WO2022209283A1 - Cardiac output measurement sensor and control program - Google Patents

Cardiac output measurement sensor and control program Download PDF

Info

Publication number
WO2022209283A1
WO2022209283A1 PCT/JP2022/004390 JP2022004390W WO2022209283A1 WO 2022209283 A1 WO2022209283 A1 WO 2022209283A1 JP 2022004390 W JP2022004390 W JP 2022004390W WO 2022209283 A1 WO2022209283 A1 WO 2022209283A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
cardiac output
data
waveform
unit
Prior art date
Application number
PCT/JP2022/004390
Other languages
French (fr)
Japanese (ja)
Inventor
滝太郎 矢部
圭 本田
信一郎 須田
淳 曽根
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2022209283A1 publication Critical patent/WO2022209283A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume

Definitions

  • the present invention relates to a cardiac output measurement sensor and a control program.
  • Patent Document 1 discloses a device that includes a transmitting antenna, a receiving antenna, and an estimating unit.
  • the transmitting antenna transmits radio waves such as microwaves to the patient's chest
  • the receiving antenna receives the radio waves transmitted from the transmitting antenna
  • the estimating unit measures the phase or amplitude intensity of the radio waves received by the receiving antenna. Based on this, the cardiac output of the person to be measured is detected (see Patent Document 1).
  • the received waves obtained by the receiving antennas may not be suitable for measuring cardiac output. If the transmitter/receiver antenna is misaligned with respect to the heart and used in a state unsuitable for measuring cardiac output, the resulting measurement accuracy of the cardiac output decreases.
  • the obtained change in cardiac output may not be the same as the antenna installation position. It is not possible to determine whether this is due to a change in the patient's condition or a change in the patient's condition.
  • the present invention has been made in view of the above circumstances.
  • the purpose is to provide a control program.
  • the cardiac output measurement sensor of the present invention comprises a transmitting antenna for transmitting electromagnetic waves toward a living body, and a receiving antenna arranged to face the transmitting antenna with the heart of the living body interposed therebetween. an antenna; and a cardiac output estimator for estimating the volume of blood pumped from the heart using the electromagnetic wave received by the receiving antenna and transmitted through the living body, wherein At least one of the antenna elements includes a plurality of antenna elements positioned at different positions with respect to the living body, and further creates waveform data representing temporal changes in measured values measured for each of the antenna elements, and transmits the waveform data to each of the antenna elements. and a primary distribution creating unit that creates waveform distribution data associated with the blood volume estimation unit from among the plurality of antenna elements based on the waveform distribution data obtained by the primary distribution creating unit. and an element determination unit that determines an antenna element to be used.
  • control program of the present invention includes a transmitting antenna for transmitting electromagnetic waves toward a living body, and a receiving antenna arranged to face the transmitting antenna with the heart of the living body interposed therebetween. and a cardiac output estimator for estimating a cardiac output using an electromagnetic wave received by the receiving antenna and transmitted through the living body, wherein at least one of the transmitting antenna and the receiving antenna is connected to the living body.
  • a computer-executable control program for controlling a cardiac output sensor comprising a plurality of antenna elements positioned differently with respect to a primary distribution creating step of creating waveform data representing temporal changes in measured values measured for each of the antenna elements, and creating waveform distribution data in which the waveform data is associated with each of the antenna elements; and an element determination step of determining an antenna element to be used for estimating the blood volume from among the plurality of antenna elements from the waveform distribution data created in the next distribution creation step. let it run.
  • the amount of blood pumped from the heart can be estimated with high accuracy using the transmitting/receiving antennas placed at appropriate positions.
  • FIG. 1 is a schematic perspective view showing the entire cardiac output measurement sensor in the first embodiment;
  • FIG. 1 is a block diagram showing the configuration of a cardiac output measurement sensor according to a first embodiment;
  • FIG. 2 is a diagram showing a configuration example of a transmitting/receiving antenna in the first embodiment;
  • FIG. It is a figure which shows the structural example of the transmission/reception antenna in a modification.
  • FIG. 11 is a diagram showing a configuration example of a transmitting/receiving antenna in another modified example;
  • FIG. 4 is a schematic diagram showing high-speed switching processing of each antenna element in element scanning processing;
  • 5B is a schematic diagram showing point data obtained by the process of FIG. 5A;
  • FIG. 5B is a schematic diagram showing waveform data generated from the point data of FIG.
  • FIG. 5B 4 is a flow chart showing antenna element determination processing and cardiac output measurement processing in the first embodiment.
  • FIG. 7 is a subroutine flowchart showing processing in step S19 of FIG. 6.
  • FIG. 4 is a schematic diagram showing an example of waveform distribution data (primary distribution data); 4 is a table showing examples of various evaluation values;
  • FIG. 4 is a schematic diagram showing an example of evaluation value distribution data (secondary distribution data);
  • FIG. 10 is a schematic diagram for explaining a differential time between peak timings;
  • FIG. 4 is a schematic diagram for explaining a difference in differential time depending on position;
  • FIG. 7 is a subroutine flowchart showing the process of step S19 in FIG. 6 in the second embodiment;
  • FIG. FIG. 12B is a flow chart showing the process following FIG.
  • FIG. 4 is a table showing examples of various feature amounts; The peak position as feature data is superimposed on the secondary distribution data.
  • 3 is a perspective view showing the configuration of an XY stage;
  • FIG. 4 is a side view showing the configuration of the XY stage;
  • FIG. 12B is a flow chart showing the process following FIG. 12A in the modified example;
  • FIG. 10 is a flow chart showing antenna element determination processing and cardiac output measurement processing in the third embodiment.
  • Cardiac output usually refers to the amount of blood pumped from the heart per minute, but in this specification, the amount of blood pumped from the heart is referred to as cardiac output. Sometimes.
  • FIG. 1 is a schematic diagram showing the entire cardiac output measurement sensor 1000 according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the cardiac output measuring sensor 1000 according to the first embodiment, and
  • FIG. 3 is a diagram showing a configuration example of the transmitting/receiving antenna in the first embodiment.
  • FIG. 1 shows a state in which a patient 90 (also called a living body or subject) is lying on a bed 95 (supine position).
  • the cardiac output measurement sensor 1000 measures (estimates) the amount of blood pumped from the heart, such as the cardiac output of the patient 90 .
  • the cardiac output measurement sensor 1000 is used for examination of heart failure, follow-up observation after heart surgery, verification of medication effects and side effects of heart disease, and the like.
  • a user such as a nurse or a doctor aligns the line connecting the centers of the transmitting antenna 11 and the receiving antenna 12 with the heart 91. They are arranged so as to face each other with the heart 91 interposed therebetween.
  • a radio wave shield made of cloth may be used to cover the chest of the patient 90 and the entire transmitting/receiving antenna during measurement.
  • receiving antenna 12 is positioned below patient 90 and transmitting antenna 11 is positioned above patient 90 .
  • the receiving antenna 12 is placed on a bed 95 on which the patient 90 lies supine.
  • the upper transmitting antenna 11 is attached to a U-shaped movable fixed base (not shown) when viewed from the side.
  • This fixed base can manually adjust the height of the transmitting antenna 11 .
  • the transmitting antenna 11 is arranged above the patient 90 while being slightly separated from the patient 90 by a fixed base. The purpose of the separation is not to interfere with the patient's 90 breathing and to prevent unintended movement of the transmitting antenna 11 due to contact with the patient 90 .
  • the arrangement of the transmitting and receiving antennas is not limited to the arrangement shown in FIG. 1 and the like.
  • the patient 90 may be turned upside down so that the transmitting antenna 11 is arranged below the patient 90 (back side) and the receiving antenna 12 is arranged above the patient 90 (front side).
  • the cardiac output measurement sensor 1000 includes a transmitting antenna 11, a receiving antenna 12, and a device body 20.
  • the apparatus main body 20 is mounted on a movable frame (not shown) and arranged beside the bed 95 .
  • the device main body 20 operates with an internal battery or power supplied from a commercial power source. Both antenna units are connected to the device main body 20 through the signal cable 13, through which data signals are transmitted and received and power is supplied.
  • the transmitting/receiving antenna will be described later.
  • the apparatus main body 20 includes a transmission/reception controller 14 , a control section 21 , a storage section 22 , an input/output I/F (interface) 23 and a communication I/F 24 .
  • Transmit/receive controller 14 is electrically connected to transmitting antenna 11 and receiving antenna 12 via signal cable 13 . Under the control of the control unit 21 , the transmission/reception controller 14 controls the timing of transmission/reception between both antenna units and acquires measured values (received signals) from the reception antenna 12 .
  • the control unit 21 includes a CPU, RAM, ROM, etc., and controls each unit in the device according to a program stored in the ROM or the storage unit 22 . By executing a program, the control unit 21 functions as a primary distribution generation unit 211, a secondary distribution generation unit 212, an element determination unit 213, a cardiac output estimation unit 214, an installation state determination unit 215, and an instruction unit 216. Function.
  • the primary distribution generator 211 also includes a point data recorder 301 and a waveform data generator 302 .
  • the primary distribution generating unit 211 generates waveform data representing temporal changes in measured values measured for each antenna element by the functions of the point data recording unit 301 and the waveform data generating unit 302 (hereinafter referred to as “pre-processing”). ).
  • the primary distribution generator 211 also generates waveform distribution data by associating the waveform data with each antenna element (hereinafter referred to as "post-processing").
  • the secondary distribution creating unit 212 calculates the evaluation values and creates distribution data of the evaluation values according to the positions of the antenna elements.
  • the element determination unit 213 is used in estimating the cardiac output based on the distribution data of the evaluation values created by the secondary distribution creation unit 212 based on the waveform distribution data created by the primary distribution creation unit. Determine antenna elements.
  • the element determining unit 213 indirectly determines the cardiac output based on the waveform distribution data created by the primary distribution creating unit 211 based on the evaluation value distribution data created by the secondary distribution creating unit 212 . It determines the antenna elements to be used when estimating the quantity. Further, the element determination unit 213 may determine the antenna elements to be used in estimating the cardiac output based on the calculated evaluation value based on the waveform distribution data created by the primary distribution creation unit 211. good.
  • the secondary distribution generator 212 functions as an evaluation value calculator, and calculates evaluation values (evaluation values 1 to 6 described later) from waveform data or waveform distribution data.
  • the cardiac output estimator 214 estimates (calculates) the cardiac output of the patient 90 , that is, the volume of blood pumped from the heart 91 .
  • the installation state determination unit 215 determines whether the installation state of the transmission/reception antenna (antenna array) is appropriate.
  • the instruction unit 216 functions as a first instruction unit, and outputs an instruction for re-measurement or rearrangement according to the determination result of the installation state determination unit 215 .
  • the instruction unit 216 functions as a second instruction unit and instructs the moving direction of rearrangement. Details of these functions will be described later (FIG. 12B, etc., to be described later).
  • the storage unit 22 is composed of a semiconductor memory in which various programs and various data are stored in advance, and a magnetic memory such as a hard disk.
  • the storage unit 22 also stores point data, waveform data, waveform distribution data, comparative distribution patterns, set ranges of feature data, and the like.
  • the storage unit 22 stores position information of antenna elements (antenna elements rx and tx, which will be described later) in the antenna array.
  • the positional information is, for example, XY coordinates on the substrate and information on relative positional relationships (distance, direction).
  • the input/output I/F 23 functions as an input/output unit, has input/output terminals conforming to the USB and DVI standards, etc., and is connected to input devices such as a keyboard, mouse, and microphone, and output devices such as a display, speaker, and printer. It is an interface to In the example shown in FIGS. 1 and 3, the input/output I/F 23 is connected to the touch panel 51 . Also, an XY stage 52 may be connected.
  • the touch panel 51 is composed of a liquid crystal panel and a touch pad superimposed thereon, and receives instructions from the user to start antenna element determination processing and cardiac output measurement.
  • the XY stage 52 moves at least one of the two antenna units according to the rearrangement instruction from the instruction unit 216 to change the arrangement position.
  • Input/output devices such as the touch panel 51 and the XY stage 52 may be included in the configuration of the device main body 20 or the cardiac output measurement sensor 1000 .
  • the communication I/F 24 is an interface that transmits and receives data via wired or wireless communication with an external terminal device such as a PC (personal computer), tablet terminal, or the like via a network or peer-to-peer.
  • Wired communication may use network interfaces conforming to standards such as Ethernet (registered trademark), SATA, PCI Express, IEEE1394, etc.
  • wireless communication may use wireless communication interfaces such as Bluetooth (registered trademark), IEEE802.11, 4G, and the like. may be used.
  • a PC 61 is connected to the communication I/F 24 .
  • the transmitting antenna 11 includes a substrate 110, a transmission waveform generator 111, and an antenna element t1.
  • the transmitting antenna 11 is provided with a single antenna element t1, and the receiving side is provided with a plurality of antenna elements (one pair configuration).
  • the transmitting antenna 11 transmits electromagnetic waves or radio waves that pass through the living body.
  • the substrate 110 is a rectangular plate-shaped member with each side of several tens mm to two hundred and several tens mm.
  • antenna element t1 a patch antenna, a dipole-type linear antenna, or a loop antenna having a side or a diameter of several tens mm to a hundred and several tens mm can be applied.
  • antenna element t1 is a patch antenna.
  • the transmission waveform generator 111 includes a radio wave generator.
  • the frequency of the generated electromagnetic wave is not particularly limited as long as it can pass through the heart 91 of the living body without ionizing action.
  • microwaves with a frequency of 300 MHz to 30 GHz are preferred, and microwaves with a frequency of 400 M to 1.0 GHz are more preferred.
  • Microwaves are suitable for measuring cardiac output because of their bio-penetrability and high sensitivity (rate of change in electric field strength) due to changes in loss during contraction and expansion of the heart 91 .
  • the power of the radio waves to be generated is not particularly limited as long as sufficient power can be detected by the receiving antenna 12, but may be several mW to several tens of mW, for example. Further, the generated radio wave may be a continuous wave, a pulse wave, or a phase-modulated or frequency-modulated radio wave.
  • the receiving antenna 12 includes a substrate 120, an antenna array 121, a high speed switching section 122, and a sampling section 123.
  • FIG. The antenna array 121, the high-speed switching unit 122, and the sampling unit 123 are all formed on a rectangular plate-shaped substrate 120, each side of which is several tens mm to two hundred and several tens mm.
  • the antenna array 121 is composed of a plurality of antenna elements r1 to rx (hereinafter collectively referred to as "antenna element r" (the same applies to antenna element t)), which are arranged on the surface of the planar substrate 120. , are arranged in a grid on the same plane.
  • a dipole type linear antenna or a minute loop antenna can be applied as each antenna element r.
  • the antenna elements r are, for example, loop antennas each having a side or a diameter of several millimeters to ten and several millimeters. Adjacent antenna elements r are arranged without being in close contact with each other.
  • the size of the entire antenna array 121 is set to be larger than the size of the heart 91 when viewed from the back side of the living body. For example, it has a rectangular shape with one side of 100 to 150 mm.
  • the total number of antenna elements r is preferably 40 or more and 100 or less. From the viewpoint of positional accuracy (positional resolution) when determining antenna elements r to be used, which will be described later, the number is preferably 40 or more.
  • the upper limit number is preferably 100 or less from the viewpoint of one cycle time tc (sampling rate) calculated by multiplying the period ts by the total number and from the viewpoint of cost.
  • each antenna element r is a substantially rectangular loop antenna of 12 mm
  • the antenna array 121 is composed of a total of 49 antenna elements r1 to r49, 7 in length and 7 in width.
  • Adjacent antenna elements r are arranged at intervals of about 2 mm, and the size of the entire antenna array 121 is about 100 mm square.
  • the horizontal axis (the row direction of rows A to G described later) is also referred to as the X direction
  • the vertical axis (the column direction of columns 1 to 7 described later) is also referred to as the Y direction.
  • the positional information (XY coordinates) of each of these antenna elements r is stored in the storage unit 22 as described above, and used for the processing of the secondary distribution generation unit 212 .
  • the high-speed switching unit 122 is composed of a plurality of switching elements s1 to sx (hereinafter collectively referred to as "switching elements s") corresponding to the respective antenna elements r1 to rx.
  • switching elements s switching elements s1 to sx
  • only one switching element s for example, element s1 (see FIG. 2)
  • all the other switching elements s for example, elements s2 to sx
  • the high-speed switching unit 122 turns ON only one antenna element r (and the transmission antenna element t in the example of FIG. 4A and the like).
  • the high-speed switching unit 122 controls the termination condition of the antenna element r in the OFF state, that is, grounds the antenna element r in the OFF state at high frequencies. By doing so, it is possible to reduce the influence of induction disturbances and the like caused by the antenna element in the OFF state.
  • the sampling unit 123 includes a sampling circuit, an AD conversion circuit, and a buffer circuit.
  • the sampling unit 123 samples the radio signal received by the ON-state antenna element r (for example, the element r1) and converts the electric field intensity into a digital signal (measurement value).
  • the digitized measurement values corresponding to each antenna element r are sent to the transmission/reception controller 14 of the apparatus main body 20 either sequentially or collectively in predetermined units (for example, one cycle period).
  • FIG. 4A is a diagram showing a configuration example of transmission/reception antennas in a modification (many-to-many), and FIG. 4B is a diagram showing a configuration example of transmission/reception antennas in another modification (many-to-one).
  • a plurality of antenna elements are arranged on the receiving antenna 12 side. That is, the receiving antenna 12 has an antenna array 121 and a high-speed switching section 122 that controls switching of the antenna array 121 .
  • a plurality of antenna elements t1 to tx may also be arranged on the transmitting antenna 11b side. That is, as shown in FIG. 4A, the transmission antenna 11b may include a transmission waveform generation section 111, an antenna array 113, and a high-speed switching section 112 that controls switching of the antenna array 113.
  • one antenna element may be used on the receiving antenna 12b side.
  • the receiving antenna 12b shown in FIG. 4B is composed of one receiving antenna r1 and a sampling section 123 connected thereto.
  • the number of transmitting and receiving antenna elements constituting the antenna array in the embodiments of FIGS. 3, 4A, and 4B is merely an example, and may be at least 49 or may be more.
  • the number of antenna elements t in the transmitting-side antenna array 113 may be several or may be 100 or more
  • the number of antenna elements r in the receiving-side antenna array 121 may be several or 100. You can do more than that.
  • the lower bounds of these numbers affect the positional accuracy of the placement of the antenna elements, and the upper bounds affect the sampling rate. If the number is increased, one cycle time tc becomes longer, the sampling rate becomes lower, and correct waveform data (see FIG. 5C described later) cannot be obtained.
  • the configuration in which the reception antenna side is an antenna array in FIG. 3 and the configuration in which the transmission antenna side is an antenna array in FIG. 4B the configuration in which the reception antenna side is an antenna array is better in the configuration where the transmission antenna side is an antenna array.
  • the inventor's study has revealed that the antenna element suitable for measuring cardiac output can be selected more accurately than the configuration.
  • pre-processing up to waveform data generation by the primary distribution generator 211 will be described.
  • This pre-processing is mainly performed by the point data recording unit 301 and the waveform data generating unit 302, as described below.
  • the configuration of the transmitting/receiving antennas will be described as being a configuration example similar to that of the first embodiment shown in FIG. 3 (the same applies to FIG. 6 and subsequent figures).
  • the point data recording unit 301 records, as point data, the measurement values obtained for each of the antenna elements r turned on by the high-speed switching unit 122 in association with each of the antenna elements r. .
  • the antenna element t on the transmitting side and the antenna element r on the receiving side are sequentially switched by high-speed switching sections 112 and 122 . That is, at a certain time, both antenna units are synchronized and switched at high speed so that only the propagation paths of one system of antenna elements t and r are activated at the same time.
  • the point data recording unit 301 records the measurement values of the antenna elements t and r turned on by the high speed switching units 112 and 122 as point data in association with the antenna elements t and r.
  • each antenna element tx (and one antenna element r1) is associated with a similar process and recorded as point data.
  • FIG. 5A is a schematic diagram showing high-speed switching processing of each antenna element in element scanning processing.
  • the transmission/reception controller 14 controls the high-speed switching unit 122 during the element scanning process (corresponding to steps S101 to S107 in FIG. 6, which will be described later).
  • FIG. 5A shows an example in which the cyclic mode is the "all cyclic mode" and the predetermined period ts is set to 100 ⁇ sec.
  • the high-speed switching unit 122 sequentially switches ON/OFF of each of the antenna elements r1 to r49 at the cycle ts according to the setting of the cyclic mode and the cycle.
  • the period ts and/or one cycle time tc can be set to any value.
  • the period ts can be set to any value between 10 ⁇ sec and 1 msec.
  • one cycle time tc can be set to an arbitrary value between 1 msec and 100 msec according to the setting of the cycle ts, or the wait time can be adjusted by fixing the cycle ts (for example, fixed at 100 ⁇ sec) regardless of the cycle ts. By doing so, one cycle time tc may be arbitrarily set between 5 and 100 msec.
  • the setting of the cyclic mode and period/one cycle time may be performed by the user, or may be performed automatically by the control unit 21 side.
  • the setting of the cyclic mode and period/one cycle time may be performed by the user, or may be performed automatically by the control unit 21 side.
  • the change is made in multiple stages.
  • This multistep change may be performed in a series of element scanning processes (see FIG. 6), or may be changed when re-measurement (12B, etc., to be described later).
  • it is operated in a partial recursive mode with half or quarter decimation to roughly determine antenna element candidates, then the surrounding antenna elements are operated, and more finely, the reception characteristics of the antenna elements are determined. judge.
  • the period ts is shortened to roughly determine antenna element candidates, and then the period ts is lengthened by the reciprocal (for example, twice) for the reduced number (for example, half) of the antenna elements. to determine the reception characteristics of the candidate antenna elements in more detail.
  • the sampling unit 123 acquires a received signal corresponding to the electric field intensity received by the antenna element r in the ON state.
  • the point data recording unit 301 acquires this reception signal via the transmission/reception controller 14, associates it with each element r, and temporarily records it in the storage unit 22 or RAM.
  • FIG. 5B is a schematic diagram showing point data obtained by the processing of FIG. 5A.
  • Acquisition timings of adjacent antenna elements r are shifted by one period ts (100 ⁇ sec).
  • the acquisition time of the point data p12 of the element r2 is delayed by the period ts from the acquisition time of the point data p11 of the element r1.
  • the point data p149 of the last antenna element r49 is delayed by 48 periods ts (4.8 msec) from the point data p11 of the element r1.
  • adjacent point data are spaced for one cycle time tc.
  • the point data p21 is acquired one cycle time tc after the point data p11 of the element r1.
  • FIG. 5C is a schematic diagram showing waveform data generated from the point data in FIG. 5B.
  • This waveform data is obtained by collecting the point data recorded by the point data recording unit 301 by the waveform data generating unit 302 for each element r and arranging them chronologically.
  • the waveform data w1 when using the element r1 is shown as a representative.
  • This waveform data is composed of a large number of point data p11, p21, p23, etc. linked to the element r1.
  • the upper limit of the cycle ts is a cycle such that one cycle time tc in which a plurality of antenna elements r are turned ON is sufficiently shorter than the cardiac cycle.
  • the maximum heart rate is 180 beats/minute, ie, 3 Hz, in consideration of heart disease.
  • the sampling rate for generating a waveform with good accuracy is preferably 30 Hz (33 msec), which is 10 times or more. Dividing this by 40, which is the lower limit number in the preferred range of 40 to 100 total number of antenna elements r, gives 0.8 msec.
  • the upper limit of the period ts was set to 1.0 msec (assuming a sampling rate of about 8 times), which is slightly wider than this. Note that the lower limit of the period ts is appropriately determined depending on the stability of sampling that depends on the circuit configuration. For example, the lower limit of the cycle ts is several tens of microseconds.
  • FIG. 6 is a flowchart showing antenna element determination processing and cardiac output measurement processing.
  • Step S11 The control unit 21 starts transmission/reception by the transmission/reception antenna in response to the user's instruction to start measurement. Specifically, the user arranges the transmitting antenna 11 and the receiving antenna 12 so as to face each other with the heart 91 interposed therebetween. Thereafter, the user inputs an instruction to start measurement using the touch panel 51, keyboard, or the like. At this time, the user may set the circulation mode and the period ts. 5A to 5C, the cyclic mode is the full cyclic mode, the number of elements is 49, the period ts is 100 ⁇ sec, and the cycle time tc is 5 msec.
  • each antenna element r is sequentially scanned in order to determine the antenna element r suitable for measuring the cardiac output, that is, the antenna element r best arranged relative to the heart 91 from among the plurality of antenna elements. to collect the measurement signal.
  • the transmitting antenna 11 continues to transmit microwaves, or transmits pulse waves in accordance with the switching timing of the antenna element r on the receiving side.
  • Step S12 the control unit 21 performs loop a processing between step S16 and step S16.
  • the target antenna elements r are sequentially switched one by one from the antenna element r1 to the last antenna element rx (r49) according to the setting of the all-loop mode.
  • Step S13 The high-speed switching unit 122 switches the target antenna element r to the ON state.
  • the antenna element r1 is changed from the OFF state to the ON state, and if there is another antenna element r in the ON state, it is changed to the OFF state.
  • Step S14 The sampling unit 123 acquires the measured value at the antenna element r in the ON state.
  • Step S15 The point data recording unit 301 records the measured value obtained in step S14 as point data in association with the target antenna element r. Note that this step S15 may be processed collectively in a predetermined unit (for example, 49 pieces in one cycle period). For example, the buffer of the sampling unit 123 holds data of a predetermined unit. The point data recording unit 301 collectively acquires the data of the predetermined unit and processes them collectively.
  • a predetermined unit for example, 49 pieces in one cycle period.
  • the buffer of the sampling unit 123 holds data of a predetermined unit.
  • the point data recording unit 301 collectively acquires the data of the predetermined unit and processes them collectively.
  • Step S16 If it is not the last antenna element rx, the target antenna element r is changed to the next one at the predetermined cycle ts, and the loop processing from step S12 onward is repeated. If it is the last antenna element rx, the loop is exited and the process proceeds to step S17.
  • Step S17 The control unit 21 determines whether or not the termination condition is satisfied, and if satisfied (YES), the process proceeds to step S18, and if not satisfied (NO), loop processing from step S12 onward is repeated.
  • the termination condition is, for example, when a period of time corresponding to one to several heartbeats (for example, several seconds to ten and several seconds) has elapsed, or when the number of repetitions (several hundred to thousands) has been reached.
  • a waveform data generator 302 generates waveform data for the elements r1 to rx from the point data. For example, waveform data as shown in FIG. 5C is generated. Up to this point, the first-stage processing by the primary distribution generation unit 211 is performed.
  • Step S19 the primary distribution generator 211, the secondary distribution generator 212, and the element determiner 213 work together to determine the antenna element r with the best characteristics.
  • the number of antenna elements r to be determined may be one or a plurality (for example, four).
  • FIG. 7 is a subroutine flow chart showing the process of step S19.
  • Step S511 the primary distribution generation unit 211 performs post-processing. That is, the primary distribution creating unit 211 creates waveform distribution data by associating the waveform data of each antenna element r created in step S18 with each antenna element r.
  • FIG. 8 is a schematic diagram showing an example of waveform distribution data created in step S511. Waveform distribution data is obtained by arranging waveform data associated with each antenna element r. Waveform distribution data will also be referred to as primary distribution data hereinafter.
  • Step S512 The secondary distribution generator 212 evaluates the waveform corresponding to each antenna element r based on the primary distribution and calculates an evaluation value. Then, evaluation value distribution data (hereinafter also referred to as “secondary distribution data”) corresponding to the position of the antenna element r is created.
  • FIG. 9 is a table showing examples of various evaluation values.
  • FIG. 10 is a schematic diagram showing an example of secondary distribution data created by arranging the evaluation values in association with the positions of the antenna elements r. As the index of the evaluation value calculated by the secondary distribution generating unit 212, any one of the evaluation values 1 to 6 may be used as shown in the figure, or a combination thereof may be used.
  • Amplitude of waveform data with an evaluation value of 1 is the amplitude of one waveform included in the waveform data.
  • a waveform having a frequency close to a normal cardiac cycle is extracted, and the amplitude of the waveform is obtained as an evaluation value 1. If the waveform data contains several waveforms, the average value of the amplitudes may be used.
  • a band-pass filter is applied to exclude frequencies outside the frequency (0.5 to 3 Hz) corresponding to the normal cardiac cycle range (30 to 180 beats/minute). processing may be performed.
  • the positional relationship between the antenna elements and the heart can be estimated from the amplitude of the waveform data.
  • band-pass filtering may be pre-processed so as to acquire frequencies outside the range of the cardiac cycle, for example, components in the frequency band of respiratory fluctuations, thereby estimating the position of the antenna element r. be.
  • Evaluation value 2 "Intensity at a specific frequency after Fourier transform" is obtained by performing FFT processing on the waveform data and obtaining a specific frequency ( 0.5 to 10 Hz) is obtained as evaluation value 2.
  • the positional relationship with the heart can be estimated from the intensity distribution at specific frequencies.
  • the evaluation value 2 may use the intensity in a frequency band other than the range of the cardiac cycle, for example, the frequency band of respiratory fluctuations, for estimating the positional relationship.
  • Evaluation value 3 is "inflection point time of waveform data". The inflection point time can be calculated by second-order differentiating the waveform data.
  • This evaluation value 3 is an evaluation value representing the shape of the waveform. Since the shape of the waveform tends to change depending on the positional relationship between the antenna element and the heart, the positional relationship with the heart can be estimated from this evaluation value 3.
  • Evaluation value 4 is a "time integral value of waveform data" and can be calculated by time integration of one waveform.
  • Evaluation value 5 is an "autocorrelation coefficient" and can be calculated from waveform data including multiple waveforms.
  • the autocorrelation coefficient is an index representing the similarity of consecutive waveforms. Since the waveforms of antenna elements with stable waveform acquisition are considered to have little change, antenna elements with high waveform similarity (large autocorrelation coefficient) of consecutive antenna elements should be used for cardiac output estimation. use.
  • Evaluation value 6 is the "difference time between peak timings".
  • the secondary distribution generating unit 212 first calculates the peak timing at which the signal intensity associated with the contraction (or expansion) of the heart 91 becomes maximum (or minimum). Next, the difference time is calculated by comparing this peak timing with the reference waveform.
  • a reference waveform is waveform data of any predetermined antenna element r. For example, it is waveform data of an antenna element r (for example, antenna element r25) near the center of the antenna array 122 .
  • the peak timing tends to differ depending on the positional relationship between the antenna element and the heart.
  • the secondary distribution creating unit 212 creates secondary distribution data from at least one of the evaluation values 1 to 6.
  • the secondary distribution data represents the position (XY coordinates) of each antenna element r and the distribution of evaluation values calculated from the waveform data of the antenna element r.
  • six levels of gradation from 0 to 5 are schematically shown according to the evaluation value. The higher the level, the higher the evaluation value and the antenna element r with the most suitable characteristics. Normally, the antenna element r having a better positional relationship with the heart 91 (especially the left ventricle) has a higher evaluation value.
  • the element determination unit 213 determines antenna elements to be used for estimating the cardiac output from the quadratic distribution created in step S512.
  • the element determination unit 213 determines the antenna element r32 at the position E4 (column 4, row E) with the highest evaluation value in the example of the secondary distribution data shown in FIG. 10(a).
  • the element determination unit 213 selects may be determined to one antenna element r by a predetermined algorithm set in advance.
  • predetermined algorithms include selecting the center element (position C5) and selecting the upper right element (position C4).
  • secondary distribution data may be newly created using another evaluation value, and the antenna element r may be narrowed down to one antenna element r from among the plurality of elements based on this new secondary distribution data.
  • the element determination unit 213 calculates the peak position by polynomial approximation of the secondary distribution data on the X-axis, Y-axis, or XY plane.
  • the antenna element r may be selected (determined) as the antenna element r for cardiac output measurement. Further, the element determination unit 213 may determine the antenna element r for cardiac output measurement by comparing with the comparison distribution pattern stored in the storage unit 22 .
  • the processing in the subroutine flowchart of FIG. 7 is completed, and the processing returns to that of FIG.
  • Step S20 The cardiac output estimation unit 214 extracts the waveform data acquired using the antenna element r determined in step S19 from the waveform data related to the elements r1 to rx generated in step S18, and extracts the extracted antenna element r Estimates cardiac output, or the volume of blood pumped from the heart, based on the waveform data for .
  • the cardiac output of the heart 91 of the patient 90 or the heart Estimate the volume of blood pumped from Heart 91 experiences greater loss and greater signal attenuation in diastole than in systole. That is, the strength of the received signal is smaller during diastole than during systole.
  • the cardiac output can be estimated (calculated) from the change in signal intensity, that is, the amplitude of the waveform corresponding to the heartbeat.
  • the stroke volume calculated from the amplitude intensity of one waveform may be displayed.
  • the heartbeat frequency may also be displayed as the heart rate.
  • the body surface area may be calculated from information such as the height and weight of the subject that has been input, and the cardiac coefficient may be displayed by dividing the cardiac output by the body surface area.
  • FIG. 11A is a schematic diagram for explaining the differential time between peak timings.
  • FIG. 11B is a schematic diagram showing the difference in differential time depending on the position.
  • FIG. 11A shows the waveform at the target antenna element rx (eg, element r1) and the reference waveform.
  • the reference waveform is waveform data obtained from the central antenna element r25 as described above.
  • the secondary distribution generation unit 212 calculates the differential time between the peak timings of the waveform data created from the point data of the two target antenna elements r1 and the reference antenna element r25 measured simultaneously or substantially simultaneously, and calculates the evaluation value from this differential time.
  • the waveform data created from the point data measured substantially simultaneously is created from the point data measured at a cycle such that one cycle time tc is sufficiently shorter than the cardiac cycle, as described with reference to FIG. 5A.
  • Simultaneous literally means waveform data created from point data obtained by simultaneously measuring electromagnetic waves transmitted from one transmission antenna element t by a plurality of antenna elements r. In this case, point data measured by antenna elements rx, which are separated from each other by a certain distance, are used so that the antennas are not coupled to each other and operate as one antenna.
  • FIG. 11B shows changes in differential time of waveform data when measuring while displacing the position of a certain antenna element r in the X direction.
  • an electrocardiogram waveform is used as a reference waveform when calculating the differential time.
  • the difference time (delay time) is the largest (absolute value) at the left end, gradually decreases by moving in the positive direction of the X direction, and becomes the minimum in the range of -10 to -30 mm.
  • -40 also show an increasing trend. It is believed that this delay time is caused by differences in motion between different locations of the heart (left ventricle, right ventricle, or portions thereof).
  • the secondary distribution generator 212 calculates the positional relationship between the heart position and each antenna element r using the differential time distribution. Then, the element determination unit 213 selects, from the plurality of antenna elements r, the antenna element r whose evaluation value is most suitable for calculating the cardiac output.
  • the cardiac output measurement sensor 1000 uses the transmitting antenna 11, the receiving antenna 12, and the microwaves received by the receiving antenna 12 and transmitted through the living body to measure the cardiac output of the heart.
  • a cardiac output estimating unit 214 for estimating the blood volume to be applied at least one of the transmitting antenna 11 and the receiving antenna 12 includes a plurality of antenna elements r located at different positions with respect to the living body, and A primary distribution creation unit 211 that creates waveform data representing changes over time in measured values measured with respect to and creates waveform distribution data in which the waveform data is associated with each antenna element r, and a primary distribution creation unit and an element determination unit 213 that determines, from among a plurality of antenna elements r, an antenna element r to be used in estimating the cardiac output, based on the waveform data created by 211 .
  • FIGS. 12A to 15B A second embodiment will now be described with reference to FIGS. 12A to 15B.
  • the propriety of the installation state of the antenna 12 is determined using the feature data before determining the antenna element r.
  • 12A and 12B are subroutine flowcharts showing the process of step S19 of FIG. 6 in the second embodiment.
  • the main routine flowchart is the same as that in the first embodiment shown in FIG. 6, and the description thereof is omitted.
  • Steps S531, S532) the control unit 21 performs the same processing as steps S511 and S512 in FIG. Specifically, the primary distribution creating unit 211 of the control unit 21 creates waveform distribution data (primary distribution data), and the secondary distribution creating unit 212 creates evaluation value distribution data (secondary distribution data). do.
  • the installation state determination unit 215 extracts feature data from primary or secondary distribution data (waveform distribution data or evaluation value distribution data) and determines the installation state of the antenna.
  • FIG. 13 is a table showing examples of various feature amounts.
  • Amplitude of waveform data is the amplitude of one or more waveforms included in the waveform data.
  • a waveform having a frequency close to a normal cardiac cycle is extracted, and the amplitude of the waveform is obtained as feature quantity 1.
  • This feature quantity 1 can be obtained by a method similar to that for the evaluation value 1 described above.
  • the installation state determination unit 215 compares this feature value 1 with the setting range for the feature value 1 stored in the storage unit 22. If the setting range is within the setting range, the installation state is proper. is judged to be inappropriate. For example, if the positional relationship with the heart 91 is not correct and the amplitude is smaller than a predetermined range, it is determined to be inappropriate.
  • Feature quantity 2 is an "autocorrelation coefficient" and can be calculated from waveform data containing multiple waveforms. This feature quantity 2 can be obtained by the same method as the evaluation value 5 described above. Then, the installation state determination unit 215 compares this feature value 2 with the setting range for the feature value 2 stored in the storage unit 22. If the setting range is within the setting range, the installation state is proper. is judged to be inappropriate. For example, if the waveform is not stable and the autocorrelation coefficient is smaller than a predetermined range, it is determined to be inappropriate.
  • the feature amount 3 is "difference time between peak timings".
  • the installation state determination unit 215 calculates the difference time by comparing the peak timing of the waveform of the target antenna element r with the reference waveform. This feature quantity 3 can be obtained by the same method as the evaluation value 6 described above. Then, the installation state determination unit 215 compares this feature value 3 with the setting range for the feature value 3 stored in the storage unit 22. If the setting range is within the setting range, the installation state is proper. is judged to be inappropriate. For example, when the difference time is larger than a predetermined range due to the influence of reflected waves, etc., it is determined to be inappropriate.
  • the feature quantity 4 is the "waveform shape”.
  • the installation state determination unit 215 compares the waveform with the normal waveform shape stored in the storage unit 22, and determines that the installation state is inappropriate if the waveform differs from the normal waveform shape due to the inclusion of noise. do. Anything other than this is judged to be appropriate.
  • the feature value 5 is the "peak position".
  • a peak position is identified from the secondary distribution data. Any one of evaluation values 1 to 6 may be used to create the secondary distribution data. If the identified peak position is at any position of the antenna element r and is determined to be within the range, or if the peak position is not present at any of the antenna elements r and is outside the range (outside) may be judged. For example, the outermost antenna element r is in the process of increasing, and it is estimated that there is a peak further outside.
  • the installation state determination unit 215 determines that the installation state is proper when within the range, and improper when outside the range.
  • FIG. 14 is a schematic diagram showing feature data in such a case.
  • FIG. 14 shows peak positions as feature data superimposed on the secondary distribution data. In this figure, two peaks 1 and 2 appear and the installation state is inappropriate.
  • a comparative distribution pattern may be used to determine whether the installation state is appropriate or not based on the feature amount. For example, the feature data immediately before (for example, the previous day) measured on the same bed 95 for each patient 90 is stored as a comparison distribution pattern in the storage unit 22, and the similarity between the read comparison distribution pattern and the current feature data is determined. It is determined that the installation state is appropriate based on the nature of the installation. For example, if the patterns are substantially the same, it is determined that the installation state is appropriate.
  • Step S534 If the determination in step S533 is appropriate (YES), the installation state determination unit 215 proceeds to step S535, and if the determination is inappropriate (NO), the process proceeds to step S541 in FIG. 12B.
  • Step S535 This process is similar to step S513.
  • the element determination unit 213 determines antenna elements r to be used for estimating the cardiac output from the quadratic distribution created in step S532. Then, the processing in the subroutine flowchart of FIG. 12A is ended, the processing returns to FIG. 6, and thereafter the cardiac output is measured using the determined antenna element r.
  • Step S541 If the peak position is outside the range (outside the antenna array 122), the control unit 21 advances the process to step S542. On the other hand, if, for example, feature quantities 1 to 4 are outside the set range, or if there are multiple peaks in feature quantity 5 (eg, FIG. 14), the process proceeds to step S550.
  • Step S542 The instruction unit 216 functioning as a second instruction unit determines the movement direction of the entire antenna 12 based on the feature data.
  • the instruction unit 216 instructs the moving direction of the antenna 12 .
  • the movement direction is displayed on the touch panel 51 to prompt the user such as a nurse or doctor to move the antenna 12 .
  • it outputs a movement signal to the XY stage 52 described below.
  • the amount of movement may also be displayed at the same time, or may be included in the movement signal.
  • FIG. Cardiac output measurement sensor 1000 may be configured to be movable in the XY directions by XY stage 52 as shown in these figures.
  • 15A and 15B, the transmitting antenna 11 and the receiving antenna 12 are arranged above and below the bed 95 on which the patient 90 lies.
  • the XY stage 52 holds a controller 520, a holding section 521 that holds the upper transmitting antenna 11 inside the housing, a moving section 522 that moves the holding section 521 in the XY directions, and a lower receiving antenna 12 inside the housing. It is composed of a holding portion 523, a moving portion 524 that moves the holding portion 523 in the XY directions, and a vertical moving portion 525 that moves these members in the vertical direction.
  • the moving parts 522, 524 have similar configurations and include connecting parts that connect with rails, driving parts, and holding parts, respectively.
  • the XY stage 52 can move the height (Z direction) and the position in the XY directions of the transmitting antenna 11 and the receiving antenna 12 respectively held by the holding units 521 and 523 according to the control signal of the instruction unit 216. .
  • the XY stage 52 moves the receiving antenna 12 having a plurality of antenna elements r by a predetermined amount in the XY directions according to the movement signal sent from the instruction unit 216 .
  • Step S544 The controller 520 of the XY stage 52 moves the transmitting antenna 11 according to the instruction from the instruction section 216 and then returns a movement completion signal to the instruction section 216 .
  • a remeasurement start instruction from the user is received via the touch panel 51 or the like.
  • the instructing unit 216 functioning as the first instructing unit having received this command sends a re-measurement instruction to the control unit 21 . After that, the process returns to step S11 in FIG. 6, the subsequent processes are executed again, and the measurement is performed again.
  • Step S551 the instruction unit 216 functioning as the first instruction unit instructs remeasurement or rearrangement. Specifically, the instruction unit 216 instructs the control unit 21 to perform re-measurement, returns to the process of step S11, and performs re-measurement while maintaining the current arrangement state. Alternatively, the touch panel 51 is caused to display an instruction prompting confirmation of the arrangement state. Then, after receiving a re-measurement start instruction from the user via the touch panel 51 or the like, the process returns to step S11 and re-measurement is performed. It should be noted that when re-measuring, the circulation mode may be changed and/or the period ts may be changed.
  • the cardiac output measurement sensor 1000 includes the installation state determination unit 215 in addition to the configuration of the first embodiment. 122 is determined to be appropriate. By doing so, if the installation state is improper, by performing re-installation or re-measurement, it is possible to prevent the determination of the antenna element to be used under the improper installation state. can be prevented and the volume of blood pumped from the heart can be estimated with higher accuracy.
  • FIG. 16 is a flow chart showing processing following FIG. 12A in the modification.
  • steps S541 to S544 and step S551 are the same as the process shown in FIG. 12A, and description thereof is omitted.
  • Step S550 Here, if the feature amounts 1 to 4 are outside the set range (YES), the installation state determination unit 215 advances the process to step S555. On the other hand, if it is not out of the set range (NO), that is, if a plurality of peaks exist in feature quantity 5, the process proceeds to step S551, and re-measurement is instructed in step S551.
  • Step S555 The installation state determination unit 215 excludes the antenna element r outside the set range from the targets.
  • Step S556 the element determination unit 213 determines the antenna element r from among the antenna elements other than the antenna elements excluded in step S555. For example, the antenna element r outside the set range in the characteristic quantity 4 (waveform shape) is excluded. As a result, even if the evaluation value 1 (amplitude) is the highest, this excluded antenna element r is not selected as the antenna element used for estimating the cardiac output. After that, the processing in the subroutine flowchart of FIG. 16 is terminated, the processing returns to that of FIG. 6, and thereafter the cardiac output is measured using the determined antenna element r.
  • the antenna elements r whose characteristic data are out of the set range are excluded from the selection targets, and the antenna elements r to be used for cardiac output measurement are determined from among the other antenna elements r.
  • inappropriate antenna elements can be prevented from being selected, and the volume of blood pumped from the heart can be estimated with higher accuracy.
  • the element determination unit 213 may select one or a plurality of antenna elements r based on feature data. For example, a plurality of antenna elements r are selected based on feature data obtained from secondary distribution data as shown in FIG. 10(b). For example, a plurality of antenna elements r close to the peak position are selected as feature data. Then, the cardiac output estimating unit 214 averages the signal (digital signal) obtained from the measured value of the selected antenna element r, or weights the signal according to the distance from the peak position. Cardiac output is estimated using the processed signal, such as an average (weighted average). By doing so, the volume of blood pumped from the heart can be estimated with higher accuracy.
  • the patient 90 changes the state such as the body position based on instructions from a user such as a nurse or a doctor. Then, element scanning processing is performed in a plurality of different states of the patient 90, and the installation state is determined based on feature data extracted from the measurement results.
  • FIG. 17 is a flowchart showing antenna element determination processing and cardiac output measurement processing in the third embodiment. Steps S11 to S20 in FIG. 17 are the same processes as steps S11 to S20 in FIG. 6 described above, and description thereof will be omitted.
  • Step S11 The control unit 21 starts transmission/reception by the transmission/reception antenna in response to the user's instruction to start measurement.
  • Step S115 the control unit 21 performs loop b processing between step S176 and step S176.
  • This state includes at least one or more of a stationary state, a deep breathing state, a body motion state, and a posture change state.
  • the stationary state and the deep breathing state literally mean that the patient 90 in the lying position (supine position) on the bed 95 remains motionless as much as possible or maintains a state of breathing deeply.
  • a repositioning state is a repositioning between supine, lateral and prone positions.
  • the state of body movement is a movement that does not accompany a change in body position, such as bending and stretching the arms and legs. Both states are performed for a predetermined period of time specified by the user or longer.
  • the predetermined period is about the period of one unit of element scanning processing (for example, several seconds to ten and several seconds).
  • Step S12 the control unit 21 performs the processing of loop a between step S16 and repeats the processing of this loop a until the termination condition is satisfied in step S17. If the termination condition is satisfied, the process proceeds to step S175.
  • Step S175) The control unit 21 displays on the touch panel 51 or the like that the element scanning process for one unit has been completed. At this time, the next state (for example, deep breathing state) may also be displayed. In response to the display, the user instructs the patient 90 to move from the resting state to the deep breathing state, for example. At this time, the user's operation may be accepted. For example, the user inputs a measurement start instruction from the touch panel 51 after instructing the patient 90 to bring about the following state.
  • the next state for example, deep breathing state
  • the user instructs the patient 90 to move from the resting state to the deep breathing state, for example.
  • the user's operation may be accepted. For example, the user inputs a measurement start instruction from the touch panel 51 after instructing the patient 90 to bring about the following state.
  • Step S176 If the patient 90 has not completed the measurement in the predetermined number of types of states, the processing of the loop b from step S115 onward is repeated. On the other hand, if all the states have been measured, the loop b is exited and the process proceeds to step S18.
  • the waveform data generator 302 generates waveform data (first distribution data) of the elements r1 to rx from the point data. At this time, waveform data associated with each state may be generated.
  • Step S19 the control unit 21 determines the installation state, and determines the antenna element r to be used for cardiac output estimation after the determination.
  • the control unit 21 performs the processing shown in FIG. 12A and subsequent FIG. 12B or FIG.
  • the secondary distribution data generation unit 212 generates secondary distribution data
  • the installation state determination unit 215 generates feature data to determine the installation state.
  • the element determination unit 213 determines the antenna element r to be used for cardiac output estimation.
  • the processing may be performed for each patient state, or a plurality of states may be collectively processed (without distinction). can be
  • Step S20 The cardiac output estimation unit 214 estimates the cardiac output or the volume of blood pumped from the heart using the antenna element r determined in step S19.
  • the processing here is the same as the processing in step S20 of FIG.
  • the cardiac output measurement sensor 1000 performs installation state determination processing and element determination processing based on data measured in a plurality of states of the patient 90 in the configuration of the second embodiment. Therefore, a state with high robustness can be achieved. As a result, even if the condition of the patient 90 changes while the cardiac output is being measured (step S43), the measurement can be stably performed. can be estimated by
  • measured values measured by each antenna element are used at the same time or substantially at the same time, and waveform data is created from the obtained measured values.
  • the secondary distribution data using any of the evaluation values 1 to 6 and the feature data using any of the feature amounts 1 to 5 are extracted. accuracy is improved.
  • measurement values measured at different times for each antenna element may be used. For example, the measurement of the received signal on the propagation path between one transmitting antenna element t and one receiving antenna element r is performed while sequentially switching at intervals of several seconds, and this is repeated for all the antenna elements r. You can also get the value.
  • the high-speed switching section 122 (or the high-speed switching section 112) is included, and the primary distribution creating section 211 includes the point data recording section 301 and the waveform data generating section 302.
  • the primary distribution creating section 211 includes the point data recording section 301 and the waveform data generating section 302.
  • the predetermined cycle is set to a cycle, for example, 1 msec or less, such that one cycle time tc in which a plurality of antenna elements are turned ON is sufficiently shorter than the cardiac cycle.
  • a sufficient sampling rate can be secured and waveforms can be generated with high accuracy.
  • the evaluation values are (evaluation value 1) amplitude of waveform data, (evaluation value 2) intensity at specific frequency after Fourier transform, (evaluation value 3) inflection point time of waveform data, (evaluation value 4) waveform data , (evaluation value 5) autocorrelation coefficient, and (evaluation value 6) difference time of peak timing. Even if any of these evaluation values 1 to 6 are used, it is possible to accurately determine a suitable antenna element from among a plurality of antenna elements.
  • the feature amounts are (feature amount 1) waveform data amplitude, (feature amount 2) autocorrelation coefficient, (feature amount 3) peak timing difference time, (feature amount 4) waveform shape, and (feature amount 5) peak position; Any one of these feature quantities 1 to 5 can be used to appropriately determine whether the installation state of the antenna array 122 (or the antenna array 113) is appropriate.
  • microwaves are used as electromagnetic waves.
  • Microwaves are attenuated less than other frequencies when passing through the human body and have relatively high loss. is larger than other frequencies and is suitable for measuring cardiac output.
  • the above-described configuration of the cardiac output measurement sensor 1000 is a main configuration for describing the features of the above-described embodiment, and is not limited to the above-described configuration. can be modified.
  • the antenna element r determined by the element determining unit is used to perform measurement again in order to improve accuracy, and the cardiac output is estimated based on the remeasured waveform data.
  • a plurality of antenna elements may be used at the time of determination and at the time of re-measurement. Specifically, for example, when the evaluation values or feature amounts calculated in step S19 (FIG. 7/FIG. 12A) of four adjacent antenna elements r are very close, the four antenna elements r are used as cardiac output , and the cardiac output may be estimated from the average value of the cardiac output calculated based on the waveform data obtained using each antenna element r.
  • the means and methods for performing various processes in the cardiac output measurement sensor 1000 described above can be realized by either a dedicated hardware circuit or a programmed computer.
  • the program may be provided by a computer-readable recording medium such as a USB memory or DVD-ROM, or may be provided online via a network such as the Internet.
  • the program recorded on the computer-readable recording medium is usually transferred to and stored in a storage unit such as a hard disk.
  • the above program may be provided as independent application software, or may be incorporated into the software of the apparatus as one function.

Abstract

The present invention highly accurately estimates the amount of blood output from the heart using transmission/reception antennas disposed at appropriate positions. A cardiac output measurement sensor 1000 is provided with a transmission antenna 11, a reception antenna 12, and a cardiac output estimation unit 214 which estimates the amount of blood output from the heart. At least one of the transmission antenna 11 and the reception antenna 12 includes a plurality of antenna elements r which differ in position relative to a living body, and is further provided with: a primary distribution generation unit 211 which generates waveform data indicating a change over time in measured value for each of the antenna elements r and generates waveform distribution data in which the waveform data is associated with each of the antenna elements r; and an element determination unit 213 which determines an antenna element to be used for estimating the amount of blood from among the plurality of antenna elements on the basis of the waveform distribution data.

Description

心拍出量計測センサ、および制御プログラムCardiac output sensor and control program
 本発明は、心拍出量計測センサ、および制御プログラムに関する。 The present invention relates to a cardiac output measurement sensor and a control program.
 心拍出量の検出に関する従来技術として、特許文献1には、送信アンテナと、受信アンテナと、推定部と、を備えた装置が開示されている。この装置では、送信アンテナは患者の胸部にマイクロ波等の電波を送信し、受信アンテナは送信アンテナから送信された電波を受信し、推定部は、受信アンテナが受信した電波の位相又は振幅強度に基づいて、測定対象者の心拍出量を検出する(特許文献1参照)。 As a conventional technology related to cardiac output detection, Patent Document 1 discloses a device that includes a transmitting antenna, a receiving antenna, and an estimating unit. In this device, the transmitting antenna transmits radio waves such as microwaves to the patient's chest, the receiving antenna receives the radio waves transmitted from the transmitting antenna, and the estimating unit measures the phase or amplitude intensity of the radio waves received by the receiving antenna. Based on this, the cardiac output of the person to be measured is detected (see Patent Document 1).
国際公開第2018/194093号WO2018/194093
 しかしながら、電波を送受信する1対の送受信アンテナの生体に対する位置、特に心臓に対する送受信アンテナの位置関係によっては、受信アンテナが得る受信波が心拍出量の測定に適さない場合も考えられる。心臓に対して送受信アンテナの位置がずれている等で、心拍出量の測定に適さない状態で用いられた場合、得られる心拍出量の計測精度が低下する。 However, depending on the position of the pair of transmitting/receiving antennas for transmitting/receiving radio waves with respect to the living body, especially the positional relationship of the transmitting/receiving antennas with respect to the heart, the received waves obtained by the receiving antennas may not be suitable for measuring cardiac output. If the transmitter/receiver antenna is misaligned with respect to the heart and used in a state unsuitable for measuring cardiac output, the resulting measurement accuracy of the cardiac output decreases.
 また、計測毎の心拍出量の変化を診療に用いる際、送受信アンテナの位置を、測定に適した場所に配置させる技術がなければ、得られた心拍出量の変化がアンテナの設置位置が変化したためなのか、患者状態の変化によるものなのか判断できない。 In addition, when using the change in cardiac output for each measurement in clinical practice, if there is no technology to position the transmitting and receiving antennas in a location suitable for measurement, the obtained change in cardiac output may not be the same as the antenna installation position. It is not possible to determine whether this is due to a change in the patient's condition or a change in the patient's condition.
 本発明は、上記事情に鑑みてなされたものであり、適正な位置に配置した送受信アンテナを用いて、心臓から拍出される血液量を高い精度で推定可能な心拍出量計測センサ、および制御プログラムを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances. The purpose is to provide a control program.
 上記目的を達成するため本発明の心拍出量計測センサは、電磁波を生体に向けて送信する送信アンテナと、前記送信アンテナに対して、生体の心臓を挟んで対向するように配置された受信アンテナと、前記受信アンテナで受信した、前記生体を透過した電磁波を用いて、心臓から拍出される血液量を推定する心拍出量推定部と、を備え、前記送信アンテナおよび前記受信アンテナの少なくとも一方は、前記生体に対する位置が異なる複数のアンテナ素子を含み、さらに、前記アンテナ素子それぞれに関して計測された計測値の経時的変化を表す波形データを作成するとともに、該波形データを前記アンテナ素子それぞれと対応付けた波形分布データを作成する1次分布作成部と、前記1次分布作成部により得られた前記波形分布データに基づいて、複数の前記アンテナ素子の中から、前記血液量の推定の際に用いるアンテナ素子を決定する素子決定部と、を備える。 In order to achieve the above object, the cardiac output measurement sensor of the present invention comprises a transmitting antenna for transmitting electromagnetic waves toward a living body, and a receiving antenna arranged to face the transmitting antenna with the heart of the living body interposed therebetween. an antenna; and a cardiac output estimator for estimating the volume of blood pumped from the heart using the electromagnetic wave received by the receiving antenna and transmitted through the living body, wherein At least one of the antenna elements includes a plurality of antenna elements positioned at different positions with respect to the living body, and further creates waveform data representing temporal changes in measured values measured for each of the antenna elements, and transmits the waveform data to each of the antenna elements. and a primary distribution creating unit that creates waveform distribution data associated with the blood volume estimation unit from among the plurality of antenna elements based on the waveform distribution data obtained by the primary distribution creating unit. and an element determination unit that determines an antenna element to be used.
 また、上記目的を達成するため本発明の制御プログラムは、電磁波を生体に向けて送信する送信アンテナと、前記送信アンテナに対して、生体の心臓を挟んで対向するように配置された受信アンテナと、前記受信アンテナで受信した、前記生体を透過した電磁波を用いて、心拍出量を推定する心拍出量推定部と、を備え、前記送信アンテナおよび前記受信アンテナの少なくとも一方は、前記生体に対する位置が異なる複数のアンテナ素子を含む、心拍出量計測センサを制御するコンピューターで実行される制御プログラムであって、
 前記アンテナ素子それぞれに関して計測された計測値の経時的変化を表す波形データを作成するとともに、該波形データを前記アンテナ素子それぞれと対応付けた波形分布データを作成する1次分布作成ステップと、前記1次分布作成ステップで作成された前記波形分布データから、複数の前記アンテナ素子の中から、前記血液量の推定の際に用いるアンテナ素子を決定する素子決定ステップと、を含む処理を、前記コンピューターに実行させる。
Further, in order to achieve the above object, the control program of the present invention includes a transmitting antenna for transmitting electromagnetic waves toward a living body, and a receiving antenna arranged to face the transmitting antenna with the heart of the living body interposed therebetween. and a cardiac output estimator for estimating a cardiac output using an electromagnetic wave received by the receiving antenna and transmitted through the living body, wherein at least one of the transmitting antenna and the receiving antenna is connected to the living body. A computer-executable control program for controlling a cardiac output sensor comprising a plurality of antenna elements positioned differently with respect to
a primary distribution creating step of creating waveform data representing temporal changes in measured values measured for each of the antenna elements, and creating waveform distribution data in which the waveform data is associated with each of the antenna elements; and an element determination step of determining an antenna element to be used for estimating the blood volume from among the plurality of antenna elements from the waveform distribution data created in the next distribution creation step. let it run.
 本発明に係る心拍出量計測センサおよび制御プログラムによれば、適切な位置に配置した送受信アンテナを用いて、高い精度で心臓から拍出される血液量を推定できる。 According to the cardiac output measurement sensor and control program according to the present invention, the amount of blood pumped from the heart can be estimated with high accuracy using the transmitting/receiving antennas placed at appropriate positions.
第1の実施形態における心拍出量計測センサ全体を示す概略斜視図である。1 is a schematic perspective view showing the entire cardiac output measurement sensor in the first embodiment; FIG. 第1の実施形態に係る心拍出量計測センサの構成を示すブロック図である。1 is a block diagram showing the configuration of a cardiac output measurement sensor according to a first embodiment; FIG. 第1の実施形態における送受信アンテナの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a transmitting/receiving antenna in the first embodiment; FIG. 変形例における送受信アンテナの構成例を示す図である。It is a figure which shows the structural example of the transmission/reception antenna in a modification. 別の変形例における送受信アンテナの構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a transmitting/receiving antenna in another modified example; 素子走査処理における各アンテナ素子の高速切り替え処理を示す模式図である。FIG. 4 is a schematic diagram showing high-speed switching processing of each antenna element in element scanning processing; 図5Aの処理で得られた点データを示す模式図である。5B is a schematic diagram showing point data obtained by the process of FIG. 5A; FIG. 図5Bの点データにより生成した波形データを示す模式図である。FIG. 5B is a schematic diagram showing waveform data generated from the point data of FIG. 5B; 第1の実施形態におけるアンテナ素子決定処理および心拍出量測定処理を示すフローチャートである。4 is a flow chart showing antenna element determination processing and cardiac output measurement processing in the first embodiment. 図6のステップS19の処理を示すサブルーチンフローチャートである。FIG. 7 is a subroutine flowchart showing processing in step S19 of FIG. 6. FIG. 波形分布データ(1次分布データ)の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of waveform distribution data (primary distribution data); 各種の評価値の例を示す表である。4 is a table showing examples of various evaluation values; 評価値の分布データ(2次分布データ)の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of evaluation value distribution data (secondary distribution data); ピークタイミングの差分時間を説明する模式図である。FIG. 10 is a schematic diagram for explaining a differential time between peak timings; 位置による差分時間の違いを説明するための模式図である。FIG. 4 is a schematic diagram for explaining a difference in differential time depending on position; 第2の実施形態における図6のステップS19の処理を示すサブルーチンフローチャートである。FIG. 7 is a subroutine flowchart showing the process of step S19 in FIG. 6 in the second embodiment; FIG. 図12Aに続く処理を示すフローチャートである。FIG. 12B is a flow chart showing the process following FIG. 12A; FIG. 各種の特徴量の例を示す表である。4 is a table showing examples of various feature amounts; 2次分布データに、特徴データとしてのピーク位置を重ねて示したものである。The peak position as feature data is superimposed on the secondary distribution data. XYステージの構成を示す斜視図である。3 is a perspective view showing the configuration of an XY stage; FIG. XYステージの構成を示す側面図である。FIG. 4 is a side view showing the configuration of the XY stage; 変形例における図12Aに続く処理を示すフローチャートである。FIG. 12B is a flow chart showing the process following FIG. 12A in the modified example; FIG. 第3の実施形態におけるアンテナ素子決定処理および心拍出量測定処理を示すフローチャートである。10 is a flow chart showing antenna element determination processing and cardiac output measurement processing in the third embodiment.
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。本発明の技術的範囲は、以下に説明する実施形態に限定されず、特許請求の範囲に記載の範囲内で種々形態を変更して実施することができる。なお、心拍出量とは、通常は、1分間に心臓から拍出される血液量のことをいうが、本明細書において、心臓から拍出される血液量のことを心拍出量ということがある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted. Also, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from the actual ratios. The technical scope of the present invention is not limited to the embodiments described below, and various modifications can be made within the scope of the claims. Cardiac output usually refers to the amount of blood pumped from the heart per minute, but in this specification, the amount of blood pumped from the heart is referred to as cardiac output. Sometimes.
 図1は、本発明の第1の実施形態に係る心拍出量計測センサ1000全体を示す概略図である。図2は、第1の実施形態に係る心拍出量計測センサ1000の構成を示すブロック図であり、図3は、第1の実施形態における送受信アンテナの構成例を示す図である。 FIG. 1 is a schematic diagram showing the entire cardiac output measurement sensor 1000 according to the first embodiment of the present invention. FIG. 2 is a block diagram showing the configuration of the cardiac output measuring sensor 1000 according to the first embodiment, and FIG. 3 is a diagram showing a configuration example of the transmitting/receiving antenna in the first embodiment.
 図1では、ベッド95上に患者90(生体または被検者ともいう)が横たわっている状態(仰臥位)を示している。心拍出量計測センサ1000により患者90の心拍出量等の心臓から拍出される血液量を測定(推定)する。例えば、心拍出量計測センサ1000は、心不全の検査、心臓手術後の経過観察、心臓病の投薬効果・副作用等の検証、等で用いられる。 FIG. 1 shows a state in which a patient 90 (also called a living body or subject) is lying on a bed 95 (supine position). The cardiac output measurement sensor 1000 measures (estimates) the amount of blood pumped from the heart, such as the cardiac output of the patient 90 . For example, the cardiac output measurement sensor 1000 is used for examination of heart failure, follow-up observation after heart surgery, verification of medication effects and side effects of heart disease, and the like.
 測定時には、看護師、医師等のユーザーにより、送信アンテナ11と受信アンテナ12の中心を結ぶ線が、心臓91に対応するように、両アンテナユニット(以下、単に「送受信アンテナ」ともいう)は、心臓91を挟んで互いに対向するように配置される。なお、外部電波による影響を減少させるために、測定中は、布製の電波シールドで、患者90の胸部および送受信アンテナ全体を覆うようにしてもよい。例えば、受信アンテナ12は、患者90の下に配置され、送信アンテナ11は、患者90の上方に配置される。具体的には、受信アンテナ12はベッド95の上に配置され、その上に患者90が仰向けに寝る。上方の送信アンテナ11は、側面視でコの字型の移動式の固定台(図示せず)に取り付けられる。この固定台は、手動で送信アンテナ11の高さを調整可能である。送信アンテナ11は、固定台により、患者90からわずかに離間した状態で、患者90の上方に配置される。離間させるのは、患者90の呼吸動作を妨げないことと、患者90との接触による、意図しない送信アンテナ11の移動を防止するためである。なお、送受信アンテナの配置は、図1等の配置に限定されない。例えば、上下を逆にし、送信アンテナ11を患者90の下方(背面側)に配置し、受信アンテナ12を患者90の上方側(前面側)に配置してもよい。 At the time of measurement, a user such as a nurse or a doctor aligns the line connecting the centers of the transmitting antenna 11 and the receiving antenna 12 with the heart 91. They are arranged so as to face each other with the heart 91 interposed therebetween. In order to reduce the influence of external radio waves, a radio wave shield made of cloth may be used to cover the chest of the patient 90 and the entire transmitting/receiving antenna during measurement. For example, receiving antenna 12 is positioned below patient 90 and transmitting antenna 11 is positioned above patient 90 . Specifically, the receiving antenna 12 is placed on a bed 95 on which the patient 90 lies supine. The upper transmitting antenna 11 is attached to a U-shaped movable fixed base (not shown) when viewed from the side. This fixed base can manually adjust the height of the transmitting antenna 11 . The transmitting antenna 11 is arranged above the patient 90 while being slightly separated from the patient 90 by a fixed base. The purpose of the separation is not to interfere with the patient's 90 breathing and to prevent unintended movement of the transmitting antenna 11 due to contact with the patient 90 . Note that the arrangement of the transmitting and receiving antennas is not limited to the arrangement shown in FIG. 1 and the like. For example, the patient 90 may be turned upside down so that the transmitting antenna 11 is arranged below the patient 90 (back side) and the receiving antenna 12 is arranged above the patient 90 (front side).
 図2に示すように、心拍出量計測センサ1000は、送信アンテナ11、受信アンテナ12、および装置本体20を含む。装置本体20は、移動式の架台(図示せず)に載せられてベッド95の脇に配置される。装置本体20は、内蔵バッテリまたは、商用電源から供給された電力により動作する。また、両アンテナユニットは、信号ケーブル13を通じて、装置本体20と接続されており、この信号ケーブル13を通じて、データ信号の送受信および電力供給が行われる。送受信アンテナに関しては、後述する。 As shown in FIG. 2, the cardiac output measurement sensor 1000 includes a transmitting antenna 11, a receiving antenna 12, and a device body 20. The apparatus main body 20 is mounted on a movable frame (not shown) and arranged beside the bed 95 . The device main body 20 operates with an internal battery or power supplied from a commercial power source. Both antenna units are connected to the device main body 20 through the signal cable 13, through which data signals are transmitted and received and power is supplied. The transmitting/receiving antenna will be described later.
 (装置本体20)
 装置本体20は、送受信コントローラー14、制御部21、記憶部22、入出力I/F(インターフェース)23、および通信I/F24を備える。
(Device body 20)
The apparatus main body 20 includes a transmission/reception controller 14 , a control section 21 , a storage section 22 , an input/output I/F (interface) 23 and a communication I/F 24 .
 (送受信コントローラー14)
 送受信コントローラー14は、信号ケーブル13を介して、送信アンテナ11および受信アンテナ12と電気的に接続される。制御部21の制御の下で、送受信コントローラー14は、両アンテナユニット間の送受信のタイミングを制御したり、受信アンテナ12からの計測値(受信信号)を取得したりする。
(transmission/reception controller 14)
Transmit/receive controller 14 is electrically connected to transmitting antenna 11 and receiving antenna 12 via signal cable 13 . Under the control of the control unit 21 , the transmission/reception controller 14 controls the timing of transmission/reception between both antenna units and acquires measured values (received signals) from the reception antenna 12 .
 (制御部21)
 制御部21は、CPU、RAM、ROM、等を含みROMまたは記憶部22に記憶されたプログラムにしたがって、装置内の各部の制御を行う。制御部21は、プログラムを実行することにより、1次分布作成部211、2次分布作成部212、素子決定部213、心拍出量推定部214、設置状態判定部215、および指示部216として機能する。また、1次分布作成部211には、点データ記録部301、および波形データ生成部302が含まれる。
(control unit 21)
The control unit 21 includes a CPU, RAM, ROM, etc., and controls each unit in the device according to a program stored in the ROM or the storage unit 22 . By executing a program, the control unit 21 functions as a primary distribution generation unit 211, a secondary distribution generation unit 212, an element determination unit 213, a cardiac output estimation unit 214, an installation state determination unit 215, and an instruction unit 216. Function. The primary distribution generator 211 also includes a point data recorder 301 and a waveform data generator 302 .
 1次分布作成部211は、点データ記録部301と波形データ生成部302の機能によりアンテナ素子それぞれに関して計測された計測値の経時的変化を表す波形データを作成する(以下、「前段処理」という)。また1次分布作成部211は、この波形データをアンテナ素子それぞれと対応付けた波形分布データを作成する(以下、「後段処理」という)。2次分布作成部212は、評価値を算出するとともに、アンテナ素子の位置に応じた評価値の分布データを作成する。素子決定部213は、1次分布作成部が作成した波形分布データに基づいて、2次分布作成部212により作成された評価値の分布データに基づいて、心拍出量の推定の際に用いるアンテナ素子を決定する。すなわち、素子決定部213は、2次分布作成部212により作成された評価値の分布データに基づくことで、間接的に1次分布作成部211が作成した波形分布データに基づいて、心拍出量の推定の際に用いるアンテナ素子を決定している。また、素子決定部213は、1次分布作成部211が作成した波形分布データに基づいて、算出された評価値に基づいて、心拍出量の推定の際に用いるアンテナ素子を決定してもよい。2次分布作成部212は、評価値算出部として機能し、波形データまたは波形分布データから評価値(後述の評価値1~6)を算出する。心拍出量推定部214は、患者90の心拍出量、すなわち心臓91から拍出される血液量を推定(算出)する。設置状態判定部215は、送受信アンテナ(アンテナアレイ)の設置状態の適否を判定する。指示部216は、第1指示部として機能し、設置状態判定部215の判定結果に応じて、再計測または再配置の指示を出力する。また、指示部216は第2指示部として機能し、再配置の移動方向を指示する。これらの機能についての詳細は後述する(後述の図12B等)。 The primary distribution generating unit 211 generates waveform data representing temporal changes in measured values measured for each antenna element by the functions of the point data recording unit 301 and the waveform data generating unit 302 (hereinafter referred to as “pre-processing”). ). The primary distribution generator 211 also generates waveform distribution data by associating the waveform data with each antenna element (hereinafter referred to as "post-processing"). The secondary distribution creating unit 212 calculates the evaluation values and creates distribution data of the evaluation values according to the positions of the antenna elements. The element determination unit 213 is used in estimating the cardiac output based on the distribution data of the evaluation values created by the secondary distribution creation unit 212 based on the waveform distribution data created by the primary distribution creation unit. Determine antenna elements. That is, the element determining unit 213 indirectly determines the cardiac output based on the waveform distribution data created by the primary distribution creating unit 211 based on the evaluation value distribution data created by the secondary distribution creating unit 212 . It determines the antenna elements to be used when estimating the quantity. Further, the element determination unit 213 may determine the antenna elements to be used in estimating the cardiac output based on the calculated evaluation value based on the waveform distribution data created by the primary distribution creation unit 211. good. The secondary distribution generator 212 functions as an evaluation value calculator, and calculates evaluation values (evaluation values 1 to 6 described later) from waveform data or waveform distribution data. The cardiac output estimator 214 estimates (calculates) the cardiac output of the patient 90 , that is, the volume of blood pumped from the heart 91 . The installation state determination unit 215 determines whether the installation state of the transmission/reception antenna (antenna array) is appropriate. The instruction unit 216 functions as a first instruction unit, and outputs an instruction for re-measurement or rearrangement according to the determination result of the installation state determination unit 215 . In addition, the instruction unit 216 functions as a second instruction unit and instructs the moving direction of rearrangement. Details of these functions will be described later (FIG. 12B, etc., to be described later).
 (記憶部22)
 記憶部22は、予め各種プログラムや各種データを格納しておく半導体メモリや、ハードディスク等の磁気メモリから構成される。また記憶部22には、点データ、波形データ、波形分布データ、比較分布パターン、特徴データの設定範囲、等が記憶される。記憶部22には、アンテナアレイにおけるアンテナ素子(後述のアンテナ素子rx、tx)の位置情報が記憶されている。位置情報は例えば、基板上のXY座標や、相対的な位置関係(距離、方向)の情報である。
(storage unit 22)
The storage unit 22 is composed of a semiconductor memory in which various programs and various data are stored in advance, and a magnetic memory such as a hard disk. The storage unit 22 also stores point data, waveform data, waveform distribution data, comparative distribution patterns, set ranges of feature data, and the like. The storage unit 22 stores position information of antenna elements (antenna elements rx and tx, which will be described later) in the antenna array. The positional information is, for example, XY coordinates on the substrate and information on relative positional relationships (distance, direction).
 (入出力I/F23)
 入出力I/F23は、入出力部として機能し、USB、DVIの規格等に準拠した入出力端子を備え、キーボード、マウス、マイク等の入力装置およびディスプレイ、スピーカ、プリンタ等の出力装置と接続するインターフェースである。図1、図3に示す例では、入出力I/F23には、タッチパネル51が接続されている。また、XYステージ52が接続されていてもよい。タッチパネル51は、液晶パネルおよびこれに重畳させたタッチパッドで構成され、これを介して、ユーザーからアンテナ素子決定処理、および心拍出量測定の開始指示を受け付ける。XYステージ52は、指示部216の再配置の指示に応じて、両アンテナユニットの少なくとも一方を移動させ、配置位置を変更する。なお、タッチパネル51、XYステージ52等の入出力装置を、装置本体20または心拍出量計測センサ1000の構成に含めてもよい。
(Input/output I/F 23)
The input/output I/F 23 functions as an input/output unit, has input/output terminals conforming to the USB and DVI standards, etc., and is connected to input devices such as a keyboard, mouse, and microphone, and output devices such as a display, speaker, and printer. It is an interface to In the example shown in FIGS. 1 and 3, the input/output I/F 23 is connected to the touch panel 51 . Also, an XY stage 52 may be connected. The touch panel 51 is composed of a liquid crystal panel and a touch pad superimposed thereon, and receives instructions from the user to start antenna element determination processing and cardiac output measurement. The XY stage 52 moves at least one of the two antenna units according to the rearrangement instruction from the instruction unit 216 to change the arrangement position. Input/output devices such as the touch panel 51 and the XY stage 52 may be included in the configuration of the device main body 20 or the cardiac output measurement sensor 1000 .
 (通信I/F24)
 通信I/F24は、PC(パーソナルコンピュータ)、タブレット端末、等の外部の端末装置とネットワーク経由、またはピアツーピアで、有線または無線通信によるデータの送受信を行うインターフェースである。有線通信では、イーサネット(登録商標)、SATA、PCI Express、IEEE1394、等の規格によるネットワークインターフェースを用いてもよく、無線通信では、Bluetooth(登録商標)、IEEE802.11、4Gなどの無線通信インターフェースを用いてもよい。図1、図3に示す例では、通信I/F24には、PC61が接続されている。
(Communication I/F 24)
The communication I/F 24 is an interface that transmits and receives data via wired or wireless communication with an external terminal device such as a PC (personal computer), tablet terminal, or the like via a network or peer-to-peer. Wired communication may use network interfaces conforming to standards such as Ethernet (registered trademark), SATA, PCI Express, IEEE1394, etc., and wireless communication may use wireless communication interfaces such as Bluetooth (registered trademark), IEEE802.11, 4G, and the like. may be used. In the example shown in FIGS. 1 and 3, a PC 61 is connected to the communication I/F 24 .
 (送信アンテナ11)
 図2、図3に示すように送信アンテナ11は、基板110、送信波形生成部111、およびアンテナ素子t1で構成される。図3に示す第1の実施形態では、後述の変形例(図4A等)とは異なり、送信アンテナ11は、単一のアンテナ素子t1を備え、受信側は複数のアンテナ素子を備える(1対多の構成)。
(Transmitting antenna 11)
As shown in FIGS. 2 and 3, the transmitting antenna 11 includes a substrate 110, a transmission waveform generator 111, and an antenna element t1. In the first embodiment shown in FIG. 3, the transmitting antenna 11 is provided with a single antenna element t1, and the receiving side is provided with a plurality of antenna elements (one pair configuration).
 送信アンテナ11は、生体を透過する電磁波乃至電波を送信する。基板110は、各辺が数十mm~二百数十mmの全体が矩形板状の部材であり、この基板110上に送信波形生成部111、およびアンテナ素子t1が配置される。アンテナ素子t1として、一辺または直径が数十mmから百数十mmのパッチアンテナ、ダイポール形式の線状アンテナ、またはループアンテナを適用できる。例えば、アンテナ素子t1は、パッチアンテナである。 The transmitting antenna 11 transmits electromagnetic waves or radio waves that pass through the living body. The substrate 110 is a rectangular plate-shaped member with each side of several tens mm to two hundred and several tens mm. As the antenna element t1, a patch antenna, a dipole-type linear antenna, or a loop antenna having a side or a diameter of several tens mm to a hundred and several tens mm can be applied. For example, antenna element t1 is a patch antenna.
 送信波形生成部111は、電波生成器を含む。生成する電磁波の周波数は、生体の心臓91を電離作用なく透過することができれば特に限定されない。例えば、周波数300MHzから30GHzのマイクロ波が好ましく、より好ましくは400M~1.0GHzのマイクロ波である。マイクロ波は、生体透過性と、心臓91の収縮、拡張における損失変化による感度(電界強度の変化率)が高いため、心拍出量の測定に好適である。生成する電波の電力は、受信アンテナ12において十分な電力が検出できれば特に限定されないが、例えば、数mW~数十mWとしてもよい。また、生成する電波は、連続波、パルス波、または位相変調若しくは周波数変調を施した電波のいずれでもよい。 The transmission waveform generator 111 includes a radio wave generator. The frequency of the generated electromagnetic wave is not particularly limited as long as it can pass through the heart 91 of the living body without ionizing action. For example, microwaves with a frequency of 300 MHz to 30 GHz are preferred, and microwaves with a frequency of 400 M to 1.0 GHz are more preferred. Microwaves are suitable for measuring cardiac output because of their bio-penetrability and high sensitivity (rate of change in electric field strength) due to changes in loss during contraction and expansion of the heart 91 . The power of the radio waves to be generated is not particularly limited as long as sufficient power can be detected by the receiving antenna 12, but may be several mW to several tens of mW, for example. Further, the generated radio wave may be a continuous wave, a pulse wave, or a phase-modulated or frequency-modulated radio wave.
 (受信アンテナ12)
 図2、図3に示すように受信アンテナ12は、基板120、アンテナアレイ121、高速切替部122、およびサンプリング部123を含む。アンテナアレイ121、高速切替部122、およびサンプリング部123は、各辺が数十mm~二百数十mmの全体が矩形板状の基板120上に形成される。
(receiving antenna 12)
As shown in FIGS. 2 and 3, the receiving antenna 12 includes a substrate 120, an antenna array 121, a high speed switching section 122, and a sampling section 123. FIG. The antenna array 121, the high-speed switching unit 122, and the sampling unit 123 are all formed on a rectangular plate-shaped substrate 120, each side of which is several tens mm to two hundred and several tens mm.
 アンテナアレイ121は、複数のアンテナ素子r1~rx(以下、これらを総称して、「アンテナ素子r」ともいう(アンテナ素子tも同じ))で構成され、これらは平面状の基板120の表面に、同一平面上で格子状に配置される。送信側を単一のアンテナ素子t、受信側を複数のアンテナ素子rで構成することで、電界を作る送信アンテナの位置が一定となり、電磁波による電界が安定する。 The antenna array 121 is composed of a plurality of antenna elements r1 to rx (hereinafter collectively referred to as "antenna element r" (the same applies to antenna element t)), which are arranged on the surface of the planar substrate 120. , are arranged in a grid on the same plane. By configuring the transmitting side with a single antenna element t and the receiving side with a plurality of antenna elements r, the position of the transmitting antenna that creates the electric field becomes constant, and the electric field by electromagnetic waves is stabilized.
 図3に示す第1の実施形態においては、各アンテナ素子rとして、ダイポール形式の線状アンテナ、または微小ループアンテナを適用できる。アンテナ素子rは、例えばそれぞれが、一辺または直径が数mm~十数mmのループアンテナである。隣接するアンテナ素子r同士は、密着することなく配置している。アンテナアレイ121全体のサイズとしては、生体の背面側から視たときの心臓91のサイズよりも大きいサイズに設定している。例えば、1辺が100~150mmの矩形形状である。 In the first embodiment shown in FIG. 3, a dipole type linear antenna or a minute loop antenna can be applied as each antenna element r. The antenna elements r are, for example, loop antennas each having a side or a diameter of several millimeters to ten and several millimeters. Adjacent antenna elements r are arranged without being in close contact with each other. The size of the entire antenna array 121 is set to be larger than the size of the heart 91 when viewed from the back side of the living body. For example, it has a rectangular shape with one side of 100 to 150 mm.
 また、アンテナ素子rの総個数は、好ましくは40個以上100個以下である。後述の使用するアンテナ素子rを決定する際の位置精度(位置解像度)の観点から、40個以上とすることが好ましい。上限個数は、周期tsと総個数を乗じることで算出される1サイクル時間tc(サンプリングレート)の観点や、コストの観点から100個以下が好ましい。例えば図3に示す例では、アンテナ素子rそれぞれは12mmの略矩形のループアンテナであり、アンテナアレイ121は、縦横7個ずつの総数49個のアンテナ素子r1~r49で構成される。そして、隣接するアンテナ素子r同士の間隔は2mm程度で配置され、アンテナアレイ121全体のサイズは約100mm角である。以下においては、横軸(後述の行A-Gの行方向)をX方向、縦軸(後述の列1-7の列方向)をY方向ともいう。これらのアンテナ素子rそれぞれの位置情報(XY座標)は、上述のように記憶部22に記憶されており、2次分布作成部212の処理に用いられる。 Also, the total number of antenna elements r is preferably 40 or more and 100 or less. From the viewpoint of positional accuracy (positional resolution) when determining antenna elements r to be used, which will be described later, the number is preferably 40 or more. The upper limit number is preferably 100 or less from the viewpoint of one cycle time tc (sampling rate) calculated by multiplying the period ts by the total number and from the viewpoint of cost. For example, in the example shown in FIG. 3, each antenna element r is a substantially rectangular loop antenna of 12 mm, and the antenna array 121 is composed of a total of 49 antenna elements r1 to r49, 7 in length and 7 in width. Adjacent antenna elements r are arranged at intervals of about 2 mm, and the size of the entire antenna array 121 is about 100 mm square. Hereinafter, the horizontal axis (the row direction of rows A to G described later) is also referred to as the X direction, and the vertical axis (the column direction of columns 1 to 7 described later) is also referred to as the Y direction. The positional information (XY coordinates) of each of these antenna elements r is stored in the storage unit 22 as described above, and used for the processing of the secondary distribution generation unit 212 .
 高速切替部122は、各アンテナ素子r1~rxに対応した複数のスイッチング素子s1~sx(以下、これらを総称して、「スイッチング素子s」ともいう)で構成される。高速切替部122では、いずれか1個のスイッチング素子s(例えば素子s1(図2参照))のみをON状態にし、その他のスイッチング素子s(例えば素子s2~sx)は全てOFFにする。複数のアンテナ素子を同時にON状態で動作させた場合、アンテナ同士が結合し、1つのアンテナとして動作してしまい、所望の計測値が得られない虞がある。このような現象を避けるため、高速切替部122では、1つのアンテナ素子r(および図4A等の例では送信アンテナ素子t)のみをON状態にする。 The high-speed switching unit 122 is composed of a plurality of switching elements s1 to sx (hereinafter collectively referred to as "switching elements s") corresponding to the respective antenna elements r1 to rx. In the high-speed switching unit 122, only one switching element s (for example, element s1 (see FIG. 2)) is turned ON, and all the other switching elements s (for example, elements s2 to sx) are turned OFF. When a plurality of antenna elements are operated in the ON state at the same time, the antennas are coupled to each other and operate as one antenna, and there is a possibility that a desired measurement value cannot be obtained. In order to avoid such a phenomenon, the high-speed switching unit 122 turns ON only one antenna element r (and the transmission antenna element t in the example of FIG. 4A and the like).
 また、高速切替部122は、OFF状態のアンテナ素子rの終端条件を制御する、すなわち、OFF状態のアンテナ素子rを、高周波的に接地する。このようにすることで、OFF状態のアンテナ素子による誘導障害等の影響を減らせる。 In addition, the high-speed switching unit 122 controls the termination condition of the antenna element r in the OFF state, that is, grounds the antenna element r in the OFF state at high frequencies. By doing so, it is possible to reduce the influence of induction disturbances and the like caused by the antenna element in the OFF state.
 サンプリング部123は、サンプリング回路と、AD変換回路、バッファー回路を含む。サンプリング部123は、ON状態のアンテナ素子r(例えば素子r1)が受信した電波信号をサンプリングし、電界強度をデジタル信号(計測値)に変換する。各アンテナ素子rに対応したデジタル化した計測値は、逐次、または所定単位(例えば、1サイクル周期)でまとめて、装置本体20の送受信コントローラー14に送られる。 The sampling unit 123 includes a sampling circuit, an AD conversion circuit, and a buffer circuit. The sampling unit 123 samples the radio signal received by the ON-state antenna element r (for example, the element r1) and converts the electric field intensity into a digital signal (measurement value). The digitized measurement values corresponding to each antenna element r are sent to the transmission/reception controller 14 of the apparatus main body 20 either sequentially or collectively in predetermined units (for example, one cycle period).
 (送受信アンテナの変形例)
 図4Aは、変形例(多対多)における送受信アンテナの構成例を示す図であり、図4Bは、別の変形例(多対1)における送受信アンテナの構成例を示す図である。
(Modified example of transmitting/receiving antenna)
FIG. 4A is a diagram showing a configuration example of transmission/reception antennas in a modification (many-to-many), and FIG. 4B is a diagram showing a configuration example of transmission/reception antennas in another modification (many-to-one).
 上述した図3に示す第1の実施形態(1対多)では、受信アンテナ12側に複数のアンテナ素子を配置した。すなわち、受信アンテナ12がアンテナアレイ121、およびこれをスイッチング制御する高速切替部122を備えた。しかしながら、図4Aに示す変形例のように、送信アンテナ11b側にも複数のアンテナ素子t1~txを配置してもよい。すなわち、図4Aに示すように、送信アンテナ11bが、送信波形生成部111とともに、アンテナアレイ113、およびこれをスイッチング制御する高速切替部112を備えてもよい。なお、アンテナアレイ113および高速切替部112は、受信アンテナ12のアンテナアレイ121および高速切替部122と同様の構成を備えるため、説明を省略する。 In the first embodiment (one-to-many) shown in FIG. 3 described above, a plurality of antenna elements are arranged on the receiving antenna 12 side. That is, the receiving antenna 12 has an antenna array 121 and a high-speed switching section 122 that controls switching of the antenna array 121 . However, as in the modification shown in FIG. 4A, a plurality of antenna elements t1 to tx may also be arranged on the transmitting antenna 11b side. That is, as shown in FIG. 4A, the transmission antenna 11b may include a transmission waveform generation section 111, an antenna array 113, and a high-speed switching section 112 that controls switching of the antenna array 113. FIG. Note that the antenna array 113 and the high-speed switching section 112 have the same configurations as the antenna array 121 and the high-speed switching section 122 of the receiving antenna 12, and thus description thereof is omitted.
 また、図4Bに示す別の変形例(多対1)のように、受信アンテナ12b側を1つのアンテナ素子としてもよい。図4Bに示す受信アンテナ12bは、1つの受信アンテナr1とこれに接続したサンプリング部123で構成される。なお、図3、図4A、図4Bの実施形態でのアンテナアレイを構成する送受信アンテナ素子の数は、あくまでも例示であり、49個よりも少なくともよく、多くてもよい。例えば、送信側アンテナアレイ113のアンテナ素子tの個数を数個にしてもよく、100個以上にしてもよく、受信側アンテナアレイ121のアンテナ素子rの個数を数個にしてもよく、100個以上にしてもよい。これらの数の下限はアンテナ素子の配置の位置精度に影響し、上限は、サンプリングレートに影響する。数を多くすると、1サイクル時間tcが長くなり、サンプリングレートが低くなり、正しい波形データ(後述の図5C参照)が得られなくなる。 Also, as in another modification (many-to-one) shown in FIG. 4B, one antenna element may be used on the receiving antenna 12b side. The receiving antenna 12b shown in FIG. 4B is composed of one receiving antenna r1 and a sampling section 123 connected thereto. It should be noted that the number of transmitting and receiving antenna elements constituting the antenna array in the embodiments of FIGS. 3, 4A, and 4B is merely an example, and may be at least 49 or may be more. For example, the number of antenna elements t in the transmitting-side antenna array 113 may be several or may be 100 or more, and the number of antenna elements r in the receiving-side antenna array 121 may be several or 100. You can do more than that. The lower bounds of these numbers affect the positional accuracy of the placement of the antenna elements, and the upper bounds affect the sampling rate. If the number is increased, one cycle time tc becomes longer, the sampling rate becomes lower, and correct waveform data (see FIG. 5C described later) cannot be obtained.
 図3の受信アンテナ側をアンテナアレイにする構成と図4Bの送信アンテナ側をアンテナアレイにする構成を比較すると、受信アンテナ側をアンテナアレイにする構成の方が、送信アンテナ側をアンテナアレイにする構成よりも、心拍出量の測定に好適なアンテナ素子をより正確に選定できることが発明者の検討により明らかになっている。 Comparing the configuration in which the reception antenna side is an antenna array in FIG. 3 and the configuration in which the transmission antenna side is an antenna array in FIG. 4B, the configuration in which the reception antenna side is an antenna array is better in the configuration where the transmission antenna side is an antenna array. The inventor's study has revealed that the antenna element suitable for measuring cardiac output can be selected more accurately than the configuration.
 (1次分布作成部211の前段処理)
 次に、図5A~図5Cを参照し、1次分布作成部211による、波形データ作成までの前段処理について説明する。この前段処理は、以下に説明するように、主に点データ記録部301、および波形データ生成部302により行われる。なお、以下の説明においては、送受信アンテナの構成は、図3に示した第1の実施形態のような構成例であるとして説明する(図6以降も同様)。この場合、以下に説明するように点データ記録部301は、高速切替部122によりONとなったアンテナ素子rそれぞれに関して計測された計測値を、アンテナ素子rそれぞれと紐付けて点データとして記録する。
(Pre-processing of primary distribution generation unit 211)
Next, with reference to FIGS. 5A to 5C, pre-processing up to waveform data generation by the primary distribution generator 211 will be described. This pre-processing is mainly performed by the point data recording unit 301 and the waveform data generating unit 302, as described below. In the following description, the configuration of the transmitting/receiving antennas will be described as being a configuration example similar to that of the first embodiment shown in FIG. 3 (the same applies to FIG. 6 and subsequent figures). In this case, as described below, the point data recording unit 301 records, as point data, the measurement values obtained for each of the antenna elements r turned on by the high-speed switching unit 122 in association with each of the antenna elements r. .
 なお、図4Aに示した変形例(多対多)を適用する場合には、送信側のアンテナ素子t、および受信側のアンテナ素子rを順次、高速切替部112、122により切り替える。すなわち、ある時刻では、同時に1系統のアンテナ素子t、rの伝播経路のみが作動するように、両アンテナユニットを同期させながら高速で切り替える。この場合、点データ記録部301は、高速切替部112、122によりONとなったアンテナ素子t、rそれぞれに関する計測値を、アンテナ素子t、rそれぞれと紐付けて点データとして記録する。例えば、ある時刻では、送信のアンテナ素子txと受信のアンテナ素子rxの伝播経路で送受信された受信信号を、これらの送受信のアンテナtx、rxに紐付けて、点データとして記録される。図4Bに示した別の変形例(多対1)でも同様の処理により、それぞれのアンテナ素子tx(と1つのアンテナ素子r1)に紐付けて、点データとして記録される。 When the modification (many-to-many) shown in FIG. 4A is applied, the antenna element t on the transmitting side and the antenna element r on the receiving side are sequentially switched by high-speed switching sections 112 and 122 . That is, at a certain time, both antenna units are synchronized and switched at high speed so that only the propagation paths of one system of antenna elements t and r are activated at the same time. In this case, the point data recording unit 301 records the measurement values of the antenna elements t and r turned on by the high speed switching units 112 and 122 as point data in association with the antenna elements t and r. For example, at a certain time, received signals transmitted and received on the propagation paths of the transmitting antenna element tx and the receiving antenna element rx are linked to these transmitting and receiving antennas tx and rx and recorded as point data. In another modified example (many-to-one) shown in FIG. 4B, each antenna element tx (and one antenna element r1) is associated with a similar process and recorded as point data.
 図5Aは、素子走査処理における各アンテナ素子の高速切り替え処理を示す模式図である。送受信コントローラー14は、素子走査処理時(後述の図6のステップS101~S107に対応)には、高速切替部122を制御する。図5Aでは、巡回モードが「全巡回モード」で、所定の周期tsが100μsecに設定された例を示している。素子走査処理時においては、高速切替部122は巡回モードと周期の設定に応じて、アンテナ素子r1からr49まで、それぞれのON/OFFを周期tsで順次切り替える。なお、他の巡回モードとしては、「一部巡回モード」がある。この一部巡回モードでは、アンテナアレイ121のうち一部のアンテナ素子rのみを間引いて一巡させる。例えば、アンテナ素子r1、r3,r5……r47、r49のように1つ置きのアンテナ素子rを使用したり、奇数列のアンテナ素子rのみを使用したりする。 FIG. 5A is a schematic diagram showing high-speed switching processing of each antenna element in element scanning processing. The transmission/reception controller 14 controls the high-speed switching unit 122 during the element scanning process (corresponding to steps S101 to S107 in FIG. 6, which will be described later). FIG. 5A shows an example in which the cyclic mode is the "all cyclic mode" and the predetermined period ts is set to 100 μsec. During the element scanning process, the high-speed switching unit 122 sequentially switches ON/OFF of each of the antenna elements r1 to r49 at the cycle ts according to the setting of the cyclic mode and the cycle. Note that there is a "partial circulation mode" as another circulation mode. In this partial circulation mode, only some of the antenna elements r in the antenna array 121 are thinned out and made to make one circulation. For example, alternate antenna elements r such as antenna elements r1, r3, r5, .
 また周期tsは、および/または1サイクル時間tcも任意の値に設定できる。例えば周期tsは、10μsec~1msecの間で任意の値を設定できる。また、1サイクル時間tcは、周期tsの設定にともない1msec~100msecの間で任意の値に設定したり、周期tsによらず、例えば周期tsを固定(例えば100μsec固定)で、ウェイト時間を調整することで、1サイクル時間tcを5~100msecの間で任意の設定にしたりしてもよい。この巡回モードと周期/1サイクル時間の設定は、ユーザーによりおこなわれてもよく、制御部21側で自動におこなってもよい。この巡回モードと周期/1サイクル時間の設定は、ユーザーにより行われてもよく、制御部21側で自動に行ってもよい。 Also, the period ts and/or one cycle time tc can be set to any value. For example, the period ts can be set to any value between 10 μsec and 1 msec. In addition, one cycle time tc can be set to an arbitrary value between 1 msec and 100 msec according to the setting of the cycle ts, or the wait time can be adjusted by fixing the cycle ts (for example, fixed at 100 μsec) regardless of the cycle ts. By doing so, one cycle time tc may be arbitrarily set between 5 and 100 msec. The setting of the cyclic mode and period/one cycle time may be performed by the user, or may be performed automatically by the control unit 21 side. The setting of the cyclic mode and period/one cycle time may be performed by the user, or may be performed automatically by the control unit 21 side.
 制御部21により自動で行う場合には、走査時間の短縮、および必要なメモリ容量を低減させるという観点から、例えば、多段階で変更する。この多段階の変更は、一連の素子走査処理(図6参照)で行ってもよく、再計測(後述の12B等)する際に、変更するようにしてもよい。例えば、最初は、半分または1/4間引きの一部巡回モードで動作させ、粗くアンテナ素子の候補を決定し、次にその周辺のアンテナ素子の周辺を動作させ、より細かく、アンテナ素子の受信特性を判定する。また、最初は周期tsを短くして、粗くアンテナ素子の候補を決定し、次に、減じた個数の(例えば半分の)アンテナ素子に対して周期tsをその逆数分(例えば2倍)長くして、より詳細に候補のアンテナ素子の受信特性を判定する。 When automatically performed by the control unit 21, from the viewpoint of shortening the scanning time and reducing the required memory capacity, for example, the change is made in multiple stages. This multistep change may be performed in a series of element scanning processes (see FIG. 6), or may be changed when re-measurement (12B, etc., to be described later). For example, first, it is operated in a partial recursive mode with half or quarter decimation to roughly determine antenna element candidates, then the surrounding antenna elements are operated, and more finely, the reception characteristics of the antenna elements are determined. judge. First, the period ts is shortened to roughly determine antenna element candidates, and then the period ts is lengthened by the reciprocal (for example, twice) for the reduced number (for example, half) of the antenna elements. to determine the reception characteristics of the candidate antenna elements in more detail.
 サンプリング部123はON状態にあるアンテナ素子rが受信した電界強度に応じた受信信号を取得する。点データ記録部301は、送受信コントローラー14を介して、この受信信号を取得し、各素子rと紐付けて、記憶部22またはRAMに一時的に記録する。 The sampling unit 123 acquires a received signal corresponding to the electric field intensity received by the antenna element r in the ON state. The point data recording unit 301 acquires this reception signal via the transmission/reception controller 14, associates it with each element r, and temporarily records it in the storage unit 22 or RAM.
 図5Bは、図5Aの処理で得られた点データを示す模式図である。隣接するアンテナ素子rでは、1つの周期ts(100μsec)分だけ、取得タイミングがずれる。例えば、素子r2の点データp12の取得時刻は、素子r1の点データp11の取得時刻よりも周期ts分だけ遅れた時刻になる。同様に最後のアンテナ素子r49の点データp149は、素子r1の点データp11よりも、48の周期ts分(4.8msec)遅れることになる。また、1つの素子においては、隣接する点データは、1サイクル時間tc分の間隔となる。例えば、素子r1の点データp11よりも1サイクル時間tc後に点データp21が取得されることになる。1サイクル時間tcは、総個数(多対多の場合は組み合わせ数)に周期tsを乗じることにより算出できる。例えば図5Bでは、1サイクル時間tcは4.9msec(=49×100μsec)となる。なお、図5Bおよび以下においては、数値を丸めて4.9msecを5msecで表記する。 FIG. 5B is a schematic diagram showing point data obtained by the processing of FIG. 5A. Acquisition timings of adjacent antenna elements r are shifted by one period ts (100 μsec). For example, the acquisition time of the point data p12 of the element r2 is delayed by the period ts from the acquisition time of the point data p11 of the element r1. Similarly, the point data p149 of the last antenna element r49 is delayed by 48 periods ts (4.8 msec) from the point data p11 of the element r1. Also, in one element, adjacent point data are spaced for one cycle time tc. For example, the point data p21 is acquired one cycle time tc after the point data p11 of the element r1. One cycle time tc can be calculated by multiplying the total number (the number of combinations in the case of many-to-many) by the period ts. For example, in FIG. 5B, one cycle time tc is 4.9 msec (=49×100 μsec). In addition, in FIG. 5B and below, the numerical value is rounded and 4.9 msec is expressed as 5 msec.
 図5Cは、図5Bの点データにより生成した波形データを示す模式図である。この波形データは、波形データ生成部302が、点データ記録部301が記録した点データを、素子r毎に収集して、経時的に並べたものである。図5Cでは、素子r1を用いた際の波形データw1を代表として示している。この波形データは、素子r1に紐付けられた多数の点データp11、p21、p23等で構成される。 FIG. 5C is a schematic diagram showing waveform data generated from the point data in FIG. 5B. This waveform data is obtained by collecting the point data recorded by the point data recording unit 301 by the waveform data generating unit 302 for each element r and arranging them chronologically. In FIG. 5C, the waveform data w1 when using the element r1 is shown as a representative. This waveform data is composed of a large number of point data p11, p21, p23, etc. linked to the element r1.
 (所定の周期tsの範囲)
 周期tsの上限は、複数のアンテナ素子rへのONが一巡する1サイクル時間tcが、心周期よりも十分に短くなるような周期である。具体的には、心拍数の最大値は、心疾患を考慮して最大180回/分、すなわち3Hzとする。一般に、精度よく波形を生成するためのサンプリングレートは、その10倍以上が好ましく30Hz(33msec)となる。これをアンテナ素子rの総個数の好ましい範囲40~100個の下限個数の40で除すると0.8msecとなる。周期tsの上限としては、これよりも少し広めの1.0msec(サンプリングレートを8倍程度想定)とした。なお周期tsの下限は、回路構成に依存するサンプリングの安定性により適宜決定される。例えば周期tsの下限は数十μsecである。
(Range of predetermined cycle ts)
The upper limit of the cycle ts is a cycle such that one cycle time tc in which a plurality of antenna elements r are turned ON is sufficiently shorter than the cardiac cycle. Specifically, the maximum heart rate is 180 beats/minute, ie, 3 Hz, in consideration of heart disease. In general, the sampling rate for generating a waveform with good accuracy is preferably 30 Hz (33 msec), which is 10 times or more. Dividing this by 40, which is the lower limit number in the preferred range of 40 to 100 total number of antenna elements r, gives 0.8 msec. The upper limit of the period ts was set to 1.0 msec (assuming a sampling rate of about 8 times), which is slightly wider than this. Note that the lower limit of the period ts is appropriately determined depending on the stability of sampling that depends on the circuit configuration. For example, the lower limit of the cycle ts is several tens of microseconds.
 (アンテナ素子決定処理および心拍出量測定処理)
 図6は、アンテナ素子決定処理および心拍出量測定処理を示すフローチャートである。
(Antenna element determination processing and cardiac output measurement processing)
FIG. 6 is a flowchart showing antenna element determination processing and cardiac output measurement processing.
 (ステップS11)
 制御部21は、ユーザーの測定開始指示により送受信アンテナによる送受信を開始させる。具体的には、ユーザーは、送信アンテナ11と受信アンテナ12を互いに、心臓91を挟んだ状態で対向させて配置する。その後、ユーザーは、タッチパネル51やキーボード等により、測定開始の指示を入力する。この時に、ユーザーは、巡回モードと周期tsの設定を行ってもよい。以下においては、図5A~図5Cと同様に、巡回モードは全巡回モードで、素子数は49個で、周期tsが100μsec、1サイクル時間tcが5msecとして説明する。
(Step S11)
The control unit 21 starts transmission/reception by the transmission/reception antenna in response to the user's instruction to start measurement. Specifically, the user arranges the transmitting antenna 11 and the receiving antenna 12 so as to face each other with the heart 91 interposed therebetween. Thereafter, the user inputs an instruction to start measurement using the touch panel 51, keyboard, or the like. At this time, the user may set the circulation mode and the period ts. 5A to 5C, the cyclic mode is the full cyclic mode, the number of elements is 49, the period ts is 100 μsec, and the cycle time tc is 5 msec.
 (素子走査処理(S12からS17))
 このステップS12からS17の処理は素子走査処理である。この素子走査処理では、複数のアンテナ素子の中から心拍出量の測定に好適な、すなわち、心臓91に対する配置位置が最もよいアンテナ素子rを決定するために、各アンテナ素子rを順に走査して、計測信号を収集する。なお、素子走査処理の実行中は、送信アンテナ11では、マイクロ波を送信し続ける、または、受信側のアンテナ素子rの切り替えタイミングに合わせた、パルス波を送信する。
(Element scanning process (S12 to S17))
The processing from steps S12 to S17 is element scanning processing. In this element scanning process, each antenna element r is sequentially scanned in order to determine the antenna element r suitable for measuring the cardiac output, that is, the antenna element r best arranged relative to the heart 91 from among the plurality of antenna elements. to collect the measurement signal. During execution of the element scanning process, the transmitting antenna 11 continues to transmit microwaves, or transmits pulse waves in accordance with the switching timing of the antenna element r on the receiving side.
 (ステップS12)
 ステップS12では、制御部21は、ステップS16との間でループaの処理を行う。このループaでは、全巡回モードの設定に応じて、アンテナ素子r1から最後のアンテナ素子rx(r49)まで1つずつ順々に対象のアンテナ素子rを切り替える。
(Step S12)
In step S12, the control unit 21 performs loop a processing between step S16 and step S16. In this loop a, the target antenna elements r are sequentially switched one by one from the antenna element r1 to the last antenna element rx (r49) according to the setting of the all-loop mode.
 (ステップS13)
 高速切替部122により、対象となるアンテナ素子rをON状態に切り替える。例えば、アンテナ素子r1をOFF状態からON状態に変更し、他のON状態のアンテナ素子rがあればこれをOFF状態に変更する。
(Step S13)
The high-speed switching unit 122 switches the target antenna element r to the ON state. For example, the antenna element r1 is changed from the OFF state to the ON state, and if there is another antenna element r in the ON state, it is changed to the OFF state.
 (ステップS14)
 サンプリング部123は、ON状態のアンテナ素子rでの計測値を取得する。
(Step S14)
The sampling unit 123 acquires the measured value at the antenna element r in the ON state.
 (ステップS15)
 点データ記録部301は、ステップS14で取得した計測値を、対象のアンテナ素子rと紐付けて点データとして記録する。なお、このステップS15は所定単位(例えば1サイクル周期の49個分)でまとめて処理するようにしてもよい。例えば、サンプリング部123のバッファーで所定単位のデータを保持しておく。そして点データ記録部301では、この所定単位のデータをまとめて取得し、一括して処理する。
(Step S15)
The point data recording unit 301 records the measured value obtained in step S14 as point data in association with the target antenna element r. Note that this step S15 may be processed collectively in a predetermined unit (for example, 49 pieces in one cycle period). For example, the buffer of the sampling unit 123 holds data of a predetermined unit. The point data recording unit 301 collectively acquires the data of the predetermined unit and processes them collectively.
 (ステップS16)
 最後のアンテナ素子rxでなければ、所定周期tsで、対象のアンテナ素子rを次に変更して、ステップS12以下のループ処理を繰り返す。最後のアンテナ素子rxであればループを抜けて処理をステップS17に進める。
(Step S16)
If it is not the last antenna element rx, the target antenna element r is changed to the next one at the predetermined cycle ts, and the loop processing from step S12 onward is repeated. If it is the last antenna element rx, the loop is exited and the process proceeds to step S17.
 (ステップS17)
 制御部21は、終了条件を満たしているか判定し、満たしていれば(YES)、処理をステップS18に進め、満たしていなければ(NO)、ステップS12以下のループ処理を繰り返す。終了条件としては、例えば1~数回の心拍相当の時間(例えば数秒から十数秒)が経過した場合、または繰り返し回数(数百~千回)に到達した場合である。
(Step S17)
The control unit 21 determines whether or not the termination condition is satisfied, and if satisfied (YES), the process proceeds to step S18, and if not satisfied (NO), loop processing from step S12 onward is repeated. The termination condition is, for example, when a period of time corresponding to one to several heartbeats (for example, several seconds to ten and several seconds) has elapsed, or when the number of repetitions (several hundred to thousands) has been reached.
 (ステップS18)
 波形データ生成部302は、点データから素子r1~素子rxの波形データを生成する。例えば図5Cのような波形データを生成する。ここまでが1次分布作成部211による前段処理である。
(Step S18)
A waveform data generator 302 generates waveform data for the elements r1 to rx from the point data. For example, waveform data as shown in FIG. 5C is generated. Up to this point, the first-stage processing by the primary distribution generation unit 211 is performed.
 (ステップS19)
 ここでは、1次分布作成部211、2次分布作成部212、および素子決定部213が協働することで、最も特性がよいアンテナ素子rを決定する。決定するアンテナ素子rの個数は、1個でもよく、複数個(例えば4個)でもよい。図7は、このステップS19の処理を示すサブルーチンフローチャートである。
(Step S19)
Here, the primary distribution generator 211, the secondary distribution generator 212, and the element determiner 213 work together to determine the antenna element r with the best characteristics. The number of antenna elements r to be determined may be one or a plurality (for example, four). FIG. 7 is a subroutine flow chart showing the process of step S19.
 (ステップS511)
 ここでは、1次分布作成部211は後段処理を行う。すなわち、1次分布作成部211は、ステップS18で作成した、各アンテナ素子rの波形データを、アンテナ素子rそれぞれと対応付けた波形分布データを作成する。図8は、ステップS511で作成した波形分布データの例を示す模式図である。波形分布データは、各アンテナ素子rに対応づけて波形データを並べたものである。以下においては、波形分布データを1次分布データともいう。
(Step S511)
Here, the primary distribution generation unit 211 performs post-processing. That is, the primary distribution creating unit 211 creates waveform distribution data by associating the waveform data of each antenna element r created in step S18 with each antenna element r. FIG. 8 is a schematic diagram showing an example of waveform distribution data created in step S511. Waveform distribution data is obtained by arranging waveform data associated with each antenna element r. Waveform distribution data will also be referred to as primary distribution data hereinafter.
 (ステップS512)
 2次分布作成部212は、1次分布に基づいて各アンテナ素子rに対応する波形の評価を行い、評価値を算定する。そして、アンテナ素子rの位置に応じた評価値の分布データ(以下、「2次分布データ」ともいう)を作成する。図9は、各種の評価値の例を示す表である。図10は、評価値を各アンテナ素子rの位置に対応づけて並べて作成した2次分布データの例を示す模式図である。2次分布作成部212が算出する評価値の指標としては、同図に示すように評価値1~6のいずれを用いてもよく、これらを組み合わせて用いてもよい。
(Step S512)
The secondary distribution generator 212 evaluates the waveform corresponding to each antenna element r based on the primary distribution and calculates an evaluation value. Then, evaluation value distribution data (hereinafter also referred to as “secondary distribution data”) corresponding to the position of the antenna element r is created. FIG. 9 is a table showing examples of various evaluation values. FIG. 10 is a schematic diagram showing an example of secondary distribution data created by arranging the evaluation values in association with the positions of the antenna elements r. As the index of the evaluation value calculated by the secondary distribution generating unit 212, any one of the evaluation values 1 to 6 may be used as shown in the figure, or a combination thereof may be used.
 (1)評価値1の「波形データの振幅」は、波形データに含まれる1波形の振幅である。通常の心周期に近い周波数の波形を抽出し、その波形の振幅を評価値1として求める。波形データに数個の波形が含まれていれば、振幅の平均値を用いてもよい。この評価値を求める際の前処理として、通常の心周期の範囲(30~180回/分)に対応した周波数(0.5~3Hz)よりも、外側の周波数を除外するようにバンドパスフィルタ処理を行ってもよい。波形データの振幅の大きさからアンテナ素子と心臓の位置関係を推定可能である。また、このようなバンドパスフィルタ処理は心周期の範囲以外の周波数、例えば呼吸変動の周波数帯の成分を取得するように前処理を行ってもよく、これによりアンテナ素子rの位置を推定可能である。 (1) "Amplitude of waveform data" with an evaluation value of 1 is the amplitude of one waveform included in the waveform data. A waveform having a frequency close to a normal cardiac cycle is extracted, and the amplitude of the waveform is obtained as an evaluation value 1. If the waveform data contains several waveforms, the average value of the amplitudes may be used. As preprocessing for obtaining this evaluation value, a band-pass filter is applied to exclude frequencies outside the frequency (0.5 to 3 Hz) corresponding to the normal cardiac cycle range (30 to 180 beats/minute). processing may be performed. The positional relationship between the antenna elements and the heart can be estimated from the amplitude of the waveform data. In addition, such band-pass filtering may be pre-processed so as to acquire frequencies outside the range of the cardiac cycle, for example, components in the frequency band of respiratory fluctuations, thereby estimating the position of the antenna element r. be.
 (2)評価値2の「フーリエ変換後の特定周波数における強度」は、波形データに関してFFT処理を行い、心周期に対応する周波数およびその整数倍(2~4倍)までの範囲の特定周波数(0.5~10Hz)における強度を評価値2として求める。特定周波数における強度分布によって心臓との位置関係を推定できる。また、評価値2は心周期の範囲以外の周波数帯、例えば呼吸変動の周波数帯における強度をその位置関係の推定に用いても良い。 (2) Evaluation value 2 "Intensity at a specific frequency after Fourier transform" is obtained by performing FFT processing on the waveform data and obtaining a specific frequency ( 0.5 to 10 Hz) is obtained as evaluation value 2. The positional relationship with the heart can be estimated from the intensity distribution at specific frequencies. In addition, the evaluation value 2 may use the intensity in a frequency band other than the range of the cardiac cycle, for example, the frequency band of respiratory fluctuations, for estimating the positional relationship.
 (3)評価値3は、「波形データの変曲点時間」である。変曲点時間は、波形データを2階微分することにより算出できる。この評価値3は、波形の形状を表す評価値である。アンテナ素子と心臓の位置関係によって波形の形状が変化する傾向があるため、この評価値3から心臓との位置関係を推定できる。 (3) Evaluation value 3 is "inflection point time of waveform data". The inflection point time can be calculated by second-order differentiating the waveform data. This evaluation value 3 is an evaluation value representing the shape of the waveform. Since the shape of the waveform tends to change depending on the positional relationship between the antenna element and the heart, the positional relationship with the heart can be estimated from this evaluation value 3.
 (4)評価値4は、「波形データの時間積分値」であり、1波形を時間積分することにより算出できる。 (4) Evaluation value 4 is a "time integral value of waveform data" and can be calculated by time integration of one waveform.
 (5)評価値5は、「自己相関係数」であり、複数の波形が含まれる波形データから算出できる。自己相関係数は、連続する波形の類似性を表す指標である。安定して波形取得ができているアンテナ素子の波形は変化が少ないと考えられるため、連続するアンテナ素子の波形の類似性が高い(自己相関係数が大きい)アンテナ素子を心拍出量推定に用いる。 (5) Evaluation value 5 is an "autocorrelation coefficient" and can be calculated from waveform data including multiple waveforms. The autocorrelation coefficient is an index representing the similarity of consecutive waveforms. Since the waveforms of antenna elements with stable waveform acquisition are considered to have little change, antenna elements with high waveform similarity (large autocorrelation coefficient) of consecutive antenna elements should be used for cardiac output estimation. use.
 (6)評価値6は、「ピークのタイミングの差分時間」である。2次分布作成部212は、最初に、心臓91の収縮(または拡張)にともなう信号強度が最大(または最小)となるピークのタイミングを算出する。次に、このピークタイミングを、基準波形と比較することで差分時間を算出する。基準波形とは、予め定められたいずれかのアンテナ素子rの波形データである。例えば、アンテナアレイ122の中心付近のアンテナ素子r(例えばアンテナ素子r25)の波形データである。ピークのタイミングはアンテナ素子と心臓の位置関係によって異なる傾向がある。その理由は、心臓から拍出される血流量の時間変化は場所によって異なり、心臓とアンテナ素子の位置関係によってそのピークとなるタイミングを捉える時間には差があると考えられるからである。評価値6についての詳細は後述する。 (6) Evaluation value 6 is the "difference time between peak timings". The secondary distribution generating unit 212 first calculates the peak timing at which the signal intensity associated with the contraction (or expansion) of the heart 91 becomes maximum (or minimum). Next, the difference time is calculated by comparing this peak timing with the reference waveform. A reference waveform is waveform data of any predetermined antenna element r. For example, it is waveform data of an antenna element r (for example, antenna element r25) near the center of the antenna array 122 . The peak timing tends to differ depending on the positional relationship between the antenna element and the heart. The reason for this is that the time variation of the blood flow pumped from the heart differs depending on the location, and it is thought that there is a difference in the time to catch the peak timing depending on the positional relationship between the heart and the antenna element. The details of the evaluation value 6 will be described later.
 2次分布作成部212は、このような評価値1~6の少なくともいずれかにより、2次分布データを作成する。2次分布データは、各アンテナ素子rの位置(XY座標)と、そのアンテナ素子rの波形データから算出した評価値の分布を表したものである。図10に示す例では、模式的に、評価値の高低に応じてレベル0~5の6段階の濃淡で示している。レベルが高い程、最も評価値が高く、最も特性が好適なアンテナ素子rである。通常は、心臓91(特に左心室)との位置関係が良好なアンテナ素子r程、評価値が高くなる。 The secondary distribution creating unit 212 creates secondary distribution data from at least one of the evaluation values 1 to 6. The secondary distribution data represents the position (XY coordinates) of each antenna element r and the distribution of evaluation values calculated from the waveform data of the antenna element r. In the example shown in FIG. 10, six levels of gradation from 0 to 5 are schematically shown according to the evaluation value. The higher the level, the higher the evaluation value and the antenna element r with the most suitable characteristics. Normally, the antenna element r having a better positional relationship with the heart 91 (especially the left ventricle) has a higher evaluation value.
 (ステップS513)
 素子決定部213は、ステップS512で作成された2次分布から心拍出量の推定に用いるアンテナ素子を決定する。素子決定部213は、図10(a)に示す2次分布データの例では、評価値が最も高い位置E4(列4、行E)にあるアンテナ素子r32を決定する。図10(b)の例では、評価値が同レベルのアンテナ素子rが複数ある(アンテナ素子r18-20、r25-27)ので、素子決定部213は、これらの複数のアンテナ素子rの中から、予め設定された所定のアルゴリズムで1つのアンテナ素子rに決定するようにしてもよい。例えば、所定のアルゴリズムとしては、中心の素子(位置C5)を選択したり、右上の素子(位置C4)を選択したりものがある。また、別の評価値により新たに2次分布データを作成し、この新たな2次分布データにより、複数の素子の中から1つのアンテナ素子rに絞り込むようにしてもよい。
(Step S513)
The element determination unit 213 determines antenna elements to be used for estimating the cardiac output from the quadratic distribution created in step S512. The element determination unit 213 determines the antenna element r32 at the position E4 (column 4, row E) with the highest evaluation value in the example of the secondary distribution data shown in FIG. 10(a). In the example of FIG. 10(b), since there are a plurality of antenna elements r having the same evaluation value (antenna elements r18-20, r25-27), the element determination unit 213 selects , may be determined to one antenna element r by a predetermined algorithm set in advance. For example, predetermined algorithms include selecting the center element (position C5) and selecting the upper right element (position C4). Alternatively, secondary distribution data may be newly created using another evaluation value, and the antenna element r may be narrowed down to one antenna element r from among the plurality of elements based on this new secondary distribution data.
 なお、評価値のレベルは図10(a)、(b)に示すようにある位置(例えば図10(a)では位置E4)が最も高く、その位置から離れるにしたがって、評価値が変化するという特性を示す。このようなことから、素子決定部213は、2次分布データを、X軸、Y軸、またはXY平面上で、多項式近似することによりピーク位置を算出し、そのピーク位置に最も近い位置にあるアンテナ素子rを、心拍出量測定用のアンテナ素子rとして選択(決定)するようにしてもよい。また、素子決定部213は、記憶部22に記憶してある比較分布パターンと比較することで、心拍出量測定用のアンテナ素子rを決定するようにしてもよい。また、別の例として、素子決定部213は、(2次分布データの生成を経由せずに)、2次分布作成部212により算出された評価値(例えば評価値1~評価値5)から、心拍出量測定用のアンテナ素子rを決定するようにしてもよい。以上により、図7のサブルーチンフローチャートでの処理を終了し、図6の処理に戻る。 As shown in FIGS. 10(a) and 10(b), the level of the evaluation value is highest at a certain position (for example, position E4 in FIG. 10(a)), and the evaluation value changes as the distance from that position increases. characterize. For this reason, the element determination unit 213 calculates the peak position by polynomial approximation of the secondary distribution data on the X-axis, Y-axis, or XY plane. The antenna element r may be selected (determined) as the antenna element r for cardiac output measurement. Further, the element determination unit 213 may determine the antenna element r for cardiac output measurement by comparing with the comparison distribution pattern stored in the storage unit 22 . Further, as another example, the element determination unit 213, from the evaluation values (for example, evaluation values 1 to 5) calculated by the secondary distribution generation unit 212 (without going through the generation of the secondary distribution data) , to determine the antenna element r for measuring cardiac output. As described above, the processing in the subroutine flowchart of FIG. 7 is completed, and the processing returns to that of FIG.
 (ステップS20)
 心拍出量推定部214は、ステップS19で決定されたアンテナ素子rを用いて取得された波形データを、ステップS18で生成した素子r1~素子rxに関する波形データから抽出し、抽出したアンテナ素子rに関する波形データに基づいて、心拍出量、または心臓から拍出される血液量を推定する。具体的には、図5Cに示したような波形データにおいて、心臓が収縮期にあるときと、拡張期にあるときの信号強度の差分から、患者90の心臓91の心拍出量、または心臓から拍出される血液量を推定する。心臓91は、収縮期に比べて拡張期においては、損失がより大きくなり、信号の減衰が大きくなる。すなわち収縮期に比べて拡張期では、受信信号の強度が小さくなる。この信号強度の変化は、心臓の大きさの変化、すなわち1拍出量に比例するので、信号強度の変化、すなわち心拍に応じた波形における振幅により心拍出量を推定(算出)できる。なお、心拍出量に加えて、1つの波形の振幅強度から算出される1回拍出量を表示させてもよい。また、心拍出量に加えて、さらに心拍動の周波数を、心拍数として表示してもよい。さらに、入力された被験者の身長や体重等の情報から体表面積を算出し、心拍出量を体表面積で割ることで、心係数として表示してもよい。
(Step S20)
The cardiac output estimation unit 214 extracts the waveform data acquired using the antenna element r determined in step S19 from the waveform data related to the elements r1 to rx generated in step S18, and extracts the extracted antenna element r Estimates cardiac output, or the volume of blood pumped from the heart, based on the waveform data for . Specifically, in the waveform data shown in FIG. 5C, the cardiac output of the heart 91 of the patient 90 or the heart Estimate the volume of blood pumped from Heart 91 experiences greater loss and greater signal attenuation in diastole than in systole. That is, the strength of the received signal is smaller during diastole than during systole. Since the change in signal intensity is proportional to the change in heart size, that is, the stroke volume, the cardiac output can be estimated (calculated) from the change in signal intensity, that is, the amplitude of the waveform corresponding to the heartbeat. In addition to the cardiac output, the stroke volume calculated from the amplitude intensity of one waveform may be displayed. In addition to the cardiac output, the heartbeat frequency may also be displayed as the heart rate. Furthermore, the body surface area may be calculated from information such as the height and weight of the subject that has been input, and the cardiac coefficient may be displayed by dividing the cardiac output by the body surface area.
 (評価値6(ピークタイミングの差分時間))
 ここで、上記で簡単に触れた評価値6について、図11A、図11Bを参照し、より詳細に説明する。図11Aは、ピークタイミングの差分時間を説明する模式図である。図11Bは、位置による差分時間の違いを示す模式図である。図11Aでは、対象となるアンテナ素子rx(例えば素子r1)における波形と、基準波形を示している。基準波形は、上述したように中心のアンテナ素子r25から得られた波形データである。
(Evaluation value 6 (difference time of peak timing))
Here, the evaluation value 6 briefly mentioned above will be described in more detail with reference to FIGS. 11A and 11B. FIG. 11A is a schematic diagram for explaining the differential time between peak timings. FIG. 11B is a schematic diagram showing the difference in differential time depending on the position. FIG. 11A shows the waveform at the target antenna element rx (eg, element r1) and the reference waveform. The reference waveform is waveform data obtained from the central antenna element r25 as described above.
 2次分布作成部212は、同時、または略同時に計測した2つの対象アンテナ素子r1と基準アンテナ素子r25の点データから作成した波形データのピークタイミングの差分時間を算出し、この差分時間から評価値を算出する。ここで略同時に計測した点データから作成した波形データとは、図5A等で説明したように、1サイクル時間tcが、心周期よりも十分に短くなるような周期で、計測した点データから作成した波形データである。同時とは、文字通り1つの送信アンテナ素子tから送信された電磁波を、複数のアンテナ素子rで同時に計測した点データから作成した波形データである。この場合、アンテナ同士が結合し、1つのアンテナとして動作しないように、互いにある程度、距離が離れた、アンテナ素子rxで計測された点データを用いる。 The secondary distribution generation unit 212 calculates the differential time between the peak timings of the waveform data created from the point data of the two target antenna elements r1 and the reference antenna element r25 measured simultaneously or substantially simultaneously, and calculates the evaluation value from this differential time. Calculate Here, the waveform data created from the point data measured substantially simultaneously is created from the point data measured at a cycle such that one cycle time tc is sufficiently shorter than the cardiac cycle, as described with reference to FIG. 5A. This is the waveform data. "Simultaneous" literally means waveform data created from point data obtained by simultaneously measuring electromagnetic waves transmitted from one transmission antenna element t by a plurality of antenna elements r. In this case, point data measured by antenna elements rx, which are separated from each other by a certain distance, are used so that the antennas are not coupled to each other and operate as one antenna.
 図11Bでは、あるアンテナ素子rのX方向の位置を変位させながら測定させた際の波形データの差分時間の変化を示している。図11Bの実験においては、実施形態と異なり差分時間の算出時は、基準波形として心電図の波形を用いる。図11Bに示すように、差分時間(遅延時間)は、左端で最も(絶対値が)大きく、X方向のプラス方向に移動させることで徐々に小さくなり、-10~-30mmの範囲で最小となり、-40でまた増加傾向を示すことがわかる。この遅延時間は、心臓の各位置(左心室、右心室、またはこの各部分)による動きの違いにより生じると考えられる。このようなことから、アンテナ素子rの心臓91との相対位置の違いにより、すなわち、受信アンテナ12のアンテナ素子tと、アンテナ素子rとの間の電波の伝播経路中の心臓91の位置により(特に左心室)、ピークの遅延時間が異なる。つまり、評価値6においては、2次分布作成部212は、差分時間の分布を利用して心臓位置と各アンテナ素子rの位置関係を算出する。そして、素子決定部213は、複数のアンテナ素子rから、最も評価値が心拍出量の算出に適した位置にあるアンテナ素子rを選択する。 FIG. 11B shows changes in differential time of waveform data when measuring while displacing the position of a certain antenna element r in the X direction. In the experiment of FIG. 11B, unlike the embodiment, an electrocardiogram waveform is used as a reference waveform when calculating the differential time. As shown in FIG. 11B, the difference time (delay time) is the largest (absolute value) at the left end, gradually decreases by moving in the positive direction of the X direction, and becomes the minimum in the range of -10 to -30 mm. , -40 also show an increasing trend. It is believed that this delay time is caused by differences in motion between different locations of the heart (left ventricle, right ventricle, or portions thereof). For this reason, due to the difference in the relative position of the antenna element r with respect to the heart 91, that is, due to the position of the heart 91 in the radio wave propagation path between the antenna element t of the receiving antenna 12 and the antenna element r ( especially the left ventricle), with different peak delay times. That is, for the evaluation value 6, the secondary distribution generator 212 calculates the positional relationship between the heart position and each antenna element r using the differential time distribution. Then, the element determination unit 213 selects, from the plurality of antenna elements r, the antenna element r whose evaluation value is most suitable for calculating the cardiac output.
 以上説明したように、本実施形態に係る心拍出量計測センサ1000は、送信アンテナ11と、受信アンテナ12と、受信アンテナ12で受信した生体を透過したマイクロ波を用いて、心臓から拍出される血液量を推定する心拍出量推定部214と、を備え、送信アンテナ11および受信アンテナ12の少なくとも一方は、生体に対する位置が異なる複数のアンテナ素子rを含み、さらに、アンテナ素子rそれぞれに関して計測された計測値の経時的変化を表す波形データを作成するとともに、該波形データをアンテナ素子rそれぞれと対応付けた波形分布データを作成する1次分布作成部211と、1次分布作成部211により作成された波形データに基づいて、複数のアンテナ素子rの中から、心拍出量の推定の際に用いるアンテナ素子rを決定する素子決定部213と、を備える。このように構成することで、最適なアンテナ素子を用いて測定でき、ひいては、心臓から拍出される血液量を比較的高い精度で推定できる。 As described above, the cardiac output measurement sensor 1000 according to the present embodiment uses the transmitting antenna 11, the receiving antenna 12, and the microwaves received by the receiving antenna 12 and transmitted through the living body to measure the cardiac output of the heart. a cardiac output estimating unit 214 for estimating the blood volume to be applied, at least one of the transmitting antenna 11 and the receiving antenna 12 includes a plurality of antenna elements r located at different positions with respect to the living body, and A primary distribution creation unit 211 that creates waveform data representing changes over time in measured values measured with respect to and creates waveform distribution data in which the waveform data is associated with each antenna element r, and a primary distribution creation unit and an element determination unit 213 that determines, from among a plurality of antenna elements r, an antenna element r to be used in estimating the cardiac output, based on the waveform data created by 211 . By configuring in this way, it is possible to perform measurement using the optimum antenna element, and thus to estimate the volume of blood pumped from the heart with relatively high accuracy.
 (第2の実施形態)
 次に、図12Aから図15Bを参照し、第2の実施形態について説明する。第2の実施形態では、アンテナ素子rを決定する前に、特徴データを用いてアンテナ12の設置状態の適否を判定するものである。図12A、図12Bは、第2の実施形態における図6のステップS19の処理を示すサブルーチンフローチャートである。なお、第2の実施形態においては、メインルーチンフローチャートは、図6に示した第1の実施形態と同じであり、説明を省略する。
(Second embodiment)
A second embodiment will now be described with reference to FIGS. 12A to 15B. In the second embodiment, the propriety of the installation state of the antenna 12 is determined using the feature data before determining the antenna element r. 12A and 12B are subroutine flowcharts showing the process of step S19 of FIG. 6 in the second embodiment. In addition, in the second embodiment, the main routine flowchart is the same as that in the first embodiment shown in FIG. 6, and the description thereof is omitted.
 (ステップS531、S532)
 ここでは、制御部21は、図7のステップS511、S512と同じ処理を行う。具体的には、制御部21の1次分布作成部211は波形分布データ(1次分布データ)を作成し、2次分布作成部212は、評価値の分布データ(2次分布データ)を作成する。
(Steps S531, S532)
Here, the control unit 21 performs the same processing as steps S511 and S512 in FIG. Specifically, the primary distribution creating unit 211 of the control unit 21 creates waveform distribution data (primary distribution data), and the secondary distribution creating unit 212 creates evaluation value distribution data (secondary distribution data). do.
 (ステップS533)
 設置状態判定部215は、1次または2次分布データ(波形分布データ、または評価値の分布データ)から特徴データを抽出し、アンテナの設置状態を判定する。図13は、各種の特徴量の例を示す表である。
(Step S533)
The installation state determination unit 215 extracts feature data from primary or secondary distribution data (waveform distribution data or evaluation value distribution data) and determines the installation state of the antenna. FIG. 13 is a table showing examples of various feature amounts.
 (1)特徴量1の「波形データの振幅」は、波形データに含まれる1つまたは複数の波形の振幅である。通常の心周期に近い周波数の波形を抽出し、その波形の振幅を特徴量1として求める。この特徴量1は、上述の評価値1と同様の手法により求め得る。そして設置状態判定部215は、この特徴量1と、記憶部22に記憶されている特徴量1用の設定範囲とを比較し、設定範囲内の場合は設置状態が適正、設定範囲外の場合は不適正と判定する。例えば心臓91との位置関係が正しくなく、振幅が所定範囲よりも小さい場合には不適正と判定する。 (1) "Amplitude of waveform data" of feature amount 1 is the amplitude of one or more waveforms included in the waveform data. A waveform having a frequency close to a normal cardiac cycle is extracted, and the amplitude of the waveform is obtained as feature quantity 1. This feature quantity 1 can be obtained by a method similar to that for the evaluation value 1 described above. Then, the installation state determination unit 215 compares this feature value 1 with the setting range for the feature value 1 stored in the storage unit 22. If the setting range is within the setting range, the installation state is proper. is judged to be inappropriate. For example, if the positional relationship with the heart 91 is not correct and the amplitude is smaller than a predetermined range, it is determined to be inappropriate.
 (2)特徴量2は、「自己相関係数」であり、複数の波形が含まれる波形データから算出できる。この特徴量2は、上述の評価値5と同様の手法により求め得る。そして設置状態判定部215は、この特徴量2と、記憶部22に記憶されている特徴量2用の設定範囲とを比較し、設定範囲内の場合は設置状態が適正、設定範囲外の場合には不適正と判定する。例えば、波形が安定せず、自己相関係数が所定範囲よりも小さい場合には、不適正と判定する。 (2) Feature quantity 2 is an "autocorrelation coefficient" and can be calculated from waveform data containing multiple waveforms. This feature quantity 2 can be obtained by the same method as the evaluation value 5 described above. Then, the installation state determination unit 215 compares this feature value 2 with the setting range for the feature value 2 stored in the storage unit 22. If the setting range is within the setting range, the installation state is proper. is judged to be inappropriate. For example, if the waveform is not stable and the autocorrelation coefficient is smaller than a predetermined range, it is determined to be inappropriate.
 (3)特徴量3は、「ピークのタイミングの差分時間」である。設置状態判定部215は、対象のアンテナ素子rの波形のピークタイミングを、基準波形と比較することで差分時間を算出する。この特徴量3は、上述の評価値6と同様の手法により求め得る。そして設置状態判定部215は、この特徴量3と、記憶部22に記憶されている特徴量3用の設定範囲とを比較し、設定範囲内の場合は設置状態が適正、設定範囲外の場合には不適正と判定する。例えば、反射波の影響等により差分時間が、所定範囲よりも大きい場合には不適正と判断する。 (3) The feature amount 3 is "difference time between peak timings". The installation state determination unit 215 calculates the difference time by comparing the peak timing of the waveform of the target antenna element r with the reference waveform. This feature quantity 3 can be obtained by the same method as the evaluation value 6 described above. Then, the installation state determination unit 215 compares this feature value 3 with the setting range for the feature value 3 stored in the storage unit 22. If the setting range is within the setting range, the installation state is proper. is judged to be inappropriate. For example, when the difference time is larger than a predetermined range due to the influence of reflected waves, etc., it is determined to be inappropriate.
 (4)特徴量4は、「波形形状」である。設置状態判定部215は、記憶部22に記憶している通常波形形状と比較し、ノイズが含まれていることにより、通常波形形状と異なる波形である場合には、設置状態が不適正と判定する。これ以外は適正と判定する。 (4) The feature quantity 4 is the "waveform shape". The installation state determination unit 215 compares the waveform with the normal waveform shape stored in the storage unit 22, and determines that the installation state is inappropriate if the waveform differs from the normal waveform shape due to the inclusion of noise. do. Anything other than this is judged to be appropriate.
 (5)特徴量5は、「ピーク位置」である。2次分布データから、ピーク位置を特定する。この2次分布データは、評価値1~評価値6のいずれを用いて作成してもよい。特定されたピーク位置は、アンテナ素子rのいずれかの位置にあり範囲内と判定される場合と、ピーク位置が、アンテナ素子rのいずれにも存在せず、範囲外(外側に)にあると判定される場合がある。例えば、最も外周にあるアンテナ素子rでは、増加している途中であり、そのさらに外側にピークが存在すると推定される場合である。設置状態判定部215は、範囲内の場合は、設置状態が適正、範囲外の場合は不適正と判定する。また、直接波だけでなく反射波を受信する等により複数のピーク位置が、検出された場合は、異常であるとして、設置状態が不適正と判断する。図14は、そのような場合の特徴データを示す模式図である。図14は、2次分布データに、特徴データとしてのピーク位置を重ねて示したものであり、この図では、2つのピーク1、2が表れており設置状態が不適正である。 (5) The feature value 5 is the "peak position". A peak position is identified from the secondary distribution data. Any one of evaluation values 1 to 6 may be used to create the secondary distribution data. If the identified peak position is at any position of the antenna element r and is determined to be within the range, or if the peak position is not present at any of the antenna elements r and is outside the range (outside) may be judged. For example, the outermost antenna element r is in the process of increasing, and it is estimated that there is a peak further outside. The installation state determination unit 215 determines that the installation state is proper when within the range, and improper when outside the range. Also, if a plurality of peak positions are detected by receiving not only the direct wave but also the reflected wave, etc., it is determined that the installation state is inappropriate as an abnormality. FIG. 14 is a schematic diagram showing feature data in such a case. FIG. 14 shows peak positions as feature data superimposed on the secondary distribution data. In this figure, two peaks 1 and 2 appear and the installation state is inappropriate.
 なお、特徴量により設置状態の適否の判定に比較分布パターンを用いてもよい。例えば、患者90毎に同じベッド95で測定した直前(例えば前日)の特徴データを比較分布パターンとして、記憶部22に記憶させておき、この読み出した比較分布パターンと、今回の特徴データとの類似性により、設置状態が適切であると判定する。例えば略同じパターンであれば、設置状態が適切であると判定する。 It should be noted that a comparative distribution pattern may be used to determine whether the installation state is appropriate or not based on the feature amount. For example, the feature data immediately before (for example, the previous day) measured on the same bed 95 for each patient 90 is stored as a comparison distribution pattern in the storage unit 22, and the similarity between the read comparison distribution pattern and the current feature data is determined. It is determined that the installation state is appropriate based on the nature of the installation. For example, if the patterns are substantially the same, it is determined that the installation state is appropriate.
 (ステップS534)
 設置状態判定部215は、ステップS533での判定が適正である場合(YES)、処理をステップS535に進め、判定が不適正の場合(NO)、処理を図12BのステップS541に進める。
(Step S534)
If the determination in step S533 is appropriate (YES), the installation state determination unit 215 proceeds to step S535, and if the determination is inappropriate (NO), the process proceeds to step S541 in FIG. 12B.
 (ステップS535)
 この処理は、ステップS513と同様の処理である。素子決定部213は、ステップS532で作成された2次分布から心拍出量の推定に用いるアンテナ素子rを決定する。そして、図12Aのサブルーチンフローチャートでの処理を終了し、図6の処理に戻り、以降は、決定したアンテナ素子rを用いた心拍出量の測定を行う。
(Step S535)
This process is similar to step S513. The element determination unit 213 determines antenna elements r to be used for estimating the cardiac output from the quadratic distribution created in step S532. Then, the processing in the subroutine flowchart of FIG. 12A is ended, the processing returns to FIG. 6, and thereafter the cardiac output is measured using the determined antenna element r.
 (ステップS541)
 制御部21は、ピーク位置が範囲外(アンテナアレイ122の外側)であれば処理をステップS542に進める。一方で、これ以外、例えば、特徴量1~4に関して設定範囲外の場合、または特徴量5で複数のピークが存在する場合(例えば図14)、等には処理をステップS550に進める。
(Step S541)
If the peak position is outside the range (outside the antenna array 122), the control unit 21 advances the process to step S542. On the other hand, if, for example, feature quantities 1 to 4 are outside the set range, or if there are multiple peaks in feature quantity 5 (eg, FIG. 14), the process proceeds to step S550.
 (ステップS542)
 第2指示部として機能する指示部216は、特徴データに基づいて、アンテナ12全体の移動方向を決定する。
(Step S542)
The instruction unit 216 functioning as a second instruction unit determines the movement direction of the entire antenna 12 based on the feature data.
 (ステップS543)
 指示部216は、アンテナ12の移動方向を指示する。具体的には、タッチパネル51に移動方向を表示して、看護師、医師等のユーザーに対してアンテナ12の移動を促す。あるいは、以下に説明するXYステージ52に移動信号を出力する。この移動方向を指示する際に移動量も同時に表示、または移動信号に含ませてもよい。
(Step S543)
The instruction unit 216 instructs the moving direction of the antenna 12 . Specifically, the movement direction is displayed on the touch panel 51 to prompt the user such as a nurse or doctor to move the antenna 12 . Alternatively, it outputs a movement signal to the XY stage 52 described below. When instructing the direction of movement, the amount of movement may also be displayed at the same time, or may be included in the movement signal.
 図15A、図15Bは、XYステージ52の構成を示す図である。心拍出量計測センサ1000は、これらの図に示すようにXYステージ52によりXY方向が移動可能なように構成してもよい。図15A、図15Bでは、患者90が横たわるベッド95の上方、下方それぞれに送信アンテナ11および受信アンテナ12を配置している。 15A and 15B are diagrams showing the configuration of the XY stage 52. FIG. Cardiac output measurement sensor 1000 may be configured to be movable in the XY directions by XY stage 52 as shown in these figures. 15A and 15B, the transmitting antenna 11 and the receiving antenna 12 are arranged above and below the bed 95 on which the patient 90 lies.
 XYステージ52は、コントローラー520、上方の送信アンテナ11を筐体内部に保持する保持部521、この保持部521をXY方向に移動させる移動部522、下方の受信アンテナ12を筐体内部に保持する保持部523、この保持部523をXY方向に移動させる移動部524、およびこれらの部材を上下方向にそれぞれ移動させる垂直移動部525で構成される。 The XY stage 52 holds a controller 520, a holding section 521 that holds the upper transmitting antenna 11 inside the housing, a moving section 522 that moves the holding section 521 in the XY directions, and a lower receiving antenna 12 inside the housing. It is composed of a holding portion 523, a moving portion 524 that moves the holding portion 523 in the XY directions, and a vertical moving portion 525 that moves these members in the vertical direction.
 移動部522、524は、同様の構成を備え、それぞれレール、駆動部、および保持部と連結する連結部を含む。XYステージ52は、保持部521、523でそれぞれ保持する送信アンテナ11、および受信アンテナ12の高さ(Z方向)、およびXY方向の位置を、指示部216の制御信号に応じて移動可能である。 The moving parts 522, 524 have similar configurations and include connecting parts that connect with rails, driving parts, and holding parts, respectively. The XY stage 52 can move the height (Z direction) and the position in the XY directions of the transmitting antenna 11 and the receiving antenna 12 respectively held by the holding units 521 and 523 according to the control signal of the instruction unit 216. .
 本実施形態では、XYステージ52は、指示部216から送られた移動信号に応じて、複数のアンテナ素子rを有する受信アンテナ12をXY方向に所定量移動させる。 In this embodiment, the XY stage 52 moves the receiving antenna 12 having a plurality of antenna elements r by a predetermined amount in the XY directions according to the movement signal sent from the instruction unit 216 .
 (ステップS544)
 XYステージ52のコントローラー520は、指示部216の指示に応じて、送信アンテナ11を移動させた後、移動完了信号を指示部216に返信する。あるいは、ユーザーからの再計測開始指示を、タッチパネル51等を介して受け取る。これを受けた、第1指示部として機能する指示部216は、再計測の指示を制御部21に送る。以降は、図6のステップS11に戻り、以降の処理を再び実行し、再計測する。
(Step S544)
The controller 520 of the XY stage 52 moves the transmitting antenna 11 according to the instruction from the instruction section 216 and then returns a movement completion signal to the instruction section 216 . Alternatively, a remeasurement start instruction from the user is received via the touch panel 51 or the like. The instructing unit 216 functioning as the first instructing unit having received this command sends a re-measurement instruction to the control unit 21 . After that, the process returns to step S11 in FIG. 6, the subsequent processes are executed again, and the measurement is performed again.
 (ステップS551)
 ここでは、第1指示部として機能する指示部216は、再計測、または再配置を指示する。具体的には、指示部216は、制御部21に再計測を指示し、現時点の配置状態のまま、ステップS11の処理に戻り、再計測を実施する。または、タッチパネル51に配置状態の確認を促す指示を表示させる。そして、ユーザーからの再計測開始指示を、タッチパネル51等を介して受け取った後、ステップS11の処理に戻り、再計測を実施する。なお、再計測する場合に、巡回モードの変更、および/または周期tsの変更を行うようにしてもよい。
(Step S551)
Here, the instruction unit 216 functioning as the first instruction unit instructs remeasurement or rearrangement. Specifically, the instruction unit 216 instructs the control unit 21 to perform re-measurement, returns to the process of step S11, and performs re-measurement while maintaining the current arrangement state. Alternatively, the touch panel 51 is caused to display an instruction prompting confirmation of the arrangement state. Then, after receiving a re-measurement start instruction from the user via the touch panel 51 or the like, the process returns to step S11 and re-measurement is performed. It should be noted that when re-measuring, the circulation mode may be changed and/or the period ts may be changed.
 以上説明したように、第2の実施形態に係る心拍出量計測センサ1000は、第1の実施形態の構成に加えて、設置状態判定部215を備え、この設置状態判定部215によりアンテナアレイ122の設置状態が適正か否かを判定する。このようにすることで、設置状態が不適正な場合に、再設置を行ったり、再測定を行ったりすることで、不適正な設置状態下で使用するアンテナ素子が決定されることを未然に防ぐことができ、心臓から拍出される血液量をより高い精度で推定できる。 As described above, the cardiac output measurement sensor 1000 according to the second embodiment includes the installation state determination unit 215 in addition to the configuration of the first embodiment. 122 is determined to be appropriate. By doing so, if the installation state is improper, by performing re-installation or re-measurement, it is possible to prevent the determination of the antenna element to be used under the improper installation state. can be prevented and the volume of blood pumped from the heart can be estimated with higher accuracy.
 (変形例)
 第2の実施形態では、特徴データが、設定範囲外の場合には、再計測を指示したが、以下に説明する変形例のように処理してもよい。図16は、変形例における図12Aに続く処理を示すフローチャートである。
(Modification)
In the second embodiment, when the feature data is out of the set range, re-measurement is instructed, but processing may be performed as in the modified example described below. FIG. 16 is a flow chart showing processing following FIG. 12A in the modification.
 図16に示す例では、ステップS541~S544、およびステップS551は、図12Aに示した処理と同じであり説明を省略する。 In the example shown in FIG. 16, steps S541 to S544 and step S551 are the same as the process shown in FIG. 12A, and description thereof is omitted.
 (ステップS550)
 ここでは、設置状態判定部215は、特徴量1~4に関して設定範囲外の場合(YES)には処理をステップS555に進める。一方で、設定範囲外でない場合(NO)、すなわち特徴量5で複数のピークが存在する場合は、処理をステップS551に進め、このステップS551で再計測を指示する。
(Step S550)
Here, if the feature amounts 1 to 4 are outside the set range (YES), the installation state determination unit 215 advances the process to step S555. On the other hand, if it is not out of the set range (NO), that is, if a plurality of peaks exist in feature quantity 5, the process proceeds to step S551, and re-measurement is instructed in step S551.
 (ステップS555)
 設置状態判定部215は、設定範囲外となったアンテナ素子rを対象から除外する。
(Step S555)
The installation state determination unit 215 excludes the antenna element r outside the set range from the targets.
 (ステップS556)
 ここでは、素子決定部213は、ステップS555で除外されたアンテナ素子以外の中からアンテナ素子rを決定する。例えば、特徴量4(波形形状)で設定範囲外となったアアンテナ素子rを除外する。これにより、除外されたこのアンテナ素子rは、仮に評価値1(振幅)が最も高くても、心拍出量の推定に用いるアンテナ素子として選択されない。以降は、図16のサブルーチンフローチャートでの処理を終了し、図6の処理に戻り、以降は、決定したアンテナ素子rを用いた心拍出量の測定を行う。
(Step S556)
Here, the element determination unit 213 determines the antenna element r from among the antenna elements other than the antenna elements excluded in step S555. For example, the antenna element r outside the set range in the characteristic quantity 4 (waveform shape) is excluded. As a result, even if the evaluation value 1 (amplitude) is the highest, this excluded antenna element r is not selected as the antenna element used for estimating the cardiac output. After that, the processing in the subroutine flowchart of FIG. 16 is terminated, the processing returns to that of FIG. 6, and thereafter the cardiac output is measured using the determined antenna element r.
 このように変形例では、特徴データが設定範囲外となったアンテナ素子rを選択対象から除外し、これ以外のアンテナ素子rの中から心拍出量測定に用いるアンテナ素子を決定する。これにより不適切なアンテナ素子が選択されることを未然に防ぐことができ、心臓から拍出される血液量をより高い精度で推定できる。 In this way, in the modified example, the antenna elements r whose characteristic data are out of the set range are excluded from the selection targets, and the antenna elements r to be used for cardiac output measurement are determined from among the other antenna elements r. As a result, inappropriate antenna elements can be prevented from being selected, and the volume of blood pumped from the heart can be estimated with higher accuracy.
 (他の変形例)
 なお、他の変形例として、素子決定部213は、特徴データに基づいて、1つまたは複数のアンテナ素子rを選択してもよい。例えば、図10(b)のような2次分布データから得られた特徴データに基づいて、複数のアンテナ素子rを選択する。例えば特徴データとしてピーク位置に近い複数のアンテナ素子rを選択する。そして心拍出量推定部214は、選択されたアンテナ素子rの計測値から得られた信号(デジタル信号)を、加算平均(単純加算平均)、またはピーク位置との距離に応じて重み付けした加重平均(重み付け平均)、等の演算処理した処理後信号を用いて、心拍出量を推定する。このようにすることで、より高い精度で、心臓から拍出される血液量を推定できる。
(Other modifications)
As another modification, the element determination unit 213 may select one or a plurality of antenna elements r based on feature data. For example, a plurality of antenna elements r are selected based on feature data obtained from secondary distribution data as shown in FIG. 10(b). For example, a plurality of antenna elements r close to the peak position are selected as feature data. Then, the cardiac output estimating unit 214 averages the signal (digital signal) obtained from the measured value of the selected antenna element r, or weights the signal according to the distance from the peak position. Cardiac output is estimated using the processed signal, such as an average (weighted average). By doing so, the volume of blood pumped from the heart can be estimated with higher accuracy.
 (第3の実施形態)
 第3の実施形態においては、看護師、医師等のユーザーの指示の基、患者90は体位等の状態を変更する。そして患者90の異なる複数の状態で、素子走査処理を行い、その計測結果から抽出した特徴データにより設置状態を判定する。
(Third embodiment)
In the third embodiment, the patient 90 changes the state such as the body position based on instructions from a user such as a nurse or a doctor. Then, element scanning processing is performed in a plurality of different states of the patient 90, and the installation state is determined based on feature data extracted from the measurement results.
 図17は、第3の実施形態におけるアンテナ素子決定処理および心拍出量測定処理を示すフローチャートである。図17のステップS11~S20は、上述の図6のステップS11~S20と同様の処理であり、説明を省略する。 FIG. 17 is a flowchart showing antenna element determination processing and cardiac output measurement processing in the third embodiment. Steps S11 to S20 in FIG. 17 are the same processes as steps S11 to S20 in FIG. 6 described above, and description thereof will be omitted.
 (ステップS11)
 制御部21は、ユーザーの測定開始指示により送受信アンテナによる送受信を開始させる。
(Step S11)
The control unit 21 starts transmission/reception by the transmission/reception antenna in response to the user's instruction to start measurement.
 (ステップS115)
 ステップS115では、制御部21は、ステップS176との間でループbの処理を行う。このループbでは、患者90(生体)の状態の変更が行われる。この状態には、静止状態、深呼吸状態、体動状態、体位変更状態のうち、少なくともいずれか複数を含む。ここで静止状態、深呼吸状態とは、文字通り、ベッド95上で臥位状態(仰臥位)の患者90がなるべく動かない状態、または、深く呼吸する状態を維持することである。体位変更状態とは、仰臥位、側臥位、および腹臥位の間で体位変更を行うことである。体動状態とは、体位変更を伴わない動き、例えば手脚の曲げ伸ばしの動きを行うことである。いずれの状態も、ユーザーが指示する所定期間以上の間行われる。ここで所定期間とは、1単位の素子走査処理の期間程度(例えば数秒から十数秒)である。
(Step S115)
In step S115, the control unit 21 performs loop b processing between step S176 and step S176. In this loop b, the state of the patient 90 (living body) is changed. This state includes at least one or more of a stationary state, a deep breathing state, a body motion state, and a posture change state. Here, the stationary state and the deep breathing state literally mean that the patient 90 in the lying position (supine position) on the bed 95 remains motionless as much as possible or maintains a state of breathing deeply. A repositioning state is a repositioning between supine, lateral and prone positions. The state of body movement is a movement that does not accompany a change in body position, such as bending and stretching the arms and legs. Both states are performed for a predetermined period of time specified by the user or longer. Here, the predetermined period is about the period of one unit of element scanning processing (for example, several seconds to ten and several seconds).
 (ステップS12~S17(ループa、および素子走査処理))
 このステップS12では、制御部21は、ステップS16との間でループaの処理を行い、ステップS17で終了条件を満たすまで、このループaの処理を繰り返す。終了条件を満たした場合、処理をステップS175に進める。
(Steps S12 to S17 (loop a and element scanning process))
In this step S12, the control unit 21 performs the processing of loop a between step S16 and repeats the processing of this loop a until the termination condition is satisfied in step S17. If the termination condition is satisfied, the process proceeds to step S175.
 (ステップS175)
 制御部21は、タッチパネル51等に1単位の素子走査処理が終了したことを表示する。このときに、合わせて次の状態(例えば深呼吸状態)を表示するようにしてもよい。ユーザーはその表示に応じて、次の状態、例えば静止状態から深呼吸状態となるように患者90に指示する。このときにユーザーによる操作を受け付けるようにしてもよい。例えば、ユーザーは、次の状態となるような患者90への指示を行った後に、計測開始指示をタッチパネル51から入力する。
(Step S175)
The control unit 21 displays on the touch panel 51 or the like that the element scanning process for one unit has been completed. At this time, the next state (for example, deep breathing state) may also be displayed. In response to the display, the user instructs the patient 90 to move from the resting state to the deep breathing state, for example. At this time, the user's operation may be accepted. For example, the user inputs a measurement start instruction from the touch panel 51 after instructing the patient 90 to bring about the following state.
 (ステップS176)
 患者90が所定種類数の状態での計測を終了していなければ、ステップS115以下のループbの処理を繰り返す。一方で、全ての状態の計測が終わっていれば、ループbを抜けて処理をステップS18に進める。
(Step S176)
If the patient 90 has not completed the measurement in the predetermined number of types of states, the processing of the loop b from step S115 onward is repeated. On the other hand, if all the states have been measured, the loop b is exited and the process proceeds to step S18.
 (ステップS18)
 波形データ生成部302は、点データから素子r1~素子rxの波形データ(第1分布データ)を生成する。このときに、状態それぞれと対応付けた波形データを生成してもよい。
(Step S18)
The waveform data generator 302 generates waveform data (first distribution data) of the elements r1 to rx from the point data. At this time, waveform data associated with each state may be generated.
 (ステップS19)
 ここでは、制御部21は、設置状態を判定し、判定後に心拍出量推定に用いるアンテナ素子rを決定する。ここでは、制御部21は、図12A、および、これに続く図12Bもしくは図16に示した処理を行う。具体的には、2次分布データ生成部212は2次分布データを生成し、設置状態判定部215は、特徴データを生成し、これにより設置状態を判定する。その結果に応じた処理を実行した後、素子決定部213により、心拍出量推定に用いるアンテナ素子rを決定する。なお、この設置状態の判定処理、およびアンテナ素子rの決定処理を実行する際に、患者の状態毎に処理するようにしてもよく、複数の状態をまとめて(区別せず)に処理するようにしてもよい。
(Step S19)
Here, the control unit 21 determines the installation state, and determines the antenna element r to be used for cardiac output estimation after the determination. Here, the control unit 21 performs the processing shown in FIG. 12A and subsequent FIG. 12B or FIG. Specifically, the secondary distribution data generation unit 212 generates secondary distribution data, and the installation state determination unit 215 generates feature data to determine the installation state. After executing processing according to the result, the element determination unit 213 determines the antenna element r to be used for cardiac output estimation. When executing the installation state determination processing and the antenna element r determination processing, the processing may be performed for each patient state, or a plurality of states may be collectively processed (without distinction). can be
 (ステップS20)
 心拍出量推定部214は、ステップS19で決定されたアンテナ素子rを用いて、心拍出量、または心臓から拍出される血液量を推定する。ここでの処理は、図6のステップS20の処理と同様の処理である。
(Step S20)
The cardiac output estimation unit 214 estimates the cardiac output or the volume of blood pumped from the heart using the antenna element r determined in step S19. The processing here is the same as the processing in step S20 of FIG.
 第3の実施形態に係る心拍出量計測センサ1000は、第2の実施形態の構成において、患者90の複数の状態において計測されたデータから、設置状態の判定処理および素子の決定処理を行うので、ロバスト性が高い状態にできる。これにより心拍出量の測定(ステップS43)を行っている間に患者90の状態が変化したとしても、安定して計測できるので、心臓から拍出される血液量をより高い精度で安定して推定できる。 The cardiac output measurement sensor 1000 according to the third embodiment performs installation state determination processing and element determination processing based on data measured in a plurality of states of the patient 90 in the configuration of the second embodiment. Therefore, a state with high robustness can be achieved. As a result, even if the condition of the patient 90 changes while the cardiac output is being measured (step S43), the measurement can be stably performed. can be estimated by
 また、本実施形態においては、同時または略同時に、各アンテナ素子で計測された計測値を用い、得られた計測値から波形データを作成する。このように同時または略同時に計測された計測値を用いることにより、評価値1~6のいずれかを用いた2次分布データおよび、特徴量1~5のいずれかを用いた特徴データを抽出する際の精度が向上する。なお、変形例として、ピークのタイミングの差分時間(評価値6、特徴量3)以外を用いる場合においては、各アンテナ素子で異なる時刻に計測した計測値を用いてもよい。例えば、1つの送信側アンテナ素子tと1つの受信側アンテナ素子rとの間の伝播経路での受信信号の計測を数秒周期で順次切り替えながら行い、これをアンテナ素子r全数分繰り返すことにより、計測値を取得するようにしてもよい。 In addition, in the present embodiment, measured values measured by each antenna element are used at the same time or substantially at the same time, and waveform data is created from the obtained measured values. By using the measured values measured at the same time or substantially at the same time, the secondary distribution data using any of the evaluation values 1 to 6 and the feature data using any of the feature amounts 1 to 5 are extracted. accuracy is improved. As a modified example, in the case of using a difference time other than the peak timing difference (evaluation value 6, feature amount 3), measurement values measured at different times for each antenna element may be used. For example, the measurement of the received signal on the propagation path between one transmitting antenna element t and one receiving antenna element r is performed while sequentially switching at intervals of several seconds, and this is repeated for all the antenna elements r. You can also get the value.
 また、本実施形態においては、高速切替部122(または高速切替部112)を含み、1次分布作成部211は、点データ記録部301および波形データ生成部302を含む。これにより、略同時に複数のアンテナ素子での計測を行え、ひいては上述の精度向上を図れる。 Also, in this embodiment, the high-speed switching section 122 (or the high-speed switching section 112) is included, and the primary distribution creating section 211 includes the point data recording section 301 and the waveform data generating section 302. As a result, measurements can be performed with a plurality of antenna elements substantially at the same time, and the accuracy can be improved as described above.
 また、所定の周期は、複数のアンテナ素子へのONが一巡する1サイクル時間tcが、心周期よりも十分に短くなるような周期、例えば1msec以下に設定されている。これにより十分なサンプリングレートを確保でき、波形を精度よく生成できる。 In addition, the predetermined cycle is set to a cycle, for example, 1 msec or less, such that one cycle time tc in which a plurality of antenna elements are turned ON is sufficiently shorter than the cardiac cycle. As a result, a sufficient sampling rate can be secured and waveforms can be generated with high accuracy.
 また、評価値は、(評価値1)波形データの振幅、(評価値2)フーリエ変換後の特定周波数における強度、(評価値3)波形データの変曲点時間、(評価値4)波形データの時間積分値、(評価値5)自己相関係数、および(評価値6)ピークのタイミングの差分時間、の少なくともいずれかである。これらの評価値1~6のいずれも用いても、精度よく、複数のアンテナ素子の中から好適なアンテナ素子を決定できる。 The evaluation values are (evaluation value 1) amplitude of waveform data, (evaluation value 2) intensity at specific frequency after Fourier transform, (evaluation value 3) inflection point time of waveform data, (evaluation value 4) waveform data , (evaluation value 5) autocorrelation coefficient, and (evaluation value 6) difference time of peak timing. Even if any of these evaluation values 1 to 6 are used, it is possible to accurately determine a suitable antenna element from among a plurality of antenna elements.
 また、特徴量は、(特徴量1)波形データの振幅、(特徴量2)自己相関係数、(特徴量3)ピークのタイミングの差分時間、(特徴量4)波形形状、および(特徴量5)ピーク位置、の少なくともいずれかである。これらの特徴量1~5のいずれも用いても、適切に、アンテナアレイ122(またはアンテナアレイ113)の設置状態の適否を判定できる。 The feature amounts are (feature amount 1) waveform data amplitude, (feature amount 2) autocorrelation coefficient, (feature amount 3) peak timing difference time, (feature amount 4) waveform shape, and (feature amount 5) peak position; Any one of these feature quantities 1 to 5 can be used to appropriately determine whether the installation state of the antenna array 122 (or the antenna array 113) is appropriate.
 また巡回モードと周期を変更可能とすることで、電磁波の送受信条件を最適な条件に設定できる。 Also, by making it possible to change the circulation mode and cycle, it is possible to set the optimal conditions for the transmission and reception of electromagnetic waves.
 また、本実施形態では電磁波としてマイクロ波を用いる。マイクロ波は、人体を透過する際の減衰が他の周波数よりも少なく、また損失が比較的高い心臓の拡張/収縮の動きに応じた損失変化にともなう信号の変化の感度(振幅の増減率)が他の周波数よりも大きく、心拍出量の測定に好適である。 Also, in this embodiment, microwaves are used as electromagnetic waves. Microwaves are attenuated less than other frequencies when passing through the human body and have relatively high loss. is larger than other frequencies and is suitable for measuring cardiac output.
 以上に説明した、心拍出量計測センサ1000の構成は、上述の実施形態の特徴を説明するにあたって主要構成を説明したのであって、上述の構成に限られず、特許請求の範囲内において、種種改変することができる。 The above-described configuration of the cardiac output measurement sensor 1000 is a main configuration for describing the features of the above-described embodiment, and is not limited to the above-described configuration. can be modified.
 例えば、心拍出量の推定には、素子決定部が決定したアンテナ素子rを用いて、精度を向上させるために再度計測を行い、再度計測した波形データに基づいて心拍出量を推定しても良く、また決定時および再計測時のアンテナ素子は複数であっても良い。具体的には、例えば、隣接する4つのアンテナ素子rのステップS19(図7/図12A)で算出された評価値または特徴量が非常に近い場合、この4つのアンテナ素子rを心拍出量の推定の際に用いるアンテナ素子rとして決定し、各アンテナ素子rを用いて得られた波形データに基づいて算出された心拍出量の平均値から心拍出量を推定してもよい。 For example, in estimating the cardiac output, the antenna element r determined by the element determining unit is used to perform measurement again in order to improve accuracy, and the cardiac output is estimated based on the remeasured waveform data. A plurality of antenna elements may be used at the time of determination and at the time of re-measurement. Specifically, for example, when the evaluation values or feature amounts calculated in step S19 (FIG. 7/FIG. 12A) of four adjacent antenna elements r are very close, the four antenna elements r are used as cardiac output , and the cardiac output may be estimated from the average value of the cardiac output calculated based on the waveform data obtained using each antenna element r.
 また、上述した心拍出量計測センサ1000における各種処理を行う手段および方法は、専用のハードウェア回路、またはプログラムされたコンピューターのいずれによっても実現することが可能である。上記プログラムは、例えば、USBメモリやDVD-ROM等のコンピューター読み取り可能な記録媒体によって提供されてもよいし、インターネット等のネットワークを介してオンラインで提供されてもよい。この場合、コンピューター読み取り可能な記録媒体に記録されたプログラムは、通常、ハードディスク等の記憶部に転送され記憶される。また、上記プログラムは、単独のアプリケーションソフトとして提供されてもよいし、一機能として装置のソフトウエアに組み込まれてもよい。 Also, the means and methods for performing various processes in the cardiac output measurement sensor 1000 described above can be realized by either a dedicated hardware circuit or a programmed computer. The program may be provided by a computer-readable recording medium such as a USB memory or DVD-ROM, or may be provided online via a network such as the Internet. In this case, the program recorded on the computer-readable recording medium is usually transferred to and stored in a storage unit such as a hard disk. Moreover, the above program may be provided as independent application software, or may be incorporated into the software of the apparatus as one function.
 本出願は、2021年3月29日に出願された日本国特許出願第2021-54938号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2021-54938 filed on March 29, 2021, the disclosure of which is incorporated by reference in its entirety.
1000 心拍出量計測センサ
11、11b 送信アンテナユニット
 110 基板
 111 送信波形生成部
 112 高速切替部
 113 アンテナアレイ(送信側)
 t1~tx アンテナ素子(送信側)
12、12b 受信アンテナユニット
 120 基板
 121 アンテナアレイ(受信側)
 122 高速切替部
 123 サンプリング部
13 信号ケーブル
14 送受信コントローラー
20 装置本体
 21 制御部
  211 1次分布作成部
   301 点データ記録部
   302 波形データ生成部
  212 2次分布作成部
  213 素子決定部
  214 心拍出量推定部
  215 設置状態判定部
  216 指示部
 22 記憶部
 23 入出力I/F
 24 通信I/F
51 タッチパネル
52 XYステージ
61 PC
REFERENCE SIGNS LIST 1000 cardiac output measurement sensors 11, 11b transmission antenna unit 110 substrate 111 transmission waveform generation section 112 high-speed switching section 113 antenna array (transmission side)
t1 to tx antenna element (transmitting side)
12, 12b receiving antenna unit 120 substrate 121 antenna array (receiving side)
122 high-speed switching unit 123 sampling unit 13 signal cable 14 transmission/reception controller 20 device body 21 control unit 211 primary distribution creating unit 301 point data recording unit 302 waveform data creating unit 212 secondary distribution creating unit 213 element determining unit 214 cardiac output Estimation unit 215 Installation state determination unit 216 Instruction unit 22 Storage unit 23 Input/output I/F
24 Communication I/F
51 touch panel 52 XY stage 61 PC

Claims (20)

  1.  電磁波を生体に向けて送信する送信アンテナと、
     前記送信アンテナに対して、生体の心臓を挟んで対向するように配置された受信アンテナと、
     前記受信アンテナで受信した、前記生体を透過した電磁波を用いて、心臓から拍出される血液量を推定する心拍出量推定部と、を備え、
     前記送信アンテナおよび前記受信アンテナの少なくとも一方は、前記生体に対する位置が異なる複数のアンテナ素子を含み、
     さらに、前記アンテナ素子それぞれに関して計測された計測値の経時的変化を表す波形データを作成するとともに、該波形データを前記アンテナ素子それぞれと対応付けた波形分布データを作成する1次分布作成部と、
     前記1次分布作成部が作成した前記波形分布データに基づいて、複数の前記アンテナ素子の中から、前記血液量の推定の際に用いるアンテナ素子を決定する素子決定部と、を備える、心拍出量計測センサ。
    a transmitting antenna for transmitting electromagnetic waves toward a living body;
    a receiving antenna arranged to face the transmitting antenna with the heart of the living body interposed therebetween;
    a cardiac output estimating unit for estimating the volume of blood pumped from the heart using the electromagnetic wave received by the receiving antenna and transmitted through the living body;
    at least one of the transmitting antenna and the receiving antenna includes a plurality of antenna elements having different positions with respect to the living body;
    Further, a primary distribution creating unit for creating waveform data representing temporal changes in measured values measured for each of the antenna elements and creating waveform distribution data in which the waveform data is associated with each of the antenna elements;
    an element determination unit that determines, from among the plurality of antenna elements, an antenna element to be used in estimating the blood volume based on the waveform distribution data generated by the primary distribution generation unit; Protrusion measurement sensor.
  2.  さらに、前記1次分布作成部により作成された波形分布データに基づいて、前記アンテナ素子の位置に応じた評価値の分布データを作成する2次分布作成部を備え、
     前記素子決定部は、前記2次分布作成部により作成された前記評価値の分布データに基づいて、複数の前記アンテナ素子の中から、前記血液量の推定の際に用いるアンテナ素子を決定する、請求項1に記載の心拍出量計測センサ。
    Further comprising a secondary distribution creation unit for creating distribution data of evaluation values according to the positions of the antenna elements based on the waveform distribution data created by the primary distribution creation unit,
    The element determination unit determines, from among the plurality of antenna elements, an antenna element to be used when estimating the blood volume, based on the distribution data of the evaluation values created by the secondary distribution creation unit. The cardiac output measurement sensor according to claim 1.
  3.  前記計測値は、同時または略同時に計測された計測値である、請求項1、または請求項2に記載の心拍出量計測センサ。 The cardiac output measurement sensor according to claim 1 or claim 2, wherein the measured values are measured values measured simultaneously or substantially simultaneously.
  4.  複数の前記アンテナ素子を含む前記一方は、さらに、該アンテナ素子それぞれのON/OFFを、所定の周期で順次切り替える高速切替部を含み、
     前記1次分布作成部は、前記高速切替部によりONとなった前記アンテナ素子それぞれにおける計測値を、該アンテナ素子と紐付けて点データとして記録する点データ記録部と、前記点データ記録部が記録した点データを、経時的に並べることで、前記波形データを作成する波形データ生成部と、を含む、請求項3に記載の心拍出量計測センサ。
    The one including the plurality of antenna elements further includes a high-speed switching unit that sequentially switches ON/OFF of each of the antenna elements at a predetermined cycle,
    The primary distribution creation unit includes a point data recording unit that records the measured value of each of the antenna elements turned on by the high speed switching unit as point data in association with the antenna element, and the point data recording unit. 4. The cardiac output measuring sensor according to claim 3, further comprising a waveform data generator that creates the waveform data by arranging the recorded point data over time.
  5.  前記所定の周期は、複数の前記アンテナ素子へのONが一巡する1サイクル時間が、心周期よりも十分に短くなるような周期に設定されている、請求項4に記載の心拍出量計測センサ。 5. The cardiac output measurement according to claim 4, wherein the predetermined cycle is set such that one cycle time for one cycle of turning ON of the plurality of antenna elements is sufficiently shorter than a cardiac cycle. sensor.
  6.  前記評価値は、前記波形データの振幅、フーリエ変換後の特定周波数における強度、波形データの変曲点時間、波形データの時間積分値、および/または自己相関係数である、請求項2から請求項5のいずれかに記載の心拍出量計測センサ。 The evaluation value is the amplitude of the waveform data, the intensity at a specific frequency after Fourier transform, the inflection point time of the waveform data, the time integral value of the waveform data, and/or the autocorrelation coefficient. Item 6. The cardiac output measurement sensor according to any one of items 5.
  7.  前記評価値は、前記波形データのピークのタイミングを、基準波形のピークのタイミングと比較した、差分時間である、請求項3から請求項5のいずれかに記載の心拍出量計測センサ。 The cardiac output measurement sensor according to any one of claims 3 to 5, wherein the evaluation value is a differential time obtained by comparing the timing of the peak of the waveform data with the timing of the peak of the reference waveform.
  8.  前記素子決定部は、記憶部に予め記録された比較分布パターンを、前記2次分布作成部で作成された前記分布データと比較することで、推定の際に用いる前記アンテナ素子の決定を行う、請求項2から請求項7のいずれかに記載の心拍出量計測センサ。 The element determination unit determines the antenna element to be used for estimation by comparing a comparison distribution pattern prerecorded in a storage unit with the distribution data created by the secondary distribution creation unit. The cardiac output measurement sensor according to any one of claims 2 to 7.
  9.  複数の前記アンテナ素子は、同一平面上に格子状に配置されたアンテナアレイであり、
     前記アンテナアレイの設置状態が適正か否かを判定する設置状態判定部を、備え、
     前記設置状態判定部は、前記波形分布データ、または前記評価値の前記分布データから特徴データを抽出し、該特徴データに基づいて、前記アンテナアレイの設置状態の適否を判定する、請求項2から請求項8のいずれかに記載の心拍出量計測センサ。
    The plurality of antenna elements is an antenna array arranged in a lattice on the same plane,
    an installation state determination unit that determines whether the installation state of the antenna array is appropriate,
    3. The installation state determination unit extracts feature data from the waveform distribution data or the distribution data of the evaluation values, and determines appropriateness of the installation state of the antenna array based on the feature data. The cardiac output measurement sensor according to claim 8 .
  10.  前記特徴データは、波形データの振幅、自己相関係数、ピークのタイミングを基準波形のピークのタイミングと比較した差分時間、波形形状、および前記評価値のピーク位置の少なくともいずれかである、請求項9に記載の心拍出量計測センサ。 3. The feature data is at least one of waveform data amplitude, autocorrelation coefficient, difference time comparing peak timing with reference waveform peak timing, waveform shape, and peak position of the evaluation value. 9. The cardiac output measurement sensor according to 9.
  11.  複数の前記アンテナ素子は、同一平面上に格子状に配置されたアンテナアレイであり、
     前記基準波形は、前記アンテナアレイの中心、または最も中心に近いアンテナ素子の波形データである、請求項7、または請求項10に記載の心拍出量計測センサ。
    The plurality of antenna elements is an antenna array arranged in a lattice on the same plane,
    11. The cardiac output measurement sensor according to claim 7, wherein said reference waveform is waveform data of an antenna element closest to the center of said antenna array.
  12.  複数の前記アンテナ素子は、同一平面上に格子状に配置されたアンテナアレイであり、
     前記アンテナアレイの設置状態が適正か否かを判定する設置状態判定部を、備え、
     前記設置状態判定部は、記憶部に予め記録された比較分布パターンを、前記2次分布作成部で作成された前記分布データと比較することで、前記アンテナアレイの設置状態の適否を判定する、請求項2から請求項8のいずれかに記載の心拍出量計測センサ。
    The plurality of antenna elements is an antenna array arranged in a lattice on the same plane,
    an installation state determination unit that determines whether the installation state of the antenna array is appropriate,
    The installation state determination unit compares a comparison distribution pattern recorded in advance in a storage unit with the distribution data created by the secondary distribution creation unit to determine whether the installation state of the antenna array is appropriate. The cardiac output measurement sensor according to any one of claims 2 to 8.
  13.  前記設置状態判定部が、前記特徴データを抽出する際の前記生体の状態には、静止状態、深呼吸状態、体動状態、体位変更状態の少なくともいずれか複数を含む、請求項9から請求項12のいずれかに記載の心拍出量計測センサ。 12. The state of the living body when the installation state determination unit extracts the feature data includes at least one or more of a resting state, a deep breathing state, a body motion state, and a posture change state. Cardiac output measurement sensor according to any one of .
  14.  前記設置状態判定部は、前記特徴データを、予め定めた設定範囲と比較し、前記設定範囲外となる場合は、異常を判断し、
     さらに、前記設置状態判定部の前記異常の判断に基づいて、再計測、または再配置の指示を出力する第1指示部を、さらに、備える請求項9から請求項13のいずれかに記載の心拍出量計測センサ。
    The installation state determination unit compares the feature data with a predetermined set range, and determines an abnormality when the feature data is out of the set range,
    14. The heart according to any one of claims 9 to 13, further comprising a first instruction section that outputs an instruction for re-measurement or rearrangement based on the determination of the abnormality by the installation state determination section. Cardiac output sensor.
  15.  前記設置状態判定部は、前記特徴データを、予め定めた設定範囲と比較し、前記設定範囲外となる前記アンテナ素子を特定し、
     前記素子決定部は、前記設置状態判定部が特定した前記アンテナ素子を、前記決定の対象から除外する、請求項9から請求項13のいずれかに記載の心拍出量計測センサ。
    The installation state determination unit compares the feature data with a predetermined set range to identify the antenna element outside the set range,
    The cardiac output measurement sensor according to any one of claims 9 to 13, wherein the element determination unit excludes the antenna element specified by the installation state determination unit from the target of the determination.
  16.  前記設置状態判定部は、前記特徴データから、前記アンテナアレイの設置状態の不適正を判定し、
     さらに、再配置の移動方向を出力する第2指示部を、備える、請求項9から請求項15のいずれかに記載の心拍出量計測センサ。
    The installation state determination unit determines whether the installation state of the antenna array is inappropriate from the feature data,
    16. The cardiac output measurement sensor according to any one of claims 9 to 15, further comprising a second instruction section that outputs a movement direction for rearrangement.
  17.  前記高速切替部は、複数の前記アンテナ素子の全部を一巡させる全部巡回モードと、一部の前記アンテナ素子のみを間引いて一巡させる一部巡回モードとの切り替え、
     および/または、前記所定の周期、もしくは複数の前記アンテナ素子へのONが一巡する1サイクル時間の変更が可能である、請求項3、または請求項4に記載の心拍出量計測センサ。
    The high-speed switching unit switches between a full circulation mode in which all of the plurality of antenna elements are circulated, and a partial circulation mode in which only some of the antenna elements are thinned out and circulated.
    5. The cardiac output measurement sensor according to claim 3 or 4, wherein said predetermined period or one cycle time in which a plurality of said antenna elements are turned on can be changed.
  18.  前記素子決定部は、前記特徴データに基づいて、前記アンテナ素子を選択し、
     前記心拍出量推定部は、前記素子決定部が選択した、前記アンテナ素子の計測値から得られた信号を演算処理した処理後信号を用いて、心拍出量を推定する、請求項9から請求項17のいずれかに記載の心拍出量計測センサ。
    The element determination unit selects the antenna element based on the feature data,
    10. The cardiac output estimating unit estimates the cardiac output using a post-processing signal obtained by arithmetically processing the signal obtained from the measurement value of the antenna element selected by the element determining unit. 18. The cardiac output measurement sensor according to any one of claims 1 to 17.
  19.  前記電磁波は、マイクロ波である、請求項1から請求項18のいずれかに記載の心拍出量計測センサ。 The cardiac output measurement sensor according to any one of claims 1 to 18, wherein the electromagnetic waves are microwaves.
  20.  電磁波を生体に向けて送信する送信アンテナと、
     前記送信アンテナに対して、生体の心臓を挟んで対向するように配置された受信アンテナと、
     前記受信アンテナで受信した、前記生体を透過した電磁波を用いて、心臓から拍出される血液量を推定する心拍出量推定部と、を備え、
     前記送信アンテナおよび前記受信アンテナの少なくとも一方は、前記生体に対する位置が異なる複数のアンテナ素子を含む、心拍出量計測センサを制御するコンピューターで実行される制御プログラムであって、
     前記アンテナ素子それぞれに関して計測された計測値の経時的変化を表す波形データを作成するとともに、該波形データを前記アンテナ素子それぞれと対応付けた波形分布データを作成する1次分布作成ステップと、
     前記1次分布作成ステップで作成された前記波形分布データに基づいて、複数の前記アンテナ素子の中から、前記血液量の推定の際に用いるアンテナ素子を決定する素子決定ステップと、を含む処理を、前記コンピューターに実行させるための制御プログラム。
    a transmitting antenna for transmitting electromagnetic waves toward a living body;
    a receiving antenna arranged to face the transmitting antenna with the heart of the living body interposed therebetween;
    a cardiac output estimating unit for estimating the volume of blood pumped from the heart using the electromagnetic wave received by the receiving antenna and transmitted through the living body;
    At least one of the transmitting antenna and the receiving antenna includes a plurality of antenna elements positioned at different positions with respect to the living body, and a control program executed by a computer for controlling a cardiac output measurement sensor,
    a primary distribution creating step of creating waveform data representing temporal changes in measured values measured for each of the antenna elements, and creating waveform distribution data in which the waveform data is associated with each of the antenna elements;
    an element determination step of determining an antenna element to be used in estimating the blood volume from among the plurality of antenna elements based on the waveform distribution data created in the primary distribution creation step; , a control program to be executed by the computer.
PCT/JP2022/004390 2021-03-29 2022-02-04 Cardiac output measurement sensor and control program WO2022209283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054938 2021-03-29
JP2021054938 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022209283A1 true WO2022209283A1 (en) 2022-10-06

Family

ID=83458800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004390 WO2022209283A1 (en) 2021-03-29 2022-02-04 Cardiac output measurement sensor and control program

Country Status (1)

Country Link
WO (1) WO2022209283A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202516A (en) * 2015-04-21 2016-12-08 学校法人 関西大学 Device for estimating cardiac volume and cardiac output
WO2018194093A1 (en) * 2017-04-19 2018-10-25 学校法人関西大学 Biological information estimation device
JP2019500065A (en) * 2015-10-07 2019-01-10 ヴェリリー ライフ サイエンシズ エルエルシー Radio frequency and optical reader scanning array
JP2019022541A (en) * 2017-07-21 2019-02-14 オムロン株式会社 Biometry antenna device, pulse wave measurement device, blood pressure measurement device, equipment, biological information measurement method, pulse wave measurement method, and blood pressure measurement method
JP2019180925A (en) * 2018-04-12 2019-10-24 オムロン株式会社 Biological information measuring apparatus, method, and program
JP2021011126A (en) * 2019-07-03 2021-02-04 三菱自動車工業株式会社 Occupant monitoring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016202516A (en) * 2015-04-21 2016-12-08 学校法人 関西大学 Device for estimating cardiac volume and cardiac output
JP2019500065A (en) * 2015-10-07 2019-01-10 ヴェリリー ライフ サイエンシズ エルエルシー Radio frequency and optical reader scanning array
WO2018194093A1 (en) * 2017-04-19 2018-10-25 学校法人関西大学 Biological information estimation device
JP2019022541A (en) * 2017-07-21 2019-02-14 オムロン株式会社 Biometry antenna device, pulse wave measurement device, blood pressure measurement device, equipment, biological information measurement method, pulse wave measurement method, and blood pressure measurement method
JP2019180925A (en) * 2018-04-12 2019-10-24 オムロン株式会社 Biological information measuring apparatus, method, and program
JP2021011126A (en) * 2019-07-03 2021-02-04 三菱自動車工業株式会社 Occupant monitoring device

Similar Documents

Publication Publication Date Title
CN107837078B (en) Device and method for detecting biological information and wearable device
KR101602900B1 (en) Apparatus and method for automatic transmission power adjustment for doppler radar
JP6574521B2 (en) Apparatus and method for determining fetal heart rate
KR101910982B1 (en) Method and apparatus for eliminating motion artifact of biosignal using personalized biosignal pattern
EP2213242B1 (en) Method and device for controlling transmission power of an active transducer
WO2017063220A1 (en) Method of detecting vascular condition based on heart spot fluctuation conductance characteristic and device utilizing same
EP3457410A1 (en) Apparatus and method for estimating bio-information
US11744526B2 (en) Apparatus and method for estimating blood pressure
WO2022209283A1 (en) Cardiac output measurement sensor and control program
JP2012139342A (en) Automatic blood pressure measuring apparatus
WO2020246258A1 (en) Blood pressure measurement device, blood pressure measurement system, blood pressure measurement method, and blood pressure measurement program
EP3337391B1 (en) Electronic apparatus and control method thereof
JP2022154291A (en) Cardiac output measuring sensor and control program of cardiac output measuring sensor
JP2022152253A (en) Cardiac output measuring sensor and control program of cardiac output measuring sensor
WO2022209282A1 (en) Cardiac output measurement sensor and control program
WO2021066020A1 (en) Measurement device and measurement method
CN115005803A (en) Respiration detection method and apparatus
US20230225624A1 (en) Method for monitoring blood pressure of a user using a cuffless monitoring device
Matsunag et al. Non-contact and noise tolerant heart rate monitoring using microwave doppler sensor and range imagery
CN210204714U (en) Multi-sensing blood pressure detection device based on BCG (BCG-shaped code) signals and mattress
Zhang et al. Radar-Beat: Contactless beat-by-beat heart rate monitoring for life scenes
CN111084614A (en) Multi-sensor blood pressure detection device based on BCG (BCG-shaped BCG) signals
CN111012322A (en) Device for estimating blood pressure
KR102519957B1 (en) Contactless type apparatus for measuring biological signal and Method thereof
CN111568468B (en) Ultrasonic chip, ultrasonic detection device and method for detecting blood pressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779512

Country of ref document: EP

Kind code of ref document: A1