WO2022208986A1 - Optical connector and production method for optical connector - Google Patents

Optical connector and production method for optical connector Download PDF

Info

Publication number
WO2022208986A1
WO2022208986A1 PCT/JP2021/043090 JP2021043090W WO2022208986A1 WO 2022208986 A1 WO2022208986 A1 WO 2022208986A1 JP 2021043090 W JP2021043090 W JP 2021043090W WO 2022208986 A1 WO2022208986 A1 WO 2022208986A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
mechanical splice
built
housing
wedge
Prior art date
Application number
PCT/JP2021/043090
Other languages
French (fr)
Japanese (ja)
Inventor
勝則 寺本
貴治 松田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2022208986A1 publication Critical patent/WO2022208986A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means

Definitions

  • the present invention relates to an optical connector and an optical connector manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2021-057089 filed in Japan on March 30, 2021, the contents of which are incorporated herein.
  • connection fiber By the way, what kind of optical fiber is used as the connection fiber depends on the usage of the optical connector.
  • the bending stiffness of the connecting fiber varies depending on the type of optical fiber. Therefore, when assembling the optical connector, the relationship between the amount of bending applied to the connection fiber and the pressing force of the connection fiber against the built-in fiber was not constant.
  • the connection fiber is bent even in a situation where the built-in fiber and the connection fiber are not properly abutting each other, such as when the coating of the connection fiber is caught on the mechanical splice. For this reason, the method of judging the magnitude of the pressing force from the magnitude of bending of the connection fiber has the problem that the control of the pressing force becomes unstable, and the connection achievement rate between the built-in fiber and the connection fiber decreases.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an optical connector and an optical connector manufacturing method that can improve the connection achievement rate between the built-in fiber and the connection fiber.
  • an optical connector includes a housing, a ferrule having a connection end face and a fiber hole opening in the connection end face, a ferrule inserted through the fiber hole, and a fiber hole inserted through the fiber hole.
  • a built-in fiber having an extension portion extending from the ferrule toward the rear, which is the opposite side of the connection end face in the direction;
  • a mechanical splice having an insertion hole into which a connecting fiber to be connected can be inserted, wherein the housing accommodates at least a portion of the ferrule and the mechanical splice, and the ferrule and the mechanical splice in the housing is provided with a bending space for allowing the built-in fiber to bend.
  • a deflection space is provided between the ferrule and the mechanical splice.
  • the built-in fiber can be bent when the built-in fiber and the connection fiber collide with each other.
  • the bending stiffness of the built-in fiber can be set by the shipper of the optical connector. Therefore, it is possible to stabilize the relationship between the pressing force applied to the connection fiber by the user and the deflection amount of the built-in fiber. Therefore, the connection achievement rate between the built-in fiber and the connection fiber can be improved.
  • the optical connector of the above aspect is inserted into the mechanical splice to expand the insertion hole, and is removed from the mechanical splice to fix the relative position between the connection fiber and the mechanical splice.
  • a wedge is further provided, and the mechanical splice and the housing are configured to be relatively movable in the insertion direction.
  • the relative position in the inserting direction with respect to the housing is fixed at a predetermined preparatory position, and when the wedge is removed from the mechanical splice, the restoring force generated by the deflection of the built-in fiber causes the ferrule and the ferrule to move.
  • a relative distance from the mechanical splice in the insertion direction may be increased.
  • the mechanical splice has an engaging portion
  • the wedge has a wedge-side engaging portion that engages with the engaging portion, and when the wedge is inserted into the mechanical splice, the engaging portion
  • the housing and the mechanical splice may be guided to the ready position by engagement of a portion with the wedge-side engaging portion.
  • the housing may be formed with a window that communicates with the deflection space.
  • the optical connector of the aspect described above further includes a restricting portion arranged in one of the rear end of the ferrule, the tip of the mechanical splice, and the inside of the deflection space, wherein the deflection space and the window are arranged. are aligned, and a direction perpendicular to both the first direction and the insertion direction is a second direction, the restricting portion extends from the insertion hole to the second direction when viewed from the insertion direction.
  • a slit extending in two directions may be included.
  • the extending portion of the built-in fiber extending backward from the ferrule is inserted into the mechanical splice from the front, and the connection fiber is inserted into the mechanical splice.
  • the built-in fiber may be bent between the ferrule and the mechanical splice by inserting from the rear and abutting the connecting fiber against the extension.
  • visible light may be incident on the built-in fiber or the connection fiber when the connection fiber is butted against the extension.
  • an optical connector and a method for manufacturing an optical connector that can improve the connection achievement rate between the built-in fiber and the connection fiber.
  • FIG. 1 is an overall perspective view of an optical connector according to an embodiment, omitting a wedge
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line III-III in the mechanical splice of FIG. 2
  • FIG. 4 is a partially cross-sectional perspective view showing how the protrusion of the mechanical splice is fitted into the guide of the housing.
  • FIG. 2 is a perspective view showing how a wedge is inserted into the housing of FIG. 1
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5
  • FIG. 5 is a view (plan view) in the direction of arrow VII in FIG. 4;
  • FIG. 8 is a view (front view) of the mechanical splice in FIG. 7 taken along the direction of arrow VIII;
  • FIG. 5 is a cross-sectional view showing a part of the process of guiding the mechanical splice to the ready position;
  • FIG. 9B is a diagram illustrating a process following FIG. 9A;
  • FIG. 9C is a diagram illustrating the process following FIG. 9B;
  • FIG. 4 is a cross-sectional view showing a part of a butting process in which the built-in fiber and the connection fiber are butted against each other;
  • FIG. 10B is a diagram showing a process following FIG. 10A;
  • FIG. 10C is a diagram illustrating a process following FIG. 10B;
  • FIG. 10C is a view (plan view) in the direction of arrow XI in FIG. 10B;
  • the optical connector 1 includes a housing 10, a ferrule 20, a built-in fiber 30, a mechanical splice 40, a holding member 60, a biasing member 70, a case 80, and a boot 90. And prepare. Housing 10 accommodates at least a portion of ferrule 20 and mechanical splice 40 therein. A bending space B is provided between the ferrule 20 and the mechanical splice 40 inside the housing 10 to allow the built-in fiber 30 to bend. A window 12 communicating with the deflection space B is formed in the housing 10 .
  • the ferrule 20 has a connection end surface 20a and a fiber hole 21 opening in the connection end surface 20a.
  • the built-in fiber 30 is inserted through the fiber hole 21 .
  • an XYZ orthogonal coordinate system is set to explain the positional relationship of each configuration.
  • the direction in which the built-in fiber 30 is inserted into the fiber hole 21 is called an insertion direction X.
  • the direction in which the built-in fiber 30 is inserted into the fiber hole 21 is called an insertion direction X.
  • the direction from the mechanical splice 40 toward the ferrule 20 (connecting end surface 20a) is called forward (+X side) or tip side.
  • the direction opposite to forward is called posterior ( ⁇ X side) or proximal side.
  • a direction in which the bending space B and the window 12 are arranged is called a first direction Z.
  • a direction from the deflection space B toward the window 12 along the first direction Z is called upward (+Z side).
  • the direction opposite to upward is called downward ( ⁇ Z side).
  • a direction orthogonal to both the insertion direction X and the first direction Z is called a second direction Y. As shown in FIG. One direction along the second direction Y is called the front side (+Y side). The direction opposite to the front side is called the back side (-Y side). A cross section perpendicular to the insertion direction X is called a "cross section.”
  • connection fiber F is connected to the rear end of the built-in fiber 30 .
  • the connection fiber F is an optical fiber arbitrarily prepared by the user.
  • one of the plurality of optical fibers included in the optical cable is the connection fiber F.
  • the optical connector 1 may be attached to a single optical cord or the like. The work of connecting the built-in fiber 30 and the connection fiber F is performed at the installation site of the optical cable or the like.
  • the housing 10 is a cylindrical member extending along the insertion direction X (in this embodiment, a square cylindrical member as an example). As shown in FIG. 2, the housing 10 of this embodiment includes a front housing 10A holding the ferrule 20 inside and a rear housing 10B holding the mechanical splice 40 inside. The front housing 10A and the rear housing 10B are locked and fixed to each other by housing locking portions (not shown). Although the front housing 10A and the rear housing 10B are formed separately in this embodiment, the front housing 10A and the rear housing 10B may be formed integrally.
  • the housing 10 has the aforementioned window 12, a plurality of wedge communication holes 11, and two guides 13.
  • Each of the plurality of wedge communication holes 11 penetrates the upper wall of the housing 10 along the first direction Z.
  • the plurality of wedge communication holes 11 includes two first communication holes 11A and one second communication hole 11B (see FIG. 7).
  • a widening portion 51 (described later) of the wedge 50 is inserted through the first communication hole 11A.
  • a wedge-side engagement portion 52 (described later) of the wedge 50 is inserted through the second communication hole 11B. Note that the numbers of the first communication holes 11A and the numbers of the second communication holes 11B can be changed as appropriate.
  • the two guides 13 are arranged on the upper and lower walls of the housing 10, respectively.
  • Each guide 13 extends along the insertion direction X and penetrates the upper wall and the lower wall of the housing 10 in the first direction Z.
  • the guide 13 is a slit-shaped hole that opens on the inner surface of the housing 10 .
  • the dimension of the guide 13 in the insertion direction X is longer than the dimension of the guide 13 in the second direction Y (see FIG. 7).
  • a protrusion 42 e (described later) of the mechanical splice 40 is arranged inside the guide 13 .
  • the shape of the guide 13 may be appropriately changed as long as the protrusion 42e can slide in the guide 13 in the insertion direction X.
  • the guide 13 may be recessed outward in the first direction Z from the inner surface of the housing 10 and may not penetrate the housing 10 .
  • a portion of the housing 10 is covered with a case 80 and a boot 90 in this embodiment.
  • Case 80 and boot 90 are fixed to housing 10 .
  • Case 80 and boot 90 are configured so as not to block wedge communication hole 11 and window 12 .
  • the case 80 is formed with a second window 81 .
  • the second window 81 is formed so as to overlap the window 12 when viewed from the first direction Z. As shown in FIG. Through these windows 12 and the second window 81, the deflection space B can be visually recognized from the outside of the optical connector 1.
  • the case 80 is positioned forward of the wedge communication hole 11 . Note that the optical connector 1 does not have to include the case 80 and the boot 90 .
  • the ferrule 20 has fiber holes 21 as described above.
  • the fiber hole 21 penetrates the ferrule 20 in the insertion direction X.
  • a holding member 60 is arranged inside the front housing 10A.
  • the holding member 60 holds the rear end portion of the ferrule 20 . Since the holding member 60 is urged forward by the urging member 70, the ferrule 20 is also urged forward.
  • the holding member 60 is movable in the insertion direction X inside the front housing 10A.
  • a coil spring for example, can be used as the biasing member 70 .
  • the connection end surface 20a of the ferrule 20 of the optical connector 1 and the connection end surface of the ferrule of the other optical connector are pressed together.
  • the biasing member 70 has a role of generating this pressing force. Note that the holding member 60 may not be provided, and the biasing member 70 may directly bias the ferrule 20 .
  • the mechanical splice 40 includes a clamp portion 41 and a body portion 42.
  • the body portion 42 of this embodiment has a first member 42A and a second member 42B.
  • the body portion 42 may be a single elastically deformable member.
  • the shape of the clamp portion 41 is a C shape opening upward in a cross-sectional view.
  • the clamp portion 41 is made of an elastic material.
  • the first member 42A and the second member 42B are held on the inner surface of the clamp portion 41 by the elastic restoring force of the clamp portion 41 and are pressed against each other.
  • the shape of the clamp portion 41 does not have to be C-shaped in cross-sectional view, and may be U-shaped or V-shaped, for example.
  • An insertion hole 42a is formed in a part of the pressure contact surface between the first member 42A and the second member 42B.
  • the insertion hole 42a penetrates the main body portion 42 in the insertion direction X.
  • the built-in fiber 30 and the connection fiber F are inserted into the insertion hole 42a.
  • the inner diameter of the insertion hole 42a is smaller than both the outer diameter of the glass portion of the built-in fiber 30 and the outer diameter of the connecting fiber F.
  • the body portion 42 (the first member 42A and the second member 42B) extends along the insertion direction X.
  • the body portion 42 has two projections 42e.
  • the two protrusions 42e protrude upwardly and downwardly from the body portion 42, respectively.
  • each of the two protrusions 42e is fitted into each of the two guides 13 of the housing 10 (see also FIG. 7).
  • the mechanical splice 40 and the housing 10 are configured to be relatively movable in the insertion direction X.
  • FIG. 1 the mechanical splice 40 and the housing 10 are configured to be relatively movable in the insertion direction X.
  • a wedge 50 When connecting the built-in fiber 30 and the connection fiber F, a wedge 50 is inserted into the housing 10 as shown in FIG. As shown in FIG. 6 , the wedge 50 has two expanding portions 51 , a wedge-side engaging portion 52 , a wedge locking portion 53 and a wedge base portion 54 .
  • the expanding portion 51 , the wedge-side engaging portion 52 , and the wedge locking portion 53 all protrude downward from the wedge base portion 54 .
  • the two expanding portions 51 are arranged with a gap in the insertion direction X.
  • the wedge-side engaging portion 52 is arranged forward of the two expanding portions 51 .
  • only one expansion portion 51 may be formed, or three or more expansion portions 51 may be formed.
  • the housing 10 (rear housing 10B) may be provided with the same number of the first communication holes 11A as the widening portions 51 .
  • a configuration may be employed in which a plurality of enlarged portions 51 are inserted through one first communication hole 11A.
  • a wedge-side inclined surface 52 a is formed on the lower surface of the wedge-side engaging portion 52 .
  • the wedge-side inclined surface 52a is inclined upward toward the front.
  • two wedge locking portions 53 are provided with an interval therebetween in the second direction Y.
  • a housing 10 and a case 80 are arranged between the two wedge locking portions 53 . These wedge locking portions 53 lock the wedge 50 to the case 80 when the wedge 50 is inserted into the housing 10, thereby preventing the wedge 50 from falling off unexpectedly.
  • FIG. 7 is a plan view of the housing 10 (rear housing 10B) and the mechanical splice 40.
  • FIG. A main body portion 42 of the mechanical splice 40 is formed with a widened portion 42b.
  • the expanded portion 42 b is a depression provided in the upper portion of the main body portion 42 .
  • the body portion 42 is formed with an engaging portion 42d projecting from the body portion 42 toward the front side.
  • the engaging portion 42d has an inclined surface 42d1 that is inclined upward toward the front (see FIG. 9A).
  • the engaging portion 42d and the wedge-side engaging portion 52 are engaged by sliding the inclined surface 42d1 and the wedge-side inclined surface 52a.
  • the expanded portion 51 of the wedge 50 penetrates the first communication hole 11A of the housing 10 and is inserted into the expanded portion 42b. Also, the wedge-side engaging portion 52 passes through the second communication hole 11B, and the wedge-side inclined surface 52a contacts the engaging portion 42d.
  • the expanding portion 51 is inserted into the expanded portion 42b, each of the first member 42A and the second member 42B moves outward in the second direction Y against the elastic restoring force of the clamp portion 41. As shown in FIG. At this time, the insertion hole 42a is expanded in the second direction Y. As shown in FIG.
  • the glass portion of the built-in fiber 30 can be inserted into the insertion hole 42a.
  • the glass portion of the connecting fiber F can be inserted into the insertion hole 42a.
  • a restricting portion 42c having a slit S is provided at the tip (front end) of the body portion 42.
  • the slit S overlaps with the insertion hole 42a and extends parallel to the second direction Y when viewed from the insertion direction X.
  • the slit S extends along the second direction Y from the central portion of the restricting portion 42c in the second direction Y toward the back side (-Y side).
  • the slit S may extend forward (+Y side) from the central portion of the restricting portion 42c, or may be inclined with respect to the second direction Y.
  • the slit S regulates the direction in which the built-in fiber 30 bends in the bending space B. As shown in FIG.
  • the built-in fiber 30 is inserted through the fiber hole 21 of the ferrule 20 and fixed to the fiber hole 21 . More specifically, at the tip of the built-in fiber 30, the coating is removed and the glass portion is exposed. The exposed glass portion of the built-in fiber 30 is inserted through and fixed to the fiber hole 21 .
  • heat curing of an adhesive may be used, but other means may be used.
  • the portion of the built-in fiber 30 that extends from the rear of the ferrule 20 is referred to as an extension portion 31.
  • the extending portion 31 penetrates the bending space B and is inserted from the tip of the insertion hole 42 a of the mechanical splice 40 . More specifically, at the rear end of the extending portion 31, the coating is removed to expose the glass portion. The exposed glass portion of the extending portion 31 is inserted and fixed in the insertion hole 42a.
  • the flexural rigidity of the built-in fiber 30 is preferably lower than the flexural rigidity of the connection fiber F. With this configuration, when the built-in fiber 30 and the connection fiber F abut against each other, the built-in fiber 30 can be bent in the bending space B while suppressing the bending of the connection fiber F.
  • an optical fiber with a coating diameter of 900 ⁇ m is used as the connection fiber F
  • an optical fiber with a coating diameter of 250 ⁇ m is used as the connection fiber F
  • it is desirable to use an optical fiber with a coating diameter of 200 ⁇ m as the built-in fiber 30 if it is assumed that an optical fiber with a coating diameter of 250 ⁇ m is used as the connection fiber F, it is desirable to use an optical fiber with a coating diameter of 200 ⁇ m as the built-in fiber 30 .
  • housing 10 front housing 10A and rear housing 10B
  • ferrule 20 front housing 10A and rear housing 10B
  • mechanical splice 40 mechanical splice 40
  • wedge 50 built-in fiber 30, holding member 60, and biasing member 70
  • the coating is removed by a predetermined length from the leading end and the trailing end of the built-in fiber 30 to expose the glass portion.
  • an adhesive is injected into the fiber hole 21 of the ferrule 20 , and the glass portion of the built-in fiber 30 is inserted from the rear end of the fiber hole 21 .
  • the adhesive is then heat cured. Thereby, the built-in fiber 30 is fixed within the fiber hole 21 . If the tip of the built-in fiber 30 protrudes from the connecting end surface 20a, the protruding portion is cut off.
  • connection end surface 20a is polished as necessary.
  • the holding member 60 is attached to the rear end portion of the ferrule 20 .
  • part of the ferrule 20, the holding member 60, and the biasing member 70 are housed inside the front housing 10A.
  • the mechanical splice 40 is housed inside the rear housing 10B.
  • the mechanical splice 40 is put into a state in which the glass portion of the built-in fiber 30 can be inserted into the insertion hole 42a by inserting, for example, a tool into the expanded portion 42b.
  • an embedded fiber insertion step is performed.
  • the built-in fiber insertion step the extending portion 31 of the built-in fiber 30 is inserted into the insertion hole 42 a of the mechanical splice 40 . More specifically, the glass portion of the optical fiber exposed at the rear end of the extending portion 31 is inserted from the front into the insertion hole 42a.
  • the front housing 10A and the rear housing 10B are combined. A portion of the ferrule 20 , the retaining member 60 , the biasing member 70 and the mechanical splice 40 are thereby housed inside the housing 10 .
  • the wedge 50 is inserted into the mechanical splice 40 through the housing 10 .
  • the wedge-side inclined surface 52a of the wedge-side engaging portion 52 and the inclined surface 42d1 of the engaging portion 42d come into contact with each other.
  • the inclination of the wedge-side inclined surface 52a exerts a forward force on the inclined surface 42d1. works. This force moves the mechanical splice 40 forward.
  • the wedge-side engaging portion 52 is sandwiched in the insertion direction X between the engaging portion 42 d and the clamp portion 41 .
  • the relative positions in the insertion direction X between the wedge 50 and the mechanical splice 40 are fixed. Further, by locking the wedge locking portion 53 to the case 80, the relative position in the insertion direction X between the wedge 50 and the housing 10 is fixed. That is, the relative position in the insertion direction X between the mechanical splice 40 and the housing 10 is fixed via the wedge 50 .
  • this fixed relative position between the mechanical splice 40 and the housing 10 may be referred to as the ready position.
  • a connecting fiber F is then prepared. Specifically, the optical fiber to be connected (connection fiber F) is exposed from the optical cable or the like. Also, the coating of the tip portion of the connection fiber F is stripped off, exposing the glass portion. Next, a connecting fiber insertion step is performed. In the connecting fiber inserting step, the connecting fiber F is inserted into the insertion hole 42 a of the mechanical splice 40 . More specifically, the glass portion exposed at the tip of the connection fiber F is inserted into the insertion hole 42a from behind. At this time, since the insertion hole 42a is expanded by the expanded portion 51 of the wedge 50, the connection fiber F is smoothly inserted into the insertion hole 42a.
  • FIG. 10A is a diagram showing a state where the steps up to this point have been completed.
  • the butting process is performed.
  • the tip of the connecting fiber F is butted against the rear end of the extending portion 31 .
  • a pressing force (compressive force) along the insertion direction X is applied to the built-in fiber 30 and the connecting fiber F.
  • the bending rigidity of the built-in fiber 30 is lower than the bending rigidity of the connection fiber F, and a bending space B is provided between the ferrule 20 and the mechanical splice 40 .
  • the built-in fiber 30 bends while the bending of the connection fiber F is suppressed (see FIG. 10B).
  • the direction in which the built-in fiber 30 bends in FIG. 10B is mainly the direction perpendicular to the plane of the paper (that is, the second direction Y).
  • the user may visually recognize the bending of the built-in fiber 30 through the window 12 provided in the housing 10 and the second window 81 provided in the case 80 . Thereby, the user may confirm that the built-in fiber 30 and the connection fiber F have collided.
  • the optical fibers do not abut each other properly, such as when the coating of the connecting fiber F is caught on the mechanical splice 40, the bending of the built-in fiber 30 is suppressed, and the connecting fiber F bends instead. .
  • the optical connector 1 of the present embodiment can prevent the misidentification as described above by visually checking whether or not the built-in fiber 30 is bent through the window 12 and the second window 81 .
  • the bending direction of the built-in fiber 30 is regulated by the slit S provided in the regulating portion 42c. 8, when the slit S extends parallel to the second direction Y, the bending direction of the built-in fiber 30 is the direction (first It is regulated in a second direction Y orthogonal to the direction Z) (see FIG. 11). With this configuration, the bending of the built-in fiber 30 is easily visible through the window 12 and the second window 81 . Even if the bending direction of the built-in fiber 30 is slightly inclined from the second direction Y, as long as the bending direction is not parallel to the first direction Z, the same effect can be expected.
  • a visible light source (not shown) may be installed at the tip of the ferrule 20 to allow visible light to enter the built-in fiber 30 .
  • the extended portion 31 (flexible portion) of the built-in fiber 30 is provided with a coating, part of the visible light incident on the built-in fiber 30 passes through the coating. Therefore, when viewed from the user, the extending portion 31 looks shiny. Therefore, the bending of the built-in fiber 30 becomes easier to visually recognize.
  • a configuration may be employed in which visible light is incident on the connecting fiber F and propagates from the connecting fiber F to the built-in fiber 30. However, considering the distance between the visible light source and the bending space B, , the configuration in which the visible light is incident on the built-in fiber 30 is simple.
  • the wedge 50 is removed from the mechanical splice 40.
  • the insertion hole 42a shrinks, and the connecting fiber F and the built-in fiber 30 are fixed in the insertion hole 42a while abutting each other. Thereby, the connection between the connection fiber F and the built-in fiber 30 is achieved.
  • the restriction on relative movement in the insertion direction X between the mechanical splice 40 and the housing 10 is released.
  • the mechanical splice 40 is pushed backward while holding the built-in fiber 30 and the connection fiber F (see FIG. 10C) due to the restoring force caused by the bending of the built-in fiber 30 .
  • the relative distance in the insertion direction X between the ferrule 20 and the mechanical splice 40 increases due to the restoring force caused by the bending of the built-in fiber 30 .
  • connection fiber F If the insertion of the connection fiber F is to be redone for some reason, the wedge 50 is inserted again into the mechanical splice 40 to release the fixation of the connection fiber F to the mechanical splice 40 . Also, at this time, the mechanical splice 40 and the housing 10 are returned to the predetermined preparatory positions by the structure described above. Therefore, the optical connector 1 can be reused.
  • the optical connector 1 includes the housing 10, the ferrule 20 having the connection end surface 20a and the fiber hole 21 opening in the connection end surface 20a, and the fiber hole 21 that is inserted into the fiber hole 21.
  • a built-in fiber 30 having an extending portion 31 extending from the ferrule 20 toward the rear, which is the opposite side of the connecting end surface 20a in the insertion direction X, and the rear end of the extending portion 31 are inserted, and the extending portion 31 a mechanical splice 40 having an insertion hole 42a into which the connection fiber F connected to the rear end can be inserted;
  • the housing 10 accommodates at least part of the ferrule 20 and the mechanical splice 40;
  • a bending space B is provided between the mechanical splice 40 and the bending space B that allows the built-in fiber 30 to bend.
  • the bending space B is provided between the ferrule 20 and the mechanical splice 40.
  • the built-in fiber 30 can be bent.
  • the bending rigidity of the built-in fiber 30 can be set by the shipper of the optical connector 1 . Therefore, it is possible to stabilize the relationship between the pressing force applied to the connection fiber F by the user and the deflection amount of the built-in fiber 30 . Therefore, the connection achievement rate between the built-in fiber 30 and the connection fiber F can be improved.
  • the optical connector 1 is inserted into the mechanical splice 40 to expand the insertion hole 42a, and removed from the mechanical splice 40 to change the relative position between the connection fiber F and the mechanical splice 40.
  • the mechanical splice 40 and the housing 10 are configured to be relatively movable in the insertion direction X, and the wedge 50 is inserted into the mechanical splice 40 via the housing 10 to provide a mechanical
  • the relative position of the splice 40 and the housing 10 in the insertion direction X is fixed at a predetermined preparatory position. The relative distance in the insertion direction X between ferrule 20 and mechanical splice 40 increases.
  • the optical connector 1 having such a configuration, it is possible to prevent the built-in fiber 30 from remaining bent after the connection between the built-in fiber 30 and the connection fiber F is completed. Therefore, the transmission loss of the optical connector 1 caused by the bending of the built-in fiber 30 can be suppressed.
  • the mechanical splice 40 has an engaging portion 42d, and the wedge 50 has a wedge-side engaging portion 52 that engages with the engaging portion 42d.
  • the housing 10 and the mechanical splice 40 are guided to a predetermined preparatory position.
  • the relative position between the housing 10 and the mechanical splice 40 is unexpectedly displaced before the user uses the optical connector 1, the relative position can be easily determined by inserting the wedge 50. ready position. Moreover, even if the insertion of the connection fiber F is to be redone for some reason, the relative position can be easily returned to the predetermined preparatory position by removing the wedge 50 and reinserting it. Therefore, reuse of the optical connector 1 is facilitated.
  • a window 12 communicating with the deflection space B is formed in the housing 10 .
  • the inside of the deflection space B can be visually recognized through the second window 81 formed in the case 80.
  • the second Window 81 is not required. Therefore, the second window 81 may be omitted. Also, the case 80 may be omitted.
  • the optical connector 1 further includes a restricting portion 42c arranged at the tip of the mechanical splice 40.
  • the restricting portion 42c includes a slit S extending in the second direction Y from the insertion hole 42a when viewed from the insertion direction X.
  • the extending portion 31 of the built-in fiber 30 extending backward from the ferrule 20 is inserted into the mechanical splice 40 from the front, and the connection fiber F is mechanically spliced.
  • the built-in fiber 30 is bent between the ferrule 20 and the mechanical splice 40 by inserting the connecting fiber F from the rear side into the 40 and abutting the connecting fiber F against the extending portion 31 .
  • visible light may be incident on the built-in fiber 30 or the connecting fiber F when the connecting fiber F abuts against the extending portion 31 .
  • the built-in fiber 30 emits light, and the visibility of the bending of the built-in fiber 30 is improved.
  • the wedge 50 was inserted downward into the mechanical splice 40 in the above embodiment, the wedge 50 may be inserted upward from below. Alternatively, the wedge 50 may be inserted in a direction parallel to the second direction Y with respect to the mechanical splice 40 .
  • the body portion 42 of the mechanical splice 40 was held inside the clamp portion 41 by the elastic restoring force of the clamp portion 41, but the body portion 42 may be held by a screw member or the like.
  • the mechanical splice 40 moves backward after the abutment process is performed, but a configuration in which the ferrule 20 moves forward, for example, may be adopted.
  • the wedge-side inclined surface 52a of the wedge-side engaging portion 52 and the engaging portion 42d abut to guide and fix the mechanical splice 40 and the housing 10 to the predetermined preparatory position.
  • structure can also be adopted.
  • one of the engaging portion 42d and the wedge-side engaging portion 52 may not have an inclined surface.
  • the mechanism of the wedge-side engaging portion 52 and the engaging portion 42d is arbitrary as long as the mechanical splice 40 and the housing 10 can be guided and fixed to predetermined preparatory positions.
  • the restricting portion 42c is integrated with the body portion 42 and the slit S is formed in the body portion 42, but the restricting portion 42c may be provided at the rear end of the ferrule 20.
  • the restricting portion 42c may have a base separate from the body portion 42 and the ferrule 20, and may be configured such that the slit S is formed in the base.
  • the restricting portion 42c may be provided inside the bending space B. That is, the restricting portion 42c can be arranged at any one of the rear end of the ferrule 20, the tip of the mechanical splice 40, and the inside of the bending space B. As shown in FIG.
  • Optical connector 10 Housing 12... Window 20... Ferrule 20a... Connection end face 21... Fiber hole 30... Built-in fiber 31... Extension part 40... Mechanical splice 42a... Insertion hole 42c... Regulating part 42d... Engaging part 50... Wedge 52... Wedge-side engagement portion B... Deflection space S... Slit F... Connection fiber X... Insertion direction

Abstract

An optical connector (1) comprises a housing (10), a ferrule (20), a built-in fiber (30), and a mechanical splice (40). The ferrule (20) has a connection end surface (20a) and a fiber hole (21) that opens on the contact end surface (20a). The built-in fiber (30) is inserted into the fiber hole (21). The built-in fiber (30) has an extension part (31) that extends backward from the ferrule (20). The mechanical splice (40) has an insertion hole (42a). A back end of the extension part (31) can be inserted into the insertion hole (42a), and a connection fiber (F) connected to the back end of the extension part (31) can be also inserted thereinto. The housing (10) houses at least part of the ferrule (20) and the mechanical splice (40) therein. A deflection space (B) that allows deflection of the built-in fiber (30) is provided between the ferrule (20) and the mechanical splice (40) within the housing (10).

Description

光コネクタおよび光コネクタの製造方法Optical connector and method for manufacturing optical connector
 本発明は、光コネクタおよび光コネクタの製造方法に関する。
 本願は、2021年3月30日に、日本に出願された特願2021-057089号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical connector and an optical connector manufacturing method.
This application claims priority based on Japanese Patent Application No. 2021-057089 filed in Japan on March 30, 2021, the contents of which are incorporated herein.
 従来、メカニカルスプライスを備えた光コネクタが普及している。例えば特許文献1には、メカニカルスプライスに前方から内蔵ファイバを挿入し、メカニカルスプライスに後方から接続ファイバを挿入して内蔵ファイバに突き当て、さらにメカニカルスプライスに挿入された楔を抜去して、当該2つの光ファイバを固定・接続する光コネクタが開示されている。 Conventionally, optical connectors with mechanical splices have been widely used. For example, in Patent Document 1, a built-in fiber is inserted into a mechanical splice from the front, a connection fiber is inserted into the mechanical splice from the back and abutted against the built-in fiber, a wedge inserted into the mechanical splice is removed, and the 2 An optical connector for fixing and connecting two optical fibers is disclosed.
日本国特開2012-88438号公報Japanese Patent Application Laid-Open No. 2012-88438
 例えば特許文献1の光コネクタにおいて、内蔵ファイバと接続ファイバとが突き当たったか否かを直に視認することは困難である。このため、従来は、内蔵ファイバと接続ファイバとが突き当たった際に接続ファイバに撓みが発生することを利用し、接続ファイバの撓みを視認することで当該2つの光ファイバ同士が突き当たったか否かを判断していた。 For example, in the optical connector of Patent Document 1, it is difficult to directly see whether or not the built-in fiber and the connection fiber have come into contact. For this reason, conventionally, by utilizing the bending of the connecting fiber when the built-in fiber and the connecting fiber collide with each other, it is possible to visually check the bending of the connecting fiber to determine whether or not the two optical fibers have collided with each other. was judging.
 ところで、接続ファイバとしてどのような光ファイバが用いられるかは、光コネクタの使用状況によって異なる。接続ファイバの曲げ剛性は、その光ファイバの種類によって異なる。したがって、光コネクタの組み立ての際に、接続ファイバに加えられる撓み量と、接続ファイバの内蔵ファイバに対する押圧力と、の関係が一定でなかった。また、例えば接続ファイバの被覆がメカニカルスプライスに引っかかった場合等、内蔵ファイバと接続ファイバとが適切に突き当たっていない状況でも接続ファイバに撓みが生じる可能性があった。このため、接続ファイバの撓みの大小から押圧力の大小を判断する方法では押圧力の制御が不安定となり、内蔵ファイバと接続ファイバとの接続達成率が低下するという課題があった。 By the way, what kind of optical fiber is used as the connection fiber depends on the usage of the optical connector. The bending stiffness of the connecting fiber varies depending on the type of optical fiber. Therefore, when assembling the optical connector, the relationship between the amount of bending applied to the connection fiber and the pressing force of the connection fiber against the built-in fiber was not constant. In addition, there is a possibility that the connection fiber is bent even in a situation where the built-in fiber and the connection fiber are not properly abutting each other, such as when the coating of the connection fiber is caught on the mechanical splice. For this reason, the method of judging the magnitude of the pressing force from the magnitude of bending of the connection fiber has the problem that the control of the pressing force becomes unstable, and the connection achievement rate between the built-in fiber and the connection fiber decreases.
 本発明はこのような事情を考慮してなされ、内蔵ファイバと接続ファイバとの接続達成率を向上できる光コネクタおよび光コネクタの製造方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an optical connector and an optical connector manufacturing method that can improve the connection achievement rate between the built-in fiber and the connection fiber.
 上記課題を解決するために、本発明の一態様に係る光コネクタは、ハウジングと、接続端面および前記接続端面に開口したファイバ孔を有するフェルールと、前記ファイバ孔に挿通され、前記ファイバ孔の挿通方向における前記接続端面の反対側である後方に向けて前記フェルールから延出した延出部を有する内蔵ファイバと、前記延出部の後端が挿入されるとともに、前記延出部の後端に接続される接続ファイバを挿入可能な挿入孔を有するメカニカルスプライスと、を備え、前記ハウジングは、前記フェルールの少なくとも一部および前記メカニカルスプライスを収容し、前記ハウジングにおける前記フェルールと前記メカニカルスプライスとの間には、前記内蔵ファイバの撓みを許容する撓み空間が設けられている。 In order to solve the above problems, an optical connector according to an aspect of the present invention includes a housing, a ferrule having a connection end face and a fiber hole opening in the connection end face, a ferrule inserted through the fiber hole, and a fiber hole inserted through the fiber hole. a built-in fiber having an extension portion extending from the ferrule toward the rear, which is the opposite side of the connection end face in the direction; a mechanical splice having an insertion hole into which a connecting fiber to be connected can be inserted, wherein the housing accommodates at least a portion of the ferrule and the mechanical splice, and the ferrule and the mechanical splice in the housing is provided with a bending space for allowing the built-in fiber to bend.
 本発明の上記態様によれば、フェルールとメカニカルスプライスとの間に撓み空間が設けられている。これにより、内蔵ファイバと接続ファイバとが突き当たった際に、内蔵ファイバを撓ませることができる。内蔵ファイバの曲げ剛性は光コネクタの出荷者が設定することができる。このため、使用者が接続ファイバに加える押圧力と、内蔵ファイバの撓み量と、の関係を安定させることができる。したがって、内蔵ファイバと接続ファイバとの接続達成率を向上できる。 According to the above aspect of the present invention, a deflection space is provided between the ferrule and the mechanical splice. Thereby, the built-in fiber can be bent when the built-in fiber and the connection fiber collide with each other. The bending stiffness of the built-in fiber can be set by the shipper of the optical connector. Therefore, it is possible to stabilize the relationship between the pressing force applied to the connection fiber by the user and the deflection amount of the built-in fiber. Therefore, the connection achievement rate between the built-in fiber and the connection fiber can be improved.
 ここで、上記態様の光コネクタは、前記挿入孔を拡張するために前記メカニカルスプライスに挿入され、また、前記メカニカルスプライスから抜去されることで前記接続ファイバと前記メカニカルスプライスとの相対位置を固定する楔をさらに備え、前記メカニカルスプライスと前記ハウジングとは、前記挿通方向において相対移動可能に構成されており、前記楔は、前記ハウジングを介して前記メカニカルスプライスに挿入されることで、前記メカニカルスプライスと前記ハウジングとの前記挿通方向における相対位置を所定の準備位置に固定するように構成され、前記楔が前記メカニカルスプライスから抜去されたとき、前記内蔵ファイバの撓みが生じさせる復元力により、前記フェルールと前記メカニカルスプライスとの前記挿通方向における相対距離が増大してもよい。 Here, the optical connector of the above aspect is inserted into the mechanical splice to expand the insertion hole, and is removed from the mechanical splice to fix the relative position between the connection fiber and the mechanical splice. A wedge is further provided, and the mechanical splice and the housing are configured to be relatively movable in the insertion direction. The relative position in the inserting direction with respect to the housing is fixed at a predetermined preparatory position, and when the wedge is removed from the mechanical splice, the restoring force generated by the deflection of the built-in fiber causes the ferrule and the ferrule to move. A relative distance from the mechanical splice in the insertion direction may be increased.
 また、前記メカニカルスプライスは、係合部を有し、前記楔は、前記係合部と係合する楔側係合部を有し、前記楔が前記メカニカルスプライスに挿入されるとき、前記係合部が前記楔側係合部と係合することにより、前記ハウジングと前記メカニカルスプライスとが前記準備位置に誘導されてもよい。 Further, the mechanical splice has an engaging portion, the wedge has a wedge-side engaging portion that engages with the engaging portion, and when the wedge is inserted into the mechanical splice, the engaging portion The housing and the mechanical splice may be guided to the ready position by engagement of a portion with the wedge-side engaging portion.
 また、前記ハウジングには、前記撓み空間に連通する窓が形成されていてもよい。 Further, the housing may be formed with a window that communicates with the deflection space.
 また、上記態様の光コネクタは、前記フェルールの後端と、前記メカニカルスプライスの先端と、前記撓み空間の内部と、のうちいずれかに配置された規制部をさらに備え、前記撓み空間と前記窓とが並ぶ方向を第1方向とし、前記第1方向および前記挿通方向の双方に直交する方向を第2方向とするとき、前記規制部は、前記挿通方向から見て、前記挿入孔から前記第2方向に向けて延びるスリットを含んでもよい。 Further, the optical connector of the aspect described above further includes a restricting portion arranged in one of the rear end of the ferrule, the tip of the mechanical splice, and the inside of the deflection space, wherein the deflection space and the window are arranged. are aligned, and a direction perpendicular to both the first direction and the insertion direction is a second direction, the restricting portion extends from the insertion hole to the second direction when viewed from the insertion direction. A slit extending in two directions may be included.
 また、本発明の一態様に係る光コネクタの製造方法は、フェルールから後方に延出した内蔵ファイバの延出部を、メカニカルスプライスに対して前方から挿入し、接続ファイバを前記メカニカルスプライスに対して後方から挿入し、前記接続ファイバを前記延出部に突き当てることで、前記内蔵ファイバを前記フェルールと前記メカニカルスプライスとの間で撓ませてもよい。 Further, in the method for manufacturing an optical connector according to one aspect of the present invention, the extending portion of the built-in fiber extending backward from the ferrule is inserted into the mechanical splice from the front, and the connection fiber is inserted into the mechanical splice. The built-in fiber may be bent between the ferrule and the mechanical splice by inserting from the rear and abutting the connecting fiber against the extension.
 また、前記接続ファイバを前記延出部に突き当てる際に、前記内蔵ファイバもしくは前記接続ファイバに可視光を入射させてもよい。 Further, visible light may be incident on the built-in fiber or the connection fiber when the connection fiber is butted against the extension.
 本発明の上記態様によれば、内蔵ファイバと接続ファイバとの接続達成率を向上可能な光コネクタおよび光コネクタの製造方法を提供することができる。 According to the above aspect of the present invention, it is possible to provide an optical connector and a method for manufacturing an optical connector that can improve the connection achievement rate between the built-in fiber and the connection fiber.
実施形態に係る光コネクタの全体斜視図であって、楔を省略した図である。1 is an overall perspective view of an optical connector according to an embodiment, omitting a wedge; FIG. 図1におけるII-II断面矢視図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1; 図2のメカニカルスプライスにおけるIII-III断面矢視図である。FIG. 3 is a cross-sectional view taken along line III-III in the mechanical splice of FIG. 2; メカニカルスプライスの突起がハウジングのガイドに嵌合される様子を表した一部断面斜視図である。FIG. 4 is a partially cross-sectional perspective view showing how the protrusion of the mechanical splice is fitted into the guide of the housing. 図1のハウジングに楔が挿入される様子を示した斜視図である。FIG. 2 is a perspective view showing how a wedge is inserted into the housing of FIG. 1; 図5におけるVI-VI断面矢視図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5; 図4のVII方向矢視図(平面図)である。FIG. 5 is a view (plan view) in the direction of arrow VII in FIG. 4; 図7のメカニカルスプライスにおけるVIII方向矢視図(前面図)である。FIG. 8 is a view (front view) of the mechanical splice in FIG. 7 taken along the direction of arrow VIII; メカニカルスプライスが準備位置に誘導される過程の一部を示した断面図である。FIG. 5 is a cross-sectional view showing a part of the process of guiding the mechanical splice to the ready position; 図9Aに続く過程を示した図である。FIG. 9B is a diagram illustrating a process following FIG. 9A; 図9Bに続く過程を示した図である。FIG. 9C is a diagram illustrating the process following FIG. 9B; 内蔵ファイバと接続ファイバとが突き当てられる突き当て工程の一部を示した断面図である。FIG. 4 is a cross-sectional view showing a part of a butting process in which the built-in fiber and the connection fiber are butted against each other; 図10Aに続く過程を示した図である。FIG. 10B is a diagram showing a process following FIG. 10A; 図10Bに続く過程を示した図である。FIG. 10C is a diagram illustrating a process following FIG. 10B; 図10BにおけるXI方向矢視図(平面図)である。FIG. 10C is a view (plan view) in the direction of arrow XI in FIG. 10B;
 以下、本実施形態に係る光コネクタについて図面に基づいて説明する。
 図1および図2に示すように、光コネクタ1は、ハウジング10と、フェルール20と、内蔵ファイバ30と、メカニカルスプライス40と、保持部材60と、付勢部材70と、ケース80と、ブーツ90と、を備える。ハウジング10は、フェルール20の少なくとも一部およびメカニカルスプライス40を内部に収容している。ハウジング10の内部におけるフェルール20とメカニカルスプライス40との間には、内蔵ファイバ30の撓みを許容する撓み空間Bが設けられている。ハウジング10には、撓み空間Bに連通する窓12が形成されている。フェルール20は、接続端面20aおよび接続端面20aに開口したファイバ孔21を有する。内蔵ファイバ30は、ファイバ孔21に挿通されている。
An optical connector according to this embodiment will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, the optical connector 1 includes a housing 10, a ferrule 20, a built-in fiber 30, a mechanical splice 40, a holding member 60, a biasing member 70, a case 80, and a boot 90. And prepare. Housing 10 accommodates at least a portion of ferrule 20 and mechanical splice 40 therein. A bending space B is provided between the ferrule 20 and the mechanical splice 40 inside the housing 10 to allow the built-in fiber 30 to bend. A window 12 communicating with the deflection space B is formed in the housing 10 . The ferrule 20 has a connection end surface 20a and a fiber hole 21 opening in the connection end surface 20a. The built-in fiber 30 is inserted through the fiber hole 21 .
 ここで本実施形態では、XYZ直交座標系を設定して各構成の位置関係を説明する。ファイバ孔21に内蔵ファイバ30が挿通される方向を挿通方向Xという。挿通方向Xに沿って、メカニカルスプライス40からフェルール20(接続端面20a)に向かう方向を前方(+X側)あるいは先端側という。前方とは反対の方向を後方(-X側)あるいは基端側という。撓み空間Bと窓12とが並ぶ方向を第1方向Zという。第1方向Zに沿って、撓み空間Bから窓12に向かう方向を上方(+Z側)という。上方とは反対の方向を下方(-Z側)という。挿通方向Xおよび第1方向Zの双方に直交する方向を第2方向Yという。第2方向Yに沿う一方向を手前側(+Y側)という。手前側とは反対の方向を奥側(-Y側)という。挿通方向Xに垂直な断面を、「横断面」という。 Here, in this embodiment, an XYZ orthogonal coordinate system is set to explain the positional relationship of each configuration. The direction in which the built-in fiber 30 is inserted into the fiber hole 21 is called an insertion direction X. As shown in FIG. Along the insertion direction X, the direction from the mechanical splice 40 toward the ferrule 20 (connecting end surface 20a) is called forward (+X side) or tip side. The direction opposite to forward is called posterior (−X side) or proximal side. A direction in which the bending space B and the window 12 are arranged is called a first direction Z. As shown in FIG. A direction from the deflection space B toward the window 12 along the first direction Z is called upward (+Z side). The direction opposite to upward is called downward (−Z side). A direction orthogonal to both the insertion direction X and the first direction Z is called a second direction Y. As shown in FIG. One direction along the second direction Y is called the front side (+Y side). The direction opposite to the front side is called the back side (-Y side). A cross section perpendicular to the insertion direction X is called a "cross section."
 内蔵ファイバ30の後端部には、接続ファイバFが接続される。接続ファイバFは、使用者が任意に用意する光ファイバである。例えば、光コネクタ1が多心の光ケーブルに取り付けられる場合には、当該光ケーブルが備える複数の光ファイバのうちの1つが接続ファイバFである。光コネクタ1は、単心の光コード等に取り付けられてもよい。内蔵ファイバ30と接続ファイバFとを接続する作業は、光ケーブル等の敷設現場において行われる。 A connection fiber F is connected to the rear end of the built-in fiber 30 . The connection fiber F is an optical fiber arbitrarily prepared by the user. For example, when the optical connector 1 is attached to a multicore optical cable, one of the plurality of optical fibers included in the optical cable is the connection fiber F. The optical connector 1 may be attached to a single optical cord or the like. The work of connecting the built-in fiber 30 and the connection fiber F is performed at the installation site of the optical cable or the like.
 ハウジング10は、挿通方向Xに沿って延びる筒状(本実施形態では一例として角筒状)の部材である。図2に示すように、本実施形態のハウジング10は、フェルール20を内部に保持する前ハウジング10Aと、メカニカルスプライス40を内部に保持する後ハウジング10Bと、を含む。前ハウジング10Aと後ハウジング10Bとは、ハウジング係止部(不図示)によって係止され、互いに固定されている。なお、本実施形態において前ハウジング10Aと後ハウジング10Bとは別体に形成されているが、前ハウジング10Aと後ハウジング10Bとは一体に形成されていてもよい。 The housing 10 is a cylindrical member extending along the insertion direction X (in this embodiment, a square cylindrical member as an example). As shown in FIG. 2, the housing 10 of this embodiment includes a front housing 10A holding the ferrule 20 inside and a rear housing 10B holding the mechanical splice 40 inside. The front housing 10A and the rear housing 10B are locked and fixed to each other by housing locking portions (not shown). Although the front housing 10A and the rear housing 10B are formed separately in this embodiment, the front housing 10A and the rear housing 10B may be formed integrally.
 図2に示すように、ハウジング10は、先述の窓12と、複数の楔連通孔11と、2つのガイド13と、を有する。複数の楔連通孔11のそれぞれは、ハウジング10の上壁を第1方向Zに沿って貫通している。本実施形態において、複数の楔連通孔11は、2つの第1連通孔11Aと、1つの第2連通孔11Bと、を含む(図7参照)。第1連通孔11Aには、楔50の拡開部51(後述)が挿通される。第2連通孔11Bには、楔50の楔側係合部52(後述)が挿通される。なお、第1連通孔11Aおよび第2連通孔11Bの数は適宜変更可能である。 As shown in FIG. 2, the housing 10 has the aforementioned window 12, a plurality of wedge communication holes 11, and two guides 13. Each of the plurality of wedge communication holes 11 penetrates the upper wall of the housing 10 along the first direction Z. As shown in FIG. In this embodiment, the plurality of wedge communication holes 11 includes two first communication holes 11A and one second communication hole 11B (see FIG. 7). A widening portion 51 (described later) of the wedge 50 is inserted through the first communication hole 11A. A wedge-side engagement portion 52 (described later) of the wedge 50 is inserted through the second communication hole 11B. Note that the numbers of the first communication holes 11A and the numbers of the second communication holes 11B can be changed as appropriate.
 2つのガイド13は、それぞれハウジング10の上壁と下壁とに1つずつ配されている。各ガイド13は、挿通方向Xに沿って延びるとともに、ハウジング10の上壁および下壁を第1方向Zにおいて貫通している。言い換えると、ガイド13は、ハウジング10の内面に開口したスリット状の孔である。ガイド13の挿通方向Xにおける寸法は、ガイド13の第2方向Yにおける寸法よりも長い(図7参照)。ガイド13の内部には、メカニカルスプライス40の突起42e(後述)が配置される。突起42eがガイド13内を挿通方向Xに摺動可能であれば、ガイド13の形状は適宜変更してもよい。例えばガイド13は、ハウジング10の内面から第1方向Zにおける外側に向かって窪み、ハウジング10を貫通していなくてもよい。 The two guides 13 are arranged on the upper and lower walls of the housing 10, respectively. Each guide 13 extends along the insertion direction X and penetrates the upper wall and the lower wall of the housing 10 in the first direction Z. As shown in FIG. In other words, the guide 13 is a slit-shaped hole that opens on the inner surface of the housing 10 . The dimension of the guide 13 in the insertion direction X is longer than the dimension of the guide 13 in the second direction Y (see FIG. 7). A protrusion 42 e (described later) of the mechanical splice 40 is arranged inside the guide 13 . The shape of the guide 13 may be appropriately changed as long as the protrusion 42e can slide in the guide 13 in the insertion direction X. For example, the guide 13 may be recessed outward in the first direction Z from the inner surface of the housing 10 and may not penetrate the housing 10 .
 本実施形態において、ハウジング10の一部は、ケース80およびブーツ90によって覆われている。ケース80およびブーツ90は、ハウジング10に固定されている。ケース80およびブーツ90は、楔連通孔11および窓12を塞がないように構成されている。より詳しくは、ケース80には第2の窓81が形成されている。第2の窓81は、第1方向Zから見て窓12と重なるように形成されている。これらの窓12および第2の窓81を通じて、撓み空間Bは、光コネクタ1の外側から視認可能となっている。また、ケース80は楔連通孔11よりも前方に位置している。なお、光コネクタ1はケース80およびブーツ90を備えていなくてもよい。 A portion of the housing 10 is covered with a case 80 and a boot 90 in this embodiment. Case 80 and boot 90 are fixed to housing 10 . Case 80 and boot 90 are configured so as not to block wedge communication hole 11 and window 12 . More specifically, the case 80 is formed with a second window 81 . The second window 81 is formed so as to overlap the window 12 when viewed from the first direction Z. As shown in FIG. Through these windows 12 and the second window 81, the deflection space B can be visually recognized from the outside of the optical connector 1. As shown in FIG. Further, the case 80 is positioned forward of the wedge communication hole 11 . Note that the optical connector 1 does not have to include the case 80 and the boot 90 .
 フェルール20は、先述の通りファイバ孔21を有する。ファイバ孔21は、フェルール20を挿通方向Xにおいて貫通している。前ハウジング10Aの内部には保持部材60が配置されている。保持部材60は、フェルール20の後端部を保持している。付勢部材70によって保持部材60が前方に付勢されていることで、フェルール20も前方に付勢されている。保持部材60は、前ハウジング10Aの内部で挿通方向Xに移動可能である。付勢部材70としては、例えばコイルバネを採用できる。光コネクタ1を他の光コネクタと接続する際には、光コネクタ1のフェルール20の接続端面20aと当該他の光コネクタのフェルールの接続端面とが互いに押し合わされる。付勢部材70は、この押し合わせる力を発生させる役割を有する。なお、保持部材60を設けず、付勢部材70がフェルール20を直接付勢していてもよい。 The ferrule 20 has fiber holes 21 as described above. The fiber hole 21 penetrates the ferrule 20 in the insertion direction X. As shown in FIG. A holding member 60 is arranged inside the front housing 10A. The holding member 60 holds the rear end portion of the ferrule 20 . Since the holding member 60 is urged forward by the urging member 70, the ferrule 20 is also urged forward. The holding member 60 is movable in the insertion direction X inside the front housing 10A. A coil spring, for example, can be used as the biasing member 70 . When connecting the optical connector 1 to another optical connector, the connection end surface 20a of the ferrule 20 of the optical connector 1 and the connection end surface of the ferrule of the other optical connector are pressed together. The biasing member 70 has a role of generating this pressing force. Note that the holding member 60 may not be provided, and the biasing member 70 may directly bias the ferrule 20 .
 図3に示すように、メカニカルスプライス40は、クランプ部41および本体部42を備える。本実施形態の本体部42は、第1部材42Aと第2部材42Bとを有する。なお、本体部42は弾性変形可能な1つの部材であってもよい。クランプ部41の形状は、横断面視において上方に向けて開口するC字状である。クランプ部41は、弾性を有する材質によって形成されている。第1部材42Aおよび第2部材42Bは、クランプ部41の弾性復元力によってクランプ部41の内面に保持され、互いに圧接されている。なお、クランプ部41の形状は横断面視においてC字状でなくてもよく、例えばU字状あるいはV字状であってもよい。 As shown in FIG. 3, the mechanical splice 40 includes a clamp portion 41 and a body portion 42. The body portion 42 of this embodiment has a first member 42A and a second member 42B. Note that the body portion 42 may be a single elastically deformable member. The shape of the clamp portion 41 is a C shape opening upward in a cross-sectional view. The clamp portion 41 is made of an elastic material. The first member 42A and the second member 42B are held on the inner surface of the clamp portion 41 by the elastic restoring force of the clamp portion 41 and are pressed against each other. The shape of the clamp portion 41 does not have to be C-shaped in cross-sectional view, and may be U-shaped or V-shaped, for example.
 第1部材42Aと第2部材42Bとの間の圧接面における一部には、挿入孔42aが形成されている。挿入孔42aは、本体部42を挿通方向Xにおいて貫通している。挿入孔42aには、内蔵ファイバ30および接続ファイバFが挿入される。なお、メカニカルスプライス40に楔50が挿入されていないとき、挿入孔42aの内径は、内蔵ファイバ30のガラス部の外径および接続ファイバFのガラス部の外径のいずれよりも小さい。 An insertion hole 42a is formed in a part of the pressure contact surface between the first member 42A and the second member 42B. The insertion hole 42a penetrates the main body portion 42 in the insertion direction X. As shown in FIG. The built-in fiber 30 and the connection fiber F are inserted into the insertion hole 42a. When the wedge 50 is not inserted into the mechanical splice 40, the inner diameter of the insertion hole 42a is smaller than both the outer diameter of the glass portion of the built-in fiber 30 and the outer diameter of the connecting fiber F.
 図2に示すように、本体部42(第1部材42Aおよび第2部材42B)は、挿通方向Xに沿って延びている。また、本体部42は2つの突起42eを有する。2つの突起42eは、本体部42からそれぞれ上方と下方とに1つずつ突出している。図4に示すように、2つの突起42eのそれぞれは、ハウジング10の2つのガイド13のそれぞれに嵌合される(図7も参照)。これにより、メカニカルスプライス40とハウジング10とは挿通方向Xにおいて相対移動可能に構成されている。 As shown in FIG. 2, the body portion 42 (the first member 42A and the second member 42B) extends along the insertion direction X. As shown in FIG. Also, the body portion 42 has two projections 42e. The two protrusions 42e protrude upwardly and downwardly from the body portion 42, respectively. As shown in FIG. 4, each of the two protrusions 42e is fitted into each of the two guides 13 of the housing 10 (see also FIG. 7). Thereby, the mechanical splice 40 and the housing 10 are configured to be relatively movable in the insertion direction X. As shown in FIG.
 内蔵ファイバ30と接続ファイバFとを接続する際には、図5に示すように、ハウジング10に楔50が挿入される。図6に示すように、楔50は、2つの拡開部51と、楔側係合部52と、楔係止部53と、楔基部54と、を有する。拡開部51、楔側係合部52、および楔係止部53は、いずれも楔基部54から下方に突出している。2つの拡開部51は、挿通方向Xにおいて間隔を空けて配置されている。楔側係合部52は、2つの拡開部51よりも前方に配置されている。なお、拡開部51は1つのみ形成されていてもよいし、3つ以上形成されていてもよい。これらの場合、ハウジング10(後ハウジング10B)には拡開部51と同数の第1連通孔11Aが設けられていてもよい。あるいは、1つの第1連通孔11Aに対して複数の拡開部51が挿通される構成を採用してもよい。 When connecting the built-in fiber 30 and the connection fiber F, a wedge 50 is inserted into the housing 10 as shown in FIG. As shown in FIG. 6 , the wedge 50 has two expanding portions 51 , a wedge-side engaging portion 52 , a wedge locking portion 53 and a wedge base portion 54 . The expanding portion 51 , the wedge-side engaging portion 52 , and the wedge locking portion 53 all protrude downward from the wedge base portion 54 . The two expanding portions 51 are arranged with a gap in the insertion direction X. As shown in FIG. The wedge-side engaging portion 52 is arranged forward of the two expanding portions 51 . In addition, only one expansion portion 51 may be formed, or three or more expansion portions 51 may be formed. In these cases, the housing 10 (rear housing 10B) may be provided with the same number of the first communication holes 11A as the widening portions 51 . Alternatively, a configuration may be employed in which a plurality of enlarged portions 51 are inserted through one first communication hole 11A.
 楔側係合部52の下面には、楔側傾斜面52aが形成されている。楔側傾斜面52aは、前方に向かうに従って上方に向かうように傾斜している。図示は省略するが、楔係止部53は、第2方向Yにおいて間隔を空けて2つ設けられている。2つの楔係止部53の間に、ハウジング10およびケース80が配置されている。これらの楔係止部53は、楔50がハウジング10に挿入された際に楔50をケース80に係止し、楔50が不意に脱落するのを防止する。 A wedge-side inclined surface 52 a is formed on the lower surface of the wedge-side engaging portion 52 . The wedge-side inclined surface 52a is inclined upward toward the front. Although not shown, two wedge locking portions 53 are provided with an interval therebetween in the second direction Y. As shown in FIG. A housing 10 and a case 80 are arranged between the two wedge locking portions 53 . These wedge locking portions 53 lock the wedge 50 to the case 80 when the wedge 50 is inserted into the housing 10, thereby preventing the wedge 50 from falling off unexpectedly.
 図7は、ハウジング10(後ハウジング10B)およびメカニカルスプライス40の平面図である。メカニカルスプライス40の本体部42には、被拡開部42bが形成されている。被拡開部42bは、本体部42の上部に設けられた窪みである。また、本体部42には、本体部42から手前側に向けて突出する係合部42dが形成されている。係合部42dは、前方に向かうに従って上方に向かうように傾斜した傾斜面42d1を有している(図9A参照)。係合部42dと楔側係合部52とは、傾斜面42d1と楔側傾斜面52aとが摺動することにより係合する。 7 is a plan view of the housing 10 (rear housing 10B) and the mechanical splice 40. FIG. A main body portion 42 of the mechanical splice 40 is formed with a widened portion 42b. The expanded portion 42 b is a depression provided in the upper portion of the main body portion 42 . Further, the body portion 42 is formed with an engaging portion 42d projecting from the body portion 42 toward the front side. The engaging portion 42d has an inclined surface 42d1 that is inclined upward toward the front (see FIG. 9A). The engaging portion 42d and the wedge-side engaging portion 52 are engaged by sliding the inclined surface 42d1 and the wedge-side inclined surface 52a.
 楔50がメカニカルスプライス40に挿入された際、楔50の拡開部51が、ハウジング10の第1連通孔11Aを貫通し、被拡開部42bに挿入される。また、楔側係合部52が第2連通孔11Bを貫通し、楔側傾斜面52aが係合部42dに当接する。被拡開部42bに拡開部51が挿入されると、第1部材42Aおよび第2部材42Bのそれぞれは、クランプ部41の弾性復元力に抗して第2方向Yにおける外側に移動する。このとき、挿入孔42aが第2方向Yにおいて拡張される。挿入孔42aが拡張され、挿入孔42aの内径が内蔵ファイバ30のガラス部の外径を超えると、内蔵ファイバ30のガラス部を挿入孔42aに挿入することが可能となる。同様に、接続ファイバFのガラス部を挿入孔42aに挿入することが可能となる。楔50がメカニカルスプライス40から抜去され、拡開部51が被拡開部42bを外れると、クランプ部41の弾性復元力によって挿入孔42aが縮小し、挿入孔42aに挿入された内蔵ファイバ30および接続ファイバFが挿入孔42a内に保持される。言い換えれば、楔50がメカニカルスプライス40から抜去されると、内蔵ファイバ30と、接続ファイバFと、メカニカルスプライス40と、の相対位置が固定される。 When the wedge 50 is inserted into the mechanical splice 40, the expanded portion 51 of the wedge 50 penetrates the first communication hole 11A of the housing 10 and is inserted into the expanded portion 42b. Also, the wedge-side engaging portion 52 passes through the second communication hole 11B, and the wedge-side inclined surface 52a contacts the engaging portion 42d. When the expanding portion 51 is inserted into the expanded portion 42b, each of the first member 42A and the second member 42B moves outward in the second direction Y against the elastic restoring force of the clamp portion 41. As shown in FIG. At this time, the insertion hole 42a is expanded in the second direction Y. As shown in FIG. When the insertion hole 42a is expanded and the inner diameter of the insertion hole 42a exceeds the outer diameter of the glass portion of the built-in fiber 30, the glass portion of the built-in fiber 30 can be inserted into the insertion hole 42a. Similarly, the glass portion of the connecting fiber F can be inserted into the insertion hole 42a. When the wedge 50 is removed from the mechanical splice 40 and the expanding portion 51 is separated from the expanded portion 42b, the insertion hole 42a is contracted by the elastic restoring force of the clamp portion 41, and the built-in fiber 30 and the embedded fiber 30 inserted into the insertion hole 42a are contracted. A connecting fiber F is held in the insertion hole 42a. In other words, when the wedge 50 is removed from the mechanical splice 40, the relative positions of the embedded fiber 30, the connecting fiber F, and the mechanical splice 40 are fixed.
 図8に示すように、本体部42の先端(前方の端部)には、スリットSが形成された規制部42cが設けられている。スリットSは、挿通方向Xから見て、挿入孔42aと重なるとともに第2方向Yに平行な向きに延びている。図8の例では、スリットSは第2方向Yにおける規制部42cの中央部から奥側(-Y側)に向かって、第2方向Yに沿って延びている。ただし、スリットSは規制部42cの中央部から手前側(+Y側)に延びていてもよいし、第2方向Yに対して傾いていてもよい。スリットSは、内蔵ファイバ30が撓み空間B内において撓む方向を規制する。 As shown in FIG. 8, a restricting portion 42c having a slit S is provided at the tip (front end) of the body portion 42. As shown in FIG. The slit S overlaps with the insertion hole 42a and extends parallel to the second direction Y when viewed from the insertion direction X. As shown in FIG. In the example of FIG. 8, the slit S extends along the second direction Y from the central portion of the restricting portion 42c in the second direction Y toward the back side (-Y side). However, the slit S may extend forward (+Y side) from the central portion of the restricting portion 42c, or may be inclined with respect to the second direction Y. As shown in FIG. The slit S regulates the direction in which the built-in fiber 30 bends in the bending space B. As shown in FIG.
 図2に示すように、内蔵ファイバ30は、フェルール20のファイバ孔21に挿通されるとともに、ファイバ孔21に固定されている。より具体的には、内蔵ファイバ30の先端部では、被覆がはがされてガラス部が露出している。露出した内蔵ファイバ30のガラス部が、ファイバ孔21に挿通・固定されている。内蔵ファイバ30のファイバ孔21に対する固定手段としては、例えば接着剤の加熱硬化が挙げられるが、他の手段が用いられてもよい。 As shown in FIG. 2 , the built-in fiber 30 is inserted through the fiber hole 21 of the ferrule 20 and fixed to the fiber hole 21 . More specifically, at the tip of the built-in fiber 30, the coating is removed and the glass portion is exposed. The exposed glass portion of the built-in fiber 30 is inserted through and fixed to the fiber hole 21 . As means for fixing the built-in fiber 30 to the fiber hole 21, for example, heat curing of an adhesive may be used, but other means may be used.
 本明細書では、内蔵ファイバ30のうちフェルール20の後方から延出した部分を延出部31という。延出部31は、撓み空間Bを貫通し、メカニカルスプライス40の挿入孔42aの先端から挿入されている。より具体的には、延出部31の後端では、被覆がはがされ、ガラス部が露出している。露出した延出部31のガラス部が、挿入孔42aに挿入・固定されている。 In this specification, the portion of the built-in fiber 30 that extends from the rear of the ferrule 20 is referred to as an extension portion 31. The extending portion 31 penetrates the bending space B and is inserted from the tip of the insertion hole 42 a of the mechanical splice 40 . More specifically, at the rear end of the extending portion 31, the coating is removed to expose the glass portion. The exposed glass portion of the extending portion 31 is inserted and fixed in the insertion hole 42a.
 内蔵ファイバ30の曲げ剛性は、接続ファイバFの曲げ剛性よりも低いことが望ましい。この構成により、内蔵ファイバ30と接続ファイバFとが当接した際に、接続ファイバFの撓みを抑えつつ、撓み空間B内で内蔵ファイバ30を撓ませることができる。例えば、接続ファイバFとして被覆径900μmの光ファイバを用いることが想定される場合は、内蔵ファイバ30として被覆径500μm以下の光ファイバを用いることが望ましい。あるいは、接続ファイバFとして被覆径250μmの光ファイバを用いることが想定される場合は、内蔵ファイバ30として被覆径200μmの光ファイバを用いることが望ましい。 The flexural rigidity of the built-in fiber 30 is preferably lower than the flexural rigidity of the connection fiber F. With this configuration, when the built-in fiber 30 and the connection fiber F abut against each other, the built-in fiber 30 can be bent in the bending space B while suppressing the bending of the connection fiber F. For example, when it is assumed that an optical fiber with a coating diameter of 900 μm is used as the connection fiber F, it is desirable to use an optical fiber with a coating diameter of 500 μm or less as the built-in fiber 30 . Alternatively, if it is assumed that an optical fiber with a coating diameter of 250 μm is used as the connection fiber F, it is desirable to use an optical fiber with a coating diameter of 200 μm as the built-in fiber 30 .
 次に、以上のように構成された光コネクタ1の製造方法の一例について説明する。 Next, an example of a method for manufacturing the optical connector 1 configured as above will be described.
 まず、ハウジング10(前ハウジング10Aおよび後ハウジング10B)と、フェルール20と、メカニカルスプライス40と、楔50と、内蔵ファイバ30と、保持部材60と、付勢部材70と、が用意される。
 次に、内蔵ファイバ30の先端および後端について、それぞれ所定の長さだけ被覆が除去され、ガラス部が露出される。
 次に、フェルール20のファイバ孔21に接着剤が注入され、ファイバ孔21の後端から内蔵ファイバ30のガラス部が挿通される。
 次に、接着剤が加熱硬化される。これにより、内蔵ファイバ30がファイバ孔21内に固定される。内蔵ファイバ30の先端が接続端面20aから突出している場合は、突出している部分を切除する。また、必要に応じて、接続端面20aの研磨を行う。
 次に、フェルール20の後端部に保持部材60を取り付ける。
 次に、フェルール20の一部、保持部材60、および付勢部材70を前ハウジング10Aの内部に収納する。
First, housing 10 (front housing 10A and rear housing 10B), ferrule 20, mechanical splice 40, wedge 50, built-in fiber 30, holding member 60, and biasing member 70 are prepared.
Next, the coating is removed by a predetermined length from the leading end and the trailing end of the built-in fiber 30 to expose the glass portion.
Next, an adhesive is injected into the fiber hole 21 of the ferrule 20 , and the glass portion of the built-in fiber 30 is inserted from the rear end of the fiber hole 21 .
The adhesive is then heat cured. Thereby, the built-in fiber 30 is fixed within the fiber hole 21 . If the tip of the built-in fiber 30 protrudes from the connecting end surface 20a, the protruding portion is cut off. Further, the connection end surface 20a is polished as necessary.
Next, the holding member 60 is attached to the rear end portion of the ferrule 20 .
Next, part of the ferrule 20, the holding member 60, and the biasing member 70 are housed inside the front housing 10A.
 次に、メカニカルスプライス40を後ハウジング10Bの内部に収納する。このとき、メカニカルスプライス40は、例えば工具などが被拡開部42bに挿入されることで、内蔵ファイバ30のガラス部が挿入孔42a内に挿入可能な状態とされる。
 次に、内蔵ファイバ挿入工程が行われる。内蔵ファイバ挿入工程においては、内蔵ファイバ30の延出部31が、メカニカルスプライス40の挿入孔42aに対して挿入される。より具体的には、延出部31の後端において露出した光ファイバのガラス部が、挿入孔42aに対して前方から挿入される。延出部31が挿入孔42aに挿入されたのち、前ハウジング10Aと後ハウジング10Bとが組み合わされる。これにより、フェルール20の一部、保持部材60、付勢部材70、およびメカニカルスプライス40が、ハウジング10の内部に収容される。
Next, the mechanical splice 40 is housed inside the rear housing 10B. At this time, the mechanical splice 40 is put into a state in which the glass portion of the built-in fiber 30 can be inserted into the insertion hole 42a by inserting, for example, a tool into the expanded portion 42b.
Next, an embedded fiber insertion step is performed. In the built-in fiber insertion step, the extending portion 31 of the built-in fiber 30 is inserted into the insertion hole 42 a of the mechanical splice 40 . More specifically, the glass portion of the optical fiber exposed at the rear end of the extending portion 31 is inserted from the front into the insertion hole 42a. After the extending portion 31 is inserted into the insertion hole 42a, the front housing 10A and the rear housing 10B are combined. A portion of the ferrule 20 , the retaining member 60 , the biasing member 70 and the mechanical splice 40 are thereby housed inside the housing 10 .
 次に、メカニカルスプライス40に、ハウジング10を介して楔50が挿入される。このとき、楔側係合部52の楔側傾斜面52aと係合部42dの傾斜面42d1とが当接する。図9A~図9Cに示すように、楔50の挿入に伴って楔側傾斜面52aが下降すると、楔側傾斜面52aが傾斜していることにより、傾斜面42d1には前方に向けた力が作用する。この力により、メカニカルスプライス40が前方に移動する。楔50の挿入が完了すると、楔側係合部52が、係合部42dとクランプ部41との間で、挿通方向Xにおいて挟まれる。これにより、楔50とメカニカルスプライス40との挿通方向Xにおける相対位置が固定される。また、楔係止部53がケース80に係止されることで、楔50とハウジング10との挿通方向Xにおける相対位置が固定される。つまり、楔50を介して、メカニカルスプライス40とハウジング10との挿通方向Xにおける相対位置が固定される。以降、メカニカルスプライス40とハウジング10との当該固定された相対位置を準備位置と呼ぶことがある。このように、メカニカルスプライス40にハウジング10を介して楔50を挿入することで、メカニカルスプライス40とハウジング10との挿通方向Xにおける相対位置を所定の準備位置に固定することができる。また、楔50挿入時に傾斜面42d1(係合部42d)と楔側傾斜面52a(楔側係合部52)とが摺動することにより、メカニカルスプライス40とハウジング10との相対位置を所定の準備位置に誘導することができる。 Next, the wedge 50 is inserted into the mechanical splice 40 through the housing 10 . At this time, the wedge-side inclined surface 52a of the wedge-side engaging portion 52 and the inclined surface 42d1 of the engaging portion 42d come into contact with each other. As shown in FIGS. 9A to 9C, when the wedge-side inclined surface 52a descends as the wedge 50 is inserted, the inclination of the wedge-side inclined surface 52a exerts a forward force on the inclined surface 42d1. works. This force moves the mechanical splice 40 forward. When the insertion of the wedge 50 is completed, the wedge-side engaging portion 52 is sandwiched in the insertion direction X between the engaging portion 42 d and the clamp portion 41 . Thereby, the relative positions in the insertion direction X between the wedge 50 and the mechanical splice 40 are fixed. Further, by locking the wedge locking portion 53 to the case 80, the relative position in the insertion direction X between the wedge 50 and the housing 10 is fixed. That is, the relative position in the insertion direction X between the mechanical splice 40 and the housing 10 is fixed via the wedge 50 . Hereinafter, this fixed relative position between the mechanical splice 40 and the housing 10 may be referred to as the ready position. By inserting the wedge 50 into the mechanical splice 40 through the housing 10 in this way, the relative position in the insertion direction X between the mechanical splice 40 and the housing 10 can be fixed at a predetermined preparatory position. Further, when the wedge 50 is inserted, the inclined surface 42d1 (engagement portion 42d) slides against the wedge-side inclined surface 52a (wedge-side engagement portion 52), so that the relative position between the mechanical splice 40 and the housing 10 is adjusted to a predetermined value. It can be guided to the ready position.
 次に、接続ファイバFが準備される。具体的には、光ケーブル等から、接続対象となる光ファイバ(接続ファイバF)が露出される。また、接続ファイバFの先端部の被覆が剥がされ、ガラス部が露出される。
 次に、接続ファイバ挿入工程が行われる。接続ファイバ挿入工程においては、接続ファイバFが、メカニカルスプライス40の挿入孔42aに対して挿入される。より具体的には、接続ファイバFの先端部において露出したガラス部が、挿入孔42aに対して後方から挿入される。このとき、楔50の拡開部51によって挿入孔42aが拡張されているため、接続ファイバFは、挿入孔42aに対してスムーズに挿入される。図10Aは、ここまでの工程を終えた状態を示した図である。
A connecting fiber F is then prepared. Specifically, the optical fiber to be connected (connection fiber F) is exposed from the optical cable or the like. Also, the coating of the tip portion of the connection fiber F is stripped off, exposing the glass portion.
Next, a connecting fiber insertion step is performed. In the connecting fiber inserting step, the connecting fiber F is inserted into the insertion hole 42 a of the mechanical splice 40 . More specifically, the glass portion exposed at the tip of the connection fiber F is inserted into the insertion hole 42a from behind. At this time, since the insertion hole 42a is expanded by the expanded portion 51 of the wedge 50, the connection fiber F is smoothly inserted into the insertion hole 42a. FIG. 10A is a diagram showing a state where the steps up to this point have been completed.
 次に、突き当て工程が行われる。突き当て工程においては、接続ファイバFの先端が、延出部31の後端に突き当てられる。接続ファイバFと延出部31とが突き当たると、内蔵ファイバ30および接続ファイバFには挿通方向Xに沿った押圧力(圧縮力)がかかる。ここで、内蔵ファイバ30の曲げ剛性は接続ファイバFの曲げ剛性よりも低く、フェルール20とメカニカルスプライス40との間には撓み空間Bが設けられている。これにより、接続ファイバFの撓みが抑えられつつ、内蔵ファイバ30が撓む(図10B参照)。なお、図10Bにおいて内蔵ファイバ30が撓む方向は、主として紙面に対して垂直な方向(すなわち第2方向Y)である。 Next, the butting process is performed. In the butting step, the tip of the connecting fiber F is butted against the rear end of the extending portion 31 . When the connecting fiber F and the extending portion 31 abut against each other, a pressing force (compressive force) along the insertion direction X is applied to the built-in fiber 30 and the connecting fiber F. As shown in FIG. Here, the bending rigidity of the built-in fiber 30 is lower than the bending rigidity of the connection fiber F, and a bending space B is provided between the ferrule 20 and the mechanical splice 40 . Thereby, the built-in fiber 30 bends while the bending of the connection fiber F is suppressed (see FIG. 10B). Note that the direction in which the built-in fiber 30 bends in FIG. 10B is mainly the direction perpendicular to the plane of the paper (that is, the second direction Y).
 この突き当て工程において、使用者は、ハウジング10に設けられた窓12およびケース80に設けられた第2の窓81を通して内蔵ファイバ30の撓みを視認してもよい。これにより、使用者は、内蔵ファイバ30と接続ファイバFとが突き当たったことを確認してもよい。ここで、接続ファイバFの被覆がメカニカルスプライス40に引っかかった場合等、当該光ファイバ同士が適切に突き当たっていない場合には、内蔵ファイバ30の撓みが抑制され、代わりに接続ファイバFに撓みが生じる。接続ファイバFの撓みを視認することにより内蔵ファイバ30と接続ファイバFとが突き当たったか否かを判別する従来の方法では、上記のような場合において、使用者が、当該光ファイバ同士が突き当たったか否かを誤認してしまう可能性があった。より具体的には、内蔵ファイバ30と接続ファイバFとが突き当たっていないにも関わらず、当該光ファイバ同士が突き当たっていると使用者が誤認してしまう可能性があった。これに対して本実施形態の光コネクタ1は、窓12および第2の窓81を通して内蔵ファイバ30の撓みの発生有無を視認することで、上記のような誤認を防止することができる。 In this abutment process, the user may visually recognize the bending of the built-in fiber 30 through the window 12 provided in the housing 10 and the second window 81 provided in the case 80 . Thereby, the user may confirm that the built-in fiber 30 and the connection fiber F have collided. Here, when the optical fibers do not abut each other properly, such as when the coating of the connecting fiber F is caught on the mechanical splice 40, the bending of the built-in fiber 30 is suppressed, and the connecting fiber F bends instead. . In the conventional method of determining whether or not the built-in fiber 30 and the connection fiber F have collided with each other by visually recognizing the bending of the connection fiber F, in the case as described above, the user can determine whether or not the optical fibers have collided with each other. There was a possibility of misidentifying. More specifically, even though the built-in fiber 30 and the connection fiber F are not in contact with each other, the user may misunderstand that the optical fibers are in contact with each other. On the other hand, the optical connector 1 of the present embodiment can prevent the misidentification as described above by visually checking whether or not the built-in fiber 30 is bent through the window 12 and the second window 81 .
 また、規制部42cに設けられたスリットSによって、内蔵ファイバ30の撓む方向は規制されている。図8の例のように、スリットSが第2方向Yに平行な向きに延びている場合には、内蔵ファイバ30の撓む方向が、撓み空間Bからみて窓12が位置する方向(第1方向Z)と直交する第2方向Yに規制される(図11参照)。この構成により、内蔵ファイバ30の撓みが窓12および第2の窓81を通して視認されやすくなる。なお、内蔵ファイバ30の撓む方向が第2方向Yから多少傾いていたとしても、当該撓む方向が第1方向Zと平行でない限りは、同様の効果を得られることが期待される。 Also, the bending direction of the built-in fiber 30 is regulated by the slit S provided in the regulating portion 42c. 8, when the slit S extends parallel to the second direction Y, the bending direction of the built-in fiber 30 is the direction (first It is regulated in a second direction Y orthogonal to the direction Z) (see FIG. 11). With this configuration, the bending of the built-in fiber 30 is easily visible through the window 12 and the second window 81 . Even if the bending direction of the built-in fiber 30 is slightly inclined from the second direction Y, as long as the bending direction is not parallel to the first direction Z, the same effect can be expected.
 また、突き当て工程において、フェルール20の先端に不図示の可視光源が設置され、内蔵ファイバ30に可視光が入射されてもよい。内蔵ファイバ30の延出部31(撓み部)には被覆が設けられているが、内蔵ファイバ30に入射された可視光の一部は被覆を透過する。このため、使用者から見ると、延出部31が光って見える。したがって、内蔵ファイバ30の撓みがより視認されやすくなる。なお、接続ファイバFに可視光を入射することで、可視光が接続ファイバFから内蔵ファイバ30へと伝搬される構成を採用してもよいが、可視光源と撓み空間Bとの距離を加味すると、内蔵ファイバ30に可視光を入射する構成が簡便である。 Also, in the abutting step, a visible light source (not shown) may be installed at the tip of the ferrule 20 to allow visible light to enter the built-in fiber 30 . Although the extended portion 31 (flexible portion) of the built-in fiber 30 is provided with a coating, part of the visible light incident on the built-in fiber 30 passes through the coating. Therefore, when viewed from the user, the extending portion 31 looks shiny. Therefore, the bending of the built-in fiber 30 becomes easier to visually recognize. A configuration may be employed in which visible light is incident on the connecting fiber F and propagates from the connecting fiber F to the built-in fiber 30. However, considering the distance between the visible light source and the bending space B, , the configuration in which the visible light is incident on the built-in fiber 30 is simple.
 最後に、メカニカルスプライス40から楔50が抜去される。このとき、挿入孔42aが縮小し、接続ファイバFと内蔵ファイバ30とが互いに突き当たったまま挿入孔42a内に固定される。これにより、接続ファイバFと内蔵ファイバ30との接続が達成される。 Finally, the wedge 50 is removed from the mechanical splice 40. At this time, the insertion hole 42a shrinks, and the connecting fiber F and the built-in fiber 30 are fixed in the insertion hole 42a while abutting each other. Thereby, the connection between the connection fiber F and the built-in fiber 30 is achieved.
 また、メカニカルスプライス40から楔50が抜去されると、メカニカルスプライス40とハウジング10との挿通方向Xにおける相対移動の規制が解除される。このとき、内蔵ファイバ30の撓みが生じさせる復元力により、メカニカルスプライス40が、内蔵ファイバ30および接続ファイバFを保持したまま後方に押し出される(図10C参照)。言い換えれば、内蔵ファイバ30の撓みが生じさせる復元力により、フェルール20とメカニカルスプライス40との挿通方向Xにおける相対距離が増大する。これにより、光コネクタ1の使用時において内蔵ファイバ30が撓んだままになることを防止することができる。したがって、内蔵ファイバ30の撓みに起因する光コネクタ1の伝送損失を抑えることができる。 Further, when the wedge 50 is removed from the mechanical splice 40, the restriction on relative movement in the insertion direction X between the mechanical splice 40 and the housing 10 is released. At this time, the mechanical splice 40 is pushed backward while holding the built-in fiber 30 and the connection fiber F (see FIG. 10C) due to the restoring force caused by the bending of the built-in fiber 30 . In other words, the relative distance in the insertion direction X between the ferrule 20 and the mechanical splice 40 increases due to the restoring force caused by the bending of the built-in fiber 30 . Thereby, it is possible to prevent the built-in fiber 30 from remaining bent when the optical connector 1 is used. Therefore, the transmission loss of the optical connector 1 caused by the bending of the built-in fiber 30 can be suppressed.
 なお、何らかの理由で接続ファイバFの挿入をやり直す場合には、再び楔50をメカニカルスプライス40に挿入し、接続ファイバFのメカニカルスプライス40に対する固定を解除する。またこのとき、先述した構造によりメカニカルスプライス40とハウジング10とが所定の準備位置に戻る。このため、光コネクタ1を再利用することができる。 If the insertion of the connection fiber F is to be redone for some reason, the wedge 50 is inserted again into the mechanical splice 40 to release the fixation of the connection fiber F to the mechanical splice 40 . Also, at this time, the mechanical splice 40 and the housing 10 are returned to the predetermined preparatory positions by the structure described above. Therefore, the optical connector 1 can be reused.
 以上説明したように、本実施形態に係る光コネクタ1は、ハウジング10と、接続端面20aおよび接続端面20aに開口したファイバ孔21を有するフェルール20と、ファイバ孔21に挿通され、ファイバ孔21の挿通方向Xにおける接続端面20aの反対側である後方に向けてフェルール20から延出した延出部31を有する内蔵ファイバ30と、延出部31の後端が挿入されるとともに、延出部31の後端に接続される接続ファイバFを挿入可能な挿入孔42aを有するメカニカルスプライス40と、を備え、ハウジング10は、フェルール20の少なくとも一部およびメカニカルスプライス40収容し、ハウジング10におけるフェルール20とメカニカルスプライス40との間には、内蔵ファイバ30の撓みを許容する撓み空間Bが設けられている。 As described above, the optical connector 1 according to the present embodiment includes the housing 10, the ferrule 20 having the connection end surface 20a and the fiber hole 21 opening in the connection end surface 20a, and the fiber hole 21 that is inserted into the fiber hole 21. A built-in fiber 30 having an extending portion 31 extending from the ferrule 20 toward the rear, which is the opposite side of the connecting end surface 20a in the insertion direction X, and the rear end of the extending portion 31 are inserted, and the extending portion 31 a mechanical splice 40 having an insertion hole 42a into which the connection fiber F connected to the rear end can be inserted; the housing 10 accommodates at least part of the ferrule 20 and the mechanical splice 40; A bending space B is provided between the mechanical splice 40 and the bending space B that allows the built-in fiber 30 to bend.
 このような構成を有する光コネクタ1によれば、フェルール20とメカニカルスプライス40との間に撓み空間Bが設けられている。これにより、内蔵ファイバ30を撓ませることができる。内蔵ファイバ30の曲げ剛性は光コネクタ1の出荷者が設定することができる。このため、使用者が接続ファイバFに加える押圧力と、内蔵ファイバ30の撓み量と、の関係を安定させることができる。したがって、内蔵ファイバ30と接続ファイバFとの接続達成率を向上できる。 According to the optical connector 1 having such a configuration, the bending space B is provided between the ferrule 20 and the mechanical splice 40. Thereby, the built-in fiber 30 can be bent. The bending rigidity of the built-in fiber 30 can be set by the shipper of the optical connector 1 . Therefore, it is possible to stabilize the relationship between the pressing force applied to the connection fiber F by the user and the deflection amount of the built-in fiber 30 . Therefore, the connection achievement rate between the built-in fiber 30 and the connection fiber F can be improved.
 また、本実施形態に係る光コネクタ1は、挿入孔42aを拡張するためにメカニカルスプライス40に挿入され、また、メカニカルスプライス40から抜去されることで接続ファイバFとメカニカルスプライス40との相対位置を固定する楔50をさらに備え、メカニカルスプライス40とハウジング10とは、挿通方向Xにおいて相対移動可能に構成されており、楔50は、ハウジング10を介してメカニカルスプライス40に挿入されることで、メカニカルスプライス40とハウジング10との挿通方向Xにおける相対位置を所定の準備位置に固定するように構成され、楔50がメカニカルスプライス40から抜去されたとき、内蔵ファイバ30の撓みが生じさせる復元力により、フェルール20とメカニカルスプライス40との挿通方向Xにおける相対距離が増大する。 In addition, the optical connector 1 according to the present embodiment is inserted into the mechanical splice 40 to expand the insertion hole 42a, and removed from the mechanical splice 40 to change the relative position between the connection fiber F and the mechanical splice 40. The mechanical splice 40 and the housing 10 are configured to be relatively movable in the insertion direction X, and the wedge 50 is inserted into the mechanical splice 40 via the housing 10 to provide a mechanical The relative position of the splice 40 and the housing 10 in the insertion direction X is fixed at a predetermined preparatory position. The relative distance in the insertion direction X between ferrule 20 and mechanical splice 40 increases.
 このような構成を有する光コネクタ1によれば、内蔵ファイバ30と接続ファイバFとの接続が完了した後に内蔵ファイバ30が撓んだままとなることを防止できる。したがって、内蔵ファイバ30の撓みに起因する光コネクタ1の伝送損失を抑えることができる。 According to the optical connector 1 having such a configuration, it is possible to prevent the built-in fiber 30 from remaining bent after the connection between the built-in fiber 30 and the connection fiber F is completed. Therefore, the transmission loss of the optical connector 1 caused by the bending of the built-in fiber 30 can be suppressed.
 また、メカニカルスプライス40は、係合部42dを有し、楔50は、係合部42dと係合する楔側係合部52を有し、楔50がメカニカルスプライス40に挿入されるとき、係合部42dが楔側係合部52と係合することにより、ハウジング10とメカニカルスプライス40とが所定の準備位置に誘導される。 The mechanical splice 40 has an engaging portion 42d, and the wedge 50 has a wedge-side engaging portion 52 that engages with the engaging portion 42d. By engaging the joint portion 42d with the wedge side engaging portion 52, the housing 10 and the mechanical splice 40 are guided to a predetermined preparatory position.
 この構成により、使用者が光コネクタ1を使用する以前においてハウジング10とメカニカルスプライス40との相対位置が不意にずれてしまった場合においても、楔50を挿入することで当該相対位置を容易に所定の準備位置に戻すことができる。また、何らかの理由で接続ファイバFの挿入をやり直す場合においても、楔50を抜去し再挿入することで当該相対位置を容易に所定の準備位置に戻すことができる。このため、光コネクタ1の再利用が容易になる。 With this configuration, even if the relative position between the housing 10 and the mechanical splice 40 is unexpectedly displaced before the user uses the optical connector 1, the relative position can be easily determined by inserting the wedge 50. ready position. Moreover, even if the insertion of the connection fiber F is to be redone for some reason, the relative position can be easily returned to the predetermined preparatory position by removing the wedge 50 and reinserting it. Therefore, reuse of the optical connector 1 is facilitated.
 また、ハウジング10には、撓み空間Bに連通する窓12が形成されている。この構成により、内蔵ファイバ30の撓みの視認性を向上できるとともに、内蔵ファイバ30と接続ファイバFとが適切に付き当たったか否かに関する使用者の誤認を防止することができる。したがって、内蔵ファイバ30と接続ファイバFとの接続達成率をさらに向上できる。なお、本実施形態ではケース80に形成された第2の窓81を通して撓み空間Bの内部を視認可能であるが、例えばケース80が窓12の近傍を覆っていない構造等においては、第2の窓81は不要である。したがって、第2の窓81は無くてもよい。また、ケース80が無くてもよい。 A window 12 communicating with the deflection space B is formed in the housing 10 . With this configuration, it is possible to improve the visibility of the bending of the built-in fiber 30, and prevent the user from misunderstanding whether or not the built-in fiber 30 and the connection fiber F are in proper contact. Therefore, the connection achievement rate between the built-in fiber 30 and the connection fiber F can be further improved. In this embodiment, the inside of the deflection space B can be visually recognized through the second window 81 formed in the case 80. However, in a structure where the case 80 does not cover the vicinity of the window 12, for example, the second Window 81 is not required. Therefore, the second window 81 may be omitted. Also, the case 80 may be omitted.
 また、本実施形態に係る光コネクタ1は、メカニカルスプライス40の先端に配置された規制部42cをさらに備え、撓み空間Bと窓12とが並ぶ方向を第1方向Zとし、第1方向Zおよび挿通方向Xの双方に直交する方向を第2方向Yとするとき、規制部42cは、挿通方向Xから見て、挿入孔42aから第2方向Yに向けて延びるスリットSを含む。この構成により、内蔵ファイバ30が撓む方向が第2方向Yに制限される。これにより、内蔵ファイバ30の撓みの視認性が向上する。 Further, the optical connector 1 according to the present embodiment further includes a restricting portion 42c arranged at the tip of the mechanical splice 40. When a direction orthogonal to both the insertion directions X is defined as a second direction Y, the restricting portion 42c includes a slit S extending in the second direction Y from the insertion hole 42a when viewed from the insertion direction X. With this configuration, the direction in which the built-in fiber 30 bends is restricted to the second direction Y. As shown in FIG. This improves the visibility of the bending of the built-in fiber 30 .
 また、本実施形態に係る光コネクタ1の製造方法は、フェルール20から後方に延出した内蔵ファイバ30の延出部31を、メカニカルスプライス40に対して前方から挿入し、接続ファイバFをメカニカルスプライス40に対して後方から挿入し、接続ファイバFを延出部31に突き当てることで、内蔵ファイバ30をフェルール20とメカニカルスプライス40との間で撓ませる。この構成によって、先述の通り、使用者が接続ファイバFに加える押圧力と、内蔵ファイバ30の撓み量と、の関係を安定させることができる。したがって、内蔵ファイバ30と接続ファイバFとの接続達成率を向上できる。 Further, in the method of manufacturing the optical connector 1 according to the present embodiment, the extending portion 31 of the built-in fiber 30 extending backward from the ferrule 20 is inserted into the mechanical splice 40 from the front, and the connection fiber F is mechanically spliced. The built-in fiber 30 is bent between the ferrule 20 and the mechanical splice 40 by inserting the connecting fiber F from the rear side into the 40 and abutting the connecting fiber F against the extending portion 31 . With this configuration, as described above, it is possible to stabilize the relationship between the pressing force applied to the connection fiber F by the user and the amount of deflection of the built-in fiber 30 . Therefore, the connection achievement rate between the built-in fiber 30 and the connection fiber F can be improved.
 また、接続ファイバFを延出部31に突き当てる際に、内蔵ファイバ30もしくは接続ファイバFに可視光を入射させてもよい。この場合、内蔵ファイバ30が発光し、内蔵ファイバ30の撓みの視認性が向上する。 Also, visible light may be incident on the built-in fiber 30 or the connecting fiber F when the connecting fiber F abuts against the extending portion 31 . In this case, the built-in fiber 30 emits light, and the visibility of the bending of the built-in fiber 30 is improved.
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 It should be noted that the technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.
 例えば、前記実施形態において楔50はメカニカルスプライス40に対して上方から下方に向けて挿入されていたが、楔50は下方から上方に向けて挿入されていてもよい。あるいは、楔50は、メカニカルスプライス40に対して第2方向Yに平行な向きに挿入されていてもよい。 For example, although the wedge 50 was inserted downward into the mechanical splice 40 in the above embodiment, the wedge 50 may be inserted upward from below. Alternatively, the wedge 50 may be inserted in a direction parallel to the second direction Y with respect to the mechanical splice 40 .
 また、前記実施形態においてメカニカルスプライス40の本体部42はクランプ部41の弾性復元力によってクランプ部41の内部に保持されていたが、ねじ部材等によって本体部42が保持されていてもよい。 Also, in the above embodiment, the body portion 42 of the mechanical splice 40 was held inside the clamp portion 41 by the elastic restoring force of the clamp portion 41, but the body portion 42 may be held by a screw member or the like.
 また、前記実施形態では突き当て工程が行われた後においてメカニカルスプライス40が後方に移動していたが、例えばフェルール20が前方に移動する構成を採用してもよい。 Also, in the above-described embodiment, the mechanical splice 40 moves backward after the abutment process is performed, but a configuration in which the ferrule 20 moves forward, for example, may be adopted.
 また、前記実施形態において楔側係合部52の楔側傾斜面52aと係合部42dが当接することによりメカニカルスプライス40とハウジング10とが所定の準備位置に誘導・固定されていたが、その他の構造も採用可能である。例えば、係合部42dおよび楔側係合部52のうち一方は傾斜した面を有していなくてもよい。つまり、メカニカルスプライス40およびハウジング10を所定の準備位置に誘導・固定できれば、楔側係合部52と係合部42dとが有する機構は任意である。 In the above-described embodiment, the wedge-side inclined surface 52a of the wedge-side engaging portion 52 and the engaging portion 42d abut to guide and fix the mechanical splice 40 and the housing 10 to the predetermined preparatory position. structure can also be adopted. For example, one of the engaging portion 42d and the wedge-side engaging portion 52 may not have an inclined surface. In other words, the mechanism of the wedge-side engaging portion 52 and the engaging portion 42d is arbitrary as long as the mechanical splice 40 and the housing 10 can be guided and fixed to predetermined preparatory positions.
 また、前記実施形態において規制部42cは本体部42と一体であり、スリットSは本体部42に形成されていたが、規制部42cはフェルール20の後端に設けられていてもよい。あるいは、規制部42cは、本体部42およびフェルール20とは別体の基部を有し、当該基部にスリットSが形成されるように構成されていてもよい。この場合、規制部42cは撓み空間Bの内部に設けられていてもよい。すなわち、規制部42cは、フェルール20の後端と、メカニカルスプライス40の先端と、撓み空間Bの内部と、のうちいずれかに配置されることができる。 Also, in the above embodiment, the restricting portion 42c is integrated with the body portion 42 and the slit S is formed in the body portion 42, but the restricting portion 42c may be provided at the rear end of the ferrule 20. Alternatively, the restricting portion 42c may have a base separate from the body portion 42 and the ferrule 20, and may be configured such that the slit S is formed in the base. In this case, the restricting portion 42c may be provided inside the bending space B. That is, the restricting portion 42c can be arranged at any one of the rear end of the ferrule 20, the tip of the mechanical splice 40, and the inside of the bending space B. As shown in FIG.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components within the scope of the present invention, and the above-described embodiments and modifications may be combined as appropriate.
 1…光コネクタ 10…ハウジング 12…窓 20…フェルール 20a…接続端面 21…ファイバ孔 30…内蔵ファイバ 31…延出部 40…メカニカルスプライス 42a…挿入孔 42c…規制部 42d…係合部 50…楔 52…楔側係合部 B…撓み空間 S…スリット F…接続ファイバ X…挿通方向 1... Optical connector 10... Housing 12... Window 20... Ferrule 20a... Connection end face 21... Fiber hole 30... Built-in fiber 31... Extension part 40... Mechanical splice 42a... Insertion hole 42c... Regulating part 42d... Engaging part 50... Wedge 52... Wedge-side engagement portion B... Deflection space S... Slit F... Connection fiber X... Insertion direction

Claims (7)

  1.  ハウジングと、
     接続端面および前記接続端面に開口したファイバ孔を有するフェルールと、
     前記ファイバ孔に挿通され、前記ファイバ孔の挿通方向における前記接続端面の反対側である後方に向けて前記フェルールから延出した延出部を有する内蔵ファイバと、
     前記延出部の後端が挿入されるとともに、前記延出部の後端に接続される接続ファイバを挿入可能な挿入孔を有するメカニカルスプライスと、を備え、
     前記ハウジングは、前記フェルールの少なくとも一部および前記メカニカルスプライスを収容し、
     前記ハウジングにおける前記フェルールと前記メカニカルスプライスとの間には、前記内蔵ファイバの撓みを許容する撓み空間が設けられている、光コネクタ。
    a housing;
    a ferrule having a connection end surface and a fiber hole opening in the connection end surface;
    a built-in fiber that is inserted through the fiber hole and has an extension part that extends from the ferrule toward the rear side opposite to the connection end face in the insertion direction of the fiber hole;
    a mechanical splice having an insertion hole into which the rear end of the extension is inserted and into which a connecting fiber connected to the rear end of the extension can be inserted;
    the housing houses at least a portion of the ferrule and the mechanical splice;
    An optical connector according to claim 1, wherein a bending space for allowing bending of the built-in fiber is provided between the ferrule and the mechanical splice in the housing.
  2.  前記挿入孔を拡張するために前記メカニカルスプライスに挿入され、また、前記メカニカルスプライスから抜去されることで前記接続ファイバと前記メカニカルスプライスとの相対位置を固定する楔をさらに備え、
     前記メカニカルスプライスと前記ハウジングとは、前記挿通方向において相対移動可能に構成されており、
     前記楔は、前記ハウジングを介して前記メカニカルスプライスに挿入されることで、前記メカニカルスプライスと前記ハウジングとの前記挿通方向における相対位置を所定の準備位置に固定するように構成され、
     前記楔が前記メカニカルスプライスから抜去されたとき、前記内蔵ファイバの撓みが生じさせる復元力により、前記フェルールと前記メカニカルスプライスとの前記挿通方向における相対距離が増大する、請求項1に記載の光コネクタ。
    a wedge inserted into the mechanical splice to expand the insertion hole and removed from the mechanical splice to fix a relative position between the connecting fiber and the mechanical splice;
    The mechanical splice and the housing are configured to be relatively movable in the insertion direction,
    The wedge is inserted into the mechanical splice through the housing to fix the relative position of the mechanical splice and the housing in the insertion direction at a predetermined preparatory position,
    2. The optical connector according to claim 1, wherein when said wedge is removed from said mechanical splice, a restoring force caused by bending of said built-in fiber increases a relative distance between said ferrule and said mechanical splice in said inserting direction. .
  3.  前記メカニカルスプライスは、係合部を有し、
     前記楔は、前記係合部と係合する楔側係合部を有し、
     前記楔が前記メカニカルスプライスに挿入されるとき、前記係合部が前記楔側係合部と係合することにより、前記ハウジングと前記メカニカルスプライスとが前記準備位置に誘導される、請求項2に記載の光コネクタ。
    The mechanical splice has an engaging portion,
    The wedge has a wedge-side engaging portion that engages with the engaging portion,
    3. The apparatus according to claim 2, wherein when said wedge is inserted into said mechanical splice, said engaging portion is engaged with said wedge-side engaging portion, thereby guiding said housing and said mechanical splice to said preparatory position. Optical connector as described.
  4.  前記ハウジングには、前記撓み空間に連通する窓が形成されている、請求項1から3のいずれか一項に記載の光コネクタ。 The optical connector according to any one of claims 1 to 3, wherein the housing has a window communicating with the deflection space.
  5.  前記フェルールの後端と、前記メカニカルスプライスの先端と、前記撓み空間の内部と、のうちいずれかに配置された規制部をさらに備え、
     前記撓み空間と前記窓とが並ぶ方向を第1方向とし、前記第1方向および前記挿通方向の双方に直交する方向を第2方向とするとき、
     前記規制部は、前記挿通方向から見て、前記挿入孔から前記第2方向に向けて延びるスリットを含む、請求項4に記載の光コネクタ。
    further comprising a regulating portion arranged in one of the rear end of the ferrule, the tip of the mechanical splice, and the interior of the deflection space;
    When the direction in which the deflection space and the window are aligned is defined as a first direction, and the direction orthogonal to both the first direction and the insertion direction is defined as a second direction,
    5. The optical connector according to claim 4, wherein said restricting portion includes a slit extending from said insertion hole in said second direction when viewed from said insertion direction.
  6.  フェルールから後方に延出した内蔵ファイバの延出部を、メカニカルスプライスに対して前方から挿入し、
     接続ファイバを前記メカニカルスプライスに対して後方から挿入し、
     前記接続ファイバを前記延出部に突き当てることで、前記内蔵ファイバを前記フェルールと前記メカニカルスプライスとの間で撓ませる、光コネクタの製造方法。
    inserting the extension part of the built-in fiber extending backward from the ferrule into the mechanical splice from the front,
    inserting the connecting fiber from behind into the mechanical splice;
    A method of manufacturing an optical connector, wherein the built-in fiber is bent between the ferrule and the mechanical splice by abutting the connection fiber against the extension.
  7.  前記接続ファイバを前記延出部に突き当てる際に、前記内蔵ファイバもしくは前記接続ファイバに可視光を入射させる、請求項6に記載の光コネクタの製造方法。 The method for manufacturing an optical connector according to claim 6, wherein visible light is made incident on the built-in fiber or the connection fiber when the connection fiber is butted against the extension.
PCT/JP2021/043090 2021-03-30 2021-11-25 Optical connector and production method for optical connector WO2022208986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057089 2021-03-30
JP2021-057089 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022208986A1 true WO2022208986A1 (en) 2022-10-06

Family

ID=83458318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043090 WO2022208986A1 (en) 2021-03-30 2021-11-25 Optical connector and production method for optical connector

Country Status (1)

Country Link
WO (1) WO2022208986A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017979A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Optical connector and method of assembling the same
JP2011095296A (en) * 2009-10-27 2011-05-12 Fujikura Ltd Optical connector
JP2011107609A (en) * 2009-11-20 2011-06-02 Sumitomo Electric Ind Ltd Method and apparatus for inspecting optical connector
JP2013015787A (en) * 2011-07-06 2013-01-24 Fujikura Ltd Optical connector and assembling method of the same
JP2015049459A (en) * 2013-09-03 2015-03-16 株式会社フジクラ Optical connector assembling method and optical connector assembly jig
US20180267243A1 (en) * 2015-08-31 2018-09-20 Commscope Technologies Llc Splice-on fiber optic connector
JP2018163303A (en) * 2017-03-27 2018-10-18 株式会社フジクラ Tool for optical fiber connection and optical connector with tool for optical fiber connection
JP2019086576A (en) * 2017-11-02 2019-06-06 株式会社フジクラ Gripping member
JP2020056911A (en) * 2018-10-02 2020-04-09 株式会社フジクラ Optical connector unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017979A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Optical connector and method of assembling the same
JP2011095296A (en) * 2009-10-27 2011-05-12 Fujikura Ltd Optical connector
JP2011107609A (en) * 2009-11-20 2011-06-02 Sumitomo Electric Ind Ltd Method and apparatus for inspecting optical connector
JP2013015787A (en) * 2011-07-06 2013-01-24 Fujikura Ltd Optical connector and assembling method of the same
JP2015049459A (en) * 2013-09-03 2015-03-16 株式会社フジクラ Optical connector assembling method and optical connector assembly jig
US20180267243A1 (en) * 2015-08-31 2018-09-20 Commscope Technologies Llc Splice-on fiber optic connector
JP2018163303A (en) * 2017-03-27 2018-10-18 株式会社フジクラ Tool for optical fiber connection and optical connector with tool for optical fiber connection
JP2019086576A (en) * 2017-11-02 2019-06-06 株式会社フジクラ Gripping member
JP2020056911A (en) * 2018-10-02 2020-04-09 株式会社フジクラ Optical connector unit

Similar Documents

Publication Publication Date Title
US7712974B2 (en) Method of assembling an optical connector and an optical connector
JP4957363B2 (en) Optical connector and optical connector assembling method
US8297850B2 (en) Optical connector, and method of assembling optical connector
JP4800136B2 (en) Optical receptacle housing, optical connector receptacle and optical device
JP5034650B2 (en) Optical fiber connector and optical cable
US7717623B2 (en) Optical connector and optical connector assembling method
JP4884880B2 (en) Fiber holder
US20120082418A1 (en) Optical connector and optical connector ferrule
SG175169A1 (en) Optical connector
EP2631690A1 (en) Optical fiber terminal affixing member, optical connector, and optical fiber cable with connector
EP3734340A1 (en) Optical connector
WO2022208986A1 (en) Optical connector and production method for optical connector
EP2631691A1 (en) Optical fiber terminal, optical fiber cable with terminal, optical connector, optical fiber cable with connector, and connection structure
WO2017126395A1 (en) Optical connector, and optical connector manufacturing method
JP2005189288A (en) Two-piece optical connector unit
JP5091105B2 (en) Field assembly optical connector with shutter
JP6297799B2 (en) Optical connector and optical connector assembling method
JP2012032656A (en) Optical connector and connector connection system
JP7457204B2 (en) Optical connector manufacturing tools
JP2005134549A (en) Optical connector
US20230314713A1 (en) Optical connector and method of manufacturing optical connector
JP5390140B2 (en) Optical cable connection structure
JP6823679B2 (en) Optical connector and wedge removal method
WO2022158018A1 (en) Ferrule and ferrule structure
WO2022158019A1 (en) Boot, ferrule structure, and method for manufacturing ferrule-equipped fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935139

Country of ref document: EP

Kind code of ref document: A1