WO2022209075A1 - Analysis system and program for analysis system - Google Patents

Analysis system and program for analysis system Download PDF

Info

Publication number
WO2022209075A1
WO2022209075A1 PCT/JP2021/047821 JP2021047821W WO2022209075A1 WO 2022209075 A1 WO2022209075 A1 WO 2022209075A1 JP 2021047821 W JP2021047821 W JP 2021047821W WO 2022209075 A1 WO2022209075 A1 WO 2022209075A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
liquid
analysis
analysis system
operation history
Prior art date
Application number
PCT/JP2021/047821
Other languages
French (fr)
Japanese (ja)
Inventor
悠佑 長井
慧 若林
裕之 北村
Kayo MORINAGA (森長 佳世)
Original Assignee
株式会社島津製作所
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 株式会社堀場製作所 filed Critical 株式会社島津製作所
Priority to JP2023510261A priority Critical patent/JPWO2022209075A1/ja
Publication of WO2022209075A1 publication Critical patent/WO2022209075A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/80Fraction collectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/80Fraction collectors
    • G01N30/82Automatic means therefor

Definitions

  • the present invention relates to an analysis system that combines liquid chromatography and Raman spectroscopic analysis.
  • a sample holder such as a plate having wells formed thereon is used as a sample holder so that the fractionated liquid fractionated by the fraction collector can be supplied as it is to another analyzer.
  • the present invention provides a method for managing the operation history of each sample holder of a sample holder, even when a sample holder having a plurality of sample holders is used over a plurality of times of liquid chromatography. It is an object of the present invention to provide an analysis system capable of reducing the burden on the user and preventing contamination of the sampled liquid due to human error and omission of analysis due to selection errors of wells to be analyzed.
  • an analysis system includes a liquid chromatograph that separates a liquid sample into components, and a liquid containing the sample components separated by the liquid chromatograph into a plurality of sample holders formed in a sample holder.
  • An analysis system comprising: a fraction collector for fractionation; and an analyzer for analyzing sample components contained in each fractionated liquid fractionated by said fraction collector, wherein said memory stores an operation history for each of said sample holders. It is characterized by comprising a part.
  • the storage unit stores the operation history of each sample holding unit, whether or not each sample holding unit has been used for fractionating the liquid to be collected can be determined. It is not necessary for the user to manage the operation history such as using a memo or the like, and the burden on the user can be greatly reduced compared to the conventional art. In addition, since the user does not need to manage the operation history of each sample holder, it is possible to prevent contamination of the fractionated liquid due to human error and omission of analysis due to selection error of wells to be analyzed.
  • a specific embodiment of the present invention is an analysis system in which the analysis is Raman spectroscopic analysis.
  • the storage unit stores the operation history in association with the label attached to the sample holder.
  • the storage unit stores, as the operation history, whether or not a certain sample holder has been used to collect the liquid to be collected, the same sample holder can be obtained in subsequent liquid chromatography. It is possible to easily identify a usable sample holder and a sample holder to be selected when using it for collection of a fractionated liquid or when analyzing with another analyzer.
  • the storage unit may store, as the operation history, the type of analysis and/or analysis conditions performed on each sample holding unit in the past.
  • a history display section for displaying the operation history may be further provided.
  • the user's burden of managing the sample holder can be greatly reduced compared to the conventional system, and the preparative liquid can be contaminated or analyzed due to human error. It is possible to provide an analysis system capable of suppressing omissions in analysis due to wrong selection of wells.
  • FIG. 1 is a schematic diagram showing the configuration of an analysis system in one embodiment of the present invention
  • FIG. FIG. 4 is a schematic diagram showing an example of a sample holder used in the same embodiment
  • the functional block diagram which shows the structure of the integrated management apparatus in the same embodiment, the LC control calculating part, the fraction control calculating part, and the Raman control calculating part.
  • a portal screen that is one of the operation screens displayed by the operation screen display unit according to the embodiment. 4 is a drip range setting screen, which is one of the operation screens displayed by the operation screen display unit according to the embodiment; 4 is an operation history display screen, which is one of the operation screens displayed by the operation screen display unit according to the embodiment;
  • the analysis system 100 of this embodiment performs LC-Raman analysis using both liquid chromatography and Raman spectroscopy, and is a type of so-called hyphenated technology.
  • the analysis system 100 integrates and manages the chromatograph 10, the fraction collector 20, and the Raman spectrometer 30, their operation settings, data analysis, display of analysis results, and the like. and an integrated management device 40 .
  • the chromatograph 10, the fraction collector 20, and the Raman spectroscopic analysis device 30 are provided with control calculation units 1C, 2C, and 3C, which are dedicated software for performing hardware operations and data analysis.
  • the integrated management device 40 is configured to operate as overlay software, and the integrated management device 40 and the control calculation units 1C, 2C, and 3C of each device cooperate to operate integrally as one analysis system 100. do.
  • the chromatograph 10 separates and detects each component of the liquid sample S by liquid chromatography.
  • the chromatograph 10 sucks up the mobile phase Z stored in the storage part 11 into the channel 13 by the pump 12, injects the liquid sample S into the channel 13, and By feeding the sample S to the separation column 14, the liquid sample S is separated into components.
  • a component detector 15 for detecting separated components of the liquid sample S is provided downstream of the separation column 14 .
  • the mobile phase Z is, for example, a mixed liquid in which a plurality of types of liquids are mixed, and here is a mixed liquid of water and an organic solvent such as ethanol.
  • the mobile phase Z may consist of a single liquid, or may be a gradient solvent having a concentration gradient.
  • the chromatograph 10 further includes an LC control calculation section 1C that controls each device such as the pump 12 and generates a chromatogram of the liquid sample S based on the output of the component detector 15.
  • the LC control calculation unit 1C is composed of a dedicated or general-purpose computer, executes a chromatographic program stored in a memory, and realizes its functions through the cooperation of each device.
  • the LC control calculation unit 1C receives chromatograph setting information from the integrated management device 40, controls the delivery speed of the mobile phase Z of the pump 12 based on the information, and controls the component detector 15 Data on the chromatogram of the liquid sample S is generated based on the output signal. In addition, the LC control calculation unit 1C outputs data regarding the generated chromatogram to the integrated management device 40.
  • the fraction collector 20 is provided on the downstream side of the component detector 15 of the chromatograph 10, as shown in FIG. is.
  • the fraction collector 20 stores a liquid containing sample components derived from a liquid sample S separated by liquid chromatography and a mobile phase Z on a plate PL having a plurality of wells W formed in a matrix. It is configured to separate by dropping a fixed amount into different wells W.
  • the liquid fractionated on the plate PL by the fraction collector 20 is referred to as a fractionated liquid SS.
  • the concept also includes those consisting of the mobile phase Z only.
  • the plate PL has an identification code indicating the plate name etc. as an individual mark A.
  • the identification code is, for example, a two-dimensional bar code such as DataMatrix (registered trademark), and is printed or stamped on the surface of the plate PL on which the wells W are formed.
  • the identification code is not limited to this, and may be a QR code (registered trademark) or a one-dimensional bar code.
  • the configuration of the fraction collector 20 will be described in detail. It is configured to drop SS in predetermined amounts one after another.
  • the sample component derived from the liquid sample S is included, but the fractionated liquid corresponding to the portion other than the peak
  • the SS may also contain sample components of a type that cannot be detected by the component detector 15 .
  • a first code reader 23 is attached to the mobile probe 21 for reading the identification code given to the plate PL.
  • the identification code of the plate PL is read by the first code reader 23, and the plate name and the like of the plate PL are obtained. It is configured as follows.
  • the fraction collector 20 further includes a fraction control calculation unit 2C that generates fraction information, which is information regarding the control of the mobile probe 21 and the like, and the dropping state of the preparative liquid SS into each well W of each plate PL. ing.
  • the fraction control calculation unit 2C is composed of a dedicated or general-purpose computer, executes a program dedicated to the fraction collector stored in the memory, and realizes its function through the cooperation of each device.
  • the fraction control calculation unit 2C controls the position of the mobile probe 21 and the fractionation conditions (fractionation flow rate, fractionation time, etc.) of the fractionated liquid fractionated from the movable probe 21 to the plate PL. do.
  • the fraction control calculation unit 2C also calculates the predicted fraction result, which is the usage range of the wells W in the plate PL when the preparative liquid SS is dropped based on the fraction setting information input from the integrated management device 40, and the actual Fraction information such as a fraction result when the preparative liquid SS is dropped onto the plate PL is generated. Data relating to the fraction information generated by the fraction control calculation unit 2C is transmitted to the integrated management device 40.
  • the Raman spectroscopic analyzer 30 analyzes the sample components contained in the sampled liquid SS dropped in the wells W on the plate PL in a dried state based on Raman spectroscopy.
  • the plate PL the user carries it to the Raman spectroscopic analyzer 30 after it has been dried in the fraction collector 20.
  • a plate PL may be transported.
  • the Raman spectroscopic analysis device 30 is a light irradiator that irradiates wells W on a plate PL holding sample components derived from a liquid sample S in which a fractionation liquid SS is dried with excitation light such as laser light. 31, a spectroscope 32 for spectroscopy the Raman scattered light generated from the sample component by being irradiated with the excitation light, a Raman scattered light detector 33 for detecting the spectroscopic Raman scattered light, and irradiating the light. It is equipped with a camera 34 for taking micrographs of the wells W and a second code reader 35 for reading the identification code given to the plate PL.
  • the Raman spectroscopic analyzer 30 controls the position on the plate PL where the laser light emitted by the light irradiator 31 is irradiated, and Raman control for generating a Raman spectrum based on the output of the Raman scattered light detector 33.
  • a computing unit 3C is further provided.
  • the Raman control calculation unit 3C is configured by a dedicated or general-purpose computer, executes a program dedicated to the Raman spectroscopic analysis apparatus stored in memory, and realizes its function through the cooperation of each device.
  • the Raman control calculation unit 3C receives Raman spectroscopic analysis setting information from the integrated management device 40, controls each device based on the information, and controls each device on each well W held on the plate PL Raman spectroscopy is performed on the sample components.
  • the Raman control calculation unit 3C also generates data on Raman spectra based on the output from the Raman scattered light detector 33 obtained from the sample components of each well W.
  • the Raman control calculation unit 3C for the Raman spectrum obtained from the sample component of each well W, reads the identification code indicating the plate name of the plate PL read by the second code reader 35, and the well W irradiated with the laser beam.
  • the positional information and the microscopic image data of the well W captured by the camera 34 are paired and transmitted to the integrated management device 40 .
  • the integrated management device 40 is composed of a dedicated or general-purpose computer, executes a program for the integrated management device stored in the memory, and realizes its functions through the cooperation of each device. Further, as shown in FIG. 3, the integrated management device 40 is connected to the LC control calculation unit 1C, the fraction control calculation unit 2C, and the Raman control calculation unit 3C via a wired or wireless network. The chromatograph setting information, the fraction setting information, and the Raman spectroscopic analysis setting information for setting parameters related to analysis are transmitted to the calculation units 1C, 2C, and 3C, respectively. In addition, the integrated management device 40 receives information on analysis results obtained from the respective control calculation units 1C, 2C, and 3C, operation results performed on the plate PL, and the like.
  • the integrated management device 40 includes an input reception section 41 that receives input from a user, and an operation screen display section 42 that displays an operation screen for each of the devices 10, 20, and 30 on the display DP.
  • a setting information generation unit 43 that generates chromatograph setting information, fraction setting information, and Raman spectroscopic analysis setting information related to analysis based on the input from the user on the operation screen, and transmits to each device 10, 20, 30; Chromatograph setting information generated by the setting information generation unit 43, fraction setting information, Raman spectroscopic analysis setting information, information on the analysis results and operation results received from each device 10, 20, 30, information on the plate PL being used
  • At least a storage unit 44 which is a database for storing information, etc., and an analysis summary display unit 45 for displaying an integrated analysis summary screen based on the information recorded in the storage unit 44 on the display DP.
  • the input reception unit 41 receives input from a user on an operation screen, an analysis overview screen, or the like using an input device such as a keyboard or mouse.
  • the operation screen display unit 42 displays an operation screen for setting analysis or displaying analysis results on the display DP.
  • An example of the displayed operation screen is a portal screen SC1 as shown in FIG.
  • the portal screen SC1 is an operation screen for selecting settings related to analysis of any one of the chromatograph 10, the fraction collector 20, and the Raman spectroscopic analysis device 30, or selecting display of analysis results stored in the storage unit 44.
  • FIG. 5 is an example of an operation screen of the fraction collector 20 displayed as a window when, for example, the fraction area is selected by the user.
  • the identification code of the selected plate PL is read by the first code reader 23 of the fraction collector 20, and the plate PL to be used is Plate names and images are displayed.
  • the operation screen of FIG. 5 is a dropping range setting screen SC2 for setting the dropping range of the preparative liquid SS onto the plate PL based on the setting chromatogram. It is possible to set under what conditions the fractionated liquid SS derived from the component detector 15 of the chromatograph 10 is fractionated.
  • the setting information generator 43 transmits the fraction setting information to the fraction control calculator 2C. Then, the integrated management device 40 receives the predicted result of the range from the position of the well W where dropping is started calculated by the fraction control calculating unit 2C, and the operation screen display unit 42 displays the dropping range setting screen SC2. is displayed on the image of the plate PL in .
  • the setting information generation unit 43 When the user finally approves the settings regarding dripping, the setting information generation unit 43 generates fraction setting information such as fractionation parameters to be transmitted to the fraction collector 20 . Then, the generated fraction setting information is transmitted from the integrated management device 40 to the fraction control calculation unit 2C, and each device of the fraction collector 20 is controlled by the fraction control calculation unit 2C, and the sample liquid SS is applied to the actual plate PL. fractionation is performed. Then, the liquid sample S analyzed by the chromatograph 10 and the identification code indicating the plate name of the plate PL used for sorting are linked and stored in the storage unit 44 .
  • the operation screen displayed by the operation screen display unit 42 is not limited to that of the fraction collector 20.
  • the operation screen of the chromatograph 10 is displayed.
  • the Raman region of the portal screen SC1 is selected by the user, the operation screen of the Raman spectroscopic analyzer 30 is displayed.
  • the setting information generation unit 43 generates chromatograph setting information or Raman spectroscopic analysis setting information for the chromatograph 10 or the Raman spectroscopic analysis device 30 based on the user's input to each operation screen, and transmits the information to the corresponding devices 10 and 30 . . In this way, it is possible to perform the necessary settings for starting the analysis only by inputting to the integrated management device 40, and to perform a series of analyzes without operating the dedicated software of each device 10, 20, 30. can.
  • the storage unit 44 provided in the integrated management device 40 of the analysis system 100 stores, as the information related to the plate PL described above, the type of operation performed on the plate PL in the past, the conditions of the operation, and the type of operation. It also stores the operation history related to results and the like.
  • the storage unit 44 stores this operation history for each of a plurality of wells W provided on the plate PL. Information is stored as to whether or not the fractionation liquid SS has already been dropped and used for fractionation.
  • the storage unit 44 stores, as an operation history, the liquid chromatography conditions at the time of fractionation, the drying conditions for fractionation, and the type of well W already used for fractionation of the fractionation liquid SS. Information such as the order in which the analyzes were performed under what conditions is stored.
  • the operation history for each of these wells W is stored in the storage unit 44 in association with, for example, an identification code indicating a plate name or the like attached as an individual label A to the plate PL.
  • the integrated management device 40 may further include a history display section that displays the operation history regarding each well W stored in the storage section 44 .
  • the operation history display unit has the function of the operation screen display unit 42 described above.
  • An operation history display screen SC3 (FIG. 6) indicating whether or not the selected well SW has been used is displayed on the display DP.
  • the liquid chromatography result R2 indicated as LC and the Raman spectroscopic analysis result R3 indicated as Raman are shown. Therefore, from this display, it can be seen that the sample liquid SS has already been sampled for this well W and the Raman spectroscopic analysis has been performed.
  • the detailed conditions and number of times for each analysis, the drying conditions for the fractionated liquid, etc. are not displayed on the operation history display screen SC3 of FIG. 6, but it goes without saying that these information can also be displayed.
  • the case of setting the dropping range of the preparative liquid by the fraction collector 20 will be described.
  • the identification code is read by the first code reader 23, and the identification code associated with each well W of the plate PL stored in the storage unit 44 is read.
  • Operation history is read.
  • the operation history read from the storage unit 44 is reflected, for example, in the plate image displayed on the operation screen for setting the conditions under which the liquid flowing out from the chromatograph 10 is dropped.
  • the setting information generation unit 43 responds to the input from the user by determining whether the sample liquid SS has already been collected. Selection of the well W in which the history is stored can be restricted.
  • the setting of analysis conditions using the operation history, the confirmation of history information, and the like can be similarly performed not only on the fraction collector 20 but also on the condition setting screens of the chromatograph 10 and the Raman spectroscopic analysis device 30 .
  • the analysis system 100 configured in this way, even when using a plate PL on which a large number of wells W are formed, it is not necessary for the user to manage the usage of each well W by taking notes. do not have. As a result, it is possible to significantly reduce the user's burden of managing the plate PL.
  • the storage unit 44 stores whether or not each well W of the plate PL has been used for fractionation of the fractionation liquid SS, the wells that can be used for fractionation of the fractionation liquid SS in the next analysis are stored. W can be easily determined.
  • the storage unit 44 can also store the liquid chromatography separation conditions when the fractionation liquid SS is fractionated, the dripping conditions of the fractionation liquid SS, the drying conditions after fractionation, and the like. For each sample component held in the well W, analysis conditions can be controlled more strictly. As a result, it is possible to provide the user with judgment materials for judging which well W should be subjected to Raman spectroscopic analysis and the reliability of the results of Raman spectroscopic analysis that has already been performed.
  • Raman spectroscopic analysis is performed multiple times for a group of wells W.
  • Raman spectroscopic analysis is performed multiple times for a group of wells W.
  • the storage unit that stores the operation history is not limited to being provided in the integrated management device as described above.
  • the integrated management device may read and display the operation history stored in each of these control calculation units.
  • the operation history for each well may not necessarily be stored in association with the identification code attached to the plate, but may be stored in association with the identification code or the like attached to each well. Also good.
  • each well based on the usage history of each well, it is not limited to forcibly restricting the operation that is planned for each well, but also an error that the same operation as the planned operation has been performed before. may be displayed and the user may decide whether to continue the operation. Further, the setting as to whether or not to entrust the judgment of the user may be individually set for each operation that can be input or set by the user.
  • the storage unit does not necessarily have to store all of the above-mentioned histories as operation histories, and may at least store some of them.
  • the sample holder that holds the sample liquid or the sample components contained in the sample liquid may be any sample holder that includes a plurality of sample holders that hold the sample liquid or the sample components. Each sample holder does not necessarily have to be integrally fixed to the holder.
  • An example of such a sample holder is a test tube rack that uses an independent container such as a test tube as the sample holder, and that can accommodate a plurality of containers and these containers in a regularly arranged state. and the like can be exemplified.
  • the sample holder in which a plurality of sample holders are integrated is not limited to a plate having wells as described above. A plate or the like may be used.
  • the effect of the present invention can be more pronounced as the number increases, such as 50 or more, 100 or more, or 200 or more. can.
  • the analysis system includes one liquid chromatograph, one fraction collector, and one Raman analysis device, but it may include a plurality of devices of the same type. In such a case, if an operation that has already been performed on one of the multiple devices that can perform the same type of operation is attempted to be repeated on another device, the operation will be restricted or a warning such as an error display will be issued. It is good as
  • the analytical system of the present invention does not necessarily have to be equipped with a Raman spectroscopic analyzer, and a liquid sample separated by liquid chromatography can be analyzed using principles such as infrared spectroscopy, nuclear magnetic resonance, or time-of-flight mass spectrometry. It may be equipped with an analysis device for analysis by using, or may be a combination of a plurality of these various analysis devices.
  • the functions of the units constituting the integrated management device are not limited to those whose functions are realized by ordinary computers.
  • a portable terminal such as a tablet terminal or a smartphone
  • the function of each part explained in the embodiment is realized.
  • the function of each part is realized in the server without performing actual calculations on the mobile terminal, and the analysis overview screen generated by the analysis overview display part and the operation screen generated by the operation screen display part are displayed on the mobile terminal. may be displayed above.
  • the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications are possible without departing from the spirit of the present invention.
  • the present invention even when a sample holder having a plurality of sample holders is used over a plurality of liquid chromatographies, it is possible for a user to manage the operation history of each sample holder of the sample holder. It is possible to provide an analysis system that can reduce the burden compared to the conventional system and can suppress contamination of the sampled liquid due to human error and omission of analysis due to mistaken selection of wells to be analyzed.

Abstract

Provided is an analysis system with which, even when a specimen holding body comprising a plurality of specimen holding parts is used across a plurality of liquid chromatographies, it is possible to reduce the burden on the user with regard to managing an operation log relating to each specimen holding part of the specimen holding body and to suppress contamination of fractionated liquids due to human error, analysis omissions due to a selection error of a well being analysed, or the like. This analysis system comprises: a liquid chromatograph that separates a liquid specimen by component; a fraction collector that fractionates liquids, which contain the specimen components separated by the liquid chromatograph, into specimen holding parts formed by a specimen holding body; and an analysis device that analyses the specimen components contained in the respective fractionated liquids fractionated by the fraction collector. Said analysis system is characterised by comprising a storage unit which stores an operation log for each specimen holding part.

Description

分析システム及び分析システム用プログラムAnalysis systems and programs for analysis systems
 本発明は、液体クロマトグラフィとラマン分光分析等を組み合わせた分析システムに関するものである。 The present invention relates to an analysis system that combines liquid chromatography and Raman spectroscopic analysis.
 複数の分析手法を組み合わせるハイフネイティッド技術の一種として、液体クロマトグラフィとラマン分光分析等の複数の分析手法を組み合わせる場合には、例えば、特許文献1に記載されているように、液体クロマトグラフによって分離されフラクションコレクタにより分取された分取液を、そのまま他の分析装置に供することができるように、試料保持部としてのウエルが形成されたプレート等の試料保持体を使用する場合がある。 As a type of hyphenated technology that combines multiple analytical techniques, when combining multiple analytical techniques such as liquid chromatography and Raman spectroscopic analysis, for example, as described in Patent Document 1, separation by liquid chromatography In some cases, a sample holder such as a plate having wells formed thereon is used as a sample holder so that the fractionated liquid fractionated by the fraction collector can be supplied as it is to another analyzer.
 前述したようなプレートを使用して液体クロマトグラフから流れ出る液体を分取する場合には、1回の液体クロマトグラフィから得られる分取液の滴下だけではプレートの全てのウエルを使いきらず、未使用のまま残っているウエルを次回以降の液体クロマトグラフィに使用することがある。また、液体クロマトグラフィだけでなく、他の分析をする場合においても、1つのプレートの全てのウエルに対して一度に分析をするのではなく、選択したウエルのみを分析することも考えられる。 When fractionating the liquid flowing out from the liquid chromatograph using the plate as described above, it is not possible to use up all the wells of the plate only by dropping the fractionated liquid obtained from one liquid chromatography, and unused wells are not used. The remaining wells may be used for subsequent liquid chromatography. Also, when performing other analyzes besides liquid chromatography, it is conceivable to analyze only selected wells instead of analyzing all wells of one plate at once.
 このような場合において、従来は、どのウエルを分取液の分取や分析に使用したか等というプレートの各ウエルに関する操作履歴をユーザがメモを取る等して管理しているためにユーザの負担が大きい。特に、複数のユーザが同じプレートを共有する場合には、プレートの操作履歴が十分に伝達されず、使用済みのウエルに別の分取液を滴下することによる分取液のコンタミや分析対象となるウエルの選択ミスによる分析漏れ等の人為的ミスが発生する恐れがある。 In such a case, conventionally, the user manages the operation history of each well of the plate, such as which well was used for fractionation and analysis of the preparative liquid, by taking notes. It's a big burden. In particular, when multiple users share the same plate, the operation history of the plate is not sufficiently communicated. There is a risk of human error such as omission of analysis due to wrong selection of different wells.
特開2019-132621号公報JP 2019-132621 A
 そこで、本発明は、複数の試料保持部を備えた試料保持体を複数回の液体クロマトグラフィにわたって使用する場合であっても、試料保持体の各試料保持部についての操作履歴の管理に係るユーザの負担を従来よりも小さくし、かつ人為的ミスによる分取液のコンタミや分析対象となるウエルの選択ミスによる分析漏れ等を抑制することができる分析システムを提供することを目的とする。 Accordingly, the present invention provides a method for managing the operation history of each sample holder of a sample holder, even when a sample holder having a plurality of sample holders is used over a plurality of times of liquid chromatography. It is an object of the present invention to provide an analysis system capable of reducing the burden on the user and preventing contamination of the sampled liquid due to human error and omission of analysis due to selection errors of wells to be analyzed.
 すなわち、本発明に係る分析システムは、液体試料を成分ごとに分離する液体クロマトグラフと、前記液体クロマトグラフにより分離された試料成分を含む液体を試料保持体に形成された複数の試料保持部に分取するフラクションコレクタと、前記フラクションコレクタによって分取された各分取液に含まれる試料成分を分析する分析装置とを含む分析システムであって、前記各試料保持部に対する操作履歴を記憶する記憶部を備えたことを特徴とする。 That is, an analysis system according to the present invention includes a liquid chromatograph that separates a liquid sample into components, and a liquid containing the sample components separated by the liquid chromatograph into a plurality of sample holders formed in a sample holder. An analysis system comprising: a fraction collector for fractionation; and an analyzer for analyzing sample components contained in each fractionated liquid fractionated by said fraction collector, wherein said memory stores an operation history for each of said sample holders. It is characterized by comprising a part.
 このように構成された分析システムによれば、前記記憶部が前記各試料保持部に関する操作履歴を記憶するものであるので、前記各試料保持部が前記分取液の分取に使用されたか否か等の操作履歴をユーザがメモなどによって管理しなくともよく、ユーザの負担を従来よりも大幅に軽減することができる。また各試料保持部についての操作履歴をユーザが管理しなくてよいので、人為的ミスによる分取液のコンタミや分析対象となるウエルの選択ミスによる分析漏れ等を抑制することも可能である。 According to the analysis system configured in this way, since the storage unit stores the operation history of each sample holding unit, whether or not each sample holding unit has been used for fractionating the liquid to be collected can be determined. It is not necessary for the user to manage the operation history such as using a memo or the like, and the burden on the user can be greatly reduced compared to the conventional art. In addition, since the user does not need to manage the operation history of each sample holder, it is possible to prevent contamination of the fractionated liquid due to human error and omission of analysis due to selection error of wells to be analyzed.
 本発明の具体的な実施態様としては、前記分析がラマン分光分析である分析システムを挙げることができる。 A specific embodiment of the present invention is an analysis system in which the analysis is Raman spectroscopic analysis.
 前記記憶部が、前記操作履歴を前記試料保持体に付された標識に紐づけて記憶するものとすることが好ましい。 It is preferable that the storage unit stores the operation history in association with the label attached to the sample holder.
 前記記憶部が、前記操作履歴として、ある1つの試料保持部が前記分取液の採取に使用されたか否かを記憶するものであれば、同じ試料保持体を次回以降の液体クロマトグラフィで得られる分取液の採取に使用する場合や別の分析装置で分析する場合に、使用可能な試料保持部や選択すべき試料保持部を簡単に識別することができる。 If the storage unit stores, as the operation history, whether or not a certain sample holder has been used to collect the liquid to be collected, the same sample holder can be obtained in subsequent liquid chromatography. It is possible to easily identify a usable sample holder and a sample holder to be selected when using it for collection of a fractionated liquid or when analyzing with another analyzer.
 より使い勝手の良い分析システムとするために、前記記憶部が、各試料保持部に対して過去に行われた分析の種類及び/又は分析条件を前記操作履歴として記憶するものとしても良いし、これら操作履歴を表示する履歴表示部をさらに備えるものとしても良い。 In order to make the analysis system more user-friendly, the storage unit may store, as the operation history, the type of analysis and/or analysis conditions performed on each sample holding unit in the past. A history display section for displaying the operation history may be further provided.
 人為的なミスをより低減させるには、前記記憶部が記憶している前記操作履歴に基づいて、前記各試料保持部に対する操作を制限可能なものとすることが好ましい。  In order to further reduce human error, it is preferable to be able to limit the operations for each of the sample holders based on the operation history stored in the storage unit.
 以上に説明したように、本発明に係る分析システムによれば、試料保持体の管理に係るユーザの負担を従来よりも大幅に軽減し、かつ人為的ミスによる分取液のコンタミや分析対象となるウエルの選択ミスによる分析漏れ等を抑制することができる分析システムを提供することができる。 As described above, according to the analysis system of the present invention, the user's burden of managing the sample holder can be greatly reduced compared to the conventional system, and the preparative liquid can be contaminated or analyzed due to human error. It is possible to provide an analysis system capable of suppressing omissions in analysis due to wrong selection of wells.
本発明の一実施形態における分析システムの構成を示す模式図。1 is a schematic diagram showing the configuration of an analysis system in one embodiment of the present invention; FIG. 同実施形態において使用される試料保持体の一例を示す模式図。FIG. 4 is a schematic diagram showing an example of a sample holder used in the same embodiment; 同実施形態における統合管理装置、LC制御演算部、フラクション制御演算部、及び、ラマン制御演算部の構成を示す機能ブロック図。The functional block diagram which shows the structure of the integrated management apparatus in the same embodiment, the LC control calculating part, the fraction control calculating part, and the Raman control calculating part. 同実施形態における操作画面表示部が表示する操作画面の1つであるポータル画面。A portal screen that is one of the operation screens displayed by the operation screen display unit according to the embodiment. 同実施形態における操作画面表示部が表示する操作画面の1つである滴下範囲設定画面。4 is a drip range setting screen, which is one of the operation screens displayed by the operation screen display unit according to the embodiment; 同実施形態における操作画面表示部が表示する操作画面の1つである操作履歴表示画面。4 is an operation history display screen, which is one of the operation screens displayed by the operation screen display unit according to the embodiment;
100・・・分析システム
S  ・・・液体試料
SS ・・・分取液
PL ・・・プレート(試料保持体)
W  ・・・ウエル(試料保持部)
10 ・・・クロマトグラフ
20 ・・・フラクションコレクタ
30 ・・・ラマン分光分析装置
40 ・・・統合管理装置
42 ・・・操作画面表示部(操作履歴表示部)
44 ・・・記憶部
100...Analysis system S...Liquid sample SS...Preparation liquid PL...Plate (sample holder)
W ... well (sample holder)
REFERENCE SIGNS LIST 10: chromatograph 20: fraction collector 30: Raman spectroscopic analyzer 40: integrated management device 42: operation screen display unit (operation history display unit)
44 ... storage unit
 本実施形態の分析システム100は、液体クロマトグラフィとラマン分光法との双方を利用したLC―ラマン分析を行うものであり、いわゆるハイフネイティッド技術の一種である。具体的には図1に示すように分析システム100は、クロマトグラフ10、フラクションコレクタ20、及び、ラマン分光分析装置30と、これらの動作の設定、データ解析、分析結果の表示等を統合管理する統合管理装置40と、を備えている。クロマトグラフ10、フラクションコレクタ20、及び、ラマン分光分析装置30は、それぞれのハードウェアの動作やデータ解析を行うための専用のソフトウェアである制御演算部1C、2C、3Cを備えている。統合管理装置40はオーバーレイソフトとして動作するように構成されており、統合管理装置40と各機器の制御演算部1C、2C、3Cとが連携することで、1つの分析システム100として一体的に動作する。 The analysis system 100 of this embodiment performs LC-Raman analysis using both liquid chromatography and Raman spectroscopy, and is a type of so-called hyphenated technology. Specifically, as shown in FIG. 1, the analysis system 100 integrates and manages the chromatograph 10, the fraction collector 20, and the Raman spectrometer 30, their operation settings, data analysis, display of analysis results, and the like. and an integrated management device 40 . The chromatograph 10, the fraction collector 20, and the Raman spectroscopic analysis device 30 are provided with control calculation units 1C, 2C, and 3C, which are dedicated software for performing hardware operations and data analysis. The integrated management device 40 is configured to operate as overlay software, and the integrated management device 40 and the control calculation units 1C, 2C, and 3C of each device cooperate to operate integrally as one analysis system 100. do.
 各機器について詳述する。 I will explain each device in detail.
 クロマトグラフ10は、液体クロマトグラフィにより液体試料Sを成分ごとに分離し検出するものである。 The chromatograph 10 separates and detects each component of the liquid sample S by liquid chromatography.
 クロマトグラフ10は、図1に示すように、貯留部11に貯留された移動相Zをポンプ12により流路13に吸い上げるとともに、その流路13に液体試料Sを注入し、移動相Zとともに液体試料Sを分離カラム14に送液することで、液体試料Sを成分ごとに分離するように構成されたものである。分離カラム14の下流側には液体試料Sの分離された成分を検出する成分検出器15が設けられている。 As shown in FIG. 1, the chromatograph 10 sucks up the mobile phase Z stored in the storage part 11 into the channel 13 by the pump 12, injects the liquid sample S into the channel 13, and By feeding the sample S to the separation column 14, the liquid sample S is separated into components. A component detector 15 for detecting separated components of the liquid sample S is provided downstream of the separation column 14 .
 なお、移動相Zは、例えば複数種類の液体が混合された混合液であり、ここでは水とエタノール等の有機溶媒との混合液である。ただし、移動相Zとしては、単一の液体からなるものであっても良いし、濃度勾配を有するグラジエント溶媒であっても良い。 The mobile phase Z is, for example, a mixed liquid in which a plurality of types of liquids are mixed, and here is a mixed liquid of water and an organic solvent such as ethanol. However, the mobile phase Z may consist of a single liquid, or may be a gradient solvent having a concentration gradient.
 また、クロマトグラフ10は、ポンプ12等の各機器の制御を司るとともに成分検出器15の出力に基づいて液体試料Sのクロマトグラムを生成するLC制御演算部1Cをさらに備えている。LC制御演算部1Cは専用又は汎用のコンピュータにより構成され、メモリに格納されているクロマトグラフ専用のプログラムが実行され、各機器が協業することによりその機能が実現される。 The chromatograph 10 further includes an LC control calculation section 1C that controls each device such as the pump 12 and generates a chromatogram of the liquid sample S based on the output of the component detector 15. The LC control calculation unit 1C is composed of a dedicated or general-purpose computer, executes a chromatographic program stored in a memory, and realizes its functions through the cooperation of each device.
 より具体的にはLC制御演算部1Cは、統合管理装置40からクロマトグラフ設定情報を受け付けて、その情報に基づいてポンプ12の移動相Zの送出速度等を制御するとともに、成分検出器15の出力信号に基づいて液体試料Sのクロマトグラムに関するデータを生成するものである。また、LC制御演算部1Cは生成されたクロマトグラムに関するデータを統合管理装置40に出力する。 More specifically, the LC control calculation unit 1C receives chromatograph setting information from the integrated management device 40, controls the delivery speed of the mobile phase Z of the pump 12 based on the information, and controls the component detector 15 Data on the chromatogram of the liquid sample S is generated based on the output signal. In addition, the LC control calculation unit 1C outputs data regarding the generated chromatogram to the integrated management device 40. FIG.
 フラクションコレクタ20は、図1に示すように、クロマトグラフ10の成分検出器15の下流側に設けられ、成分検出器15を通過した液体試料S由来の試料成分を移動相Zとともに分取するものである。この実施形態では、フラクションコレクタ20は、複数のウエルWがマトリクス状に形成されたプレートPLに対して液体クロマトグラフィによって分離された液体試料S由来の試料成分と移動相Zとを含有する液体を所定量ずつ異なるウエルWに滴下することによって分取するように構成されている。なお、以下ではフラクションコレクタ20によりプレートPLに分取される液体を分取液SSと言い、この分取液SSは、移動相Zに液体試料S由来の試料成分が含まれてなるもののみならず、移動相Zのみからなるものも含む概念である。 The fraction collector 20 is provided on the downstream side of the component detector 15 of the chromatograph 10, as shown in FIG. is. In this embodiment, the fraction collector 20 stores a liquid containing sample components derived from a liquid sample S separated by liquid chromatography and a mobile phase Z on a plate PL having a plurality of wells W formed in a matrix. It is configured to separate by dropping a fixed amount into different wells W. As shown in FIG. In the following, the liquid fractionated on the plate PL by the fraction collector 20 is referred to as a fractionated liquid SS. However, the concept also includes those consisting of the mobile phase Z only.
 ここで、プレートPLは図2に示すように、個別の標識Aとして、プレート名等を示す識別コードを備えている。識別コードは例えばDataMatrix(登録商標)等の2次元バーコードであって、プレートPLにおいてウエルWが形成されている面に印字又は刻印されている。なお、識別コードはこれに限られるものではなく、QRコード(登録商標)や1次元のバーコードであってもよいし、プレートPLに形成されている切り欠きの固有の位置を識別コードとして用いてもよい。 Here, as shown in FIG. 2, the plate PL has an identification code indicating the plate name etc. as an individual mark A. The identification code is, for example, a two-dimensional bar code such as DataMatrix (registered trademark), and is printed or stamped on the surface of the plate PL on which the wells W are formed. Note that the identification code is not limited to this, and may be a QR code (registered trademark) or a one-dimensional bar code. may
 フラクションコレクタ20の構成について詳述すると、成分検出器15の出口流路に接続された移動式プローブ21を具備し、ステージ22上に載置されているプレートPLのウエルWに対して分取液SSを所定量ずつ次々に滴下するように構成されている。ここで、分取液SSがクロマトグラムにおいてピークに相当する部分が分取されている場合には、液体試料S由来の試料成分が含まれているが、ピーク以外の部分に相当する分取液SSにも成分検出器15では検出できない種類の試料成分が含まれている可能性がある。 The configuration of the fraction collector 20 will be described in detail. It is configured to drop SS in predetermined amounts one after another. Here, when the portion corresponding to the peak in the chromatogram is separated from the fractionated liquid SS, the sample component derived from the liquid sample S is included, but the fractionated liquid corresponding to the portion other than the peak The SS may also contain sample components of a type that cannot be detected by the component detector 15 .
 また、移動式プローブ21にはプレートPLに付与されている識別コードを読み取るための第1コードリーダ23が取り付けられている。ステージ22にプレートPLが載置されている状態で移動式プローブ21が初期位置に移動した際にプレートPLの識別コードが第1コードリーダ23で読み取られて、プレートPLのプレート名等が取得されるよう構成されている。 Also, a first code reader 23 is attached to the mobile probe 21 for reading the identification code given to the plate PL. When the movable probe 21 moves to the initial position while the plate PL is placed on the stage 22, the identification code of the plate PL is read by the first code reader 23, and the plate name and the like of the plate PL are obtained. It is configured as follows.
 加えて、フラクションコレクタ20は、移動式プローブ21等の制御や各プレートPLの各ウエルWへの分取液SSの滴下状態等に関する情報であるフラクション情報を生成するフラクション制御演算部2Cをさらに備えている。 In addition, the fraction collector 20 further includes a fraction control calculation unit 2C that generates fraction information, which is information regarding the control of the mobile probe 21 and the like, and the dropping state of the preparative liquid SS into each well W of each plate PL. ing.
 フラクション制御演算部2Cは、専用又は汎用のコンピュータにより構成され、メモリに格納されているフラクションコレクタ専用のプログラムが実行され、各機器が協業することによりその機能が実現される。 The fraction control calculation unit 2C is composed of a dedicated or general-purpose computer, executes a program dedicated to the fraction collector stored in the memory, and realizes its function through the cooperation of each device.
 より具体的にはフラクション制御演算部2Cは、移動式プローブ21の位置や移動式プローブ21からプレートPLに分取される分取液の分取条件(分取流量、分取時間等)の制御をする。また、フラクション制御演算部2Cは、統合管理装置40から入力されるフラクション設定情報に基づいて分取液SSの滴下を行った場合のプレートPLにおけるウエルWの使用範囲である予測フラクション結果や、実際プレートPLに対して分取液SSの滴下を行った場合のフラクション結果等のフラクション情報を生成する。フラクション制御演算部2Cで生成されるフラクション情報に関するデータは統合管理装置40に送信される。 More specifically, the fraction control calculation unit 2C controls the position of the mobile probe 21 and the fractionation conditions (fractionation flow rate, fractionation time, etc.) of the fractionated liquid fractionated from the movable probe 21 to the plate PL. do. In addition, the fraction control calculation unit 2C also calculates the predicted fraction result, which is the usage range of the wells W in the plate PL when the preparative liquid SS is dropped based on the fraction setting information input from the integrated management device 40, and the actual Fraction information such as a fraction result when the preparative liquid SS is dropped onto the plate PL is generated. Data relating to the fraction information generated by the fraction control calculation unit 2C is transmitted to the integrated management device 40. FIG.
 次にラマン分光分析装置30について説明する。ラマン分光分析装置30は、プレートPL上のウエルWに滴下された分取液SSを乾燥させた状態で、分取液SSに含まれる試料成分をラマン分光法に基づいて分析するものである。なお、プレートPLについてはフラクションコレクタ20において乾燥が終了した状態のものをユーザがラマン分光分析装置30に運び設置しているが、フラクションコレクタ20とラマン分光分析装置30との間でオートワークチェンジャによってプレートPLが搬送されるようにしてもよい。 Next, the Raman spectroscopic analysis device 30 will be explained. The Raman spectroscopic analyzer 30 analyzes the sample components contained in the sampled liquid SS dropped in the wells W on the plate PL in a dried state based on Raman spectroscopy. As for the plate PL, the user carries it to the Raman spectroscopic analyzer 30 after it has been dried in the fraction collector 20. A plate PL may be transported.
 ラマン分光分析装置30は、図1に示すように、分取液SSが乾燥した液体試料S由来の試料成分を保持するプレートPL上のウエルWにレーザ光等の励起光を照射する光照射器31と、励起光が照射されることにより試料成分から発生するラマン散乱光を分光する分光器32と、分光されたラマン散乱光を検出するラマン散乱光検出器33と、光を照射しているウエルWの顕微鏡写真を撮像するカメラ34と、プレートPLに付与されている識別コードを読み取るための第2コードリーダ35と、を備えている。 As shown in FIG. 1, the Raman spectroscopic analysis device 30 is a light irradiator that irradiates wells W on a plate PL holding sample components derived from a liquid sample S in which a fractionation liquid SS is dried with excitation light such as laser light. 31, a spectroscope 32 for spectroscopy the Raman scattered light generated from the sample component by being irradiated with the excitation light, a Raman scattered light detector 33 for detecting the spectroscopic Raman scattered light, and irradiating the light. It is equipped with a camera 34 for taking micrographs of the wells W and a second code reader 35 for reading the identification code given to the plate PL.
 加えて、ラマン分光分析装置30は、光照射器31が射出するレーザ光がプレートPL上において照射される位置の制御等やラマン散乱光検出器33の出力に基づいてラマンスペクトルを生成するラマン制御演算部3Cをさらに備えている。 In addition, the Raman spectroscopic analyzer 30 controls the position on the plate PL where the laser light emitted by the light irradiator 31 is irradiated, and Raman control for generating a Raman spectrum based on the output of the Raman scattered light detector 33. A computing unit 3C is further provided.
 ラマン制御演算部3Cは、専用又は汎用のコンピュータにより構成され、メモリに格納されているラマン分光分析装置専用のプログラムが実行され、各機器が協業することによりその機能が実現される。 The Raman control calculation unit 3C is configured by a dedicated or general-purpose computer, executes a program dedicated to the Raman spectroscopic analysis apparatus stored in memory, and realizes its function through the cooperation of each device.
 より具体的にはラマン制御演算部3Cは、統合管理装置40からラマン分光分析設定情報を受け付けて、その情報に基づいて各機器を制御し、プレートPL上に保持されている各ウエルW上の試料成分についてラマン分光分析を実行する。ラマン制御演算部3Cはまた、各ウエルWの試料成分から得られたラマン散乱光検出器33からの出力に基づいてそれぞれラマンスペクトルに関するデータを生成する。 More specifically, the Raman control calculation unit 3C receives Raman spectroscopic analysis setting information from the integrated management device 40, controls each device based on the information, and controls each device on each well W held on the plate PL Raman spectroscopy is performed on the sample components. The Raman control calculation unit 3C also generates data on Raman spectra based on the output from the Raman scattered light detector 33 obtained from the sample components of each well W. FIG.
 ラマン制御演算部3Cは、各ウエルWの試料成分から得られたラマンスペクトルについて、第2コードリーダ35で読み取られたプレートPLのプレート名等を示す識別コードと、レーザ光を照射したウエルWの位置情報と、カメラ34で撮像されたウエルWの顕微画像データと、を組にして統合管理装置40に送信する。 The Raman control calculation unit 3C, for the Raman spectrum obtained from the sample component of each well W, reads the identification code indicating the plate name of the plate PL read by the second code reader 35, and the well W irradiated with the laser beam. The positional information and the microscopic image data of the well W captured by the camera 34 are paired and transmitted to the integrated management device 40 .
 次に統合管理装置40について説明する。統合管理装置40は専用又は汎用のコンピュータにより構成され、メモリに格納されている統合管理装置用のプログラムが実行され、各機器が協業することによりその機能が実現される。また、統合管理装置40は図3に示すように、LC制御演算部1C、フラクション制御演算部2C、ラマン制御演算部3Cと有線又は無線のネットワークで接続されており、統合管理装置40は各制御演算部1C、2C、3Cに対して分析に関するパラメータ等を設定するためのクロマトグラフ設定情報、フラクション設定情報、ラマン分光分析設定情報をそれぞれ送信する。また、統合管理装置40は、各制御演算部1C、2C、3Cから得られた分析結果やプレートPLに対して行った動作結果等に関する情報を受信する。 Next, the integrated management device 40 will be explained. The integrated management device 40 is composed of a dedicated or general-purpose computer, executes a program for the integrated management device stored in the memory, and realizes its functions through the cooperation of each device. Further, as shown in FIG. 3, the integrated management device 40 is connected to the LC control calculation unit 1C, the fraction control calculation unit 2C, and the Raman control calculation unit 3C via a wired or wireless network. The chromatograph setting information, the fraction setting information, and the Raman spectroscopic analysis setting information for setting parameters related to analysis are transmitted to the calculation units 1C, 2C, and 3C, respectively. In addition, the integrated management device 40 receives information on analysis results obtained from the respective control calculation units 1C, 2C, and 3C, operation results performed on the plate PL, and the like.
 具体的には図3に示すように統合管理装置40は、ユーザからの入力を受け付ける入力受付部41と、各装置10、20、30に関する操作画面をディスプレイDPに表示する操作画面表示部42と、操作画面に対するユーザからの入力に基づいて分析に関するクロマトグラフ設定情報、フラクション設定情報、ラマン分光分析設定情報を生成し、各装置10、20、30に対して送信する設定情報生成部43と、設定情報生成部43で生成されたクロマトグラフ設定情報、フラクション設定情報、ラマン分光分析設定情報、各装置10、20、30から受信された分析結果や操作結果に関する情報、使用されているプレートPLに関する情報等を記憶するデータベースである記憶部44と、記憶部44に記録されている情報に基づいて統合された分析概要画面をディスプレイDPに表示する分析概要表示部45と、を少なくとも備えている。 Specifically, as shown in FIG. 3, the integrated management device 40 includes an input reception section 41 that receives input from a user, and an operation screen display section 42 that displays an operation screen for each of the devices 10, 20, and 30 on the display DP. , a setting information generation unit 43 that generates chromatograph setting information, fraction setting information, and Raman spectroscopic analysis setting information related to analysis based on the input from the user on the operation screen, and transmits to each device 10, 20, 30; Chromatograph setting information generated by the setting information generation unit 43, fraction setting information, Raman spectroscopic analysis setting information, information on the analysis results and operation results received from each device 10, 20, 30, information on the plate PL being used At least a storage unit 44, which is a database for storing information, etc., and an analysis summary display unit 45 for displaying an integrated analysis summary screen based on the information recorded in the storage unit 44 on the display DP.
 入力受付部41は、ユーザからキーボードやマウス等の入力デバイスによる操作画面や分析概要画面等に入力を受け付ける。
 操作画面表示部42は、分析の設定又は分析結果の表示を行うための操作画面をディスプレイDPに表示する。表示される操作画面の一例として、図4に示すようなポータル画面SC1を挙げることができる。このポータル画面SC1はクロマトグラフ10、フラクションコレクタ20、ラマン分光分析装置30のいずれかの分析に関する設定、又は、記憶部44に記憶されている分析結果の表示を選択するための操作画面である。
The input reception unit 41 receives input from a user on an operation screen, an analysis overview screen, or the like using an input device such as a keyboard or mouse.
The operation screen display unit 42 displays an operation screen for setting analysis or displaying analysis results on the display DP. An example of the displayed operation screen is a portal screen SC1 as shown in FIG. The portal screen SC1 is an operation screen for selecting settings related to analysis of any one of the chromatograph 10, the fraction collector 20, and the Raman spectroscopic analysis device 30, or selecting display of analysis results stored in the storage unit 44. FIG.
 図5は、例えば、フラクション領域がユーザによって選択された場合にウインドウとして表示されるフラクションコレクタ20の操作画面の一例である。
 使用予定のプレートPLが所定の位置にセットされ、読み取りボタンが選択されることでフラクションコレクタ20の第1コードリーダ23により選択されたプレートPLの識別コードが読み込まれ、使用予定のプレートPLについて、プレート名や画像などが表示されるようになっている。この図5の操作画面は、プレートPLに対する分取液SSの滴下範囲を設定用クロマトグラムに基づいて設定する滴下範囲設定画面SC2であり、ユーザはこの操作画面において設定用クロマトグラムを参照しながらクロマトグラフ10の成分検出器15から導出される分取液SSをどのような条件で分取するかを設定することができる。これらの設定が行われると、設定情報生成部43はフラクション設定情報をフラクション制御演算部2Cに送信する。そして、フラクション制御演算部2Cで演算された滴下を開始するウエルWの位置からどの範囲まで滴下されるかの予測結果を統合管理装置40が受信し、操作画面表示部42は滴下範囲設定画面SC2におけるプレートPLのイメージ上に表示するようにしてある。
FIG. 5 is an example of an operation screen of the fraction collector 20 displayed as a window when, for example, the fraction area is selected by the user.
When the plate PL to be used is set at a predetermined position and the read button is selected, the identification code of the selected plate PL is read by the first code reader 23 of the fraction collector 20, and the plate PL to be used is Plate names and images are displayed. The operation screen of FIG. 5 is a dropping range setting screen SC2 for setting the dropping range of the preparative liquid SS onto the plate PL based on the setting chromatogram. It is possible to set under what conditions the fractionated liquid SS derived from the component detector 15 of the chromatograph 10 is fractionated. After these settings are made, the setting information generator 43 transmits the fraction setting information to the fraction control calculator 2C. Then, the integrated management device 40 receives the predicted result of the range from the position of the well W where dropping is started calculated by the fraction control calculating unit 2C, and the operation screen display unit 42 displays the dropping range setting screen SC2. is displayed on the image of the plate PL in .
 最終的に滴下に関する設定がユーザによって承認されると、設定情報生成部43は、フラクションコレクタ20に送信する分取パラメータ等のフラクション設定情報を生成する。そして、生成されたフラクション設定情報は統合管理装置40からフラクション制御演算部2Cに送信され、フラクション制御演算部2Cによってフラクションコレクタ20の各機器が制御されて実際のプレートPLに対して分取液SSの分取が行われる。そして、クロマトグラフ10で分析された液体試料Sと分取に使用されるプレートPLのプレート名等を示す識別コードが紐付けられて記憶部44に記憶される。 When the user finally approves the settings regarding dripping, the setting information generation unit 43 generates fraction setting information such as fractionation parameters to be transmitted to the fraction collector 20 . Then, the generated fraction setting information is transmitted from the integrated management device 40 to the fraction control calculation unit 2C, and each device of the fraction collector 20 is controlled by the fraction control calculation unit 2C, and the sample liquid SS is applied to the actual plate PL. fractionation is performed. Then, the liquid sample S analyzed by the chromatograph 10 and the identification code indicating the plate name of the plate PL used for sorting are linked and stored in the storage unit 44 .
 なお、操作画面表示部42により表示される操作画面はフラクションコレクタ20に限られるものではなく、図3のポータル画面SC1においてLC領域がユーザにより選択された場合にはクロマトグラフ10の操作画面が表示され、ポータル画面SC1のラマン領域がユーザにより選択された場合にはラマン分光分析装置30の操作画面が表示される。各操作画面に対するユーザからの入力に基づいて設定情報生成部43はクロマトグラフ10又はラマン分光分析装置30のクロマトグラフ設定情報又はラマン分光分析設定情報を生成し、対応する装置10、30に送信する。このように統合管理装置40に対する入力のみで分析を開始するために必要な設定を行うことができ、各装置10、20、30の専用のソフトウェアを操作することなく、一連の分析を行うことができる。 The operation screen displayed by the operation screen display unit 42 is not limited to that of the fraction collector 20. When the user selects the LC region on the portal screen SC1 of FIG. 3, the operation screen of the chromatograph 10 is displayed. When the Raman region of the portal screen SC1 is selected by the user, the operation screen of the Raman spectroscopic analyzer 30 is displayed. The setting information generation unit 43 generates chromatograph setting information or Raman spectroscopic analysis setting information for the chromatograph 10 or the Raman spectroscopic analysis device 30 based on the user's input to each operation screen, and transmits the information to the corresponding devices 10 and 30 . . In this way, it is possible to perform the necessary settings for starting the analysis only by inputting to the integrated management device 40, and to perform a series of analyzes without operating the dedicated software of each device 10, 20, 30. can.
 しかして、本実施形態に係る分析システム100の統合管理装置40が備える記憶部44は、前述したプレートPLに関する情報として、プレートPLに対して過去に行った操作の種類、操作の条件、操作の結果等に関する操作履歴をも記憶するものである。 Thus, the storage unit 44 provided in the integrated management device 40 of the analysis system 100 according to the present embodiment stores, as the information related to the plate PL described above, the type of operation performed on the plate PL in the past, the conditions of the operation, and the type of operation. It also stores the operation history related to results and the like.
 記憶部44は、この操作履歴をプレートPLに備えられた複数のウエルWの1つ1つについて記憶しており、例えば、操作履歴として、あるプレートPLに設けられたある1つのウエルWが、すでに分取液SSが滴下されて分取に使用されたものであるかどうかという情報を記憶している。 The storage unit 44 stores this operation history for each of a plurality of wells W provided on the plate PL. Information is stored as to whether or not the fractionation liquid SS has already been dropped and used for fractionation.
 また記憶部44は、操作履歴として、既に分取液SSの分取に使用されたウエルWに対して、分取時の液体クロマトグラフィの条件や、分取の乾燥条件、乾燥後にどのような種類の分析がどのような条件でどのような順番で行われたのか等の情報を記憶するようにしてある。
 これら各ウエルWに対する操作履歴は、例えば、個別の標識AとしてプレートPLに付されたプレート名等を示す識別コードに紐づけて記憶部44により記憶されている。
In addition, the storage unit 44 stores, as an operation history, the liquid chromatography conditions at the time of fractionation, the drying conditions for fractionation, and the type of well W already used for fractionation of the fractionation liquid SS. Information such as the order in which the analyzes were performed under what conditions is stored.
The operation history for each of these wells W is stored in the storage unit 44 in association with, for example, an identification code indicating a plate name or the like attached as an individual label A to the plate PL.
 統合管理装置40が、記憶部44に記憶された各ウエルWに関する操作履歴を表示する履歴表示部をさらに備えていても良い。 The integrated management device 40 may further include a history display section that displays the operation history regarding each well W stored in the storage section 44 .
 該操作履歴表示部は、前述した操作画面表示部42がその機能を兼ねるものであり、例えば、滴下範囲設定画面SC2におけるプレートPLのイメージ上であるウエルWを選択すると、操作画面表示部42によってディスプレイDP上に選択されたウエルSWが使用済みか否か等の操作履歴表示画面SC3(図6)を表示する。この図6では、選択されたウエルWについて、LCと表示された液体クロマトグラフィの結果R2と、Ramanと表示されたラマン分光分析の結果R3が示されている。そのため、この表示から、このウエルWについては既に分取液SSが分取されて、ラマン分光分析が行われたことが分かる。図6の操作履歴表示画面SC3では、各分析についての詳細な条件や回数、分取液の乾燥条件等は表示されていないが、これらの情報についても表示するように設定できることは言うまでもない。また滴下範囲設定画面SC2そのものに操作履歴を、例えば、操作履歴ごとにウエルを色分けするなどして簡易表示することも可能である。例えば図5においては使用可能なウエルWの範囲をエリアR1で示すようにしてある。 The operation history display unit has the function of the operation screen display unit 42 described above. An operation history display screen SC3 (FIG. 6) indicating whether or not the selected well SW has been used is displayed on the display DP. In FIG. 6, for the selected well W, the liquid chromatography result R2 indicated as LC and the Raman spectroscopic analysis result R3 indicated as Raman are shown. Therefore, from this display, it can be seen that the sample liquid SS has already been sampled for this well W and the Raman spectroscopic analysis has been performed. The detailed conditions and number of times for each analysis, the drying conditions for the fractionated liquid, etc. are not displayed on the operation history display screen SC3 of FIG. 6, but it goes without saying that these information can also be displayed. It is also possible to simply display the operation history on the dropping range setting screen SC2 itself, for example, by color-coding wells for each operation history. For example, in FIG. 5, the range of usable wells W is indicated by area R1.
 このように構成された分析システム100の動作の一例として、フラクションコレクタ20による分取液の滴下範囲を設定する場合を挙げて説明する。
 使用予定のプレートPLをフラクションコレクタ20の所定の位置にセットすると、識別コードを第1コードリーダ23が読み込み、識別コードに紐づけて記憶部44に記憶されている該プレートPLの各ウエルWに関する操作履歴が読み出される。記憶部44から読みだされた操作履歴は、例えば、クロマトグラフ10から流れ出る液体をどのような条件で滴下するかを設定するための操作画面上に表示されたプレート画像に反映される。本実施形態では、記憶部44に記憶された各ウエルWに対する操作履歴に基づいて、例えば、設定情報生成部43がユーザからの入力に対して、既に分取液SSの分取に使用された履歴が記憶されているウエルWを選択することを制限できるようにしてある。操作履歴を利用した分析条件の設定や履歴情報の確認等は、フラクションコレクタ20だけではなく、クロマトグラフ10やラマン分光分析装置30の条件設定画面においても同様に行うことができる。
As an example of the operation of the analysis system 100 configured in this way, the case of setting the dropping range of the preparative liquid by the fraction collector 20 will be described.
When the plate PL to be used is set at a predetermined position in the fraction collector 20, the identification code is read by the first code reader 23, and the identification code associated with each well W of the plate PL stored in the storage unit 44 is read. Operation history is read. The operation history read from the storage unit 44 is reflected, for example, in the plate image displayed on the operation screen for setting the conditions under which the liquid flowing out from the chromatograph 10 is dropped. In the present embodiment, based on the operation history for each well W stored in the storage unit 44, for example, the setting information generation unit 43 responds to the input from the user by determining whether the sample liquid SS has already been collected. Selection of the well W in which the history is stored can be restricted. The setting of analysis conditions using the operation history, the confirmation of history information, and the like can be similarly performed not only on the fraction collector 20 but also on the condition setting screens of the chromatograph 10 and the Raman spectroscopic analysis device 30 .
 このように構成した分析システム100によれば、多数のウエルWが形成されたプレートPLを使用する場合であっても、各ウエルWの使用状況をユーザがメモを取るなどして管理する必要がない。その結果、プレートPLの管理に係るユーザの負担を大幅に低減することができる。 According to the analysis system 100 configured in this way, even when using a plate PL on which a large number of wells W are formed, it is not necessary for the user to manage the usage of each well W by taking notes. do not have. As a result, it is possible to significantly reduce the user's burden of managing the plate PL.
 より具体的には、プレートPLの各ウエルWについて、分取液SSの分取に使用されたかどうかを記憶部44が記憶するので、次の分析で分取液SSの分取に使用できるウエルWを容易に判別することができる。また本実施形態では、分取に使用する予定のウエルWを選択する際に、既に使用済みのウエルWを選択できないようにしてあるので、異なる分取液SSを同じウエルに滴下してしまうような人為的ミスをより確実に防ぐことができる。 More specifically, since the storage unit 44 stores whether or not each well W of the plate PL has been used for fractionation of the fractionation liquid SS, the wells that can be used for fractionation of the fractionation liquid SS in the next analysis are stored. W can be easily determined. In addition, in this embodiment, when selecting a well W to be used for preparative separation, it is made impossible to select a well W that has already been used. human error can be more reliably prevented.
 記憶部44には、分取液SSが分取された際の液体クロマトグラフィの分離条件、分取液SSの滴下条件や、分取後の乾燥条件等についても記憶することができるので、多数のウエルWに保持された各試料成分について、分析条件をより厳密に管理することができる。その結果、どのウエルWについてラマン分光分析を行うかについてや、既に行ったラマン分光分析の結果の信頼性等を判断するための判断材料をユーザに与えることができる。 The storage unit 44 can also store the liquid chromatography separation conditions when the fractionation liquid SS is fractionated, the dripping conditions of the fractionation liquid SS, the drying conditions after fractionation, and the like. For each sample component held in the well W, analysis conditions can be controlled more strictly. As a result, it is possible to provide the user with judgment materials for judging which well W should be subjected to Raman spectroscopic analysis and the reliability of the results of Raman spectroscopic analysis that has already been performed.
 また、乾燥後にどのような種類の分析がどのような条件で、どのような順番で行われたかについて記憶することも可能であるので、例えば、ある一群のウエルWについて複数回ずつラマン分光分析を行う場合等において、対象となるウエルWについて定めた回数だけ漏れなく分析ができているかどうかなどを簡単に確認することができるので、非常に使い勝手がよい分析システム100とすることができる。 In addition, since it is also possible to memorize what type of analysis was performed after drying under what conditions and in what order, for example, Raman spectroscopic analysis is performed multiple times for a group of wells W. When performing analysis, it is possible to easily check whether or not the target wells W have been analyzed for the specified number of times without omission.
 本発明は、前述したものに限られない。
 例えば、操作履歴を記憶する記憶部は、前述したように統合管理装置が備えるものに限らず、例えば、分析システムを構成するそれぞれのハードウェア専用のソフトウェアである各制御演算部が備えるものとしても良く、統合管理装置が、これら制御演算部にそれぞれ記憶された操作履歴を読み出して表示するものとしても良い。
The present invention is not limited to what has been described above.
For example, the storage unit that stores the operation history is not limited to being provided in the integrated management device as described above. Better, the integrated management device may read and display the operation history stored in each of these control calculation units.
 例えば、各ウエルに対する操作履歴は必ずしもプレートに付された識別コードに紐づけて記憶されるものでなくても良く、各ウエルに付された識別コード等に紐づけて記憶されるものであっても良い。 For example, the operation history for each well may not necessarily be stored in association with the identification code attached to the plate, but may be stored in association with the identification code or the like attached to each well. Also good.
 前述したように、各ウエルの使用履歴に基づいて、各ウエルを予定している操作を強制的に制限するものに限らず、予定している操作と同じ操作が以前に同行われた旨のエラーを表示し、それでも操作を続けるかどうかをユーザの判断に委ねるようにしても良い。また、このユーザの判断に委ねるか否かの設定はユーザが入力や設定可能な各操作それぞれについて個別に設定できるようにしても良い。 As mentioned above, based on the usage history of each well, it is not limited to forcibly restricting the operation that is planned for each well, but also an error that the same operation as the planned operation has been performed before. may be displayed and the user may decide whether to continue the operation. Further, the setting as to whether or not to entrust the judgment of the user may be individually set for each operation that can be input or set by the user.
 記憶部が、操作履歴として前述した全ての履歴を必ずしも記憶するものでなくても良く、少なくとも何れかの操作履歴を記憶するものとすればよい。 The storage unit does not necessarily have to store all of the above-mentioned histories as operation histories, and may at least store some of them.
 分取液又は分取液に含まれる試料成分を保持する試料保持体としては、分取液又は試料成分を保持する試料保持部を複数ひとまとめのものとして備えた試料保持体であれば良く、試料保持体において各試料保持部が必ずしも一体に固定されていなくても良い。このような試料保持体の一例としては、試料保持部として試験管のような独立した容器を使用し、複数の容器とこれら容器を規則的に並べた状態で複数個収容可能な試験管ラックとを含む試料保持体等を挙げることができる。また、複数の試料保持部が一体となっている試料保持体としては、前述したようなウエルを備えるプレートに限らず、試料保持部としてその表面に試料を載置するサンプルチップを複数載置したプレート等を使用するものとしても良い。 The sample holder that holds the sample liquid or the sample components contained in the sample liquid may be any sample holder that includes a plurality of sample holders that hold the sample liquid or the sample components. Each sample holder does not necessarily have to be integrally fixed to the holder. An example of such a sample holder is a test tube rack that uses an independent container such as a test tube as the sample holder, and that can accommodate a plurality of containers and these containers in a regularly arranged state. and the like can be exemplified. The sample holder in which a plurality of sample holders are integrated is not limited to a plate having wells as described above. A plate or the like may be used.
 1つの試料保持体に設けられている試料保持部の数に特に制限はないが、50個以上や、100個以上、200個以上など多ければ多いほど、本願発明の効果を顕著に奏することができる。 Although there is no particular limit to the number of sample holders provided in one sample holder, the effect of the present invention can be more pronounced as the number increases, such as 50 or more, 100 or more, or 200 or more. can.
 前記実施形態では、分析システムが液体クロマトグラフ、フラクションコレクタ、ラマン分析装置をそれぞれ一台ずつ備える場合について説明したが、同じ種類の装置を複数台備えるものとしても良い。このような場合には、同じ種類の操作を行える複数の装置の何れかにおいて既に行われた操作を別の装置で繰り返そうとした場合にその操作を制限したり、エラー表示等の警告を行うものとしても良い。 In the above-described embodiment, the analysis system includes one liquid chromatograph, one fraction collector, and one Raman analysis device, but it may include a plurality of devices of the same type. In such a case, if an operation that has already been performed on one of the multiple devices that can perform the same type of operation is attempted to be repeated on another device, the operation will be restricted or a warning such as an error display will be issued. It is good as
 本発明の分析システムとしては、必ずしもラマン分光分析装置を備えている必要はなく、液体クロマトグラフィにより分離された液体試料を例えば赤外分光法、核磁気共鳴又は飛行時間型質量分析法などの原理を用いて分析する分析装置を備えていても良いし、これら各種分析装置を複数組み合わせたものであっても良い。 The analytical system of the present invention does not necessarily have to be equipped with a Raman spectroscopic analyzer, and a liquid sample separated by liquid chromatography can be analyzed using principles such as infrared spectroscopy, nuclear magnetic resonance, or time-of-flight mass spectrometry. It may be equipped with an analysis device for analysis by using, or may be a combination of a plurality of these various analysis devices.
 統合管理装置を構成する各部については、通常のコンピュータによってその機能が実現されるものに限られない。例えばタブレット端末やスマートフォン等の携帯端末に統合管理装置用ソフトウェアをインストールし、各装置と電子端末間で無線通信によるデータの授受を行うことにより実施形態で説明した各部の機能が実現されるようにしてもよい。また、携帯端末上では実質的な演算を行わずにサーバにおいて各部の機能が実現されるようにし、分析概要表示部が生成する分析概要画面や操作画面表示部で生成される操作画面が携帯端末上で表示されるようにしてもよい。
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
The functions of the units constituting the integrated management device are not limited to those whose functions are realized by ordinary computers. For example, by installing the software for the integrated management device on a portable terminal such as a tablet terminal or a smartphone and exchanging data between each device and the electronic terminal by wireless communication, the function of each part explained in the embodiment is realized. may In addition, the function of each part is realized in the server without performing actual calculations on the mobile terminal, and the analysis overview screen generated by the analysis overview display part and the operation screen generated by the operation screen display part are displayed on the mobile terminal. may be displayed above.
In addition, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications are possible without departing from the spirit of the present invention.
 本発明によれば、複数の試料保持部を備えた試料保持体を複数回の液体クロマトグラフィにわたって使用する場合であっても、試料保持体の各試料保持部についての操作履歴の管理に係るユーザの負担を従来よりも小さくし、かつ人為的ミスによる分取液のコンタミや分析対象となるウエルの選択ミスによる分析漏れ等を抑制することができる分析システムを提供することができる。

 
According to the present invention, even when a sample holder having a plurality of sample holders is used over a plurality of liquid chromatographies, it is possible for a user to manage the operation history of each sample holder of the sample holder. It is possible to provide an analysis system that can reduce the burden compared to the conventional system and can suppress contamination of the sampled liquid due to human error and omission of analysis due to mistaken selection of wells to be analyzed.

Claims (8)

  1.  液体試料を成分ごとに分離する液体クロマトグラフと、
     前記液体クロマトグラフにより分離された試料成分を含む液体を試料保持体に形成された複数の試料保持部に分取するフラクションコレクタと、
     前記フラクションコレクタによって分取された各分取液に含まれる各試料成分を分析する分析装置とを含む分析システムであって、
     前記各試料保持部に対する操作履歴を記憶する記憶部を備えたものであることを特徴とする分析システム。
    a liquid chromatograph that separates a liquid sample into components;
    a fraction collector for fractionating the liquid containing the sample components separated by the liquid chromatograph into a plurality of sample holders formed in the sample holder;
    and an analysis device for analyzing each sample component contained in each fractionated liquid fractionated by the fraction collector,
    An analysis system comprising a storage section for storing an operation history for each of the sample holders.
  2.  前記分析装置がラマン分光分析装置である、請求項1に記載の分析システム。 The analysis system according to claim 1, wherein the analysis device is a Raman spectroscopic analysis device.
  3.  前記記憶部が、前記操作履歴を前記試料保持体に付された標識に紐づけて記憶するものである、請求項1又は2に記載の分析システム。 The analysis system according to claim 1 or 2, wherein the storage unit stores the operation history in association with the label attached to the sample holder.
  4.  前記記憶部が、前記操作履歴として、ある1つの試料保持部が前記分取液の分取に使用されたか否かを記憶するものである、請求項1~3の何れか一項に記載の分析システム。 4. The storage unit according to any one of claims 1 to 3, wherein the storage unit stores, as the operation history, whether or not one sample holding unit has been used for fractionating the fractionating liquid. analysis system.
  5.  前記記憶部が、前記分取液の分取に使用された試料保持部について、該試料保持部に対して過去に行われた分析の種類及び/又は分析条件を前記操作履歴として記憶するものである、請求項1~4の何れか一項に記載の分析システム。 The storage unit stores, as the operation history, the types of analyzes and/or analysis conditions performed in the past on the sample holding unit used for fractionating the sample liquid. The analysis system according to any one of claims 1 to 4, wherein
  6.  前記操作履歴を表示する履歴表示部をさらに備える、請求項1~5の何れか一項に記載の分析システム。 The analysis system according to any one of claims 1 to 5, further comprising a history display unit that displays the operation history.
  7.  前記記憶部が記憶している前記操作履歴に基づいて、前記各試料保持部に対する操作を制限可能なものである、請求項1~6の何れか一項に記載の分析システム。 The analysis system according to any one of claims 1 to 6, wherein the operation of each sample holding unit can be restricted based on the operation history stored in the storage unit.
  8.  液体試料を成分ごとに分離する液体クロマトグラフと、前記液体クロマトグラフにより分離された試料成分を含む液体を試料保持体に形成された複数の試料保持部に分取するフラクションコレクタと、前記フラクションコレクタにより分取された各分取液に含まれる各試料成分を分析する分析装置を含む分析システムに用いられるプログラムであって、
     前記各試料保持部に対する操作履歴を記憶する記憶部としての機能をコンピュータに発揮させることを特徴する分析システム用プログラム。
    A liquid chromatograph that separates each component of a liquid sample, a fraction collector that fractionates the liquid containing the sample components separated by the liquid chromatograph into a plurality of sample holders formed in a sample holder, and the fraction collector. A program used in an analysis system including an analyzer that analyzes each sample component contained in each fractionated liquid fractionated by
    A program for an analysis system, characterized by causing a computer to exhibit a function as a storage section that stores an operation history for each of the sample holding sections.
PCT/JP2021/047821 2021-03-30 2021-12-23 Analysis system and program for analysis system WO2022209075A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023510261A JPWO2022209075A1 (en) 2021-03-30 2021-12-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021058289 2021-03-30
JP2021-058289 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209075A1 true WO2022209075A1 (en) 2022-10-06

Family

ID=83455757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047821 WO2022209075A1 (en) 2021-03-30 2021-12-23 Analysis system and program for analysis system

Country Status (2)

Country Link
JP (1) JPWO2022209075A1 (en)
WO (1) WO2022209075A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536653A (en) * 1999-02-11 2002-10-29 アベンティス・クロップサイエンス・エス・アー Combination library synthesis, characterization, assay method and apparatus
WO2010122718A1 (en) * 2009-04-20 2010-10-28 株式会社 日立ハイテクノロジーズ Automatic analysis device
JP2012052940A (en) * 2010-09-02 2012-03-15 Rikkyo Gakuin Method for comparing and analyzing data obtained by lc-maldi
WO2014027652A1 (en) * 2012-08-17 2014-02-20 独立行政法人科学技術振興機構 Method and device for biomolecule analysis using raman spectroscopy
WO2015029676A1 (en) * 2013-08-30 2015-03-05 株式会社島津製作所 Sample analysis system
WO2015177857A1 (en) * 2014-05-20 2015-11-26 株式会社島津製作所 Sample introduction system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536653A (en) * 1999-02-11 2002-10-29 アベンティス・クロップサイエンス・エス・アー Combination library synthesis, characterization, assay method and apparatus
WO2010122718A1 (en) * 2009-04-20 2010-10-28 株式会社 日立ハイテクノロジーズ Automatic analysis device
JP2012052940A (en) * 2010-09-02 2012-03-15 Rikkyo Gakuin Method for comparing and analyzing data obtained by lc-maldi
WO2014027652A1 (en) * 2012-08-17 2014-02-20 独立行政法人科学技術振興機構 Method and device for biomolecule analysis using raman spectroscopy
WO2015029676A1 (en) * 2013-08-30 2015-03-05 株式会社島津製作所 Sample analysis system
WO2015177857A1 (en) * 2014-05-20 2015-11-26 株式会社島津製作所 Sample introduction system

Also Published As

Publication number Publication date
JPWO2022209075A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US9880135B2 (en) Automatically controlling a plurality of devices of a separation and detection process for quantitative sample analysis
EP2972294B1 (en) Method of calibrating a chromatography system
US8758684B2 (en) Automatic analyzer
JP5134931B2 (en) Automatic analyzer
US8246907B2 (en) Automatic analyzer
CN100452792C (en) Method of and system for collecting information about analyzing apparatuses, and the analyzing apparatus
US20130011298A1 (en) Sample analyzer and storage medium
US11036777B2 (en) Analysis information management system
CN103376301A (en) Chromatography coupled quadrupole mass spectrometer
CN105745534A (en) Multi-component quantitative analysis method using chromatography
US20140100791A1 (en) Patient-based results display
JP6332445B2 (en) Control device for analyzer
WO2022209075A1 (en) Analysis system and program for analysis system
JP5699059B2 (en) Automatic analysis system
JP2010216981A (en) Data processing apparatus for metabolite analysis
JP2004085357A (en) Data management device for chromatograph device
JP2008241517A (en) Sample analyzer
WO2022209072A1 (en) Analysis system, display method for analysis system, and program for analysis system
WO2022209074A1 (en) Analysis system, analysis method, and program for analysis system
JP2009052969A (en) Data management system of automatic analyzer
JP6237510B2 (en) Chromatograph data processing apparatus, data processing method, and chromatographic analysis system
CN110546496A (en) Sample analyzer
JP2009031177A (en) Liquid chromatograph apparatus
US20230273162A1 (en) Preparative Liquid Chromatograph Apparatus and Method for Assisting Determination of Preparative Separation Conditions
WO2022209073A1 (en) Analysis system, analysis method, and program for analysis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510261

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935222

Country of ref document: EP

Kind code of ref document: A1