WO2022209561A1 - Frequency dividing circuit - Google Patents

Frequency dividing circuit Download PDF

Info

Publication number
WO2022209561A1
WO2022209561A1 PCT/JP2022/009164 JP2022009164W WO2022209561A1 WO 2022209561 A1 WO2022209561 A1 WO 2022209561A1 JP 2022009164 W JP2022009164 W JP 2022009164W WO 2022209561 A1 WO2022209561 A1 WO 2022209561A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
inverter
circuit
voltage
signal
Prior art date
Application number
PCT/JP2022/009164
Other languages
French (fr)
Japanese (ja)
Inventor
暁 新家
慧 吉澤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023510711A priority Critical patent/JPWO2022209561A1/ja
Publication of WO2022209561A1 publication Critical patent/WO2022209561A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • H03K21/02Input circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits

Definitions

  • the present disclosure relates to a frequency dividing circuit.
  • a frequency divider is a circuit that converts a high-frequency signal into a low-frequency signal, and is widely used in electronic devices that use high-frequency signals. For example, it is widely used for processing high-frequency received signals in wireless communication, and for processing clock signals in processors such as CPUs (Central Processing Units).
  • processors such as CPUs (Central Processing Units).
  • the clock signal of the frequency divider is a square wave (digital signal). Therefore, when a clock signal is oscillated by a sine wave oscillator, a buffer amplifier is required to convert the sine wave into a rectangular wave.
  • a buffer amplifier is required to convert the sine wave into a rectangular wave.
  • the present disclosure provides a frequency divider circuit that can handle analog signals.
  • the divider circuit includes an inverter and an input circuit.
  • the inverter has a transistor.
  • the input circuit converts a first signal, which is an analog differential signal, into a second signal, which is a differential analog signal for driving the transistors.
  • the transistor may be a MOSFET, and the input circuit superimposes a bias voltage on the AC component of the first signal to obtain a voltage lower than the threshold voltage of the transistor and a threshold voltage of the transistor. may be converted to the second signal oscillating between a voltage higher than .
  • the inverter may include an nMOS and a pMOS
  • the input circuit may include a signal obtained by superimposing a threshold voltage of the nMOS and an AC component of the differential signal, and a threshold voltage of the pMOS.
  • a signal obtained by superimposing a voltage and an AC component of the differential signal may be generated.
  • the input circuit includes a capacitor for extracting an AC component of a first differential signal, which is one of the signals forming the differential signal, and an AC component of a second differential signal, which is the other signal forming the differential signal. and a capacitor for extracting the component.
  • a latch circuit may be further provided.
  • the inverter is a first transistor, which is a p-type MOSFET and whose source is connected to a positive power supply voltage; a second transistor, which is a p-type MOSFET and whose source is connected to the drain of the first transistor; a third transistor, which is an n-type MOSFET and whose drain is connected to the drain of the second transistor; and an n-type MOSFET, whose drain is connected to the source of the third transistor and whose source is connected to the negative power supply voltage.
  • the latch circuit is a fifth transistor, a p-type MOSFET whose source is connected to the positive power supply voltage, and a p-type MOSFET whose source is connected to the positive power supply voltage and whose drain is the fifth transistor.
  • a sixth transistor connected to the gate of the transistor, the gate of which is connected to the drain of the fifth transistor; and an n-type MOSFET, the drain of which is connected to the drain of the fifth transistor, and the source of which is the negative power supply voltage.
  • the frequency dividing circuit includes a first inverter, a second inverter, a third inverter and a fourth inverter, a first latch circuit and a second latch circuit, a first output terminal, a second output terminal, a third output terminal and a third inverter. 4 output terminals, and The first output terminal is connected to the gate of the first transistor of the first inverter, the drain of the second transistor of the fourth inverter, and the drain of the sixth transistor of the second latch circuit.
  • the second output terminal is connected to the gate of the first transistor of the second inverter, the drain of the second transistor of the third inverter, and the drain of the fifth transistor of the second latch circuit. , outputting a second output signal forming a differential signal with the first output signal;
  • the third output terminal is connected to the gate of the first transistor of the fourth inverter, the drain of the second transistor of the second inverter, and the drain of the sixth transistor of the first latch circuit. , outputting a third output signal having a predetermined phase shift from the first output signal,
  • the fourth output terminal is connected to the gate of the first transistor of the third inverter, the drain of the second transistor of the first inverter, and the drain of the fifth transistor of the first latch circuit. , may output a fourth output signal forming a differential signal with the third output signal.
  • the input circuit includes a first input terminal to which one of the first signals is input, a second input terminal to which the other of the first signals is input, the first input terminal, and the first inverter. and the gate of the second transistor of the third inverter; the second input terminal; and the second transistor of the second inverter. a second capacitor connected between a gate and a terminal connected to the gate of the second transistor of the fourth inverter; the first input terminal; and the gate of the third transistor of the first inverter. and a terminal connected to the gate of the third transistor of the third inverter; a third capacitor connected between the second input terminal; the gate of the third transistor of the second inverter; and a fourth capacitor connected between a terminal connected to the gate of the third transistor of the fourth inverter.
  • the input circuit includes: a first bias circuit that applies a first bias voltage to the output of the first capacitor; a second bias circuit that applies a second bias voltage to the output of the second capacitor; A third bias circuit that applies a third bias voltage to the output of the third capacitor, and a fourth bias circuit that applies a fourth bias voltage to the output of the fourth capacitor may be provided.
  • the first bias voltage and the second bias voltage may be threshold voltages of the second transistor, and the third bias voltage and the fourth bias voltage may be threshold voltages of the third transistor. may be
  • the input circuit may comprise a first steady voltage source connected to the positive power supply voltage and a second steady voltage source connected to the negative power supply voltage
  • the first bias circuit may comprise the first steady voltage source and a first resistor connected to the first steady voltage source
  • the second bias circuit may comprise the first steady voltage source and a second resistor connected to the first steady voltage source
  • the third bias circuit may comprise the second steady voltage source and a third resistor connected to the second steady voltage source
  • the fourth bias circuit may include the second constant voltage source and a fourth resistor connected to the second constant voltage source.
  • the voltages of the first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit may be variably controlled.
  • the first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit output currents depending on the fluctuation of at least one of the positive power supply voltage and the negative power supply voltage.
  • the current source may include a transistor whose gate is connected to the positive power supply voltage or the negative power supply voltage.
  • the current source may include a resistor connected to the positive power supply voltage or the negative power supply voltage.
  • a power gate transistor may be provided between the source of the fourth transistor, the source of the seventh transistor, the source of the eighth transistor, and the negative power supply voltage.
  • the predetermined phase may be ⁇ /2.
  • a signal may be generated by dividing the first signal by n (where n is an integer equal to or greater than 2).
  • FIG. 2 is a diagram showing a frequency dividing circuit according to one embodiment
  • FIG. 4 is a diagram showing a frequency divider according to one embodiment
  • 1 is a circuit diagram of an inverter according to one embodiment
  • FIG. FIG. 2 is a circuit diagram showing a frequency divider according to one embodiment using MOSFETs
  • 1 is a circuit diagram of an input circuit according to one embodiment
  • FIG. 4 is a timing chart of input/output signals of an input circuit according to one embodiment
  • 4 is a timing chart of input/output signals of the frequency divider according to one embodiment
  • 1 is a circuit diagram of an input circuit according to one embodiment
  • FIG. 1 is a circuit diagram of a frequency dividing circuit according to one embodiment
  • FIG. 1 is a circuit diagram of a frequency dividing circuit according to one embodiment
  • FIG. 1 is a circuit diagram of a frequency dividing circuit according to one embodiment;
  • FIG. 1 is a circuit diagram of an input circuit according to one embodiment;
  • FIG. 1 is a circuit diagram of an input circuit according to one embodiment;
  • FIG. 1 is a circuit diagram of an input circuit according to one embodiment;
  • FIG. 1 is a circuit diagram of an input circuit according to one embodiment;
  • FIG. 1 is a circuit diagram of a current source according to one embodiment;
  • FIG. 1 is a circuit diagram of a current source according to one embodiment;
  • FIG. 1 is a circuit diagram of a current source according to one embodiment;
  • FIG. 1 is a circuit diagram of a current source according to one embodiment;
  • FIG. 1 is a circuit diagram of a current source according to one embodiment;
  • FIG. 1 is a circuit diagram of a current source according to one embodiment;
  • FIG. 1 is a circuit diagram of a current source according to one embodiment;
  • FIG. 1 is a circuit diagram of a current source according to one
  • FIG. 1 is a diagram schematically showing an example of a frequency dividing circuit according to an embodiment of the present disclosure.
  • a frequency dividing circuit 1 includes an input circuit 10 and a frequency dividing section 20 .
  • the input circuit 10 receives an analog differential signal IN (first signal) and converts the differential signal IN into an analog signal Vdr (second signal) for driving the transistors provided in the frequency divider 20.
  • This is a circuit that outputs
  • differential signals may be denoted by adding + or - as appropriate.
  • the analog differential signals described above may be represented as signals IN+, IN-.
  • the frequency divider 20 outputs a digital signal obtained by frequency-dividing the differential signal IN.
  • This frequency dividing section 20 may be a general frequency dividing circuit.
  • the frequency dividing circuit 1 outputs a digital differential clock signal Q and a differential clock signal I having a predetermined phase shift from the clock signal Q from the frequency dividing unit 20 .
  • the differential clock signals Q+/Q- and the differential clock signals I+/I- shifted by ⁇ /2 from these signals are Output.
  • Fig. 2 is a schematic diagram showing an example of a general frequency divider circuit. Using FIG. 2, first, the frequency divider 20, which is a basic configuration, will be described.
  • frequency-divided signals Q and I are output by inputting a digital differential clock signal Vdr to an inverter.
  • this frequency dividing circuit requires a large amplitude when inputting a differential signal represented by an analog sine wave.
  • the input circuit 10 generates an analog signal Vdr capable of appropriately driving the frequency divider 20 as a drive signal, and divides the sine wave differential signal IN.
  • a combination of two inverters between signals Q+ and Q- and a combination of two inverters between signals I+ and I- each form a latch circuit.
  • this latch circuit it is possible to generate and output a differential signal in each combination even while the output from the inverter is stopped.
  • FIG. 3 is a circuit diagram showing the inverter circuit in FIG. 2 using MOSFETs.
  • FIG. 3 is, for example, a circuit showing an inverter that receives the signal I+ and outputs the signal Q+ in FIG.
  • the inverter includes a first transistor M1, a second transistor M2, a third transistor M3, and a fourth transistor M4.
  • the first transistor M1 is, for example, a pMOS, has a source connected to the positive power supply voltage Vdd, and a gate to which I+ is applied.
  • the second transistor M2 is, for example, a pMOS, has a source connected to the drain of the first transistor M1, and a gate to which Vdr- is applied.
  • the third transistor M3 is, for example, nMOS, its drain is connected to the drain of the second transistor M2, and Vdr+ is applied to its gate.
  • the fourth transistor M4 is, for example, an nMOS, has a drain connected to the source of the third transistor M3, a source connected to the negative power supply voltage Vss, and a gate connected to the gate of the first transistor M1.
  • the input signal is applied to the gate of the first transistor M1 and the gate of the fourth transistor M4.
  • the output signal is output from the drain of the second transistor M2 and the drain of the third transistor M3.
  • the signal Q+ outputs a value that is the negation of the signal I+ at the timing when the second transistor M2 and the third transistor M3 are driven.
  • the driving signals Vdr+/Vdr- are analog signals each having a value that crosses the threshold values of the second transistor M2 and the third transistor M3.
  • the input circuit 10 controls the analog differential signal IN such that the drive signal appropriately oscillates based on the threshold of each transistor.
  • the power supply voltage is described as positive and negative, but this can be understood as general power supply voltages Vdd and Vss.
  • the negative power supply voltage Vss may be connected to a ground point.
  • each transistor is not limited to the above.
  • the positive power supply voltage Vdd is connected to the second transistor M2, the first transistor M1, the fourth transistor M4, and the third transistor M3, and the source of the third transistor M3 is connected to the negative power supply voltage Vss. There may be.
  • FIG. 4 is a diagram in which the configuration of the frequency divider 20 is rewritten using MOSFETs using the configuration of the inverter in FIG.
  • the latch circuit is similarly rewritten with MOSFET.
  • the frequency divider 20 includes a first inverter 200, a second inverter 202, a third inverter 204, a fourth inverter 206, a first latch circuit 210, a first 2 latch circuit 212;
  • the frequency divider 20 When the analog signals Vn and Vp are input, the frequency divider 20 generates and outputs frequency-divided signals I and Q based on the frequencies of the analog signals.
  • the analog signals Vn and Vp are signals generated by the input circuit 10 based on the analog differential signal IN. The generation of this signal will be described later in detail.
  • the first inverter 200 includes a first transistor M11, a second transistor M12, a third transistor M13, and a fourth transistor M14, which are connected in the same manner as in FIG.
  • the second inverter 202 comprises a first transistor M21, a second transistor M22, a third transistor M23 and a fourth transistor M24.
  • the third inverter 204 includes a first transistor M31, a second transistor M32, a third transistor M33, and a fourth transistor M34.
  • the fourth inverter 206 includes a first transistor M41, a second transistor M42, a third transistor M43, and a fourth transistor M44.
  • the latch circuit includes pMOS fifth and sixth transistors, and nMOS seventh and eighth transistors.
  • the fifth transistor has a source connected to the positive power supply voltage Vdd.
  • the sixth transistor has a source connected to the positive power supply voltage Vdd, a drain connected to the gate of the fifth transistor, and a gate connected to the drain of the fifth transistor.
  • the seventh transistor has a source connected to the negative power supply voltage Vss and a drain connected to the drain of the fifth transistor.
  • the eighth transistor has a source connected to the negative power supply voltage Vss, a drain connected to the drain of the sixth transistor and the gate of the seventh transistor, and a gate connected to the drain of the seventh transistor.
  • the connection of each transistor in Fig. 4 will be explained based on the connection in Fig. 2.
  • the first inverter 200, the second inverter 202, the third inverter 204, and the fourth inverter 206 correspond to the inverters positioned at the lower left, upper left, lower right, and upper right of FIG. 2, respectively.
  • the first latch circuit and the second latch circuit correspond to the latch circuits located on the left and right sides of FIG. 2, respectively.
  • Vp-, Vp+, Vn-, and Vn+ are signals obtained by superimposing a bias voltage on the AC component of the analog differential signal to be divided, and are signals output from the input circuit 10 .
  • Q+, Q-, I+, and I- are frequency-divided clock signals that are outputs of the frequency divider circuit 1, as described above.
  • the terminal that outputs Q+ is the first output terminal
  • the terminal that outputs Q- is the second output terminal
  • the terminal that outputs I+ is the third output terminal
  • the terminal that outputs I- is the fourth output terminal. call.
  • Q and I are concepts that may need to be distinguished, but in this disclosure, they are only used as symbols, and the names of signals in particular are restricted. is not.
  • Q+ and Q-, and I+ and I- each constitute a differential signal.
  • the first output terminal is the drain of the second transistor M42 and the drain of the third transistor M43 of the fourth inverter 206, the gate of the first transistor M11 and the gate of the fourth transistor M14 of the first inverter 200, and the second latch circuit. 212 is connected to the drain of the sixth transistor M26 and the drain of the eighth transistor M28. Based on the input Vp- and Vn+ signals, the Q+ signal output from the fourth inverter 206 is input to the first inverter 200 and the second latch circuit 212, and is output via the first output terminal. be done. When the second transistor M42 and the third transistor M43 of the fourth inverter 206 are turned off by the signals of Vp- and Vn+, the signal of Q+ held in the second latch circuit 212 is output.
  • the second output terminal is the drain of the second transistor M32 and the drain of the third transistor M33 of the third inverter 204, the gate of the first transistor M21 and the gate of the fourth transistor M24 of the second inverter 202, and the second latch circuit. 212 is connected to the drain of the fifth transistor M25 and the drain of the seventh transistor M27.
  • the Q- signal output from the third inverter 204 is input to the second inverter 202 and the second latch circuit 212 and via the second output terminal. output.
  • the signal of Q- held in the second latch circuit 212 is output.
  • the third output terminal is the drain of the second transistor M22 and the drain of the third transistor M23 of the second inverter 202, the gate of the first transistor M41 and the gate of the fourth transistor M44 of the fourth inverter 206, and the first latch circuit. 210 is connected to the drain of the sixth transistor M16 and the drain of the eighth transistor M18. Based on the input Vp+ and Vn- signals, the I+ signal output from the second inverter 202 is input to the fourth inverter 206 and the first latch circuit 210, and is output via the third output terminal. be done. When the second transistor M22 and the third transistor M23 of the second inverter 202 are turned off by the signals of Vp+ and Vn-, the signal of I+ held in the first latch circuit 210 is output.
  • the fourth output terminal is the drain of the second transistor M12 and the drain of the third transistor M13 of the first inverter 200, the gate of the first transistor M31 and the gate of the fourth transistor M34 of the third inverter 204, and the first latch circuit.
  • 210 is connected to the drain of the fifth transistor M15 and the drain of the seventh transistor M17. Based on the input Vp+ and Vn- signals, the I- signal output from the first inverter 200 is input to the third inverter 204 and the first latch circuit 210, and through the fourth output terminal. output. When the second transistor M12 and the third transistor M13 of the second inverter 202 are turned off by the signals of Vp+ and Vn-, the signal of I- held in the first latch circuit 210 is output.
  • the frequency divider 20 is controlled by the input signals Vp-, Vp+ and Vn-, Vn+.
  • Vp- is a signal whose voltage value oscillates across the threshold voltages of the second transistor M32 of the third inverter 204 and the second transistor M42 of the fourth inverter 206.
  • Vp+ is a signal whose voltage value oscillates across the threshold voltages of the second transistor M12 of the first inverter 200 and the second transistor M22 of the second inverter 202.
  • FIG. The alternating components of Vp- and Vp+ constitute a differential signal. If the second transistor Mx2 in each inverter is the same element, for example, Vp ⁇ and Vp+ are generated as signals obtained by superimposing the threshold voltage of the second transistor Mx2 on the AC component of the differential clock signal.
  • Vn- is a signal whose voltage value oscillates across the threshold voltages of the third transistor M13 of the first inverter 200 and the third transistor M23 of the second inverter 202.
  • Vn+ is a signal whose voltage value oscillates across the threshold voltages of the third transistor M33 of the third inverter 204 and the third transistor M43 of the fourth inverter 206.
  • FIG. The alternating components of Vn- and Vn+ constitute a differential signal. If the third transistor Mx3 in each inverter is the same element, for example, Vn ⁇ and Vn+ are generated as signals obtained by superimposing the threshold voltage of the third transistor Mx3 on the AC component of the differential clock signal.
  • the form in the present disclosure is not limited to the form of FIG. 4, and other general frequency dividing circuit inverters, latch circuits, etc. can be used as long as they are circuits that can be appropriately divided by analog drive signals. can also be used as the frequency divider 20.
  • the input circuit 10 appropriately generates these analog AC signals Vn-, Vn+, Vp-, and Vp+, so that the analog signal is converted through a buffer for A/D conversion.
  • a divided signal can be obtained without Several specific embodiments of the input circuit 10 are described below.
  • FIG. 5 is a diagram showing an example of the input circuit 10.
  • the input circuit 10 includes capacitors C1, C2, C3, C4, constant voltage sources E1, E2, and resistors R1, R2, R3, R4.
  • the input circuit 10 has, as input terminals, a first input terminal to which an analog signal IN+ is applied, and a second input terminal to which an analog signal IN- is applied.
  • the first input terminal is connected to the positive power supply voltage Vdd via a capacitor C1, a resistor R1, and a constant voltage source E1.
  • the positive power supply voltage is controlled to at least the threshold voltage (first bias voltage) of the second transistors M12 and M22 of the first inverter 200 and the second inverter 202 via the constant voltage source E1 and the resistor R1.
  • the analog signal IN+ has its AC component extracted through the capacitor C1, and this AC component is the positive power supply voltage Vdd, the constant voltage source E1, the second transistor M12 which is the first bias voltage generated by the resistor R1, Superimposed on the threshold voltage of M22. Therefore, the input circuit 10 outputs, as Vp+, a signal in which the threshold voltages of the second transistors M12 and M22 and the AC component of the input analog signal IN+ are superimposed.
  • the first input terminal is connected to the negative power supply voltage Vss via a capacitor C2, a resistor R2, and a constant voltage source E2.
  • the negative power supply voltage is controlled at least to the threshold voltage (second bias voltage) of the third transistors M33 and M43 of the third inverter 204 and the fourth inverter 206 via the constant voltage source E2 and the resistor R2.
  • the AC component of the signal IN+ is extracted through the capacitor C2, and this AC component is the negative power supply voltage Vss, the constant voltage source E2, and the third transistors M33 and M43, which are the second bias voltage generated by the resistor R2. is superimposed with the threshold voltage of Therefore, the input circuit 10 outputs, as Vn-, a signal in which the threshold voltages of the third transistors M33 and M34 and the AC component of the input analog signal IN+ are superimposed.
  • the second input terminal is connected to the negative power supply voltage Vss via a capacitor C3, a resistor R3, and a constant voltage source E2.
  • the negative power supply voltage is controlled at least to the threshold voltage (third bias voltage) of the third transistors M13 and M23 of the first inverter 200 and the second inverter 202 via the constant voltage source E3 and the resistor R3.
  • the AC component of the signal IN- is extracted through the capacitor C3, and this AC component is the negative power supply voltage Vss, the constant voltage source E3, and the third transistor M13, which is the third bias voltage generated by the resistor R3.
  • the input circuit 10 outputs, as Vn+, a signal in which the threshold voltages of the third transistors M13 and M23 and the AC component of the input analog signal IN- are superimposed.
  • the second input terminal is connected to the positive power supply voltage Vdd via a capacitor C4, a resistor R4, and a constant voltage source E1.
  • the positive power supply voltage is controlled to at least the threshold voltage (fourth bias voltage) of the second transistors M32 and M42 of the third inverter 204 and the fourth inverter 206 via the constant voltage source E1 and the resistor R4.
  • the signal IN- has its AC component extracted through the capacitor C4, and this AC component is the positive power supply voltage Vdd, the constant voltage source E1, the fourth bias voltage generated by the resistor R4, the second transistor M32, Superimposed on the threshold voltage of M42. Therefore, the input circuit 10 outputs, as Vp-, a signal in which the threshold voltages of the second transistors M32, M32 and the AC component of the input analog signal IN- are superimposed.
  • the second transistor Mx2 of each inverter uses the same element, and similarly the third transistor Mx3 of each inverter uses the same element.
  • Vdd - E1 is the threshold voltage of the second transistor and E2 is the threshold voltage of the third transistor.
  • each resistor controls so that the AC component is not propagated to the power supply side.
  • the first bias voltage and the fourth bias voltage have the same value, and the second bias voltage and the third bias voltage have the same value.
  • the circuits that generate the bias voltages may be separately provided with, for example, first to fourth bias circuits that generate the first to fourth bias voltages.
  • first to fourth bias circuits that generate the first to fourth bias voltages.
  • FIG. 6 is a timing chart of IN, Vp, and Vn, which are the input/output signals of the input circuit 10.
  • Vn+/- is a signal obtained by increasing the AC component of IN+/- by E2, ie, the threshold voltage of the third transistor.
  • Vp+/- is the AC component of IN+/- biased by Vdd-E1, the threshold voltage of the second transistor.
  • FIG. 7 is a timing chart of Vp, Vn, Q, and I, which are the input/output signals of the frequency divider 20.
  • FIG. As shown in this figure, Q+, I+, Q-, and I- are converted to a clock signal with a cycle twice that of the original analog signal IN with a phase shift of ⁇ /2 for signals Vn and Vp. I know it's done.
  • the analog signal oscillated by the oscillator can be output as a frequency-divided digital clock signal without undergoing digital conversion before frequency division.
  • This circuit simply adds capacitors and resistors to the conventional divider circuit for analog signals. For this reason, a conversion buffer or the like for converting from analog to digital is not required, so that the area of the circuit and the power consumption can be reduced.
  • FIG. 8 is a diagram showing another example of the input circuit 10. As shown in FIG. As shown in this figure, instead of the constant voltage sources E1 and E2 used in the input circuit 10, a power source with a variable voltage can be used.
  • variable transistors T1 and T2 are used to make the bias voltage superimposed on IN variable.
  • the current of the constant current source is output by the current mirror circuit arranged on the left side.
  • the gate potential of this current mirror is the same as the gate potential of the variable transistor T1. Therefore, by forming a current mirror together with the variable transistor T1 and changing the element coefficient of the variable transistor T1, the magnification of the output current can be changed.
  • this output By connecting this output to the positive power supply voltage Vdd via a capacitor, it changes to a variable voltage.
  • This voltage is converted to an appropriate voltage by a diode-connected transistor and superimposed on the AC component output from the input-side capacitor through the corresponding resistors to generate the signal Vn.
  • the current of the current mirror located on the right is further mirrored in the current mirror circuit located in the next stage.
  • the magnification of the left current mirror can be changed by changing the element coefficient of the variable transistor T2.
  • the signal Vp is generated by the same operation as the operation on the Vn side described above.
  • the same elements are used for the same transistors in each inverter, there may be differences between wafers due to process variations. Due to such individual differences, if the constant voltage source is used as the threshold voltage as in the first embodiment, the frequency division operation may not be appropriate. Even in such a case, if the bias voltage can be controlled as in the present embodiment, appropriate frequency division can be achieved regardless of individual differences. Also, even when the coefficient of the element changes due to temperature change, etc., it is possible to realize appropriate frequency division by appropriately controlling the bias voltage.
  • FIG. 9 is a diagram showing a frequency dividing circuit 1 in which a power gate is provided in the frequency dividing section 20.
  • the transistor T3 has a source connected to the negative power supply voltage Vss, a drain connected to the sources of the fourth transistor of each inverter and the seventh and eighth transistors of each latch circuit, and an enable signal input to its gate. . That is, transistors other than the transistor T3 of the frequency divider 20 are connected to the negative power supply voltage Vss via the transistor T3.
  • the enable signal EN turns on/off the connection between the frequency divider 20 and the power supply circuit. This makes it possible to stop the function of the frequency dividing circuit 1 when frequency division is not necessary.
  • transistor T3 is provided as a power gate in FIG. 9, it is not limited to this, and a plurality of transistors may be provided in parallel with the transistor T3 as power gates.
  • the present embodiment by providing a transistor that functions as a power gate, it is possible to suppress leakage current and reduce power consumption when the frequency divider circuit 1 is not in operation.
  • FIG. 10 shows a frequency dividing circuit 1 that summarizes the control of inverters by clock signals.
  • the first inverter 200 and the second inverter 202 may share the second transistor M12 and the third transistor M13.
  • the third inverter 204 and the fourth inverter 206 may also share the second transistor M32 and the third transistor M33.
  • each inverter is not affected by power supply voltage fluctuations, but each latch circuit is affected by power supply voltage fluctuations.
  • a circuit that is less likely to be affected by the power supply voltage as the overall frequency dividing circuit 1 will be described.
  • FIG. 11 is a circuit diagram showing the input circuit 10 according to this embodiment.
  • the input circuit 10 includes transistors T4 and T5, to whose gates a power supply voltage is applied, between the current mirror circuit and the transistor that superimposes a DC component on the clock signal. These two transistors T4 and T5 have their drain currents flow according to the power supply voltage, so the bias voltage is also affected by fluctuations in the power supply voltage.
  • the transistor T4 is, for example, a pMOS, has a source connected to the positive power supply voltage Vdd, a drain connected to the drain of the transistor T1, and a gate connected to the negative power supply voltage Vss.
  • Vdd positive power supply voltage
  • Vss negative power supply voltage
  • the transistor T4 operates as a diode that allows a current to flow in one direction from the source to the drain. The performance of this diode depends on the power supply voltage due to the source and gate connections.
  • the transistor T5 is, for example, an nMOS, has a source connected to the negative power supply voltage Vss, a drain connected to the drain of the transistor T2, and a gate connected to the positive power supply voltage Vdd.
  • Vss negative power supply voltage
  • Vdd positive power supply voltage
  • the transistor T5 operates as a diode that allows a current to flow in one direction from the drain to the source. The performance of this diode depends on the power supply voltage due to the source and gate connections.
  • the superimposed signal output from the input circuit 10 is affected by the power supply voltage. Since the output of the input circuit 10 becomes the driving voltage of the inverters in the frequency dividing section 20, each inverter is driven under the influence of fluctuations in the power supply voltage.
  • the driving of each circuit in the frequency dividing section 20 is changed with fluctuations in the power supply voltage. That is, both the inverter and the latch circuit in the frequency dividing section 20 are affected by the fluctuation of the power supply voltage to the same degree. As a result, it is possible to increase the resistance of the frequency dividing circuit 1 to fluctuations in the power supply voltage, and to realize more stable operation even when the power supply voltage fluctuates.
  • the capability of the latch circuit transistor becomes higher than the capability of the inverter transistor when the temperature is low and the power supply voltage is at a high potential. For this reason, in the inverter circuit, it is necessary to apply a potential that reverses the on/off state of the latch circuit. However, if the drive capability of the inverter circuit is insufficient, it becomes difficult to divide the frequency with a small input amplitude. .
  • the state of the inverter transistor is FF
  • the ability of the transistor in the latch circuit is reduced when the temperature is high and the power supply voltage is low, making it difficult to retain the state in the latch circuit. Become. In this case as well, it becomes difficult to divide the frequency at a small input amplitude.
  • the inverter and the latch circuit can be controlled even when there is such variation in the power supply voltage. can be operated appropriately, and the operation of the frequency dividing circuit 1 can be stabilized.
  • FIG. 12 is a circuit diagram of the input circuit 10 according to this embodiment.
  • the input circuit 10 comprises current sources Id1, Id2 for generating bias voltages.
  • the current sources Id1 and Id2 are current sources that depend on the power supply voltage (they are easily affected by the power supply voltage). For example, it can be seen from the operation of the transistors T4 and T5 in the circuit of FIG. 11 that the input circuit 10 shown in FIG. 11 is an example of the input circuit 10 shown in FIG.
  • FIG. 13 is a circuit diagram of another example of the input circuit 10 according to this embodiment.
  • the input circuit 10 comprises current sources Id1, Id2 for generating bias voltages, and also current sources Ii1, Ii2.
  • Each of the current sources Ii1 and Ii2 is a current source that does not depend on the power supply voltage (is not easily affected by the power supply voltage). By providing such current sources Ii1 and Ii2, it is possible to control the magnitude of the influence of the power supply voltage on the bias voltage.
  • FIG. 14 is another example of the input circuit 10 shown in FIG. In addition to current sources Id1, Id2, Ii1 and Ii2, current sources Id3 and Id4 dependent on the power supply voltage and power currents Ii3 and Ii4 independent of the power supply voltage are provided.
  • current sources Id1 and Ii1 are used to generate the bias voltage that generates Vn+.
  • Current sources Id2, Ii2 are used to generate bias voltages that generate Vp+.
  • Power currents Id3, Ii3 are used to generate the bias voltages that generate Vn-.
  • Current sources Id4, Ii4 are used to generate bias voltages that generate Vp-.
  • two types of bias voltages were generated, one for generating Vn+ and Vn-, and the other for generating Vp+ and Vp-.
  • a bias voltage may be generated for each signal output by the input circuit 10 to drive.
  • FIG. 15 is a diagram showing an example of a current source that depends on the power supply voltage. Shown on the left is the current source for generating the bias voltage for Vn. This is similar to the example shown in FIG. 11, and is configured using a pMOS whose source is connected to the positive power supply voltage Vdd and whose gate is connected to the negative power supply voltage Vss.
  • the current source for generating the bias voltage for Vp Shown on the right is the current source for generating the bias voltage for Vp. This is also the same as the example shown in FIG. 11, and is configured using an nMOS whose source is connected to the negative power supply voltage Vss and whose gate is connected to the positive power supply voltage Vdd.
  • FIG. 16 is a diagram showing another example of a current source that depends on the power supply voltage.
  • the MOSFETs in FIG. 15 can also be more simply replaced with resistors. As in the case of FIG. 15, it is necessary to increase the circuit area while the structure is simple and the process is simple. Therefore, either one can be appropriately selected according to the purpose.
  • FIG. 17 is a diagram showing an example of a power flow that does not depend on the power supply voltage.
  • the input circuit 10 may include a circuit using a BGR (Bandgap reference) and two current mirrors as a current source Ii1 or the like that does not depend on the power supply voltage.
  • the BGR is a voltage source that is less dependent on the power supply voltage, and by using the voltage generated from this BGR as an input to the current mirror, a current that is less dependent on the power supply voltage is generated.
  • the gate voltage is generated by BGR.
  • the drain current becomes less dependent on the power supply voltage, and this current is mirrored. Since the current that generates the bias voltage on the Vp side is generated based on the current generated by this current mirror, it is a small current that depends on the power supply voltage.
  • the current generated by the left current mirror becomes the input of the right current mirror. Therefore, it is possible to duplicate a small current that depends on the power supply voltage also from the right current mirror. This generated current generates a bias voltage on the Vn side. Therefore, the current for generating the bias voltage on the Vn side is a small current that depends on the power supply voltage.
  • the inverter and the latch circuit in the frequency divider 20 voltage dependence can be reduced.
  • the input circuit 10 can generate an analog signal with improved stability against fluctuations in the power supply voltage.
  • a noise removing capacitor or the like may be further provided as appropriate.
  • a noise removing capacitor or the like may be further provided between the drain of the transistor that is the output terminal of the constant voltage source E1 that is the bias voltage and Vdd, and between the drain of the transistor that is the output terminal of the constant voltage source E2 that is the bias voltage and Vss. may be provided.
  • the frequency dividing circuit 1 formed by the input circuit 10 and the frequency dividing section 20 in each of the above-described embodiments is particularly a part of the frequency dividing section 20 (for example, the first inverter 200, the second inverter 202 and the first latch circuit). 210 combinations) can be replaced by D-FF. Therefore, a clock signal for D-FF can be generated as an analog signal using a configuration equivalent to this input circuit 10.
  • FIG. 1 The frequency dividing circuit 1 formed by the input circuit 10 and the frequency dividing section 20 in each of the above-described embodiments is particularly a part of the frequency dividing section 20 (for example, the first inverter 200, the second inverter 202 and the first latch circuit). 210 combinations) can be replaced by D-FF. Therefore, a clock signal for D-FF can be generated as an analog signal using a configuration equivalent to this input circuit 10.
  • an analog signal can be used as the input signal of the frequency dividing circuit that divides the frequency by 3 or more.
  • the circuit for frequency division by 2 has been described, but as described above, the input circuit 10 can also be applied to a frequency divider circuit for frequency division by 3 or more.
  • the frequency divider circuit according to each of the embodiments described above may be used, for example, for processing high-frequency signals in RF transceiver circuits. It may also be used in an ADPLL (All Digital Phase Locked Loop) that generates a clock signal in an image sensor using CMOS.
  • ADPLL All Digital Phase Locked Loop
  • the present invention is not limited to these uses, and can be used in devices that use frequency division of clock signals.
  • an inverter having a transistor; an input circuit that converts a first signal that is an analog differential signal to a second signal that is a differential analog signal for driving the transistors;
  • a divider circuit with
  • the transistor is a MOSFET;
  • the input circuit superimposes a bias voltage on the AC component of the first signal to oscillate between a voltage lower than the threshold voltage of the transistor and a voltage higher than the threshold voltage of the transistor. convert to a second signal, (1) The divider circuit described in (1).
  • the inverter comprises an nMOS and a pMOS;
  • the input circuit is a signal obtained by superimposing the threshold voltage of the nMOS and an AC component of the differential signal; a signal obtained by superimposing the threshold voltage of the pMOS and an AC component of the differential signal; to generate (2)
  • the divider circuit described in (2) is a signal obtained by superimposing the threshold voltage of the nMOS and an AC component of the differential signal; a signal obtained by superimposing the threshold voltage of the pMOS and an AC component of the differential signal; to generate (2) The divider circuit described in (2).
  • the input circuit is a capacitor for extracting an AC component of a first differential signal, which is one of the signals constituting the differential signal; a capacitor for extracting an AC component of a second differential signal, which is the other signal constituting the differential signal; comprising The frequency dividing circuit according to (2) or (3).
  • the inverter is a first transistor, which is a p-type MOSFET and whose source is connected to the positive supply voltage; a second transistor, which is a p-type MOSFET and whose source is connected to the drain of the first transistor; a third transistor, which is an n-type MOSFET and whose drain is connected to the drain of the second transistor; a fourth transistor which is an n-type MOSFET and has a drain connected to the source of the third transistor, a source connected to a negative power supply voltage, and a gate connected to the gate of the first transistor; with
  • the latch circuit is a fifth transistor, which is a p-type MOSFET and whose source is connected to the positive power supply voltage; a sixth transistor which is a p-type MOSFET and has a source connected to the positive power supply voltage, a drain connected to the gate of the fifth transistor, and a gate connected to the drain of the fifth transistor; a seventh transistor which is an n-type MOSFET and has a drain connected
  • the second output terminal is connected to the gate of the first transistor of the second inverter, the drain of the second transistor of the third inverter, and the drain of the fifth transistor of the second latch circuit. , outputting a second output signal forming a differential signal with the first output signal;
  • the third output terminal is connected to the gate of the first transistor of the fourth inverter, the drain of the second transistor of the second inverter, and the drain of the sixth transistor of the first latch circuit. , outputting a third output signal having a predetermined phase shift from the first output signal,
  • the fourth output terminal is connected to the gate of the first transistor of the third inverter, the drain of the second transistor of the first inverter, and the drain of the fifth transistor of the first latch circuit. , outputting a fourth output signal forming a differential signal with the third output signal; (5)
  • the input circuit is a first input terminal to which one of the first signals is input; a second input terminal to which the other of the first signals is input; a first capacitor connected between the first input terminal and the gate of the second transistor of the first inverter and the gate of the second transistor of the second inverter; a second capacitor connected between the second input terminal and a terminal connected to the gate of the second transistor of the third inverter and the gate of the second transistor of the fourth inverter; a third capacitor connected between the first input terminal and a terminal connected to the gate of the third transistor of the first inverter and the gate of the third transistor of the second inverter; a fourth capacitor connected between the second input terminal and a terminal connected to the gate of the third transistor of the third inverter and the gate of the third transistor of the fourth inverter;
  • the divider circuit according to (6) comprising:
  • the input circuit is a first bias circuit that applies a first bias voltage to the output of the first capacitor; a second bias circuit that applies a second bias voltage to the output of the second capacitor; a third bias circuit that applies a third bias voltage to the output of the third capacitor; a fourth bias circuit that applies a fourth bias voltage to the output of the fourth capacitor; comprising (7) The divider circuit described in (7).
  • the first bias voltage and the second bias voltage are threshold voltages of the second transistor; wherein the third bias voltage and the fourth bias voltage are threshold voltages of the third transistor; (8) The divider circuit described in (8).
  • the input circuit is a first steady-state voltage source connected to the positive power supply voltage; a second steady-state voltage source connected to the negative power supply voltage; with
  • the first bias circuit includes the first steady voltage source and a first resistor connected to the first steady voltage source,
  • the second bias circuit comprises the first steady voltage source and a second resistor connected to the first steady voltage source,
  • the third bias circuit includes the second constant voltage source and a third resistor connected to the second constant voltage source,
  • the fourth bias circuit comprises the second constant voltage source and a fourth resistor connected to the second constant voltage source, (8)
  • the first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit can variably control voltages.
  • the first inverter and the second inverter share the second transistor and the third transistor; the third inverter and the fourth inverter share the second transistor and the third transistor; A frequency dividing circuit according to any one of (6) to (11).
  • the first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit output currents depending on the fluctuation of at least one of the positive power supply voltage and the negative power supply voltage. comprising at least one current source with a varying The frequency dividing circuit according to any one of (8) to (10).
  • the current source comprises a transistor having a gate connected to the positive power supply voltage or the negative power supply voltage; (13) The divider circuit described in (13).
  • the current source comprises a resistor connected to the positive power supply voltage or the negative power supply voltage, (13) The divider circuit described in (13).
  • the predetermined phase is ⁇ /2, A frequency dividing circuit according to any one of (6) to (16).
  • divider circuit 10: input circuit
  • 20 divider
  • 200 first inverter
  • 202 second inverter
  • 204 third inverter
  • 206 fourth inverter
  • 210 first latch circuit
  • 212 second latch circuit

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

[Problem] To achieve frequency division with respect to an analog signal. [Solution] This frequency dividing circuit is provided with an inverter and an input circuit. The inverter includes a transistor. The input circuit converts a first signal, which is an analog differential signal, to a second signal which is a differential analog signal for driving the transistor.

Description

分周回路frequency divider
 本開示は、分周回路に関する。 The present disclosure relates to a frequency dividing circuit.
 分周回路は、高周波数の信号を低周波数の信号に変換する回路であり、高周波信号を利用する電子機器において広く用いられる回路である。例えば、無線通信における高周波の受信信号の処理や、CPU(Central Processing Unit)といったプロセッサ等におけるクロック信号の処理等に広く使用されている。 A frequency divider is a circuit that converts a high-frequency signal into a low-frequency signal, and is widely used in electronic devices that use high-frequency signals. For example, it is widely used for processing high-frequency received signals in wireless communication, and for processing clock signals in processors such as CPUs (Central Processing Units).
 一般的に、分周回路のクロック信号は、矩形波(デジタル信号)である。このため、クロック信号を正弦波発振器で発振した場合には、この正弦波を矩形波へと変換するバッファアンプが必要となる。しかしながら、種々の回路の消費電力の削減及び回路面積の縮小が望まれており、バッファアンプを設置することが好ましくない場合がある。 Generally, the clock signal of the frequency divider is a square wave (digital signal). Therefore, when a clock signal is oscillated by a sine wave oscillator, a buffer amplifier is required to convert the sine wave into a rectangular wave. However, there is a desire to reduce the power consumption of various circuits and to reduce the circuit area, and in some cases it is not preferable to install a buffer amplifier.
特表2012-503443号公報Japanese Patent Publication No. 2012-503443 国際公開第10/134257号 WO 10/134257 特開2019-180000号公報JP 2019-180000
 そこで、本開示では、アナログ信号を扱うことができる分周回路を提供する。 Therefore, the present disclosure provides a frequency divider circuit that can handle analog signals.
 一実施形態によれば、分周回路は、インバータと、入力回路と、を備える。前記インバータは、トランジスタを有する。前記入力回路は、アナログの差動信号である第1信号を、前記トランジスタを駆動するための差動アナログ信号である第2信号に変換する。 According to one embodiment, the divider circuit includes an inverter and an input circuit. The inverter has a transistor. The input circuit converts a first signal, which is an analog differential signal, into a second signal, which is a differential analog signal for driving the transistors.
 前記トランジスタは、MOSFETであってもよく、前記入力回路は、前記第1信号の交流成分にバイアス電圧を重畳して、前記トランジスタのしきい値電圧よりも低い電圧と前記トランジスタのしきい値電圧よりも高い電圧との間を振動する前記第2信号に変換してもよい。 The transistor may be a MOSFET, and the input circuit superimposes a bias voltage on the AC component of the first signal to obtain a voltage lower than the threshold voltage of the transistor and a threshold voltage of the transistor. may be converted to the second signal oscillating between a voltage higher than .
 前記インバータは、nMOSと、pMOSと、を備えてもよく、前記入力回路は、前記nMOSのしきい値電圧と、前記差動信号の交流成分とを重畳した信号と、前記pMOSのしきい値電圧と、前記差動信号の交流成分とを重畳した信号と、を生成してもよい。 The inverter may include an nMOS and a pMOS, and the input circuit may include a signal obtained by superimposing a threshold voltage of the nMOS and an AC component of the differential signal, and a threshold voltage of the pMOS. A signal obtained by superimposing a voltage and an AC component of the differential signal may be generated.
 前記入力回路は、前記差動信号を構成する一方の信号である第1差動信号の交流成分を抽出するキャパシタと、前記差動信号を構成する他方の信号である第2差動信号の交流成分を抽出するキャパシタと、を備えてもよい。 The input circuit includes a capacitor for extracting an AC component of a first differential signal, which is one of the signals forming the differential signal, and an AC component of a second differential signal, which is the other signal forming the differential signal. and a capacitor for extracting the component.
 ラッチ回路、をさらに備えてもよい。 A latch circuit may be further provided.
 前記インバータは、p型MOSFETであり、ソースが正側電源電圧と接続される、第1トランジスタと、p型MOSFETであり、ソースが前記第1トランジスタのドレインと接続される、第2トランジスタと、n型MOSFETであり、ドレインが前記第2トランジスタのドレインと接続される、第3トランジスタと、n型MOSFETであり、ドレインが前記第3トランジスタのソースと接続され、ソースが負側電源電圧と接続され、ゲートが前記第1トランジスタのゲートと接続される、第4トランジスタと、を備えてもよく、
 前記ラッチ回路は、p型MOSFETであり、ソースが前記正側電源電圧と接続される、第5トランジスタと、p型MOSFETであり、ソースが前記正側電源電圧と接続され、ドレインが前記第5トランジスタのゲートと接続され、ゲートが前記第5トランジスタのドレインと接続される、第6トランジスタと、n型MOSFETであり、ドレインが前記第5トランジスタのドレインと接続され、ソースが前記負側電源電圧と接続される、第7トランジスタと、n型MOSFETであり、ドレインが前記第6トランジスタのドレイン及び前記第7トランジスタのゲートと接続され、ソースが前記負側電源電圧と接続され、ゲートが前記第7トランジスタのドレインと接続される、第8トランジスタと、を備えてもよく、
 前記分周回路は、第1インバータ、第2インバータ、第3インバータ及び第4インバータと、第1ラッチ回路及び第2ラッチ回路と、第1出力端子、第2出力端子、第3出力端子及び第4出力端子と、を備えてもよく、
 前記第1出力端子は、前記第1インバータの前記第1トランジスタのゲートと、前記第4インバータの前記第2トランジスタのドレインと、前記第2ラッチ回路の前記第6トランジスタのドレインと、に接続され、第1出力信号を出力し、
 前記第2出力端子は、前記第2インバータの前記第1トランジスタのゲートと、前記第3インバータの前記第2トランジスタのドレインと、前記第2ラッチ回路の前記第5トランジスタのドレインと、に接続され、前記第1出力信号と差動信号を形成する第2出力信号を出力し、
 前記第3出力端子は、前記第4インバータの前記第1トランジスタのゲートと、前記第2インバータの前記第2トランジスタのドレインと、前記第1ラッチ回路の前記第6トランジスタのドレインと、に接続され、前記第1出力信号と所定位相がずれた第3出力信号を出力し、
 前記第4出力端子は、前記第3インバータの前記第1トランジスタのゲートと、前記第1インバータの前記第2トランジスタのドレインと、前記第1ラッチ回路の前記第5トランジスタのドレインと、に接続され、前記第3出力信号と差動信号を形成する第4出力信号を出力してもよい。
The inverter is a first transistor, which is a p-type MOSFET and whose source is connected to a positive power supply voltage; a second transistor, which is a p-type MOSFET and whose source is connected to the drain of the first transistor; a third transistor, which is an n-type MOSFET and whose drain is connected to the drain of the second transistor; and an n-type MOSFET, whose drain is connected to the source of the third transistor and whose source is connected to the negative power supply voltage. a fourth transistor having a gate connected to the gate of the first transistor;
The latch circuit is a fifth transistor, a p-type MOSFET whose source is connected to the positive power supply voltage, and a p-type MOSFET whose source is connected to the positive power supply voltage and whose drain is the fifth transistor. a sixth transistor connected to the gate of the transistor, the gate of which is connected to the drain of the fifth transistor; and an n-type MOSFET, the drain of which is connected to the drain of the fifth transistor, and the source of which is the negative power supply voltage. and an n-type MOSFET, the drain of which is connected to the drain of the sixth transistor and the gate of the seventh transistor, the source of which is connected to the negative power supply voltage, and the gate of which is connected to the first an eighth transistor connected to the drain of the seven transistor;
The frequency dividing circuit includes a first inverter, a second inverter, a third inverter and a fourth inverter, a first latch circuit and a second latch circuit, a first output terminal, a second output terminal, a third output terminal and a third inverter. 4 output terminals, and
The first output terminal is connected to the gate of the first transistor of the first inverter, the drain of the second transistor of the fourth inverter, and the drain of the sixth transistor of the second latch circuit. , outputs the first output signal,
The second output terminal is connected to the gate of the first transistor of the second inverter, the drain of the second transistor of the third inverter, and the drain of the fifth transistor of the second latch circuit. , outputting a second output signal forming a differential signal with the first output signal;
The third output terminal is connected to the gate of the first transistor of the fourth inverter, the drain of the second transistor of the second inverter, and the drain of the sixth transistor of the first latch circuit. , outputting a third output signal having a predetermined phase shift from the first output signal,
The fourth output terminal is connected to the gate of the first transistor of the third inverter, the drain of the second transistor of the first inverter, and the drain of the fifth transistor of the first latch circuit. , may output a fourth output signal forming a differential signal with the third output signal.
 前記入力回路は、前記第1信号の一方が入力される、第1入力端子と、前記第1信号の他方が入力される、第2入力端子と、前記第1入力端子と、前記第1インバータの前記第2トランジスタのゲート及び前記第3インバータの前記第2トランジスタのゲートと、の間に接続される、第1キャパシタと、前記第2入力端子と、前記第2インバータの前記第2トランジスタのゲート及び前記第4インバータの前記第2トランジスタのゲートに接続される端子と、の間に接続される、第2キャパシタと、前記第1入力端子と、前記第1インバータの前記第3トランジスタのゲート及び前記第3インバータの前記第3トランジスタのゲートに接続される端子と、の間に接続される、第3キャパシタと、前記第2入力端子と、前記第2インバータの前記第3トランジスタのゲート及び前記第4インバータの前記第3トランジスタのゲートに接続される端子と、の間に接続される、第4キャパシタと、を備えてもよい。 The input circuit includes a first input terminal to which one of the first signals is input, a second input terminal to which the other of the first signals is input, the first input terminal, and the first inverter. and the gate of the second transistor of the third inverter; the second input terminal; and the second transistor of the second inverter. a second capacitor connected between a gate and a terminal connected to the gate of the second transistor of the fourth inverter; the first input terminal; and the gate of the third transistor of the first inverter. and a terminal connected to the gate of the third transistor of the third inverter; a third capacitor connected between the second input terminal; the gate of the third transistor of the second inverter; and a fourth capacitor connected between a terminal connected to the gate of the third transistor of the fourth inverter.
 前記入力回路は、前記第1キャパシタの出力に、第1バイアス電圧を印加する、第1バイアス回路と、前記第2キャパシタの出力に、第2バイアス電圧を印加する、第2バイアス回路と、前記第3キャパシタの出力に、第3バイアス電圧を印加する、第3バイアス回路と、前記第4キャパシタの出力に、第4バイアス電圧を印加する、第4バイアス回路と、備えてもよい。 The input circuit includes: a first bias circuit that applies a first bias voltage to the output of the first capacitor; a second bias circuit that applies a second bias voltage to the output of the second capacitor; A third bias circuit that applies a third bias voltage to the output of the third capacitor, and a fourth bias circuit that applies a fourth bias voltage to the output of the fourth capacitor may be provided.
 前記第1バイアス電圧及び前記第2バイアス電圧は、前記第2トランジスタのしきい値電圧であってもよく、前記第3バイアス電圧及び前記第4バイアス電圧は、前記第3トランジスタのしきい値電圧であってもよい。 The first bias voltage and the second bias voltage may be threshold voltages of the second transistor, and the third bias voltage and the fourth bias voltage may be threshold voltages of the third transistor. may be
 前記入力回路は、前記正側電源電圧に接続される、第1定常電圧源と、前記負側電源電圧に接続される、第2定常電圧源と、を備えてもよく、
 前記第1バイアス回路は、前記第1定常電圧源と、前記第1定常電圧源に接続される第1抵抗と、を備えてもよく、
 前記第2バイアス回路は、前記第1定常電圧源と、前記第1定常電圧源に接続される第2抵抗と、を備えてもよく、
 前記第3バイアス回路は、前記第2定常電圧源と、前記第2定常電圧源に接続される第3抵抗と、を備えてもよく、
 前記第4バイアス回路は、前記第2定常電圧源と、前記第2定常電圧源に接続される第4抵抗と、を備えてもよい。
The input circuit may comprise a first steady voltage source connected to the positive power supply voltage and a second steady voltage source connected to the negative power supply voltage,
The first bias circuit may comprise the first steady voltage source and a first resistor connected to the first steady voltage source,
The second bias circuit may comprise the first steady voltage source and a second resistor connected to the first steady voltage source,
The third bias circuit may comprise the second steady voltage source and a third resistor connected to the second steady voltage source,
The fourth bias circuit may include the second constant voltage source and a fourth resistor connected to the second constant voltage source.
 前記第1バイアス回路、前記第2バイアス回路、前記第3バイアス回路、前記第4バイアス回路は、電圧を可変制御できてもよい。 The voltages of the first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit may be variably controlled.
 前記第1バイアス回路、前記第2バイアス回路、前記第3バイアス回路、前記第4バイアス回路は、前記正側電源電圧及び前記負側電源電圧のうち、少なくとも一方の変動に依存して出力する電流が変動する電流源を少なくとも1つ備えてもよい。 The first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit output currents depending on the fluctuation of at least one of the positive power supply voltage and the negative power supply voltage. may include at least one current source with a varying .
 前記電流源は、前記正側電源電圧又は前記負側電源電圧にゲートが接続されるトランジスタを備えてもよい。 The current source may include a transistor whose gate is connected to the positive power supply voltage or the negative power supply voltage.
 前記電流源は、前記正側電源電圧又は前記負側電源電圧と接続される抵抗を備えてもよい。 The current source may include a resistor connected to the positive power supply voltage or the negative power supply voltage.
 前記第4トランジスタのソース、前記第7トランジスタのソース及び前記第8トランジスタのソースと、前記負側電源電圧との間に、さらに、パワーゲートトランジスタを備えてもよい。 A power gate transistor may be provided between the source of the fourth transistor, the source of the seventh transistor, the source of the eighth transistor, and the negative power supply voltage.
 前記所定位相は、π /2であってもよい。 The predetermined phase may be π/2.
 前記第1信号を、n分周(nは、2以上の整数)した信号を生成してもよい。 A signal may be generated by dividing the first signal by n (where n is an integer equal to or greater than 2).
一実施形態に係る分周回路を示す図。FIG. 2 is a diagram showing a frequency dividing circuit according to one embodiment; 一実施形態に係る分周部を示す図。FIG. 4 is a diagram showing a frequency divider according to one embodiment; 一実施形態に係るインバータの回路図。1 is a circuit diagram of an inverter according to one embodiment; FIG. 一実施形態に係る分周部をMOSFETで示した回路図。FIG. 2 is a circuit diagram showing a frequency divider according to one embodiment using MOSFETs; 一実施形態に係る入力回路の回路図。1 is a circuit diagram of an input circuit according to one embodiment; FIG. 一実施形態に係る入力回路の入出力信号のタイミングチャート。4 is a timing chart of input/output signals of an input circuit according to one embodiment; 一実施形態に係る分周部の入出力信号のタイミングチャート。4 is a timing chart of input/output signals of the frequency divider according to one embodiment; 一実施形態に係る入力回路の回路図。1 is a circuit diagram of an input circuit according to one embodiment; FIG. 一実施形態に係る分周回路の回路図。1 is a circuit diagram of a frequency dividing circuit according to one embodiment; FIG. 一実施形態に係る分周回路の回路図。1 is a circuit diagram of a frequency dividing circuit according to one embodiment; FIG. 一実施形態に係る入力回路の回路図。1 is a circuit diagram of an input circuit according to one embodiment; FIG. 一実施形態に係る入力回路の回路図。1 is a circuit diagram of an input circuit according to one embodiment; FIG. 一実施形態に係る入力回路の回路図。1 is a circuit diagram of an input circuit according to one embodiment; FIG. 一実施形態に係る入力回路の回路図。1 is a circuit diagram of an input circuit according to one embodiment; FIG. 一実施形態に係る電流源の回路図。1 is a circuit diagram of a current source according to one embodiment; FIG. 一実施形態に係る電流源の回路図。1 is a circuit diagram of a current source according to one embodiment; FIG. 一実施形態に係る電流源の回路図。1 is a circuit diagram of a current source according to one embodiment; FIG.
 以下、図面を参照して本開示における実施形態の説明をする。図面は、説明のために用いるものであり、実際の装置における各部の構成の形状、サイズ、又は、他の構成とのサイズの比等が図に示されている通りである必要はない。また、図面は、簡略化して書かれているため、図に書かれている以外にも実装上必要な構成は、適切に備えるものとする。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The drawings are used for explanation, and it is not necessary that the shapes, sizes, ratios, etc. of the configuration of each part in the actual apparatus are as shown in the drawings. In addition, since the drawings are drawn in a simplified manner, it is assumed that configurations necessary for mounting other than those shown in the drawings are appropriately provided.
 図1は、本開示における実施形態に係る分周回路の一例について、概略を示す図である。分周回路1は、入力回路10と、分周部20と、を備える。 FIG. 1 is a diagram schematically showing an example of a frequency dividing circuit according to an embodiment of the present disclosure. A frequency dividing circuit 1 includes an input circuit 10 and a frequency dividing section 20 .
 入力回路10は、アナログの差動信号IN(第1信号)が入力され、この差動信号INを分周部20に備えられるトランジスタを駆動するためのアナログ信号Vdr(第2信号)に変換して出力する回路である。以下、差動信号は、必要に応じて、+又は-を付与することにより表すことがある。例えば、上記のアナログの差動信号は、信号IN+、IN-と表すことがある。 The input circuit 10 receives an analog differential signal IN (first signal) and converts the differential signal IN into an analog signal Vdr (second signal) for driving the transistors provided in the frequency divider 20. This is a circuit that outputs Hereinafter, differential signals may be denoted by adding + or - as appropriate. For example, the analog differential signals described above may be represented as signals IN+, IN-.
 分周部20は、差動信号INを分周したデジタル信号を出力する。この分周部20は、一般的な分周回路であってもよい。一例として、分周回路1は、分周部20から、デジタルの差動クロック信号Qと、このクロック信号Qと所定位相ずれた差動クロック信号Iと、を出力する。例えば、分周回路1が2分周回路として動作する場合には、差動クロック信号Q+/Q-と、これらの信号からπ / 2位相がずれた差動クロック信号I+/I-と、を出力する。 The frequency divider 20 outputs a digital signal obtained by frequency-dividing the differential signal IN. This frequency dividing section 20 may be a general frequency dividing circuit. As an example, the frequency dividing circuit 1 outputs a digital differential clock signal Q and a differential clock signal I having a predetermined phase shift from the clock signal Q from the frequency dividing unit 20 . For example, when the frequency divider 1 operates as a divide-by-two circuit, the differential clock signals Q+/Q- and the differential clock signals I+/I- shifted by π/2 from these signals are Output.
 図2は、一般的な分周回路の概略の一例を示す図である。この図2を用いて、まず、基本的な構成である分周部20について説明する。 Fig. 2 is a schematic diagram showing an example of a general frequency divider circuit. Using FIG. 2, first, the frequency divider 20, which is a basic configuration, will be described.
 一般的な分周回路においては、インバータにデジタルの差動クロック信号Vdrが入力されることにより、分周された信号Q、Iが出力される。しかしながら、この分周回路には、アナログの正弦波で表される差動信号を入力する場合には大きな振幅が必要となる。本実施形態においては、入力回路10により、分周部20を適切に駆動させることが可能なアナログ信号Vdrを駆動信号として生成して、正弦波の差動信号INを分周する。 In a general frequency dividing circuit, frequency-divided signals Q and I are output by inputting a digital differential clock signal Vdr to an inverter. However, this frequency dividing circuit requires a large amplitude when inputting a differential signal represented by an analog sine wave. In the present embodiment, the input circuit 10 generates an analog signal Vdr capable of appropriately driving the frequency divider 20 as a drive signal, and divides the sine wave differential signal IN.
 信号Q+、Q-間にある2つのインバータの組み合わせ、及び、信号I+、I-間にある2つのインバータの組み合わせは、それぞれがラッチ回路を形成する。このラッチ回路により、インバータからの出力が停止している間も、それぞれの組み合わせにおいて差動信号を生成して出力することができる。 A combination of two inverters between signals Q+ and Q- and a combination of two inverters between signals I+ and I- each form a latch circuit. With this latch circuit, it is possible to generate and output a differential signal in each combination even while the output from the inverter is stopped.
 図3は、図2におけるインバータ回路についてMOSFETを用いて示す回路図である。図3は、例えば、図2において、信号I+が入力されて信号Q+を出力するインバータを示す回路である。 FIG. 3 is a circuit diagram showing the inverter circuit in FIG. 2 using MOSFETs. FIG. 3 is, for example, a circuit showing an inverter that receives the signal I+ and outputs the signal Q+ in FIG.
 インバータは、第1トランジスタM1と、第2トランジスタM2と、第3トランジスタM3と、第4トランジスタM4と、を備える。 The inverter includes a first transistor M1, a second transistor M2, a third transistor M3, and a fourth transistor M4.
 第1トランジスタM1は、例えば、pMOSであり、ソースが正側電源電圧Vddと接続され、ゲートにI+が印加される。 The first transistor M1 is, for example, a pMOS, has a source connected to the positive power supply voltage Vdd, and a gate to which I+ is applied.
 第2トランジスタM2は、例えば、pMOSであり、ソースが第1トランジスタM1のドレインと接続され、ゲートにVdr-が印加される。 The second transistor M2 is, for example, a pMOS, has a source connected to the drain of the first transistor M1, and a gate to which Vdr- is applied.
 第3トランジスタM3は、例えば、nMOSであり、ドレインが第2トランジスタM2のドレインと接続され、ゲートにVdr+が印加される。 The third transistor M3 is, for example, nMOS, its drain is connected to the drain of the second transistor M2, and Vdr+ is applied to its gate.
 第4トランジスタM4は、例えば、nMOSであり、ドレインが第3トランジスタM3のソースと接続され、ソースが負側電源電圧Vssと接続され、ゲートが第1トランジスタM1のゲートと接続される。 The fourth transistor M4 is, for example, an nMOS, has a drain connected to the source of the third transistor M3, a source connected to the negative power supply voltage Vss, and a gate connected to the gate of the first transistor M1.
 入力信号は、第1トランジスタM1のゲート及び第4トランジスタM4のゲートに印加される。出力信号は、第2トランジスタM2のドレイン及び第3トランジスタM3のドレインから出力される。 The input signal is applied to the gate of the first transistor M1 and the gate of the fourth transistor M4. The output signal is output from the drain of the second transistor M2 and the drain of the third transistor M3.
 信号Q+は、信号I+の否定となる値を、第2トランジスタM2、第3トランジスタM3が駆動するタイミングにおいて出力する。 The signal Q+ outputs a value that is the negation of the signal I+ at the timing when the second transistor M2 and the third transistor M3 are driven.
 駆動信号であるVdr+/Vdr-は、それぞれが第2トランジスタM2、第3トランジスタM3のしきい値をまたぐような値を有するアナログ信号である。本実施形態に係る分周回路1においては、この駆動信号がそれぞれのトランジスタのしきい値に基づいて適切に振動するように、入力回路10がアナログの差動信号INを制御する。 The driving signals Vdr+/Vdr- are analog signals each having a value that crosses the threshold values of the second transistor M2 and the third transistor M3. In the frequency dividing circuit 1 according to the present embodiment, the input circuit 10 controls the analog differential signal IN such that the drive signal appropriately oscillates based on the threshold of each transistor.
 電源電圧は、正側、負側と記載しているが、これは、一般的な電源電圧Vdd、Vssと理解してよい。例えばより一般的に、負側電源電圧Vssは、接地点と接続される形態であってもよい。 The power supply voltage is described as positive and negative, but this can be understood as general power supply voltages Vdd and Vss. For example, more generally, the negative power supply voltage Vss may be connected to a ground point.
 なお、各トランジスタの順番は、上記に限られるものではない。例えば、正側電源電圧Vddから、第2トランジスタM2、第1トランジスタM1、第4トランジスタM4、第3トランジスタM3と接続され、第3トランジスタM3のソースが負側電源電圧Vssと接続される構成であってもよい。 The order of each transistor is not limited to the above. For example, the positive power supply voltage Vdd is connected to the second transistor M2, the first transistor M1, the fourth transistor M4, and the third transistor M3, and the source of the third transistor M3 is connected to the negative power supply voltage Vss. There may be.
 図4は、図3のインバータの構成を用いて、分周部20の構成についてMOSFETを用いて書き換えた図である。ラッチ回路についても同様にMOSFETで書き換えている。 FIG. 4 is a diagram in which the configuration of the frequency divider 20 is rewritten using MOSFETs using the configuration of the inverter in FIG. The latch circuit is similarly rewritten with MOSFET.
 図4に示すように、本実施形態に係る分周部20は、第1インバータ200と、第2インバータ202と、第3インバータ204と、第4インバータ206と、第1ラッチ回路210と、第2ラッチ回路212と、を備える。この分周部20は、アナログ信号Vn、Vpが入力されると、当該アナログ信号の周波数に基づいた分周信号I、Qを生成して出力する。アナログ信号Vn、Vpは、入力回路10によりアナログ差動信号INに基づいて生成された信号である。この信号の生成については、後述にて詳しく説明する。 As shown in FIG. 4, the frequency divider 20 according to the present embodiment includes a first inverter 200, a second inverter 202, a third inverter 204, a fourth inverter 206, a first latch circuit 210, a first 2 latch circuit 212; When the analog signals Vn and Vp are input, the frequency divider 20 generates and outputs frequency-divided signals I and Q based on the frequencies of the analog signals. The analog signals Vn and Vp are signals generated by the input circuit 10 based on the analog differential signal IN. The generation of this signal will be described later in detail.
 第1インバータ200は、図3と同様に接続された第1トランジスタM11と、第2トランジスタM12と、第3トランジスタM13と、第4トランジスタM14と、を備える。同様に、第2インバータ202は、第1トランジスタM21と、第2トランジスタM22と、第3トランジスタM23と、第4トランジスタM24と、を備える。第3インバータ204は、第1トランジスタM31と、第2トランジスタM32と、第3トランジスタM33と、第4トランジスタM34と、を備える。第4インバータ206は、第1トランジスタM41と、第2トランジスタM42と、第3トランジスタM43と、第4トランジスタM44と、を備える。 The first inverter 200 includes a first transistor M11, a second transistor M12, a third transistor M13, and a fourth transistor M14, which are connected in the same manner as in FIG. Similarly, the second inverter 202 comprises a first transistor M21, a second transistor M22, a third transistor M23 and a fourth transistor M24. The third inverter 204 includes a first transistor M31, a second transistor M32, a third transistor M33, and a fourth transistor M34. The fourth inverter 206 includes a first transistor M41, a second transistor M42, a third transistor M43, and a fourth transistor M44.
 ラッチ回路は、pMOSである第5トランジスタ、第6トランジスタと、nMOSである第7トランジスタ、第8トランジスタと、を備える。第5トランジスタは、ソースが正側電源電圧Vddと接続される。第6トランジスタは、ソースが正側電源電圧Vddと接続され、ドレインが第5トランジスタのゲートと接続され、ゲートが第5トランジスタのドレインと接続される。第7トランジスタは、ソースが負側電源電圧Vssと接続され、ドレインが第5トランジスタのドレインと接続される。第8トランジスタは、ソースが負側電源電圧Vssと接続され、ドレインが第6トランジスタのドレイン及び第7トランジスタのゲートと接続され、ゲートが第7トランジスタのドレインと接続される。このような形態をとることにより、クロック信号によらず、第5、第7トランジスタのドレインからの出力と、第6、第8トランジスタのドレインからの出力が反転した値となる。 The latch circuit includes pMOS fifth and sixth transistors, and nMOS seventh and eighth transistors. The fifth transistor has a source connected to the positive power supply voltage Vdd. The sixth transistor has a source connected to the positive power supply voltage Vdd, a drain connected to the gate of the fifth transistor, and a gate connected to the drain of the fifth transistor. The seventh transistor has a source connected to the negative power supply voltage Vss and a drain connected to the drain of the fifth transistor. The eighth transistor has a source connected to the negative power supply voltage Vss, a drain connected to the drain of the sixth transistor and the gate of the seventh transistor, and a gate connected to the drain of the seventh transistor. By adopting such a form, the outputs from the drains of the fifth and seventh transistors and the outputs from the drains of the sixth and eighth transistors have inverted values regardless of the clock signal.
 図2の接続に基づいて、図4の各トランジスタの接続について説明する。第1インバータ200、第2インバータ202、第3インバータ204、第4インバータ206は、それぞれ、図2の左下、左上、右下、右上に位置するインバータに対応する。第1ラッチ回路、第2ラッチ回路は、それぞれ、図2の左側、右側に位置するラッチ回路に対応する。 The connection of each transistor in Fig. 4 will be explained based on the connection in Fig. 2. The first inverter 200, the second inverter 202, the third inverter 204, and the fourth inverter 206 correspond to the inverters positioned at the lower left, upper left, lower right, and upper right of FIG. 2, respectively. The first latch circuit and the second latch circuit correspond to the latch circuits located on the left and right sides of FIG. 2, respectively.
 図4における接続について説明する。 The connection in Fig. 4 will be explained.
 Vp-、Vp+、Vn-、Vn+は、それぞれ、分周の対象となるアナログ差動信号の交流成分にバイアス電圧を重畳した信号であり、入力回路10から出力される信号である。Q+、Q-、I+、I-は、上述したように、分周回路1の出力となる分周されたクロック信号である。ここでは、便宜上、Q+を出力する端子を第1出力端子、Q-を出力する端子を第2出力端子、I+を出力する端子を第3出力端子、I-を出力する端子を第4出力端子と呼ぶ。通信関連においては、QとIは、区別する必要があるかもしれない概念であるが、本開示においては、これらは記号として用いているだけであり、特に信号の名称については、制限されるものではない。ただし、Q+とQ-、I+とI-は、それぞれ差動信号を構成する。 Vp-, Vp+, Vn-, and Vn+ are signals obtained by superimposing a bias voltage on the AC component of the analog differential signal to be divided, and are signals output from the input circuit 10 . Q+, Q-, I+, and I- are frequency-divided clock signals that are outputs of the frequency divider circuit 1, as described above. Here, for convenience, the terminal that outputs Q+ is the first output terminal, the terminal that outputs Q- is the second output terminal, the terminal that outputs I+ is the third output terminal, and the terminal that outputs I- is the fourth output terminal. call. In the context of communications, Q and I are concepts that may need to be distinguished, but in this disclosure, they are only used as symbols, and the names of signals in particular are restricted. is not. However, Q+ and Q-, and I+ and I- each constitute a differential signal.
 第1出力端子は、第4インバータ206の第2トランジスタM42のドレイン及び第3トランジスタM43のドレインと、第1インバータ200の第1トランジスタM11のゲート及び第4トランジスタM14のゲートと、第2ラッチ回路212の第6トランジスタM26のドレイン及び第8トランジスタM28のドレインと接続される。入力されたVp-、Vn+の信号に基づいて、第4インバータ206から出力されるQ+の信号は、第1インバータ200及び第2ラッチ回路212に入力されるとともに、第1出力端子を介して出力される。Vp-、Vn+の信号により第4インバータ206の第2トランジスタM42及び第3トランジスタM43がオフする場合には、第2ラッチ回路212に保持されているQ+の信号が出力される。 The first output terminal is the drain of the second transistor M42 and the drain of the third transistor M43 of the fourth inverter 206, the gate of the first transistor M11 and the gate of the fourth transistor M14 of the first inverter 200, and the second latch circuit. 212 is connected to the drain of the sixth transistor M26 and the drain of the eighth transistor M28. Based on the input Vp- and Vn+ signals, the Q+ signal output from the fourth inverter 206 is input to the first inverter 200 and the second latch circuit 212, and is output via the first output terminal. be done. When the second transistor M42 and the third transistor M43 of the fourth inverter 206 are turned off by the signals of Vp- and Vn+, the signal of Q+ held in the second latch circuit 212 is output.
 第2出力端子は、第3インバータ204の第2トランジスタM32のドレイン及び第3トランジスタM33のドレインと、第2インバータ202の第1トランジスタM21のゲート及び第4トランジスタM24のゲートと、第2ラッチ回路212の第5トランジスタM25のドレイン及び第7トランジスタM27のドレインと接続される。入力されたVp-、Vn+の信号に基づいて、第3インバータ204から出力されるQ-の信号は、第2インバータ202及び第2ラッチ回路212に入力されるとともに、第2出力端子を介して出力される。Vp-、Vn+の信号により第3インバータ204の第2トランジスタM32及び第3トランジスタM33がオフする場合には、第2ラッチ回路212に保持されているQ-の信号が出力される。 The second output terminal is the drain of the second transistor M32 and the drain of the third transistor M33 of the third inverter 204, the gate of the first transistor M21 and the gate of the fourth transistor M24 of the second inverter 202, and the second latch circuit. 212 is connected to the drain of the fifth transistor M25 and the drain of the seventh transistor M27. Based on the input Vp- and Vn+ signals, the Q- signal output from the third inverter 204 is input to the second inverter 202 and the second latch circuit 212 and via the second output terminal. output. When the second transistor M32 and the third transistor M33 of the third inverter 204 are turned off by the signals of Vp- and Vn+, the signal of Q- held in the second latch circuit 212 is output.
 第3出力端子は、第2インバータ202の第2トランジスタM22のドレイン及び第3トランジスタM23のドレインと、第4インバータ206の第1トランジスタM41のゲート及び第4トランジスタM44のゲートと、第1ラッチ回路210の第6トランジスタM16のドレイン及び第8トランジスタM18のドレインと接続される。入力されたVp+、Vn-の信号に基づいて、第2インバータ202から出力されるI+の信号は、第4インバータ206及び第1ラッチ回路210に入力されるとともに、第3出力端子を介して出力される。Vp+、Vn-の信号により第2インバータ202の第2トランジスタM22及び第3トランジスタM23がオフする場合には、第1ラッチ回路210に保持されているI+の信号が出力される。 The third output terminal is the drain of the second transistor M22 and the drain of the third transistor M23 of the second inverter 202, the gate of the first transistor M41 and the gate of the fourth transistor M44 of the fourth inverter 206, and the first latch circuit. 210 is connected to the drain of the sixth transistor M16 and the drain of the eighth transistor M18. Based on the input Vp+ and Vn- signals, the I+ signal output from the second inverter 202 is input to the fourth inverter 206 and the first latch circuit 210, and is output via the third output terminal. be done. When the second transistor M22 and the third transistor M23 of the second inverter 202 are turned off by the signals of Vp+ and Vn-, the signal of I+ held in the first latch circuit 210 is output.
 第4出力端子は、第1インバータ200の第2トランジスタM12のドレイン及び第3トランジスタM13のドレインと、第3インバータ204の第1トランジスタM31のゲート及び第4トランジスタM34のゲートと、第1ラッチ回路210の第5トランジスタM15のドレイン及び第7トランジスタM17のドレインと接続される。入力されたVp+、Vn-の信号に基づいて、第1インバータ200から出力されるI-の信号は、第3インバータ204及び第1ラッチ回路210に入力されるとともに、第4出力端子を介して出力される。Vp+、Vn-の信号により第2インバータ202の第2トランジスタM12及び第3トランジスタM13がオフする場合には、第1ラッチ回路210に保持されているI-の信号が出力される。 The fourth output terminal is the drain of the second transistor M12 and the drain of the third transistor M13 of the first inverter 200, the gate of the first transistor M31 and the gate of the fourth transistor M34 of the third inverter 204, and the first latch circuit. 210 is connected to the drain of the fifth transistor M15 and the drain of the seventh transistor M17. Based on the input Vp+ and Vn- signals, the I- signal output from the first inverter 200 is input to the third inverter 204 and the first latch circuit 210, and through the fourth output terminal. output. When the second transistor M12 and the third transistor M13 of the second inverter 202 are turned off by the signals of Vp+ and Vn-, the signal of I- held in the first latch circuit 210 is output.
 このように、分周部20は、入力される信号Vp-、Vp+、及び、Vn-、Vn+により制御される。 Thus, the frequency divider 20 is controlled by the input signals Vp-, Vp+ and Vn-, Vn+.
 Vp-は、第3インバータ204の第2トランジスタM32及び第4インバータ206の第2トランジスタM42のしきい値電圧をまたぐようにその電圧値が振動する信号である。Vp+は、第1インバータ200の第2トランジスタM12及び第2インバータ202の第2トランジスタM22のしきい値電圧をまたぐようにその電圧値が振動する信号である。Vp-とVp+の交流成分は、差動信号を構成する。各インバータにおける第2トランジスタMx2が同じ素子であれば、例えば、Vp-、Vp+は、差動クロック信号の交流成分に、第2トランジスタMx2のしきい値電圧を重畳した信号として生成される。 Vp- is a signal whose voltage value oscillates across the threshold voltages of the second transistor M32 of the third inverter 204 and the second transistor M42 of the fourth inverter 206. Vp+ is a signal whose voltage value oscillates across the threshold voltages of the second transistor M12 of the first inverter 200 and the second transistor M22 of the second inverter 202. FIG. The alternating components of Vp- and Vp+ constitute a differential signal. If the second transistor Mx2 in each inverter is the same element, for example, Vp− and Vp+ are generated as signals obtained by superimposing the threshold voltage of the second transistor Mx2 on the AC component of the differential clock signal.
 Vn-は、第1インバータ200の第3トランジスタM13及び第2インバータ202の第3トランジスタM23のしきい値電圧をまたぐようにその電圧値が振動する信号である。Vn+は、第3インバータ204の第3トランジスタM33及び第4インバータ206の第3トランジスタM43のしきい値電圧をまたぐようにその電圧値が振動する信号である。Vn-とVn+の交流成分は、差動信号を構成する。各インバータにおける第3トランジスタMx3が同じ素子であれば、例えば、Vn-、Vn+は、差動クロック信号の交流成分に、第3トランジスタMx3のしきい値電圧を重畳した信号として生成される。 Vn- is a signal whose voltage value oscillates across the threshold voltages of the third transistor M13 of the first inverter 200 and the third transistor M23 of the second inverter 202. Vn+ is a signal whose voltage value oscillates across the threshold voltages of the third transistor M33 of the third inverter 204 and the third transistor M43 of the fourth inverter 206. FIG. The alternating components of Vn- and Vn+ constitute a differential signal. If the third transistor Mx3 in each inverter is the same element, for example, Vn− and Vn+ are generated as signals obtained by superimposing the threshold voltage of the third transistor Mx3 on the AC component of the differential clock signal.
 なお、本開示における形態は、図4の形態に限定されるものではなく、適切にアナログの駆動信号により分周可能な回路であれば、他の一般的な分周回路のインバータ、ラッチ回路等を分周部20として用いることもできる。 Note that the form in the present disclosure is not limited to the form of FIG. 4, and other general frequency dividing circuit inverters, latch circuits, etc. can be used as long as they are circuits that can be appropriately divided by analog drive signals. can also be used as the frequency divider 20.
 本開示における実施形態においては、入力回路10がこのアナログの交流信号であるVn-、Vn+、Vp-、Vp+を適切に生成することにより、アナログ信号からA/D変換をするためのバッファを介することなく分周した信号を取得することができる。以下、入力回路10のいくつかの具体的な実施形態について説明する。 In the embodiment of the present disclosure, the input circuit 10 appropriately generates these analog AC signals Vn-, Vn+, Vp-, and Vp+, so that the analog signal is converted through a buffer for A/D conversion. A divided signal can be obtained without Several specific embodiments of the input circuit 10 are described below.
 (第1実施形態)
 図5は、入力回路10の一例を示す図である。入力回路10は、キャパシタC1、C2、C3、C4と、定電圧源E1、E2と、抵抗R1、R2、R3、R4と、を備える。入力回路10は、入力端子としてアナログ信号IN+が印加される第1入力端子と、アナログ信号IN-が印加される第2入力端子と、を備える。
(First embodiment)
FIG. 5 is a diagram showing an example of the input circuit 10. As shown in FIG. The input circuit 10 includes capacitors C1, C2, C3, C4, constant voltage sources E1, E2, and resistors R1, R2, R3, R4. The input circuit 10 has, as input terminals, a first input terminal to which an analog signal IN+ is applied, and a second input terminal to which an analog signal IN- is applied.
 第1入力端子は、キャパシタC1、抵抗R1、定電圧源E1を介して、正側電源電圧Vddに接続される。正側電源電圧は、定電圧源E1と抵抗R1を介して、少なくとも第1インバータ200及び第2インバータ202の第2トランジスタM12、M22のしきい値電圧(第1バイアス電圧)に制御される。アナログ信号IN+は、キャパシタC1を介してその交流成分が抽出され、この交流成分が、正側電源電圧Vdd、定電圧源E1、抵抗R1に生成される第1バイアス電圧である第2トランジスタM12、M22のしきい値電圧と重畳される。したがって、入力回路10は、Vp+として、第2トランジスタM12、M22のしきい値電圧と、入力されるアナログ信号IN+の交流成分と、が重畳された信号を出力する。 The first input terminal is connected to the positive power supply voltage Vdd via a capacitor C1, a resistor R1, and a constant voltage source E1. The positive power supply voltage is controlled to at least the threshold voltage (first bias voltage) of the second transistors M12 and M22 of the first inverter 200 and the second inverter 202 via the constant voltage source E1 and the resistor R1. The analog signal IN+ has its AC component extracted through the capacitor C1, and this AC component is the positive power supply voltage Vdd, the constant voltage source E1, the second transistor M12 which is the first bias voltage generated by the resistor R1, Superimposed on the threshold voltage of M22. Therefore, the input circuit 10 outputs, as Vp+, a signal in which the threshold voltages of the second transistors M12 and M22 and the AC component of the input analog signal IN+ are superimposed.
 また、第1入力端子は、キャパシタC2、抵抗R2、定電圧源E2を介して、負側電源電圧Vssに接続される。負側電源電圧は、定電圧源E2と抵抗R2を介して、少なくとも第3インバータ204及び第4インバータ206の第3トランジスタM33、M43のしきい値電圧(第2バイアス電圧)に制御される。信号IN+は、キャパシタC2を介してその交流成分が抽出され、この交流成分が、負側電源電圧Vss、定電圧源E2、抵抗R2に生成される第2バイアス電圧である第3トランジスタM33、M43のしきい値電圧と重畳される。したがって、入力回路10は、Vn-として、第3トランジスタM33、M34のしきい値電圧と、入力されるアナログ信号IN+の交流成分と、が重畳された信号を出力する。 Also, the first input terminal is connected to the negative power supply voltage Vss via a capacitor C2, a resistor R2, and a constant voltage source E2. The negative power supply voltage is controlled at least to the threshold voltage (second bias voltage) of the third transistors M33 and M43 of the third inverter 204 and the fourth inverter 206 via the constant voltage source E2 and the resistor R2. The AC component of the signal IN+ is extracted through the capacitor C2, and this AC component is the negative power supply voltage Vss, the constant voltage source E2, and the third transistors M33 and M43, which are the second bias voltage generated by the resistor R2. is superimposed with the threshold voltage of Therefore, the input circuit 10 outputs, as Vn-, a signal in which the threshold voltages of the third transistors M33 and M34 and the AC component of the input analog signal IN+ are superimposed.
 第2入力端子は、キャパシタC3、抵抗R3、定電圧源E2を介して、負側電源電圧Vssに接続される。負側電源電圧は、定電圧源E3と抵抗R3を介して、少なくとも第1インバータ200及び第2インバータ202の第3トランジスタM13、M23のしきい値電圧(第3バイアス電圧)に制御される。信号IN-は、キャパシタC3を介してその交流成分が抽出され、この交流成分が、負側電源電圧Vss、定電圧源E3、抵抗R3に生成される第3バイアス電圧である第3トランジスタM13、M23のしきい値電圧と重畳される。したがって、入力回路10は、Vn+として、第3トランジスタM13、M23のしきい値電圧と、入力されるアナログの信号IN-の交流成分と、が重畳された信号を出力する。 The second input terminal is connected to the negative power supply voltage Vss via a capacitor C3, a resistor R3, and a constant voltage source E2. The negative power supply voltage is controlled at least to the threshold voltage (third bias voltage) of the third transistors M13 and M23 of the first inverter 200 and the second inverter 202 via the constant voltage source E3 and the resistor R3. The AC component of the signal IN- is extracted through the capacitor C3, and this AC component is the negative power supply voltage Vss, the constant voltage source E3, and the third transistor M13, which is the third bias voltage generated by the resistor R3. Superimposed on the threshold voltage of M23. Therefore, the input circuit 10 outputs, as Vn+, a signal in which the threshold voltages of the third transistors M13 and M23 and the AC component of the input analog signal IN- are superimposed.
 また、第2入力端子は、キャパシタC4、抵抗R4、定電圧源E1を介して、正側電源電圧Vddに接続される。正側電源電圧は、定電圧源E1と抵抗R4を介して、少なくとも第3インバータ204及び第4インバータ206の第2トランジスタM32、M42のしきい値電圧(第4バイアス電圧)に制御される。信号IN-は、キャパシタC4を介してその交流成分が抽出され、この交流成分が、正側電源電圧Vdd、定電圧源E1、抵抗R4に生成される第4バイアス電圧である第2トランジスタM32、M42のしきい値電圧と重畳される。したがって、入力回路10は、Vp-として、第2トランジスタM32、M32のしきい値電圧と、入力されるアナログ信号IN-の交流成分と、が重畳された信号を出力する。 Also, the second input terminal is connected to the positive power supply voltage Vdd via a capacitor C4, a resistor R4, and a constant voltage source E1. The positive power supply voltage is controlled to at least the threshold voltage (fourth bias voltage) of the second transistors M32 and M42 of the third inverter 204 and the fourth inverter 206 via the constant voltage source E1 and the resistor R4. The signal IN- has its AC component extracted through the capacitor C4, and this AC component is the positive power supply voltage Vdd, the constant voltage source E1, the fourth bias voltage generated by the resistor R4, the second transistor M32, Superimposed on the threshold voltage of M42. Therefore, the input circuit 10 outputs, as Vp-, a signal in which the threshold voltages of the second transistors M32, M32 and the AC component of the input analog signal IN- are superimposed.
 望ましくは、それぞれのインバータの第2トランジスタMx2は、同じ素子を用い、同様に、それぞれのインバータの第3トランジスタMx3は、同じ素子を用いる。この望ましい形態においては、Vdd - E1を第2トランジスタのしきい値電圧、E2を第3トランジスタのしきい値電圧とする。そして、それぞれの抵抗により、電源側に交流成分が伝搬しないように制御する。この場合、第1バイアス電圧と、第4バイアス電圧は、同じ値であり、第2バイアス電圧と、第3バイアス電圧は同じ値である。 Preferably, the second transistor Mx2 of each inverter uses the same element, and similarly the third transistor Mx3 of each inverter uses the same element. In this preferred form, Vdd - E1 is the threshold voltage of the second transistor and E2 is the threshold voltage of the third transistor. Then, each resistor controls so that the AC component is not propagated to the power supply side. In this case, the first bias voltage and the fourth bias voltage have the same value, and the second bias voltage and the third bias voltage have the same value.
 バイアス電圧を生成する回路は、例えば、第1バイアス電圧から第4バイアス電圧までを生成する第1バイアス回路から第4バイアス回路が別々に備えられてもよい。上記の望ましい別の例においては、第1バイアス電圧と第2バイアスを生成することができればよく、この場合は、第1バイアス回路と第2バイアス回路と、が備えられればよい。 The circuits that generate the bias voltages may be separately provided with, for example, first to fourth bias circuits that generate the first to fourth bias voltages. In another preferred example of the above, it is sufficient to be able to generate a first bias voltage and a second bias, in which case a first bias circuit and a second bias circuit may be provided.
 また、それぞれのバイアス電圧としきい値電圧とは、等しいことが望ましいが、これには限られない。十分にしきい値電圧に近い値であれば、同様の分周を実現することができる。 Also, it is desirable that the respective bias voltages and threshold voltages are equal, but this is not the only option. A similar division can be achieved if the value is sufficiently close to the threshold voltage.
 図6は、入力回路10の入出力信号であるINとVp、Vnのタイミングチャートである。図6に示されるように、Vn+/-は、IN+/-の交流成分を、E2、すなわち、第3トランジスタのしきい値電圧分増加させた信号となる。同様に、Vp+/-は、IN+/-の交流成分を、Vdd - E1、すなわち、第2トランジスタのしきい値電圧分バイアスをかけられた信号となる。 FIG. 6 is a timing chart of IN, Vp, and Vn, which are the input/output signals of the input circuit 10. FIG. As shown in FIG. 6, Vn+/- is a signal obtained by increasing the AC component of IN+/- by E2, ie, the threshold voltage of the third transistor. Similarly, Vp+/- is the AC component of IN+/- biased by Vdd-E1, the threshold voltage of the second transistor.
 図7は、分周部20の入出力信号であるVp、Vn、Q、Iのタイミングチャートである。この図に示すように、信号Vn、Vpに対して、Q+、I+、Q-、I-がそれぞれπ /2ずつ位相がずれた元のアナログ信号INの2倍の周期を有するクロック信号に変換できていることがわかる。 7 is a timing chart of Vp, Vn, Q, and I, which are the input/output signals of the frequency divider 20. FIG. As shown in this figure, Q+, I+, Q-, and I- are converted to a clock signal with a cycle twice that of the original analog signal IN with a phase shift of π/2 for signals Vn and Vp. I know it's done.
 以上のように、本実施形態によれば、オシレータにより発振されたアナログ信号について、分周する前にデジタル変換をすることなく、分周したデジタルのクロック信号を出力することが可能となる。この回路は、アナログ信号に対してキャパシタと抵抗といった構成を、従来の分周回路に追加するだけである。このため、アナログからデジタルへの変換バッファ等が必要となくなることにより、回路の面積の削減、及び、消費電力の削減を図ることができる。 As described above, according to this embodiment, the analog signal oscillated by the oscillator can be output as a frequency-divided digital clock signal without undergoing digital conversion before frequency division. This circuit simply adds capacitors and resistors to the conventional divider circuit for analog signals. For this reason, a conversion buffer or the like for converting from analog to digital is not required, so that the area of the circuit and the power consumption can be reduced.
 (第2実施形態)
 図8は、入力回路10の別の例を示す図である。この図に示すように、入力回路10において用いられる定電圧源E1、E2の代わりに、電圧を可変とする電源を用いることができる。
(Second embodiment)
FIG. 8 is a diagram showing another example of the input circuit 10. As shown in FIG. As shown in this figure, instead of the constant voltage sources E1 and E2 used in the input circuit 10, a power source with a variable voltage can be used.
 本実施形態においては、前述の実施形態の定電圧源の代わりに、可変トランジスタT1、T2を用いてINに重畳するバイアス電圧を可変とする構成をとる。左側に配置されるカレントミラー回路により定電流源の電流が出力される。このカレントミラーのゲート電位は、可変トランジスタT1のゲート電位と同電位となる。このため、可変トランジスタT1ともカレントミラーを構成し、可変トランジスタT1の素子係数を変更することにより、出力される電流の倍率を変更できる。正側電源電圧Vddとキャパシタを介して、この出力が接続されることにより、可変の電圧へと変化する。この電圧は、ダイオード接続されるトランジスタにより、適切な電圧へと変換され、それぞれに対応する抵抗を介して、入力側のキャパシタから出力された交流成分に重畳され信号Vnを生成する。 In this embodiment, instead of the constant voltage source of the previous embodiment, variable transistors T1 and T2 are used to make the bias voltage superimposed on IN variable. The current of the constant current source is output by the current mirror circuit arranged on the left side. The gate potential of this current mirror is the same as the gate potential of the variable transistor T1. Therefore, by forming a current mirror together with the variable transistor T1 and changing the element coefficient of the variable transistor T1, the magnification of the output current can be changed. By connecting this output to the positive power supply voltage Vdd via a capacitor, it changes to a variable voltage. This voltage is converted to an appropriate voltage by a diode-connected transistor and superimposed on the AC component output from the input-side capacitor through the corresponding resistors to generate the signal Vn.
 次の段に位置するカレントミラー回路に、右に位置するカレントミラーの電流がさらにミラーリングされる。ここで、可変トランジスタT2の素子係数を変更することにより、左側のカレントミラーの倍率を変更することができる。この後は、上記のVn側の動作と同様の動作により、信号Vpを生成する。 The current of the current mirror located on the right is further mirrored in the current mirror circuit located in the next stage. Here, the magnification of the left current mirror can be changed by changing the element coefficient of the variable transistor T2. After that, the signal Vp is generated by the same operation as the operation on the Vn side described above.
 以上のように、本実施形態によれば、クロック信号の交流成分に重畳される電圧値を適切に変化させることが可能となる。高周波数帯においては、MOSFETの性能により、ゲート-ソース間電圧がしきい値電圧よりも大きくなり、又は、小さくなるときに、性能通りに追従できない可能性がある。このような場合に、クロック信号に重畳する電圧値をしきい値電圧よりも大きく(nMOS)、又は、小さく(pMOS)することで、安定した性能が得られることがある。入力回路10において重畳する信号の電圧を可変トランジスタにより制御することで、より様々な周波数のクロック信号に対応することが可能となるとともに、しきい値電圧通りの制御ができる周波数帯においては、消費電力をあげないようにすることが可能となる。 As described above, according to this embodiment, it is possible to appropriately change the voltage value superimposed on the AC component of the clock signal. Depending on the performance of the MOSFET in a high frequency band, it may not be able to follow the performance when the gate-source voltage becomes larger or smaller than the threshold voltage. In such a case, stable performance may be obtained by making the voltage value superimposed on the clock signal larger (nMOS) or smaller (pMOS) than the threshold voltage. By controlling the voltage of the signal superimposed in the input circuit 10 with a variable transistor, it becomes possible to deal with clock signals of various frequencies, and in the frequency band in which control can be performed according to the threshold voltage, power consumption can be reduced. It is possible to prevent power from being raised.
 また、各インバータにおいて同じそれぞれのトランジスタに対して同じ素子を用いている場合には、プロセスのばらつきによりウェハ間で差が存在する場合がある。このような個体差により、前述の第1実施形態のように定電圧源をしきい値電圧とすると、分周の動作が適切ではない場合がある。このような場合においても、本実施形態のようにバイアス電圧を制御することができれば、個体差によらずに適切に分周することが可能となる。また、温度変化等により素子の係数が変化する場合においても、適切にバイアス電圧を制御することにより、適切な分周を実現することが可能となる。 Also, if the same elements are used for the same transistors in each inverter, there may be differences between wafers due to process variations. Due to such individual differences, if the constant voltage source is used as the threshold voltage as in the first embodiment, the frequency division operation may not be appropriate. Even in such a case, if the bias voltage can be controlled as in the present embodiment, appropriate frequency division can be achieved regardless of individual differences. Also, even when the coefficient of the element changes due to temperature change, etc., it is possible to realize appropriate frequency division by appropriately controlling the bias voltage.
 (第3実施形態)
 図9は、分周部20にパワーゲートをもうけた分周回路1を示す図である。トランジスタT3は、ソースが負側電源電圧Vssと接続され、ドレインがそれぞれのインバータの第4トランジスタ及びそれぞれのラッチ回路の第7、第8トランジスタのソースと接続され、ゲートにイネーブル信号が入力される。すなわち、分周部20のトランジスタT3以外のトランジスタは、トランジスタT3を介して負側電源電圧Vssと接続される。
(Third Embodiment)
FIG. 9 is a diagram showing a frequency dividing circuit 1 in which a power gate is provided in the frequency dividing section 20. As shown in FIG. The transistor T3 has a source connected to the negative power supply voltage Vss, a drain connected to the sources of the fourth transistor of each inverter and the seventh and eighth transistors of each latch circuit, and an enable signal input to its gate. . That is, transistors other than the transistor T3 of the frequency divider 20 are connected to the negative power supply voltage Vss via the transistor T3.
 イネーブル信号ENにより、分周部20と、電源回路との接続がオン、オフされる。このことにより、分周が必要ではない場合においては、分周回路1の機能を停止することが可能となる。 The enable signal EN turns on/off the connection between the frequency divider 20 and the power supply circuit. This makes it possible to stop the function of the frequency dividing circuit 1 when frequency division is not necessary.
 図9においては、パワーゲートとしてトランジスタT3のみが備えられるが、これに限定されるものではなく、複数のトランジスタがパワーゲートとしてトランジスタT3と並列に備えられていてもよい。 Although only the transistor T3 is provided as a power gate in FIG. 9, it is not limited to this, and a plurality of transistors may be provided in parallel with the transistor T3 as power gates.
 以上のように、本実施形態によれば、パワーゲートとなるトランジスタを備えることにより、分周回路1を動作させない場合におけるリーク電流を抑制し、消費電力を削減することが可能となる。 As described above, according to the present embodiment, by providing a transistor that functions as a power gate, it is possible to suppress leakage current and reduce power consumption when the frequency divider circuit 1 is not in operation.
 なお、本形態は、単独で用いられてもよいし、他の実施形態と併用してもよい。例えば、前述の第2実施形態や、後述の各実施形態において、パワーゲートを備えることも可能であり、上記の効果を奏することができる。 It should be noted that this embodiment may be used alone or in combination with other embodiments. For example, in the second embodiment described above and each embodiment described later, a power gate can be provided, and the above effects can be obtained.
 (第4実施形態)
 図10は、インバータのクロック信号による制御をまとめた分周回路1を示すものである。この図10に示すように、第1インバータ200と第2インバータ202は、第2トランジスタM12と第3トランジスタM13を共有してもよい。同様に、第3インバータ204と、第4インバータ206も、第2トランジスタM32と第3トランジスタM33を共有してもよい。
(Fourth embodiment)
FIG. 10 shows a frequency dividing circuit 1 that summarizes the control of inverters by clock signals. As shown in FIG. 10, the first inverter 200 and the second inverter 202 may share the second transistor M12 and the third transistor M13. Similarly, the third inverter 204 and the fourth inverter 206 may also share the second transistor M32 and the third transistor M33.
 このように、信号Vp+/Vp-、Vn+/Vn-が入力されるトランジスタを共有することにより、動作をより高速にすることができる。 In this way, by sharing the transistors to which the signals Vp+/Vp- and Vn+/Vn- are input, the operation can be made faster.
 (第5実施形態)
 図8の入力回路10を用いると、それぞれのインバータについては、電源電圧の変動に影響を受けないが、それぞれのラッチ回路は、電源電圧の変動の影響を受ける。本実施形態では、図8の入力回路10と比較して、全体的な分周回路1としてより電源電圧の影響を受けづらい回路について説明する。
(Fifth embodiment)
When the input circuit 10 of FIG. 8 is used, each inverter is not affected by power supply voltage fluctuations, but each latch circuit is affected by power supply voltage fluctuations. In this embodiment, as compared with the input circuit 10 of FIG. 8, a circuit that is less likely to be affected by the power supply voltage as the overall frequency dividing circuit 1 will be described.
 図11は、本実施形態に係る入力回路10を示す回路図である。入力回路10は、カレントミラー回路とクロック信号に直流成分を重畳するトランジスタとの間に、電源電圧をゲートに印加されるトランジスタT4、T5を備える。この2つのトランジスタT4、T5は、電源電圧によりドレイン電流が流れるので、バイアス電圧にも電源電圧の変動の影響を与える。 FIG. 11 is a circuit diagram showing the input circuit 10 according to this embodiment. The input circuit 10 includes transistors T4 and T5, to whose gates a power supply voltage is applied, between the current mirror circuit and the transistor that superimposes a DC component on the clock signal. These two transistors T4 and T5 have their drain currents flow according to the power supply voltage, so the bias voltage is also affected by fluctuations in the power supply voltage.
 具体的には、トランジスタT4は、例えば、pMOSであり、ソースが正側電源電圧Vddに接続され、ドレインがトランジスタT1のドレインと接続され、ゲートが負側電源電圧Vssに接続される。ゲートが負側電源電圧Vssに接続されることにより、このトランジスタT4は、ソースからドレインに一方向に電流を流すダイオードとして動作する。このダイオードの性能は、ソース及びゲートの接続関係から、電源電圧に依存する。 Specifically, the transistor T4 is, for example, a pMOS, has a source connected to the positive power supply voltage Vdd, a drain connected to the drain of the transistor T1, and a gate connected to the negative power supply voltage Vss. By connecting the gate to the negative power supply voltage Vss, the transistor T4 operates as a diode that allows a current to flow in one direction from the source to the drain. The performance of this diode depends on the power supply voltage due to the source and gate connections.
 同様に、トランジスタT5は、例えば、nMOSであり、ソースが負側電源電圧Vssに接続され、ドレインがトランジスタT2のドレインと接続され、ゲートが正側電源電圧Vddに接続される。ゲートが正側電源電圧Vddに接続されることにより、このトランジスタT5は、ドレインからソースに一方向に電流を流すダイオードとして動作する。このダイオードの性能は、ソース及びゲートの接続関係から、電源電圧に依存する。 Similarly, the transistor T5 is, for example, an nMOS, has a source connected to the negative power supply voltage Vss, a drain connected to the drain of the transistor T2, and a gate connected to the positive power supply voltage Vdd. By connecting the gate to the positive power supply voltage Vdd, the transistor T5 operates as a diode that allows a current to flow in one direction from the drain to the source. The performance of this diode depends on the power supply voltage due to the source and gate connections.
 入力回路10において、バイアス電圧を電源電圧の変動に影響を受ける形態とすることにより、入力回路10の出力する重畳信号が電源電圧の影響を受けることとなる。この入力回路10の出力は、分周部20におけるインバータの駆動電圧となるため、それぞれのインバータが電源電圧の変動に影響されて駆動することとなる。 By setting the bias voltage in the input circuit 10 to be affected by fluctuations in the power supply voltage, the superimposed signal output from the input circuit 10 is affected by the power supply voltage. Since the output of the input circuit 10 becomes the driving voltage of the inverters in the frequency dividing section 20, each inverter is driven under the influence of fluctuations in the power supply voltage.
 以上のように、本実施形態に係る入力回路10によれば、分周部20における各回路の駆動を電源電圧の変動とともに変化させる。すなわち、分周部20においてインバータ、ラッチ回路の双方が電源電圧の変動の影響を同じ程度受けることとなる。この結果、分周回路1の電源電圧変動に対する耐性を高めることができ、電源電圧が変動する場合においても、より安定した動作を実現することが可能となる。 As described above, according to the input circuit 10 according to the present embodiment, the driving of each circuit in the frequency dividing section 20 is changed with fluctuations in the power supply voltage. That is, both the inverter and the latch circuit in the frequency dividing section 20 are affected by the fluctuation of the power supply voltage to the same degree. As a result, it is possible to increase the resistance of the frequency dividing circuit 1 to fluctuations in the power supply voltage, and to realize more stable operation even when the power supply voltage fluctuates.
 例えば、分周部20のインバータのトランジスタの状態がSSであると、温度が低温であり電源電圧が高電位となる場合に、ラッチ回路のトランジスタの能力がインバータのトランジスタの能力よりも高くなる。このため、インバータ回路において、ラッチ回路のオン、オフを逆転させるような電位を印加させる必要があるが、インバータ回路の駆動能力が足りない場合には、小さい入力振幅における分周動作が困難となる。 For example, if the state of the inverter transistor in the frequency dividing unit 20 is SS, the capability of the latch circuit transistor becomes higher than the capability of the inverter transistor when the temperature is low and the power supply voltage is at a high potential. For this reason, in the inverter circuit, it is necessary to apply a potential that reverses the on/off state of the latch circuit. However, if the drive capability of the inverter circuit is insufficient, it becomes difficult to divide the frequency with a small input amplitude. .
 また、逆に、インバータのトランジスタの状態がFFであると、温度が高温であり電源電圧が低電位となる場合に、ラッチ回路のトランジスタの能力が低くなり、ラッチ回路において状態の保持が困難となる。この場合にも、小さな入力振幅における分周動作が困難となる。 Conversely, if the state of the inverter transistor is FF, the ability of the transistor in the latch circuit is reduced when the temperature is high and the power supply voltage is low, making it difficult to retain the state in the latch circuit. Become. In this case as well, it becomes difficult to divide the frequency at a small input amplitude.
 本実施形態のように、インバータを駆動するためのバイアス電圧を、ラッチ回路が依存する電源電圧と同じように変動させることにより、このような電源電圧の変動がある場合においても、インバータ及びラッチ回路を適切に動作させることが可能となり、分周回路1の動作を安定化させることができる。 As in the present embodiment, by varying the bias voltage for driving the inverter in the same manner as the power supply voltage on which the latch circuit depends, the inverter and the latch circuit can be controlled even when there is such variation in the power supply voltage. can be operated appropriately, and the operation of the frequency dividing circuit 1 can be stabilized.
 (第6実施形態)
 前述の第5実施形態の変形例として、バイアス電圧を生成する回路において電圧の変動に依存する一般的な形態を説明する。
(Sixth embodiment)
As a modification of the fifth embodiment described above, a general form in which a circuit that generates a bias voltage depends on voltage fluctuations will be described.
 図12は、本実施形態に係る入力回路10の回路図である。入力回路10は、バイアス電圧を生成するための電流源Id1、Id2を備える。この電流源Id1、Id2は、それぞれが電源電圧に依存する(電源電圧からの影響を受けやすい)電流源である。例えば、図11の回路におけるトランジスタT4、T5の動作により、図11に示す入力回路10は、図12に示す入力回路10の一例であることがわかる。 FIG. 12 is a circuit diagram of the input circuit 10 according to this embodiment. The input circuit 10 comprises current sources Id1, Id2 for generating bias voltages. The current sources Id1 and Id2 are current sources that depend on the power supply voltage (they are easily affected by the power supply voltage). For example, it can be seen from the operation of the transistors T4 and T5 in the circuit of FIG. 11 that the input circuit 10 shown in FIG. 11 is an example of the input circuit 10 shown in FIG.
 図13は、本実施形態に係る入力回路10の別の例の回路図である。入力回路10は、バイアス電圧を生成するための電流源Id1、Id2と、さらに、電流源Ii1、Ii2を備える。電流源Ii1、Ii2は、それぞれが電源電圧に依存しない(電源電圧からの影響を受けにくい)電流源である。このような電流源Ii1、Ii2を備えることにより、バイアス電圧が電源電圧から受ける影響の大きさを制御することもできる。 FIG. 13 is a circuit diagram of another example of the input circuit 10 according to this embodiment. The input circuit 10 comprises current sources Id1, Id2 for generating bias voltages, and also current sources Ii1, Ii2. Each of the current sources Ii1 and Ii2 is a current source that does not depend on the power supply voltage (is not easily affected by the power supply voltage). By providing such current sources Ii1 and Ii2, it is possible to control the magnitude of the influence of the power supply voltage on the bias voltage.
 図14は、図13に示す入力回路10の別の例である。電流源Id1、Id2、Ii1、Ii2に加え、電源電圧に依存する電流源Id3、Id4及び電源電圧に依存しない電源流Ii3、Ii4を備える。 FIG. 14 is another example of the input circuit 10 shown in FIG. In addition to current sources Id1, Id2, Ii1 and Ii2, current sources Id3 and Id4 dependent on the power supply voltage and power currents Ii3 and Ii4 independent of the power supply voltage are provided.
 図14の形態においては、電流源Id1、Ii1は、Vn+を生成するバイアス電圧の生成に使用される。電流源Id2、Ii2は、Vp+を生成するバイアス電圧の生成に使用される。電源流Id3、Ii3は、Vn-を生成するバイアス電圧の生成に使用される。電流源Id4、Ii4は、Vp-を生成するバイアス電圧の生成に使用される。前述の各実施形態においては、Vn+とVn-を生成するバイアス電圧と、Vp+とVp-を生成するバイアス電圧の2種類のバイアス電圧を生成していたが、このように、分周部20を駆動するために入力回路10が出力するそれぞれの信号に対するバイアス電圧を生成してもよい。 In the form of FIG. 14, current sources Id1 and Ii1 are used to generate the bias voltage that generates Vn+. Current sources Id2, Ii2 are used to generate bias voltages that generate Vp+. Power currents Id3, Ii3 are used to generate the bias voltages that generate Vn-. Current sources Id4, Ii4 are used to generate bias voltages that generate Vp-. In each of the above-described embodiments, two types of bias voltages were generated, one for generating Vn+ and Vn-, and the other for generating Vp+ and Vp-. A bias voltage may be generated for each signal output by the input circuit 10 to drive.
 図15は、電源電圧に依存する電流源の一例を示す図である。左側に示すのが、Vnに対するバイアス電圧を生成するための電流源である。これは、図11に示した例と同様であり、ソースが正側電源電圧Vddに接続され、ゲートが負側電源電圧Vssに接続されるpMOSを用いて構成される。 FIG. 15 is a diagram showing an example of a current source that depends on the power supply voltage. Shown on the left is the current source for generating the bias voltage for Vn. This is similar to the example shown in FIG. 11, and is configured using a pMOS whose source is connected to the positive power supply voltage Vdd and whose gate is connected to the negative power supply voltage Vss.
 右側に示すのが、Vpに対するバイアス電圧を生成するための電流源である。こちらも図11に示した例と同様であり、ソースが負側電源電圧Vssに接続され、ゲートが正側電源電圧Vddに接続されるnMOSを用いて構成される。 Shown on the right is the current source for generating the bias voltage for Vp. This is also the same as the example shown in FIG. 11, and is configured using an nMOS whose source is connected to the negative power supply voltage Vss and whose gate is connected to the positive power supply voltage Vdd.
 図16は、電源電圧に依存する電流源の別の例を示す図である。図15におけるMOSFETをより単純に、抵抗に置き換えることもできる。図15の場合と同様に、単純な構成でありプロセスが簡単になる一方で、回路面積を広くする必要がある。このため、目的に応じて適切にいずれかを選択することができる。 FIG. 16 is a diagram showing another example of a current source that depends on the power supply voltage. The MOSFETs in FIG. 15 can also be more simply replaced with resistors. As in the case of FIG. 15, it is necessary to increase the circuit area while the structure is simple and the process is simple. Therefore, either one can be appropriately selected according to the purpose.
 図17は、電源電圧に依存しない電源流の一例を示す図である。入力回路10は、電源電圧に依存しない電流源Ii1等として、BGR(Bandgap reference)と、2つのカレントミラーを用いた回路を備えてもよい。BGRは、電源電圧に依存しづらい電圧源であり、このBGRから生成されて電圧をカレントミラーの入力とすることにより、電源電圧の依存性が小さい電流を生成する。 FIG. 17 is a diagram showing an example of a power flow that does not depend on the power supply voltage. The input circuit 10 may include a circuit using a BGR (Bandgap reference) and two current mirrors as a current source Ii1 or the like that does not depend on the power supply voltage. The BGR is a voltage source that is less dependent on the power supply voltage, and by using the voltage generated from this BGR as an input to the current mirror, a current that is less dependent on the power supply voltage is generated.
 より詳しくは、左側のカレントミラーでは、ゲート電圧がBGRにより生成される。このことから、ドレイン電流は電源電圧依存の少ない電流となり、この電流がミラーリングされる。そして、Vp側のバイアス電圧を生成する電流は、このカレントミラーにより生成された電流に基づいて生成されるため、電源電圧依存の小さい電流となる。 More specifically, in the current mirror on the left, the gate voltage is generated by BGR. As a result, the drain current becomes less dependent on the power supply voltage, and this current is mirrored. Since the current that generates the bias voltage on the Vp side is generated based on the current generated by this current mirror, it is a small current that depends on the power supply voltage.
 左側のカレントミラーで生成された電流は、右側のカレントミラーの入力となる。このため、右側のカレントミラーからも電源電圧依存の小さい電流を複製することが可能となる。この生成された電流によりVn側のバイアス電圧が生成される。このため、Vn側のバイアス電圧を生成するための電流の電源電圧依存の小さい電流となる。 The current generated by the left current mirror becomes the input of the right current mirror. Therefore, it is possible to duplicate a small current that depends on the power supply voltage also from the right current mirror. This generated current generates a bias voltage on the Vn side. Therefore, the current for generating the bias voltage on the Vn side is a small current that depends on the power supply voltage.
 以上のように、本実施形態によれば、電源電圧に依存する電流源をp/nの双方においてバイアス電圧を生成するために少なくとも1つ用いることにより、分周部20におけるインバータとラッチ回路との電圧依存性の影響差を小さくすることができる。このようにバイアス電圧を生成することにより、入力回路10は、電源電圧の変動に対して安定性を向上したアナログ信号を生成することが可能となる。 As described above, according to the present embodiment, by using at least one current source that depends on the power supply voltage to generate the bias voltages for both p/n, the inverter and the latch circuit in the frequency divider 20 voltage dependence can be reduced. By generating the bias voltage in this way, the input circuit 10 can generate an analog signal with improved stability against fluctuations in the power supply voltage.
 なお、図11から図14の形態においては、適宜ノイズ除去用のキャパシタ等をさらに備えていてもよい。例えば、バイアス電圧である定電圧源E1の出力端となるトランジスタのドレインとVddの間、バイアス電圧である定電圧源E2の出力端となるトランジスタのドレインとVssの間等に、適宜キャパシタがさらに設けられていてもよい。  In addition, in the embodiments of Figs. 11 to 14, a noise removing capacitor or the like may be further provided as appropriate. For example, between the drain of the transistor that is the output terminal of the constant voltage source E1 that is the bias voltage and Vdd, and between the drain of the transistor that is the output terminal of the constant voltage source E2 that is the bias voltage and Vss. may be provided.
 (第7実施形態)
 前述の各実施形態における入力回路10及び分周部20により形成される分周回路1は、特に、分周部20の一部(例えば、第1インバータ200、第2インバータ202及び第1ラッチ回路210の組み合わせ)は、D-FFに置き換えることができる。このことから、この入力回路10と同等の構成を用いてD-FFに対するクロック信号をアナログ信号として生成することができる。
(Seventh embodiment)
The frequency dividing circuit 1 formed by the input circuit 10 and the frequency dividing section 20 in each of the above-described embodiments is particularly a part of the frequency dividing section 20 (for example, the first inverter 200, the second inverter 202 and the first latch circuit). 210 combinations) can be replaced by D-FF. Therefore, a clock signal for D-FF can be generated as an analog signal using a configuration equivalent to this input circuit 10. FIG.
 このことから、本開示におけるすべての実施形態に係る入力回路10によれば、3分周以上の分周回路の入力信号をアナログ信号とすることができる。前述の各実施形態においては、2分周の回路について説明したが、上述したように、3分周以上の分周回路であっても、同様にこの入力回路10を適用することができる。 Therefore, according to the input circuit 10 according to all the embodiments of the present disclosure, an analog signal can be used as the input signal of the frequency dividing circuit that divides the frequency by 3 or more. In each of the above-described embodiments, the circuit for frequency division by 2 has been described, but as described above, the input circuit 10 can also be applied to a frequency divider circuit for frequency division by 3 or more.
 前述した各実施形態に係る分周回路は、例えば、RF送受信機回路内の高周波数信号の処理に用いられてもよい。また、CMOSを用いたイメージセンサにおけるクロック信号を生成するADPLL(All Digital Phase Locked Loop)に用いられてもよい。これらの用途に限定されるものではなく、クロック信号の分周が用いられる装置等に利用することができる。 The frequency divider circuit according to each of the embodiments described above may be used, for example, for processing high-frequency signals in RF transceiver circuits. It may also be used in an ADPLL (All Digital Phase Locked Loop) that generates a clock signal in an image sensor using CMOS. The present invention is not limited to these uses, and can be used in devices that use frequency division of clock signals.
 前述した実施形態は、以下のような形態としてもよい。 The above-described embodiment may be in the following form.
(1)
 トランジスタを有する、インバータと、
 アナログの差動信号である第1信号を、前記トランジスタを駆動するための差動アナログ信号である第2信号に変換する、入力回路と、
 を備える分周回路。
(1)
an inverter having a transistor;
an input circuit that converts a first signal that is an analog differential signal to a second signal that is a differential analog signal for driving the transistors;
A divider circuit with
(2)
 前記トランジスタは、MOSFETであり、
 前記入力回路は、前記第1信号の交流成分にバイアス電圧を重畳して、前記トランジスタのしきい値電圧よりも低い電圧と前記トランジスタのしきい値電圧よりも高い電圧との間を振動する前記第2信号に変換する、
 (1)に記載の分周回路。
(2)
the transistor is a MOSFET;
The input circuit superimposes a bias voltage on the AC component of the first signal to oscillate between a voltage lower than the threshold voltage of the transistor and a voltage higher than the threshold voltage of the transistor. convert to a second signal,
(1) The divider circuit described in (1).
(3)
 前記インバータは、nMOSと、pMOSと、を備え、
 前記入力回路は、
  前記nMOSのしきい値電圧と、前記差動信号の交流成分とを重畳した信号と、
  前記pMOSのしきい値電圧と、前記差動信号の交流成分とを重畳した信号と、
 を生成する、
 (2)に記載の分周回路。
(3)
the inverter comprises an nMOS and a pMOS;
The input circuit is
a signal obtained by superimposing the threshold voltage of the nMOS and an AC component of the differential signal;
a signal obtained by superimposing the threshold voltage of the pMOS and an AC component of the differential signal;
to generate
(2) The divider circuit described in (2).
(4)
 前記入力回路は、
  前記差動信号を構成する一方の信号である第1差動信号の交流成分を抽出するキャパシタと、
  前記差動信号を構成する他方の信号である第2差動信号の交流成分を抽出するキャパシタと、
 を備える、
 (2)又は(3)に記載の分周回路。
(Four)
The input circuit is
a capacitor for extracting an AC component of a first differential signal, which is one of the signals constituting the differential signal;
a capacitor for extracting an AC component of a second differential signal, which is the other signal constituting the differential signal;
comprising
The frequency dividing circuit according to (2) or (3).
(5)
 ラッチ回路、をさらに備える、
 (2)に記載の分周回路。
(Five)
further comprising a latch circuit;
(2) The divider circuit described in (2).
(6)
 前記インバータは、
  p型MOSFETであり、ソースが正側電源電圧と接続される、第1トランジスタと、
  p型MOSFETであり、ソースが前記第1トランジスタのドレインと接続される、第2トランジスタと、
  n型MOSFETであり、ドレインが前記第2トランジスタのドレインと接続される、第3トランジスタと、
  n型MOSFETであり、ドレインが前記第3トランジスタのソースと接続され、ソースが負側電源電圧と接続され、ゲートが前記第1トランジスタのゲートと接続される、第4トランジスタと、
 を備え、
 前記ラッチ回路は、
  p型MOSFETであり、ソースが前記正側電源電圧と接続される、第5トランジスタと、
  p型MOSFETであり、ソースが前記正側電源電圧と接続され、ドレインが前記第5トランジスタのゲートと接続され、ゲートが前記第5トランジスタのドレインと接続される、第6トランジスタと、
  n型MOSFETであり、ドレインが前記第5トランジスタのドレインと接続され、ソースが前記負側電源電圧と接続される、第7トランジスタと、
  n型MOSFETであり、ドレインが前記第6トランジスタのドレイン及び前記第7トランジスタのゲートと接続され、ソースが前記負側電源電圧と接続され、ゲートが前記第7トランジスタのドレインと接続される、第8トランジスタと、
 を備え、
 前記分周回路は、
  第1インバータ、第2インバータ、第3インバータ及び第4インバータと、
  第1ラッチ回路及び第2ラッチ回路と、
  第1出力端子、第2出力端子、第3出力端子及び第4出力端子と、
 を備え、
 前記第1出力端子は、前記第1インバータの前記第1トランジスタのゲートと、前記第4インバータの前記第2トランジスタのドレインと、前記第2ラッチ回路の前記第6トランジスタのドレインと、に接続され、第1出力信号を出力し、
 前記第2出力端子は、前記第2インバータの前記第1トランジスタのゲートと、前記第3インバータの前記第2トランジスタのドレインと、前記第2ラッチ回路の前記第5トランジスタのドレインと、に接続され、前記第1出力信号と差動信号を形成する第2出力信号を出力し、
 前記第3出力端子は、前記第4インバータの前記第1トランジスタのゲートと、前記第2インバータの前記第2トランジスタのドレインと、前記第1ラッチ回路の前記第6トランジスタのドレインと、に接続され、前記第1出力信号と所定位相がずれた第3出力信号を出力し、
 前記第4出力端子は、前記第3インバータの前記第1トランジスタのゲートと、前記第1インバータの前記第2トランジスタのドレインと、前記第1ラッチ回路の前記第5トランジスタのドレインと、に接続され、前記第3出力信号と差動信号を形成する第4出力信号を出力する、
 (5)に記載の分周回路。
(6)
The inverter is
a first transistor, which is a p-type MOSFET and whose source is connected to the positive supply voltage;
a second transistor, which is a p-type MOSFET and whose source is connected to the drain of the first transistor;
a third transistor, which is an n-type MOSFET and whose drain is connected to the drain of the second transistor;
a fourth transistor which is an n-type MOSFET and has a drain connected to the source of the third transistor, a source connected to a negative power supply voltage, and a gate connected to the gate of the first transistor;
with
The latch circuit is
a fifth transistor, which is a p-type MOSFET and whose source is connected to the positive power supply voltage;
a sixth transistor which is a p-type MOSFET and has a source connected to the positive power supply voltage, a drain connected to the gate of the fifth transistor, and a gate connected to the drain of the fifth transistor;
a seventh transistor which is an n-type MOSFET and has a drain connected to the drain of the fifth transistor and a source connected to the negative power supply voltage;
an n-type MOSFET having a drain connected to the drain of the sixth transistor and the gate of the seventh transistor, a source connected to the negative power supply voltage, and a gate connected to the drain of the seventh transistor; 8 transistors and
with
The frequency divider circuit
a first inverter, a second inverter, a third inverter and a fourth inverter;
a first latch circuit and a second latch circuit;
a first output terminal, a second output terminal, a third output terminal and a fourth output terminal;
with
The first output terminal is connected to the gate of the first transistor of the first inverter, the drain of the second transistor of the fourth inverter, and the drain of the sixth transistor of the second latch circuit. , outputs the first output signal,
The second output terminal is connected to the gate of the first transistor of the second inverter, the drain of the second transistor of the third inverter, and the drain of the fifth transistor of the second latch circuit. , outputting a second output signal forming a differential signal with the first output signal;
The third output terminal is connected to the gate of the first transistor of the fourth inverter, the drain of the second transistor of the second inverter, and the drain of the sixth transistor of the first latch circuit. , outputting a third output signal having a predetermined phase shift from the first output signal,
The fourth output terminal is connected to the gate of the first transistor of the third inverter, the drain of the second transistor of the first inverter, and the drain of the fifth transistor of the first latch circuit. , outputting a fourth output signal forming a differential signal with the third output signal;
(5) The divider circuit described in (5).
(7)
 前記入力回路は、
  前記第1信号の一方が入力される、第1入力端子と、
  前記第1信号の他方が入力される、第2入力端子と、
  前記第1入力端子と、前記第1インバータの前記第2トランジスタのゲート及び前記第2インバータの前記第2トランジスタのゲートと、の間に接続される、第1キャパシタと、
  前記第2入力端子と、前記第3インバータの前記第2トランジスタのゲート及び前記第4インバータの前記第2トランジスタのゲートに接続される端子と、の間に接続される、第2キャパシタと、
  前記第1入力端子と、前記第1インバータの前記第3トランジスタのゲート及び前記第2インバータの前記第3トランジスタのゲートに接続される端子と、の間に接続される、第3キャパシタと、
  前記第2入力端子と、前記第3インバータの前記第3トランジスタのゲート及び前記第4インバータの前記第3トランジスタのゲートに接続される端子と、の間に接続される、第4キャパシタと、
 を備える、(6)に記載の分周回路。
(7)
The input circuit is
a first input terminal to which one of the first signals is input;
a second input terminal to which the other of the first signals is input;
a first capacitor connected between the first input terminal and the gate of the second transistor of the first inverter and the gate of the second transistor of the second inverter;
a second capacitor connected between the second input terminal and a terminal connected to the gate of the second transistor of the third inverter and the gate of the second transistor of the fourth inverter;
a third capacitor connected between the first input terminal and a terminal connected to the gate of the third transistor of the first inverter and the gate of the third transistor of the second inverter;
a fourth capacitor connected between the second input terminal and a terminal connected to the gate of the third transistor of the third inverter and the gate of the third transistor of the fourth inverter;
The divider circuit according to (6), comprising:
(8)
 前記入力回路は、
  前記第1キャパシタの出力に、第1バイアス電圧を印加する、第1バイアス回路と、
  前記第2キャパシタの出力に、第2バイアス電圧を印加する、第2バイアス回路と、
  前記第3キャパシタの出力に、第3バイアス電圧を印加する、第3バイアス回路と、
  前記第4キャパシタの出力に、第4バイアス電圧を印加する、第4バイアス回路と、
 を備える、
 (7)に記載の分周回路。
(8)
The input circuit is
a first bias circuit that applies a first bias voltage to the output of the first capacitor;
a second bias circuit that applies a second bias voltage to the output of the second capacitor;
a third bias circuit that applies a third bias voltage to the output of the third capacitor;
a fourth bias circuit that applies a fourth bias voltage to the output of the fourth capacitor;
comprising
(7) The divider circuit described in (7).
(9)
 前記第1バイアス電圧及び前記第2バイアス電圧は、前記第2トランジスタのしきい値電圧であり、
 前記第3バイアス電圧及び前記第4バイアス電圧は、前記第3トランジスタのしきい値電圧である、
 (8)に記載の分周回路。
(9)
the first bias voltage and the second bias voltage are threshold voltages of the second transistor;
wherein the third bias voltage and the fourth bias voltage are threshold voltages of the third transistor;
(8) The divider circuit described in (8).
(10)
 前記入力回路は、
  前記正側電源電圧に接続される、第1定常電圧源と、
  前記負側電源電圧に接続される、第2定常電圧源と、
 を備え、
 前記第1バイアス回路は、前記第1定常電圧源と、前記第1定常電圧源に接続される第1抵抗と、を備え、
 前記第2バイアス回路は、前記第1定常電圧源と、前記第1定常電圧源に接続される第2抵抗と、を備え、
 前記第3バイアス回路は、前記第2定常電圧源と、前記第2定常電圧源に接続される第3抵抗と、を備え、
 前記第4バイアス回路は、前記第2定常電圧源と、前記第2定常電圧源に接続される第4抵抗と、を備える、
 (8)に記載の分周回路。
(Ten)
The input circuit is
a first steady-state voltage source connected to the positive power supply voltage;
a second steady-state voltage source connected to the negative power supply voltage;
with
The first bias circuit includes the first steady voltage source and a first resistor connected to the first steady voltage source,
The second bias circuit comprises the first steady voltage source and a second resistor connected to the first steady voltage source,
the third bias circuit includes the second constant voltage source and a third resistor connected to the second constant voltage source,
The fourth bias circuit comprises the second constant voltage source and a fourth resistor connected to the second constant voltage source,
(8) The divider circuit described in (8).
(11)
 前記第1バイアス回路、前記第2バイアス回路、前記第3バイアス回路、前記第4バイアス回路は、電圧を可変制御できる、
 (8)に記載の分周回路。
(11)
The first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit can variably control voltages.
(8) The divider circuit described in (8).
(12)
 前記第1インバータ及び前記第2インバータは、前記第2トランジスタ及び前記第3トランジスタを共有し、
 前記第3インバータ及び前記第4インバータは、前記第2トランジスタ及び前記第3トランジスタを共有する、
 (6)から(11)のいずれかに記載の分周回路。
(12)
the first inverter and the second inverter share the second transistor and the third transistor;
the third inverter and the fourth inverter share the second transistor and the third transistor;
A frequency dividing circuit according to any one of (6) to (11).
(13)
 前記第1バイアス回路、前記第2バイアス回路、前記第3バイアス回路、前記第4バイアス回路は、前記正側電源電圧及び前記負側電源電圧のうち、少なくとも一方の変動に依存して出力する電流が変動する電流源を少なくとも1つ備える、
 (8)から(10)のいずれかに記載の分周回路。
(13)
The first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit output currents depending on the fluctuation of at least one of the positive power supply voltage and the negative power supply voltage. comprising at least one current source with a varying
The frequency dividing circuit according to any one of (8) to (10).
(14)
 前記電流源は、前記正側電源電圧又は前記負側電源電圧にゲートが接続されるトランジスタを備える、
 (13)に記載の分周回路。
(14)
the current source comprises a transistor having a gate connected to the positive power supply voltage or the negative power supply voltage;
(13) The divider circuit described in (13).
(15)
 前記電流源は、前記正側電源電圧又は前記負側電源電圧と接続される抵抗を備える、
 (13)に記載の分周回路。
(15)
The current source comprises a resistor connected to the positive power supply voltage or the negative power supply voltage,
(13) The divider circuit described in (13).
(16)
 前記第4トランジスタのソース、前記第7トランジスタのソース及び前記第8トランジスタのソースと、前記負側電源電圧との間に、さらに、パワーゲートトランジスタを備える、
 (6)から(15)のいずれかに記載の分周回路。
(16)
Further comprising a power gate transistor between the source of the fourth transistor, the source of the seventh transistor and the source of the eighth transistor, and the negative power supply voltage,
A frequency dividing circuit according to any one of (6) to (15).
(17)
 前記所定位相は、π /2である、
 (6)から(16)のいずれかに記載の分周回路。
(17)
The predetermined phase is π/2,
A frequency dividing circuit according to any one of (6) to (16).
(18)
 前記第1信号を、n分周(nは、2以上の整数)した信号を生成する、
 (1)から(17)のいずれかに記載の分周回路。
(18)
generating a signal by dividing the first signal by n (where n is an integer equal to or greater than 2);
A frequency dividing circuit according to any one of (1) to (17).
 本開示の態様は、前述した実施形態に限定されるものではなく、想到しうる種々の変形も含むものであり、本開示の効果も前述の内容に限定されるものではない。各実施形態における構成要素は、適切に組み合わされて適用されてもよい。すなわち、特許請求の範囲に規定された内容及びその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 Aspects of the present disclosure are not limited to the above-described embodiments, but include various conceivable modifications, and the effects of the present disclosure are not limited to the above-described contents. The components in each embodiment may be appropriately combined and applied. That is, various additions, changes, and partial deletions are possible without departing from the conceptual idea and spirit of the present disclosure derived from the content defined in the claims and equivalents thereof.
1: 分周回路、
10: 入力回路、20: 分周部、
200: 第1インバータ、202: 第2インバータ、204: 第3インバータ、206: 第4インバータ、
210: 第1ラッチ回路、212: 第2ラッチ回路、
1: divider circuit,
10: input circuit, 20: divider,
200: first inverter, 202: second inverter, 204: third inverter, 206: fourth inverter,
210: first latch circuit, 212: second latch circuit,

Claims (18)

  1.  トランジスタを有する、インバータと、
     アナログの差動信号である第1信号を、前記トランジスタを駆動するための差動アナログ信号である第2信号に変換する、入力回路と、
     を備える分周回路。
    an inverter having a transistor;
    an input circuit that converts a first signal that is an analog differential signal to a second signal that is a differential analog signal for driving the transistors;
    A divider circuit with
  2.  前記トランジスタは、MOSFETであり、
     前記入力回路は、前記第1信号の交流成分にバイアス電圧を重畳して、前記トランジスタのしきい値電圧よりも低い電圧と前記トランジスタのしきい値電圧よりも高い電圧との間を振動する前記第2信号に変換する、
     請求項1に記載の分周回路。
    the transistor is a MOSFET;
    The input circuit superimposes a bias voltage on the AC component of the first signal to oscillate between a voltage lower than the threshold voltage of the transistor and a voltage higher than the threshold voltage of the transistor. convert to a second signal,
    The frequency dividing circuit according to claim 1.
  3.  前記インバータは、nMOSと、pMOSと、を備え、
     前記入力回路は、
      前記nMOSのしきい値電圧と、前記差動信号の交流成分とを重畳した信号と、
      前記pMOSのしきい値電圧と、前記差動信号の交流成分とを重畳した信号と、
     を生成する、
     請求項2に記載の分周回路。
    the inverter comprises an nMOS and a pMOS;
    The input circuit is
    a signal obtained by superimposing the threshold voltage of the nMOS and an AC component of the differential signal;
    a signal obtained by superimposing the threshold voltage of the pMOS and an AC component of the differential signal;
    to generate
    3. The frequency dividing circuit according to claim 2.
  4.  前記入力回路は、
      前記差動信号を構成する一方の信号である第1差動信号の交流成分を抽出するキャパシタと、
      前記差動信号を構成する他方の信号である第2差動信号の交流成分を抽出するキャパシタと、
     を備える、
     請求項2に記載の分周回路。
    The input circuit is
    a capacitor for extracting an AC component of a first differential signal, which is one of the signals constituting the differential signal;
    a capacitor for extracting an AC component of a second differential signal, which is the other signal constituting the differential signal;
    comprising
    3. The frequency dividing circuit according to claim 2.
  5.  ラッチ回路、をさらに備える、
     請求項2に記載の分周回路。
    further comprising a latch circuit;
    3. The frequency dividing circuit according to claim 2.
  6.  前記インバータは、
      p型MOSFETであり、ソースが正側電源電圧と接続される、第1トランジスタと、
      p型MOSFETであり、ソースが前記第1トランジスタのドレインと接続される、第2トランジスタと、
      n型MOSFETであり、ドレインが前記第2トランジスタのドレインと接続される、第3トランジスタと、
      n型MOSFETであり、ドレインが前記第3トランジスタのソースと接続され、ソースが負側電源電圧と接続され、ゲートが前記第1トランジスタのゲートと接続される、第4トランジスタと、
     を備え、
     前記ラッチ回路は、
      p型MOSFETであり、ソースが前記正側電源電圧と接続される、第5トランジスタと、
      p型MOSFETであり、ソースが前記正側電源電圧と接続され、ドレインが前記第5トランジスタのゲートと接続され、ゲートが前記第5トランジスタのドレインと接続される、第6トランジスタと、
      n型MOSFETであり、ドレインが前記第5トランジスタのドレインと接続され、ソースが前記負側電源電圧と接続される、第7トランジスタと、
      n型MOSFETであり、ドレインが前記第6トランジスタのドレイン及び前記第7トランジスタのゲートと接続され、ソースが前記負側電源電圧と接続され、ゲートが前記第7トランジスタのドレインと接続される、第8トランジスタと、
     を備え、
     前記分周回路は、
      第1インバータ、第2インバータ、第3インバータ及び第4インバータと、
      第1ラッチ回路及び第2ラッチ回路と、
      第1出力端子、第2出力端子、第3出力端子及び第4出力端子と、
     を備え、
     前記第1出力端子は、前記第1インバータの前記第1トランジスタのゲートと、前記第4インバータの前記第2トランジスタのドレインと、前記第2ラッチ回路の前記第6トランジスタのドレインと、に接続され、第1出力信号を出力し、
     前記第2出力端子は、前記第2インバータの前記第1トランジスタのゲートと、前記第3インバータの前記第2トランジスタのドレインと、前記第2ラッチ回路の前記第5トランジスタのドレインと、に接続され、前記第1出力信号と差動信号を形成する第2出力信号を出力し、
     前記第3出力端子は、前記第4インバータの前記第1トランジスタのゲートと、前記第2インバータの前記第2トランジスタのドレインと、前記第1ラッチ回路の前記第6トランジスタのドレインと、に接続され、前記第1出力信号と所定位相がずれた第3出力信号を出力し、
     前記第4出力端子は、前記第3インバータの前記第1トランジスタのゲートと、前記第1インバータの前記第2トランジスタのドレインと、前記第1ラッチ回路の前記第5トランジスタのドレインと、に接続され、前記第3出力信号と差動信号を形成する第4出力信号を出力する、
     請求項5に記載の分周回路。
    The inverter is
    a first transistor, which is a p-type MOSFET and whose source is connected to the positive supply voltage;
    a second transistor, which is a p-type MOSFET and whose source is connected to the drain of the first transistor;
    a third transistor, which is an n-type MOSFET and whose drain is connected to the drain of the second transistor;
    a fourth transistor which is an n-type MOSFET and has a drain connected to the source of the third transistor, a source connected to a negative power supply voltage, and a gate connected to the gate of the first transistor;
    with
    The latch circuit is
    a fifth transistor, which is a p-type MOSFET and whose source is connected to the positive power supply voltage;
    a sixth transistor which is a p-type MOSFET and has a source connected to the positive power supply voltage, a drain connected to the gate of the fifth transistor, and a gate connected to the drain of the fifth transistor;
    a seventh transistor which is an n-type MOSFET and has a drain connected to the drain of the fifth transistor and a source connected to the negative power supply voltage;
    an n-type MOSFET having a drain connected to the drain of the sixth transistor and the gate of the seventh transistor, a source connected to the negative power supply voltage, and a gate connected to the drain of the seventh transistor; 8 transistors and
    with
    The frequency divider circuit
    a first inverter, a second inverter, a third inverter and a fourth inverter;
    a first latch circuit and a second latch circuit;
    a first output terminal, a second output terminal, a third output terminal and a fourth output terminal;
    with
    The first output terminal is connected to the gate of the first transistor of the first inverter, the drain of the second transistor of the fourth inverter, and the drain of the sixth transistor of the second latch circuit. , outputs the first output signal,
    The second output terminal is connected to the gate of the first transistor of the second inverter, the drain of the second transistor of the third inverter, and the drain of the fifth transistor of the second latch circuit. , outputting a second output signal forming a differential signal with the first output signal;
    The third output terminal is connected to the gate of the first transistor of the fourth inverter, the drain of the second transistor of the second inverter, and the drain of the sixth transistor of the first latch circuit. , outputting a third output signal having a predetermined phase shift from the first output signal,
    The fourth output terminal is connected to the gate of the first transistor of the third inverter, the drain of the second transistor of the first inverter, and the drain of the fifth transistor of the first latch circuit. , outputting a fourth output signal forming a differential signal with the third output signal;
    6. The frequency dividing circuit according to claim 5.
  7.  前記入力回路は、
      前記第1信号の一方が入力される、第1入力端子と、
      前記第1信号の他方が入力される、第2入力端子と、
      前記第1入力端子と、前記第1インバータの前記第2トランジスタのゲート及び前記第2インバータの前記第2トランジスタのゲートと、の間に接続される、第1キャパシタと、
      前記第2入力端子と、前記第3インバータの前記第2トランジスタのゲート及び前記第4インバータの前記第2トランジスタのゲートに接続される端子と、の間に接続される、第2キャパシタと、
      前記第1入力端子と、前記第1インバータの前記第3トランジスタのゲート及び前記第2インバータの前記第3トランジスタのゲートに接続される端子と、の間に接続される、第3キャパシタと、
      前記第2入力端子と、前記第3インバータの前記第3トランジスタのゲート及び前記第4インバータの前記第3トランジスタのゲートに接続される端子と、の間に接続される、第4キャパシタと、
     を備える、請求項6に記載の分周回路。
    The input circuit is
    a first input terminal to which one of the first signals is input;
    a second input terminal to which the other of the first signals is input;
    a first capacitor connected between the first input terminal and the gate of the second transistor of the first inverter and the gate of the second transistor of the second inverter;
    a second capacitor connected between the second input terminal and a terminal connected to the gate of the second transistor of the third inverter and the gate of the second transistor of the fourth inverter;
    a third capacitor connected between the first input terminal and a terminal connected to the gate of the third transistor of the first inverter and the gate of the third transistor of the second inverter;
    a fourth capacitor connected between the second input terminal and a terminal connected to the gate of the third transistor of the third inverter and the gate of the third transistor of the fourth inverter;
    7. The divider circuit of claim 6, comprising:
  8.  前記入力回路は、
      前記第1キャパシタの出力に、第1バイアス電圧を印加する、第1バイアス回路と、
      前記第2キャパシタの出力に、第2バイアス電圧を印加する、第2バイアス回路と、
      前記第3キャパシタの出力に、第3バイアス電圧を印加する、第3バイアス回路と、
      前記第4キャパシタの出力に、第4バイアス電圧を印加する、第4バイアス回路と、
     を備える、
     請求項7に記載の分周回路。
    The input circuit is
    a first bias circuit that applies a first bias voltage to the output of the first capacitor;
    a second bias circuit that applies a second bias voltage to the output of the second capacitor;
    a third bias circuit that applies a third bias voltage to the output of the third capacitor;
    a fourth bias circuit that applies a fourth bias voltage to the output of the fourth capacitor;
    comprising
    8. A frequency dividing circuit according to claim 7.
  9.  前記第1バイアス電圧及び前記第2バイアス電圧は、前記第2トランジスタのしきい値電圧であり、
     前記第3バイアス電圧及び前記第4バイアス電圧は、前記第3トランジスタのしきい値電圧である、
     請求項8に記載の分周回路。
    the first bias voltage and the second bias voltage are threshold voltages of the second transistor;
    wherein the third bias voltage and the fourth bias voltage are threshold voltages of the third transistor;
    9. A frequency dividing circuit according to claim 8.
  10.  前記入力回路は、
      前記正側電源電圧に接続される、第1定常電圧源と、
      前記負側電源電圧に接続される、第2定常電圧源と、
     を備え、
     前記第1バイアス回路は、前記第1定常電圧源と、前記第1定常電圧源に接続される第1抵抗と、を備え、
     前記第2バイアス回路は、前記第1定常電圧源と、前記第1定常電圧源に接続される第2抵抗と、を備え、
     前記第3バイアス回路は、前記第2定常電圧源と、前記第2定常電圧源に接続される第3抵抗と、を備え、
     前記第4バイアス回路は、前記第2定常電圧源と、前記第2定常電圧源に接続される第4抵抗と、を備える、
     請求項8に記載の分周回路。
    The input circuit is
    a first steady-state voltage source connected to the positive power supply voltage;
    a second steady-state voltage source connected to the negative power supply voltage;
    with
    The first bias circuit includes the first steady voltage source and a first resistor connected to the first steady voltage source,
    The second bias circuit includes the first steady voltage source and a second resistor connected to the first steady voltage source,
    the third bias circuit includes the second constant voltage source and a third resistor connected to the second constant voltage source,
    The fourth bias circuit comprises the second constant voltage source and a fourth resistor connected to the second constant voltage source,
    9. A frequency dividing circuit according to claim 8.
  11.  前記第1バイアス回路、前記第2バイアス回路、前記第3バイアス回路、前記第4バイアス回路は、電圧を可変制御できる、
     請求項8に記載の分周回路。
    The first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit can variably control voltages.
    9. A frequency dividing circuit according to claim 8.
  12.  前記第1インバータ及び前記第2インバータは、前記第2トランジスタ及び前記第3トランジスタを共有し、
     前記第3インバータ及び前記第4インバータは、前記第2トランジスタ及び前記第3トランジスタを共有する、
     請求項6に記載の分周回路。
    the first inverter and the second inverter share the second transistor and the third transistor;
    the third inverter and the fourth inverter share the second transistor and the third transistor;
    7. The frequency dividing circuit according to claim 6.
  13.  前記第1バイアス回路、前記第2バイアス回路、前記第3バイアス回路、前記第4バイアス回路は、前記正側電源電圧及び前記負側電源電圧のうち、少なくとも一方の変動に依存して出力する電流が変動する電流源を少なくとも1つ備える、
     請求項8に記載の分周回路。
    The first bias circuit, the second bias circuit, the third bias circuit, and the fourth bias circuit output currents depending on the fluctuation of at least one of the positive power supply voltage and the negative power supply voltage. comprising at least one current source with a varying
    9. A frequency dividing circuit according to claim 8.
  14.  前記電流源は、前記正側電源電圧又は前記負側電源電圧にゲートが接続されるトランジスタを備える、
     請求項13に記載の分周回路。
    the current source comprises a transistor having a gate connected to the positive power supply voltage or the negative power supply voltage;
    14. A frequency divider circuit as claimed in claim 13.
  15.  前記電流源は、前記正側電源電圧又は前記負側電源電圧と接続される抵抗を備える、
     請求項13に記載の分周回路。
    The current source comprises a resistor connected to the positive power supply voltage or the negative power supply voltage,
    14. A frequency divider circuit as claimed in claim 13.
  16.  前記第4トランジスタのソース、前記第7トランジスタのソース及び前記第8トランジスタのソースと、前記負側電源電圧との間に、さらに、パワーゲートトランジスタを備える、
     請求項6に記載の分周回路。
    Further comprising a power gate transistor between the source of the fourth transistor, the source of the seventh transistor and the source of the eighth transistor, and the negative power supply voltage,
    7. The frequency dividing circuit according to claim 6.
  17.  前記所定位相は、π /2である、
     請求項6に記載の分周回路。
    The predetermined phase is π/2,
    7. The frequency dividing circuit according to claim 6.
  18.  前記第1信号を、n分周(nは、2以上の整数)した信号を生成する、
     請求項1に記載の分周回路。
    generating a signal by dividing the first signal by n (where n is an integer equal to or greater than 2);
    The frequency dividing circuit according to claim 1.
PCT/JP2022/009164 2021-03-31 2022-03-03 Frequency dividing circuit WO2022209561A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023510711A JPWO2022209561A1 (en) 2021-03-31 2022-03-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061765 2021-03-31
JP2021-061765 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209561A1 true WO2022209561A1 (en) 2022-10-06

Family

ID=83458547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009164 WO2022209561A1 (en) 2021-03-31 2022-03-03 Frequency dividing circuit

Country Status (2)

Country Link
JP (1) JPWO2022209561A1 (en)
WO (1) WO2022209561A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411432B1 (en) * 2006-07-31 2008-08-12 Lattice Semiconductor Corporation Integrated circuits and complementary CMOS circuits for frequency dividers
JP2011182364A (en) * 2010-03-04 2011-09-15 Panasonic Corp Cmos inverter type high-frequency divider
JP2016116097A (en) * 2014-12-16 2016-06-23 株式会社メガチップス Clock generation circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411432B1 (en) * 2006-07-31 2008-08-12 Lattice Semiconductor Corporation Integrated circuits and complementary CMOS circuits for frequency dividers
JP2011182364A (en) * 2010-03-04 2011-09-15 Panasonic Corp Cmos inverter type high-frequency divider
JP2016116097A (en) * 2014-12-16 2016-06-23 株式会社メガチップス Clock generation circuit

Also Published As

Publication number Publication date
JPWO2022209561A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US7298183B2 (en) High frequency divider circuits and methods
US9048849B2 (en) Supply regulated voltage controlled oscillator including active loop filter and phase locked loop using the same
JP5480896B2 (en) Injection-locked odd frequency divider and PLL circuit
US7268635B2 (en) Circuits for voltage-controlled ring oscillators and method of generating a periodic signal
US8860511B2 (en) Frequency divider and PLL circuit
US7863991B1 (en) Wide range/high speed low power CMOS VCO
US10707882B1 (en) Voltage-controlled oscillator circuit and phase-locked loop circuit
JPH06343022A (en) Voltage controlled oscillation circuit
WO2020105182A1 (en) Voltage-controlled oscillator and pll circuit in which same is used
KR100324163B1 (en) Oscillating circuit
WO2022209561A1 (en) Frequency dividing circuit
US5994968A (en) VCO having a low sensitivity to noise on the power supply
JP2002223149A (en) Semiconductor integrated circuit
JP2007258981A (en) Voltage controlled oscillation circuit
KR20100073948A (en) The ring oscillator with wide frequency range
CN109245723B (en) On-chip RC oscillator circuit
JP2005160093A (en) Method and apparatus for generating oscillation signal according to control current
CN107317580B (en) High-stability oscillator circuit and implementation method thereof
JP2003163579A (en) Frequency variable oscillating circuit
JP2004096362A (en) Voltage controlled oscillator and orthogonal modulator
US6710667B2 (en) Voltage controlled oscillator
JPH088651A (en) Voltage-controlled oscillator
CN113162614A (en) High speed clock filter and method thereof
JPH07321649A (en) Voltage controlled oscillator and pll circuit
US5675294A (en) Single pin crystal oscillator circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779786

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510711

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779786

Country of ref document: EP

Kind code of ref document: A1