WO2022209182A1 - Electrode, battery cell, cell stack, and redox flow battery - Google Patents

Electrode, battery cell, cell stack, and redox flow battery Download PDF

Info

Publication number
WO2022209182A1
WO2022209182A1 PCT/JP2022/001845 JP2022001845W WO2022209182A1 WO 2022209182 A1 WO2022209182 A1 WO 2022209182A1 JP 2022001845 W JP2022001845 W JP 2022001845W WO 2022209182 A1 WO2022209182 A1 WO 2022209182A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery
surface area
specific surface
cell
Prior art date
Application number
PCT/JP2022/001845
Other languages
French (fr)
Japanese (ja)
Inventor
康一 橋本
雄大 池上
正幸 大矢
雍容 董
吉恭 川越
賢一 伊藤
貴 五十嵐
良平 岩原
Original Assignee
住友電気工業株式会社
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021063777A external-priority patent/JP2024075815A/en
Application filed by 住友電気工業株式会社, 東洋紡株式会社 filed Critical 住友電気工業株式会社
Publication of WO2022209182A1 publication Critical patent/WO2022209182A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells

Definitions

  • the present disclosure relates to electrodes, battery cells, cell stacks, and redox flow batteries.
  • This application claims priority based on Japanese Patent Application No. 2021-063777 filed in Japan on April 2, 2021, and incorporates all the contents described in the Japanese application.
  • a redox flow battery is known as a large-capacity storage battery.
  • the redox flow battery disclosed in Patent Document 1 includes a cell stack in which a plurality of battery cells are stacked. Charging and discharging are performed by circulating the positive electrode electrolyte and the negative electrode electrolyte in the battery cell.
  • Patent Literature 1 discloses an electrode composed of an aggregate of carbon fibers.
  • the electrodes of the present disclosure are An electrode comprising a porous substrate,
  • the ratio of the mesopore specific surface area to the BET specific surface area is 40% or more,
  • the mesopore specific surface area is 1.0 m 2 /g or more and less than 30 m 2 /g.
  • the battery cell of the present disclosure is An electrode of the present disclosure is provided.
  • the cell stack of the present disclosure is A battery cell of the present disclosure is provided.
  • the redox flow battery of the present disclosure comprises A cell stack of the present disclosure is provided.
  • FIG. 1 is an operating principle diagram of a redox flow battery according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of a redox flow battery according to an embodiment.
  • FIG. 3 is a schematic configuration diagram showing an example of a cell stack.
  • FIG. 4 is a schematic diagram of an electrode according to the embodiment.
  • FIG. 5 is a partially enlarged view of the electrode according to the embodiment.
  • the electrodes In order to improve the battery reaction at the electrodes, it is preferable that the electrodes have a large surface area in contact with the electrolyte. However, in an electrolytic solution with a high oxidizing power, the electrode is gradually consumed by the oxidizing power of the electrolytic solution. In particular, in a positive electrode electrolyte having a high oxidizing power, an electrode having a large contact area with the electrolyte is easily consumed. When the electrode is consumed, the battery performance of the battery cell provided with the electrode deteriorates.
  • one object of the present disclosure is to provide an electrode that is excellent in battery reactivity and durability. Another object of the present disclosure is to provide a battery cell, a cell stack, and a redox flow battery capable of suppressing deterioration of battery performance due to operation.
  • the electrodes of the present disclosure are excellent in battery reactivity and durability.
  • the battery cell, cell stack, and redox flow battery of the present disclosure maintain excellent battery performance over a long period of time.
  • the present inventors have extensively studied the configuration of a battery that is excellent in battery reactivity and durability. As already explained, there is a trade-off relationship between the improvement in battery reactivity and the durability of the electrode. In consideration of this point, the present inventors arrived at a technical idea of defining the ratio of the mesopore specific surface area to the electrode and the upper limit of the mesopore specific surface area. Based on this technical idea, the present inventors have completed the electrode, battery cell, cell stack, and redox flow battery of the present disclosure described below. Embodiments of the present disclosure are listed and described below.
  • the electrode according to the embodiment is An electrode comprising a porous substrate,
  • the ratio of the mesopore specific surface area to the BET specific surface area is 40% or more,
  • the mesopore specific surface area is 1.0 m 2 /g or more and less than 30 m 2 /g.
  • the pores formed in the porous body are classified into micropores, mesopores, and macropores.
  • a mesopore is a pore having a diameter of 2 nm or more and 50 nm or less.
  • Micropores are pores that are smaller than mesopores.
  • Macropores are pores that are thicker than mesopores. This definition complies with the definition of the International Union of Pure and Applied Chemistry.
  • Mesopores are more effective in improving battery reaction than macropores and micropores. This is because the electrolyte can easily enter the mesopores, and the contact area between the inner peripheral surface of the mesopores and the electrolyte is large.
  • the electrolytic solution It is difficult for the electrolytic solution to enter the micropores, which are narrower than the mesopores.
  • the macropores which are thicker than the mesopores, easily allow the electrolyte to enter, but the contact area of the macropores with respect to the electrolyte per unit volume is small.
  • the ratio of the mesopore specific surface area to the BET specific surface area and the upper limit and lower limit of the mesopore specific surface area are specified. Therefore, in the electrodes of the embodiments, the contact area with the electrolytic solution does not become too large even though the proportion of mesopores that improve the battery reaction is high. Therefore, the electrodes according to the embodiments are excellent in battery reactivity and durability.
  • the BET specific surface area may be less than 40 m 2 /g.
  • the BET specific surface area does not become too large. In other words, the contact area between the electrodes and the electrolytic solution does not become too large. Therefore, even if the electrodes are exposed to the electrolytic solution for a long period of time, extreme wear of the electrodes is suppressed.
  • the electrode according to the embodiment is It may be used for the positive electrode of a redox flow battery.
  • the oxidizing power of the positive electrode electrolyte is higher than that of the negative electrode electrolyte.
  • the electrodes according to the embodiments are excellent in durability. Therefore, the electrode according to the embodiment is suitable as a positive electrode exposed to a positive electrode electrolyte having a high oxidizing power.
  • the base material may contain, as a conductive material, one or more elements selected from the group consisting of carbon, titanium, and tungsten.
  • Carbon, titanium, and tungsten are excellent in conductivity and corrosion resistance. Therefore, these elements are suitable as base materials for electrodes.
  • the substrate may contain at least one selected from the group consisting of carbon fibers, carbon particles, and carbon binder residues.
  • the BET specific surface area and the mesopore specific surface area of the electrode are adjusted by limiting the fiber length and fiber diameter of the carbon fiber.
  • the BET specific surface area and the mesopore specific surface area of the electrode are adjusted by limiting the particle size of the carbon particles.
  • the carbon binder residue is carbonized binder. The binder binds carbon fibers together, binds carbon fibers and carbon particles, or binds carbon particles together when the electrode is manufactured.
  • the electrode according to the embodiment is comprising a catalyst held on the substrate;
  • the catalyst may be made of a non-carbon material.
  • the catalyst promotes the cell reaction. Therefore, the battery reactivity of the electrode is improved by holding the catalyst on the substrate.
  • the catalyst may be a metal oxide or metal carbide.
  • Metal oxide or metal carbide catalysts are difficult to oxidize. Therefore, the electrode tends to maintain excellent battery reactivity over a long period of time.
  • the battery cell according to the embodiment is The electrode according to any one of the above modes ⁇ 1> to ⁇ 7> is provided.
  • the battery cell according to the embodiment easily maintains excellent battery performance over a long period of time. This is because the electrodes of the embodiment provided in the battery cells are less likely to wear out.
  • the cell stack according to the embodiment is The battery cell of form ⁇ 8> is provided.
  • the cell stack according to the embodiment easily maintains excellent battery performance over a long period of time. This is because the electrodes of the embodiment provided in the battery cells that make up the cell stack are less likely to wear out.
  • the redox flow battery according to the embodiment is The cell stack of form ⁇ 9> is provided.
  • the redox flow battery according to the embodiment easily maintains excellent battery performance over a long period of time. This is because the electrodes of the embodiment provided in the redox flow battery are less likely to be consumed.
  • FIG. 1 ⁇ Overview of RF battery ⁇ An RF battery 1 according to an embodiment will be described with reference to FIGS. 1 to 3.
  • FIG. The RF battery 1 shown in FIG. 1 performs charging and discharging with a positive electrode electrolyte containing a positive electrode active material and a negative electrode electrolyte containing a negative electrode active material.
  • the positive electrode active material and the negative electrode active material are typically metal ions whose valences change due to oxidation-reduction.
  • the metal ions contained in the positive electrode electrolyte and the negative electrode electrolyte shown in FIG. 1 are examples.
  • FIG. 1 illustrates a Ti—Mn-based RF battery containing Mn ions as a positive electrode active material and Ti ions as a negative electrode active material.
  • the solid line arrows indicate the charge reaction
  • the dashed line arrows indicate the discharge reaction.
  • the RF battery 1 is typically connected to the power system 90 via the AC/DC converter 80 and the substation equipment 81 .
  • the RF battery 1 charges the power generated by the power generation unit 91 or discharges the charged power to the load 92 .
  • the power generation unit 91 is a power generation facility using natural energy such as solar power generation or wind power generation, or a general power plant.
  • the RF battery 1 is used, for example, for load leveling applications, momentary sag compensation, emergency power supply applications, and output smoothing applications for natural energy power generation.
  • the RF battery 1 includes battery cells 10 , a positive electrode tank 12 and a negative electrode tank 13 .
  • the battery cell 10 is responsible for charging and discharging.
  • the positive electrode tank 12 stores a positive electrode electrolyte.
  • the negative electrode tank 13 stores a negative electrode electrolyte.
  • the battery cell 10 is separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 .
  • the diaphragm 101 is an ion exchange membrane that is impermeable to electrons but permeable to hydrogen ions, for example.
  • the cathode cell 102 incorporates the cathode electrode 2 .
  • the negative electrode cell 103 incorporates the negative electrode 3 .
  • a positive electrode electrolyte and a negative electrode electrolyte are supplied to the positive electrode cell 102 and the negative electrode cell 103 that constitute the battery cell 10, respectively.
  • the RF battery 1 of this example includes an outbound pipe 108 and a return pipe 110 that connect between the battery cell 10 and the positive electrode tank 12 .
  • the RF battery 1 of this example includes an outward pipe 109 and a return pipe 111 that connect between the battery cell 10 and the negative electrode tank 13 .
  • Pumps 112 and 113 are provided in the respective outbound pipes 108 and 109, respectively.
  • the positive electrode electrolyte is supplied from the positive electrode tank 12 by the pump 112 to the positive electrode cell 102 through the outgoing pipe 108 .
  • the positive electrode electrolyte discharged from the positive electrode cell 102 through the positive electrode cell 102 is returned to the positive electrode tank 12 through the return pipe 110 .
  • the negative electrode electrolyte is supplied from the negative electrode tank 13 to the negative electrode cell 103 by the pump 113 through the outgoing pipe 109 .
  • the negative electrode electrolyte discharged from the negative electrode cell 103 through the negative electrode cell 103 is returned to the negative electrode tank 13 through the return pipe 111 .
  • the outward pipes 108 and 109 and the return pipes 110 and 111 form a circulation flow path.
  • the RF battery 1 is usually used in a form called a cell stack 100 in which a plurality of battery cells 10 are stacked, as shown in FIGS.
  • the cell stack 100 has a configuration in which the sub-stack 200 shown in FIG. 3 is sandwiched between two end plates 220 from both sides. The two end plates 220 are tightened toward each other by a tightening mechanism 230 .
  • FIG. 3 shows a cell stack 100 comprising multiple substacks 200 .
  • the substack 200 includes a laminate in which the cell frame 30, the positive electrode 2, the diaphragm 101, and the negative electrode 3 are repeatedly laminated in this order.
  • Supply/discharge plates 210 are arranged at both ends of the laminate.
  • the supply/discharge plate 210 is connected to the outgoing pipes 108 and 109 and the return pipes 110 and 111 shown in FIGS.
  • the number of stacked battery cells 10 in the cell stack 100 can be selected as appropriate.
  • the cell frame 30 has a bipolar plate 31 arranged between the positive electrode 2 and the negative electrode 3 and a frame 32 provided around the bipolar plate 31 .
  • the positive electrode 2 is arranged on one side of the bipolar plate 31 so as to face the bipolar plate 31 .
  • the negative electrodes 3 are arranged so as to face each other.
  • the positive electrode 2 and the negative electrode 3 are housed inside the frame 32 with the bipolar plate 31 interposed therebetween.
  • One battery cell 10 is formed by arranging the positive electrode 2 and the negative electrode 3 between the bipolar plates 31 of the adjacent cell frames 30 with the diaphragm 101 interposed therebetween.
  • the frame 32 of the cell frame 30 is formed with liquid supply manifolds 33, 34, liquid discharge manifolds 35, 36, liquid supply slits 33s, 34s, and liquid discharge slits 35s, 36s.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 33 to the positive electrode 2 through the liquid supply slit 33s.
  • the positive electrode electrolyte supplied to the positive electrode 2 is discharged to the drainage manifold 35 through the drainage slit 35s.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 34 to the negative electrode 3 through the liquid supply slit 34s.
  • the negative electrode electrolyte supplied to the negative electrode 3 is drained to the drain manifold 36 through the drain slit 36s.
  • the liquid supply manifolds 33 and 34 and the liquid discharge manifolds 35 and 36 are provided through the frame 32 , and the cell frames 30 are stacked to form flow paths for the respective electrolytes. Each of these flow paths communicates with the outgoing pipes 108 and 109 and the return pipes 110 and 111 shown in FIG.
  • the cell stack 100 can circulate the positive electrode electrolyte and the negative electrode electrolyte through the battery cells 10 through the respective channels.
  • the positive electrode electrolyte solution circulated through the battery cells 10 contains a positive electrode active material.
  • the positive electrode active material is typically vanadium (V) ions, iron (Fe) ions, copper (Cu) ions, or manganese (Mn) ions.
  • the negative electrode electrolyte contains a negative electrode active material.
  • the negative electrode active material is typically V ions, chromium (Cr) ions, titanium (Ti) ions, cobalt (Co) ions, Cu ions, or zinc (Zn) ions.
  • the positive electrode active material and the negative electrode active material may have different types of metals to be ions, or may be the same. Typical combinations of positive electrode active materials and negative electrode active materials are shown below. 1. Positive electrode active material: V ions (V 4+ /V 5+ ), negative electrode active material: V ions (V 2+ /V 3+ ) 2. Positive electrode active material: Fe ions (Fe 2+ /Fe 3+ ), negative electrode active material: Cr ions (Cr 2+ /Cr 3+ ) 3. Positive electrode active material: Mn ions (Mn 2+ /Mn 3+ ), negative electrode active material: Ti ions (Ti 3+ /Ti 4+ ) 4.
  • Positive electrode active material Fe ions (Fe 2+ /Fe 3+ ), negative electrode active material: Ti ions (Ti 3+ /Ti 4+ ) 5.
  • Positive electrode active material Mn ion (Mn 2+ /Mn 3+ ), negative electrode active material: Zn ion (Zn 2+ /Zn) 6.
  • Positive electrode active material Fe ions (Fe 2+ /Fe 3+ ), negative electrode active material: Co ions (Co + /Co 2+ ) 7.
  • Positive electrode active material Cu ion (Cu + /Cu 2+ ), negative electrode active material: Cu ion (Cu + /Cu)
  • positive electrode active material contains Mn ions and the negative electrode active material contains Ti ions, a high electromotive force can be obtained.
  • the electrolyte solution of the RF battery 1 shown in FIGS. is a Mn—Ti-based electrolytic solution containing an active material shown in.
  • both the positive electrode electrolyte and the negative electrode electrolyte may contain Mn ions and Ti ions.
  • Mn ions function as a positive electrode active material.
  • Ti ions function as a negative electrode active material in the negative electrode electrolyte.
  • Mn ions are used as the positive electrode active material, since trivalent Mn ions (Mn 3+ ) are unstable, Mn 3+ in the positive electrode electrolyte may precipitate as MnO 2 during charging.
  • the positive electrode electrolyte contains Ti ions, the Ti ions can suppress deposition of Mn ions.
  • Ti ions contained in the positive electrode electrolyte and Mn ions contained in the negative electrode electrolyte do not function as active materials.
  • the Mn ions contained in the negative electrode electrolyte are mainly for equalizing the metal ion species in both electrolytes.
  • the solvent for the positive electrode electrolyte and the negative electrode electrolyte is preferably an acidic aqueous solution.
  • the solvent is, for example, a sulfuric acid (H 2 SO 4 ) aqueous solution and a phosphoric acid (H 3 PO 4 ) aqueous solution.
  • a sulfuric acid H 2 SO 4
  • a phosphoric acid H 3 PO 4
  • an aqueous sulfuric acid solution is preferred.
  • Phosphoric acid may be contained in the sulfuric acid aqueous solution.
  • FIG. 4 is a diagram schematically showing a cross section of the positive electrode 2.
  • the negative electrode 3 of this example has the same configuration as the positive electrode 2 .
  • the negative electrode 3 may have a configuration different from that of the positive electrode 2 .
  • the positive electrode 2 will simply be called the electrode 2 .
  • the electrode 2 of this example has a porous base material 20 . Electrode 2 may further comprise a catalyst 22 retained on substrate 20 .
  • the porous substrate 20 comprises mesopores 21 , micropores 25 and macropores 26 .
  • the mesopores 21 are pores with a diameter of 2 nm or more and 50 nm or less.
  • the micropores 25 are finer pores than the mesopores 21 .
  • the macropores 26 are pores thicker than the mesopores 21 . These pores are exaggerated in FIG.
  • the schematic diagram of FIG. 4 shows each of the pores 21, 25, and 26 individually, in reality, the mesopores 21, the micropores 25, and the macropores 26 are mixed in one pore.
  • the electrode 2 it is preferable to increase the surface area of the electrode 2 in order to improve the reactivity between the electrode 2 and the electrolytic solution.
  • the surface area of the electrode 2 becomes large, the electrode 2 is easily consumed by the electrolyte.
  • the reason why the electrode 2 is consumed is that the electrolytic solution containing the active material has an oxidizing power.
  • the oxidizing power of the positive electrode electrolyte particularly the oxidizing power of the positive electrode electrolyte containing Mn as an active material, is higher than that of the negative electrode electrolyte. Therefore, the electrode 2 used in the positive electrode cell 102 (FIGS. 1 and 2) wears out more easily than the negative electrode 3 used in the negative electrode cell 103 .
  • Y/X is 40% or more and Y is 1.0 m 2 /g or more and less than 30 m 2 /g.
  • X is the BET specific surface area (m 2 /g).
  • the BET specific surface area is the total area (m 2 ) of the surface area of the outer peripheral surface of the base material 20 and the area of the inner peripheral surfaces of all the pores 21, 25, and 26 including the mesopores 21, and the mass (g) of the electrode 2. It is divided by The surface area of the outer peripheral surface of the substrate 20 does not include the openings of the holes 21 , 25 and 26 .
  • Y is the mesopore specific surface area (m 2 /g).
  • the mesopore specific surface area is obtained by dividing the total area (m 2 ) of the inner peripheral surfaces of the mesopores 21 by the mass (g) of the electrode 2 . These specific surface areas are determined by a commercially available specific surface area measuring device. Y/X is the ratio of mesopore specific surface area to BET specific surface area.
  • the electrode 2 with Y/X of 40% or more is excellent in battery reactivity.
  • the upper limit of the mesopore specific surface area is also defined, the upper limit of the BET specific surface area in Y/X is also limited to some extent. By limiting the upper limit of the BET specific surface area, the BET specific surface area does not become too large. Therefore, the effect of improving the battery reactivity of the electrode 2 while suppressing consumption of the electrode 2 is obtained.
  • Y/X As Y/X increases, the mesopore specific surface area in the BET specific surface area increases.
  • the mesopores 21 contribute to improving the battery reaction. Therefore, it is preferable that Y/X is large.
  • Y/X is preferably 60% or more.
  • Y/X is more preferably 70% or more.
  • the mesopore specific surface area of the electrode 2 of this example is 1.0 m 2 /g or more and less than 30 m 2 /g. As the mesopore specific surface area decreases, the number of mesopores 21 that contribute to the improvement of the battery reaction decreases. A large mesopore specific surface area increases the surface area of the electrode 2 including the mesopores 21 . Considering the balance between the improvement of battery reaction and durability, the mesopore specific surface area is 2.0 m 2 /g or more and 28 m 2 /g or less, 3.0 m 2 /g or more and 27 m 2 /g or less, or 5.0 m 2 /g or more and 25 m 2 /g or less.
  • the BET specific surface area of the electrode 2 is preferably less than 40 m 2 /g. The larger the surface area of the electrode 2 in contact with the electrolytic solution, the more easily the electrode 2 is worn. If the BET specific surface area of the electrode 2 is less than 40 m 2 /g, the contact area of the electrode 2 with the electrolytic solution does not become too large. A more preferable BET specific surface area is 35 m 2 /g or less. A more preferable BET specific surface area is 30 m 2 /g or less. If the BET specific surface area is too small, the contact area of the electrode 2 with the electrolytic solution will be too small.
  • the BET specific surface area is preferably 2.0 m 2 /g or more, or 5.0 m 2 /g or more.
  • the range of the BET specific surface area is, for example, 5.0 m 2 /g or more and 30 m 2 /g or less.
  • the base material 20 contributes to the battery reaction.
  • the material of the base material 20 is not particularly limited as long as it has conductivity.
  • the material of the base material 20 includes, for example, one or more elements selected from the group consisting of carbon (C), titanium (Ti), and tungsten (W).
  • the base material 20 may be composed of a single element, or may be composed of a compound of the above elements.
  • the material of the base material 20 is obtained by, for example, X-ray diffraction.
  • the base material 20 containing carbon is, for example, a base material 20 containing at least one selected from the group consisting of carbon fibers, carbon particles, and carbon binder residues.
  • FIG. 5 is a cross-sectional view showing an enlarged part of one carbon fiber 4 forming the base material 20.
  • the substrate 20 containing carbon is preferably a substrate 20 in which carbon fibers 4 and carbon particles 5 are bound together by a carbon binder residue 6 .
  • pores are formed by gaps between the carbon fibers 4 to which the carbon particles 5 are attached.
  • the carbon fiber 4 has a role of maintaining the three-dimensional structure of the electrode 2.
  • the carbon fibers 4 are, for example, fibers obtained by carbonizing a precursor composed of organic fibers.
  • Organic fibers are, for example, acrylic fibres, phenolic fibres, cellulose fibres, isotropic pitch fibres, or anisotropic pitch fibres.
  • Acrylic fibers are, for example, acrylonitrile.
  • the carbon particles 5 have the role of increasing the surface area of the electrode 2 and improving the battery reactivity of the electrode 2 .
  • the carbon particles 5 may be natural graphite or artificial graphite.
  • the carbon binder residue 6 has the role of binding the carbon fibers 4 and the carbon particles 5 together.
  • the carbon binder residue 6 is obtained by carbonizing the binder that binds the carbon fibers 4 and the carbon particles 5 by heat treatment during the manufacture of the electrode 2 .
  • Binders are, for example, pitches such as coal tar pitch or coal-based pitch.
  • Other binders are, for example, resins such as polyacrylonitrile, or rubbers such as acrylonitrile-butadiene rubber.
  • the base material 20 shown in FIG. 5 can be produced, for example, by adhering the carbon particles 5 and the binder to the carbon fibers 4, followed by a carbonization process, a graphitization process, and an oxidation treatment process. In each step, any known method can be applied.
  • the following method can be used.
  • the binder is heated and melted, and the carbon particles 5 are dispersed in the resulting melt.
  • the carbon fibers 4 are immersed in the melt in which the carbon particles 5 are dispersed.
  • the binder is solidified.
  • the electrode 2 that satisfies Y/X of 40% or more and Y of 1.0 m 2 /g or more and less than 30 m 2 /g. is obtained.
  • the carbonization process is performed to calcine the product obtained in the above process.
  • the carbonization step is preferably carried out in an inert atmosphere such as a nitrogen atmosphere.
  • the temperature of the carbonization step is, for example, 800° C. or higher and 2000° C. or lower.
  • the carbonization step carbonizes the binder to form a carbon binder residue 6 .
  • the graphitization process is performed to increase the crystallinity of the carbon binder residue 6 and the like. This is a step of heating at a higher temperature than the carbonization step.
  • the graphitization step is preferably performed in an inert atmosphere such as a nitrogen atmosphere.
  • the oxidation treatment step is performed to introduce oxygen functional groups to the surface of the base material 20 .
  • Oxygen functional groups are, for example, hydroxyl groups, carbonyl groups, quinone groups, lactone groups, free-radical oxides.
  • the oxygen functional groups contribute to improving the battery reaction of the substrate 20 .
  • the wettability of the base material 20 with respect to the electrolytic solution is improved.
  • the oxidation treatment includes, for example, wet chemical oxidation, electrolytic oxidation, and dry oxidation.
  • the substrate 20 may hold a catalyst 22 that promotes the cell reaction.
  • Catalyst 22 is exaggerated in FIG.
  • the catalyst 22 is, for example, granular.
  • Catalyst 22 is a non-carbon based material.
  • the catalyst 22 is metal oxide, metal carbide.
  • the metal oxide is, for example, a composite oxide of the following first element and second element.
  • the first element and the second element are elements different from each other.
  • the first element is one element selected from the group consisting of Ti, tin (Sn), cerium (Ce), W, tantalum (Ta), molybdenum (Mo), and niobium (Nb).
  • the second element is one element selected from the group consisting of Nb, Mn, Fe, Cu, Ti, Sn, and Ce.
  • the first element contributes to improving oxidation resistance. That is, since the first element is difficult to dissolve in the electrolytic solution, it can exist for a long period of time.
  • the second element contributes to improving the battery reaction of the electrode 2 .
  • the composition of catalyst 22 is determined by X-ray diffraction.
  • Electrode 2 in which Y/X is 40% or more and Y is 1.0 m 2 /g or more and less than 30 m 2 /g is excellent in battery reactivity and durability. Therefore, the battery cell 10 (FIG. 1), the cell stack 100 (FIG. 3), and the RF battery 1 having this electrode 2 maintain excellent battery performance over a long period of time.
  • Test Example 1 In Test Example 1, the effects of the ratio of the mesopore specific surface area and the size of the mesopore specific surface area in the electrode on the battery reactivity and durability of the electrode were investigated.
  • Electrode a plurality of positive electrodes and a plurality of negative electrodes having different BET specific surface areas and mesopore specific surface areas were prepared.
  • the positive and negative electrodes are the same. Both electrodes were carbon electrodes containing carbon fibers, carbon particles and carbon binder residues.
  • electrode when simply referred to as an "electrode", it means both a positive electrode and a negative electrode.
  • the BET specific surface area of each sample was measured as follows. About 500 mg of sample was weighed out and vacuum dried at 200° C. for several hours. The BET specific surface area (m 2 /g) of the obtained dried sample was measured using a specific surface area measuring device (BELSORP MINI II manufactured by Microtrack Bell).
  • the specific surface area measuring device is a device for measuring the nitrogen adsorption amount by a gas adsorption method using nitrogen gas.
  • the specific surface area measuring device analyzes the measurement results by a multi-point method based on the BET method, and automatically obtains the BET specific surface area (m 2 /g).
  • the BET specific surface area of each sample is shown in Table 1. In the following description, the BET specific surface area may be expressed as "X".
  • the mesopore specific surface area of each sample was measured with the above specific surface area measuring device.
  • the mesopore specific surface area is obtained in the process of obtaining the BET specific surface area.
  • the specific surface area measuring device obtains the mesopore specific surface area by analyzing the nitrogen adsorption isotherm obtained in the nitrogen adsorption process by the BJH method. Analysis by the BJH method uses a standard isotherm stored in the measuring device. For the analysis, standard isotherms of substances similar to the surface chemistry of the sample are used. The standard isotherm used in this example is that of graphitized carbon black.
  • the mesopore specific surface area of each sample is shown in Table 1. In the following description, the mesopore specific surface area may be expressed as "Y”. Table 1 shows the ratio of the mesopore specific surface area to the BET specific surface area in percentage (%). In the following description, the ratio is expressed as "Y/X”.
  • Each RF cell was sample no. 1 to sample no. 9 electrodes.
  • the positive and negative electrodes in each RF cell were the same.
  • the electrolyte used in the RF battery was a manganese-titanium based electrolyte.
  • the cell resistivity ( ⁇ cm 2 ) of each RF battery was measured.
  • a low cell resistivity in an RF battery means that the electrode has good battery reactivity.
  • the cell resistivity measurement procedure is as follows. The RF battery of each sample was charged and discharged at a constant current with a current density of 256 mA/cm 2 . In this test, multiple cycles of charging and discharging were performed. In the test, the upper and lower limits of the switching voltage were set, and when the voltage reached the upper limit during charging, the battery was switched to discharging, and when the voltage reached the lower limit during discharging, the battery was switched to charging.
  • the cell resistivity ( ⁇ cm 2 ) was determined for each sample.
  • the cell resistivity is obtained by obtaining the average voltage during charging and the average voltage during discharging in any one cycle among multiple cycles, ⁇ (difference between average voltage during charging and average voltage during discharging) / (average current / 2) ⁇ ⁇ It was obtained from the cell effective area.
  • the temperature of the electrolyte was 35°C.
  • the mesopore specific surface area increases, the resistance component derived from the flow resistance of the electrolytic solution increases, making it difficult to decrease the cell resistivity.
  • the electrode weight reduction rate (%/year) was obtained according to the following procedure. First, the RF battery after measuring the cell resistivity was disassembled, and the positive electrode and the negative electrode were taken out. The positive electrode was consumed more than the negative electrode. Therefore, the electrode weight reduction rate of the positive electrode, which is rapidly consumed, is used as an index of the durability of the electrode in each sample. In obtaining the electrode weight reduction rate, the weight reduction rate of the positive electrode after charging and discharging was obtained. The reduction rate is (W1-W2)/W1 expressed as a percentage (%). W1 is the weight of the positive electrode measured prior to incorporation into the RF battery. W2 is the weight of the positive electrode measured after washing and drying the positive electrode taken out. A value obtained by annualizing the reduction rate is the electrode weight reduction rate. Table 1 shows the values of the electrode weight reduction rate.
  • the cell resistivity of RF battery No. 9 was 0.93 ⁇ cm 2 or less. This cell resistivity value is obtained from sample No. 1 having a large BET specific surface area. 10 and sample no. It was comparable to the cell resistivity of RF battery 1 of 11. Therefore, sample no. 1 to sample no. 9 electrode was found to be excellent in battery reactivity.
  • the electrode weight reduction rate of sample No. 9 is the same as that of sample No. 9. 10 and sample no. It was much smaller than the electrode weight reduction rate in No. 11. Therefore, it was found that electrode wear is greatly suppressed when the Y/X ratio of the electrode is 40% or more and the Y ratio is 1.0 m 2 /g or more and less than 30 m 2 /g.
  • Sample no. 1 to sample no. When comparing RF batteries No. 9, sample No. 9 with a BET specific surface area of 40 m 2 /g or less. 1 to sample no.
  • the electrode weight reduction rate in the RF battery of No. 8 is that of the sample No. 8. It was significantly lower than the electrode weight loss rate in No. 9 RF battery. Therefore, in addition to limiting Y/X and Y, limiting X has also been found to have a significant effect on electrode durability.
  • the cell resistivity of 10 RF batteries was low.
  • Sample no. The reason for the low cell resistivity of the RF battery of sample no. This is presumably because the BET specific surface area and the mesopore specific surface area of No. 10 electrodes are large. The larger the BET specific surface area and the mesopore specific surface area, the larger the contact area between the electrode and the electrolytic solution. However, because the contact area was too large, sample No.
  • the weight loss rate of 10 electrodes was over 100%/year.
  • Sample No. Y/X is 40% or more, but Y is 30 m 2 /g or more.
  • the cell resistivity of 11 RF batteries was low.
  • Sample no. The reason for the low cell resistivity of the RF battery of sample no. It is presumed that this is because the BET specific surface area and the mesopore specific surface area of the electrode No. 11 are large. However, as described above, the contact area between the electrode and the electrolytic solution was too large, so sample No.
  • the weight reduction rate of 11 electrodes was 88%/year or more.
  • Redox flow battery (RF battery) 2 positive electrode 3 negative electrode 4 carbon fiber 5 carbon particles 6 carbon binder residue 10 battery cell 12 positive electrode tank 13 negative electrode tank 20 substrate 21 mesopores 22 catalyst 25 micropores 26 macropores 30 cell frame 31 bipolar plate 32 frame 33, 34 liquid supply manifold 35, 36 drainage manifold 33s, 34s liquid supply slit 35s, 36s drainage slit 80 AC/DC converter 81 substation 90 power system 91 power generation unit 92 load 100 Cell stack 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell 108, 109 Forward piping 110, 111 Return piping 112, 113 Pump 200 Substack 210 Supply/discharge plate 220 End plate 230 Tightening mechanism

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

An electrode comprising a porous substrate, wherein the ratio of the mesopore specific surface area to the BET specific surface area is 40% or more, and the mesopore specific surface area is 1.0 m2/g or more but less than 30 m2/g.

Description

電極、電池セル、セルスタック、及びレドックスフロー電池Electrodes, battery cells, cell stacks, and redox flow batteries
 本開示は、電極、電池セル、セルスタック、及びレドックスフロー電池に関する。
 本出願は、2021年4月2日付の日本国出願の特願2021-063777に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to electrodes, battery cells, cell stacks, and redox flow batteries.
This application claims priority based on Japanese Patent Application No. 2021-063777 filed in Japan on April 2, 2021, and incorporates all the contents described in the Japanese application.
 大容量の蓄電池として、レドックスフロー電池が知られている。例えば特許文献1に示されるレドックスフロー電池は、複数の電池セルを積層したセルスタックを備える。電池セルに正極電解液と負極電解液とが循環されることで、充放電が行われる。 A redox flow battery is known as a large-capacity storage battery. For example, the redox flow battery disclosed in Patent Document 1 includes a cell stack in which a plurality of battery cells are stacked. Charging and discharging are performed by circulating the positive electrode electrolyte and the negative electrode electrolyte in the battery cell.
 電池セルに備わる電極には、導電性を有し、かつ通液性を有する多孔質体が用いられる。例えば、特許文献1には、炭素繊維の集合体によって構成された電極が開示されている。 A conductive and liquid-permeable porous body is used for the electrodes provided in the battery cells. For example, Patent Literature 1 discloses an electrode composed of an aggregate of carbon fibers.
特開2002-246035号公報JP-A-2002-246035
 本開示の電極は、
 多孔質の基材を備える電極であって、
 BET比表面積に対するメソ孔比表面積の割合が40%以上であり、
 前記メソ孔比表面積が1.0m/g以上30m/g未満である。
The electrodes of the present disclosure are
An electrode comprising a porous substrate,
The ratio of the mesopore specific surface area to the BET specific surface area is 40% or more,
The mesopore specific surface area is 1.0 m 2 /g or more and less than 30 m 2 /g.
 本開示の電池セルは、
 本開示の電極を備える。
The battery cell of the present disclosure is
An electrode of the present disclosure is provided.
 本開示のセルスタックは、
 本開示の電池セルを備える。
The cell stack of the present disclosure is
A battery cell of the present disclosure is provided.
 本開示のレドックスフロー電池は、
 本開示のセルスタックを備える。
The redox flow battery of the present disclosure comprises
A cell stack of the present disclosure is provided.
図1は、実施形態に係るレドックスフロー電池の動作原理図である。FIG. 1 is an operating principle diagram of a redox flow battery according to an embodiment. 図2は、実施形態に係るレドックスフロー電池の概略構成図である。FIG. 2 is a schematic configuration diagram of a redox flow battery according to an embodiment. 図3は、セルスタックの一例を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing an example of a cell stack. 図4は、実施形態に係る電極の模式図である。FIG. 4 is a schematic diagram of an electrode according to the embodiment. 図5は、実施形態に係る電極の部分拡大図である。FIG. 5 is a partially enlarged view of the electrode according to the embodiment.
[本開示が解決しようとする課題]
 電極における電池反応を向上させるためには、電解液と接触する電極の表面積が大きいことが好ましい。しかし、酸化力が高い電解液中では、電解液の酸化力によって電極が徐々に消耗する。特に、高い酸化力を有する正極電解液においては、電解液との接触面積が大きい電極は消耗し易い。電極が消耗すると、その電極を備える電池セルの電池性能が低下する。
[Problems to be Solved by the Present Disclosure]
In order to improve the battery reaction at the electrodes, it is preferable that the electrodes have a large surface area in contact with the electrolyte. However, in an electrolytic solution with a high oxidizing power, the electrode is gradually consumed by the oxidizing power of the electrolytic solution. In particular, in a positive electrode electrolyte having a high oxidizing power, an electrode having a large contact area with the electrolyte is easily consumed. When the electrode is consumed, the battery performance of the battery cell provided with the electrode deteriorates.
 そこで、本開示は、電池反応性と耐久性に優れる電極を提供することを目的の一つとする。また、本開示は、運転に伴う電池性能の低下を抑制できる電池セル、セルスタック、及びレドックスフロー電池を提供することを目的の一つとする。 Therefore, one object of the present disclosure is to provide an electrode that is excellent in battery reactivity and durability. Another object of the present disclosure is to provide a battery cell, a cell stack, and a redox flow battery capable of suppressing deterioration of battery performance due to operation.
[本開示の効果]
 本開示の電極は、電池反応性と耐久性に優れる。
[Effect of the present disclosure]
The electrodes of the present disclosure are excellent in battery reactivity and durability.
 本開示の電池セル、セルスタック、及びレドックスフロー電池は、長期にわたって優れた電池性能を維持する。 The battery cell, cell stack, and redox flow battery of the present disclosure maintain excellent battery performance over a long period of time.
[本開示の実施形態の説明]
 本発明者らは、電池反応性と耐久性に優れる電池の構成について鋭意検討した。既に説明したように、電極における電池反応性の向上と耐久性とはトレードオフの関係にある。この点を考慮し、本発明者らは、電極に占めるメソ孔比表面積の割合、及びメソ孔比表面積の上限を規定する技術思想に想到した。この技術思想に基づき、本発明者らは、以下に示す本開示の電極、電池セル、セルスタック、及びレドックスフロー電池を完成させた。以下、本開示の実施態様を列記して説明する。
[Description of Embodiments of the Present Disclosure]
The present inventors have extensively studied the configuration of a battery that is excellent in battery reactivity and durability. As already explained, there is a trade-off relationship between the improvement in battery reactivity and the durability of the electrode. In consideration of this point, the present inventors arrived at a technical idea of defining the ratio of the mesopore specific surface area to the electrode and the upper limit of the mesopore specific surface area. Based on this technical idea, the present inventors have completed the electrode, battery cell, cell stack, and redox flow battery of the present disclosure described below. Embodiments of the present disclosure are listed and described below.
<1>実施形態に係る電極は、
 多孔質の基材を備える電極であって、
 BET比表面積に対するメソ孔比表面積の割合が40%以上であり、
 前記メソ孔比表面積が1.0m/g以上30m/g未満である。
<1> The electrode according to the embodiment is
An electrode comprising a porous substrate,
The ratio of the mesopore specific surface area to the BET specific surface area is 40% or more,
The mesopore specific surface area is 1.0 m 2 /g or more and less than 30 m 2 /g.
 多孔質体に形成される細孔は、マイクロ孔、メソ孔、及びマクロ孔に分類される。メソ孔は、直径2nm以上50nm以下の細孔のことである。マイクロ孔は、メソ孔よりも細い孔のことである。マクロ孔は、メソ孔よりも太い孔のことである。この定義は、International Union of Pure and Applied Chemistryの定義に準拠している。メソ孔は、マクロ孔及びマイクロ孔に比べて、電池反応を向上させる効果が高い。なぜなら、メソ孔には電解液が入り込み易く、メソ孔の内周面と電解液との接触面積が大きいからである。メソ孔よりも細いマイクロ孔には電解液が入り込み難い。メソ孔よりも太いマクロ孔には電解液が入り込み易いが、単位体積当たりの電解液に対するマクロ孔の接触面積が小さい。 The pores formed in the porous body are classified into micropores, mesopores, and macropores. A mesopore is a pore having a diameter of 2 nm or more and 50 nm or less. Micropores are pores that are smaller than mesopores. Macropores are pores that are thicker than mesopores. This definition complies with the definition of the International Union of Pure and Applied Chemistry. Mesopores are more effective in improving battery reaction than macropores and micropores. This is because the electrolyte can easily enter the mesopores, and the contact area between the inner peripheral surface of the mesopores and the electrolyte is large. It is difficult for the electrolytic solution to enter the micropores, which are narrower than the mesopores. The macropores, which are thicker than the mesopores, easily allow the electrolyte to enter, but the contact area of the macropores with respect to the electrolyte per unit volume is small.
 実施形態に係る電極では、BET比表面積に占めるメソ孔比表面積の割合と、メソ孔比表面積の上限値及び下限値が規定されている。そのため、実施形態の電極では、電池反応を向上させるメソ孔の割合が高いにもかかわらず、電解液との接触面積が大きくなり過ぎない。従って、実施形態に係る電極は、電池反応性と耐久性に優れる。 In the electrode according to the embodiment, the ratio of the mesopore specific surface area to the BET specific surface area and the upper limit and lower limit of the mesopore specific surface area are specified. Therefore, in the electrodes of the embodiments, the contact area with the electrolytic solution does not become too large even though the proportion of mesopores that improve the battery reaction is high. Therefore, the electrodes according to the embodiments are excellent in battery reactivity and durability.
<2>実施形態に係る電極において、
 前記BET比表面積が40m/g未満であっても良い。
<2> In the electrode according to the embodiment,
The BET specific surface area may be less than 40 m 2 /g.
 上記形態<2>の構成では、BET比表面積が大きくなり過ぎない。つまり、電極と電解液との接触面積が大きくなり過ぎない。従って、長期にわたって電極が電解液にさらされても、電極が極端に消耗することが抑制される。 In the configuration of form <2> above, the BET specific surface area does not become too large. In other words, the contact area between the electrodes and the electrolytic solution does not become too large. Therefore, even if the electrodes are exposed to the electrolytic solution for a long period of time, extreme wear of the electrodes is suppressed.
<3>実施形態に係る電極は、
 レドックスフロー電池の正極に用いられても良い。
<3> The electrode according to the embodiment is
It may be used for the positive electrode of a redox flow battery.
 一般に、正極電解液の酸化力は、負極電解液の酸化力よりも高い。既に述べたように、実施形態に係る電極は耐久性に優れる。従って、実施形態に係る電極は、酸化力が高い正極電解液にさらされる正極の電極として好適である。 In general, the oxidizing power of the positive electrode electrolyte is higher than that of the negative electrode electrolyte. As already mentioned, the electrodes according to the embodiments are excellent in durability. Therefore, the electrode according to the embodiment is suitable as a positive electrode exposed to a positive electrode electrolyte having a high oxidizing power.
<4>実施形態に係る電極において、
 前記基材は、導電材料として、カーボン、チタン、及びタングステンからなる群から選択される1種以上の元素を含んでも良い。
<4> In the electrode according to the embodiment,
The base material may contain, as a conductive material, one or more elements selected from the group consisting of carbon, titanium, and tungsten.
 カーボン、チタン、及びタングステンは、導電性及び耐食性に優れる。従ってこれらの元素は、電極の基材として好適である。 Carbon, titanium, and tungsten are excellent in conductivity and corrosion resistance. Therefore, these elements are suitable as base materials for electrodes.
<5>実施形態に係る電極において、
 前記基材は、カーボン繊維、カーボン粒子、及びカーボンバインダー残渣からなる群から選択される少なくとも1種を含んでも良い。
<5> In the electrode according to the embodiment,
The substrate may contain at least one selected from the group consisting of carbon fibers, carbon particles, and carbon binder residues.
 カーボン繊維及びカーボン粒子の少なくとも一方を原料として電極を作製することによって、電極のBET比表面積とメソ孔比表面積の調整が容易になる。例えば、カーボン繊維の繊維長及び繊維径などを限定することで、電極のBET比表面積とメソ孔比表面積が調整される。また、カーボン粒子の粒径などを限定することで、電極のBET比表面積とメソ孔比表面積が調整される。ここで、カーボンバインダー残渣は、バインダーが炭化したものである。バインダーは、電極の製造時に、カーボン繊維同士を結合する、カーボン繊維とカーボン粒子とを結合する、あるいはカーボン粒子同士を結合する。 By using at least one of carbon fiber and carbon particles as a raw material to produce the electrode, it becomes easy to adjust the BET specific surface area and the mesopore specific surface area of the electrode. For example, the BET specific surface area and mesopore specific surface area of the electrode are adjusted by limiting the fiber length and fiber diameter of the carbon fiber. In addition, the BET specific surface area and the mesopore specific surface area of the electrode are adjusted by limiting the particle size of the carbon particles. Here, the carbon binder residue is carbonized binder. The binder binds carbon fibers together, binds carbon fibers and carbon particles, or binds carbon particles together when the electrode is manufactured.
<6>実施形態に係る電極は、
 前記基材に保持される触媒を備え、
 前記触媒は、非カーボン系の材質によって構成されても良い。
<6> The electrode according to the embodiment is
comprising a catalyst held on the substrate;
The catalyst may be made of a non-carbon material.
 触媒は電池反応を促進する。従って、基材に触媒が保持されていることで、電極の電池反応性が向上する。 The catalyst promotes the cell reaction. Therefore, the battery reactivity of the electrode is improved by holding the catalyst on the substrate.
<7>上記形態<6>の電極において、
 前記触媒は、金属酸化物又は金属炭化物でも良い。
<7> In the electrode of form <6> above,
The catalyst may be a metal oxide or metal carbide.
 金属酸化物又は金属炭化物の触媒は、酸化され難い。そのため、電極が長期にわたって優れた電池反応性を維持し易い。  Metal oxide or metal carbide catalysts are difficult to oxidize. Therefore, the electrode tends to maintain excellent battery reactivity over a long period of time.
<8>実施形態に係る電池セルは、
 上記形態<1>から形態<7>のいずれかの電極を備える。
<8> The battery cell according to the embodiment is
The electrode according to any one of the above modes <1> to <7> is provided.
 実施形態に係る電池セルは、長期にわたって優れた電池性能を維持し易い。なぜなら、電池セルに備わる実施形態の電極が消耗し難いからである。 The battery cell according to the embodiment easily maintains excellent battery performance over a long period of time. This is because the electrodes of the embodiment provided in the battery cells are less likely to wear out.
<9>実施形態に係るセルスタックは、
 上記形態<8>の電池セルを備える。
<9> The cell stack according to the embodiment is
The battery cell of form <8> is provided.
 実施形態に係るセルスタックは、長期にわたって優れた電池性能を維持し易い。なぜなら、セルスタックを構成する電池セルに備わる実施形態の電極が消耗し難いからである。 The cell stack according to the embodiment easily maintains excellent battery performance over a long period of time. This is because the electrodes of the embodiment provided in the battery cells that make up the cell stack are less likely to wear out.
<10>実施形態に係るレドックスフロー電池は、
 上記形態<9>のセルスタックを備える。
<10> The redox flow battery according to the embodiment is
The cell stack of form <9> is provided.
 実施形態に係るレドックスフロー電池は、長期にわたって優れた電池性能を維持し易い。なぜなら、レドックスフロー電池に備わる実施形態の電極が消耗し難いからである。 The redox flow battery according to the embodiment easily maintains excellent battery performance over a long period of time. This is because the electrodes of the embodiment provided in the redox flow battery are less likely to be consumed.
[本開示の実施形態の詳細]
 本開示の電極、電池セル、セルスタック、及びレドックスフロー電池の具体例を、図面を参照して説明する。以下、レドックスフロー電池を「RF電池」と呼ぶ場合がある。図中の同一符号は同一又は相当部分を示す。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present disclosure]
Specific examples of electrodes, battery cells, cell stacks, and redox flow batteries of the present disclosure will be described with reference to the drawings. Hereinafter, the redox flow battery may be referred to as "RF battery". The same reference numerals in the drawings indicate the same or corresponding parts. The present invention is not limited to these exemplifications, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
<実施例1>
 ≪RF電池の概要≫
 図1から図3を参照して、実施形態に係るRF電池1を説明する。図1に示されるRF電池1は、正極活物質を含有する正極電解液と、負極活物質を含有する負極電解液とで充放電を行う。正極活物質及び負極活物質は、代表的には、酸化還元により価数が変化する金属イオンである。図1に示す正極電解液及び負極電解液に含有される金属イオンは一例である。図1では、正極活物質としてMnイオンを含み、負極活物質としてTiイオンを含むTi-Mn系RF電池が例示されている。図1において、実線矢印は充電反応、破線矢印は放電反応をそれぞれ示している。
<Example 1>
≪Overview of RF battery≫
An RF battery 1 according to an embodiment will be described with reference to FIGS. 1 to 3. FIG. The RF battery 1 shown in FIG. 1 performs charging and discharging with a positive electrode electrolyte containing a positive electrode active material and a negative electrode electrolyte containing a negative electrode active material. The positive electrode active material and the negative electrode active material are typically metal ions whose valences change due to oxidation-reduction. The metal ions contained in the positive electrode electrolyte and the negative electrode electrolyte shown in FIG. 1 are examples. FIG. 1 illustrates a Ti—Mn-based RF battery containing Mn ions as a positive electrode active material and Ti ions as a negative electrode active material. In FIG. 1, the solid line arrows indicate the charge reaction, and the dashed line arrows indicate the discharge reaction.
 RF電池1は、代表的には、交流/直流変換器80や変電設備81を介して電力系統90に接続される。RF電池1は、発電部91で発電された電力を充電する、あるいは充電した電力を負荷92に放電する。発電部91は、太陽光発電や風力発電などの自然エネルギーを利用した発電設備、及び一般の発電所などである。RF電池1は、例えば、負荷平準化用途、瞬低補償、非常用電源などの用途、自然エネルギー発電の出力平滑化用途に利用される。 The RF battery 1 is typically connected to the power system 90 via the AC/DC converter 80 and the substation equipment 81 . The RF battery 1 charges the power generated by the power generation unit 91 or discharges the charged power to the load 92 . The power generation unit 91 is a power generation facility using natural energy such as solar power generation or wind power generation, or a general power plant. The RF battery 1 is used, for example, for load leveling applications, momentary sag compensation, emergency power supply applications, and output smoothing applications for natural energy power generation.
 ≪RF電池の構成≫
 RF電池1は、電池セル10、正極タンク12、及び負極タンク13を備える。電池セル10は充放電を担う。正極タンク12は、正極電解液を貯留する。負極タンク13は、負極電解液を貯留する。
<<Configuration of RF battery>>
The RF battery 1 includes battery cells 10 , a positive electrode tank 12 and a negative electrode tank 13 . The battery cell 10 is responsible for charging and discharging. The positive electrode tank 12 stores a positive electrode electrolyte. The negative electrode tank 13 stores a negative electrode electrolyte.
 (電池セル)
 電池セル10は、隔膜101によって正極セル102と負極セル103とに分離されている。隔膜101は、電子を透過しないが、例えば水素イオンを透過するイオン交換膜である。正極セル102には正極電極2が内蔵されている。負極セル103には負極電極3が内蔵されている。
(battery cell)
The battery cell 10 is separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 . The diaphragm 101 is an ion exchange membrane that is impermeable to electrons but permeable to hydrogen ions, for example. The cathode cell 102 incorporates the cathode electrode 2 . The negative electrode cell 103 incorporates the negative electrode 3 .
 電池セル10を構成する正極セル102及び負極セル103には、正極電解液及び負極電解液がそれぞれ供給される。本例のRF電池1は、電池セル10と正極タンク12との間を接続する往路配管108及び復路配管110を備える。本例のRF電池1は、電池セル10と負極タンク13との間を接続する往路配管109及び復路配管111を備える。各往路配管108,109には、ポンプ112,113が設けられている。正極電解液は、正極タンク12からポンプ112によって往路配管108を通って正極セル102に供給される。正極セル102を通り正極セル102から排出された正極電解液は、復路配管110を通って正極タンク12に戻される。負極電解液は、負極タンク13からポンプ113によって往路配管109を通って負極セル103に供給される。負極セル103を通り負極セル103から排出された負極電解液は、復路配管111を通って負極タンク13に戻される。つまり、往路配管108,109及び復路配管110,111によって循環流路が構成されている。 A positive electrode electrolyte and a negative electrode electrolyte are supplied to the positive electrode cell 102 and the negative electrode cell 103 that constitute the battery cell 10, respectively. The RF battery 1 of this example includes an outbound pipe 108 and a return pipe 110 that connect between the battery cell 10 and the positive electrode tank 12 . The RF battery 1 of this example includes an outward pipe 109 and a return pipe 111 that connect between the battery cell 10 and the negative electrode tank 13 . Pumps 112 and 113 are provided in the respective outbound pipes 108 and 109, respectively. The positive electrode electrolyte is supplied from the positive electrode tank 12 by the pump 112 to the positive electrode cell 102 through the outgoing pipe 108 . The positive electrode electrolyte discharged from the positive electrode cell 102 through the positive electrode cell 102 is returned to the positive electrode tank 12 through the return pipe 110 . The negative electrode electrolyte is supplied from the negative electrode tank 13 to the negative electrode cell 103 by the pump 113 through the outgoing pipe 109 . The negative electrode electrolyte discharged from the negative electrode cell 103 through the negative electrode cell 103 is returned to the negative electrode tank 13 through the return pipe 111 . In other words, the outward pipes 108 and 109 and the return pipes 110 and 111 form a circulation flow path.
 RF電池1は通常、図2,3に示されるように、複数の電池セル10が積層されたセルスタック100と呼ばれる形態で利用される。セルスタック100は、図3に示されるサブスタック200をその両側から2枚のエンドプレート220で挟み込む構成を備える。2枚のエンドプレート220は、締付機構230によって互いに近づく方向に締め付けられている。図3は、複数のサブスタック200を備えるセルスタック100を示している。サブスタック200は、セルフレーム30、正極電極2、隔膜101、負極電極3の順に繰り返し積層された積層体を備える。その積層体の両端には給排板210が配置されている。給排板210には、上述した循環流路を構成する図1,2に示す往路配管108、109及び復路配管110、111が接続される。セルスタック100における電池セル10の積層数は適宜選択できる。 The RF battery 1 is usually used in a form called a cell stack 100 in which a plurality of battery cells 10 are stacked, as shown in FIGS. The cell stack 100 has a configuration in which the sub-stack 200 shown in FIG. 3 is sandwiched between two end plates 220 from both sides. The two end plates 220 are tightened toward each other by a tightening mechanism 230 . FIG. 3 shows a cell stack 100 comprising multiple substacks 200 . The substack 200 includes a laminate in which the cell frame 30, the positive electrode 2, the diaphragm 101, and the negative electrode 3 are repeatedly laminated in this order. Supply/discharge plates 210 are arranged at both ends of the laminate. The supply/discharge plate 210 is connected to the outgoing pipes 108 and 109 and the return pipes 110 and 111 shown in FIGS. The number of stacked battery cells 10 in the cell stack 100 can be selected as appropriate.
 セルフレーム30は、正極電極2と負極電極3との間に配置される双極板31と、双極板31の周囲に設けられる枠体32とを有する。双極板31の一面側には、正極電極2が対向するように配置される。双極板31の他面側には、負極電極3が対向するように配置される。枠体32の内側には、正極電極2及び負極電極3が双極板31を挟んで収納される。隣り合う各セルフレーム30の双極板31の間に、隔膜101を挟んで正極電極2及び負極電極3が配置されることにより、1つの電池セル10が形成される。 The cell frame 30 has a bipolar plate 31 arranged between the positive electrode 2 and the negative electrode 3 and a frame 32 provided around the bipolar plate 31 . The positive electrode 2 is arranged on one side of the bipolar plate 31 so as to face the bipolar plate 31 . On the other side of the bipolar plate 31, the negative electrodes 3 are arranged so as to face each other. The positive electrode 2 and the negative electrode 3 are housed inside the frame 32 with the bipolar plate 31 interposed therebetween. One battery cell 10 is formed by arranging the positive electrode 2 and the negative electrode 3 between the bipolar plates 31 of the adjacent cell frames 30 with the diaphragm 101 interposed therebetween.
 セルフレーム30の枠体32には、給液マニホールド33,34及び排液マニホールド35,36と、給液スリット33s,34s及び排液スリット35s,36sが形成されている。本例では、正極電解液が、給液マニホールド33から給液スリット33sを介して正極電極2に供給される。正極電極2に供給された正極電解液は、排液スリット35sを介して排液マニホールド35に排出される。同様に、負極電解液は、給液マニホールド34から給液スリット34sを介して負極電極3に供給される。負極電極3に供給された負極電解液は、排液スリット36sを介して排液マニホールド36に排出される。給液マニホールド33、34及び排液マニホールド35、36は、枠体32に貫通して設けられており、セルフレーム30が積層されることによって各電解液の流路を構成する。これら各流路は、給排板210を介して図1に示す往路配管108、109及び復路配管110、111にそれぞれ連通している。セルスタック100は、上記各流路によって、電池セル10に正極電解液及び負極電解液を流通させることが可能である。 The frame 32 of the cell frame 30 is formed with liquid supply manifolds 33, 34, liquid discharge manifolds 35, 36, liquid supply slits 33s, 34s, and liquid discharge slits 35s, 36s. In this example, the positive electrode electrolyte is supplied from the liquid supply manifold 33 to the positive electrode 2 through the liquid supply slit 33s. The positive electrode electrolyte supplied to the positive electrode 2 is discharged to the drainage manifold 35 through the drainage slit 35s. Similarly, the negative electrode electrolyte is supplied from the liquid supply manifold 34 to the negative electrode 3 through the liquid supply slit 34s. The negative electrode electrolyte supplied to the negative electrode 3 is drained to the drain manifold 36 through the drain slit 36s. The liquid supply manifolds 33 and 34 and the liquid discharge manifolds 35 and 36 are provided through the frame 32 , and the cell frames 30 are stacked to form flow paths for the respective electrolytes. Each of these flow paths communicates with the outgoing pipes 108 and 109 and the return pipes 110 and 111 shown in FIG. The cell stack 100 can circulate the positive electrode electrolyte and the negative electrode electrolyte through the battery cells 10 through the respective channels.
 (電解液)
 電池セル10に循環される正極電解液は正極活物質を含有する。正極活物質は、代表的には、バナジウム(V)イオン、鉄(Fe)イオン、銅(Cu)イオン、又はマンガン(Mn)イオンである。負極電解液は負極活物質を含有する。負極活物質は、代表的には、Vイオン、クロム(Cr)イオン、チタン(Ti)イオン、コバルト(Co)イオン、Cuイオン、又は亜鉛(Zn)イオンである。
(Electrolyte)
The positive electrode electrolyte solution circulated through the battery cells 10 contains a positive electrode active material. The positive electrode active material is typically vanadium (V) ions, iron (Fe) ions, copper (Cu) ions, or manganese (Mn) ions. The negative electrode electrolyte contains a negative electrode active material. The negative electrode active material is typically V ions, chromium (Cr) ions, titanium (Ti) ions, cobalt (Co) ions, Cu ions, or zinc (Zn) ions.
 正極活物質と負極活物質とはイオンとなる金属の種類が異なっていてもよいし、同じであってもよい。正極活物質と負極活物質の代表的な組み合わせを以下に示す。
 1.正極活物質:Vイオン(V4+/V5+)、負極活物質:Vイオン(V2+/V3+
 2.正極活物質:Feイオン(Fe2+/Fe3+)、負極活物質:Crイオン(Cr2+/Cr3+
 3.正極活物質:Mnイオン(Mn2+/Mn3+)、負極活物質:Tiイオン(Ti3+/Ti4+
 4.正極活物質:Feイオン(Fe2+/Fe3+)、負極活物質:Tiイオン(Ti3+/Ti4+
 5.正極活物質:Mnイオン(Mn2+/Mn3+)、負極活物質:Znイオン(Zn2+/Zn)
 6.正極活物質:Feイオン(Fe2+/Fe3+)、負極活物質:Coイオン(Co/Co2+
 7.正極活物質:Cuイオン(Cu/Cu2+)、負極活物質:Cuイオン(Cu/Cu)
 特に、正極活物質がMnイオンを含み、負極活物質がTiイオンを含む形態は、高い起電力が得られる。
The positive electrode active material and the negative electrode active material may have different types of metals to be ions, or may be the same. Typical combinations of positive electrode active materials and negative electrode active materials are shown below.
1. Positive electrode active material: V ions (V 4+ /V 5+ ), negative electrode active material: V ions (V 2+ /V 3+ )
2. Positive electrode active material: Fe ions (Fe 2+ /Fe 3+ ), negative electrode active material: Cr ions (Cr 2+ /Cr 3+ )
3. Positive electrode active material: Mn ions (Mn 2+ /Mn 3+ ), negative electrode active material: Ti ions (Ti 3+ /Ti 4+ )
4. Positive electrode active material: Fe ions (Fe 2+ /Fe 3+ ), negative electrode active material: Ti ions (Ti 3+ /Ti 4+ )
5. Positive electrode active material: Mn ion (Mn 2+ /Mn 3+ ), negative electrode active material: Zn ion (Zn 2+ /Zn)
6. Positive electrode active material: Fe ions (Fe 2+ /Fe 3+ ), negative electrode active material: Co ions (Co + /Co 2+ )
7. Positive electrode active material: Cu ion (Cu + /Cu 2+ ), negative electrode active material: Cu ion (Cu + /Cu)
In particular, when the positive electrode active material contains Mn ions and the negative electrode active material contains Ti ions, a high electromotive force can be obtained.
 図1,2に示されるRF電池1の電解液は、既に説明したように、上記3.に示される活物質を含むMn-Ti系電解液である。この場合、正極電解液及び負極電解液が共に、Mnイオン及びTiイオンを含有していても良い。正極電解液ではMnイオンが正極活物質として機能する。負極電解液ではTiイオンが負極活物質として機能する。正極活物質としてMnイオンを用いると、3価のMnイオン(Mn3+)は不安定であるため、充電時に正極電解液中のMn3+がMnOとして析出することがある。正極電解液がTiイオンを含有すると、TiイオンによってMnイオンの析出を抑制することができる。正極電解液に含有するTiイオン及び負極電解液に含有するMnイオンは、それぞれ活物質として機能しない。負極電解液に含有するMnイオンは、主として、両電解液における金属イオン種を等しくするためのものである。 The electrolyte solution of the RF battery 1 shown in FIGS. is a Mn—Ti-based electrolytic solution containing an active material shown in. In this case, both the positive electrode electrolyte and the negative electrode electrolyte may contain Mn ions and Ti ions. In the positive electrode electrolyte, Mn ions function as a positive electrode active material. Ti ions function as a negative electrode active material in the negative electrode electrolyte. When Mn ions are used as the positive electrode active material, since trivalent Mn ions (Mn 3+ ) are unstable, Mn 3+ in the positive electrode electrolyte may precipitate as MnO 2 during charging. When the positive electrode electrolyte contains Ti ions, the Ti ions can suppress deposition of Mn ions. Ti ions contained in the positive electrode electrolyte and Mn ions contained in the negative electrode electrolyte do not function as active materials. The Mn ions contained in the negative electrode electrolyte are mainly for equalizing the metal ion species in both electrolytes.
 正極電解液及び負極電解液の溶媒は、酸性の水溶液であることが好ましい。溶媒は、例えば、硫酸(HSO)水溶液、及びリン酸(HPO)水溶液である。特に、硫酸水溶液が好適である。硫酸水溶液にリン酸が含有されていても良い。 The solvent for the positive electrode electrolyte and the negative electrode electrolyte is preferably an acidic aqueous solution. The solvent is, for example, a sulfuric acid (H 2 SO 4 ) aqueous solution and a phosphoric acid (H 3 PO 4 ) aqueous solution. In particular, an aqueous sulfuric acid solution is preferred. Phosphoric acid may be contained in the sulfuric acid aqueous solution.
 (電極)
 本例では、代表して正極電極2の構造を図4に基づいて説明する。図4は、正極電極2の断面を模式的に示した図である。本例の負極電極3は、正極電極2と同じ構成を備える。本例とは異なり、負極電極3は、正極電極2と異なる構成を備えていても良い。以降の説明では、正極電極2を単に電極2と呼ぶ。
(electrode)
In this example, the structure of the positive electrode 2 will be described with reference to FIG. 4 as a representative example. FIG. 4 is a diagram schematically showing a cross section of the positive electrode 2. As shown in FIG. The negative electrode 3 of this example has the same configuration as the positive electrode 2 . Unlike this example, the negative electrode 3 may have a configuration different from that of the positive electrode 2 . In the following description, the positive electrode 2 will simply be called the electrode 2 .
 本例の電極2は、多孔質の基材20を備える。電極2は更に、基材20に保持される触媒22を備えていても良い。多孔質の基材20は、メソ孔21と、マイクロ孔25と、マクロ孔26とを備える。メソ孔21は、直径が2nm以上50nm以下の細孔である。マイクロ孔25は、メソ孔21よりも細い細孔である。マクロ孔26は、メソ孔21よりも太い細孔である。図4では、これらの細孔を誇張して示している。また、図4の模式図では、各孔21,25,26を個別に示しているが、実際には一つの細孔においてメソ孔21、マイクロ孔25、及びマクロ孔26が混在している場合がある。 The electrode 2 of this example has a porous base material 20 . Electrode 2 may further comprise a catalyst 22 retained on substrate 20 . The porous substrate 20 comprises mesopores 21 , micropores 25 and macropores 26 . The mesopores 21 are pores with a diameter of 2 nm or more and 50 nm or less. The micropores 25 are finer pores than the mesopores 21 . The macropores 26 are pores thicker than the mesopores 21 . These pores are exaggerated in FIG. In addition, although the schematic diagram of FIG. 4 shows each of the pores 21, 25, and 26 individually, in reality, the mesopores 21, the micropores 25, and the macropores 26 are mixed in one pore. There is
 電極2と電解液との反応性を向上させるには、電極2の表面積を大きくすることが好ましい。反面、電極2の表面積が大きくなると、電解液によって電極2が消耗し易くなる。電極2が消耗するのは、活物質を含む電解液が酸化力を有するからである。正極電解液の酸化力、特に活物質としてMnを含む正極電解液の酸化力は、負極電解液の酸化力よりも高い。そのため、正極セル102(図1,2)に用いられた電極2は、負極セル103に用いられた負極電極3よりも消耗し易い。 It is preferable to increase the surface area of the electrode 2 in order to improve the reactivity between the electrode 2 and the electrolytic solution. On the other hand, when the surface area of the electrode 2 becomes large, the electrode 2 is easily consumed by the electrolyte. The reason why the electrode 2 is consumed is that the electrolytic solution containing the active material has an oxidizing power. The oxidizing power of the positive electrode electrolyte, particularly the oxidizing power of the positive electrode electrolyte containing Mn as an active material, is higher than that of the negative electrode electrolyte. Therefore, the electrode 2 used in the positive electrode cell 102 (FIGS. 1 and 2) wears out more easily than the negative electrode 3 used in the negative electrode cell 103 .
 本例の電極2は、Y/Xが40%以上であり、かつYが1.0m/g以上30m/g未満を満たす。XはBET比表面積(m/g)である。BET比表面積は、基材20の外周面の表面積と、メソ孔21を含む全孔21,25,26の内周面の面積との合計面積(m)を、電極2の質量(g)で割ったものである。基材20の外周面の表面積に、孔21,25,26の開口は含まれない。一方、Yはメソ孔比表面積(m/g)である。メソ孔比表面積は、メソ孔21の内周面の合計面積(m)を、電極2の質量(g)で割ったものである。これらの比表面積は、市販の比表面積測定装置によって求められる。Y/XはBET比表面積に対するメソ孔比表面積の割合である。 In the electrode 2 of this example, Y/X is 40% or more and Y is 1.0 m 2 /g or more and less than 30 m 2 /g. X is the BET specific surface area (m 2 /g). The BET specific surface area is the total area (m 2 ) of the surface area of the outer peripheral surface of the base material 20 and the area of the inner peripheral surfaces of all the pores 21, 25, and 26 including the mesopores 21, and the mass (g) of the electrode 2. It is divided by The surface area of the outer peripheral surface of the substrate 20 does not include the openings of the holes 21 , 25 and 26 . On the other hand, Y is the mesopore specific surface area (m 2 /g). The mesopore specific surface area is obtained by dividing the total area (m 2 ) of the inner peripheral surfaces of the mesopores 21 by the mass (g) of the electrode 2 . These specific surface areas are determined by a commercially available specific surface area measuring device. Y/X is the ratio of mesopore specific surface area to BET specific surface area.
 Y/Xが40%以上であれば、BET比表面積に占めるメソ孔比表面積の割合が高いといえる。メソ孔21は、マイクロ孔25及びマクロ孔26に比べて、電極2の電池反応性を向上させる効果が高い。従って、Y/Xが40%以上である電極2は電池反応性に優れる。ここで、本例の電極2では、メソ孔比表面積の上限値も規定されているため、Y/XにおけるBET比表面積の上限値もある程度限定される。BET比表面積の上限値が限定されることで、BET比表面積が大きくなり過ぎない。従って、電極2の消耗を抑制しつつ、電極2の電池反応性を向上させる効果が得られる。 When Y/X is 40% or more, it can be said that the ratio of the mesopore specific surface area to the BET specific surface area is high. The mesopores 21 are more effective in improving the battery reactivity of the electrode 2 than the micropores 25 and the macropores 26 . Therefore, the electrode 2 with Y/X of 40% or more is excellent in battery reactivity. Here, in the electrode 2 of this example, since the upper limit of the mesopore specific surface area is also defined, the upper limit of the BET specific surface area in Y/X is also limited to some extent. By limiting the upper limit of the BET specific surface area, the BET specific surface area does not become too large. Therefore, the effect of improving the battery reactivity of the electrode 2 while suppressing consumption of the electrode 2 is obtained.
 Y/Xが大きくなると、BET比表面積に占めるメソ孔比表面積が大きくなる。メソ孔21は、電池反応を向上させることに寄与する。従って、Y/Xは大きいことが好ましい。好ましいY/Xは60%以上である。より好ましいY/Xは70%以上である。 As Y/X increases, the mesopore specific surface area in the BET specific surface area increases. The mesopores 21 contribute to improving the battery reaction. Therefore, it is preferable that Y/X is large. Y/X is preferably 60% or more. Y/X is more preferably 70% or more.
 本例の電極2におけるメソ孔比表面積は、1.0m/g以上30m/g未満である。メソ孔比表面積が小さくなると、電池反応の向上に寄与するメソ孔21が少なくなる。メソ孔比表面積が大きいと、メソ孔21を含む電極2の表面積が大きくなる。電池反応の向上と、耐久性とのバランスを考慮し、メソ孔比表面積は2.0m/g以上28m/g以下、3.0m/g以上27m/g以下、又は5.0m/g以上25m/g以下であることが挙げられる。 The mesopore specific surface area of the electrode 2 of this example is 1.0 m 2 /g or more and less than 30 m 2 /g. As the mesopore specific surface area decreases, the number of mesopores 21 that contribute to the improvement of the battery reaction decreases. A large mesopore specific surface area increases the surface area of the electrode 2 including the mesopores 21 . Considering the balance between the improvement of battery reaction and durability, the mesopore specific surface area is 2.0 m 2 /g or more and 28 m 2 /g or less, 3.0 m 2 /g or more and 27 m 2 /g or less, or 5.0 m 2 /g or more and 25 m 2 /g or less.
 電極2の耐久性を確保するために、電極2のBET比表面積は40m/g未満であることが好ましい。電解液に接触する電極2の表面積が大きくなるほど、電極2が消耗し易い。電極2のBET比表面積が40m/g未満であれば、電極2における電解液との接触面積が大きくなり過ぎない。より好ましいBET比表面積は35m/g以下である。更に好ましいBET比表面積は30m/g以下である。BET比表面積が小さ過ぎると、電極2における電解液との接触面積が小さくなり過ぎる。BET比表面積は2.0m/g以上、又は5.0m/g以上であることが好ましい。BET比表面積の範囲は、例えば5.0m/g以上30m/g以下である。 In order to ensure durability of the electrode 2, the BET specific surface area of the electrode 2 is preferably less than 40 m 2 /g. The larger the surface area of the electrode 2 in contact with the electrolytic solution, the more easily the electrode 2 is worn. If the BET specific surface area of the electrode 2 is less than 40 m 2 /g, the contact area of the electrode 2 with the electrolytic solution does not become too large. A more preferable BET specific surface area is 35 m 2 /g or less. A more preferable BET specific surface area is 30 m 2 /g or less. If the BET specific surface area is too small, the contact area of the electrode 2 with the electrolytic solution will be too small. The BET specific surface area is preferably 2.0 m 2 /g or more, or 5.0 m 2 /g or more. The range of the BET specific surface area is, for example, 5.0 m 2 /g or more and 30 m 2 /g or less.
 基材20は電池反応に寄与する。基材20の材質は、導電性を有するものであれば特に限定されない。基材20の材質は、例えば、炭素(C)、チタン(Ti)、及びタングステン(W)からなる群から選択される1種以上の元素を含む。基材20は、単一元素によって構成されていても良いし、上記元素の化合物によって構成されていても良い。基材20の材質は、例えばX線回折によって求められる。 The base material 20 contributes to the battery reaction. The material of the base material 20 is not particularly limited as long as it has conductivity. The material of the base material 20 includes, for example, one or more elements selected from the group consisting of carbon (C), titanium (Ti), and tungsten (W). The base material 20 may be composed of a single element, or may be composed of a compound of the above elements. The material of the base material 20 is obtained by, for example, X-ray diffraction.
 炭素を含む基材20は、例えばカーボン繊維、カーボン粒子、及びカーボンバインダー残渣からなる群から選択される少なくとも1種を含む基材20である。図5は、基材20を構成する1本のカーボン繊維4の一部を拡大して示す断面図である。この図5に示されるように、炭素を含む基材20として、カーボン繊維4とカーボン粒子5とがカーボンバインダー残渣6によって結着された基材20が好ましい。図5に示す基材20では、カーボン粒子5が付着したカーボン繊維4の隙間によって細孔が形成される。 The base material 20 containing carbon is, for example, a base material 20 containing at least one selected from the group consisting of carbon fibers, carbon particles, and carbon binder residues. FIG. 5 is a cross-sectional view showing an enlarged part of one carbon fiber 4 forming the base material 20. As shown in FIG. As shown in FIG. 5, the substrate 20 containing carbon is preferably a substrate 20 in which carbon fibers 4 and carbon particles 5 are bound together by a carbon binder residue 6 . In the substrate 20 shown in FIG. 5, pores are formed by gaps between the carbon fibers 4 to which the carbon particles 5 are attached.
 カーボン繊維4は、電極2の3次元構造を維持する役割を持っている。カーボン繊維4は、例えば、有機繊維によって構成される前駆体を炭化させることで得られる繊維である。有機繊維は、例えばアクリル繊維、フェノール繊維、セルロース繊維、等方性ピッチ繊維、又は異方性ピッチ繊維である。アクリル繊維は、例えばアクリロニトリルである。 The carbon fiber 4 has a role of maintaining the three-dimensional structure of the electrode 2. The carbon fibers 4 are, for example, fibers obtained by carbonizing a precursor composed of organic fibers. Organic fibers are, for example, acrylic fibres, phenolic fibres, cellulose fibres, isotropic pitch fibres, or anisotropic pitch fibres. Acrylic fibers are, for example, acrylonitrile.
 カーボン粒子5は、電極2における表面積を増加させ、電極2の電池反応性を向上させる役割を持っている。カーボン粒子5は、天然黒鉛であっても良いし、人造黒鉛であっても良い。 The carbon particles 5 have the role of increasing the surface area of the electrode 2 and improving the battery reactivity of the electrode 2 . The carbon particles 5 may be natural graphite or artificial graphite.
 カーボンバインダー残渣6は、カーボン繊維4とカーボン粒子5とを結着させる役割を持っている。カーボンバインダー残渣6は、カーボン繊維4とカーボン粒子5とを結着させるバインダーが、電極2の製造時の熱処理によって炭化したものである。バインダーは、例えば、コールタールピッチ、又は石炭系ピッチなどのピッチ類である。その他、バインダーは、例えばポリアクリロニトリルなどの樹脂、又はアクリロニトリル-ブタジエンゴムなどのゴムである。 The carbon binder residue 6 has the role of binding the carbon fibers 4 and the carbon particles 5 together. The carbon binder residue 6 is obtained by carbonizing the binder that binds the carbon fibers 4 and the carbon particles 5 by heat treatment during the manufacture of the electrode 2 . Binders are, for example, pitches such as coal tar pitch or coal-based pitch. Other binders are, for example, resins such as polyacrylonitrile, or rubbers such as acrylonitrile-butadiene rubber.
 図5に示す基材20は、例えば、カーボン繊維4に、カーボン粒子5及びバインダーを付着させた後、炭素化工程、黒鉛化工程、及び酸化処理工程を経て製造することができる。各工程では、公知の方法を任意に適用することができる。 The base material 20 shown in FIG. 5 can be produced, for example, by adhering the carbon particles 5 and the binder to the carbon fibers 4, followed by a carbonization process, a graphitization process, and an oxidation treatment process. In each step, any known method can be applied.
 カーボン繊維4にカーボン粒子5及びバインダーを付着させるには、例えば以下の方法が挙げられる。バインダーを加熱して溶融させ、得られた溶融液中にカーボン粒子5を分散させる。カーボン粒子5が分散した溶融液にカーボン繊維4を浸漬する。そして、バインダーを固化させる。ここで、カーボン繊維4とカーボン粒子5とバインダーの重量比を制御することで、Y/Xが40%以上であり、かつYが1.0m/g以上30m/g未満を満たす電極2が得られる。 In order to adhere the carbon particles 5 and the binder to the carbon fibers 4, for example, the following method can be used. The binder is heated and melted, and the carbon particles 5 are dispersed in the resulting melt. The carbon fibers 4 are immersed in the melt in which the carbon particles 5 are dispersed. Then, the binder is solidified. Here, by controlling the weight ratio of the carbon fibers 4, the carbon particles 5, and the binder, the electrode 2 that satisfies Y/X of 40% or more and Y of 1.0 m 2 /g or more and less than 30 m 2 /g. is obtained.
 炭素化工程は、上記工程で得られた製造物を焼成するために行なわれる。炭素化工程では、窒素雰囲気などの不活性雰囲気で行うことが好ましい。炭素化工程の温度は、例えば800℃以上2000℃以下である。炭素化工程によって、バインダーが炭化し、カーボンバインダー残渣6となる。 The carbonization process is performed to calcine the product obtained in the above process. The carbonization step is preferably carried out in an inert atmosphere such as a nitrogen atmosphere. The temperature of the carbonization step is, for example, 800° C. or higher and 2000° C. or lower. The carbonization step carbonizes the binder to form a carbon binder residue 6 .
 黒鉛化工程は、カーボンバインダー残渣6などの結晶性を高めるために行われる。炭素化工程よりも高温で加熱する工程である。黒鉛化工程は、窒素雰囲気などの不活性雰囲気で行うことが好ましい。 The graphitization process is performed to increase the crystallinity of the carbon binder residue 6 and the like. This is a step of heating at a higher temperature than the carbonization step. The graphitization step is preferably performed in an inert atmosphere such as a nitrogen atmosphere.
 酸化処理工程は、基材20の表面に酸素官能基を導入するために行われる。酸素官能基は、例えばヒドロキシル基、カルボニル基、キノン基、ラクトン基、フリーラジカル的な酸化物である。酸素官能基は、基材20の電池反応を向上させることに寄与する。また、電解液に対する基材20の濡れ性が良くなる。酸化処理は、例えば湿式の化学酸化、電解酸化、乾式酸化である。 The oxidation treatment step is performed to introduce oxygen functional groups to the surface of the base material 20 . Oxygen functional groups are, for example, hydroxyl groups, carbonyl groups, quinone groups, lactone groups, free-radical oxides. The oxygen functional groups contribute to improving the battery reaction of the substrate 20 . Moreover, the wettability of the base material 20 with respect to the electrolytic solution is improved. The oxidation treatment includes, for example, wet chemical oxidation, electrolytic oxidation, and dry oxidation.
 上記基材20には、図4に示されるように、電池反応を促進する触媒22が保持されていても良い。図4では触媒22が誇張して示されている。触媒22は例えば粒状体である。触媒22は非炭素系の物質である。例えば、触媒22は、金属酸化物、金属炭化物である。金属酸化物は、例えば下記第一元素と第二元素の複合酸化物である。 As shown in FIG. 4, the substrate 20 may hold a catalyst 22 that promotes the cell reaction. Catalyst 22 is exaggerated in FIG. The catalyst 22 is, for example, granular. Catalyst 22 is a non-carbon based material. For example, the catalyst 22 is metal oxide, metal carbide. The metal oxide is, for example, a composite oxide of the following first element and second element.
 第一元素と第二元素とは、互いに異種の元素である。第一元素は、Ti、スズ(Sn)、セリウム(Ce)、W、タンタル(Ta)、モリブデン(Mo)、及びニオブ(Nb)からなる群より選択される1種の元素である。第二元素は、Nb、Mn、Fe、Cu、Ti、Sn、及びCeからなる群より選択される1種の元素である。第一元素は、耐酸化性の向上に寄与する。即ち、第一元素は、電解液に溶解し難いため、長期にわたって存在することができる。第二元素は、電極2の電池反応の向上に寄与する。触媒22の組成は、X線回折によって求められる。 The first element and the second element are elements different from each other. The first element is one element selected from the group consisting of Ti, tin (Sn), cerium (Ce), W, tantalum (Ta), molybdenum (Mo), and niobium (Nb). The second element is one element selected from the group consisting of Nb, Mn, Fe, Cu, Ti, Sn, and Ce. The first element contributes to improving oxidation resistance. That is, since the first element is difficult to dissolve in the electrolytic solution, it can exist for a long period of time. The second element contributes to improving the battery reaction of the electrode 2 . The composition of catalyst 22 is determined by X-ray diffraction.
 Y/Xが40%以上で、かつYが1.0m/g以上30m/g未満である電極2は、電池反応性及び耐久性に優れる。従って、この電極2を備える電池セル10(図1)、セルスタック100(図3)、及びRF電池1は、長期にわたって優れた電池性能を維持する。 Electrode 2 in which Y/X is 40% or more and Y is 1.0 m 2 /g or more and less than 30 m 2 /g is excellent in battery reactivity and durability. Therefore, the battery cell 10 (FIG. 1), the cell stack 100 (FIG. 3), and the RF battery 1 having this electrode 2 maintain excellent battery performance over a long period of time.
<試験例>
 ≪試験例1≫
 試験例1では、電極におけるメソ孔比表面積の割合及びメソ孔比表面積の大きさが、電極の電池反応性及び耐久性に及ぼす影響を調べた。
<Test example>
<<Test Example 1>>
In Test Example 1, the effects of the ratio of the mesopore specific surface area and the size of the mesopore specific surface area in the electrode on the battery reactivity and durability of the electrode were investigated.
 試料No.1から試料No.9として、BET比表面積及びメソ孔比表面積が異なる複数の正極電極と複数の負極電極を用意した。正極電極と負極電極は同じものである。両電極は、カーボン繊維とカーボン粒子とカーボンバインダー残渣とを含む炭素電極であった。以下、単に『電極』と示される場合、正極電極と負極電極の両方を意味する。  Sample No. 1 to sample no. 9, a plurality of positive electrodes and a plurality of negative electrodes having different BET specific surface areas and mesopore specific surface areas were prepared. The positive and negative electrodes are the same. Both electrodes were carbon electrodes containing carbon fibers, carbon particles and carbon binder residues. Hereinafter, when simply referred to as an "electrode", it means both a positive electrode and a negative electrode.
 各試料のBET比表面積は、以下のようにして測定した。試料約500mgを測り採り、これを200℃で数時間真空乾燥した。得られた乾燥後の試料について、比表面積測定装置(マイクロトラック・ベル製;BELSORP MINI II)を用いてBET比表面積(m/g)を測定した。比表面積測定装置は、窒素ガスを用いたガス吸着法により窒素吸着量を測定する装置である。比表面積測定装置は、BET法に基づく多点法によって測定結果を分析し、BET比表面積(m/g)を自動で求める。各試料のBET比表面積は表1に示される。以下の説明においてBET比表面積を『X』と表記する場合がある。 The BET specific surface area of each sample was measured as follows. About 500 mg of sample was weighed out and vacuum dried at 200° C. for several hours. The BET specific surface area (m 2 /g) of the obtained dried sample was measured using a specific surface area measuring device (BELSORP MINI II manufactured by Microtrack Bell). The specific surface area measuring device is a device for measuring the nitrogen adsorption amount by a gas adsorption method using nitrogen gas. The specific surface area measuring device analyzes the measurement results by a multi-point method based on the BET method, and automatically obtains the BET specific surface area (m 2 /g). The BET specific surface area of each sample is shown in Table 1. In the following description, the BET specific surface area may be expressed as "X".
 各試料のメソ孔比表面積は、上記比表面積測定装置によって測定した。メソ孔比表面積は、BET比表面積を得る過程で得られる。比表面積測定装置は、窒素の吸着過程において得られる窒素吸着等温線をBJH法によって解析することでメソ孔比表面積を求める。BJH法による解析では、測定装置に記憶される標準等温線が用いられる。解析にあたっては、試料の表面の化学的性質に類似する物質の標準等温線が用いられる。本例において使用した標準等温線は、グラファイト化カーボンブラックの標準等温線である。各試料のメソ孔比表面積は表1に示される。以下の説明においてメソ孔比表面積を『Y』と表記する場合がある。表1には、BET比表面積に対するメソ孔比表面積の割合を百分率(%)で示す。以下の説明において前記割合は『Y/X』と表記する。 The mesopore specific surface area of each sample was measured with the above specific surface area measuring device. The mesopore specific surface area is obtained in the process of obtaining the BET specific surface area. The specific surface area measuring device obtains the mesopore specific surface area by analyzing the nitrogen adsorption isotherm obtained in the nitrogen adsorption process by the BJH method. Analysis by the BJH method uses a standard isotherm stored in the measuring device. For the analysis, standard isotherms of substances similar to the surface chemistry of the sample are used. The standard isotherm used in this example is that of graphitized carbon black. The mesopore specific surface area of each sample is shown in Table 1. In the following description, the mesopore specific surface area may be expressed as "Y". Table 1 shows the ratio of the mesopore specific surface area to the BET specific surface area in percentage (%). In the following description, the ratio is expressed as "Y/X".
 複数のRF電池を作製した。各RF電池は、試料No.1から試料No.9の電極のいずれかを含む。各RF電池における正極電極と負極電極は同じものであった。RF電池に用いられる電解液は、マンガン-チタン系電解液であった。  Made multiple RF batteries. Each RF cell was sample no. 1 to sample no. 9 electrodes. The positive and negative electrodes in each RF cell were the same. The electrolyte used in the RF battery was a manganese-titanium based electrolyte.
 各試料の電極の電池反応性を評価するために、各RF電池のセル抵抗率(Ω・cm)を測定した。RF電池のセル抵抗率が低いということは、電極の電池反応性が良いということである。セル抵抗率の測定手順は以下の通りである。各試料のRF電池に対して電流密度が256mA/cmの定電流で充放電を行った。この試験では、複数サイクルの充放電を行った。試験では、切替電圧の上限と下限を設定し、充電時に電圧が上限に達したら放電に切り替え、放電時に電圧が下限に達したら充電に切り替えた。各サイクルの充放電後、各試料についてセル抵抗率(Ω・cm)を求めた。セル抵抗率は、複数サイクルのうち、任意の1サイクルにおける充電時平均電圧及び放電時平均電圧を求め、{(充電時平均電圧と放電時平均電圧の差)/(平均電流/2)}×セル有効面積によって求めた。電解液の温度は35℃であった。ここで、メソ孔比表面積が大きくなると、電解液の流通抵抗に由来する抵抗成分が増加することで、セル抵抗率が減少し難くなる。本試験では、BET比表面積、メソ孔比表面積、及びY/Xの大小に基づくセル抵抗率の低減度合いを適切に評価できるように、実測したセル抵抗率から流通抵抗の影響を排除したセル抵抗率を求めた。そのセル抵抗率を表1に示す。 To evaluate the battery reactivity of each sample electrode, the cell resistivity (Ω·cm 2 ) of each RF battery was measured. A low cell resistivity in an RF battery means that the electrode has good battery reactivity. The cell resistivity measurement procedure is as follows. The RF battery of each sample was charged and discharged at a constant current with a current density of 256 mA/cm 2 . In this test, multiple cycles of charging and discharging were performed. In the test, the upper and lower limits of the switching voltage were set, and when the voltage reached the upper limit during charging, the battery was switched to discharging, and when the voltage reached the lower limit during discharging, the battery was switched to charging. After each cycle of charging and discharging, the cell resistivity (Ω·cm 2 ) was determined for each sample. The cell resistivity is obtained by obtaining the average voltage during charging and the average voltage during discharging in any one cycle among multiple cycles, {(difference between average voltage during charging and average voltage during discharging) / (average current / 2)} × It was obtained from the cell effective area. The temperature of the electrolyte was 35°C. Here, when the mesopore specific surface area increases, the resistance component derived from the flow resistance of the electrolytic solution increases, making it difficult to decrease the cell resistivity. In this test, in order to appropriately evaluate the degree of reduction in cell resistivity based on the BET specific surface area, mesopore specific surface area, and the size of Y/X, the cell resistance was obtained by eliminating the effect of flow resistance from the actually measured cell resistivity. asked for a rate. Table 1 shows the cell resistivity.
 各試料の電極の耐久性を評価するために、以下の手順に従って電極重量減少率(%/年)を求めた。まず、セル抵抗率を測定した後のRF電池を分解し、正極電極と負極電極を取り出した。正極電極の方が、負極電極よりも消耗していた。従って、消耗の激しい正極電極の電極重量減少率を、各試料における電極の耐久性の指標とする。電極重量減少率を求めるにあたり、充放電後の正極電極の重量の減少割合を求めた。前記減少割合は、(W1-W2)/W1を百分率(%)で示したものである。W1は、RF電池に組み込む前に測定しておいた正極電極の重量である。W2は、取り出した正極電極を洗浄し、乾燥させた後に測定した正極電極の重量である。その減少割合を年換算した値が、電極重量減少率である。電極重量減少率の値を表1に示す。  In order to evaluate the durability of the electrode of each sample, the electrode weight reduction rate (%/year) was obtained according to the following procedure. First, the RF battery after measuring the cell resistivity was disassembled, and the positive electrode and the negative electrode were taken out. The positive electrode was consumed more than the negative electrode. Therefore, the electrode weight reduction rate of the positive electrode, which is rapidly consumed, is used as an index of the durability of the electrode in each sample. In obtaining the electrode weight reduction rate, the weight reduction rate of the positive electrode after charging and discharging was obtained. The reduction rate is (W1-W2)/W1 expressed as a percentage (%). W1 is the weight of the positive electrode measured prior to incorporation into the RF battery. W2 is the weight of the positive electrode measured after washing and drying the positive electrode taken out. A value obtained by annualizing the reduction rate is the electrode weight reduction rate. Table 1 shows the values of the electrode weight reduction rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、Y/Xが40%以上で、かつYが1.0m/g以上30m/g未満である電極を有する試料No.1から試料No.9のRF電池のセル抵抗率は0.93Ω・cm以下であった。このセル抵抗率の値は、BET比表面積が大きい試料No.10及び試料No.11のRF電池1のセル抵抗率に匹敵するものであった。従って、試料No.1から試料No.9の電極は電池反応性に優れることが分かった。 As shown in Table 1, sample No. having an electrode in which Y/X is 40% or more and Y is 1.0 m 2 /g or more and less than 30 m 2 /g. 1 to sample no. The cell resistivity of RF battery No. 9 was 0.93 Ω·cm 2 or less. This cell resistivity value is obtained from sample No. 1 having a large BET specific surface area. 10 and sample no. It was comparable to the cell resistivity of RF battery 1 of 11. Therefore, sample no. 1 to sample no. 9 electrode was found to be excellent in battery reactivity.
 試料No.1から試料No.9における電極重量減少率は、試料No.10及び試料No.11における電極重量減少率よりも格段に小さかった。従って、電極のY/Xが40%以上で、かつYが1.0m/g以上30m/g未満であれば、電極の消耗が大幅に抑制されることが分かった。 Sample no. 1 to sample no. The electrode weight reduction rate of sample No. 9 is the same as that of sample No. 9. 10 and sample no. It was much smaller than the electrode weight reduction rate in No. 11. Therefore, it was found that electrode wear is greatly suppressed when the Y/X ratio of the electrode is 40% or more and the Y ratio is 1.0 m 2 /g or more and less than 30 m 2 /g.
 試料No.1から試料No.9のRF電池を比較すると、BET比表面積が40m/g以下の試料No.1から試料No.8のRF電池における電極重量減少率は、試料No.9のRF電池における電極重量減少率よりも有意に低かった。従って、Y/XとYの限定に加えて、Xを限定することも電極の耐久性に重要な影響を与えることが分かった。 Sample no. 1 to sample no. When comparing RF batteries No. 9, sample No. 9 with a BET specific surface area of 40 m 2 /g or less. 1 to sample no. The electrode weight reduction rate in the RF battery of No. 8 is that of the sample No. 8. It was significantly lower than the electrode weight loss rate in No. 9 RF battery. Therefore, in addition to limiting Y/X and Y, limiting X has also been found to have a significant effect on electrode durability.
 試料No.1から試料No.9のRF電池を比較すると、メソ孔比表面積が15m/g以下、更には10m/g以下であれば、電極重量減少率が低くなり易いことが分かった。但し、メソ孔比表面積が小さくなると、セル抵抗率が大きくなり易い。RF電池を作製する場合、電池反応性と耐久性とのバランスを考慮すべきである。 Sample no. 1 to sample no. 9, it was found that if the mesopore specific surface area is 15 m 2 /g or less, and further 10 m 2 /g or less, the electrode weight reduction rate tends to be low. However, when the mesopore specific surface area decreases, the cell resistivity tends to increase. When fabricating RF batteries, a balance between battery reactivity and durability should be considered.
 Y/Xが40%未満である試料No.10のRF電池のセル抵抗率は低かった。試料No.10のRF電池のセル抵抗率が低い理由は、試料No.10の電極におけるBET比表面積及びメソ孔比表面積が大きいからであると推察される。BET比表面積及びメソ孔比表面積が大きければ、電極と電解液との接触面積が大きくなる。しかし、接触面積が大き過ぎるため、試料No.10の電極の重量減少率は100%/年超であった。 Sample No. where Y/X is less than 40%. The cell resistivity of 10 RF batteries was low. Sample no. The reason for the low cell resistivity of the RF battery of sample no. This is presumably because the BET specific surface area and the mesopore specific surface area of No. 10 electrodes are large. The larger the BET specific surface area and the mesopore specific surface area, the larger the contact area between the electrode and the electrolytic solution. However, because the contact area was too large, sample No. The weight loss rate of 10 electrodes was over 100%/year.
 Y/Xが40%以上であるが、Yが30m/g以上である試料No.11のRF電池のセル抵抗率は低かった。試料No.11のRF電池のセル抵抗率が低い理由は、試料No.11の電極におけるBET比表面積及びメソ孔比表面積が大きいからであると推察される。しかし、上述のように電極と電解液との接触面積が大き過ぎるため、試料No.11の電極の重量減少率は88%/年以上であった。 Sample No. Y/X is 40% or more, but Y is 30 m 2 /g or more. The cell resistivity of 11 RF batteries was low. Sample no. The reason for the low cell resistivity of the RF battery of sample no. It is presumed that this is because the BET specific surface area and the mesopore specific surface area of the electrode No. 11 are large. However, as described above, the contact area between the electrode and the electrolytic solution was too large, so sample No. The weight reduction rate of 11 electrodes was 88%/year or more.
1 レドックスフロー電池(RF電池)
2 正極電極
3 負極電極
4 カーボン繊維
5 カーボン粒子
6 カーボンバインダー残渣
10 電池セル
 12 正極タンク、13 負極タンク
20 基材
 21 メソ孔、22 触媒、25 マイクロ孔、26 マクロ孔
30 セルフレーム
 31 双極板、32 枠体
 33,34 給液マニホールド、35,36 排液マニホールド
 33s,34s 給液スリット、35s,36s 排液スリット
80 交流/直流変換器、81 変電設備
90 電力系統、91 発電部、92 負荷
100 セルスタック
 101 隔膜、102 正極セル、103 負極セル
 108,109 往路配管、110,111 復路配管
 112,113 ポンプ
200 サブスタック
 210 給排板、220 エンドプレート、230 締付機構
1 Redox flow battery (RF battery)
2 positive electrode 3 negative electrode 4 carbon fiber 5 carbon particles 6 carbon binder residue 10 battery cell 12 positive electrode tank 13 negative electrode tank 20 substrate 21 mesopores 22 catalyst 25 micropores 26 macropores 30 cell frame 31 bipolar plate 32 frame 33, 34 liquid supply manifold 35, 36 drainage manifold 33s, 34s liquid supply slit 35s, 36s drainage slit 80 AC/DC converter 81 substation 90 power system 91 power generation unit 92 load 100 Cell stack 101 Diaphragm 102 Positive electrode cell 103 Negative electrode cell 108, 109 Forward piping 110, 111 Return piping 112, 113 Pump 200 Substack 210 Supply/discharge plate 220 End plate 230 Tightening mechanism

Claims (10)

  1.  多孔質の基材を備える電極であって、
     BET比表面積に対するメソ孔比表面積の割合が40%以上であり、
     前記メソ孔比表面積が1.0m/g以上30m/g未満である、
    電極。
    An electrode comprising a porous substrate,
    The ratio of the mesopore specific surface area to the BET specific surface area is 40% or more,
    The mesopore specific surface area is 1.0 m 2 /g or more and less than 30 m 2 /g,
    electrode.
  2.  前記BET比表面積が40m/g未満である請求項1に記載の電極。 2. The electrode according to claim 1, wherein said BET specific surface area is less than 40 m< 2 >/g.
  3.  レドックスフロー電池の正極に用いられる請求項1又は請求項2に記載の電極。 The electrode according to claim 1 or claim 2, which is used for the positive electrode of a redox flow battery.
  4.  前記基材は、導電材料として、カーボン、チタン、及びタングステンからなる群から選択される1種以上の元素を含む請求項1から請求項3のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 3, wherein the base material contains, as a conductive material, one or more elements selected from the group consisting of carbon, titanium, and tungsten.
  5.  前記基材は、カーボン繊維、カーボン粒子、及びカーボンバインダー残渣からなる群から選択される少なくとも1種を含む請求項1から請求項4のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 4, wherein the substrate contains at least one selected from the group consisting of carbon fibers, carbon particles, and carbon binder residues.
  6.  前記基材に保持される触媒を備え、
     前記触媒は、非カーボン系の材質によって構成される請求項1から請求項5のいずれか1項に記載の電極。
    comprising a catalyst held on the substrate;
    The electrode according to any one of claims 1 to 5, wherein the catalyst is made of a non-carbon material.
  7.  前記触媒は、金属酸化物又は金属炭化物である請求項6に記載の電極。 The electrode according to claim 6, wherein the catalyst is metal oxide or metal carbide.
  8.  請求項1から請求項7のいずれか1項に記載の電極を備える、
    電池セル。
    An electrode according to any one of claims 1 to 7,
    battery cell.
  9.  請求項8に記載の電池セルを備える、
    セルスタック。
    A battery cell comprising the battery cell according to claim 8,
    cell stack.
  10.  請求項9に記載のセルスタックを備える、
    レドックスフロー電池。
    comprising a cell stack according to claim 9,
    redox flow battery.
PCT/JP2022/001845 2021-04-02 2022-01-19 Electrode, battery cell, cell stack, and redox flow battery WO2022209182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063777A JP2024075815A (en) 2021-04-02 Electrode, battery cell, cell stack, and redox flow battery
JP2021-063777 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022209182A1 true WO2022209182A1 (en) 2022-10-06

Family

ID=83458536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001845 WO2022209182A1 (en) 2021-04-02 2022-01-19 Electrode, battery cell, cell stack, and redox flow battery

Country Status (1)

Country Link
WO (1) WO2022209182A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164882A (en) * 2016-08-02 2019-09-26 住友電気工業株式会社 Redox flow battery and method of operating the same
WO2020184665A1 (en) * 2019-03-13 2020-09-17 東洋紡株式会社 Carbon electrode material and redox battery
JP2021023873A (en) * 2019-08-02 2021-02-22 日清紡ホールディングス株式会社 Metal-loaded catalyst, battery electrode and battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164882A (en) * 2016-08-02 2019-09-26 住友電気工業株式会社 Redox flow battery and method of operating the same
WO2020184665A1 (en) * 2019-03-13 2020-09-17 東洋紡株式会社 Carbon electrode material and redox battery
JP2021023873A (en) * 2019-08-02 2021-02-22 日清紡ホールディングス株式会社 Metal-loaded catalyst, battery electrode and battery

Similar Documents

Publication Publication Date Title
Xiang et al. Cr2O3-modified graphite felt as a novel positive electrode for vanadium redox flow battery
US9786925B2 (en) Fuel cell and fuel cell use gas diffusion electrode
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
CN108292772B (en) Bipolar plate and redox flow battery comprising same
KR101719887B1 (en) Flow battery with carbon paper
JP7049350B2 (en) Carbon electrode material for redox flow batteries and its manufacturing method
DE102013217882A1 (en) Electrode substrate made of carbon fibers
WO2019049755A1 (en) Carbon electrode material for redox flow battery, and method for manufacturing carbon electrode material
JP6669784B2 (en) Process for the preparation of carbon felt electrodes for redox flow batteries
JP3496385B2 (en) Redox battery
JP2023154069A (en) Carbon electrode material and redox battery
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
WO2022209182A1 (en) Electrode, battery cell, cell stack, and redox flow battery
JP7305935B2 (en) Electrodes for redox flow batteries and redox flow batteries
JP2024075815A (en) Electrode, battery cell, cell stack, and redox flow battery
WO2021225106A1 (en) Carbon electrode material for redox flow battery, and redox flow battery provided with said carbon electrode material
JP6557824B2 (en) Carbon electrode and carbon electrode manufacturing method
JP6819982B2 (en) Carbon catalyst for redox flow battery electrodes
KR101969140B1 (en) An improved electrode for Vanadium Flow Battery and the Vanadium Flow Battery comprising the same
CN107785587B (en) Electrode for vanadium redox flow battery with improved functionality and vanadium redox flow battery adopting same
EP3940829A1 (en) Carbon electrode material for redox flow battery and redox flow battery provided with same
JPH11317231A (en) Carbon-based electrode material for electrolytic cell
WO2020184450A1 (en) Carbon positive electrode material for manganese/titanium-based redox flow battery, and battery provided with same
WO2021225105A1 (en) Carbon electrode material for redox flow battery, and redox flow battery provided with said carbon electrode material
JPH11260377A (en) Carbon electrode material and its manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779414

Country of ref document: EP

Kind code of ref document: A1