-ビニルピロリドンと酢酸ビニルの1:1共重合体等が挙げられる。 The structure-directing agent used in the synthesis is a compound that has the function of one-dimensionally defining the growth direction of the metal particles during synthesis. By using the structure-directing agent, the ratio of silver nanowires formed in the particle formation process can increase In many cases, the structure-directing agent preferentially or selectively adsorbs to specific crystal planes of the target grain and controls the growth orientation by suppressing the growth of the adsorbed planes. This growth orientation can be controlled by adding a structure-directing agent to the polyols and adsorbing it on the surface of the silver nanowires to be produced. The structure-directing agent is preferably a polymer having a weight-average molecular weight of more than 1,000, more preferably 2,000 or more, and even more preferably 10,000 or more. On the other hand, if the weight-average molecular weight of the structure-directing agent is too large, the silver nanowires are more likely to aggregate. Therefore, the weight average molecular weight of the structure-directing agent is preferably 1,500,000 or less, more preferably 1,000,000 or less, and even more preferably 500,000 or less. Examples of the structure-directing agent include poly-N-vinylpyrrolidone (PVP) and a 1:1 copolymer of N-vinylpyrrolidone and vinyl acetate.
 構造規定剤は、上記の通り銀ナノワイヤー合成時の銀ナノワイヤーのワイヤー状の成長を制御するとともに、生成した銀ナノワイヤー同士の凝集を防止する作用も有する。 As described above, the structure-directing agent controls the wire-like growth of silver nanowires during synthesis of silver nanowires, and also has the effect of preventing aggregation of the generated silver nanowires.
 構造規定剤は、銀ナノワイヤー粗分散液中に0.5質量%以上含むことが好ましく、より好ましくは0.7~7質量%、さらに好ましくは1.0~5質量%である。0.5質量%以上とすることで、銀濃度1.0%以上のような高濃度分散液を取り扱っても凝集することがない。また構造規定剤の濃度が高すぎると、後の精製工程が長くなり生産性が低下する。 The structure directing agent is preferably contained in the coarse dispersion of silver nanowires in an amount of 0.5% by mass or more, more preferably 0.7 to 7% by mass, and still more preferably 1.0 to 5% by mass. By making it 0.5% by mass or more, aggregation does not occur even when a high-concentration dispersion such as a silver concentration of 1.0% or more is handled. On the other hand, if the concentration of the structure-directing agent is too high, the subsequent purification step will be prolonged and the productivity will be lowered.
 合成により得られた反応液である銀ナノワイヤー粗分散液中のポリオールがあまりに多いと、後述する再沈洗浄工程における沈降溶媒の使用量が多くなるので、必要に応じてポリオールを蒸留により留去して、銀ナノワイヤーをある程度濃縮してもよい(濃縮工程)。ただし、あまりに高温で留去すると凝集する恐れがあるので、100mmHg以下の圧力で、150℃以下の温度で留去することが好ましい。また、エステル系等の貧溶媒(例えば酢酸エチル)を沈降溶媒として加えて銀ナノワイヤーを沈降後、ポリオールと沈降溶媒を併せて除去することで濃縮してもよい。この場合、銀ナノワイヤー粗分散液の量を元の量の20質量%から80質量%の範囲まで減容を行うことが好ましい。なお、濃縮工程は必須ではなく、省略してもよい。 If the polyol in the silver nanowire crude dispersion, which is the reaction solution obtained by the synthesis, is too large, the amount of the sedimentation solvent used in the reprecipitation washing step described later will increase, so the polyol is distilled off as necessary. Then, the silver nanowires may be concentrated to some extent (concentration step). However, if the distillation is carried out at an excessively high temperature, there is a risk of aggregation, so it is preferable to carry out the distillation at a pressure of 100 mmHg or less and a temperature of 150° C. or less. Moreover, you may concentrate by adding a poor solvent (for example, ethyl acetate), such as an ester type, as a sedimentation solvent, sedimenting silver nanowires, and removing a polyol and a sedimentation solvent together. In this case, it is preferable to reduce the volume of the coarse dispersion of silver nanowires from 20% by mass to 80% by mass of the original amount. Note that the concentration step is not essential and may be omitted.
(再沈洗浄工程)
 本実施形態にかかる銀ナノワイヤーの製造方法では、上記粗分散液準備工程で準備した粗分散液中の銀ナノワイヤーを再沈殿法により再沈洗浄する工程を複数回反復する。再沈洗浄工程は、以下の(a)(b)(c)の一連の工程からなる。すなわち、(a)→(b)→(c)の順序で実施する一連の工程を複数回反復する。2回目以降に(a)沈降工程を行う場合には、粗分散液の代わりに(c)再分散工程で得られた再分散液を用いる。
(Reprecipitation washing process)
In the method for producing silver nanowires according to the present embodiment, the step of reprecipitating and washing the silver nanowires in the coarse dispersion prepared in the coarse dispersion preparing step is repeated multiple times. The reprecipitation washing step consists of a series of steps (a), (b) and (c) below. That is, a series of steps performed in the order of (a)→(b)→(c) are repeated multiple times. When the (a) sedimentation step is performed for the second time or later, the re-dispersed liquid obtained in the (c) re-dispersion step is used in place of the coarsely dispersed liquid.
[(a)沈降工程]
 前述した通り銀ナノワイヤーの合成により得られた粗分散液中には、目的物である金属ナノワイヤー以外に、合成溶媒、構造規定剤として用いるポリマー、合成時に副生する銀ナノ粒子などが混在するので、これらの不純物を除去する必要がある。粗分散液中は、銀ナノワイヤーおよび銀ナノ粒子等が分散した状態であるので、まず粗分散液に沈降溶媒を加えることによって銀ナノワイヤーを含む沈殿物を沈降させる(沈降工程)。沈殿物の沈降は静置により行うことができる。静置時間は5分~20分であることが好ましい。この範囲より静置時間が短すぎると沈殿物が沈降しきらないことがあり、長すぎると凝集が発生することがある。沈殿物には銀ナノワイヤーとともに一部の銀ナノ粒子が含まれる。
[(a) Sedimentation step]
As described above, the coarse dispersion obtained by synthesizing silver nanowires contains, in addition to the target metal nanowires, a synthesis solvent, a polymer used as a structure-directing agent, and silver nanoparticles produced as a by-product during synthesis. Therefore, it is necessary to remove these impurities. Since the silver nanowires, silver nanoparticles, and the like are dispersed in the coarse dispersion, first, a sedimentation solvent is added to the coarse dispersion to sediment the precipitate containing the silver nanowires (precipitation step). Sedimentation of the precipitate can be performed by standing. The standing time is preferably 5 to 20 minutes. If the standing time is too short from this range, the precipitate may not settle completely, and if it is too long, aggregation may occur. The precipitate contains some silver nanoparticles along with the silver nanowires.
 沈降溶媒は、構造規定剤の溶解性の低い貧溶媒であり、ケトン系溶媒、有機エステル系溶媒の少なくとも1種であることが好ましい。ケトン系溶媒とは、R-C(=O)-R’(R、R’はそれぞれ炭化水素基)で表される溶媒である。ケトン系溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ベンゾフェノン等が挙げられる。有機エステル系溶媒とは、R’’-C(=O)-O-R’’’(R’’、R’’’はそれぞれ置換基を有してもよい炭化水素基)で表される溶媒である。有機エステル系溶媒の具体例としては酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸アリル、酢酸-n-ブチル、プロピオン酸エチル、酢酸プロピレングリコールモノメチルエーテル等が挙げられる。これらの溶媒の中でも金属ナノワイヤーの沈降性とポリオール類に対する溶解性の観点からアセトン、メチルエチルケトン、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸プロピレングリコールモノメチルエーテルが好ましく、後述の(c)再分散工程で水を用いるため、水との相溶性の観点からアセトンが最も好ましい。沈降溶媒の使用量としては使用した銀ナノワイヤー粗分散液100質量部に対して50質量部から2000質量部であることが好ましく、より好ましくは70質量部から600質量部である。 The precipitating solvent is a poor solvent in which the structure-directing agent has low solubility, and is preferably at least one of ketone-based solvents and organic ester-based solvents. A ketone-based solvent is a solvent represented by RC(=O)-R' (R and R' each being a hydrocarbon group). Specific examples of ketone solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and benzophenone. The organic ester solvent is represented by R''-C(=O)-OR''' (R'' and R''' are hydrocarbon groups each optionally having a substituent). is a solvent. Specific examples of organic ester solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, allyl acetate, n-butyl acetate, ethyl propionate, and propylene glycol monomethyl ether acetate. Among these solvents, acetone, methyl ethyl ketone, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, and propylene glycol monomethyl ether acetate are preferred from the viewpoint of sedimentation of metal nanowires and solubility in polyols. Since water is used in the re-dispersion step (c) described below, acetone is most preferable from the viewpoint of compatibility with water. The amount of the precipitation solvent to be used is preferably 50 to 2000 parts by mass, more preferably 70 to 600 parts by mass based on 100 parts by mass of the crude silver nanowire dispersion used.
 沈降溶媒(貧溶媒)には分散剤(高分子分散剤のうち非イオン系かつ貧溶媒に溶解する分散剤)を添加しても良い。例えば高級アルコールエーテル、アルキルフェニルエーテル、脂肪酸エステル、多価アルコール脂肪酸エステル誘導体、ポリオキシエチレンポリオキシプロピレングリコール、グリセリン脂肪酸エステルが挙げられる。これにより、当初の銀ナノワイヤー粗分散液だけでなく貧溶媒にも分散剤が溶解することになるので、銀ナノワイヤーの凝集をより抑制することができる。 A dispersant (among polymer dispersants, a nonionic dispersant that dissolves in a poor solvent) may be added to the sedimentation solvent (poor solvent). Examples include higher alcohol ethers, alkylphenyl ethers, fatty acid esters, polyhydric alcohol fatty acid ester derivatives, polyoxyethylene polyoxypropylene glycol, and glycerol fatty acid esters. As a result, the dispersant is dissolved not only in the initial coarse dispersion of silver nanowires but also in the poor solvent, so aggregation of silver nanowires can be further suppressed.
[(b)上澄み除去工程]
 上記(a)沈降工程により銀ナノワイヤーを含む沈殿物が生じることにより、上澄みが生じる。この上澄み中には、銀ナノワイヤー合成時に副生した銀ナノ粒子、粗分散液の分散媒(合成溶媒)に溶解している構造規定剤及び沈降溶媒などが含まれる。銀ナノ粒子の少なくとも一部を含む上澄みを沈殿物と分離、除去する(上澄み除去工程)。上澄み除去方法は特に限定されない。例えばデカンテーション処理により除去することもできるし、ポンプにより吸引除去することもできる。
[(b) Supernatant removal step]
A supernatant is produced by producing a precipitate containing silver nanowires in the above (a) sedimentation step. This supernatant contains silver nanoparticles by-produced during the synthesis of silver nanowires, a structure-directing agent dissolved in the dispersion medium (synthesis solvent) of the coarse dispersion, a sedimentation solvent, and the like. A supernatant containing at least part of the silver nanoparticles is separated from the precipitate and removed (supernatant removing step). A method for removing the supernatant is not particularly limited. For example, it can be removed by decantation treatment, or it can be removed by suction with a pump.
[(c)再分散工程]
 上澄みを分離、除去した残存物中の沈殿物には、銀ナノワイヤーとともに沈降した一部の銀ナノ粒子が含まれる。銀ナノワイヤーとこの銀ナノ粒子を分離するために、沈殿物に比抵抗値3.3MΩ・cm以上の水を添加することにより、沈殿物に含まれる銀ナノワイヤーと銀ナノ粒子を良溶媒である水に再分散させて再分散液を得る(再分散工程)。この良溶媒として比抵抗値3.3MΩ・cm以上の水を用いることが本発明の特徴の一つである。本明細書において「良溶媒」とは銀ナノワイヤー、銀ナノ粒子を均一に分散することができる分散媒、かつ構造規定剤を良好に溶解することができる溶媒、を意味する。
[(c) Redispersion step]
The sediment in the residue after separating and removing the supernatant contains some silver nanoparticles that have sedimented together with the silver nanowires. In order to separate the silver nanowires and the silver nanoparticles, water having a specific resistance of 3.3 MΩ cm or more is added to the precipitate, so that the silver nanowires and silver nanoparticles contained in the precipitate are separated with a good solvent. A redispersed liquid is obtained by redispersing in a certain amount of water (redispersion step). One of the characteristics of the present invention is that water having a specific resistance of 3.3 MΩ·cm or more is used as the good solvent. As used herein, the term "good solvent" means a dispersion medium capable of uniformly dispersing silver nanowires and silver nanoparticles, and a solvent capable of satisfactorily dissolving a structure-directing agent.
 上記の通り(c)再分散工程の良溶媒として特定の比抵抗値を有する水を用いることにより、沈殿物中に銀ナノワイヤーと混在していた銀ナノ粒子を効率的に再分散させることができる。後述の実施例、比較例の結果より、本発明者は水の比抵抗値を制御することで、従来より再沈洗浄(一連の工程(a)(b)(c)の操作の反復)回数nを低減させることができることを見出した。この水の比抵抗値は3.3MΩ・cm以上であり、5.0MΩ・cm以上であることが好ましく、18MΩ・cmである水、いわゆる超純水を用いることがより好ましい。用いる水の比抵抗値が3.3MΩ・cm未満であると再沈洗浄を工業的に許容可能な回数、例えば15回繰り返しても銀ナノワイヤー比(銀ナノワイヤー数/全粒子数)が90%に達しない。 As described above, by using water having a specific specific resistance value as a good solvent in the redispersion step (c), the silver nanoparticles mixed with the silver nanowires in the precipitate can be efficiently redispersed. can. From the results of Examples and Comparative Examples described later, the present inventors found that by controlling the resistivity value of water, the number of times of reprecipitation washing (repeating a series of steps (a), (b), and (c)) was higher than before. It has been found that n can be reduced. The specific resistance value of this water is 3.3 MΩ·cm or more, preferably 5.0 MΩ·cm or more, and more preferably 18 MΩ·cm water, so-called ultrapure water. When the specific resistance value of the water used is less than 3.3 MΩ cm, the silver nanowire ratio (number of silver nanowires/total number of particles) is 90 even if reprecipitation washing is repeated an industrially acceptable number of times, for example, 15 times. % not reached.
 良溶媒として使用する上記水は、比抵抗値が3.3MΩ・cm以上であればその水の精製法は特に制限しない。例えば上水(水道水)の蒸留やRO(逆浸透)膜、イオン交換樹脂による精製やこれらの組み合わせが挙げられる。水の比抵抗値には水中のイオン成分の影響が最も大きいことから、イオン交換樹脂等、イオン除去効果が優れた精製法で使用する水を精製することが最も好ましい。なお、上記水は、比抵抗値が3.3MΩ・cm以上であれば微量イオン成分を含んでも問題ない。 As long as the water used as a good solvent has a specific resistance value of 3.3 MΩ·cm or more, the purification method of the water is not particularly limited. For example, distillation of tap water (tap water), purification using an RO (reverse osmosis) membrane, ion exchange resin, or a combination thereof can be mentioned. Since the ionic components in water have the greatest effect on the specific resistance of water, it is most preferable to purify the water to be used by a refining method such as an ion-exchange resin, which has an excellent effect of removing ions. It should be noted that there is no problem even if the above-mentioned water contains trace ion components as long as the specific resistance value is 3.3 MΩ·cm or more.
 上記水は再沈洗浄(一連の工程(a)(b)(c)の操作)をn(nは2以上の整数を表す)回繰り返す内、n回全ての工程(c)で同一の比抵抗値の水を使用することもできるが、異なる比抵抗値の水を組み合わせて使用することもできる。2回目以降の(c)再分散工程において少なくとも1回比抵抗値18MΩ・cm以上の超純水を用いることが好ましい。例えば、主として構造規定剤が除去される初期段階では、比抵抗値が3.3MΩ・cm以上ではあるが相対的に小さい比抵抗値のイオン交換水を、銀ナノ粒子が(a)沈降工程において生じた上澄み液に分散され始めてからは比抵抗値が18MΩ・cm以上と相対的に大きい超純水を用いることが好適である。本発明者による検討の結果、水の比抵抗値が大きいほど、特に銀ナノ粒子を上澄み液に分散させる効果が高くなることを見出した。再沈洗浄工程の初期において、まず粗分散液中に含まれる構造規定剤濃度が低減され、この構造規定剤濃度が閾値以下になると、銀ナノ粒子が上澄み中に分散されるようになり上澄み液が着色し始めるため、組み合わせる際は、(a)沈降工程において生じた上澄み液に着色が認められたとき以降の(c)再分散工程で比抵抗値が大きい(コストが高い)水を使うことが望ましい。すなわち、m(mは2以上n以下の整数)回目の一連の操作における(a)沈降工程において生じた上澄み液の着色が認められた場合、m回目以降の(c)再分散工程で比抵抗値が大きい(コストが高い)水、例えば比抵抗値18MΩ・cm以上の水を使うことが好ましい。分散液の着色は、分散液の吸収スペクトル測定により405nm付近に銀ナノ粒子に基づく吸収の出現に対応する。分散液の吸収スペクトル測定は、(b)上澄み除去工程で取得した上澄み液をサンプルとして用いることができる。異なる比抵抗値の水を組み合わせて使うことで、再沈洗浄効率を維持しながらコストダウン効果が期待できる。 The above water repeats reprecipitation washing (operation of a series of steps (a), (b), and (c)) n times (n represents an integer of 2 or more), and the same ratio is used in all steps (c) n times. Waters of different resistivity values can be used, but combinations of waters of different resistivity values can also be used. It is preferable to use ultrapure water having a specific resistance of 18 MΩ·cm or more at least once in the second and subsequent (c) redispersion steps. For example, in the initial stage when the structure-directing agent is mainly removed, ion-exchanged water with a specific resistance of 3.3 MΩ cm or more but a relatively small specific resistance is added to the silver nanoparticles in the (a) sedimentation step. It is preferable to use ultrapure water that has a relatively high specific resistance value of 18 MΩ·cm or more after starting to be dispersed in the resulting supernatant. As a result of studies by the present inventors, it was found that the greater the specific resistance of water, the greater the effect of dispersing the silver nanoparticles in the supernatant. At the beginning of the reprecipitation washing process, the concentration of the structure-directing agent contained in the coarse dispersion is first reduced. begins to color, so when combining (a) when coloration is observed in the supernatant liquid generated in the sedimentation process, (c) after the re-dispersion process, use water with a high specific resistance value (high cost) is desirable. That is, when coloring of the supernatant liquid generated in the (a) sedimentation step in the m (m is an integer of 2 or more and n or less) series of operations is observed, the specific resistance in the (c) redispersion step after the m th time It is preferable to use water with a large value (high cost), for example, water with a specific resistance of 18 MΩ·cm or more. The coloration of the dispersion corresponds to the appearance of absorption based on silver nanoparticles around 405 nm by absorption spectrometry of the dispersion. In the absorption spectrum measurement of the dispersion, the supernatant liquid obtained in the (b) supernatant removing step can be used as a sample. By using a combination of water with different specific resistance values, a cost reduction effect can be expected while maintaining the reprecipitation cleaning efficiency.
 上記(c)再分散工程における水の使用量としては、沈降した銀ナノワイヤーを含む残液中の銀1質量部に対して25~400質量部であり、30~300質量部であることが好ましく、50~200質量部であることがより好ましい。25質量部未満であると銀ナノワイヤーの濃度が高すぎるため均一に再分散させることが難しく、400質量部を超えると沈降に必要な溶媒量が非常に多くなるため、再沈洗浄に多大な労力が必要となる。 The amount of water used in the above (c) redispersion step is 25 to 400 parts by weight, preferably 30 to 300 parts by weight, relative to 1 part by weight of silver in the residual liquid containing the precipitated silver nanowires. It is preferably from 50 to 200 parts by mass. If it is less than 25 parts by mass, the concentration of the silver nanowires is too high, making it difficult to redisperse them uniformly. Labor is required.
 上記の通り再沈洗浄工程では工程(a)(b)(c)からなる一連の操作を複数回反復する。この一連の操作を反復することにより粗分散液中の構造規定剤濃度が閾値以下となると、沈降溶媒を加えた後も銀ナノ粒子は上澄み中に良好に分散するようになるため、銀ナノ粒子と銀ナノワイヤーを分離することができる。反復する工程(a)(b)(c)からなる一連の操作における再分散工程(c)において使用する水の比抵抗値を3.3MΩ・cm以上とすることで、一連の操作回数nを低減することができる。 As described above, in the reprecipitation washing process, a series of operations consisting of steps (a), (b), and (c) are repeated multiple times. By repeating this series of operations, when the concentration of the structure-directing agent in the coarse dispersion falls below the threshold, the silver nanoparticles are well dispersed in the supernatant even after the addition of the precipitating solvent. and silver nanowires can be separated. By setting the specific resistance value of water used in the redispersion step (c) in the series of operations consisting of repeated steps (a), (b), and (c) to 3.3 MΩ cm or more, the number of times n of the series of operations is can be reduced.
 上記n回の沈降工程(a)で用いられる沈降溶媒は、n回とも同一の沈降溶媒を用いることもできるが、回数毎に異なる沈降溶媒を用いることもできる。n回目の沈降工程(a)で用いる沈降溶媒の使用量としては、その前に行われた(n-1)回目の再分散工程(c)で使用した水100質量部に対して50質量部から500質量部であることが好ましく、より好ましくは70質量部から300質量部である。また、初回の沈降工程(a)で用いる沈降溶媒の使用量は、粗分散液準備工程により準備された粗分散液中に水を含む場合は上記n回目の沈降工程(a)の使用量と同等量であることが好ましい。 The same precipitation solvent can be used in the n-time precipitation step (a), but a different precipitation solvent can be used for each number of times. The amount of the precipitation solvent used in the nth precipitation step (a) is 50 parts by weight with respect to 100 parts by weight of the water used in the (n-1)th redispersion step (c) performed before that. to 500 parts by mass, more preferably 70 to 300 parts by mass. In addition, the amount of the sedimentation solvent used in the first sedimentation step (a) is the same as the amount used in the n-th sedimentation step (a) when water is contained in the coarse dispersion prepared in the coarse dispersion preparation step. Equivalent amounts are preferred.
 なお、粗分散液準備工程により準備された粗分散液中に水を含まなくても沈降溶媒を添加することにより銀ナノワイヤーを含む沈殿物は沈降する。その場合の沈降溶媒の添加量は、粗分散液100質量部に対して50質量部から500質量部であることが好ましく、より好ましくは70質量部から300質量部である。粗分散液中に水を含まない場合は、沈降溶媒として酢酸ブチルを使用することが好適である。 Even if the coarse dispersion prepared in the coarse dispersion preparation step does not contain water, the precipitate containing the silver nanowires will settle by adding the precipitation solvent. In that case, the amount of the precipitation solvent added is preferably 50 to 500 parts by mass, more preferably 70 to 300 parts by mass, per 100 parts by mass of the crude dispersion. If the coarse dispersion contains no water, it is preferred to use butyl acetate as the precipitating solvent.
 再沈洗浄工程は分散液中に含まれる銀ナノワイヤー比、すなわち、銀ナノワイヤー数/(全粒子数(=銀ナノワイヤー数+銀ナノ粒子数))>90%となるまで繰り返すことが好ましい。当該銀ナノワイヤー比は、後述の実施例に記載の方法により測定する。 The reprecipitation washing step is preferably repeated until the ratio of silver nanowires contained in the dispersion, that is, the number of silver nanowires/(the total number of particles (=the number of silver nanowires + the number of silver nanoparticles))>90%. . The silver nanowire ratio is measured by the method described in Examples below.
 再沈洗浄工程は、本発明の効果を損なわない範囲で工程(a)(b)(c)以外の他の工程を含んでもよい。他の工程としては、(c’)残存する沈殿物に比抵抗値3.3MΩ・cm未満の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程が挙げられる。工程(c’)は、銀ナノワイヤー数/(全粒子数(=銀ナノワイヤー数+銀ナノ粒子数))>90%に達するまでの再沈洗浄の一連の操作回数の総和[(工程(a)→工程(b)→工程(c))の回数と(工程(a)→工程(b)→工程(c’))の回数の総和]が工業的に許容可能な回数、例えば15回以下、好ましくは10回以下となる範囲内であれば、[(a)→(b)→(c’)]という一連の操作を含めてもよいが、工程(c’)を含まない方が一連の操作回数を減らせるので好ましい。 The reprecipitation washing step may include steps other than steps (a), (b), and (c) within a range that does not impair the effects of the present invention. Other steps include (c′) a redispersion step of adding water having a specific resistance of less than 3.3 MΩ·cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid. be done. In the step (c′), the total number of reprecipitation washing operations until the number of silver nanowires / (the total number of particles (= the number of silver nanowires + the number of silver nanoparticles)) > 90% [(step ( The number of times a) → step (b) → step (c)) and the number of times (step (a) → step (b) → step (c′))] is an industrially acceptable number of times, for example, 15 times Hereinafter, a series of operations [(a) → (b) → (c′)] may be included within a range of preferably 10 times or less, but it is better not to include step (c′). This is preferable because it can reduce the number of times of a series of operations.
 銀ナノワイヤーの再沈洗浄後は、さらに目的に応じた公知の銀ナノワイヤーの精製工程を行い、銀ナノワイヤーを含む導電性インクの調製等を行うことができる。 After reprecipitation and washing of the silver nanowires, it is possible to carry out a known purification process of the silver nanowires according to the purpose, and prepare a conductive ink containing the silver nanowires.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
 実施例における各分析条件は以下に示すとおりである。
<銀濃度>
 銀濃度はフォルハルト法を用いて決定する。試料をビーカーに約1g秤量し、硝酸(1+1)4mLおよび純水20mLを添加する。ビーカーを時計皿で覆い、ホットプレート上で150℃に加熱し固形分を溶解させる。溶解を確認後、加熱を止めて放冷し、時計皿内面とビーカー壁面を純水で洗い込み液量を約50mLとする。この溶液に硝酸(1+1)5mLと硫酸アンモニウム鉄(III)(3%硝酸酸性)3mLを加え、0.01mol/Lチオシアン酸アンモニウム水溶液で滴定する。このとき、溶液が無色から淡茶に着色した点を終点とする。
Each analysis condition in the examples is as shown below.
<Silver concentration>
Silver concentration is determined using the Volhard method. About 1 g of the sample is weighed into a beaker, and 4 mL of nitric acid (1+1) and 20 mL of pure water are added. Cover the beaker with a watch glass and heat on a hot plate to 150° C. to dissolve the solids. After confirming the dissolution, the heating is stopped and the mixture is allowed to cool. The inner surface of the watch glass and the wall surface of the beaker are washed with pure water to make the liquid volume about 50 mL. To this solution, 5 mL of nitric acid (1+1) and 3 mL of ammonium iron(III) sulfate (3% nitric acid acid) are added and titrated with a 0.01 mol/L ammonium thiocyanate aqueous solution. At this time, the end point is when the solution turns from colorless to light brown.
 滴定結果に基づいて、下記式に従い銀濃度を求める。
 銀濃度(質量%)={(V×c)×107.9/1000}/m
 m:試料の重量(g)
 V:終点までの滴定に消費したチオシアン酸アンモニウム水溶液の量(mL)
 c:チオシアン酸アンモニウム水溶液の濃度(0.01mol/L)
Based on the titration results, the silver concentration is calculated according to the following formula.
Silver concentration (% by mass) = {(V x c) x 107.9/1000}/m
m: Weight of sample (g)
V: Amount of ammonium thiocyanate aqueous solution consumed for titration up to the endpoint (mL)
c: concentration of ammonium thiocyanate aqueous solution (0.01 mol/L)
 硝酸(1+1)、硫酸アンモニウム鉄(III)、チオシアン酸アンモニウムは、いずれも富士フイルム和光純薬株式会社製の試薬を用いた。硫酸アンモニウム鉄(III)(3%硝酸酸性)は、硫酸アンモニウム鉄(III)5.17g、純水170gおよび硝酸2.00gを混合して調製したものを用いた。0.01mol/Lチオシアン酸アンモニウム水溶液は、チオシアン酸アンモニウム38.06mgに純水を加え、全量50mLに調製したものを用いた。 Nitric acid (1+1), ammonium iron sulfate (III), and ammonium thiocyanate were all reagents manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd. Ammonium iron (III) sulfate (3% nitric acid) was prepared by mixing 5.17 g of ammonium iron (III) sulfate, 170 g of pure water and 2.00 g of nitric acid. The 0.01 mol/L ammonium thiocyanate aqueous solution was prepared by adding pure water to 38.06 mg of ammonium thiocyanate to make the total amount 50 mL.
<銀ナノワイヤー比>
 後述の各実施例、比較例において、再沈洗浄工程における各回の一連操作中の工程(c)で得られた銀ナノワイヤー/水分散液をメタノールで300質量倍に希釈し、銀ナノワイヤー希薄分散液を作製する。清浄なガラス板上に先の銀ナノワイヤー希薄分散液を一滴ドロップし、90℃のホットプレートにて乾燥させる。ガラス板を、レーザー顕微鏡(キーエンスVK-X200)を用いて3000倍の倍率で観察(測定視野:260μm×200μm)し、銀ナノワイヤーの数と銀ナノ粒子の数を計測する。分散液中の銀ナノワイヤー比(銀ナノワイヤーの数/(銀ナノワイヤーの数+銀ナノ粒子の数))を算出する。
<Silver nanowire ratio>
In each of the examples and comparative examples described later, the silver nanowires/aqueous dispersion obtained in step (c) during each series of operations in the reprecipitation washing step was diluted with methanol 300 times by mass to dilute the silver nanowires. A dispersion is made. One drop of the silver nanowire dilute dispersion is dropped on a clean glass plate and dried on a hot plate at 90°C. The glass plate is observed with a laser microscope (Keyence VK-X200) at a magnification of 3000 (measurement field: 260 μm×200 μm) to count the number of silver nanowires and silver nanoparticles. A ratio of silver nanowires in the dispersion (number of silver nanowires/(number of silver nanowires + number of silver nanoparticles)) is calculated.
 実施例に示す各水の精製法は以下に示すとおりである。
<イオン交換水>
 水道水をカートリッジ式純水器デミエースDX-15(栗田工業株式会社製)で精製した。比抵抗値は水の採取時に付属の水質計ピュアメーター(栗田工業株式会社製)でモニタリングした。
The methods for purifying each water shown in the examples are as follows.
<Ion-exchanged water>
Tap water was purified with a cartridge type water purifier Demiace DX-15 (manufactured by Kurita Water Industries Ltd.). The specific resistance value was monitored with an attached water quality meter Pure Meter (manufactured by Kurita Water Industries Ltd.) when water was sampled.
<超純水および蒸留水>
 水道水を蒸留水製造装置RFD280NC(ADVANTEC社製)で精製した。比抵抗値は装置のモニターに表示された値を記録した。本装置により蒸留水と、その蒸留水をさらに精製した超純水を製造できる。
<Ultrapure water and distilled water>
Tap water was purified with a distilled water manufacturing apparatus RFD280NC (manufactured by ADVANTEC). As the specific resistance value, the value displayed on the monitor of the device was recorded. Distilled water and ultrapure water obtained by further purifying the distilled water can be produced by this apparatus.
粗分散液準備工程
合成例1
<銀ナノワイヤー粗分散液の製造>
 1Lポリ容器にプロピレングリコール667g(AGC株式会社製)を秤量し、金属塩として硝酸銀22.5g(0.13mol)(東洋化学工業株式会社製)を加えて室温遮光下で2時間撹拌することで硝酸銀溶液(第二溶液)を調製した。
Coarse dispersion liquid preparation step Synthesis example 1
<Production of coarse dispersion of silver nanowires>
667 g of propylene glycol (manufactured by AGC Co., Ltd.) was weighed into a 1 L plastic container, 22.5 g (0.13 mol) of silver nitrate (manufactured by Toyo Kagaku Kogyo Co., Ltd.) was added as a metal salt, and the mixture was stirred for 2 hours at room temperature under light shielding. A silver nitrate solution (second solution) was prepared.
 メカニカルスターラー、定量ポンプ、還流管、温度計、窒素ガス導入管を備えた5L四つ口セパラブルフラスコに、窒素ガス雰囲気下、プロピレングリコール3000g、イオン性誘導体としての塩化カリウム0.36g(4.8mmol)(富士フイルム和光純薬株式会社製)および臭化ナトリウム0.12g(1.2mmol)(マナック株式会社製)、構造規定剤としてポリビニルピロリドンK-90(PVP)72.1g(BASF社製、Sokalan(登録商標)K90)を仕込み、200rpmの回転数でオイルバスを熱媒として、150℃にて1時間撹拌することで完全に溶解させ、第一溶液を得た。先に調製した硝酸銀溶液(第二溶液)を定量ポンプに接続し、上記第一溶液へ温度150℃にて2.5時間かけて滴下することで銀ナノワイヤーを合成した。滴下終了後さらに30分加熱撹拌を継続し反応を完結させた。 In a 5 L four-necked separable flask equipped with a mechanical stirrer, a metering pump, a reflux tube, a thermometer, and a nitrogen gas introduction tube, 3000 g of propylene glycol and 0.36 g of potassium chloride as an ionic derivative (4. 8 mmol) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.12 g (1.2 mmol) of sodium bromide (manufactured by Manac Co., Ltd.), polyvinylpyrrolidone K-90 (PVP) 72.1 g (manufactured by BASF) as a structure directing agent , Sokalan (registered trademark) K90) was charged and stirred at 150° C. for 1 hour at a rotational speed of 200 rpm using an oil bath as a heat medium, thereby completely dissolving the mixture to obtain a first solution. Silver nanowires were synthesized by connecting the previously prepared silver nitrate solution (second solution) to a metering pump and dropping it into the first solution at a temperature of 150° C. over 2.5 hours. After completion of the dropwise addition, heating and stirring was continued for 30 minutes to complete the reaction.
 得られた銀ナノワイヤー粗分散液の銀濃度を滴定法(フォルハルト法)を用いて測定したところ0.4質量%であった。また、含まれる銀ナノワイヤーの形状をSEM(日本電子株式会社製 JSM-7000F)を用いて任意に100点観察し、計測したところ平均径:24nm、平均長:13μmであった。得られた銀ナノワイヤー粗分散液を、そのまま以下の各実施例、比較例において再沈洗浄工程における粗分散液として用いた。 When the silver concentration of the obtained silver nanowire coarse dispersion was measured using the titration method (Volhardt method), it was 0.4% by mass. In addition, the shape of the contained silver nanowires was observed at arbitrarily 100 points using an SEM (JSM-7000F manufactured by JEOL Ltd.), and when measured, the average diameter was 24 nm and the average length was 13 μm. The resulting coarse dispersion of silver nanowires was directly used as a coarse dispersion in the reprecipitation cleaning step in each of the following examples and comparative examples.
再沈洗浄工程
実施例1
<銀ナノワイヤー粗分散液の再沈洗浄>
 得られた粗分散液のうち101gを1Lのポリ容器に入れ、メカニカルスターラーを用いて150rpmにて撹拌しながら酢酸ブチル(富士フイルム和光純薬株式会社製)98gを10分かけて添加した(初回の工程(a))。10分攪拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを139g除去した(初回の工程(b))。
Reprecipitation washing process Example 1
<Reprecipitation cleaning of coarse dispersion of silver nanowires>
101 g of the obtained crude dispersion was placed in a 1 L plastic container, and 98 g of butyl acetate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added over 10 minutes while stirring at 150 rpm using a mechanical stirrer (first time step (a)). After continuing stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. After that, 139 g of the supernatant was removed by decantation (first step (b)).
 沈殿を含む残液に平均比抵抗値10MΩ・cm(上記精製(採取)時に3.3~15MΩ・cmの範囲で変動)のイオン交換水A24gを添加し、10分撹拌を継続して沈殿を再分散させた(初回の工程(c))後、アセトン52gを10分かけて添加した(2回目の工程(a))。10分撹拌を継続した後、撹拌を止め10分静置することで上澄み液と沈殿物とを分離させた。その後、デカンテーション操作により上澄みを全液量の70%(95g)除去した(2回目の工程(b))。平均比抵抗値10MΩ・cm(3.3~15MΩ・cm)のイオン交換水A24gを再度添加(2回目の工程(c))、以降2回目の工程(a)(b)(c)と同等の操作を繰り返し、銀ナノワイヤー比が>90%となるまでの一連操作(工程(a)(b)(c))の回数を再沈洗浄回数として記録した。その結果を表1に示した。 Add 24 g of ion-exchanged water A with an average specific resistance of 10 MΩ cm (varying in the range of 3.3 to 15 MΩ cm during the purification (collection)) to the residual liquid containing the precipitate, and continue stirring for 10 minutes to remove the precipitate. After redispersion (first step (c)), 52 g of acetone were added over 10 minutes (second step (a)). After continuing the stirring for 10 minutes, the stirring was stopped and the mixture was allowed to stand for 10 minutes to separate the supernatant and the precipitate. Thereafter, 70% (95 g) of the total liquid volume of the supernatant was removed by decantation (second step (b)). Add 24 g of ion-exchanged water A with an average specific resistance of 10 MΩ cm (3.3 to 15 MΩ cm) again (second step (c)), and then the second step (a) (b) (c) was repeated, and the number of series of operations (steps (a), (b), and (c)) until the silver nanowire ratio reached >90% was recorded as the number of reprecipitation washings. The results are shown in Table 1.
実施例2
 工程(c)で添加する良溶媒(水)に比抵抗値18.2MΩ・cmの超純水24gを用いた以外は実施例1の方法と同様に銀ナノワイヤーを精製した。実施例1同様、銀ナノワイヤー比が>90%となるまでの一連操作(工程(a)(b)(c))の回数を再沈洗浄回数として記録した。その結果を表1に示した。
Example 2
Silver nanowires were purified in the same manner as in Example 1, except that 24 g of ultrapure water with a specific resistance of 18.2 MΩ·cm was used as the good solvent (water) added in step (c). As in Example 1, the number of series of operations (steps (a), (b), and (c)) until the silver nanowire ratio reached >90% was recorded as the number of reprecipitation washings. The results are shown in Table 1.
実施例3
 工程(c)で添加する良溶媒(水)として最初の3回は比抵抗値18.2MΩ・cmの超純水24gを、銀ナノワイヤー比が>90%に到達するまでの残りの回数は平均比抵抗値10MΩ・cm(3.3~15MΩ・cm)のイオン交換水A24gを用いた以外は実施例1の方法と同様に銀ナノワイヤーを精製した。実施例1同様、銀ナノワイヤー比が>90%となるまでの一連操作(工程(a)(b)(c))の回数を再沈洗浄回数として記録した。その結果を表1に示した。
Example 3
As a good solvent (water) added in step (c), 24 g of ultrapure water with a specific resistance value of 18.2 MΩ cm was added for the first three times, and the remaining times until the silver nanowire ratio reached >90%. Silver nanowires were purified in the same manner as in Example 1, except that 24 g of ion-exchanged water A having an average specific resistance of 10 MΩ·cm (3.3 to 15 MΩ·cm) was used. As in Example 1, the number of series of operations (steps (a), (b), and (c)) until the silver nanowire ratio reached >90% was recorded as the number of reprecipitation washings. The results are shown in Table 1.
実施例4
 工程(c)で添加する良溶媒(水)として初めの3回は平均比抵抗値10MΩ・cm(3.3~15MΩ・cm)のイオン交換水A24gを、銀ナノワイヤー比が>90%に到達するまでの残りの回数は比抵抗値18.2MΩ・cmの超純水24gを用いた以外は実施例1の方法と同様に銀ナノワイヤーを精製した。実施例1同様、銀ナノワイヤー比が>90%となるまでの一連操作(工程(a)(b)(c))の回数を再沈洗浄回数として記録した。その結果を表1に示した。再沈洗浄工程における3~8回の工程(a)により生じた、すなわち、直後の工程(b)で除去したそれぞれの上澄み液をメタノールで5質量倍に希釈した溶液について吸収スペクトルを紫外可視分光光度計(株式会社島津製作所製、UV-2400PC)で測定(図1参照)したところ、3回目の工程(b)で除去した上澄み液では認められなかった405nm付近における銀ナノ粒子に基づく吸収が4回目の工程(b)で除去した上澄み液では出現したため、4回目以降の工程(c)で比抵抗値18.2MΩ・cmの超純水を用いた。
Example 4
As a good solvent (water) added in step (c), 24 g of ion-exchanged water A with an average specific resistance value of 10 MΩ cm (3.3 to 15 MΩ cm) is used for the first three times, and the silver nanowire ratio is >90%. Silver nanowires were purified in the same manner as in Example 1 except that 24 g of ultrapure water with a specific resistance of 18.2 MΩ·cm was used for the remaining number of times until reaching the target. As in Example 1, the number of series of operations (steps (a), (b), and (c)) until the silver nanowire ratio reached >90% was recorded as the number of reprecipitation washings. The results are shown in Table 1. The absorption spectrum of a solution obtained by diluting each supernatant liquid obtained by 3 to 8 times of step (a) in the reprecipitation washing step, that is, removed in the immediately following step (b), with methanol to 5 times by mass, was analyzed by UV-visible spectroscopy. When measured with a photometer (manufactured by Shimadzu Corporation, UV-2400PC) (see FIG. 1), absorption based on silver nanoparticles near 405 nm, which was not observed in the supernatant liquid removed in the third step (b), was observed. Since it appeared in the supernatant liquid removed in the fourth step (b), ultrapure water with a specific resistance of 18.2 MΩ·cm was used in the fourth and subsequent steps (c).
実施例5
 工程(c)で添加する良溶媒(水)として比抵抗値18.2MΩ・cmの超純水1500gに塩化ナトリウム(純正化学株式会社製)を0.1mg溶解した比抵抗値5.0MΩ・cmの水24gを用いた以外は実施例1の方法と同様に銀ナノワイヤーを精製した。実施例1同様、銀ナノワイヤー比が>90%となるまでの一連操作(工程(a)(b)(c))の回数を再沈洗浄回数として記録した。その結果を表1に示した。
Example 5
As a good solvent (water) to be added in step (c), 0.1 mg of sodium chloride (manufactured by Junsei Chemical Co., Ltd.) dissolved in 1500 g of ultrapure water with a specific resistance of 18.2 MΩ cm has a specific resistance of 5.0 MΩ cm. Silver nanowires were purified in the same manner as in Example 1 except that 24 g of water was used. As in Example 1, the number of series of operations (steps (a), (b), and (c)) until the silver nanowire ratio reached >90% was recorded as the number of reprecipitation washings. The results are shown in Table 1.
比較例1
 工程(c)の代わりに、(c’)残存する沈殿物に比抵抗値3.3MΩ・cm未満の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程として、添加する良溶媒(水)に平均比抵抗値2.0MΩ・cm(1.5~2.5MΩ・cm)のイオン交換水B24gを用いた以外は実施例1の方法と同様に銀ナノワイヤーを精製した。再沈洗浄を9回繰り返したが、銀ナノワイヤー比は>90%とならなかった。その結果を表1に示した。
Comparative example 1
In place of step (c), (c′) a redispersion step of adding water having a specific resistance of less than 3.3 MΩ·cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid. As a good solvent (water) to be added, silver nanoparticles were prepared in the same manner as in Example 1 except that 24 g of ion-exchanged water B with an average specific resistance of 2.0 MΩ cm (1.5 to 2.5 MΩ cm) was used. Refined wire. The reprecipitation washing was repeated nine times, but the silver nanowire ratio did not reach >90%. The results are shown in Table 1.
比較例2
 工程(c)の代わりに、(c’)残存する沈殿物に比抵抗値3.3MΩ・cm未満の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程として、添加する良溶媒(水)に比抵抗値0.005MΩ・cmの水道水24gを用いた以外は実施例1の方法と同様に銀ナノワイヤーを精製した。再沈洗浄を9回繰り返したが、銀ナノワイヤー比は>90%とならなかった。その結果を表1に示した。
Comparative example 2
In place of step (c), (c′) a redispersion step of adding water having a specific resistance of less than 3.3 MΩ·cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid. The silver nanowires were purified in the same manner as in Example 1, except that 24 g of tap water having a specific resistance of 0.005 MΩ·cm was used as the good solvent (water) to be added. The reprecipitation washing was repeated nine times, but the silver nanowire ratio did not reach >90%. The results are shown in Table 1.
比較例3
 工程(c)の代わりに、(c’)残存する沈殿物に比抵抗値3.3MΩ・cm未満の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程として、添加する良溶媒(水)に比抵抗値0.1MΩ・cmの蒸留水24gを用いた以外は実施例1の方法と同様に銀ナノワイヤーを精製した。再沈洗浄を9回繰り返したが、銀ナノワイヤー比は>90%とならなかった。その結果を表1に示した。
Comparative example 3
In place of step (c), (c′) a redispersion step of adding water having a specific resistance of less than 3.3 MΩ·cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid. The silver nanowires were purified in the same manner as in Example 1, except that 24 g of distilled water with a specific resistance of 0.1 MΩ·cm was used as the good solvent (water) to be added. The reprecipitation washing was repeated nine times, but the silver nanowire ratio did not reach >90%. The results are shown in Table 1.
比較例4
 比較例1実施の後、さらに工程(c)で添加する良溶媒(水)に平均比抵抗値10MΩ・cm(3.3~15MΩ・cm)のイオン交換水Aを用いて再沈洗浄を10回繰り返した。その結果を表1に示した。
Comparative example 4
After the implementation of Comparative Example 1, the good solvent (water) added in step (c) was washed again by reprecipitation using deionized water A with an average specific resistance value of 10 MΩ·cm (3.3 to 15 MΩ·cm) for 10 times. repeated times. The results are shown in Table 1.
比較例5
 工程(c)の代わりに、(c’)残存する沈殿物に比抵抗値3.3MΩ・cm未満の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程として、添加する良溶媒(水)として18.2MΩ・cmの超純水1500gに塩化ナトリウム(純正化学株式会社製)を0.9mg溶解した比抵抗値0.8MΩ・cmの水24gを用いた以外は実施例1の方法と同様に銀ナノワイヤーを精製した。再沈洗浄を9回繰り返したが、銀ナノワイヤー比は>90%とならなかった。その結果を表1に示した。
Comparative example 5
In place of step (c), (c′) a redispersion step of adding water having a specific resistance of less than 3.3 MΩ·cm to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid. As a good solvent (water) to be added, 24 g of water with a specific resistance value of 0.8 MΩ cm in which 0.9 mg of sodium chloride (manufactured by Junsei Chemical Co., Ltd.) is dissolved in 1500 g of ultrapure water of 18.2 MΩ cm was used. Silver nanowires were purified in the same manner as in Example 1 except for the above. The reprecipitation washing was repeated nine times, but the silver nanowire ratio did not reach >90%. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 工程(c)において比抵抗値3.3MΩ・cm以上の水を用いた実施例1~5では銀ナノワイヤー比が>90%に達しているのに対し、比抵抗値3.3MΩ・cm未満の水を用いた比較例1~3および5では同等の洗浄回数で銀ナノワイヤー比は90%に達せず、副生ナノ粒子を除去できないことが確認された。水の精製の有無や精製法に関わらず、比抵抗値によってナノ粒子除去効率が変化していると言える。特に純度の高い超純水を用いた実施例2では、通常のイオン交換水のみを用いた実施例1に比べ少ない洗浄回数で銀ナノワイヤー比が>90%に達しており、より効率的に副生ナノ粒子を除去されていることが確認された。また、イオン交換水と超純水を組み合わせた実施例3と実施例4を比較すると、構造規定剤が多く残り銀ナノ粒子が除去されにくい前半に超純水を用いるより、構造規定剤が閾値以下となりナノ粒子が上澄み液中に分散されやすくなる後半に用いる方が少ない洗浄回数で効率的にナノ粒子を除去することができた。実施例2と実施例4では、洗浄効率は略同等であった。ともに構造規定剤が閾値以下となりナノ粒子が上澄み液中に分散されやすくなる後半に超純水を使用しているため、洗浄効率は良好であり、後半のみに超純水を使用する実施例4の方がコスト的には有利である。また、工程(c)の代わりに工程(c’)を実施(工程(a)→工程(b)→工程(c’)の一連の操作を反復)して銀ナノワイヤー比が頭打ちとなった比較例1の再沈洗浄工程後、比抵抗値の大きい高純度の水で再沈洗浄(工程(a)→工程(b)→工程(c)の一連の操作)を繰り返した比較例4では銀ナノワイヤー比は向上したものの、90%まで到達しなかった。このことから、再沈洗浄時は終始(全ての再分散工程において)比抵抗値が大きい高純度の水を用いることが有効と言える。 In Examples 1 to 5 using water with a specific resistance value of 3.3 MΩ cm or more in the step (c), the silver nanowire ratio reached >90%, whereas the specific resistance value was less than 3.3 MΩ cm. In Comparative Examples 1 to 3 and 5 using water, the silver nanowire ratio did not reach 90% with the same number of washings, and it was confirmed that by-product nanoparticles could not be removed. Regardless of the presence or absence of purification of water and the purification method, it can be said that the nanoparticle removal efficiency changes depending on the specific resistance value. In Example 2, which uses ultrapure water with particularly high purity, the silver nanowire ratio reaches >90% with fewer washings than in Example 1, which uses only normal ion-exchanged water. It was confirmed that by-product nanoparticles were removed. In addition, when comparing Example 3 and Example 4 in which ion-exchanged water and ultrapure water are combined, it is found that the structure-directing agent is the threshold value rather than using ultrapure water in the first half, in which a large amount of the structure-directing agent remains and the silver nanoparticles are difficult to remove. It was possible to efficiently remove the nanoparticles with a smaller number of washings in the second half when the nanoparticles were more easily dispersed in the supernatant liquid. In Example 2 and Example 4, the cleaning efficiency was substantially the same. In both cases, ultrapure water is used in the second half when the structure-directing agent is below the threshold value and the nanoparticles are easily dispersed in the supernatant liquid, so the cleaning efficiency is good, and ultrapure water is used only in the second half. is more cost effective. In addition, step (c′) was performed instead of step (c) (repeating a series of operations of step (a) → step (b) → step (c′)), and the silver nanowire ratio peaked out. In Comparative Example 4, after the reprecipitation washing step in Comparative Example 1, reprecipitation washing (a series of operations of step (a) → step (b) → step (c)) was repeated with high-purity water having a large specific resistance value. Although the silver nanowire ratio improved, it did not reach 90%. From this, it can be said that it is effective to use high-purity water with a large specific resistance value throughout the re-precipitation washing (in all re-dispersion steps).

Claims (8)

  1.  銀ナノワイヤーと銀ナノ粒子を含む粗分散液を準備する粗分散液準備工程と、再沈殿法により前記粗分散液中の銀ナノワイヤーを精製する再沈洗浄工程と、を含み、前記再沈洗浄工程が以下の工程(a)(b)(c)からなる一連の操作を複数回反復することを特徴とする銀ナノワイヤーの製造方法:
    (a)前記粗分散液又は後記再分散液に沈降溶媒を加えることによって銀ナノワイヤーを含む沈殿物を沈降させる沈降工程;
    (b)前記沈殿物が沈殿することにより生じた、銀ナノ粒子の少なくとも一部を含む上澄み液を除去する上澄み除去工程;
    (c)残存する沈殿物に比抵抗値3.3MΩ・cm以上の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程。
    A coarse dispersion preparing step of preparing a coarse dispersion containing silver nanowires and silver nanoparticles, and a reprecipitation washing step of purifying the silver nanowires in the coarse dispersion by a reprecipitation method, wherein A method for producing silver nanowires, wherein the washing step repeats a series of operations consisting of the following steps (a), (b), and (c) multiple times:
    (a) a sedimentation step of precipitating a precipitate containing silver nanowires by adding a precipitating solvent to the coarse dispersion or the redispersion described later;
    (b) a supernatant removal step of removing a supernatant liquid containing at least a portion of the silver nanoparticles produced by the precipitation of the precipitate;
    (c) a redispersion step of adding water having a specific resistance of 3.3 MΩ·cm or more to the remaining precipitate to redisperse the precipitate in water to obtain a redispersion liquid;
  2.  前記工程(a)(b)(c)からなる一連の操作を、再分散液中の銀ナノワイヤー数/全粒子数>90%になるまで反復する、請求項1に記載の銀ナノワイヤーの製造方法。 The silver nanowires according to claim 1, wherein the series of operations consisting of steps (a), (b), and (c) is repeated until the number of silver nanowires in the redispersion/the total number of particles>90%. Production method.
  3.  前記再沈洗浄工程が、(c’)残存する沈殿物に比抵抗値3.3MΩ・cm未満の水を添加することにより沈殿物を水に再分散させて再分散液を得る再分散工程を含まない、請求項1又は2に記載の銀ナノワイヤーの製造方法。 The re-precipitation washing step includes (c′) a re-dispersion step of adding water having a specific resistance value of less than 3.3 MΩ·cm to the remaining precipitate to re-disperse the precipitate in water to obtain a re-dispersion liquid. The method for producing silver nanowires according to claim 1 or 2, which does not contain.
  4.  前記工程(a)(b)(c)からなる一連の操作をn回反復する内、2回目以降の(c)再分散工程において少なくとも1回比抵抗値18MΩ・cm以上の水を用いる、請求項1~3のいずれか一項に記載の銀ナノワイヤーの製造方法。 A series of operations consisting of the steps (a), (b) and (c) are repeated n times, and water having a specific resistance of 18 MΩ cm or more is used at least once in the redispersion step (c) after the second time. Item 4. A method for producing a silver nanowire according to any one of Items 1 to 3.
  5.  2回目以降の一連の操作における工程(a)において生じた上澄み液に、405nm付近の銀ナノ粒子に基づく吸収が認められたとき以降の工程(c)で比抵抗値18MΩ・cm以上の水を用いる、請求項4に記載の銀ナノワイヤーの製造方法。 When absorption based on silver nanoparticles near 405 nm is observed in the supernatant liquid generated in step (a) in a series of operations from the second time onwards, water with a specific resistance value of 18 MΩ cm or more is added in step (c). The method for producing silver nanowires according to claim 4, which is used.
  6.  前記粗分散液準備工程が、ポリオール還元法で銀ナノワイヤーを合成する工程を含む、請求項1~5のいずれか一項に記載の銀ナノワイヤーの製造方法。 The method for producing silver nanowires according to any one of claims 1 to 5, wherein the coarse dispersion preparation step includes a step of synthesizing silver nanowires by a polyol reduction method.
  7.  前記沈降溶媒がケトン系溶媒、有機エステル系溶媒の少なくとも1種である、請求項1~6のいずれか一項に記載の銀ナノワイヤーの製造方法。 The method for producing silver nanowires according to any one of claims 1 to 6, wherein the precipitation solvent is at least one of a ketone solvent and an organic ester solvent.
  8.  前記沈降溶媒が、アセトン、メチルエチルケトン、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸プロピレングリコールモノメチルエーテルからなる群から選択される少なくとも1種である、請求項7に記載の銀ナノワイヤーの製造方法。 Claim 7, wherein the precipitation solvent is at least one selected from the group consisting of acetone, methyl ethyl ketone, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, and propylene glycol monomethyl ether acetate. production method of silver nanowires.
PCT/JP2022/009791 2021-03-31 2022-03-07 Silver nanowire manufacturing method WO2022209613A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-060299 2021-03-31
JP2021060299 2021-03-31
JP2021-107402 2021-06-29
JP2021107402 2021-06-29

Publications (1)

Publication Number Publication Date
WO2022209613A1 true WO2022209613A1 (en) 2022-10-06

Family

ID=83458636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009791 WO2022209613A1 (en) 2021-03-31 2022-03-07 Silver nanowire manufacturing method

Country Status (2)

Country Link
TW (1) TW202245934A (en)
WO (1) WO2022209613A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211205A (en) * 2011-05-18 2011-10-12 山东大学 Method for preparing series of high-purity silver nanometer materials
KR20140103601A (en) * 2013-02-18 2014-08-27 주식회사 에이든 Preparing method of silver nanowire
JP5936759B1 (en) * 2015-09-30 2016-06-22 マイクロ波化学株式会社 Method for producing silver nanowires
JP2017020104A (en) * 2015-06-12 2017-01-26 ダウ グローバル テクノロジーズ エルエルシー Hydrothermal method for manufacturing filtered silver nanowires
CN111715877A (en) * 2020-05-22 2020-09-29 深圳市华科创智技术有限公司 Method for purifying nano silver wire
JP2020190025A (en) * 2019-05-24 2020-11-26 Dowaエレクトロニクス株式会社 Method for producing silver nanowire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211205A (en) * 2011-05-18 2011-10-12 山东大学 Method for preparing series of high-purity silver nanometer materials
KR20140103601A (en) * 2013-02-18 2014-08-27 주식회사 에이든 Preparing method of silver nanowire
JP2017020104A (en) * 2015-06-12 2017-01-26 ダウ グローバル テクノロジーズ エルエルシー Hydrothermal method for manufacturing filtered silver nanowires
JP5936759B1 (en) * 2015-09-30 2016-06-22 マイクロ波化学株式会社 Method for producing silver nanowires
JP2020190025A (en) * 2019-05-24 2020-11-26 Dowaエレクトロニクス株式会社 Method for producing silver nanowire
CN111715877A (en) * 2020-05-22 2020-09-29 深圳市华科创智技术有限公司 Method for purifying nano silver wire

Also Published As

Publication number Publication date
TW202245934A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6653973B2 (en) Manufacturing method of metal nanowire
TW201819643A (en) Method for producing silver nanowires
JP6807667B2 (en) Manufacturing method of metal nanowire dispersion liquid and manufacturing method of metal nanowire ink
JP6703802B2 (en) Silver nanowire, method for producing the same, and ink
JP6266859B2 (en) Method for producing silver nanowires
JP6636949B2 (en) Method for producing silver nanowire, silver nanowire obtained by the method, and ink containing the silver nanowire
CN107405691B (en) Method for producing copper particles, and copper paste
JP2005220435A (en) Method of producing metal nanoparticle and dispersion of metal nanoparticle
TWI395624B (en) Silver fine powder and silver ink with excellent affinity to polar media
JP2014162946A (en) Method of producing silver nanowire
JP2009221505A (en) Silver nanoparticle coated with gallic acid or its derivative
JP6587192B2 (en) Method for purifying metal nanowires
JP2009197320A (en) Method for production of fine particle dispersion liquid, and fine particle dispersion liquid
JP2006118036A (en) Metal fine particle, method for producing metal fine particle, composition containing same, and application thereof
CN113976906B (en) Silver nanowire and preparation method thereof
JP2019147983A (en) Silver nanowire synthesizing organic protection agent, and silver nanowire and method for manufacturing same
WO2022209613A1 (en) Silver nanowire manufacturing method
WO2021132095A1 (en) Production method for silver nanowire dispersion
JP2009127085A (en) Surface treatment method of fine metal particle, and dried body or dispersion liquid of the fine metal particle
WO2022070785A1 (en) Strontium titanate microparticles
JP2023168911A (en) Method of producing silver nanowire
JP2022538326A (en) Method for refining metal nanowires
JP2006052238A (en) Method for producing silver core-gold shell fine particle protected by non-water-soluble polymeric pigment-dispersing agent
JP2005306641A (en) Method of preparing organic solvent dispersion type oxalic acid-citric acid stabilized niobium oxide sol
JP7355215B2 (en) Metal double salt dispersion, method for producing metal double salt dispersion, and method for producing metal oxide nanoparticle dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779837

Country of ref document: EP

Kind code of ref document: A1