WO2022209020A1 - Polyrotaxane and crosslinked polyrotaxane - Google Patents

Polyrotaxane and crosslinked polyrotaxane Download PDF

Info

Publication number
WO2022209020A1
WO2022209020A1 PCT/JP2021/045093 JP2021045093W WO2022209020A1 WO 2022209020 A1 WO2022209020 A1 WO 2022209020A1 JP 2021045093 W JP2021045093 W JP 2021045093W WO 2022209020 A1 WO2022209020 A1 WO 2022209020A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyrotaxane
group
molecule
cyclic
carbon atoms
Prior art date
Application number
PCT/JP2021/045093
Other languages
French (fr)
Japanese (ja)
Inventor
明繁 瀬尾
秀樹 玉井
友樹 生越
研一 加藤
克知 大西
佳祐 足立
Original Assignee
豊田合成株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田合成株式会社, 国立大学法人京都大学 filed Critical 豊田合成株式会社
Publication of WO2022209020A1 publication Critical patent/WO2022209020A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • C07C41/03Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds

Definitions

  • the present invention relates to polyrotaxanes.
  • a polyrotaxane is composed of a linear molecule, a cyclic molecule that clathrates the linear molecule in a skewed manner (takes it into the pores), and blocking groups arranged at both ends of the linear molecule. It is called a slide ring material (SRM) because it is a molecular assembly having a structure in which cyclic molecules can slide relative to linear molecules.
  • SRM slide ring material
  • Various types of cyclic molecules and linear molecules are known, and cyclodextrin is often used as the cyclic molecule and polyethylene glycol as the linear molecule (Patent Documents 1 and 2).
  • Cyclodextrin has a structure in which D-glucose is linked in a ring.
  • FIG. 4 shows the structural formula of ⁇ -cyclodextrin in which D-glucose has 6 ring members. Cyclodextrin has many hydroxyl groups at the ends of its vacancies, and the vacancies contain ether-bonded oxygen and hydrogen atoms.
  • cyclodextrin-type polyrotaxanes polyrotaxanes whose cyclic molecules are cyclodextrins
  • cyclodextrin-type polyrotaxanes have room for improvement in heat resistance and solubility in various solvents.
  • pillararene-type polyrotaxane a polyrotaxane using pillararene as a cyclic molecule
  • Japanese Patent Application No. 2020-036286 Japanese Patent Application No. 2020-036286 (unpublished at the time of filing of the present application).
  • the pillararene-type polyrotaxane has very poor solubility in various solvents (see Comparative Example 2 in Table 1), and an alkaline aqueous solution Although it is soluble, it is only slightly soluble in dimethyl sulfoxide (DMSO) as another solvent, and therefore, there are restrictions when, for example, the polyrotaxane is subjected to a cross-linking reaction.
  • DMSO dimethyl sulfoxide
  • an object of the present invention is to provide a polyrotaxane that has a certain level of heat resistance and is highly soluble in various solvents.
  • the reason why the solubility of the pillararene-type polyrotaxane is very poor is that the pillararene has a phenolic hydroxyl group, so that the rotaxanes aggregate due to the formation of hydrogen bonds.
  • the present inventors have found that aggregation can be suppressed by substituting at least a portion of the phenolic hydroxyl groups of the cyclic molecule containing an aromatic ring with a specific substituent, leading to the present invention.
  • Polyrotaxane A polyrotaxane having a linear molecule, a cyclic molecule that encloses the linear molecule in a skewered manner, and blocking groups arranged at both ends of the linear molecule,
  • the cyclic molecule contains an aromatic ring having a phenolic hydroxyl group in a side chain, and at least a portion of the phenolic hydroxyl group is substituted with a specific substituent,
  • the specific substituent has a chemical structure represented by —O—R—X, and the R is a linear or branched alkyl group having 1 to 12 carbon atoms with one hydrogen removed.
  • R is a group obtained by removing one hydrogen from a branched alkyl group having 3 carbon atoms
  • the nonionic group X is OH is a hydroxypropyl group
  • ionic groups It is also suitable among ionic groups.
  • Substitution of at least part of the phenolic hydroxyl groups with hydroxypropyl groups is hereinafter sometimes referred to as "hydroxypropyl modification".
  • the improved solubility in various solvents not only improves processability (handling), but also improves mixing with various compounds and polymers from the viewpoint of compatibility.
  • polyrotaxane in which the cyclic molecule containing the aromatic ring is hydroxypropyl-modified has lower heat resistance than the polyrotaxane in which the cyclic molecule containing the aromatic ring is not hydroxypropyl-modified (see Examples and Comparative Example 2 in Table 1).
  • polyrotaxanes in which cyclodextrin is modified with hydroxypropyl to improve solubility in various solvents have lower heat resistance than polyrotaxanes in which cyclodextrin is not modified with hydroxypropyl (Comparative Example 1 and Comparative Example 1 in Table 1). 3).
  • the polyrotaxane in which the cyclic molecule containing the aromatic ring is hydroxypropyl-modified has a higher thermal decomposition temperature than the polyrotaxane in which the cyclodextrin is modified with hydroxypropyl (see Examples and Comparative Example 1 in Table 1), and is constant. It has the above heat resistance.
  • Crosslinked polyrotaxane A crosslinked polyrotaxane in which the cyclic molecules of the polyrotaxane of [1] are crosslinked by a crosslinking agent.
  • the use of the elastomer is not particularly limited.
  • the elastomer can be attached with electrodes and used as a polymer actuator or a polymer sensor.
  • FIG. 1 is a schematic diagram illustrating the first half of the manufacturing process of the polyrotaxane of the example.
  • FIG. 2 is a schematic diagram of the pillar arene-type polyrotaxane (before hydroxypropyl modification) obtained in the first half of the same.
  • FIG. 3 is a schematic diagram illustrating the latter half of the production process of the polyrotaxane of the example (hydroxypropyl modification) and the cross-linking of the obtained polyrotaxane.
  • 4 is a schematic diagram of the polyrotaxane of Comparative Example 3.
  • FIG. 1 is a schematic diagram illustrating the first half of the manufacturing process of the polyrotaxane of the example.
  • FIG. 2 is a schematic diagram of the pillar arene-type polyrotaxane (before hydroxypropyl modification) obtained in the first half of the same.
  • FIG. 3 is a schematic diagram illustrating the latter half of the production process of the polyrotaxane of the example (hydroxypropy
  • Polyrotaxane (a) Cyclic Molecule
  • aromatic rings include benzene ring, naphthalene ring, and anthracene ring.
  • Examples of the cyclic molecule include pillararene and calixarene having a phenolic hydroxyl group in the side chain.
  • phenolic hydroxyl groups in the side chain is substituted with a specific substituent, and another part of the phenolic hydroxyl groups is replaced with another group such as -SH , --NH 2 , --COOH, --SO 3 H, --PO 4 H, etc., or grafted chains (for example, grafted chains formed by ring-opening polymerization of lactone monomers) so as to be soluble in various organic solvents.
  • grafted chains for example, grafted chains formed by ring-opening polymerization of lactone monomers
  • a pillar arene is an oligomer having a structure in which arenes (aromatic rings) are linked in a cyclic and prismatic form, and is generally described as pillar [n]arene, where [n] is the ring member number of the arene. [n] is not particularly limited, but preferably 5 to 6.
  • Calixarene is an oligomer having a structure in which phenols are cyclically linked via methylene groups, and is generally referred to as calix[n]arene, where [n] is the number of ring members of phenol. [n] is not particularly limited, but preferably 3-10.
  • Linear molecules include, but are not limited to, polyethylene glycol, polylactic acid, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and Polyvinyl methyl ether etc. can be illustrated.
  • the linear molecule is preferably polyethylene glycol, and other linear molecules may be contained together with polyethylene glycol.
  • Blocking group is not particularly limited, but dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, pyrenes, substituted benzenes (as substituents, alkyl, alkyloxy , hydroxy, halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc. One or more substituents may be present.), optionally substituted polynuclear aromatics (as the substituents, the above (one or more substituents may be present), steroids, and the like.
  • It is preferably selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins and pyrenes, more preferably adamantane groups or trityl groups.
  • cross-linking agent for polyrotaxane is not particularly limited, but examples include isocyanate, polyether, polyester, polysiloxane, polycarbonate, poly(meth)acrylate, polyene, copolymers thereof, and mixtures thereof.
  • the functional group located at each end of the cross-linking agent is not particularly limited, but is preferably an isocyanate group capable of reacting with the phenolic hydroxyl group of the cyclic molecule, and more preferably a blocked isocyanate.
  • Elastomer may consist of only crosslinked polyrotaxane, or may be a mixture of crosslinked polyrotaxane and other elastomers.
  • examples of other elastomers include, but are not limited to, silicone elastomers, styrene thermoplastic elastomers, natural rubbers, nitrile rubbers, acrylic rubbers, urethane rubbers, urea rubbers, and fluororubbers.
  • a polyrotaxane of the example was produced by a method including the following steps (1) to (5).
  • PEG polyethylene glycol
  • TEMPO 2,2,6,6-Tetramethylpiperidine 1-oxyl
  • NaBr and NaClO were allowed to react with the aqueous solution for 15 minutes at pH 10-11.
  • Diluted hydrochloric acid was added to the reaction mixture to treat it, and the resulting mixture was extracted twice with dichloromethane.
  • the resulting dichloromethane solution was collected, concentrated under reduced pressure, and recrystallized with ethanol to obtain polyethylene glycol (abbreviated as PEG-COOH) having carboxyl groups at both ends of the molecule with a weight yield of 91%.
  • PEG (abbreviated as P5AOH-PEG ) (104 mg).
  • P5AOH-PEG PEG
  • a schematic diagram of this P5AOH-PEG (also the structural formula for P5AOH) is shown in FIG.
  • Comparative Example 2 was P5AOH-PEG (before hydroxypropyl modification) obtained in (4) above (FIG. 2).
  • Comparative Example 3 Using the PEG-COOH obtained in (1) above and a commercially available ⁇ -cyclodextrin (abbreviated as CD), a polyrotaxane of Comparative Example 3 was produced by the following method. According to the method of literature (Macromolecules, 2005, 38, 7524-7527.), PEG-COOH 3.0 g (8.6 ⁇ 10 -5 mol) and ⁇ -cyclodextrin (12 g, 1.2 ⁇ 10 -2 mol) Dissolved in water (100 mL) and left in refrigerator overnight.
  • the resulting paste-like mixture was freeze-dried, and the dried solids were combined with adamantaneamine (0.16 g, 1.1 ⁇ 10 ⁇ 3 mol) and BOP reagent (0.48 g, 1.1 ⁇ 10 ⁇ 3 mol). , and ethyldiisopropylamine (0.19 mL, 1.2 ⁇ 10 ⁇ 3 mol) were dissolved in 100 mL of DMF and reacted at 4° C. overnight. The resulting mixture was centrifuged twice each with a mixed solvent of DMF/MeOH (1:1) and MeOH.
  • CDP-PEG hydroxypropyl-modified by the method described in paragraph 0092 of WO 2005/080469, and the hydroxypropyl-modified cyclodextrin-type polyrotaxane of Comparative Example 1 (abbreviated as CDP-PEG to do).
  • TG-DTA measurement (confirmation of heat resistance) TG-DTA measurement was performed for each of the polyrotaxanes of Examples and Comparative Examples 1-3. Specifically, using a differential thermal/thermogravimetric (TG-DTA) simultaneous measurement device (Hitachi High-Technologies STA7200), using platinum as a sample pan, in a N gas stream (10 mL / min), thermal decomposition temperature rise Speed: 100 to 300°C...1°C/min, 300 to 900°C...10°C/min. Based on the weight before heating (100%), the temperature at which the weight is reduced by 50% with respect to the weight before heating is shown in Table 1 as the thermal decomposition temperature (50% weight reduction).
  • TG-DTA differential thermal/thermogravimetric
  • the P5AOHP-PEG of the example can be a crosslinked polyrotaxane in which a plurality of adjacent cyclic molecules of P5AOHP-PEG are crosslinked by a crosslinking agent.
  • This crosslinked polyrotaxane can be used alone or mixed with other elastomers as a highly heat-resistant elastomer.
  • the cyclic molecule of the P5AOHP-PEG and the functional group of the other elastomer are crosslinked directly or with a crosslinker to obtain a highly heat-resistant elastomer.
  • These highly heat-resistant elastomers can be used as highly heat-resistant polymer actuators or polymer sensors by attaching electrodes (for example, by attaching elastic electrode layers to both sides of a film-like elastomer). .
  • a crosslinked polyrotaxane was prepared by the following method. 20 mL of THF was added to 22 mg of P5AOHP-PEG of Example, 4 mL of a cross-linking agent (hexamethylene diisocyanate) and 2 mL of dibutyltin dilaurate were added, and the mixture was stirred at room temperature (about 1 day). THF was volatilized from the above solution (at room temperature for about half a day) to obtain a gel-like substance. This gel-like substance was applied to a glass substrate, and left to stand overnight in a draft at room temperature and dried to obtain a crosslinked polyrotaxane film.
  • a cross-linking agent hexamethylene diisocyanate
  • dibutyltin dilaurate dibutyltin dilaurate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyethers (AREA)

Abstract

[Problem] To provide a polyrotaxane having good solubility in various solvents while having at least a certain degree or heat resistance. [Solution] A polyrotaxane, having a straight-chain molecule, a ring molecule encircling the straight-chain molecule as if skewered, and a blocking group disposed at both terminal ends of the straight-chain molecule, wherein the ring molecule includes an aromatic ring having a phenolic hydroxyl group in a side chain, and at least a portion of the phenolic hydroxyl group is substituted by a specific substituent. The specific substituent is a non-ionic group other than a hydroxypropyl group. This polyrotaxane can be a cross-linked polyrotaxane in which the ring molecules of a plurality of polyrotaxanes are cross-linked.

Description

ポリロタキサン及び架橋ポリロタキサンPolyrotaxane and crosslinked polyrotaxane
 本発明は、ポリロタキサンに関するものである。 The present invention relates to polyrotaxanes.
 ポリロタキサンは、直鎖状分子と、該直鎖状分子を串刺し状に包接する(空孔の中に取り込んでいる)環状分子と、該直鎖状分子の両末端に配置された封鎖基とを有する構造の分子集合体であり、環状分子が直鎖状分子に対してスライド可能であるため、スライドリングマテリアル(SRM)と称されている。環状分子と直鎖状分子はそれぞれ種々のものが知られているが、環状分子としてシクロデキストリン、直鎖状分子としてポリエチレングリコールが用いられることが多い(特許文献1,2)。 A polyrotaxane is composed of a linear molecule, a cyclic molecule that clathrates the linear molecule in a skewed manner (takes it into the pores), and blocking groups arranged at both ends of the linear molecule. It is called a slide ring material (SRM) because it is a molecular assembly having a structure in which cyclic molecules can slide relative to linear molecules. Various types of cyclic molecules and linear molecules are known, and cyclodextrin is often used as the cyclic molecule and polyethylene glycol as the linear molecule (Patent Documents 1 and 2).
 シクロデキストリンは、環状にD-グルコースがつながった構造をしている。D-グルコースの環員数が6であるα-シクロデキストリンの構造式を、図4に示す。シクロデキストリンは、空孔の端に水酸基が多くあり、また、空孔の中にエーテル結合の酸素原子と水素原子がある。 Cyclodextrin has a structure in which D-glucose is linked in a ring. FIG. 4 shows the structural formula of α-cyclodextrin in which D-glucose has 6 ring members. Cyclodextrin has many hydroxyl groups at the ends of its vacancies, and the vacancies contain ether-bonded oxygen and hydrogen atoms.
国際公開第2005/080469号WO2005/080469 国際公開第2018/038124号WO2018/038124
 しかし、環状分子がシクロデキストリンであるポリロタキサン(以下「シクロデキストリン型ポリロタキサン」ということがある。)は、本発明者らの検討によると、耐熱性と、各種溶媒への溶解性に改善の余地があった(後述する表1の比較例3参照)。 However, according to the studies of the present inventors, polyrotaxanes whose cyclic molecules are cyclodextrins (hereinafter sometimes referred to as "cyclodextrin-type polyrotaxanes") have room for improvement in heat resistance and solubility in various solvents. (See Comparative Example 3 in Table 1 to be described later).
 そこで、本出願人は先に、ピラーアレーンを環状分子として用いたポリロタキサン(以下「ピラーアレーン型ポリロタキサン」ということがある。)を開発し、従来のシクロデキストリン型よりも耐熱性が向上することを見出した(特願2020-036286(本出願時において未公開)。しかし、そのピラーアレーン型ポリロタキサンは、各種溶媒への溶解性が非常に悪く(表1の比較例2参照)、アルカリ水溶液には溶解するが、他の溶媒としてはわずかにジメチルスルホキシド(DMSO)に溶解するのみであり、従って、例えば当該ポリロタキサンを架橋反応させるとき等に制約がある。 Therefore, the present applicant has previously developed a polyrotaxane using pillararene as a cyclic molecule (hereinafter sometimes referred to as "pillararene-type polyrotaxane"), and has demonstrated that the heat resistance is improved as compared with the conventional cyclodextrin type. (Japanese Patent Application No. 2020-036286 (unpublished at the time of filing of the present application). However, the pillararene-type polyrotaxane has very poor solubility in various solvents (see Comparative Example 2 in Table 1), and an alkaline aqueous solution Although it is soluble, it is only slightly soluble in dimethyl sulfoxide (DMSO) as another solvent, and therefore, there are restrictions when, for example, the polyrotaxane is subjected to a cross-linking reaction.
 そこで、本発明の目的は、一定以上の耐熱性を有しながら、各種溶媒への溶解性が良いポリロタキサンを提供することにある。 Therefore, an object of the present invention is to provide a polyrotaxane that has a certain level of heat resistance and is highly soluble in various solvents.
 本発明者が検討したところ、上記のピラーアレーン型ポリロタキサンの溶解性が非常に悪い要因は、ピラーアレーンがフェノール性水酸基を有するものであったため、ロタキサン同士が水素結合形成により凝集することにあると考えられ、その凝集をほどくために高温が必要であるなど加工性にも難があった。そこで、さらに検討を重ね、芳香環を含む環状分子のフェノール性水酸基の少なくとも一部を特定置換基で置換することで、凝集を抑えられることを見出して本発明に至った。 As a result of investigation by the present inventors, the reason why the solubility of the pillararene-type polyrotaxane is very poor is that the pillararene has a phenolic hydroxyl group, so that the rotaxanes aggregate due to the formation of hydrogen bonds. There were also difficulties in workability, such as the need for high temperatures to untie the aggregates. Therefore, after further investigation, the present inventors have found that aggregation can be suppressed by substituting at least a portion of the phenolic hydroxyl groups of the cyclic molecule containing an aromatic ring with a specific substituent, leading to the present invention.
[1]ポリロタキサン
 直鎖状分子と、該直鎖状分子を串刺し状に包接する環状分子と、該直鎖状分子の両末端に配置された封鎖基とを有するポリロタキサンにおいて、
 前記環状分子が、側鎖にフェノール性水酸基を有する芳香環を含み、さらに前記フェノール性水酸基の少なくとも一部が特定置換基で置換されており、
 前記特定置換基は、-O-R-Xで示される化学構造を有しており、前記Rは炭素数1~12の直鎖状又は分岐鎖状のアルキル基から水素が1つ除かれた基、少なくとも1個のエーテル基を含む炭素数2~12の直鎖状又は分岐鎖状のアルキル基から水素が1つ除かれた基、炭素数3~12の環状アルキル基から水素が1つ除かれた基、炭素数2~12の環状アルキルエーテル基から水素が1つ除かれた基、又は炭素数2~12の環状アルキルチオエーテル基から水素が1つ除かれた基であり、前記XはOH、NH2、又はSHであることを特徴とするポリロタキサン。
 前記特定置換基は、いずれも非イオン性基である。
 前記特定置換基のうち、Rが炭素数3の分岐鎖状のアルキル基から水素が1つ除かれた基であり、XがOHである非イオン性基がヒドロキシプロピル基であって、前記非イオン性基の中でも好適である。 前記フェノール性水酸基の少なくとも一部をヒドロキシプロピル基で置換することを、以下「ヒドロキシプロピル修飾」ということがある。
[1] Polyrotaxane A polyrotaxane having a linear molecule, a cyclic molecule that encloses the linear molecule in a skewered manner, and blocking groups arranged at both ends of the linear molecule,
The cyclic molecule contains an aromatic ring having a phenolic hydroxyl group in a side chain, and at least a portion of the phenolic hydroxyl group is substituted with a specific substituent,
The specific substituent has a chemical structure represented by —O—R—X, and the R is a linear or branched alkyl group having 1 to 12 carbon atoms with one hydrogen removed. a group obtained by removing one hydrogen from a linear or branched alkyl group having 2 to 12 carbon atoms containing at least one ether group, and a cyclic alkyl group having 3 to 12 carbon atoms and having one hydrogen removed a group obtained by removing one hydrogen from a cyclic alkyl ether group having 2 to 12 carbon atoms, or a group obtained by removing one hydrogen from a cyclic alkylthioether group having 2 to 12 carbon atoms, wherein X is OH, NH 2 or SH.
All of the specific substituents are nonionic groups.
Among the specific substituents, R is a group obtained by removing one hydrogen from a branched alkyl group having 3 carbon atoms, and the nonionic group X is OH is a hydroxypropyl group, It is also suitable among ionic groups. Substitution of at least part of the phenolic hydroxyl groups with hydroxypropyl groups is hereinafter sometimes referred to as "hydroxypropyl modification".
(作用)
 芳香環を含む環状分子のフェノール性水酸基の少なくとも一部を、特定置換基で置換することによって、アルカリ水溶液やDMSOなどの高極性溶媒にしか溶解しなかったものが、テトラヒドロフラン(THF)、クロロホルム、トルエンなどの低極性溶媒にも溶解するようになる(表1の実施例参照)。これは、環状分子のフェノール性水酸基が非イオン性の置換基に置換されたことで、ロタキサン同士の水素結合形成による凝集が抑制されたためと考えられる。
(action)
By substituting at least part of the phenolic hydroxyl groups of the cyclic molecule containing an aromatic ring with a specific substituent, those that were soluble only in highly polar solvents such as alkaline aqueous solutions and DMSO can be converted to tetrahydrofuran (THF), chloroform, It becomes soluble in low-polarity solvents such as toluene (see Examples in Table 1). This is probably because the phenolic hydroxyl group of the cyclic molecule was substituted with a nonionic substituent, thereby suppressing aggregation due to formation of hydrogen bonds between rotaxanes.
 このように、各種溶媒への溶解性が向上したことで、加工性(ハンドリング)が改善されるだけでなく、相溶性の観点から、様々な化合物やポリマーとの混合が良好になるため、当該ポリロタキサンを架橋反応させるときの架橋剤の化学構造の選択肢が増える。例えば、SP値による極性の指標から、トルエン(SP値:18.2)~THF(SP値:19.4)などとよく相溶するポリマーポリプロピレン(SP値:18.8)などには良混合が期待できる。 In this way, the improved solubility in various solvents not only improves processability (handling), but also improves mixing with various compounds and polymers from the viewpoint of compatibility. There are more options for the chemical structure of the cross-linking agent when cross-linking the polyrotaxane. For example, from the polarity index by the SP value, it is well mixed with polymer polypropylene (SP value: 18.8) that is well compatible with toluene (SP value: 18.2) to THF (SP value: 19.4). can be expected.
 しかし、芳香環を含む環状分子をヒドロキシプロピル修飾したポリロタキサンは、芳香環を含む環状分子をヒドロキシプロピル修飾しないポリロタキサンと比べて、耐熱性が低下する(表1の実施例と比較例2参照)。
 同様に各種溶媒への溶解性を良くしようとして、シクロデキストリンをヒドロキシプロピル修飾したポリロタキサンは、シクロデキストリンをヒドロキシプロピル修飾しないポリロタキサンと比べて、耐熱性が低下する(表1の比較例1と比較例3参照)。
 これらを比較すると、芳香環を含む環状分子をヒドロキシプロピル修飾したポリロタキサンは、シクロデキストリンをヒドロキシプロピル修飾したポリロタキサンと比べれば、熱分解温度が高く(表1の実施例と比較例1参照)、一定以上の耐熱性を有している。
However, the polyrotaxane in which the cyclic molecule containing the aromatic ring is hydroxypropyl-modified has lower heat resistance than the polyrotaxane in which the cyclic molecule containing the aromatic ring is not hydroxypropyl-modified (see Examples and Comparative Example 2 in Table 1).
Similarly, polyrotaxanes in which cyclodextrin is modified with hydroxypropyl to improve solubility in various solvents have lower heat resistance than polyrotaxanes in which cyclodextrin is not modified with hydroxypropyl (Comparative Example 1 and Comparative Example 1 in Table 1). 3).
Comparing these, the polyrotaxane in which the cyclic molecule containing the aromatic ring is hydroxypropyl-modified has a higher thermal decomposition temperature than the polyrotaxane in which the cyclodextrin is modified with hydroxypropyl (see Examples and Comparative Example 1 in Table 1), and is constant. It has the above heat resistance.
[2]架橋ポリロタキサン
 上記[1]の複数のポリロタキサンの環状分子間が架橋剤により架橋された架橋ポリロタキサン。
[2] Crosslinked polyrotaxane A crosslinked polyrotaxane in which the cyclic molecules of the polyrotaxane of [1] are crosslinked by a crosslinking agent.
[4]エラストマー
 上記[2]の架橋ポリロタキサンを含むエラストマー。
[4] Elastomer An elastomer containing the crosslinked polyrotaxane of [2] above.
 同エラストマーの用途は、特に限定されず、例えば同エラストマーに電極を付けて高分子アクチュエータ又は高分子センサ-として用いることができる。 The use of the elastomer is not particularly limited. For example, the elastomer can be attached with electrodes and used as a polymer actuator or a polymer sensor.
 本発明によれば、一定以上の耐熱性を有しながら、各種溶媒への溶解性が良いポリロタキサンを提供することができる。 According to the present invention, it is possible to provide a polyrotaxane having a certain level of heat resistance and good solubility in various solvents.
図1は実施例のポリロタキサンの製造過程の前半を説明する模式図である。FIG. 1 is a schematic diagram illustrating the first half of the manufacturing process of the polyrotaxane of the example. 図2は同前半で得られたピラーアレーン型ポリロタキサン(ヒドロキシプロピル修飾前)の模式図である。FIG. 2 is a schematic diagram of the pillar arene-type polyrotaxane (before hydroxypropyl modification) obtained in the first half of the same. 図3は実施例のポリロタキサンの製造過程の後半(ヒドロキシプロピル修飾)と、得られたポリロタキサンの架橋を説明する模式図である。FIG. 3 is a schematic diagram illustrating the latter half of the production process of the polyrotaxane of the example (hydroxypropyl modification) and the cross-linking of the obtained polyrotaxane. 図4は比較例3のポリロタキサンの模式図である。4 is a schematic diagram of the polyrotaxane of Comparative Example 3. FIG.
1.ポリロタキサン
(a)環状分子
 芳香環としては、ベンゼン環、ナフタレン環、アントラセン環等を例示できる。
 当該環状分子としては、側鎖にフェノール性水酸基を有するピラーアレーン、カリックスアレーン等を例示できる。
 当該環状分子は、上記のとおり、側鎖のフェノール性水酸基の少なくとも一部が特定置換基で置換されているものとするが、フェノール性水酸基の別の一部を、他の基、例えば-SH、-NH2、-COOH、-SO3H、-PO4H等で置換したものでもよいし、種々の有機溶媒に溶化できるよう、グラフト鎖(例えばラクトンモノマーの開環重合からなるグラフト鎖)を有する置換基で置換したものでもよい。
1. Polyrotaxane (a) Cyclic Molecule Examples of aromatic rings include benzene ring, naphthalene ring, and anthracene ring.
Examples of the cyclic molecule include pillararene and calixarene having a phenolic hydroxyl group in the side chain.
In the cyclic molecule, as described above, at least part of the phenolic hydroxyl groups in the side chain is substituted with a specific substituent, and another part of the phenolic hydroxyl groups is replaced with another group such as -SH , --NH 2 , --COOH, --SO 3 H, --PO 4 H, etc., or grafted chains (for example, grafted chains formed by ring-opening polymerization of lactone monomers) so as to be soluble in various organic solvents. may be substituted with a substituent having
 ピラーアレーンは、アレーン(芳香環)が環状かつ角柱状につながった構造をもつオリゴマーであり、アレーンの環員数を[n]として、一般的にピラー[n]アレーンと表記される。[n]は特に限定されないが、好ましくは5~6である。
 カリックスアレーンは、フェノールがメチレン基を介して環状につながった構造を持つオリゴマーであり、フェノールの環員数を[n]として、一般にカリックス[n]アレーンと表記される。[n]は特に限定されないが、好ましくは3~10である。
A pillar arene is an oligomer having a structure in which arenes (aromatic rings) are linked in a cyclic and prismatic form, and is generally described as pillar [n]arene, where [n] is the ring member number of the arene. [n] is not particularly limited, but preferably 5 to 6.
Calixarene is an oligomer having a structure in which phenols are cyclically linked via methylene groups, and is generally referred to as calix[n]arene, where [n] is the number of ring members of phenol. [n] is not particularly limited, but preferably 3-10.
(b)直鎖状分子
 直鎖状分子としては、特に限定されないが、ポリエチレングリコール、ポリ乳酸、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコール及びポリビニルメチルエーテル等を例示できる。直鎖状分子は、ポリエチレングリコールが好ましく、ポリエチレングリコールとともに他の直鎖状分子が含有されていてもよい。
(b) Linear Molecules Linear molecules include, but are not limited to, polyethylene glycol, polylactic acid, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and Polyvinyl methyl ether etc. can be illustrated. The linear molecule is preferably polyethylene glycol, and other linear molecules may be contained together with polyethylene glycol.
(c)封鎖基
 封鎖基としては、特に限定されないが、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、ピレン類、置換ベンゼン類(置換基として、アルキル、アルキルオキシ、ヒドロキシ、ハロゲン、シアノ、スルホニル、カルボキシル、アミノ、フェニルなどを例示できる。置換基は1つ又は複数存在してもよい。)、置換されていてもよい多核芳香族類(置換基として、上記と同じものを例示できる。置換基は1つ又は複数存在してもよい。)、及びステロイド類等を例示できる。ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、及びピレン類からなる群から選ばれるのが好ましく、より好ましくはアダマンタン基類又はトリチル基類である。
(c) Blocking group The blocking group is not particularly limited, but dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, pyrenes, substituted benzenes (as substituents, alkyl, alkyloxy , hydroxy, halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc. One or more substituents may be present.), optionally substituted polynuclear aromatics (as the substituents, the above (one or more substituents may be present), steroids, and the like. It is preferably selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins and pyrenes, more preferably adamantane groups or trityl groups.
2.架橋剤
 ポリロタキサンの架橋剤としては、特に限定されないが、イソシアネート、ポリエーテル、ポリエステル、ポリシロキサン、ポリカーボネート、ポリ(メタ)アクリレート又はポリエン、もしくはそれらの共重合体、もしくはそれらの混合体を例示できる。
 架橋剤の各末端に位置する官能基としては、特に限定されないが、環状分子のフェノール性水酸基と反応できるイソシアネート基が好ましく、ブロック化イソシアネートがより好ましい。
2. Cross-Linking Agent The cross-linking agent for polyrotaxane is not particularly limited, but examples include isocyanate, polyether, polyester, polysiloxane, polycarbonate, poly(meth)acrylate, polyene, copolymers thereof, and mixtures thereof.
The functional group located at each end of the cross-linking agent is not particularly limited, but is preferably an isocyanate group capable of reacting with the phenolic hydroxyl group of the cyclic molecule, and more preferably a blocked isocyanate.
3.エラストマー
 エラストマーは、架橋ポリロタキサンのみからなるものでもよいし、架橋ポリロタキサンと他のエラストマー等の混合物でもよい。
 他のエラストマーとしては、特に限定されないが、シリコーンエラストマー、スチレン系熱可塑性エラストマー、天然ゴム、ニトリルゴム、アクリルゴム、ウレタンゴム、ウレアゴム、フッ素ゴム等を例示できる。
3. Elastomer The elastomer may consist of only crosslinked polyrotaxane, or may be a mixture of crosslinked polyrotaxane and other elastomers.
Examples of other elastomers include, but are not limited to, silicone elastomers, styrene thermoplastic elastomers, natural rubbers, nitrile rubbers, acrylic rubbers, urethane rubbers, urea rubbers, and fluororubbers.
 次の(1)~(5)の工程を踏む方法により、実施例のポリロタキサンを作製した。 A polyrotaxane of the example was produced by a method including the following steps (1) to (5).
(1)ポリエチレングリコール(PEGと略記する)の両末端の活性化
 図1(1)に示すように、文献(Macromolecules,2005,38,7524-7527.)の方法に従って、ポリエチレングリコール(PEG20000)の水溶液に2,2,6,6-テトラメチルピペリジン 1-オキシル(TEMPO)、NaBr、NaClOを作用させ、pH10-11で15分間反応させた。反応液を希塩酸を加えて処理を行い、得られた混合物をジクロロメタンで2回抽出した。得られたジクロロメタン溶液を回収・減圧濃縮し、エタノールで再結晶を行い、分子の両末端がカルボキシル基であるポリエチレングリコール(PEG-COOHと略記する)を91%の重量収率で得た。
(1) Activation of both ends of polyethylene glycol (abbreviated as PEG) As shown in FIG. 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO), NaBr and NaClO were allowed to react with the aqueous solution for 15 minutes at pH 10-11. Diluted hydrochloric acid was added to the reaction mixture to treat it, and the resulting mixture was extracted twice with dichloromethane. The resulting dichloromethane solution was collected, concentrated under reduced pressure, and recrystallized with ethanol to obtain polyethylene glycol (abbreviated as PEG-COOH) having carboxyl groups at both ends of the molecule with a weight yield of 91%.
(2)ピラー[5]アレーンの合成
 図1(2)に示すように、文献(J.Org.Chem.2011,76,328-331.)の方法に従って、ジメトキシピラー[5]アレーン(2.00g,2.67mmol)を無水クロロホルム(150mL)に溶解させた溶液に三臭化ホウ素(13.6g,54.3mmol)を加え、25℃で72時間攪拌した。反応溶液に水を加えて生じた沈殿物を回収し、0.5MHCl水溶液およびクロロホルムで洗浄し、側鎖にフェノール性水酸基を有する芳香環を含むピラー[5]アレーン(P5AOHと略記する)(1.61g,2.64mmol)を定量的に得た。
(2) Synthesis of pillar[5]arene As shown in FIG. 1(2), dimethoxypillar[5]arene (2. 00 g, 2.67 mmol) in anhydrous chloroform (150 mL) was added with boron tribromide (13.6 g, 54.3 mmol) and stirred at 25° C. for 72 hours. The precipitate formed by adding water to the reaction solution was collected, washed with 0.5 M HCl aqueous solution and chloroform, and pillar [5]arene containing an aromatic ring having a phenolic hydroxyl group in the side chain (abbreviated as P5AOH) (1 .61 g, 2.64 mmol) was obtained quantitatively.
(3)擬ポリロタキサンの合成
 図1(3)に示すように、重量比でメタノール:水=1:1で混合したメタノール水溶液10mLを溶媒に用いて調製したP5AOH溶液10mL(0.0121mol/L)を、PEG-COOH溶液0.6mL(1.894mol/L)と混合し、室温で1日静置した。生じた沈殿物を水10mLで洗浄し、得られた残渣を真空下、50℃で1日乾燥し、P5AOHがPEG-COOHを包接する擬ポリロタキサン(PseudoP5AOH-PEGと略記する)を得た。
(3) Synthesis of pseudo-polyrotaxane As shown in FIG. 1(3), 10 mL of a P5AOH solution (0.0121 mol/L) prepared using 10 mL of a methanol aqueous solution mixed at a weight ratio of methanol:water=1:1 as a solvent. was mixed with 0.6 mL (1.894 mol/L) of PEG-COOH solution and allowed to stand at room temperature for 1 day. The resulting precipitate was washed with 10 mL of water, and the resulting residue was dried under vacuum at 50° C. for 1 day to obtain a pseudo-polyrotaxane in which P5AOH clathrates PEG-COOH (abbreviated as PseudoP5AOH-PEG).
(4)ピラーアレーン型ポリロタキサンの合成
 図1(4)に示すように、アダマンタンアミン(0.016g,0.11mmol)、BOP試薬(0.048g,0.11mmol)、ジイソプロピルエチルアミン(0.019mL,0.12mmol)をジメチルホルムアミド(dryDMF)(10mL)に溶解した溶液を充分に氷冷し、PseudoP5AOH-PEG(150mg)を加えて4℃で一昼夜攪拌した。得られた溶液をロータリーエバポレーターで減圧下濃縮し、過剰の水を加えて攪拌する。沈殿物をろ過し、得られた残渣にアセトンを加えて超音波洗浄、上澄みの除去、真空乾燥し、PEGの両末端にアダマンタン基類が配置されたピラーアレーン型ポリロタキサン(P5AOH-PEGと略記する)(104mg)を得た。このP5AOH-PEGの模式図を(P5AOHについては構造式も)図2に示す。
(4) Synthesis of pillar arene-type polyrotaxane As shown in FIG. 0.12 mmol) dissolved in dimethylformamide (dryDMF) (10 mL) was sufficiently ice-cooled, PseudoP5AOH-PEG (150 mg) was added, and the mixture was stirred at 4° C. overnight. The resulting solution is concentrated under reduced pressure on a rotary evaporator and stirred with excess water. Filter the precipitate, add acetone to the resulting residue, ultrasonically wash, remove the supernatant, vacuum dry, and pillar arene-type polyrotaxane in which adamantane groups are arranged at both ends of PEG (abbreviated as P5AOH-PEG ) (104 mg). A schematic diagram of this P5AOH-PEG (also the structural formula for P5AOH) is shown in FIG.
(5)ヒドロキシプロピル修飾ピラーアレーン型ポリロタキサンの合成
 図3(5)に示すように、P5AOH-PEG(仕込み804mg,内ピラーアレーン分459mg)を、0.01M NaOH水溶液30.1mL(10当量)に溶解させた溶液に、プロピレンオキシド131.4g(3000eq.)を加え、室温で24時間攪拌した。反応液を減圧濃縮し、残留プロピレンオキシドを除去した。残渣を3M HCl水溶液でpH=3~4に酸処理した後、酸処理液を減圧濃縮し、水を除去した。残渣にTHFを加え、ろ過し、可溶部を減圧濃縮した。得られた液状化合物の1.5gにエタノールを加えて、ろ過し、不溶部を40℃で1日真空乾燥し、ピラーアレーンのフェノール性水酸基の少なくとも一部がヒドロキシプロピル基で置換された(ヒドロキシプロピル修飾)ピラーアレーン型ポリロタキサン(P5AOHP-PEGと略記する)を154mg得た。
(5) Synthesis of hydroxypropyl-modified pillar arene-type polyrotaxane As shown in FIG. 131.4 g (3000 eq.) of propylene oxide was added to the dissolved solution and stirred at room temperature for 24 hours. The reaction was concentrated under reduced pressure to remove residual propylene oxide. After the residue was acid-treated with 3M HCl aqueous solution to pH=3-4, the acid-treated solution was concentrated under reduced pressure to remove water. THF was added to the residue, the mixture was filtered, and the soluble portion was concentrated under reduced pressure. Ethanol was added to 1.5 g of the resulting liquid compound and filtered, and the insoluble portion was vacuum-dried at 40° C. for 1 day to replace at least a portion of the phenolic hydroxyl groups of the pillar arenes with hydroxypropyl groups (hydroxy 154 mg of propyl-modified) pillararene-type polyrotaxane (abbreviated as P5AOHP-PEG) was obtained.
[比較例2]
 上記(4)で得たP5AOH-PEG(ヒドロキシプロピル修飾前)(図2)を、比較例2とした。
[Comparative Example 2]
Comparative Example 2 was P5AOH-PEG (before hydroxypropyl modification) obtained in (4) above (FIG. 2).
[比較例3]
 上記(1)で得たPEG-COOHと市販のα-シクロデキストリン(CDと略記する)を用い、次の方法により、比較例3のポリロタキサンを作製した。
 文献(Macromolecules,2005,38,7524-7527.)の方法に従って、PEG-COOH3.0g(8.6×10-5mol)とα-シクロデキストリン(12g,1.2×10-2mol)を水(100mL)に溶解し、冷蔵庫に終夜静置した。得られたペースト状の混合物を凍結乾燥し、乾燥した固形分をアダマンタンアミン(0.16g,1.1×10-3mol)、BOP試薬(0.48g,1.1×10-3mol)、エチルジイソプロピルアミン(0.19mL,1.2×10-3mol)と共にDMF100mLに溶解し、4℃で一昼夜反応させた。得られた混合物をDMF/MeOH(1:1)の混合溶媒、MeOHで各2回遠心分離した。回収した沈殿物にDMSO80mLを加え洗浄し、得られた沈殿物にHO(800mL)を加えて遠心分離を行い、得られた固形分を凍結乾燥し、比較例3のシクロデキストリン型ポリロタキサン(CD-PEGと略記する)を9.55g~10.3g得た。このCD-PEGの模式図を(CDについては構造式も)図4に示す。
[Comparative Example 3]
Using the PEG-COOH obtained in (1) above and a commercially available α-cyclodextrin (abbreviated as CD), a polyrotaxane of Comparative Example 3 was produced by the following method.
According to the method of literature (Macromolecules, 2005, 38, 7524-7527.), PEG-COOH 3.0 g (8.6 × 10 -5 mol) and α-cyclodextrin (12 g, 1.2 × 10 -2 mol) Dissolved in water (100 mL) and left in refrigerator overnight. The resulting paste-like mixture was freeze-dried, and the dried solids were combined with adamantaneamine (0.16 g, 1.1×10 −3 mol) and BOP reagent (0.48 g, 1.1×10 −3 mol). , and ethyldiisopropylamine (0.19 mL, 1.2×10 −3 mol) were dissolved in 100 mL of DMF and reacted at 4° C. overnight. The resulting mixture was centrifuged twice each with a mixed solvent of DMF/MeOH (1:1) and MeOH. 80 mL of DMSO was added to the collected precipitate and washed, H 2 O (800 mL) was added to the obtained precipitate and centrifuged, the resulting solid content was freeze-dried, and the cyclodextrin-type polyrotaxane of Comparative Example 3 ( 9.55 g to 10.3 g of CD-PEG) was obtained. A schematic diagram of this CD-PEG (also the structural formula for CD) is shown in FIG.
[比較例1]
 上記比較例3のCD-PEGのCDを、国際公開第2005/080469号の段落0092に記載の方法によりヒドロキシプロピル修飾して、比較例1のヒドロキシプロピル修飾シクロデキストリン型ポリロタキサン(CDP-PEGと略記する)を得た。
[Comparative Example 1]
The CD of CD-PEG of Comparative Example 3 above is hydroxypropyl-modified by the method described in paragraph 0092 of WO 2005/080469, and the hydroxypropyl-modified cyclodextrin-type polyrotaxane of Comparative Example 1 (abbreviated as CDP-PEG to do).
[測定]
 実施例及び比較例1~3について、次の測定を行った。
[measurement]
The following measurements were carried out for Examples and Comparative Examples 1 to 3.
(ア)TG-DTA測定(耐熱性の確認)
 実施例及び比較例1~3の各ポリロタキサンについて、TG-DTA測定を行った。
 詳しくは、示差熱・熱重量(TG-DTA)同時測定装置(日立ハイテクノロジーズ製 STA7200)を用い、サンプルパンとして白金を用いて、Nガス気流(10mL/分)中で、熱分解昇温速度:100~300℃…1℃/分、300~900℃…10℃/分の条件下、測定した。加熱前重量を基準(100%)にして加熱前重量に対して50%重量減少した温度を熱分解温度(50%重量減)として表1に示す。
(a) TG-DTA measurement (confirmation of heat resistance)
TG-DTA measurement was performed for each of the polyrotaxanes of Examples and Comparative Examples 1-3.
Specifically, using a differential thermal/thermogravimetric (TG-DTA) simultaneous measurement device (Hitachi High-Technologies STA7200), using platinum as a sample pan, in a N gas stream (10 mL / min), thermal decomposition temperature rise Speed: 100 to 300°C...1°C/min, 300 to 900°C...10°C/min. Based on the weight before heating (100%), the temperature at which the weight is reduced by 50% with respect to the weight before heating is shown in Table 1 as the thermal decomposition temperature (50% weight reduction).
(イ)溶解性試験
 実施例及び比較例1~3のポリロタキサンの各サンプル10mgに、溶媒1mLを加え、室温にて24時間静置した後、目視にて固形物、ゲルなどの残存を確認して溶解性を判断した。溶媒は、NaOH水溶液、DMSO、THF、クロロホルム、トルエンの5種類とした。結果を表1に示す。
(B) Solubility test To 10 mg of each sample of the polyrotaxanes of Examples and Comparative Examples 1 to 3, 1 mL of a solvent was added and allowed to stand at room temperature for 24 hours. was used to determine solubility. Five kinds of solvents, namely NaOH aqueous solution, DMSO, THF, chloroform, and toluene, were used. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3(6)に示すように、実施例のP5AOHP-PEGは、隣り合う複数のP5AOHP-PEGの環状分子間が架橋剤により架橋された架橋ポリロタキサンとすることができる。
 この架橋ポリロタキサンは、単独で又は他のエラストマーと混合し、耐熱性の高いエラストマーとして用いることができる。
 また、実施例のP5AOHP-PEGを他のエラストマーと混合して、P5AOHP-PEGの環状分子と他のエラストマーが有する官能基とを直接的に、または架橋剤によって架橋させることによって耐熱性の高いエラストマーとして用いることができる。
 これらの耐熱性の高いエラストマーは、電極を付けて(例えば膜状のエラストマーの両面に伸縮性のある電極層を付けて)、耐熱性の高い高分子アクチュエータ又は高分子センサ-として用いることができる。
As shown in FIG. 3(6), the P5AOHP-PEG of the example can be a crosslinked polyrotaxane in which a plurality of adjacent cyclic molecules of P5AOHP-PEG are crosslinked by a crosslinking agent.
This crosslinked polyrotaxane can be used alone or mixed with other elastomers as a highly heat-resistant elastomer.
In addition, by mixing the P5AOHP-PEG of the example with another elastomer, the cyclic molecule of the P5AOHP-PEG and the functional group of the other elastomer are crosslinked directly or with a crosslinker to obtain a highly heat-resistant elastomer. can be used as
These highly heat-resistant elastomers can be used as highly heat-resistant polymer actuators or polymer sensors by attaching electrodes (for example, by attaching elastic electrode layers to both sides of a film-like elastomer). .
 具体的には、架橋ポリロタキサンを以下のような方法で作成した。
 実施例のP5AOHP-PEG22mgにTHF20mLを加え、さらに架橋剤(ヘキサメチレンジイソシアナート)4mLとジラウリン酸ジブチルスズ2mLを加えて、室温で撹拌した(約1日間)。
 上記の液からTHFを揮発(室温・約半日)させると、ゲル状物質が得られた。このゲル状物質をガラス基板に塗布して、さらにドラフト内で1晩室温で静置・乾燥して、架橋ポリロタキサンのフィルムを得た。
Specifically, a crosslinked polyrotaxane was prepared by the following method.
20 mL of THF was added to 22 mg of P5AOHP-PEG of Example, 4 mL of a cross-linking agent (hexamethylene diisocyanate) and 2 mL of dibutyltin dilaurate were added, and the mixture was stirred at room temperature (about 1 day).
THF was volatilized from the above solution (at room temperature for about half a day) to obtain a gel-like substance. This gel-like substance was applied to a glass substrate, and left to stand overnight in a draft at room temperature and dried to obtain a crosslinked polyrotaxane film.
 なお、本発明は前記実施例に限定されるものではなく、発明の趣旨から逸脱しない範囲で適宜変更して具体化することができる。 It should be noted that the present invention is not limited to the above embodiments, and can be embodied with appropriate modifications within the scope of the invention.

Claims (4)

  1.  直鎖状分子と、該直鎖状分子を串刺し状に包接する環状分子と、該直鎖状分子の両末端に配置された封鎖基とを有するポリロタキサンにおいて、
     前記環状分子が、側鎖にフェノール性水酸基を有する芳香環を含み、さらに前記フェノール性水酸基の少なくとも一部が特定置換基で置換されており、
     前記特定置換基は、-O-R-Xで示される化学構造を有しており、前記Rは炭素数1~12の直鎖状又は分岐鎖状のアルキル基から水素が1つ除かれた基、少なくとも1個のエーテル基を含む炭素数2~12の直鎖状又は分岐鎖状のアルキル基から水素が1つ除かれた基、炭素数3~12の環状アルキル基から水素が1つ除かれた基、炭素数2~12の環状アルキルエーテル基から水素が1つ除かれた基、又は炭素数2~12の環状アルキルチオエーテル基から水素が1つ除かれた基であり、前記XはOH、NH2、またはSHであることを特徴とするポリロタキサン。
    In a polyrotaxane having a linear molecule, a cyclic molecule that encloses the linear molecule in a skewed manner, and blocking groups arranged at both ends of the linear molecule,
    The cyclic molecule contains an aromatic ring having a phenolic hydroxyl group in a side chain, and at least a portion of the phenolic hydroxyl group is substituted with a specific substituent,
    The specific substituent has a chemical structure represented by —O—R—X, and the R is a linear or branched alkyl group having 1 to 12 carbon atoms with one hydrogen removed. a group obtained by removing one hydrogen from a linear or branched alkyl group having 2 to 12 carbon atoms containing at least one ether group, and a cyclic alkyl group having 3 to 12 carbon atoms and having one hydrogen removed a group obtained by removing one hydrogen from a cyclic alkyl ether group having 2 to 12 carbon atoms, or a group obtained by removing one hydrogen from a cyclic alkylthioether group having 2 to 12 carbon atoms, wherein X is OH, NH 2 or SH.
  2.  前記特定置換基は、ヒドロキシプロピル基である請求項1記載のポリロタキサン。 The polyrotaxane according to claim 1, wherein the specific substituent is a hydroxypropyl group.
  3.  請求項1又は2記載の複数のポリロタキサンの環状分子間が架橋された架橋ポリロタキサン。 A crosslinked polyrotaxane in which cyclic molecules of a plurality of polyrotaxanes according to claim 1 or 2 are crosslinked.
  4.  請求項3記載の架橋ポリロタキサンを含むエラストマー。 An elastomer containing the crosslinked polyrotaxane according to claim 3.
PCT/JP2021/045093 2021-03-31 2021-12-08 Polyrotaxane and crosslinked polyrotaxane WO2022209020A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059152 2021-03-31
JP2021059152A JP2022155764A (en) 2021-03-31 2021-03-31 Polyrotaxane and cross-linked polyrotaxane

Publications (1)

Publication Number Publication Date
WO2022209020A1 true WO2022209020A1 (en) 2022-10-06

Family

ID=83455854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045093 WO2022209020A1 (en) 2021-03-31 2021-12-08 Polyrotaxane and crosslinked polyrotaxane

Country Status (2)

Country Link
JP (1) JP2022155764A (en)
WO (1) WO2022209020A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039483A1 (en) * 2002-10-30 2004-05-13 Ajinomoto Co., Inc. Dispersing agent or solubilizing agent containing calixarene compound
US7122708B1 (en) * 2000-05-12 2006-10-17 Basf Aktiengesellschaft High-functionality polyether polyols and preparation thereof
US20180208702A1 (en) * 2017-01-25 2018-07-26 Si Group, Inc. Solubilized alkoxylated calixarene resins
WO2021176809A1 (en) * 2020-03-03 2021-09-10 豊田合成株式会社 Polyrotaxane, method for manufacturing same, and crosslinked polyrotaxane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122708B1 (en) * 2000-05-12 2006-10-17 Basf Aktiengesellschaft High-functionality polyether polyols and preparation thereof
WO2004039483A1 (en) * 2002-10-30 2004-05-13 Ajinomoto Co., Inc. Dispersing agent or solubilizing agent containing calixarene compound
US20180208702A1 (en) * 2017-01-25 2018-07-26 Si Group, Inc. Solubilized alkoxylated calixarene resins
WO2021176809A1 (en) * 2020-03-03 2021-09-10 豊田合成株式会社 Polyrotaxane, method for manufacturing same, and crosslinked polyrotaxane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO-BO HU, CHEN LEI, SI WEN, YU YIHUA, HOU JUN-LI: "Pillar[5]arene decaamine: synthesis, encapsulation of very long linear diacids and formation of ion pair-stopped [2]rotaxanes", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 47, no. 16, 1 January 2011 (2011-01-01), UK , pages 4694 - 4696, XP055636190, ISSN: 1359-7345, DOI: 10.1039/c1cc10633c *

Also Published As

Publication number Publication date
JP2022155764A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2021176809A1 (en) Polyrotaxane, method for manufacturing same, and crosslinked polyrotaxane
KR100962771B1 (en) Hydrophobic polyrotaxane and crosslinked polyrotaxane
CN102604393B (en) Hydrophobic modified polyrotaxane and crosslinked polyrotaxane
WO2013099842A1 (en) Modified polyrotaxane and method for producing same, and material formed using modified polyrotaxane
JP6013459B2 (en) Method for producing polyrotaxane having blocking group
EP2287206A1 (en) Polyrotaxane, aqueous polyrotaxane dispersion composition, crosslinked body of polyrotaxane and polymer and method for producing the same
JP4844057B2 (en) Polyphenylene sulfide and process for producing the same
WO2011108515A1 (en) Material having cross-linked polyrotaxane, and method for producing same
JP2006233007A (en) Polyrotaxane and its preparation method
JPWO2008155953A1 (en) A polyrotaxane having a main chain skeleton consisting essentially of -Si-O- and a method for producing the same, and a crosslinked polyrotaxane obtained by crosslinking the polyrotaxane and a method for producing the same
Ma et al. Reprocessable supramolecular elastomers of poly (siloxane–urethane) via self‐complementary quadruple hydrogen bonding
JP2006083379A (en) Globular cyclodextrin polymer, method for producing the same, and adsorbent containing the same
WO2022209020A1 (en) Polyrotaxane and crosslinked polyrotaxane
Yu et al. Synthesis and characterization of three-dimensional crosslinked networks based on self-assemly of α-cyclodextrins with thiolated 4-arm PEG using a three-step oxidation
JP2008184583A (en) Pseudo-polyrotaxane, polyrotaxane and method for producing them
WO2021193772A1 (en) Thermoplastic elastomer, composition, and molded body
US7652118B2 (en) Polycarbosilane and method for producing same
Lisa et al. Thermal and thermo-oxidative degradation of some heterocyclic aromatic polyethers containing phenylquinoxaline and/or 1, 3, 4-oxadiazole rings
JP2023164200A (en) Polyrotaxane and cross-linked polyrotaxane
JPH0748451A (en) Cyclodextrin polymer and production thereof
JP4090979B2 (en) Method for removing phenolic compounds
Anbarasan et al. Structural and thermal studies of fluorescein and Rhodamin6G grafted diblock copolymers
JP5463541B2 (en) Modified pseudopolyrotaxane and modified polyrotaxane, and methods for producing them
JP5081401B2 (en) Sulfated sugar-containing polyurethane derivative and process for producing the same
JP2747798B2 (en) Polyphenylene ether resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935172

Country of ref document: EP

Kind code of ref document: A1