WO2022209131A1 - Bearing and supercharger - Google Patents

Bearing and supercharger Download PDF

Info

Publication number
WO2022209131A1
WO2022209131A1 PCT/JP2022/000912 JP2022000912W WO2022209131A1 WO 2022209131 A1 WO2022209131 A1 WO 2022209131A1 JP 2022000912 W JP2022000912 W JP 2022000912W WO 2022209131 A1 WO2022209131 A1 WO 2022209131A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing surface
oil
groove
thrust bearing
main body
Prior art date
Application number
PCT/JP2022/000912
Other languages
French (fr)
Japanese (ja)
Inventor
英之 小島
朗弘 上田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2022209131A1 publication Critical patent/WO2022209131A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load

Definitions

  • the present disclosure relates to bearings and superchargers. This application claims the benefit of priority based on Japanese Patent Application No. 2021-63731 filed on April 2, 2021, the content of which is incorporated herein by reference.
  • Patent Literature 1 discloses a turbocharger that includes bearings that support a shaft. Lubricating oil is supplied to bearings used in turbochargers and the like.
  • a bearing that is, a thrust bearing
  • the lubricating oil supplied to the inside of the bearing is supplied to the thrust bearing surface of the bearing as the shaft rotates.
  • a thrust load (that is, a load in the thrust direction) is supported by the oil film pressure of lubricating oil supplied to the thrust bearing surface. In such a bearing, it is desired to appropriately supply lubricating oil over the entire circumference of the thrust bearing surface.
  • An object of the present disclosure is to provide a bearing and a turbocharger that can appropriately supply lubricating oil over the entire circumference of the thrust bearing surface.
  • the bearing of the present disclosure includes an annular main body through which the shaft is inserted, a radial bearing surface provided on the inner peripheral surface of the main body and facing the shaft in the radial direction, and a radial bearing surface provided on the radial bearing surface.
  • a plurality of oil supply grooves extending in the axial direction of the main body, a thrust bearing surface provided on the end surface of the main body, and a thrust bearing surface provided on the thrust bearing surface spaced apart from each other in the circumferential direction of the main body and extending in the rotational direction of the shaft.
  • a partition wall provided on the thrust bearing surface and arranged between the plurality of tapered portions and the outer peripheral edge of the thrust bearing surface; and an oil supply groove and the outer peripheral edge provided on the thrust bearing surface. and a plurality of chamfered portions provided between the radial bearing surface and the thrust bearing surface and partitioned from each other in the circumferential direction by a plurality of oil supply grooves, when viewed from the axial direction and a plurality of chamfers, each of which has an area larger than half the area of the oil supply groove.
  • the oil drain groove may have an inclined portion on the forward side in the direction of rotation.
  • the bearing further includes a non-through groove provided in the tapered portion, the inner diameter end of the non-through groove being connected to the chamfered portion, and the outer diameter end of the non-through groove being positioned within the tapered portion.
  • the non-through groove may be located on the rear side in the rotational direction with respect to the center of the tapered portion in the circumferential direction.
  • the turbocharger of the present disclosure includes the above bearings.
  • lubricating oil can be appropriately supplied over the entire circumference of the thrust bearing surface.
  • FIG. 1 is a schematic cross-sectional view of a turbocharger according to an embodiment of the present disclosure
  • FIG. FIG. 2 is an extraction diagram of the dashed-dotted line portion of FIG. 3 is a front view of a thrust bearing surface of a bearing according to an embodiment of the present disclosure
  • FIG. 4 is a cross-sectional view showing the AA cross section of FIG.
  • FIG. 5 is an enlarged cross-sectional view of a thrust bearing surface side end of a bearing according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram showing the cross-sectional shape of the thrust bearing surface of the first modified example.
  • FIG. 7 is a front view of the thrust bearing surface of the second modified example.
  • FIG. 1 is a schematic cross-sectional view of the turbocharger TC.
  • the direction of arrow U is the vertically upward direction
  • the direction of arrow D is the vertically downward direction.
  • the direction of arrow L shown in FIG. 1 is assumed to be the left side of turbocharger TC.
  • the direction of the arrow R shown in FIG. 1 will be described as the right side of the supercharger TC.
  • the supercharger TC includes a supercharger body 1 .
  • the turbocharger body 1 includes a bearing housing 3, a turbine housing 5, and a compressor housing 7.
  • the turbine housing 5 is connected to the left side of the bearing housing 3 by a fastening mechanism 9 .
  • the compressor housing 7 is connected to the right side of the bearing housing 3 by fastening bolts 11 .
  • a protrusion 3 a is provided on the outer peripheral surface of the bearing housing 3 .
  • the protrusion 3 a is provided near the turbine housing 5 .
  • the protrusion 3a protrudes radially.
  • a protrusion 5 a is provided on the outer peripheral surface of the turbine housing 5 .
  • a protrusion 5 a is provided near the bearing housing 3 .
  • the protrusion 5a protrudes radially.
  • the bearing housing 3 and the turbine housing 5 are band-fastened by a fastening mechanism 9 .
  • the fastening mechanism 9 is, for example, a G coupling. The fastening mechanism 9 clamps the protrusion 3a and the protrusion 5a.
  • a bearing hole 3 b is formed in the bearing housing 3 .
  • the bearing hole 3b penetrates the bearing housing 3 in the lateral direction of the supercharger TC.
  • a bearing 13 is arranged in the bearing hole 3b.
  • Bearing 13 is a semi-floating bearing. However, the bearing 13 may be a bearing other than the semi-floating bearing, as will be described later.
  • Bearing 13 rotatably supports shaft 15 .
  • a turbine wheel 17 is provided at the left end of the shaft 15 .
  • the turbine wheel 17 is rotatably housed in the turbine housing 5 .
  • a compressor impeller 19 is provided at the right end of the shaft 15 .
  • a compressor impeller 19 is rotatably housed in the compressor housing 7 .
  • bearing 13, shaft 15, turbine wheel 17 and compressor impeller 19 are simply referred to as “axial”, “radial” and “circumferential” respectively. ” can be called.
  • a lower portion of the bearing housing 3 is formed with an oil drain port 3c through which lubricating oil splashing from the bearing 13 is discharged.
  • An intake port 21 is formed in the compressor housing 7 .
  • the intake port 21 opens on the right side of the supercharger TC.
  • the intake port 21 is connected to an air cleaner (not shown).
  • a diffuser flow path 23 is formed by the surfaces of the bearing housing 3 and the compressor housing 7 .
  • the diffuser channel 23 pressurizes the air.
  • the diffuser flow path 23 is formed in an annular shape.
  • the diffuser flow path 23 communicates with the intake port 21 via the compressor impeller 19 on the radially inner side.
  • a compressor scroll flow path 25 is provided in the compressor housing 7 .
  • the compressor scroll channel 25 is located radially outside the diffuser channel 23, for example.
  • the compressor scroll channel 25 communicates with the intake port of the engine (not shown) and the diffuser channel 23 .
  • intake air is pressurized and accelerated while flowing between the blades of the compressor impeller 19 .
  • the pressurized and accelerated air is further pressurized in the diffuser passage 23 and the compressor scroll passage 25 .
  • the pressurized air is directed to the engine intake.
  • a discharge port 27 is formed in the turbine housing 5 .
  • the discharge port 27 opens on the left side of the supercharger TC.
  • the discharge port 27 is connected to an exhaust gas purification device (not shown).
  • a communication passage 29 and a turbine scroll passage 31 are formed in the turbine housing 5 .
  • the turbine scroll passage 31 is located radially outside the communication passage 29, for example.
  • the turbine scroll passage 31 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold of an engine (not shown) is guided to the gas inlet.
  • the communication passage 29 connects the turbine scroll passage 31 and the discharge port 27 via the turbine wheel 17 .
  • the exhaust gas guided from the gas inlet to the turbine scroll passage 31 is further guided to the discharge port 27 via the communication passage 29 and the turbine wheel 17 .
  • the exhaust gas guided to the discharge port 27 rotates the turbine wheel 17 in the flow process.
  • the rotational force of the turbine wheel 17 is transmitted to the compressor impeller 19 via the shaft 15. As the compressor impeller 19 rotates, the air is pressurized as described above. Air is thus directed to the intake of the engine.
  • FIG. 2 is a diagram extracting the dashed-dotted line portion of FIG.
  • a bearing structure BS is provided inside the bearing housing 3 .
  • Bearing structure BS includes bearing hole 3 b , bearing 13 , and shaft 15 .
  • An oil passage 3d is formed in the bearing housing 3. Lubricating oil is supplied to the oil passage 3d.
  • the oil passage 3d opens (communicates) with the bearing hole 3b.
  • the oil passage 3d guides the lubricating oil to the bearing hole 3b.
  • the lubricating oil flows into the bearing hole 3b from the oil passage 3d.
  • a bearing 13 is arranged in the bearing hole 3b.
  • the bearing 13 has an annular body 13a.
  • An insertion hole 13b is formed in the main body 13a.
  • the insertion hole 13b axially penetrates the main body 13a.
  • the axial direction intersects (specifically, is perpendicular to) the vertical direction.
  • the shaft 15 is inserted through the insertion hole 13b.
  • the main body 13a extends in a direction intersecting (more specifically, perpendicular to) the vertical direction.
  • Two radial bearing surfaces 13d and 13e are formed on the inner peripheral surface 13c of the main body 13a (insertion hole 13b).
  • the two radial bearing surfaces 13d, 13e are axially spaced apart.
  • An oil hole 13f is formed in the main body 13a.
  • the oil hole 13f penetrates from the inner peripheral surface 13c of the main body 13a to the outer peripheral surface 13g.
  • the oil hole 13f is arranged between the two radial bearing surfaces 13d, 13e.
  • the oil hole 13f faces the opening of the oil passage 3d in the radial direction.
  • the lubricating oil flows from the outer peripheral surface 13g of the main body 13a to the inner peripheral surface 13c through the oil holes 13f.
  • the lubricating oil that has flowed into the inner peripheral surface 13c of the main body 13a moves between the inner peripheral surface 13c and the shaft 15 along the circumferential direction. Further, the lubricating oil that has flowed into the inner peripheral surface 13c of the main body 13a moves between the inner peripheral surface 13c and the shaft 15 along the axial direction (horizontal direction in FIG. 2).
  • Lubricating oil is supplied to the gap between the shaft 15 and the two radial bearing surfaces 13d, 13e.
  • An oil film is formed by lubricating oil supplied to the gap between the shaft 15 and the two radial bearing surfaces 13d and 13e.
  • the shaft 15 is supported by the oil film pressure of the lubricating oil.
  • the two radial bearing surfaces 13d and 13e receive the radial load of the shaft 15 (that is, the load in the radial direction).
  • a through hole 13h is formed in the main body 13a.
  • the through hole 13h penetrates from the inner peripheral surface 13c of the main body 13a to the outer peripheral surface 13g.
  • the through hole 13h is arranged between the two radial bearing surfaces 13d, 13e.
  • the through hole 13h is arranged on the opposite side of the main body 13a to the oil hole 13f.
  • the position of the through hole 13h is not limited to this, and the position of the through hole 13h may be different from the position of the oil hole 13f in the circumferential direction.
  • a pin hole 3e is formed in the bearing housing 3.
  • the pin hole 3e is formed at a position facing the through hole 13h in the bearing hole 3b.
  • the pin hole 3e penetrates the wall forming the bearing hole 3b.
  • the pin hole 3e connects the inner space and the outer space of the bearing hole 3b.
  • a positioning pin 33 is inserted through the pin hole 3e. Specifically, the positioning pin 33 is press-fitted into the pin hole 3e.
  • the tip of the positioning pin 33 is inserted through the through hole 13h of the main body 13a.
  • the positioning pin 33 regulates the rotational and axial movement of the body 13a.
  • the shaft 15 includes a large diameter portion 15a, a medium diameter portion 15b, and a small diameter portion 15c.
  • the large diameter portion 15a is positioned closer to the turbine wheel 17 (see FIG. 1) than the main body 13a.
  • the large diameter portion 15a has a cylindrical shape.
  • the outer diameter of the large diameter portion 15a is larger than the inner diameter of the inner peripheral surface 13c (radial bearing surface 13d) of the main body 13a.
  • the outer diameter of the large diameter portion 15a is larger than the outer diameter of the outer peripheral surface 13g of the main body 13a.
  • the outer diameter of the large diameter portion 15a may be equal to or smaller than the outer diameter of the outer peripheral surface 13g of the main body 13a.
  • the large diameter portion 15a faces the main body 13a in the axial direction.
  • the large diameter portion 15a has a constant outer diameter. However, the outer diameter of the large diameter portion 15a may not be constant.
  • the medium diameter portion 15b is positioned closer to the compressor impeller 19 (see FIG. 1) than the large diameter portion 15a.
  • the medium diameter portion 15b has a cylindrical shape.
  • the medium diameter portion 15b is inserted through the insertion hole 13b of the main body 13a. Therefore, the medium diameter portion 15b faces the inner peripheral surface 13c (radial bearing surfaces 13d, 13e) of the insertion hole 13b in the radial direction.
  • the medium diameter portion 15b has an outer diameter smaller than that of the large diameter portion 15a.
  • the outer diameter of the medium diameter portion 15b is smaller than the inner diameter of the radial bearing surfaces 13d and 13e of the main body 13a.
  • the medium diameter portion 15b has a constant outer diameter. However, the outer diameter of the medium diameter portion 15b may not be constant.
  • the small diameter portion 15c is positioned closer to the compressor impeller 19 (see FIG. 1) than the medium diameter portion 15b (main body 13a).
  • the small diameter portion 15c has a cylindrical shape.
  • the small diameter portion 15c has an outer diameter smaller than that of the medium diameter portion 15b.
  • the small diameter portion 15c has a constant outer diameter. However, the outer diameter of the small diameter portion 15c may not be constant.
  • An annular oil draining member 35 is attached to the small diameter portion 15c.
  • the oil slinger member 35 scatters the lubricating oil flowing toward the compressor impeller 19 along the shaft 15 radially outward. That is, the oil slinger member 35 suppresses leakage of lubricating oil to the compressor impeller 19 side.
  • the oil slinger member 35 has an outer diameter larger than that of the intermediate diameter portion 15b.
  • the outer diameter of the oil slinger 35 is larger than the inner diameter of the inner peripheral surface 13c (radial bearing surface 13e) of the main body 13a.
  • the outer diameter of the oil slinger 35 is smaller than the outer diameter of the outer peripheral surface 13g of the main body 13a.
  • the outer diameter of the oil slinger 35 may be equal to or greater than the outer diameter of the outer peripheral surface 13g of the main body 13a.
  • the oil slinger member 35 faces the main body 13a in the axial direction.
  • the main body 13a is axially sandwiched between the oil draining member 35 and the large diameter portion 15a.
  • Thrust bearing surfaces 13i and 13j are provided on the axial end surfaces of the main body 13a.
  • the thrust bearing surface 13i is provided on the end surface of the main body 13a near the turbine wheel 17 (see FIG. 1).
  • a thrust bearing surface 13j is provided on the end surface of the main body 13a near the compressor impeller 19 (see FIG. 1).
  • Lubricating oil is supplied to the thrust bearing surface 13i through the inner peripheral surface 13c. As a result, lubricating oil is supplied to the gap between the thrust bearing surface 13i and the large diameter portion 15a.
  • An oil film is formed by the lubricating oil supplied to the gap between the thrust bearing surface 13i and the large diameter portion 15a.
  • Lubricating oil is supplied to the thrust bearing surface 13j through the inner peripheral surface 13c. As a result, the lubricating oil is supplied to the gap between the thrust bearing surface 13j and the oil slinger member 35. As shown in FIG. Lubricating oil supplied to the gap between the thrust bearing surface 13j and the oil slinger 35 forms an oil film.
  • Damper portions 13k and 13m are formed on the outer peripheral surface 13g of the main body 13a.
  • the damper portions 13k and 13m are axially separated from each other.
  • the damper portions 13k and 13m are formed at both ends in the axial direction of the outer peripheral surface 13g.
  • the outer diameters of the damper portions 13k and 13m are larger than the outer diameters of other portions of the outer peripheral surface 13g.
  • Lubricating oil is supplied to the gap between the damper portions 13k, 13m and the inner peripheral surface 3f of the bearing hole 3b.
  • An oil film is formed by lubricating oil supplied to the gap between the damper portions 13k and 13m and the inner peripheral surface 3f of the bearing hole 3b. Vibration of the shaft 15 is suppressed by the oil film pressure of the lubricating oil.
  • FIG. 3 is a front view showing the thrust bearing surface 13i of the bearing 13 according to this embodiment.
  • FIG. 3 is a view of the thrust bearing surface 13i viewed from the left side in FIG.
  • the shape of the thrust bearing surface 13j is substantially the same as that of the thrust bearing surface 13i. Therefore, description of the shape of the thrust bearing surface 13j is omitted.
  • the shape of the radial bearing surface 13e is substantially the same as the shape of the radial bearing surface 13d. Therefore, the description of the shape of the radial bearing surface 13e is omitted.
  • a plurality of circular arc surfaces 37 and a plurality of oil supply grooves 39 are formed on the radial bearing surface 13d.
  • the radial bearing surface 13d has four arcuate surfaces 37 and four oil supply grooves 39.
  • the number of arcuate surfaces 37 and oil supply grooves 39 is not limited to this, and may be other than four.
  • the plurality of arcuate surfaces 37 are radially separated from the shaft 15 (medium diameter portion 15b).
  • a plurality of arcuate surfaces 37 are arranged side by side in the circumferential direction.
  • the positions of the centers of curvature of the plurality of circular arc surfaces 37 are different from the central axis of the insertion hole 13b.
  • the positions of the centers of curvature of the plurality of arcuate surfaces 37 are different from each other.
  • the positions of the centers of curvature of the plurality of arcuate surfaces 37 are located on the same circle around the central axis of the insertion hole 13b. However, the positions of the centers of curvature of the plurality of circular arc surfaces 37 do not have to be positioned on the same circle. Also, the positions of the centers of curvature of the plurality of circular arc surfaces 37 may be at the same position as the central axis of the insertion hole 13b.
  • An oil supply groove 39 is formed between two circular arc surfaces 37 adjacent in the circumferential direction.
  • the oil supply grooves 39 are formed in the radial bearing surface 13d at intervals in the circumferential direction.
  • four oil supply grooves 39 are provided in the circumferential direction.
  • the oil supply groove 39 extends in the axial direction.
  • the cross-sectional shape of the oil supply groove 39 (that is, the cross-sectional shape perpendicular to the axial direction) is a shape (specifically, a triangular shape) in which the width in the circumferential direction tapers toward the radially outer side.
  • the cross-sectional shape of the oil supply groove 39 may be a polygonal shape (for example, a rectangular shape) other than a triangular shape, a semicircular shape, or the like.
  • the oil supply groove 39 extends from the end of the radial bearing surface 13d on the side where the two radial bearing surfaces 13d and 13e (see FIG. 2) are close to the end on the side where the two radial bearing surfaces 13d and 13e are separated. extended.
  • the oil supply groove 39 opens to the thrust bearing surface 13i (that is, the axial end surface of the main body 13a).
  • the oil supply groove 39 allows lubricating oil to flow.
  • the oil supply groove 39 supplies lubricating oil to the radial bearing surface 13d. Further, the oil supply groove 39 supplies lubricating oil to the thrust bearing surface 13i.
  • the lubricating oil between the shaft 15 and the radial bearing surface 13d moves in the rotation direction RD as the shaft 15 rotates. At this time, the lubricating oil is compressed between the arc surface 37 of the radial bearing surface 13 d and the shaft 15 . The compressed lubricating oil presses the shaft 15 radially inward (wedge effect). Thereby, the radial load is supported by the radial bearing surface 13d.
  • the thrust bearing surface 13i includes a plurality of tapered portions 41 (specifically, tapered portions 41-1, 41-2, 41-3, and 41-4) and a plurality of land portions 43. , a plurality of oil drain grooves 45, a partition wall portion 47, and a chamfered portion 49 are formed.
  • the tapered portion 41 is a portion of the thrust bearing surface 13i that is recessed with respect to a plane orthogonal to the axial direction.
  • the land portion 43 is a planar portion formed between a pair of tapered portions 41 adjacent in the circumferential direction and perpendicular to the axial direction. The land portion 43 is located on the side where the pair of radial bearing surfaces 13d and 13e are separated from the tapered portion 41.
  • the tapered portion 41 is a portion that is recessed with respect to the land portion 43 .
  • the thrust bearing surface 13i has four tapered portions 41. As shown in FIG. However, it is not limited to this, and the number of tapered portions 41 may be other than four.
  • the tapered portion 41 is separated from the outer peripheral edge of the thrust bearing surface 13i.
  • a partition wall portion 47 exists radially outside the taper portion 41 on the thrust bearing surface 13i.
  • the partition wall portion 47 has a surface that is at the same axial position as the land portion 43 .
  • “equal” includes the case of being completely equal and the case of being deviated from the case of being completely equal within the range of allowable error (processing accuracy, assembly error, etc.).
  • the partition wall portion 47 is located on the side where the pair of radial bearing surfaces 13d and 13e are separated from the tapered portion 41 . That is, the tapered portion 41 is a portion that is recessed with respect to the partition wall portion 47 .
  • the partition wall portion 47 is arranged between the tapered portion 41 and the outer peripheral edge of the thrust bearing surface 13i.
  • the partition wall portion 47 restricts movement of the lubricating oil radially outward from the tapered portion 41 . This makes it easier to maintain the required amount of oil and hydraulic pressure for the thrust bearing surface 13i.
  • the tapered portion 41 extends in the circumferential direction. The length of the tapered portion 41 in the radial direction is constant. However, the radial length of the tapered portion 41 may not be constant.
  • the plurality of tapered portions 41 are provided at intervals in the circumferential direction.
  • the tapered portions 41-1, 41-2, 41-3, and 41-4 are arranged in this order at regular intervals.
  • the tapered portions 41-1, 41-2, 41-3, 41-4 have the same shape. However, the tapered portions 41-1, 41-2, 41-3, and 41-4 may be arranged at uneven intervals.
  • the tapered portions 41-1 and 41-4 are formed on the vertical upper side (specifically, the vertical upper half) of the thrust bearing surface 13i.
  • the tapered portion 41-4 is closer to the vertical uppermost portion of the thrust bearing surface 13i than the tapered portion 41-1.
  • the tapered portions 41-2 and 41-3 are formed on the vertically lower side (specifically, the vertically lower half) of the thrust bearing surface 13i.
  • the tapered portion 41-2 is closer to the lowermost portion in the vertical direction of the thrust bearing surface 13i than the tapered portion 41-3.
  • the oil drain groove 45 communicates with the oil supply groove 39 .
  • One oil drain groove 45 is formed in each of the tapered portions 41-1, 41-2, 41-3, 41-4. That is, in this embodiment, four oil drain grooves 45 are provided in the circumferential direction of the thrust bearing surface 13i.
  • the oil drain groove 45 extends radially. However, the oil drain groove 45 may extend in a direction that is inclined with respect to the radial direction.
  • the oil drain groove 45 is a through groove radially penetrating the thrust bearing surface 13i.
  • the oil drain groove 45 is formed at the rear end of the tapered portion 41 in the rotational direction RD. In this embodiment, the oil drain groove 45 is positioned between the land portion 43 and the tapered portion 41 .
  • FIG. 4 is a sectional view showing the AA section of FIG. AA cross section in FIG. 3 is a cross section along the circumferential direction passing through the tapered portion 41-2. That is, FIG. 4 shows the cross-sectional shape along the circumferential direction of the tapered portion 41-2.
  • the tapered portion 41 becomes shallower as it progresses in the circumferential direction (specifically, forward in the rotational direction RD).
  • the tapered portion 41 is inclined with respect to the circumferential direction at a constant inclination angle.
  • the inclination angle of the tapered portion 41 may vary depending on the position in the circumferential direction.
  • the lubricating oil supplied to the thrust bearing surface 13i moves in the rotational direction RD as the shaft 15 rotates.
  • the lubricating oil is compressed between the tapered portion 41 of the thrust bearing surface 13i and the large diameter portion 15a (see FIG. 2).
  • the compressed lubricating oil presses the large diameter portion 15a in the axial direction (thrust direction) (wedge effect).
  • oil film pressure is likely to be generated, and the load capacity in the thrust direction by the thrust bearing surface 13i is increased.
  • the oil drain groove 45 connects the oil supply groove 39 and the outer peripheral edge of the thrust bearing surface 13i.
  • the lubricating oil supplied to the thrust bearing surface 13i passes through the oil drain groove 45 and flows through an opening 45a on the outer peripheral edge side of the thrust bearing surface 13i (hereinafter also referred to as an outer peripheral edge side opening 45a of the oil drain groove 45). called).
  • the oil drain groove 45 promotes the flow of the lubricating oil on the thrust bearing surface 13i by discharging the lubricating oil supplied to the thrust bearing surface 13i from the thrust bearing surface 13i.
  • the shape of the cross section of the oil drain groove 45 (that is, the shape of the cross section perpendicular to the extending direction of the oil drain groove 45) is semicircular.
  • the shape of the cross section of the oil drain groove 45 may be an arc shape, an elliptical arc shape, a rectangular shape, a polygonal shape (for example, a triangular shape), or the like.
  • the oil drain groove 45 is located adjacent to the front side of the land portion 43 in the rotation direction RD.
  • the tapered portion 41 is positioned adjacent to the rear side of the oil drain groove 45 in the rotational direction RD.
  • the oil drain groove 45 may be separated from the land portion 43 forward in the rotation direction RD.
  • the oil drain groove 45 is arranged on the rear side in the rotational direction RD with respect to the center of the tapered portion 41 in the circumferential direction. The lubricating oil flows in the rotation direction RD as the shaft 15 rotates.
  • the chamfered portion 49 is formed between the radial bearing surface 13d and the thrust bearing surface 13i.
  • the chamfered portion 49 is formed along the entire circumference of the main body 13a.
  • the chamfered portion 49 is chamfered.
  • the chamfered portion 49 may be R-chamfered.
  • the chamfered portion 49 is formed by the four oil supply grooves 39 and the four oil discharge grooves 45 in the circumferential direction. -2, 49-3, 49-4.
  • the tapered portion 41-1 is adjacent to the chamfered portion 49-1 radially outwardly.
  • the tapered portion 41-2 is adjacent to the chamfered portion 49-2 radially outwardly.
  • the tapered portion 41-3 is adjacent to the chamfered portion 49-3 radially outwardly.
  • the tapered portion 41-4 is adjacent to the chamfered portion 49-4 radially outwardly.
  • a pair of chamfered portions 49 are provided on both sides of the oil supply groove 39 in the circumferential direction. be done.
  • the lubricating oil that has flowed through the oil supply groove 39 branches in the circumferential direction at the chamfered portion 49 .
  • the lubricating oil circulating on the front side of the oil supply groove 39 in the rotational direction RD reaches the chamfered portion 49 (for example, the chamfered portion 49-2) adjacent to the front side of the oil supply groove 39 in the rotational direction RD.
  • the lubricating oil that flows in the rear side of the oil supply groove 39 in the rotation direction RD reaches the chamfered portion 49 (for example, the chamfered portion 49-3) adjacent to the rear side of the oil supply groove 39 in the rotation direction RD.
  • the area of the oil supply groove 39 on the front side in the rotation direction RD that is, the half area of the oil supply groove 39 is the chamfered portion 49 adjacent to the oil supply groove 39 on the front side in the rotation direction RD (for example, the chamfered portion 49-2).
  • the area of the oil groove 39 on the rear side in the rotational direction RD is the chamfered portion 49 (for example, the chamfered portion 49-3) adjacent to the oil groove 39 on the rear side in the rotational direction RD.
  • the area of each chamfered portion 49 is larger than half the area of the oil supply groove 39 .
  • the area of one chamfered portion 49 partitioned in the circumferential direction by the plurality of oil grooves 39 is larger than half the area of the oil groove 39 .
  • each chamfered portion 49 is smaller than half the area of the oil supply groove 39 , most of the lubricating oil flowing through the oil supply groove 39 flows into the oil drain groove 45 . becomes difficult to flow.
  • the oil groove 39 extends from the chamfered portion. The lubricating oil can easily flow to the taper portion 41 via 49 . As a result, lubricating oil can be appropriately supplied to the entire circumference of the thrust bearing surface 13i, and wear of the thrust bearing surface 13i can be prevented.
  • FIG. 5 is an enlarged cross-sectional view of the end of the bearing 13 on the thrust bearing surface 13i side according to the embodiment of the present disclosure.
  • FIG. 5 shows a cross section including the central axis of bearing 13 .
  • the radial width of chamfered portion 49 is greater than the radial width of oil supply groove 39 .
  • the channel cross-sectional area S ⁇ b>1 of the chamfered portion 49 is larger than the channel cross-sectional area S ⁇ b>2 of the oil supply groove 39 . This makes it easier to supply the lubricating oil to the tapered portion 41 than when the channel cross-sectional area S ⁇ b>1 of the chamfered portion 49 is smaller than the channel cross-sectional area S ⁇ b>2 of the oil supply groove 39 .
  • the chamfered portion 49-1 having an area larger than half the area of the oil supply groove 39 is provided between the radial bearing surfaces 13d, 13e and the thrust bearing surfaces 13i, 13j. , 49-2, 49-3 and 49-4.
  • lubricating oil can be appropriately supplied to the entire circumference of the thrust bearing surfaces 13i and 13j, and wear of the thrust bearing surfaces 13i and 13j can be prevented.
  • FIG. 6 is a diagram showing the cross-sectional shape of the thrust bearing surface 113i of the first modified example. Constituent elements that are substantially the same as those of the supercharger TC of the above-described embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the thrust bearing surface 113i of the first modified example includes oil drain grooves 145.
  • a thrust bearing surface 113i of the first modified example differs from the thrust bearing surface 13i of the above embodiment only in the shape of the oil drain groove 145 .
  • the oil drain groove 145 includes an inclined portion 145a.
  • the inclined portion 145a is formed on the side surface of the oil drain groove 145 on the forward side in the rotation direction RD.
  • the inclined portion 145 a is formed between the groove bottom of the oil drain groove 145 and the tapered portion 41 .
  • the axial height of the inclined portion 145 a gradually increases from the groove bottom of the oil drain groove 145 toward the tapered portion 41 . That is, the axial height of the inclined portion 145a gradually increases toward the front side in the rotational direction RD.
  • the inclined portion 145a has a certain angle with respect to a plane orthogonal to the axial direction.
  • the inclination angle of the inclined portion 145a is smaller than the inclination angle of the end portion of the oil drain groove 45 of the above-described embodiment on the front side in the rotational direction RD.
  • the thrust bearing surface 113i of the first modification includes the oil drain groove 145 having the inclined portion 145a. This makes it easier for the lubricating oil flowing through the oil drain groove 145 to flow toward the tapered portion 41 . As a result, more lubricating oil can be supplied to the tapered portion 41 than in the above embodiment.
  • FIG. 7 is a front view of a thrust bearing surface 213i of a second modified example. Constituent elements that are substantially the same as those of the supercharger TC of the above-described embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the thrust bearing surface 213i of the second modification includes non-through grooves 220.
  • the thrust bearing surface 213i of the second modification differs from the thrust bearing surface 13i of the above embodiment only in that non-through grooves 220 are provided.
  • the non-through groove 220 is formed in the tapered portion 41 .
  • the non-through groove 220 is separated from the oil drain groove 45 forward in the rotational direction RD.
  • the non-through groove 220 may be adjacent to the oil drain groove 45 in the circumferential direction and communicate with each other.
  • the non-through groove 220 communicates with the chamfered portion 49 and extends in the radial direction.
  • the inner diameter end of the non-through groove 220 opens to the chamfered portion 49, and the outer diameter end does not open to the outer peripheral edge of the thrust bearing surface 13i.
  • the inner diameter end of the non-through groove 220 is connected to the chamfered portion 49 , and the outer diameter end of the non-through groove 220 is located within the tapered portion 41 . That is, the non-through groove 220 does not radially penetrate the thrust bearing surface 213i.
  • a portion of the lubricating oil that has flowed into the chamfered portion 49 from the oil supply groove 39 is introduced into the non-through groove 220 .
  • the lubricating oil introduced into the non-through groove 220 is supplied from the non-through groove 220 to the tapered portion 41 .
  • the non-through groove 220 is arranged on the rear side in the rotational direction RD with respect to the center of the tapered portion 41 in the circumferential direction.
  • the lubricating oil flows in the rotation direction RD as the shaft 15 rotates.
  • the thrust bearing surface 213i of the second modified example has the non-through groove 220 in the tapered portion 41. As shown in FIG. As a result, more lubricating oil can be supplied to the taper portion 41 than in the above-described embodiment. As a result, lubricating oil can be appropriately supplied to the entire circumference of the thrust bearing surface 213i, and wear of the thrust bearing surface 213i can be prevented.
  • bearing 13 is provided in the supercharger TC.
  • the bearing 13 may be provided in a device other than the supercharger TC.
  • the bearing 13 is a semi-floating bearing
  • the bearing 13 may be a bearing other than the semi-floating bearing as long as it has a thrust bearing surface.
  • non-penetrating groove 220 is located on the rear side in the rotational direction with respect to the center of the tapered portion 41 in the circumferential direction.
  • the non-penetrating groove 220 may be positioned forward in the rotational direction with respect to the center of the tapered portion 41 in the circumferential direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

A bearing 13 comprising: a plurality of oil supply grooves 39 provided on a radial bearing surface 13d and extending in the axial direction of a main body 13a; and a plurality of chamfered sections 49-1–49-4 that are provided between the radial bearing surface 13d and a thrust bearing surface 13i, are mutually partitioned in the circumferential direction by the plurality of oil supply grooves 39, and have an area for each chamfered section 49-1–49-4 that is greater than half of the area of the oil supply grooves 39, when viewed from the axial direction.

Description

軸受および過給機bearings and turbochargers
 本開示は、軸受および過給機に関する。本出願は2021年4月2日に提出された日本特許出願第2021-63731号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 The present disclosure relates to bearings and superchargers. This application claims the benefit of priority based on Japanese Patent Application No. 2021-63731 filed on April 2, 2021, the content of which is incorporated herein by reference.
 種々の装置において、シャフトを支持する軸受が利用されている。例えば、特許文献1には、シャフトを支持する軸受を備える過給機が開示されている。過給機等に用いられる軸受には、潤滑油が供給される。 A variety of devices use bearings to support shafts. For example, Patent Literature 1 discloses a turbocharger that includes bearings that support a shaft. Lubricating oil is supplied to bearings used in turbochargers and the like.
特許第5807436号公報Japanese Patent No. 5807436
 シャフトを支持する軸受として、軸受に対して軸方向に隣り合う部材を支持するスラスト軸受面を有する軸受(つまり、スラスト軸受)がある。軸受の内部に供給された潤滑油は、シャフトの回転に伴って、軸受のスラスト軸受面に供給される。スラスト軸受面に供給される潤滑油の油膜圧力によってスラスト荷重(つまり、スラスト方向の荷重)が支持される。このような軸受では、スラスト軸受面の全周に亘って適切に潤滑油を供給することが望まれている。 As a bearing that supports a shaft, there is a bearing (that is, a thrust bearing) that has a thrust bearing surface that supports a member axially adjacent to the bearing. The lubricating oil supplied to the inside of the bearing is supplied to the thrust bearing surface of the bearing as the shaft rotates. A thrust load (that is, a load in the thrust direction) is supported by the oil film pressure of lubricating oil supplied to the thrust bearing surface. In such a bearing, it is desired to appropriately supply lubricating oil over the entire circumference of the thrust bearing surface.
 本開示の目的は、スラスト軸受面の全周に亘って適切に潤滑油を供給することが可能な軸受および過給機を提供することである。 An object of the present disclosure is to provide a bearing and a turbocharger that can appropriately supply lubricating oil over the entire circumference of the thrust bearing surface.
 上記課題を解決するために、本開示の軸受は、シャフトが挿通される環状の本体と、本体の内周面に設けられ、シャフトと径方向に対向するラジアル軸受面と、ラジアル軸受面に設けられ、本体の軸方向に延在する複数の給油溝と、本体の端面に設けられるスラスト軸受面と、本体の周方向に互いに間隔を空けてスラスト軸受面に設けられ、シャフトの回転方向に向かって浅くなる複数のテーパ部と、スラスト軸受面に設けられ、複数のテーパ部とスラスト軸受面の外周縁との間に配される隔壁部と、スラスト軸受面に設けられ、給油溝と外周縁とを接続する排油溝と、ラジアル軸受面とスラスト軸受面との間に設けられ、複数の給油溝により周方向に互いに区画された複数の面取り部であって、軸方向から見た場合に、各面取り部の面積が、給油溝の半分の面積よりも大きい、複数の面取り部と、を備える。 In order to solve the above problems, the bearing of the present disclosure includes an annular main body through which the shaft is inserted, a radial bearing surface provided on the inner peripheral surface of the main body and facing the shaft in the radial direction, and a radial bearing surface provided on the radial bearing surface. A plurality of oil supply grooves extending in the axial direction of the main body, a thrust bearing surface provided on the end surface of the main body, and a thrust bearing surface provided on the thrust bearing surface spaced apart from each other in the circumferential direction of the main body and extending in the rotational direction of the shaft. a partition wall provided on the thrust bearing surface and arranged between the plurality of tapered portions and the outer peripheral edge of the thrust bearing surface; and an oil supply groove and the outer peripheral edge provided on the thrust bearing surface. and a plurality of chamfered portions provided between the radial bearing surface and the thrust bearing surface and partitioned from each other in the circumferential direction by a plurality of oil supply grooves, when viewed from the axial direction and a plurality of chamfers, each of which has an area larger than half the area of the oil supply groove.
 排油溝は、回転方向の前方側に傾斜部を有してもよい。 The oil drain groove may have an inclined portion on the forward side in the direction of rotation.
 軸受は、テーパ部に設けられる非貫通溝であって、当該非貫通溝の内径端が面取り部に接続され、当該非貫通溝の外径端がテーパ部内に位置する、非貫通溝をさらに備えてもよい。 The bearing further includes a non-through groove provided in the tapered portion, the inner diameter end of the non-through groove being connected to the chamfered portion, and the outer diameter end of the non-through groove being positioned within the tapered portion. may
 非貫通溝は、テーパ部の周方向の中央に対し、回転方向の後方側に位置してもよい。 The non-through groove may be located on the rear side in the rotational direction with respect to the center of the tapered portion in the circumferential direction.
 上記課題を解決するために、本開示の過給機は、上記の軸受を備える。 In order to solve the above problems, the turbocharger of the present disclosure includes the above bearings.
 本開示によれば、スラスト軸受面の全周に亘って適切に潤滑油を供給することができる。 According to the present disclosure, lubricating oil can be appropriately supplied over the entire circumference of the thrust bearing surface.
図1は、本開示の実施形態に係る過給機の概略断面図である。1 is a schematic cross-sectional view of a turbocharger according to an embodiment of the present disclosure; FIG. 図2は、図1の一点鎖線部分の抽出図である。FIG. 2 is an extraction diagram of the dashed-dotted line portion of FIG. 図3は、本開示の実施形態に係る軸受におけるスラスト軸受面を示す正面図である。3 is a front view of a thrust bearing surface of a bearing according to an embodiment of the present disclosure; FIG. 図4は、図3のA-A断面を示す断面図である。FIG. 4 is a cross-sectional view showing the AA cross section of FIG. 図5は、本開示の実施形態に係る軸受のスラスト軸受面側の端部の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a thrust bearing surface side end of a bearing according to an embodiment of the present disclosure. 図6は、第1変形例のスラスト軸受面の断面形状を示す図である。FIG. 6 is a diagram showing the cross-sectional shape of the thrust bearing surface of the first modified example. 図7は、第2変形例のスラスト軸受面の正面図である。FIG. 7 is a front view of the thrust bearing surface of the second modified example.
 以下に添付図面を参照しながら、本開示の一実施形態について説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 An embodiment of the present disclosure will be described below with reference to the accompanying drawings. Dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are given the same reference numerals to omit redundant description, and elements that are not directly related to the present disclosure are omitted from the drawings. do.
 図1は、過給機TCの概略断面図である。図1では、矢印U方向が鉛直上方向であり、矢印D方向が鉛直下方向である。以下では、図1に示す矢印L方向を過給機TCの左側として説明する。図1に示す矢印R方向を過給機TCの右側として説明する。図1に示すように、過給機TCは、過給機本体1を備える。過給機本体1は、ベアリングハウジング3と、タービンハウジング5と、コンプレッサハウジング7とを含む。タービンハウジング5は、ベアリングハウジング3の左側に締結機構9によって連結される。コンプレッサハウジング7は、ベアリングハウジング3の右側に締結ボルト11によって連結される。 FIG. 1 is a schematic cross-sectional view of the turbocharger TC. In FIG. 1, the direction of arrow U is the vertically upward direction, and the direction of arrow D is the vertically downward direction. In the following description, the direction of arrow L shown in FIG. 1 is assumed to be the left side of turbocharger TC. The direction of the arrow R shown in FIG. 1 will be described as the right side of the supercharger TC. As shown in FIG. 1 , the supercharger TC includes a supercharger body 1 . The turbocharger body 1 includes a bearing housing 3, a turbine housing 5, and a compressor housing 7. The turbine housing 5 is connected to the left side of the bearing housing 3 by a fastening mechanism 9 . The compressor housing 7 is connected to the right side of the bearing housing 3 by fastening bolts 11 .
 ベアリングハウジング3の外周面には、突起3aが設けられる。突起3aは、タービンハウジング5近くに設けられる。突起3aは、径方向に突出する。タービンハウジング5の外周面には、突起5aが設けられる。突起5aは、ベアリングハウジング3近くに設けられる。突起5aは、径方向に突出する。ベアリングハウジング3とタービンハウジング5は、締結機構9によってバンド締結される。締結機構9は、例えば、Gカップリングである。締結機構9は、突起3aおよび突起5aを挟持する。 A protrusion 3 a is provided on the outer peripheral surface of the bearing housing 3 . The protrusion 3 a is provided near the turbine housing 5 . The protrusion 3a protrudes radially. A protrusion 5 a is provided on the outer peripheral surface of the turbine housing 5 . A protrusion 5 a is provided near the bearing housing 3 . The protrusion 5a protrudes radially. The bearing housing 3 and the turbine housing 5 are band-fastened by a fastening mechanism 9 . The fastening mechanism 9 is, for example, a G coupling. The fastening mechanism 9 clamps the protrusion 3a and the protrusion 5a.
 ベアリングハウジング3には、軸受孔3bが形成される。軸受孔3bは、ベアリングハウジング3を過給機TCの左右方向に貫通する。軸受孔3bには、軸受13が配される。軸受13は、セミフローティング軸受である。ただし、軸受13は、後述するように、セミフローティング軸受以外の軸受であってもよい。軸受13は、シャフト15を回転可能に支持する。シャフト15の左端部には、タービン翼車17が設けられる。タービン翼車17は、タービンハウジング5に回転可能に収容される。シャフト15の右端部には、コンプレッサインペラ19が設けられる。コンプレッサインペラ19は、コンプレッサハウジング7に回転可能に収容される。本開示において、軸受13、シャフト15、タービン翼車17およびコンプレッサインペラ19の「軸方向」、「径方向」および「周方向」は、それぞれ単に「軸方向」、「径方向」および「周方向」と称され得る。ベアリングハウジング3の下部には、軸受13から飛散する潤滑油を排出する排油口3cが形成されている。 A bearing hole 3 b is formed in the bearing housing 3 . The bearing hole 3b penetrates the bearing housing 3 in the lateral direction of the supercharger TC. A bearing 13 is arranged in the bearing hole 3b. Bearing 13 is a semi-floating bearing. However, the bearing 13 may be a bearing other than the semi-floating bearing, as will be described later. Bearing 13 rotatably supports shaft 15 . A turbine wheel 17 is provided at the left end of the shaft 15 . The turbine wheel 17 is rotatably housed in the turbine housing 5 . A compressor impeller 19 is provided at the right end of the shaft 15 . A compressor impeller 19 is rotatably housed in the compressor housing 7 . In this disclosure, "axial", "radial" and "circumferential" of bearing 13, shaft 15, turbine wheel 17 and compressor impeller 19 are simply referred to as "axial", "radial" and "circumferential" respectively. ” can be called. A lower portion of the bearing housing 3 is formed with an oil drain port 3c through which lubricating oil splashing from the bearing 13 is discharged.
 コンプレッサハウジング7には、吸気口21が形成される。吸気口21は、過給機TCの右側に開口する。吸気口21は、不図示のエアクリーナに接続される。ベアリングハウジング3とコンプレッサハウジング7の面によって、ディフューザ流路23が形成される。ディフューザ流路23は、空気を加圧する。ディフューザ流路23は、環状に形成される。ディフューザ流路23は、径方向内側において、コンプレッサインペラ19を介して吸気口21に連通している。 An intake port 21 is formed in the compressor housing 7 . The intake port 21 opens on the right side of the supercharger TC. The intake port 21 is connected to an air cleaner (not shown). A diffuser flow path 23 is formed by the surfaces of the bearing housing 3 and the compressor housing 7 . The diffuser channel 23 pressurizes the air. The diffuser flow path 23 is formed in an annular shape. The diffuser flow path 23 communicates with the intake port 21 via the compressor impeller 19 on the radially inner side.
 コンプレッサハウジング7には、コンプレッサスクロール流路25が設けられる。コンプレッサスクロール流路25は、例えば、ディフューザ流路23よりも径方向外側に位置する。コンプレッサスクロール流路25は、不図示のエンジンの吸気口と、ディフューザ流路23とに連通している。コンプレッサインペラ19が回転すると、吸気口21からコンプレッサハウジング7内に空気が吸気される。吸気された空気は、コンプレッサインペラ19の翼間を流通する過程において加圧加速される。加圧加速された空気は、ディフューザ流路23およびコンプレッサスクロール流路25でさらに加圧される。加圧された空気は、エンジンの吸気口に導かれる。 A compressor scroll flow path 25 is provided in the compressor housing 7 . The compressor scroll channel 25 is located radially outside the diffuser channel 23, for example. The compressor scroll channel 25 communicates with the intake port of the engine (not shown) and the diffuser channel 23 . When the compressor impeller 19 rotates, air is drawn into the compressor housing 7 through the intake port 21 . Intake air is pressurized and accelerated while flowing between the blades of the compressor impeller 19 . The pressurized and accelerated air is further pressurized in the diffuser passage 23 and the compressor scroll passage 25 . The pressurized air is directed to the engine intake.
 タービンハウジング5には、吐出口27が形成される。吐出口27は、過給機TCの左側に開口する。吐出口27は、不図示の排気ガス浄化装置に接続される。タービンハウジング5には、連通路29と、タービンスクロール流路31とが形成される。タービンスクロール流路31は、例えば、連通路29よりも径方向外側に位置する。タービンスクロール流路31は、不図示のガス流入口と連通する。ガス流入口には、不図示のエンジンの排気マニホールドから排出される排気ガスが導かれる。連通路29は、タービン翼車17を介してタービンスクロール流路31と吐出口27とを接続する。ガス流入口からタービンスクロール流路31に導かれた排気ガスは、連通路29、タービン翼車17を介して吐出口27にさらに導かれる。吐出口27に導かれる排気ガスは、流通過程においてタービン翼車17を回転させる。 A discharge port 27 is formed in the turbine housing 5 . The discharge port 27 opens on the left side of the supercharger TC. The discharge port 27 is connected to an exhaust gas purification device (not shown). A communication passage 29 and a turbine scroll passage 31 are formed in the turbine housing 5 . The turbine scroll passage 31 is located radially outside the communication passage 29, for example. The turbine scroll passage 31 communicates with a gas inlet (not shown). Exhaust gas discharged from an exhaust manifold of an engine (not shown) is guided to the gas inlet. The communication passage 29 connects the turbine scroll passage 31 and the discharge port 27 via the turbine wheel 17 . The exhaust gas guided from the gas inlet to the turbine scroll passage 31 is further guided to the discharge port 27 via the communication passage 29 and the turbine wheel 17 . The exhaust gas guided to the discharge port 27 rotates the turbine wheel 17 in the flow process.
 タービン翼車17の回転力は、シャフト15を介してコンプレッサインペラ19に伝達される。コンプレッサインペラ19が回転すると、上記のとおりに空気が加圧される。こうして、空気がエンジンの吸気口に導かれる。 The rotational force of the turbine wheel 17 is transmitted to the compressor impeller 19 via the shaft 15. As the compressor impeller 19 rotates, the air is pressurized as described above. Air is thus directed to the intake of the engine.
 図2は、図1の一点鎖線部分を抽出した図である。図2に示すように、ベアリングハウジング3の内部には軸受構造BSが設けられる。軸受構造BSは、軸受孔3bと、軸受13と、シャフト15とを含む。 FIG. 2 is a diagram extracting the dashed-dotted line portion of FIG. As shown in FIG. 2, a bearing structure BS is provided inside the bearing housing 3 . Bearing structure BS includes bearing hole 3 b , bearing 13 , and shaft 15 .
 ベアリングハウジング3には、油路3dが形成される。油路3dには、潤滑油が供給される。油路3dは、軸受孔3bに開口(連通)する。油路3dは、潤滑油を軸受孔3bに導く。潤滑油は、油路3dから軸受孔3b内に流入する。 An oil passage 3d is formed in the bearing housing 3. Lubricating oil is supplied to the oil passage 3d. The oil passage 3d opens (communicates) with the bearing hole 3b. The oil passage 3d guides the lubricating oil to the bearing hole 3b. The lubricating oil flows into the bearing hole 3b from the oil passage 3d.
 軸受孔3bには、軸受13が配される。軸受13は、環状の本体13aを有する。本体13aには、挿通孔13bが形成される。挿通孔13bは、本体13aを軸方向に貫通する。軸方向は、鉛直方向に対して交差(具体的には、直交)する。挿通孔13bには、シャフト15が挿通される。本体13aは、鉛直方向に対して交差する方向(具体的には、直交する方向)に延びる。 A bearing 13 is arranged in the bearing hole 3b. The bearing 13 has an annular body 13a. An insertion hole 13b is formed in the main body 13a. The insertion hole 13b axially penetrates the main body 13a. The axial direction intersects (specifically, is perpendicular to) the vertical direction. The shaft 15 is inserted through the insertion hole 13b. The main body 13a extends in a direction intersecting (more specifically, perpendicular to) the vertical direction.
 本体13a(挿通孔13b)の内周面13cには、2つのラジアル軸受面13d、13eが形成される。2つのラジアル軸受面13d、13eは、軸方向に離隔して配される。本体13aには、油孔13fが形成される。油孔13fは、本体13aの内周面13cから外周面13gまで貫通する。油孔13fは、2つのラジアル軸受面13d、13eの間に配される。油孔13fは、径方向において、油路3dの開口と対向する。 Two radial bearing surfaces 13d and 13e are formed on the inner peripheral surface 13c of the main body 13a (insertion hole 13b). The two radial bearing surfaces 13d, 13e are axially spaced apart. An oil hole 13f is formed in the main body 13a. The oil hole 13f penetrates from the inner peripheral surface 13c of the main body 13a to the outer peripheral surface 13g. The oil hole 13f is arranged between the two radial bearing surfaces 13d, 13e. The oil hole 13f faces the opening of the oil passage 3d in the radial direction.
 潤滑油は、本体13aの外周面13gから、油孔13fを通って内周面13cに流入する。本体13aの内周面13cに流入した潤滑油は、内周面13cとシャフト15との間を、周方向に沿って移動する。また、本体13aの内周面13cに流入した潤滑油は、内周面13cとシャフト15との間を、軸方向(図2中、左右方向)に沿って移動する。潤滑油は、シャフト15と2つのラジアル軸受面13d、13eとの間隙に供給される。シャフト15と2つのラジアル軸受面13d、13eとの間隙に供給された潤滑油により、油膜が形成される。潤滑油の油膜圧力によってシャフト15が支持される。2つのラジアル軸受面13d、13eは、シャフト15のラジアル荷重(つまり、ラジアル方向の荷重)を受ける。 The lubricating oil flows from the outer peripheral surface 13g of the main body 13a to the inner peripheral surface 13c through the oil holes 13f. The lubricating oil that has flowed into the inner peripheral surface 13c of the main body 13a moves between the inner peripheral surface 13c and the shaft 15 along the circumferential direction. Further, the lubricating oil that has flowed into the inner peripheral surface 13c of the main body 13a moves between the inner peripheral surface 13c and the shaft 15 along the axial direction (horizontal direction in FIG. 2). Lubricating oil is supplied to the gap between the shaft 15 and the two radial bearing surfaces 13d, 13e. An oil film is formed by lubricating oil supplied to the gap between the shaft 15 and the two radial bearing surfaces 13d and 13e. The shaft 15 is supported by the oil film pressure of the lubricating oil. The two radial bearing surfaces 13d and 13e receive the radial load of the shaft 15 (that is, the load in the radial direction).
 本体13aには、貫通孔13hが形成される。貫通孔13hは、本体13aの内周面13cから外周面13gまで貫通する。貫通孔13hは、2つのラジアル軸受面13d、13eの間に配される。貫通孔13hは、本体13aのうち油孔13fとは反対側に配される。ただし、これに限定されず、貫通孔13hの位置は、周方向において油孔13fの位置と異なっていればよい。 A through hole 13h is formed in the main body 13a. The through hole 13h penetrates from the inner peripheral surface 13c of the main body 13a to the outer peripheral surface 13g. The through hole 13h is arranged between the two radial bearing surfaces 13d, 13e. The through hole 13h is arranged on the opposite side of the main body 13a to the oil hole 13f. However, the position of the through hole 13h is not limited to this, and the position of the through hole 13h may be different from the position of the oil hole 13f in the circumferential direction.
 ベアリングハウジング3には、ピン孔3eが形成される。ピン孔3eは、軸受孔3bのうち貫通孔13hと対向する位置に形成される。ピン孔3eは、軸受孔3bを形成する壁部を貫通する。ピン孔3eは、軸受孔3bの内部空間と外部空間とを接続する。ピン孔3eには、位置決めピン33が挿通される。具体的には、ピン孔3eには、位置決めピン33が圧入される。位置決めピン33の先端は、本体13aの貫通孔13hに挿通される。位置決めピン33は、本体13aの回転方向および軸方向の移動を規制する。 A pin hole 3e is formed in the bearing housing 3. The pin hole 3e is formed at a position facing the through hole 13h in the bearing hole 3b. The pin hole 3e penetrates the wall forming the bearing hole 3b. The pin hole 3e connects the inner space and the outer space of the bearing hole 3b. A positioning pin 33 is inserted through the pin hole 3e. Specifically, the positioning pin 33 is press-fitted into the pin hole 3e. The tip of the positioning pin 33 is inserted through the through hole 13h of the main body 13a. The positioning pin 33 regulates the rotational and axial movement of the body 13a.
 シャフト15は、大径部15aと、中径部15bと、小径部15cとを備える。大径部15aは、本体13aよりもタービン翼車17(図1参照)近くに位置する。大径部15aは、円柱形状である。大径部15aの外径は、本体13aの内周面13c(ラジアル軸受面13d)の内径より大きい。大径部15aの外径は、本体13aの外周面13gの外径より大きい。ただし、大径部15aの外径は、本体13aの外周面13gの外径と等しくてもよいし、小さくてもよい。大径部15aは、本体13aと軸方向に対向する。大径部15aは、一定の外径を有する。ただし、大径部15aの外径は、一定でなくてもよい。 The shaft 15 includes a large diameter portion 15a, a medium diameter portion 15b, and a small diameter portion 15c. The large diameter portion 15a is positioned closer to the turbine wheel 17 (see FIG. 1) than the main body 13a. The large diameter portion 15a has a cylindrical shape. The outer diameter of the large diameter portion 15a is larger than the inner diameter of the inner peripheral surface 13c (radial bearing surface 13d) of the main body 13a. The outer diameter of the large diameter portion 15a is larger than the outer diameter of the outer peripheral surface 13g of the main body 13a. However, the outer diameter of the large diameter portion 15a may be equal to or smaller than the outer diameter of the outer peripheral surface 13g of the main body 13a. The large diameter portion 15a faces the main body 13a in the axial direction. The large diameter portion 15a has a constant outer diameter. However, the outer diameter of the large diameter portion 15a may not be constant.
 中径部15bは、大径部15aよりもコンプレッサインペラ19(図1参照)近くに位置する。中径部15bは、円柱形状である。中径部15bは、本体13aの挿通孔13bに挿通される。したがって、中径部15bは、径方向において挿通孔13bの内周面13c(ラジアル軸受面13d、13e)と対向する。中径部15bは、大径部15aより小さい外径を有する。中径部15bの外径は、本体13aのラジアル軸受面13d、13eの内径より小さい。中径部15bは、一定の外径を有する。ただし、中径部15bの外径は、一定でなくてもよい。 The medium diameter portion 15b is positioned closer to the compressor impeller 19 (see FIG. 1) than the large diameter portion 15a. The medium diameter portion 15b has a cylindrical shape. The medium diameter portion 15b is inserted through the insertion hole 13b of the main body 13a. Therefore, the medium diameter portion 15b faces the inner peripheral surface 13c ( radial bearing surfaces 13d, 13e) of the insertion hole 13b in the radial direction. The medium diameter portion 15b has an outer diameter smaller than that of the large diameter portion 15a. The outer diameter of the medium diameter portion 15b is smaller than the inner diameter of the radial bearing surfaces 13d and 13e of the main body 13a. The medium diameter portion 15b has a constant outer diameter. However, the outer diameter of the medium diameter portion 15b may not be constant.
 小径部15cは、中径部15b(本体13a)よりもコンプレッサインペラ19(図1参照)近くに位置する。小径部15cは、円柱形状である。小径部15cは、中径部15bより小さい外径を有する。小径部15cは、一定の外径を有する。ただし、小径部15cの外径は、一定でなくてもよい。 The small diameter portion 15c is positioned closer to the compressor impeller 19 (see FIG. 1) than the medium diameter portion 15b (main body 13a). The small diameter portion 15c has a cylindrical shape. The small diameter portion 15c has an outer diameter smaller than that of the medium diameter portion 15b. The small diameter portion 15c has a constant outer diameter. However, the outer diameter of the small diameter portion 15c may not be constant.
 小径部15cには、環状の油切り部材35が取り付けられる。油切り部材35は、シャフト15を伝ってコンプレッサインペラ19側に流れる潤滑油を径方向外側に飛散させる。つまり、油切り部材35は、コンプレッサインペラ19側への潤滑油の漏出を抑制する。 An annular oil draining member 35 is attached to the small diameter portion 15c. The oil slinger member 35 scatters the lubricating oil flowing toward the compressor impeller 19 along the shaft 15 radially outward. That is, the oil slinger member 35 suppresses leakage of lubricating oil to the compressor impeller 19 side.
 油切り部材35は、中径部15bより大きな外径を有する。油切り部材35の外径は、本体13aの内周面13c(ラジアル軸受面13e)の内径より大きい。油切り部材35の外径は、本体13aの外周面13gの外径より小さい。ただし、油切り部材35の外径は、本体13aの外周面13gの外径と等しくてもよいし、大きくてもよい。油切り部材35は、本体13aと軸方向に対向する。 The oil slinger member 35 has an outer diameter larger than that of the intermediate diameter portion 15b. The outer diameter of the oil slinger 35 is larger than the inner diameter of the inner peripheral surface 13c (radial bearing surface 13e) of the main body 13a. The outer diameter of the oil slinger 35 is smaller than the outer diameter of the outer peripheral surface 13g of the main body 13a. However, the outer diameter of the oil slinger 35 may be equal to or greater than the outer diameter of the outer peripheral surface 13g of the main body 13a. The oil slinger member 35 faces the main body 13a in the axial direction.
 本体13aは、油切り部材35および大径部15aによって軸方向に挟まれている。本体13aの軸方向の端面には、スラスト軸受面13i、13jが設けられる。スラスト軸受面13iは、本体13aのタービン翼車17(図1参照)近くの端面に設けられる。スラスト軸受面13jは、本体13aのコンプレッサインペラ19(図1参照)近くの端面に設けられる。スラスト軸受面13iには、内周面13cを通って、潤滑油が供給される。それにより、スラスト軸受面13iと大径部15aとの間隙に、潤滑油が供給される。スラスト軸受面13iと大径部15aとの間隙に供給された潤滑油により、油膜が形成される。スラスト軸受面13jには、内周面13cを通って、潤滑油が供給される。それにより、スラスト軸受面13jと油切り部材35との間隙に、潤滑油が供給される。スラスト軸受面13jと油切り部材35との間隙に供給された潤滑油により、油膜が形成される。 The main body 13a is axially sandwiched between the oil draining member 35 and the large diameter portion 15a. Thrust bearing surfaces 13i and 13j are provided on the axial end surfaces of the main body 13a. The thrust bearing surface 13i is provided on the end surface of the main body 13a near the turbine wheel 17 (see FIG. 1). A thrust bearing surface 13j is provided on the end surface of the main body 13a near the compressor impeller 19 (see FIG. 1). Lubricating oil is supplied to the thrust bearing surface 13i through the inner peripheral surface 13c. As a result, lubricating oil is supplied to the gap between the thrust bearing surface 13i and the large diameter portion 15a. An oil film is formed by the lubricating oil supplied to the gap between the thrust bearing surface 13i and the large diameter portion 15a. Lubricating oil is supplied to the thrust bearing surface 13j through the inner peripheral surface 13c. As a result, the lubricating oil is supplied to the gap between the thrust bearing surface 13j and the oil slinger member 35. As shown in FIG. Lubricating oil supplied to the gap between the thrust bearing surface 13j and the oil slinger 35 forms an oil film.
 シャフト15が軸方向(図2中、左側)に移動すると、スラスト軸受面13iと大径部15aとの間の潤滑油の油膜圧力によってスラスト方向(軸方向)の荷重が支持される。シャフト15が軸方向(図2中、右側)に移動すると、スラスト軸受面13jと油切り部材35との間の潤滑油の油膜圧力によってスラスト方向(軸方向)の荷重が支持される。このように、2つのスラスト軸受面13i、13jは、スラスト荷重を受ける。 When the shaft 15 moves in the axial direction (left side in FIG. 2), the load in the thrust direction (axial direction) is supported by the oil film pressure of the lubricating oil between the thrust bearing surface 13i and the large diameter portion 15a. When the shaft 15 moves in the axial direction (right side in FIG. 2), the oil film pressure of the lubricating oil between the thrust bearing surface 13j and the slinger member 35 supports the load in the thrust direction (axial direction). Thus, the two thrust bearing surfaces 13i, 13j are subjected to thrust loads.
 本体13aの外周面13gには、ダンパ部13k、13mが形成される。ダンパ部13k、13mは、互いに軸方向に離隔する。ダンパ部13k、13mは、外周面13gのうち軸方向の両端部に形成される。ダンパ部13k、13mの外径は、外周面13gのうち他の部位の外径よりも大きい。ダンパ部13k、13mと軸受孔3bの内周面3fとの間隙には、潤滑油が供給される。ダンパ部13k、13mと軸受孔3bの内周面3fとの間隙に供給された潤滑油により、油膜が形成される。潤滑油の油膜圧力によってシャフト15の振動が抑制される。 Damper portions 13k and 13m are formed on the outer peripheral surface 13g of the main body 13a. The damper portions 13k and 13m are axially separated from each other. The damper portions 13k and 13m are formed at both ends in the axial direction of the outer peripheral surface 13g. The outer diameters of the damper portions 13k and 13m are larger than the outer diameters of other portions of the outer peripheral surface 13g. Lubricating oil is supplied to the gap between the damper portions 13k, 13m and the inner peripheral surface 3f of the bearing hole 3b. An oil film is formed by lubricating oil supplied to the gap between the damper portions 13k and 13m and the inner peripheral surface 3f of the bearing hole 3b. Vibration of the shaft 15 is suppressed by the oil film pressure of the lubricating oil.
 図3は、本実施形態に係る軸受13におけるスラスト軸受面13iを示す正面図である。図3は、スラスト軸受面13iを図2中の左側から見た図である。なお、スラスト軸受面13jの形状は、スラスト軸受面13iと大凡等しい形状である。したがって、スラスト軸受面13jの形状については、説明を省略する。ラジアル軸受面13eの形状は、ラジアル軸受面13dと大凡等しい形状である。したがって、ラジアル軸受面13eの形状については、説明を省略する。 FIG. 3 is a front view showing the thrust bearing surface 13i of the bearing 13 according to this embodiment. FIG. 3 is a view of the thrust bearing surface 13i viewed from the left side in FIG. The shape of the thrust bearing surface 13j is substantially the same as that of the thrust bearing surface 13i. Therefore, description of the shape of the thrust bearing surface 13j is omitted. The shape of the radial bearing surface 13e is substantially the same as the shape of the radial bearing surface 13d. Therefore, the description of the shape of the radial bearing surface 13e is omitted.
 図3に示すように、ラジアル軸受面13dには、複数の円弧面37と、複数の給油溝39とが形成される。図3の例では、ラジアル軸受面13dは、4つの円弧面37と、4つの給油溝39を有する。ただし、これに限定されず、円弧面37および給油溝39の数は、4つ以外であってもよい。 As shown in FIG. 3, a plurality of circular arc surfaces 37 and a plurality of oil supply grooves 39 are formed on the radial bearing surface 13d. In the example of FIG. 3, the radial bearing surface 13d has four arcuate surfaces 37 and four oil supply grooves 39. In the example of FIG. However, the number of arcuate surfaces 37 and oil supply grooves 39 is not limited to this, and may be other than four.
 複数の円弧面37は、シャフト15(中径部15b)から径方向に離隔している。複数の円弧面37は、周方向に並んで配される。複数の円弧面37の曲率中心の位置は、挿通孔13bの中心軸と異なる位置にある。複数の円弧面37の曲率中心の位置は、互いに異なる位置にある。複数の円弧面37の曲率中心の位置は、挿通孔13bの中心軸を中心とした同一円上に位置する。ただし、複数の円弧面37の曲率中心の位置は、同一円上に位置しなくてもよい。また、複数の円弧面37の曲率中心の位置は、挿通孔13bの中心軸と同じ位置にあってもよい。 The plurality of arcuate surfaces 37 are radially separated from the shaft 15 (medium diameter portion 15b). A plurality of arcuate surfaces 37 are arranged side by side in the circumferential direction. The positions of the centers of curvature of the plurality of circular arc surfaces 37 are different from the central axis of the insertion hole 13b. The positions of the centers of curvature of the plurality of arcuate surfaces 37 are different from each other. The positions of the centers of curvature of the plurality of arcuate surfaces 37 are located on the same circle around the central axis of the insertion hole 13b. However, the positions of the centers of curvature of the plurality of circular arc surfaces 37 do not have to be positioned on the same circle. Also, the positions of the centers of curvature of the plurality of circular arc surfaces 37 may be at the same position as the central axis of the insertion hole 13b.
 周方向に隣り合う2つの円弧面37の間には、給油溝39が形成される。給油溝39は、周方向に間隔を空けてラジアル軸受面13dに形成される。本実施形態では、周方向に4つの給油溝39が設けられる。給油溝39は、軸方向に延在する。給油溝39の流路断面の形状(つまり、軸方向に直交する断面における形状)は、周方向の幅が径方向外側ほど細くなる形状(具体的には、三角形状)である。ただし、給油溝39の流路断面の形状は、三角形状以外の多角形状(例えば、矩形状)または半円形状等であってもよい。 An oil supply groove 39 is formed between two circular arc surfaces 37 adjacent in the circumferential direction. The oil supply grooves 39 are formed in the radial bearing surface 13d at intervals in the circumferential direction. In this embodiment, four oil supply grooves 39 are provided in the circumferential direction. The oil supply groove 39 extends in the axial direction. The cross-sectional shape of the oil supply groove 39 (that is, the cross-sectional shape perpendicular to the axial direction) is a shape (specifically, a triangular shape) in which the width in the circumferential direction tapers toward the radially outer side. However, the cross-sectional shape of the oil supply groove 39 may be a polygonal shape (for example, a rectangular shape) other than a triangular shape, a semicircular shape, or the like.
 給油溝39は、ラジアル軸受面13dのうち、2つのラジアル軸受面13d、13e(図2参照)が近接する側の端部から、2つのラジアル軸受面13d、13eが離隔する側の端部まで延在している。給油溝39は、スラスト軸受面13i(すなわち、本体13aの軸方向の端面)に開口している。給油溝39は、潤滑油を流通させる。給油溝39は、ラジアル軸受面13dに潤滑油を供給する。また、給油溝39は、スラスト軸受面13iに潤滑油を供給する。 The oil supply groove 39 extends from the end of the radial bearing surface 13d on the side where the two radial bearing surfaces 13d and 13e (see FIG. 2) are close to the end on the side where the two radial bearing surfaces 13d and 13e are separated. extended. The oil supply groove 39 opens to the thrust bearing surface 13i (that is, the axial end surface of the main body 13a). The oil supply groove 39 allows lubricating oil to flow. The oil supply groove 39 supplies lubricating oil to the radial bearing surface 13d. Further, the oil supply groove 39 supplies lubricating oil to the thrust bearing surface 13i.
 シャフト15とラジアル軸受面13dとの間の潤滑油は、シャフト15の回転に伴って、回転方向RDに移動する。このとき、潤滑油は、ラジアル軸受面13dの円弧面37とシャフト15との間で圧縮される。圧縮された潤滑油は、シャフト15を径方向内側(ラジアル方向)に押圧する(くさび効果)。これにより、ラジアル荷重がラジアル軸受面13dによって支持される。 The lubricating oil between the shaft 15 and the radial bearing surface 13d moves in the rotation direction RD as the shaft 15 rotates. At this time, the lubricating oil is compressed between the arc surface 37 of the radial bearing surface 13 d and the shaft 15 . The compressed lubricating oil presses the shaft 15 radially inward (wedge effect). Thereby, the radial load is supported by the radial bearing surface 13d.
 図3に示すように、スラスト軸受面13iには、複数のテーパ部41(具体的には、テーパ部41-1、41-2、41-3、41-4)と、複数のランド部43と、複数の排油溝45と、隔壁部47と、面取り部49とが形成される。テーパ部41は、スラスト軸受面13iにおいて、軸方向に直交する平面に対して窪んでいる部分である。ランド部43は、周方向に隣り合う一対のテーパ部41の間に形成され、軸方向に直交する平面状の部分である。ランド部43は、テーパ部41に対し、一対のラジアル軸受面13d、13eが離隔する側に位置する。つまり、テーパ部41は、ランド部43に対し窪んでいる部分である。図3の例では、スラスト軸受面13iは、4つのテーパ部41を有する。ただし、これに限定されず、テーパ部41の数は、4つ以外であってもよい。 As shown in FIG. 3, the thrust bearing surface 13i includes a plurality of tapered portions 41 (specifically, tapered portions 41-1, 41-2, 41-3, and 41-4) and a plurality of land portions 43. , a plurality of oil drain grooves 45, a partition wall portion 47, and a chamfered portion 49 are formed. The tapered portion 41 is a portion of the thrust bearing surface 13i that is recessed with respect to a plane orthogonal to the axial direction. The land portion 43 is a planar portion formed between a pair of tapered portions 41 adjacent in the circumferential direction and perpendicular to the axial direction. The land portion 43 is located on the side where the pair of radial bearing surfaces 13d and 13e are separated from the tapered portion 41. As shown in FIG. That is, the tapered portion 41 is a portion that is recessed with respect to the land portion 43 . In the example of FIG. 3, the thrust bearing surface 13i has four tapered portions 41. As shown in FIG. However, it is not limited to this, and the number of tapered portions 41 may be other than four.
 テーパ部41は、スラスト軸受面13iの外周縁から離隔する。スラスト軸受面13iにおいて、テーパ部41よりも径方向外側には、隔壁部47が存在する。隔壁部47は、ランド部43と軸方向の位置が等しい面を有する。ここで、等しいとは、完全に等しい場合と、許容誤差(加工精度や組付誤差等)の範囲内で完全に等しい場合からずれている場合とを含む意味である。隔壁部47は、テーパ部41に対し、一対のラジアル軸受面13d、13eが離隔する側に位置する。つまり、テーパ部41は、隔壁部47に対し窪んでいる部分である。隔壁部47は、テーパ部41とスラスト軸受面13iの外周縁との間に配される。隔壁部47は、テーパ部41から径方向外側に向かう潤滑油の移動を制限する。これにより、スラスト軸受面13iに必要な油量および油圧を維持し易くすることができる。テーパ部41は、周方向に延在している。テーパ部41の径方向の長さは一定である。ただし、テーパ部41の径方向の長さは一定でなくてもよい。 The tapered portion 41 is separated from the outer peripheral edge of the thrust bearing surface 13i. A partition wall portion 47 exists radially outside the taper portion 41 on the thrust bearing surface 13i. The partition wall portion 47 has a surface that is at the same axial position as the land portion 43 . Here, "equal" includes the case of being completely equal and the case of being deviated from the case of being completely equal within the range of allowable error (processing accuracy, assembly error, etc.). The partition wall portion 47 is located on the side where the pair of radial bearing surfaces 13d and 13e are separated from the tapered portion 41 . That is, the tapered portion 41 is a portion that is recessed with respect to the partition wall portion 47 . The partition wall portion 47 is arranged between the tapered portion 41 and the outer peripheral edge of the thrust bearing surface 13i. The partition wall portion 47 restricts movement of the lubricating oil radially outward from the tapered portion 41 . This makes it easier to maintain the required amount of oil and hydraulic pressure for the thrust bearing surface 13i. The tapered portion 41 extends in the circumferential direction. The length of the tapered portion 41 in the radial direction is constant. However, the radial length of the tapered portion 41 may not be constant.
 複数のテーパ部41は、周方向に間隔を空けて設けられる。テーパ部41-1、41-2、41-3、41-4は、この順に等間隔に並んでいる。テーパ部41-1、41-2、41-3、41-4は、互いに等しい形状を有する。ただし、テーパ部41-1、41-2、41-3、41-4は、不等間隔に並んでいてもよい。テーパ部41-1、41-4は、スラスト軸受面13iの鉛直方向上側(具体的には、鉛直方向の上半分)に形成される。テーパ部41-4は、テーパ部41-1よりも、スラスト軸受面13iにおける鉛直方向の最上部に近い。テーパ部41-2、41-3は、スラスト軸受面13iの鉛直方向下側(具体的には、鉛直方向の下半分)に形成される。テーパ部41-2は、テーパ部41-3よりも、スラスト軸受面13iにおける鉛直方向の最下部に近い。 The plurality of tapered portions 41 are provided at intervals in the circumferential direction. The tapered portions 41-1, 41-2, 41-3, and 41-4 are arranged in this order at regular intervals. The tapered portions 41-1, 41-2, 41-3, 41-4 have the same shape. However, the tapered portions 41-1, 41-2, 41-3, and 41-4 may be arranged at uneven intervals. The tapered portions 41-1 and 41-4 are formed on the vertical upper side (specifically, the vertical upper half) of the thrust bearing surface 13i. The tapered portion 41-4 is closer to the vertical uppermost portion of the thrust bearing surface 13i than the tapered portion 41-1. The tapered portions 41-2 and 41-3 are formed on the vertically lower side (specifically, the vertically lower half) of the thrust bearing surface 13i. The tapered portion 41-2 is closer to the lowermost portion in the vertical direction of the thrust bearing surface 13i than the tapered portion 41-3.
 排油溝45は、給油溝39と連通する。テーパ部41-1、41-2、41-3、41-4の各々には、1つの排油溝45が形成される。つまり、本実施形態では、スラスト軸受面13iの周方向に4つの排油溝45が設けられる。排油溝45は、径方向に延在する。ただし、排油溝45は、径方向に対し、傾斜する方向に延在してもよい。排油溝45は、スラスト軸受面13iを径方向に貫通する貫通溝である。排油溝45は、テーパ部41の回転方向RD後方側の端部に形成される。本実施形態では、排油溝45は、ランド部43とテーパ部41との間に位置する。 The oil drain groove 45 communicates with the oil supply groove 39 . One oil drain groove 45 is formed in each of the tapered portions 41-1, 41-2, 41-3, 41-4. That is, in this embodiment, four oil drain grooves 45 are provided in the circumferential direction of the thrust bearing surface 13i. The oil drain groove 45 extends radially. However, the oil drain groove 45 may extend in a direction that is inclined with respect to the radial direction. The oil drain groove 45 is a through groove radially penetrating the thrust bearing surface 13i. The oil drain groove 45 is formed at the rear end of the tapered portion 41 in the rotational direction RD. In this embodiment, the oil drain groove 45 is positioned between the land portion 43 and the tapered portion 41 .
 図4は、図3のA-A断面を示す断面図である。図3のA-A断面は、テーパ部41-2を通り、周方向に沿った断面である。つまり、図4では、テーパ部41-2の周方向に沿った断面形状が示されている。 FIG. 4 is a sectional view showing the AA section of FIG. AA cross section in FIG. 3 is a cross section along the circumferential direction passing through the tapered portion 41-2. That is, FIG. 4 shows the cross-sectional shape along the circumferential direction of the tapered portion 41-2.
 図4に示すように、テーパ部41は、周方向(具体的には、回転方向RD前方側)に進むにつれて浅くなる。テーパ部41は、一定の傾斜角で周方向に対して傾斜する。ただし、テーパ部41の傾斜角は、周方向位置によって異なっていてもよい。スラスト軸受面13iに供給された潤滑油は、シャフト15の回転に伴って、回転方向RDに移動する。このとき、潤滑油は、スラスト軸受面13iのテーパ部41と大径部15a(図2参照)との間で圧縮される。圧縮された潤滑油は、大径部15aを軸方向(スラスト方向)に押圧する(くさび効果)。これにより、油膜圧力が発生しやすくなり、スラスト軸受面13iによるスラスト方向の耐荷重が大きくなる。 As shown in FIG. 4, the tapered portion 41 becomes shallower as it progresses in the circumferential direction (specifically, forward in the rotational direction RD). The tapered portion 41 is inclined with respect to the circumferential direction at a constant inclination angle. However, the inclination angle of the tapered portion 41 may vary depending on the position in the circumferential direction. The lubricating oil supplied to the thrust bearing surface 13i moves in the rotational direction RD as the shaft 15 rotates. At this time, the lubricating oil is compressed between the tapered portion 41 of the thrust bearing surface 13i and the large diameter portion 15a (see FIG. 2). The compressed lubricating oil presses the large diameter portion 15a in the axial direction (thrust direction) (wedge effect). As a result, oil film pressure is likely to be generated, and the load capacity in the thrust direction by the thrust bearing surface 13i is increased.
 図3および図4に示すように、排油溝45は、給油溝39とスラスト軸受面13iの外周縁とを接続する。スラスト軸受面13iに供給された潤滑油は、排油溝45を通って、排油溝45のうちスラスト軸受面13iの外周縁側の開口45a(以下、排油溝45の外周縁側の開口45aとも呼ぶ)から排出される。排油溝45は、スラスト軸受面13iに供給された潤滑油をスラスト軸受面13iから排出することによって、スラスト軸受面13iにおける潤滑油の流動を促進する。それにより、スラスト軸受面13iに形成される油膜の温度の上昇が抑制され、温度の上昇に伴う粘度の低下が抑制される。ゆえに、スラスト軸受面13iによるスラスト方向の耐荷重の低下が抑制される。 As shown in FIGS. 3 and 4, the oil drain groove 45 connects the oil supply groove 39 and the outer peripheral edge of the thrust bearing surface 13i. The lubricating oil supplied to the thrust bearing surface 13i passes through the oil drain groove 45 and flows through an opening 45a on the outer peripheral edge side of the thrust bearing surface 13i (hereinafter also referred to as an outer peripheral edge side opening 45a of the oil drain groove 45). called). The oil drain groove 45 promotes the flow of the lubricating oil on the thrust bearing surface 13i by discharging the lubricating oil supplied to the thrust bearing surface 13i from the thrust bearing surface 13i. As a result, the temperature rise of the oil film formed on the thrust bearing surface 13i is suppressed, and the decrease in viscosity accompanying the temperature rise is suppressed. Therefore, a decrease in load capacity in the thrust direction due to the thrust bearing surface 13i is suppressed.
 排油溝45の流路断面の形状(つまり、排油溝45の延在方向に直交する断面における形状)は、半円形状である。ただし、排油溝45の流路断面の形状は、円弧形状、楕円弧形状、矩形状、多角形状(例えば、三角形状)等であってもよい。 The shape of the cross section of the oil drain groove 45 (that is, the shape of the cross section perpendicular to the extending direction of the oil drain groove 45) is semicircular. However, the shape of the cross section of the oil drain groove 45 may be an arc shape, an elliptical arc shape, a rectangular shape, a polygonal shape (for example, a triangular shape), or the like.
 図3および図4の例では、排油溝45は、ランド部43の回転方向RD前方側に隣り合って位置する。また、テーパ部41は、排油溝45の回転方向RD後方側に隣り合って位置する。ただし、これに限定されず、排油溝45は、ランド部43から回転方向RD前方側に離隔してもよい。例えば、排油溝45は、テーパ部41の周方向の中央に対し、回転方向RD後方側に配置される。潤滑油は、シャフト15の回転に伴って、回転方向RDに流れる。そのため、排油溝45をテーパ部41の周方向の中央に対し、回転方向RD後方側に配置することで、回転方向RD前方側に配置する場合よりも、テーパ部41に多くの潤滑油を供給することができる。その結果、スラスト軸受面13iに必要な油量および油圧を維持し易くすることができる。 In the examples of FIGS. 3 and 4, the oil drain groove 45 is located adjacent to the front side of the land portion 43 in the rotation direction RD. Also, the tapered portion 41 is positioned adjacent to the rear side of the oil drain groove 45 in the rotational direction RD. However, it is not limited to this, and the oil drain groove 45 may be separated from the land portion 43 forward in the rotation direction RD. For example, the oil drain groove 45 is arranged on the rear side in the rotational direction RD with respect to the center of the tapered portion 41 in the circumferential direction. The lubricating oil flows in the rotation direction RD as the shaft 15 rotates. Therefore, by arranging the oil drain groove 45 on the rear side in the rotational direction RD with respect to the center in the circumferential direction of the tapered portion 41, more lubricating oil can be supplied to the tapered portion 41 than in the case of arranging it on the front side in the rotational direction RD. can supply. As a result, it is possible to easily maintain the necessary amount of oil and hydraulic pressure for the thrust bearing surface 13i.
 面取り部49は、ラジアル軸受面13dとスラスト軸受面13iとの間に形成される。面取り部49は、本体13aの全周に亘って形成される。本実施形態では、面取り部49は、C面取りである。ただし、これに限定されず、面取り部49は、R面取りであってもよい。 The chamfered portion 49 is formed between the radial bearing surface 13d and the thrust bearing surface 13i. The chamfered portion 49 is formed along the entire circumference of the main body 13a. In this embodiment, the chamfered portion 49 is chamfered. However, it is not limited to this, and the chamfered portion 49 may be R-chamfered.
 図3に示すように、スラスト軸受面13iを軸方向から見た場合、面取り部49は、周方向において、4つの給油溝39および4つの排油溝45により4つの面取り部49-1、49-2、49-3、49-4に区画される。面取り部49-1の径方向外側には、テーパ部41-1が隣り合う。面取り部49-2の径方向外側には、テーパ部41-2が隣り合う。面取り部49-3の径方向外側には、テーパ部41-3が隣り合う。面取り部49-4の径方向外側には、テーパ部41-4が隣り合う。スラスト軸受面13iを軸方向から見た場合、面取り部49の面積は、給油溝39の面積よりも大きい。 As shown in FIG. 3, when the thrust bearing surface 13i is viewed in the axial direction, the chamfered portion 49 is formed by the four oil supply grooves 39 and the four oil discharge grooves 45 in the circumferential direction. -2, 49-3, 49-4. The tapered portion 41-1 is adjacent to the chamfered portion 49-1 radially outwardly. The tapered portion 41-2 is adjacent to the chamfered portion 49-2 radially outwardly. The tapered portion 41-3 is adjacent to the chamfered portion 49-3 radially outwardly. The tapered portion 41-4 is adjacent to the chamfered portion 49-4 radially outwardly. When the thrust bearing surface 13i is viewed in the axial direction, the area of the chamfered portion 49 is larger than the area of the oil supply groove 39 .
 図3に示すように、スラスト軸受面13iを軸方向から見た場合、給油溝39の周方向の両側には、一対の面取り部49(例えば、面取り部49-2、49-3)が設けられる。給油溝39を流通した潤滑油は、面取り部49で周方向に分岐する。具体的に、給油溝39の回転方向RD前方側を流通した潤滑油は、給油溝39の回転方向RD前方側に隣り合う面取り部49(例えば、面取り部49-2)に到達する。また、給油溝39の回転方向RD後方側を流通した潤滑油は、給油溝39の回転方向RD後方側に隣り合う面取り部49(例えば、面取り部49-3)に到達する。ここで、給油溝39の回転方向RD前方側の面積、すなわち、給油溝39の半分の面積は、給油溝39に対し回転方向RD前方側に隣り合う面取り部49(例えば、面取り部49-2)の面積よりも小さい。また、給油溝39の回転方向RD後方側の面積、すなわち、給油溝39の半分の面積は、給油溝39に対し回転方向RD後方側に隣り合う面取り部49(例えば、面取り部49-3)の面積よりも小さい。換言すれば、各面取り部49の面積は、給油溝39の半分の面積よりも大きい。このように、複数の給油溝39により周方向に区画された一つの面取り部49の面積は、給油溝39の半分の面積よりも大きい。 As shown in FIG. 3, when the thrust bearing surface 13i is viewed in the axial direction, a pair of chamfered portions 49 (for example, chamfered portions 49-2 and 49-3) are provided on both sides of the oil supply groove 39 in the circumferential direction. be done. The lubricating oil that has flowed through the oil supply groove 39 branches in the circumferential direction at the chamfered portion 49 . Specifically, the lubricating oil circulating on the front side of the oil supply groove 39 in the rotational direction RD reaches the chamfered portion 49 (for example, the chamfered portion 49-2) adjacent to the front side of the oil supply groove 39 in the rotational direction RD. Further, the lubricating oil that flows in the rear side of the oil supply groove 39 in the rotation direction RD reaches the chamfered portion 49 (for example, the chamfered portion 49-3) adjacent to the rear side of the oil supply groove 39 in the rotation direction RD. Here, the area of the oil supply groove 39 on the front side in the rotation direction RD, that is, the half area of the oil supply groove 39 is the chamfered portion 49 adjacent to the oil supply groove 39 on the front side in the rotation direction RD (for example, the chamfered portion 49-2). ). Further, the area of the oil groove 39 on the rear side in the rotational direction RD, that is, the half area of the oil groove 39 is the chamfered portion 49 (for example, the chamfered portion 49-3) adjacent to the oil groove 39 on the rear side in the rotational direction RD. smaller than the area of In other words, the area of each chamfered portion 49 is larger than half the area of the oil supply groove 39 . Thus, the area of one chamfered portion 49 partitioned in the circumferential direction by the plurality of oil grooves 39 is larger than half the area of the oil groove 39 .
 各面取り部49の面積が給油溝39の半分の面積よりも小さいと、給油溝39を流通する潤滑油の大部分が排油溝45に流れてしまい、給油溝39からテーパ部41に潤滑油が流れにくくなる。これに対し、各面取り部49の面積が給油溝39の半分の面積よりも大きいと、各面取り部49の面積が給油溝39の半分の面積よりも小さい場合に比べ、給油溝39から面取り部49を介してテーパ部41に潤滑油が流れやすくなる。その結果、スラスト軸受面13iの全周に亘って適切に潤滑油を供給することができ、スラスト軸受面13iの摩耗を防止することができる。 If the area of each chamfered portion 49 is smaller than half the area of the oil supply groove 39 , most of the lubricating oil flowing through the oil supply groove 39 flows into the oil drain groove 45 . becomes difficult to flow. On the other hand, when the area of each chamfered portion 49 is larger than half the area of the oil groove 39, compared to the case where the area of each chamfered portion 49 is smaller than half the area of the oil groove 39, the oil groove 39 extends from the chamfered portion. The lubricating oil can easily flow to the taper portion 41 via 49 . As a result, lubricating oil can be appropriately supplied to the entire circumference of the thrust bearing surface 13i, and wear of the thrust bearing surface 13i can be prevented.
 図5は、本開示の実施形態に係る軸受13のスラスト軸受面13i側の端部の拡大断面図である。図5は、軸受13の中心軸を含む断面を示す。図5に示すように、面取り部49の径方向の幅は、給油溝39の径方向の幅よりも大きい。そして、面取り部49の流路断面積S1は、給油溝39の流路断面積S2よりも大きい。これにより、面取り部49の流路断面積S1が給油溝39の流路断面積S2よりも小さい場合に比べ、テーパ部41に潤滑油を供給し易くすることができる。 FIG. 5 is an enlarged cross-sectional view of the end of the bearing 13 on the thrust bearing surface 13i side according to the embodiment of the present disclosure. FIG. 5 shows a cross section including the central axis of bearing 13 . As shown in FIG. 5 , the radial width of chamfered portion 49 is greater than the radial width of oil supply groove 39 . The channel cross-sectional area S<b>1 of the chamfered portion 49 is larger than the channel cross-sectional area S<b>2 of the oil supply groove 39 . This makes it easier to supply the lubricating oil to the tapered portion 41 than when the channel cross-sectional area S<b>1 of the chamfered portion 49 is smaller than the channel cross-sectional area S<b>2 of the oil supply groove 39 .
 以上説明したように、本実施形態に係る軸受13では、ラジアル軸受面13d、13eとスラスト軸受面13i、13jとの間に、給油溝39の半分の面積よりも大きい面積の面取り部49-1、49-2、49-3、49-4を設けている。これにより、スラスト軸受面13i、13jの全周に亘って適切に潤滑油を供給することができ、スラスト軸受面13i、13jの摩耗を防止することができる。 As described above, in the bearing 13 according to the present embodiment, the chamfered portion 49-1 having an area larger than half the area of the oil supply groove 39 is provided between the radial bearing surfaces 13d, 13e and the thrust bearing surfaces 13i, 13j. , 49-2, 49-3 and 49-4. As a result, lubricating oil can be appropriately supplied to the entire circumference of the thrust bearing surfaces 13i and 13j, and wear of the thrust bearing surfaces 13i and 13j can be prevented.
(第1変形例)
 図6は、第1変形例のスラスト軸受面113iの断面形状を示す図である。上記実施形態の過給機TCと実質的に等しい構成要素については、同一符号を付して説明を省略する。図6に示すように、第1変形例のスラスト軸受面113iは、排油溝145を備える。第1変形例のスラスト軸受面113iは、排油溝145の形状のみが上記実施形態のスラスト軸受面13iと異なる。
(First modification)
FIG. 6 is a diagram showing the cross-sectional shape of the thrust bearing surface 113i of the first modified example. Constituent elements that are substantially the same as those of the supercharger TC of the above-described embodiment are given the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 6, the thrust bearing surface 113i of the first modified example includes oil drain grooves 145. As shown in FIG. A thrust bearing surface 113i of the first modified example differs from the thrust bearing surface 13i of the above embodiment only in the shape of the oil drain groove 145 .
 排油溝145は、傾斜部145aを含む。傾斜部145aは、排油溝145のうち回転方向RD前方側の側面に形成される。傾斜部145aは、排油溝145の溝底とテーパ部41との間に形成される。傾斜部145aの軸方向における高さは、排油溝145の溝底からテーパ部41に向かって漸増する。つまり、傾斜部145aの軸方向における高さは、回転方向RD前方側に向かって漸増する。傾斜部145aは、軸方向に直交する平面に対し一定の角度を有する。傾斜部145aの傾斜角度は、上記実施形態の排油溝45のうち回転方向RD前方側の端部の傾斜角度より小さい。 The oil drain groove 145 includes an inclined portion 145a. The inclined portion 145a is formed on the side surface of the oil drain groove 145 on the forward side in the rotation direction RD. The inclined portion 145 a is formed between the groove bottom of the oil drain groove 145 and the tapered portion 41 . The axial height of the inclined portion 145 a gradually increases from the groove bottom of the oil drain groove 145 toward the tapered portion 41 . That is, the axial height of the inclined portion 145a gradually increases toward the front side in the rotational direction RD. The inclined portion 145a has a certain angle with respect to a plane orthogonal to the axial direction. The inclination angle of the inclined portion 145a is smaller than the inclination angle of the end portion of the oil drain groove 45 of the above-described embodiment on the front side in the rotational direction RD.
 このように、第1変形例のスラスト軸受面113iは、傾斜部145aを有する排油溝145を備える。これにより、排油溝145を流通する潤滑油がテーパ部41に向かって流れやすくなる。その結果、上記実施形態よりも多くの潤滑油をテーパ部41に供給することができる。 Thus, the thrust bearing surface 113i of the first modification includes the oil drain groove 145 having the inclined portion 145a. This makes it easier for the lubricating oil flowing through the oil drain groove 145 to flow toward the tapered portion 41 . As a result, more lubricating oil can be supplied to the tapered portion 41 than in the above embodiment.
(第2変形例)
 図7は、第2変形例のスラスト軸受面213iの正面図である。上記実施形態の過給機TCと実質的に等しい構成要素については、同一符号を付して説明を省略する。図7に示すように、第2変形例のスラスト軸受面213iは、非貫通溝220を備える。第2変形例のスラスト軸受面213iは、非貫通溝220を備える点でのみ、上記実施形態のスラスト軸受面13iと異なる。
(Second modification)
FIG. 7 is a front view of a thrust bearing surface 213i of a second modified example. Constituent elements that are substantially the same as those of the supercharger TC of the above-described embodiment are given the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 7, the thrust bearing surface 213i of the second modification includes non-through grooves 220. As shown in FIG. The thrust bearing surface 213i of the second modification differs from the thrust bearing surface 13i of the above embodiment only in that non-through grooves 220 are provided.
 非貫通溝220は、テーパ部41に形成される。非貫通溝220は、排油溝45から回転方向RD前方側に離隔している。ただし、非貫通溝220は、排油溝45と周方向に隣り合い、互いに連通していてもよい。非貫通溝220は、面取り部49と連通し、径方向に延在する。非貫通溝220の内径端が面取り部49に開口し、外径端がスラスト軸受面13iの外周縁に開口しない。非貫通溝220の内径端は、面取り部49に接続され、非貫通溝220の外径端は、テーパ部41内に位置する。つまり、非貫通溝220は、スラスト軸受面213iを径方向に貫通しない。 The non-through groove 220 is formed in the tapered portion 41 . The non-through groove 220 is separated from the oil drain groove 45 forward in the rotational direction RD. However, the non-through groove 220 may be adjacent to the oil drain groove 45 in the circumferential direction and communicate with each other. The non-through groove 220 communicates with the chamfered portion 49 and extends in the radial direction. The inner diameter end of the non-through groove 220 opens to the chamfered portion 49, and the outer diameter end does not open to the outer peripheral edge of the thrust bearing surface 13i. The inner diameter end of the non-through groove 220 is connected to the chamfered portion 49 , and the outer diameter end of the non-through groove 220 is located within the tapered portion 41 . That is, the non-through groove 220 does not radially penetrate the thrust bearing surface 213i.
 非貫通溝220には、給油溝39から面取り部49に流入した潤滑油の一部が導入される。非貫通溝220内に導入された潤滑油は、非貫通溝220からテーパ部41に供給される。非貫通溝220は、テーパ部41の周方向の中央に対し、回転方向RD後方側に配置される。潤滑油は、シャフト15の回転に伴って、回転方向RDに流れる。そのため、非貫通溝220をテーパ部41の周方向の中央に対し、回転方向RD後方側に配置することで、回転方向RD前方側に配置する場合よりも、テーパ部41に潤滑油を多く供給することができる。その結果、スラスト軸受面13iに必要な油量および油圧を維持し易くすることができる。 A portion of the lubricating oil that has flowed into the chamfered portion 49 from the oil supply groove 39 is introduced into the non-through groove 220 . The lubricating oil introduced into the non-through groove 220 is supplied from the non-through groove 220 to the tapered portion 41 . The non-through groove 220 is arranged on the rear side in the rotational direction RD with respect to the center of the tapered portion 41 in the circumferential direction. The lubricating oil flows in the rotation direction RD as the shaft 15 rotates. Therefore, by arranging the non-penetrating groove 220 on the rear side in the rotational direction RD with respect to the center in the circumferential direction of the tapered portion 41, more lubricating oil is supplied to the tapered portion 41 than in the case of arranging it on the front side in the rotational direction RD. can do. As a result, it is possible to easily maintain the necessary amount of oil and hydraulic pressure for the thrust bearing surface 13i.
 このように、第2変形例のスラスト軸受面213iは、テーパ部41に非貫通溝220を備える。これにより、上記実施形態よりも多くの潤滑油をテーパ部41に供給することができる。その結果、スラスト軸受面213iの全周に亘って適切に潤滑油を供給することができ、スラスト軸受面213iの摩耗を防止することができる。 Thus, the thrust bearing surface 213i of the second modified example has the non-through groove 220 in the tapered portion 41. As shown in FIG. As a result, more lubricating oil can be supplied to the taper portion 41 than in the above-described embodiment. As a result, lubricating oil can be appropriately supplied to the entire circumference of the thrust bearing surface 213i, and wear of the thrust bearing surface 213i can be prevented.
 以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載
された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
Although the embodiments of the present disclosure have been described above with reference to the accompanying drawings, it goes without saying that the present disclosure is not limited to such embodiments. It is clear that a person skilled in the art can conceive of various modifications or modifications within the scope of the claims, and it is understood that these also belong to the technical scope of the present disclosure. be done.
 上記では、軸受13が過給機TCに設けられる例を説明した。ただし、軸受13は、過給機TC以外の他の装置に設けられてもよい。 An example in which the bearing 13 is provided in the supercharger TC has been described above. However, the bearing 13 may be provided in a device other than the supercharger TC.
 上記では、軸受13がセミフローティング軸受である例を説明した。ただし、軸受13は、スラスト軸受面を有していれば、セミフローティング軸受以外の軸受であってもよい。 An example in which the bearing 13 is a semi-floating bearing has been described above. However, the bearing 13 may be a bearing other than the semi-floating bearing as long as it has a thrust bearing surface.
 上記では、非貫通溝220がテーパ部41の周方向の中央に対し、回転方向の後方側に位置する例について説明した。しかし、これに限定されず、非貫通溝220は、テーパ部41の周方向の中央に対し、回転方向の前方側に位置してもよい。 An example in which the non-penetrating groove 220 is located on the rear side in the rotational direction with respect to the center of the tapered portion 41 in the circumferential direction has been described above. However, without being limited to this, the non-penetrating groove 220 may be positioned forward in the rotational direction with respect to the center of the tapered portion 41 in the circumferential direction.
13 軸受
13a 本体
13i スラスト軸受面
13j スラスト軸受面
15 シャフト
39 給油溝
41 テーパ部
41-1 テーパ部
41-2 テーパ部
41-3 テーパ部
41-4 テーパ部
45 排油溝
47 隔壁部
49 面取り部
49-1 面取り部
49-2 面取り部
49-3 面取り部
49-4 面取り部
145 排油溝
145a 傾斜部
220 非貫通溝
TC 過給機
13 Bearing 13a Body 13i Thrust bearing surface 13j Thrust bearing surface 15 Shaft 39 Oil supply groove 41 Tapered portion 41-1 Tapered portion 41-2 Tapered portion 41-3 Tapered portion 41-4 Tapered portion 45 Drainage groove 47 Partition wall portion 49 Chamfered portion 49-1 Chamfered portion 49-2 Chamfered portion 49-3 Chamfered portion 49-4 Chamfered portion 145 Oil drainage groove 145a Inclined portion 220 Non-through groove TC Turbocharger

Claims (5)

  1.  シャフトが挿通される環状の本体と、
     前記本体の内周面に設けられ、前記シャフトと径方向に対向するラジアル軸受面と、
     前記ラジアル軸受面に設けられ、前記本体の軸方向に延在する複数の給油溝と、
     前記本体の端面に設けられるスラスト軸受面と、
     前記本体の周方向に互いに間隔を空けて前記スラスト軸受面に設けられ、前記シャフトの回転方向に向かって浅くなる複数のテーパ部と、
     前記スラスト軸受面に設けられ、前記複数のテーパ部と前記スラスト軸受面の外周縁との間に配される隔壁部と、
     前記スラスト軸受面に設けられ、前記給油溝と前記外周縁とを接続する排油溝と、
     前記ラジアル軸受面と前記スラスト軸受面との間に設けられ、前記複数の給油溝により前記周方向に互いに区画された複数の面取り部であって、前記軸方向から見た場合に、各面取り部の面積が、前記給油溝の半分の面積よりも大きい、複数の面取り部と、
     を備える、
     軸受。
    an annular body through which the shaft is inserted;
    a radial bearing surface provided on the inner peripheral surface of the main body and radially facing the shaft;
    a plurality of oil supply grooves provided in the radial bearing surface and extending in the axial direction of the main body;
    a thrust bearing surface provided on the end surface of the main body;
    a plurality of tapered portions provided on the thrust bearing surface at intervals in the circumferential direction of the main body and becoming shallower in the rotational direction of the shaft;
    a partition wall provided on the thrust bearing surface and arranged between the plurality of tapered portions and an outer peripheral edge of the thrust bearing surface;
    an oil drain groove provided in the thrust bearing surface and connecting the oil supply groove and the outer peripheral edge;
    A plurality of chamfered portions provided between the radial bearing surface and the thrust bearing surface and partitioned from each other in the circumferential direction by the plurality of oil supply grooves, wherein when viewed from the axial direction, each chamfered portion a plurality of chamfers each having an area larger than half the area of the oil supply groove;
    comprising a
    bearing.
  2.  前記排油溝は、前記回転方向の前方側に傾斜部を有する、
     請求項1に記載の軸受。
    The oil drain groove has an inclined portion on the forward side in the rotational direction,
    A bearing according to claim 1.
  3.  前記テーパ部に設けられる非貫通溝であって、当該非貫通溝の内径端が前記面取り部に接続され、当該非貫通溝の外径端が前記テーパ部内に位置する、非貫通溝をさらに備える、
     請求項1または2に記載の軸受。
    It further comprises a non-through groove provided in the tapered portion, wherein an inner diameter end of the non-through groove is connected to the chamfered portion, and an outer diameter end of the non-through groove is positioned within the tapered portion. ,
    3. A bearing according to claim 1 or 2.
  4.  前記非貫通溝は、前記テーパ部の前記周方向の中央に対し、前記回転方向の後方側に位置する、
     請求項3に記載の軸受。
    The non-through groove is located on the rear side in the rotational direction with respect to the center of the tapered portion in the circumferential direction,
    4. A bearing according to claim 3.
  5.  請求項1から4のいずれか一項に記載の軸受を備える過給機。 A turbocharger comprising the bearing according to any one of claims 1 to 4.
PCT/JP2022/000912 2021-04-02 2022-01-13 Bearing and supercharger WO2022209131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063731 2021-04-02
JP2021-063731 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022209131A1 true WO2022209131A1 (en) 2022-10-06

Family

ID=83458515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000912 WO2022209131A1 (en) 2021-04-02 2022-01-13 Bearing and supercharger

Country Status (1)

Country Link
WO (1) WO2022209131A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612125U (en) * 1979-07-10 1981-02-02
JPH08189525A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Dynamic pressure bearing spindle motor
JP2007023858A (en) * 2005-07-14 2007-02-01 Toyota Motor Corp Bearing structure for turbocharger
WO2020129846A1 (en) * 2018-12-21 2020-06-25 Tpr株式会社 Thrust washer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612125U (en) * 1979-07-10 1981-02-02
JPH08189525A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Dynamic pressure bearing spindle motor
JP2007023858A (en) * 2005-07-14 2007-02-01 Toyota Motor Corp Bearing structure for turbocharger
WO2020129846A1 (en) * 2018-12-21 2020-06-25 Tpr株式会社 Thrust washer

Similar Documents

Publication Publication Date Title
US9822812B2 (en) Tilting pad journal bearing for use in a turbocharger
US20140112776A1 (en) Bearing device for turbocharger
US10520026B2 (en) Bearing structure and turbocharger
JP6806150B2 (en) Bearings and turbochargers
US10393010B2 (en) Multi-arc bearing and turbocharger
US11441602B2 (en) Bearing structure and turbocharger
JP6601499B2 (en) Bearing structure and turbocharger
CN111699325B (en) Bearing structure
JP2009167872A (en) Turbocharger
JP6704107B2 (en) Thrust collar and thrust bearing device
CN111479991B (en) Pressure booster
WO2022209131A1 (en) Bearing and supercharger
JP7468639B2 (en) Bearings and turbochargers
US20190107052A1 (en) Turbocharger
WO2022107524A1 (en) Bearing and supercharger
JP2016008600A (en) Bearing mechanism and supercharger
JP6512296B2 (en) Bearing structure and turbocharger
JP7243848B2 (en) Multi-lobe bearing and supercharger
US11493052B2 (en) Bearing and turbocharger
JP7359295B2 (en) Multi-arc bearing
WO2020017136A1 (en) Supercharger
JP2021131025A (en) Supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP