WO2022208913A1 - Position detection device and position detection method - Google Patents

Position detection device and position detection method Download PDF

Info

Publication number
WO2022208913A1
WO2022208913A1 PCT/JP2021/022352 JP2021022352W WO2022208913A1 WO 2022208913 A1 WO2022208913 A1 WO 2022208913A1 JP 2021022352 W JP2021022352 W JP 2021022352W WO 2022208913 A1 WO2022208913 A1 WO 2022208913A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
instantaneous value
phase
processing unit
value
Prior art date
Application number
PCT/JP2021/022352
Other languages
French (fr)
Japanese (ja)
Inventor
淳 藤田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2023510175A priority Critical patent/JP7452757B2/en
Priority to CN202180096395.8A priority patent/CN117121363A/en
Publication of WO2022208913A1 publication Critical patent/WO2022208913A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a position detection device and a position detection method.
  • Patent Document 1 discloses a rotation detection device that is capable of continuously detecting rotation even if an abnormality occurs in a part of the circuit by providing two circuits necessary for detecting the rotation of a motor. is disclosed.
  • One aspect of the position detection device of the present invention is a position detection device that detects the rotational position of a motor, and is opposed to a magnet that rotates in synchronism with the motor and at predetermined intervals along the direction of rotation of the magnet.
  • Three magnetic sensors are arranged, and a signal processing unit that processes three-phase signals output from the three magnetic sensors and having a phase difference of 120 degrees in electrical angle.
  • the signal processing unit digitally converts each of the U-phase signal, the V-phase signal, and the W-phase signal included in the three-phase signals to obtain an instantaneous value Hu′ of the U-phase signal and an instantaneous value Hu′ of the V-phase signal.
  • discrimination processing signal generation processing for generating a remaining one-phase signal based on two-phase signals output from two of the three magnetic sensors excluding the abnormal sensor; and excluding the abnormal sensor.
  • position estimation processing for estimating the rotational position of the motor based on the two-phase signals output from the two magnetic sensors and the generated remaining one-phase signal;
  • three magnetic sensors facing a magnet rotating in synchronism with a motor and arranged at predetermined intervals along the direction of rotation of the magnet output an electrical angle to each other.
  • a position detection method for detecting the rotational position of the motor using three-phase signals having a phase difference of 120° at wherein the U-phase signal, the V-phase signal and the W-phase signal included in the three-phase signals an obtaining step of obtaining an instantaneous value Hu' of the U-phase signal, an instantaneous value Hv' of the V-phase signal, and an instantaneous value Hw' of the W-phase signal by digitally converting each of the above; Whether the instantaneous value Hu', the instantaneous value Hv' of the V-phase signal, and the instantaneous value Hw' of the W-phase signal satisfy the following expression (1) in all of the first case, the second case, and the third case an abnormality determination step of identifying an abnormal sensor that is an abnormal magnetic sensor among
  • the remaining magnetic sensor can remain based on the two-phase signals output from the two magnetic sensors excluding the abnormal sensor.
  • a position detection device and a position detection method are provided that can continuously estimate the rotational position of a motor by generating a single-phase signal. Therefore, it is possible to reduce the size of the device and the cost of the parts compared to the conventional technology that prepares two circuits necessary for detecting the rotation of the motor.
  • FIG. 1 is a block diagram schematically showing the configuration of the position detection device according to this embodiment.
  • FIG. 2 is a diagram showing a connection relationship among three magnetic sensors, a power supply circuit, and a processing section in this embodiment.
  • FIG. 3 is a flowchart showing each process executed by the processing unit of the position detection device according to this embodiment.
  • FIG. 4 is an explanatory diagram relating to abnormality determination processing executed by the processing unit of the position detection device according to the present embodiment.
  • FIG. 5 is a flowchart showing signal generation processing executed by the processing unit of the position detection device according to this embodiment.
  • FIG. 6 is a diagram representing the first signal Hu' and the second signal Hv' by rotating vectors on the complex plane.
  • FIG. 7 shows the waveform data of the first signal Hu' obtained during one rotation of the vector of the first signal Hu' on the complex plane, and the waveform data of the second signal Hv' obtained during one rotation of the vector of the second signal Hv' on the complex plane. It is a figure which shows an example with the waveform data of 2nd signal Hv' obtained.
  • FIG. 8 is a diagram showing a combined signal Huv of the first fundamental wave signal Hu and the second fundamental wave signal Hv as a rotating vector on the complex plane.
  • FIG. 9 is a diagram showing an example of waveform data of the composite signal Huv obtained while the vectors of the first signal Hu' and the second signal Hv' make one rotation on the complex plane.
  • FIG. 10 is an explanatory diagram of a method for calculating the phase difference ⁇ 1 between the first signal Hu' and the second signal Hv' in the learning process.
  • FIG. 11 is an explanatory diagram relating to a method of calculating the phase difference ⁇ 2 between the combined signal Huv and the first signal Hu' in the learning process.
  • FIG. 12 is an explanatory diagram showing that the phase difference between the combined signal Huv and the first fundamental wave signal Hu is equal to the phase difference ⁇ 2 between the combined signal Huv and the first signal Hu'.
  • FIG. 13 is an explanatory diagram regarding the deflection angle ⁇ t+ ⁇ 2 of the composite signal Huv.
  • FIG. 14 is a diagram showing the third fundamental wave signal Hw, which is orthogonal to the composite signal Huv, represented by a rotating vector on the complex plane.
  • FIG. 15 is a diagram showing an example of waveform data of the third fundamental wave signal Hw obtained during one rotation of the vector of the combined signal Huv on the complex plane.
  • FIG. 16 is a diagram showing an example of waveform data of the first fundamental wave signal Hu, waveform data of the second fundamental wave signal Hv, and waveform data of the third fundamental wave signal Hw.
  • FIG. 17 is a first explanatory diagram relating to position estimation processing executed by the processing unit of the position detection device in this embodiment.
  • FIG. 18 is a second explanatory diagram relating to position estimation processing executed by the processing unit of the position detection device in this embodiment.
  • FIG. 1 is a block diagram schematically showing the configuration of a position detection device 1 according to one embodiment of the present invention.
  • the position detection device 1 is a device that detects the rotational position (rotational angle) of the motor 100 .
  • the motor 100 is, for example, an inner rotor type three-phase brushless DC motor.
  • Motor 100 has a rotor shaft 110 and a sensor magnet 120 .
  • Rotor shaft 110 is the rotating shaft of motor 100 .
  • the rotational position of motor 100 means the rotational position of rotor shaft 110 .
  • the sensor magnet 120 is a disc-shaped magnet attached to the rotor shaft 110 .
  • Sensor magnet 120 is a magnet that rotates in synchronization with rotor shaft 110 .
  • the sensor magnet 120 has P magnetic pole pairs (P is an integer equal to or greater than 2).
  • P is an integer equal to or greater than 2.
  • the sensor magnet 120 has four magnetic pole pairs.
  • a magnetic pole pair means a pair of an N pole and an S pole. That is, in this embodiment, the sensor magnet 120 has four pairs of N poles and S poles, for a total of eight magnetic poles.
  • the position detection device 1 includes three magnetic sensors 11 , 12 and 13 and a signal processing section 20 .
  • a circuit board is attached to the motor 100, and the three magnetic sensors 11, 12 and 13 and the signal processing unit 20 are arranged on the circuit board.
  • the sensor magnet 120 is arranged at a position that does not interfere with the circuit board.
  • the sensor magnet 120 may be located inside the housing of the motor 100 or outside the housing.
  • the magnetic sensors 11, 12 and 13 face the sensor magnet 120 on the circuit board and are arranged at predetermined intervals along the rotation direction CW of the sensor magnet 120.
  • the magnetic sensors 11 , 12 and 13 are arranged at intervals of 30° along the rotation direction CW of the sensor magnet 120 .
  • the magnetic sensors 11, 12 and 13 are analog output type magnetic sensors including magnetoresistive elements such as Hall elements or linear Hall ICs.
  • the magnetic sensors 11 , 12 and 13 each output an analog signal indicating the magnetic field strength that changes according to the rotational position of the rotor shaft 110 , that is, the rotational position of the sensor magnet 120 .
  • One cycle of the electrical angle of each analog signal output from the magnetic sensors 11, 12 and 13 corresponds to 1/P of one cycle of the mechanical angle.
  • one cycle of the electrical angle of each analog signal corresponds to 1/4 of one cycle of the mechanical angle, that is, 90° in mechanical angle.
  • the analog signals output from the magnetic sensors 11, 12 and 13 have a phase difference of 120 electrical degrees from each other.
  • the analog signal output from the magnetic sensor 11 will be referred to as the U-phase signal Hu'
  • the analog signal output from the magnetic sensor 12 will be referred to as the V-phase signal Hv'
  • the analog signal output from the magnetic sensor 13 will be referred to.
  • the V-phase signal Hv' has a phase lag of 120 electrical degrees with respect to the U-phase signal Hu'.
  • the W-phase signal Hw' has a phase lag of 120 electrical degrees with respect to the V-phase signal Hv'.
  • the three magnetic sensors 11, 12 and 13 output three-phase signals having a phase difference of 120 degrees in electrical angle.
  • the magnetic sensor 11 outputs a U-phase signal Hu′ to the signal processing section 20 .
  • the magnetic sensor 12 outputs a V-phase signal Hv′ to the signal processing section 20 .
  • the magnetic sensor 13 outputs a W-phase signal Hw′ to the signal processing section 20 .
  • the signal processing unit 20 is a signal processing circuit that processes three-phase signals output from the three magnetic sensors 11, 12, and 13 and having a phase difference of 120 degrees in electrical angle. Based on the U-phase signal Hu' output from the magnetic sensor 11, the V-phase signal Hv' output from the magnetic sensor 12, and the W-phase signal Hw' output from the magnetic sensor 13, the signal processing unit 20 , to estimate the rotational position of the motor 100 , that is, the rotational position of the rotor shaft 110 .
  • the signal processing unit 20 includes a power supply circuit 21 , a processing unit 22 and a storage unit 23 .
  • the power supply circuit 21 is a circuit that converts an external power supply voltage supplied from a DC power supply 200 such as a battery into an internal power supply voltage required to operate the internal circuits of the signal processing section 20 .
  • a DC power supply 200 such as a battery
  • the external power supply voltage supplied from the DC power supply 200 is 5V
  • the internal power supply voltage output from the power supply circuit 21 is 3.3V.
  • a low dropout regulator may be used as the power supply circuit 21 .
  • the power supply circuit 21 is electrically connected to the processing section 22 via the power supply line Vcc and the ground line GND.
  • the power supply circuit 21 outputs the internal power supply voltage to the processing section 22 via the power supply line Vcc and the ground line GND.
  • the power supply circuit 21 is also electrically connected to the storage unit 23 via the power supply line Vcc and the ground line GND.
  • the processing unit 22 is, for example, a microprocessor such as an MCU (Microcontroller Unit).
  • the U-phase signal Hu' output from the magnetic sensor 11, the V-phase signal Hv' output from the magnetic sensor 12, and the W-phase signal Hw' output from the magnetic sensor 13 are each input to the processing unit 22. be done.
  • the processing unit 22 is communicably connected to the storage unit 23 via a communication bus (not shown). Although details will be described later, the processing unit 22 executes an acquisition process, an abnormality determination process, a signal generation process, and a position estimation process according to a program stored in advance in the storage unit 23 .
  • the processing unit 22 has three output ports P1, P2 and P3.
  • Output ports P1, P2 and P3 are, for example, CMOS output ports.
  • the output port P1 is electrically connected to the magnetic sensor 11 via the sensor power supply line Vcc1.
  • the output port P2 is electrically connected to the magnetic sensor 12 via the sensor power supply line Vcc2.
  • the output port P3 is electrically connected to the magnetic sensor 13 via the sensor power supply line Vcc3.
  • the power supply circuit 21 is electrically connected to each of the magnetic sensors 11, 12 and 13 via the ground line GND.
  • the processing unit 22 outputs a high-level voltage from the output port P1 to the magnetic sensor 11 as a sensor power supply voltage.
  • the processing unit 22 outputs a high-level voltage to the magnetic sensor 12 from the output port P2 as a sensor power supply voltage.
  • the processing unit 22 outputs a high-level voltage as a sensor power supply voltage from the output port P3 to the magnetic sensor 13 .
  • the high level voltage is 3.3V.
  • the processing unit 22 When cutting off the power supply to the magnetic sensor 11, the processing unit 22 switches the output voltage of the output port P1 to low level. When cutting off the power supply to the magnetic sensor 12, the processing unit 22 switches the output voltage of the output port P2 to low level. When cutting off the power supply to the magnetic sensor 13, the processing unit 22 switches the output voltage of the output port P3 to low level.
  • the storage unit 23 is used as a non-volatile memory for storing programs and various setting data necessary for the processing unit 22 to execute various processes, and as a temporary storage destination for data when the processing unit 22 executes various processes. and volatile memory.
  • the nonvolatile memory is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory) or flash memory.
  • Volatile memory is, for example, RAM (Random Access Memory).
  • the processing unit 22 When the power supply circuit 21 outputs the internal power supply voltage to the processing unit 22, the processing unit 22 is activated, performs a predetermined initialization process, and then outputs a high level voltage from each of the output ports P1, P2, and P3. As a result, the sensor power supply voltage is supplied to each of the three magnetic sensors 11, 12 and 13, and each of the magnetic sensors 11, 12 and 13 becomes ready to detect the magnetic field intensity.
  • step S1 corresponds to an acquisition step.
  • the processing unit 22 incorporates an A/D converter, and the processing unit 22 converts the U-phase signal Hu', the V-phase signal Hv', and the W-phase signal Hw' by the A/D converter. By digitally converting each at a predetermined sampling frequency, the instantaneous value of the U-phase signal Hu', the instantaneous value of the V-phase signal Hv', and the instantaneous value of the W-phase signal Hw' are obtained as digital values.
  • the processing unit 22 determines that the instantaneous value of the U-phase signal Hu', the instantaneous value of the V-phase signal Hv', and the instantaneous value of the W-phase signal Hw' are lower in all of the first case, the second case, and the third case.
  • an abnormality determination process is executed to identify an abnormal sensor, which is an abnormal magnetic sensor, among the three magnetic sensors 11, 12 and 13 (step S2). This step S2 corresponds to an abnormality determination step.
  • the minimum threshold THmin and the maximum threshold THmax are learning values obtained by the first learning process performed in advance and stored in the non-volatile memory of the storage unit 23 in advance.
  • the first learning process will be described below.
  • FIG. 4 shows time-series data of instantaneous values of the U-phase signal Hu' (waveform data of the U-phase signal Hu') and the V-phase signal obtained when all three magnetic sensors 11, 12 and 13 are normal. Examples of time-series data of instantaneous values of Hv' (waveform data of V-phase signal Hv') and time-series data of instantaneous values of W-phase signal Hw' (waveform data of W-phase signal Hw') are shown.
  • the horizontal axis indicates time, and the vertical axis indicates digital values.
  • step S2 the processing unit 22 reads the maximum threshold THmax and the minimum threshold THmin from the nonvolatile memory of the storage unit 23, and the instantaneous values of the three-phase signals obtained in step S1 are the first case, the second case, and the third case.
  • An abnormal sensor is identified from among the three magnetic sensors 11, 12 and 13 by determining whether or not expression (1) is satisfied in all cases.
  • the instantaneous value of the W-phase signal Hw' output from the magnetic sensor 13 is fixed to a digital value indicating a high level (eg, 3.3 V). be done.
  • a digital value indicating a high level eg, 3.3 V
  • the instantaneous value of the W-phase signal Hw' output from the magnetic sensor 13 is fixed to a digital value indicating a low level (for example, 0V).
  • the waveform data of the W-phase signal Hw' output from the magnetic sensor 13 shows an abnormal digital value different from the normal waveform data.
  • Equation (1) when the magnetic sensor 13 is in an abnormal state, Equation (1) is not satisfied in the first case.
  • the processing unit 22 identifies the magnetic sensor 13 as an abnormal sensor when the formula (1) is not satisfied in the first case.
  • Equation (1) when the magnetic sensor 11 is in an abnormal state, Equation (1) is not satisfied in the second case.
  • the processing unit 22 identifies the magnetic sensor 11 as an abnormal sensor when the formula (1) is not satisfied in the second case.
  • the magnetic sensor 12 is in an abnormal state
  • the formula (1) is not satisfied in the third case.
  • the processing unit 22 identifies the magnetic sensor 12 as an abnormal sensor when the formula (1) is not satisfied in the third case.
  • the processing unit 22 cuts off the power supply to the abnormal sensor among the three magnetic sensors 11, 12 and 13.
  • the processing unit 22 cuts off the power supply to the magnetic sensor 11 by switching the output voltage of the output port P1 to low level.
  • the processing unit 22 cuts off the power supply to the magnetic sensor 12 by switching the output voltage of the output port P2 to low level.
  • the processing unit 22 cuts off the power supply to the magnetic sensor 13 by switching the output voltage of the output port P3 to low level.
  • step S3 corresponds to a signal generation step.
  • one of the two-phase signals output from the two magnetic sensors excluding the abnormal sensor is defined as the first signal, and the other signal having a phase delay of 120° in electrical angle with respect to the first signal. is the second signal.
  • the magnetic sensor 13 is an abnormal sensor
  • the U-phase signal Hu' output from the magnetic sensor 11 is the first signal
  • the V-phase signal Hv' output from the magnetic sensor 12 is the second signal.
  • the magnetic sensor 11 When the sensor magnet 120 rotates together with the rotor shaft 110, the magnetic sensor 11 outputs a first signal Hu' indicating the magnetic field intensity that changes according to the rotational position of the sensor magnet 120.
  • a second signal Hv′ with a phase delay of 120° is output from the magnetic sensor 12 .
  • the processing unit 22 digitally converts the first signal Hu' and the second signal Hv' at a predetermined sampling frequency using an A/D converter.
  • the processing unit 22 executes the signal generation processing shown in the flowchart of FIG. 5 each time the execution timing of digital conversion, that is, the sampling timing arrives.
  • step S11 the processing unit 22 digitally converts the first signal Hu' and the second signal Hv' output to the processing unit 22 as the sensor magnet 120 rotates as described above.
  • step S11 the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' are obtained as digital values (step S11).
  • step S11 corresponds to the first step, and the process executed in step S11 corresponds to the first process.
  • FIG. 6 is a diagram representing the first signal Hu' and the second signal Hv' by rotating vectors on the complex plane.
  • the horizontal axis is the real number axis and the vertical axis is the imaginary number axis.
  • the first signal Hu' and the second signal Hv' rotate at an angular velocity ⁇ in the direction of the arrow on the complex plane.
  • the first signal Hu' includes the first fundamental wave signal Hu, which is a fundamental wave signal, and the in-phase signal N.
  • the first signal Hu' is represented by a combined vector of the first fundamental wave signal Hu and the in-phase signal N.
  • the first signal Hu' is represented by the following equation (2).
  • the second signal Hv' includes the second fundamental wave signal Hv, which is a fundamental wave signal, and the in-phase signal N.
  • the second signal Hv' is represented by a composite vector of the second fundamental wave signal Hv and the in-phase signal N. That is, the second signal Hv' is represented by the following equation (3).
  • In-phase signal N is a noise signal including a DC signal, a third harmonic signal, and the like.
  • the instantaneous value of the first signal Hu' obtained in step S11 corresponds to the real part (the part projected onto the real axis) of the first signal Hu' represented by the vector in FIG.
  • the instantaneous value of the second signal Hv' obtained in step S11 corresponds to the real part of the second signal Hv' represented by the vector in FIG.
  • the instantaneous value of the first signal Hu' is represented by the following equation (4).
  • is the norm of the first signal Hu'
  • k is an integer of 1 or more.
  • FIG. 7 shows time-series data (waveform data of the first signal Hu') of instantaneous values of the first signal Hu' obtained during one rotation of the vector of the first signal Hu' on the complex plane
  • 10 is a diagram showing an example of time-series data (waveform data of the second signal Hv') of instantaneous values of the second signal Hv' obtained while the vector of the second signal Hv' rotates once in FIG.
  • the horizontal axis indicates time
  • the vertical axis indicates digital values.
  • the waveforms of the first signal Hu' and the second signal Hv' which include the in-phase signal N, do not become perfectly sinusoidal waveforms, but become distorted waveforms.
  • the processing unit 22 subtracts the instantaneous value of the second signal Hv' from the instantaneous value of the first signal Hu' to obtain the first fundamental wave signal Hu included in the first signal Hu' and the second fundamental wave signal Hu'.
  • the instantaneous value of the combined signal Huv with the second fundamental wave signal Hv included in the signal Hv' is calculated (step S12). This step S12 corresponds to the second step, and the process executed in step S12 corresponds to the second process.
  • FIG. 8 is a diagram showing a combined signal Huv of the first fundamental wave signal Hu and the second fundamental wave signal Hv as a rotating vector on the complex plane.
  • FIG. 9 shows an example of time-series data (waveform data of the combined signal Huv) of instantaneous values of the combined signal Huv obtained while the vectors of the first signal Hu' and the second signal Hv' make one rotation on the complex plane.
  • FIG. 4 is a diagram showing; As shown in FIG. 9, the waveform of the combined signal Huv is a complete sinusoidal waveform.
  • step S12 the processing unit 22 calculates the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' based on amplitude correction values prepared in advance before calculating the instantaneous value of the composite signal Huv. correct at least one of
  • the amplitude correction value is a correction value that makes the amplitude value of the first signal Hu' equal to the amplitude value of the second signal Hv'.
  • the amplitude correction value is one of learning values obtained by the second learning process performed in advance, and is stored in the non-volatile memory of the storage unit 23 in advance.
  • step S12 the processing unit 22 reads the amplitude correction value from the nonvolatile memory of the storage unit 23, and based on the read amplitude correction value, the amplitude value of the first signal Hu' and the amplitude of the second signal Hv' At least one of the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' is corrected so that the values are equal to each other.
  • the processing unit 22 calculates the argument of the synthesized signal Huv based on the instantaneous value of the synthesized signal Huv and the prepared norm of the synthesized signal Huv (step S13).
  • This step S13 corresponds to the third step, and the process executed in step S13 corresponds to the third process.
  • the norm of the synthesized signal Huv is one of the learning values obtained by the second learning process performed in advance, similarly to the amplitude correction value described above, and is stored in the non-volatile memory of the storage unit 23 in advance.
  • the phase difference between the combined signal Huv and the first fundamental wave signal Hu is also stored in advance in the non-volatile memory of the storage unit 23 as a learned value.
  • the second learning process performed in advance will be described below.
  • the second learning process is performed while the rotor shaft 110 and the sensor magnet 120 are rotating.
  • the processing unit 22 keeps the sensor magnet 120 at least until the time corresponding to one cycle of the electrical angle of the first signal Hu' and the second signal Hv' elapses, that is, at least the sensor magnet 120 is rotated by 90 degrees in mechanical angle.
  • the above steps S11 and S12 are repeated at a predetermined sampling frequency until the rotation occurs. In other words, the processing unit 22 repeats the above steps S11 and S12 at a predetermined sampling frequency until the vectors of the first signal Hu' and the second signal Hv' rotate at least once on the complex plane.
  • the processing unit 31 sequentially acquires the instantaneous value of the first signal Hu′, the instantaneous value of the second signal Hv′, and the instantaneous value of the synthesized signal Huv, and obtains the maximum value of each past instantaneous value and the current value. Compare each instantaneous value with the time (current sampling timing), and if each instantaneous value at the current time is greater than the maximum value of the past instantaneous values, the maximum value of the past instantaneous values will be Perform processing to update to the value.
  • the processing unit 31 sequentially acquires the instantaneous value of the first signal Hu', the instantaneous value of the second signal Hv', and the instantaneous value of the composite signal Huv, and calculates the minimum value of the past instantaneous values and the current time. If each instantaneous value of the current time is smaller than the minimum value of the past instantaneous values, update the minimum value of the past instantaneous values to the instantaneous value of the current time. .
  • the processing unit 22 acquires the maximum and minimum values of each signal by performing the sequential updating process as described above. Then, the processing unit 22 substitutes the maximum value Max(Hu') and the minimum value Min(Hu') of the first signal Hu' into the following equation (6) to obtain the amplitude value of the first signal Hu' Calculate the norm
  • the processing unit 22 calculates the norm
  • the processing unit 22 calculates an amplitude correction value that makes the norm
  • the processing unit 22 corrects at least one of all instantaneous values included in the waveform data of the first signal Hu' and all instantaneous values included in the waveform data of the second signal Hv' with the amplitude correction value. As a result, the waveform data of the first signal Hu' and the waveform data of the second signal Hv' having the same amplitude value (norm) are obtained.
  • the processing unit 22 calculates the first signal Hu' based on the amplitude-corrected waveform data of the first signal Hu' and the waveform data of the second signal Hv'.
  • a phase difference ⁇ 1 ( ⁇ typ.-120°) between Hu' and the second signal Hv' is calculated.
  • the processing unit 22 determines the time between the maximum value Max (Hu') of the first signal Hu' and the maximum value Max (Hv') of the second signal Hv'.
  • the phase difference ⁇ 1 is calculated by counting with a reference encoder or the like and substituting the count result Nmax into the following equation (9).
  • the processing unit 22 counts the time between the minimum value Min (Hu') of the first signal Hu' and the minimum value Min (Hv') of the second signal Hv' using a reference encoder or the like, and the count result Nmin may be substituted into the following equation (10) to calculate the phase difference ⁇ 1.
  • Ncpr is the resolution of the reference encoder. Note that in the second learning process, the reference encoder is attached in advance to the rotating shaft.
  • the processing unit 22 calculates the phase difference ⁇ 2 ( ⁇ typ. +30°). Specifically, the processing unit 22 substitutes the phase difference ⁇ 1 between the first signal Hu′ and the second signal Hv′ into the following equation (11) to obtain the phase difference between the combined signal Huv and the first signal Hu′. A phase difference ⁇ 2 is calculated.
  • the processing unit 22 acquires the phase difference ⁇ 2 between the combined signal Huv and the first signal Hu' as the phase difference between the combined signal Huv and the first fundamental wave signal Hu.
  • of the synthesized signal Huv, and the phase difference ⁇ 2 between the synthesized signal Huv and the first fundamental wave signal Hu are obtained as learned values. .
  • the processing unit 22 stores each learning value obtained by the second learning process in the nonvolatile memory of the storage unit 23 .
  • step S13 of FIG. 5 the processing unit 22 performs the calculation based on the instantaneous value of the combined signal Huv calculated in step S12 and the norm
  • the instantaneous value of the combined signal Huv is given by the following equation (12), where ⁇ t+ ⁇ 2 is the argument of the combined signal Huv.
  • step S13 the processing unit 22 calculates the argument ⁇ t+ ⁇ 2 of the synthesized signal Huv based on the following equation (13). That is, the processing unit 22 reads the norm
  • the processing unit 22 obtains the argument ⁇ included in the range of ⁇ 180° or more and less than 180° by expanding the calculated argument ⁇ t+ ⁇ 2.
  • the sine value of the argument ⁇ can take both positive and negative values within the range of ⁇ 1 or more and 1 or less.
  • step S14 the processing unit 22 determines the angle ⁇ of the combined signal Huv, the norm
  • This step S14 corresponds to the fourth step, and the process executed in step S14 corresponds to the fourth process.
  • FIG. 14 is a diagram showing the third fundamental wave signal Hw, which is in an orthogonal relationship with the composite signal Huv, represented by a rotating vector on the complex plane.
  • ) of the second fundamental wave signal Hv become equal.
  • of the third fundamental wave signal Hw is 1 ⁇ 2 sin ( ⁇ 2). Therefore, the instantaneous value of the third fundamental wave signal Hw, which is orthogonal to the combined signal Huv, is represented by the following equation (14).
  • step S14 the processing unit 22 reads out the norm
  • FIG. 15 is a diagram showing an example of time-series data (waveform data of the third fundamental wave signal Hw) of instantaneous values of the third fundamental wave signal Hw obtained while the vector of the combined signal Huv rotates once on the complex plane. is.
  • the waveform of the third fundamental signal Hw is a complete sinusoidal waveform like the waveforms of the combined signal Huv, the first fundamental signal Hu and the second fundamental signal Hv.
  • step S15 the processing unit 22 calculates the first signal Hu' and the An instantaneous value of the in-phase signal N included in the second signal Hv' is calculated (step S15).
  • step S15 corresponds to the fifth step, and the process executed in step S15 corresponds to the fifth process.
  • the processing unit 22 calculates the instantaneous value of the in-phase signal N based on the following equations (15) and (16).
  • step S15 the processing unit 22 first substitutes the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' into the above equation (15) to obtain the instantaneous value of the third signal Hw'. calculate.
  • the third signal Hw' has a phase delay of 240 degrees in electrical angle with respect to the first signal Hu' and a phase delay of 120 degrees in electrical angle with respect to the second signal Hv'. be.
  • the processing unit 22 substitutes the instantaneous value of the third signal Hw' calculated by equation (15) and the instantaneous value of the third fundamental wave signal Hw calculated in step S14 into equation (16). to calculate the instantaneous value of the in-phase signal N.
  • FIG. 15 shows an example of the waveform of the third signal Hw' and the waveform of the in-phase signal N. As shown in FIG.
  • the processing unit 22 calculates the instantaneous value of the first fundamental wave signal Hu by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the first signal Hu' (step S16).
  • This step S16 corresponds to the sixth step, and the process executed in step S16 corresponds to the sixth process.
  • the instantaneous value of the first fundamental wave signal Hu can be calculated by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the first signal Hu' by referring to the equation (2). deaf.
  • the processing unit 22 calculates the instantaneous value of the second fundamental signal Hv by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the second signal Hv' (step S17).
  • This step S17 corresponds to the seventh step
  • the process executed in step S17 corresponds to the seventh process. It can be easily understood that the instantaneous value of the second fundamental signal Hv can be calculated by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the second signal Hv' by referring to equation (3). deaf.
  • the signal generation processing including the processing from step S11 to step S17 as described above is executed by the processing unit 22 each time the sampling timing arrives.
  • time-series data of the instantaneous value of the first fundamental wave signal Hu waveform data of the first fundamental wave signal Hu
  • time-series data of the instantaneous value of the second fundamental wave signal Hv waveform data of the second fundamental wave signal Hv
  • time-series data of instantaneous values of the third fundamental wave signal Hw waveform data of the third fundamental wave signal Hw.
  • the waveforms of the first fundamental signal Hu, the second fundamental signal Hv and the third fundamental signal Hw are complete sinusoidal waveforms.
  • the first fundamental wave signal Hu, the second fundamental wave signal Hv, and the third fundamental wave signal Hw have a phase difference of 120 degrees in electrical angle.
  • a phase difference of 120° in electrical angle is generated based on the two-phase signals output from two of the three magnetic sensors 11, 12, and 13 excluding the abnormal sensor. can generate a three-phase fundamental wave signal with
  • the processing unit 22 estimates the rotational position of the motor 100 based on the two-phase signals output from the two magnetic sensors excluding the abnormality sensor and the generated remaining one-phase signal.
  • An estimation process is executed (step S4). That is, the processing unit 22 estimates the rotational position of the motor 100 based on the three-phase fundamental wave signals Hu, Hv, and Hw having a phase difference of 120 degrees in electrical angle. This step S4 corresponds to the position estimation step.
  • a third learning process is performed in advance in order to acquire the learning value necessary for estimating the rotational position of the motor 100 .
  • the third learning process performed in advance will be described below.
  • the third learning process is performed while all of the magnetic sensors 11, 12 and 13 are normal.
  • the processing unit 22 In the third learning process, the processing unit 22 generates waveform data (instantaneous value time series data). Based on these three waveform data, the processing unit 22 determines the waveform data of the first fundamental wave signal Hu included in the U-phase signal Hu' and the waveform data of the second fundamental wave signal Hv included in the V-phase signal Hv'. Waveform data and waveform data of the third fundamental wave signal Hw included in the W-phase signal Hw' are calculated. Note that the equations (1) and (2) described in Japanese Patent No. 6233532 are examples of computational equations for extracting the fundamental wave signal from each of the three-phase signals output from the three magnetic sensors 11, 12 and 13. ) and equation (3) can be used.
  • the processing unit 22 uses the waveform data of the three fundamental wave signals Hu, Hv, and Hw to convert one period of the mechanical angle into a pole pair number representing the pole pair position of each of the four magnetic pole pairs.
  • Each of the four pole pair regions is further divided into a plurality of sections, and a segment number representing the rotational position of the rotor shaft 110 is tied to each of the plurality of sections. .
  • the four magnetic pole pairs of the sensor magnet 120 are assigned pole pair numbers representing the pole pair positions.
  • the four pole pairs of the sensor magnet 120 are assigned pole pair numbers in the clockwise order "0", "1", "2", "3".
  • the processing unit 22 divides one cycle of the mechanical angle into four pole pair regions based on the waveform data of the fundamental wave signals Hu, Hv, and Hw obtained in one cycle of the mechanical angle.
  • the period from time t1 to time t5 corresponds to one mechanical angle cycle.
  • "No. C” indicates the pole pair number.
  • the processing unit 22 divides the period from time t1 to time t2 in one cycle of the mechanical angle as pole pair regions linked to the pole pair number "0".
  • the processing unit 22 divides the period from time t2 to time t3 in one cycle of the mechanical angle as pole pair regions associated with the pole pair number "1".
  • the processing unit 22 divides the period from the time t3 to the time t4 in one cycle of the mechanical angle as a pole pair region associated with the pole pair number "2".
  • the processing unit 22 divides the period from time t4 to time t5 in one cycle of the mechanical angle as a pole pair region associated with the pole pair number "3".
  • the processing unit 22 further divides each of the four pole pair regions into 12 sections based on the waveform data of the fundamental wave signals Hu, Hv and Hw obtained in one cycle of the mechanical angle. , and each of the 12 sections is associated with a segment number representing the rotational position of the rotor shaft 110 .
  • “No. A” indicates the section number assigned to the section
  • “No. B” indicates the segment number.
  • section numbers "0” to “11” are assigned to the 12 sections included in each of the four pole pair regions.
  • numbers that are continuous over the entire period of one cycle of the mechanical angle are linked to each section as segment numbers.
  • segment numbers “0” to “11” are assigned to section numbers “0” to “11”. ” is linked.
  • the segment numbers "12” to “23” are linked to the section numbers “0” to “11”.
  • the segment numbers "24” to "35” are linked to the section numbers "0" to "11”.
  • the segment numbers "36” to "47” are linked to the section numbers "0" to "11".
  • FIG. 18 is an enlarged view of the fundamental wave signals Hu, Hv and Hw included in one pole pair region. A method of dividing the pole pair region into 12 sections will now be described with reference to FIG. In FIG. 18, the amplitude reference value is "0".
  • the positive amplitude digital value represents, as an example, the digital value of the N-pole magnetic field strength.
  • the negative amplitude digital value represents, for example, the digital value of the magnetic field strength of the south pole.
  • the processing unit 22 extracts zero cross points, which are points where the three fundamental wave signals Hu, Hv, and Hw included in each of the four pole pair regions cross the reference value "0". As shown in FIG. 18, the processing unit 22 extracts points P1, P3, P5, P7, P9, P11, and P13 as zero-crossing points.
  • the processing unit 22 extracts intersection points at which the three fundamental wave signals Hu, Hv, and Hw included in each of the four pole pair regions intersect each other. As shown in FIG. 18, the processing unit 22 extracts points P2, P4, P6, P8, P10, and P12 as intersections. Then, the processing unit 22 determines a section between the zero-cross points and the intersection points adjacent to each other as a section.
  • the processing unit 22 determines the section between the zero-cross point P1 and the intersection point P2 as the section to which the section number "0" is assigned.
  • the processing unit 22 determines the section between the intersection point P2 and the zero crossing point P3 as the section to which the section number "1" is assigned.
  • the processing unit 22 determines the section between the zero-crossing point P3 and the intersection point P4 as the section to which the section number "2" is assigned.
  • the processing unit 22 determines the section between the intersection point P4 and the zero crossing point P5 as the section to which the section number "3” is assigned.
  • the processing unit 22 determines the section between the zero-crossing point P5 and the intersection point P6 as the section to which the section number "4" is assigned.
  • the processing unit 22 determines the section between the intersection point P6 and the zero crossing point P7 as the section to which the section number "5" is assigned.
  • the processing unit 22 determines the section between the zero-crossing point P7 and the intersection point P8 as the section to which the section number "6" is assigned. The processing unit 22 determines the section between the intersection point P8 and the zero crossing point P9 as the section to which the section number "7" is assigned. The processing unit 22 determines the section between the zero-crossing point P9 and the intersection point P10 as the section to which the section number "8" is assigned. The processing unit 22 determines the section between the intersection point P10 and the zero crossing point P11 as the section to which the section number "9” is assigned. The processing unit 22 determines the section between the zero-crossing point P11 and the intersection point P12 as the section to which the section number "10” is assigned. The processing unit 22 determines the section between the intersection point P12 and the zero crossing point P13 as the section to which the section number "11" is assigned.
  • the processing unit 22 extracts feature data, such as the magnitude relationship of the instantaneous values (digital values) of the fundamental wave signals Hu, Hv, and Hw, and the sign of each instantaneous value, for each section, and extracts the extracted feature data. Link to the section number of each section.
  • one cycle of the mechanical angle is divided into four pole pair regions linked to the pole pair numbers, and each of the four pole pair regions has 12 It is divided into sections, and each section number is associated with a segment number.
  • the section assigned section number "0” will be referred to as “0 section”
  • the section assigned section number "11” will be referred to as "11 section”. .
  • the processing unit 22 uses, as learning data, data indicating the correspondence between the feature data associated with the section number, the segment number indicating the rotational position associated with the section number, and the pole pair number indicating the pole pair position. It acquires and stores the acquired learning data in the storage unit 23 .
  • learning data data indicating the correspondence between the feature data associated with the section number, the segment number indicating the rotational position associated with the section number, and the pole pair number indicating the pole pair position. It acquires and stores the acquired learning data in the storage unit 23 .
  • learning data data indicating the correspondence between the feature data associated with the section number, the segment number indicating the rotational position associated with the section number, and the pole pair number indicating the pole pair position. It acquires and stores the acquired learning data in the storage unit 23 .
  • the above is the description of the third learning process.
  • step S4 when starting the position estimation process, the processing unit 22 first selects the current section from among 12 sections based on the instantaneous values of the fundamental wave signals Hu, Hv, and Hw obtained in step S3. identify. For example, in FIG. 18, a point PHu located on the waveform of the first fundamental wave signal Hu, a point PHv located on the waveform of the second fundamental wave signal Hv, and a point located on the waveform of the third fundamental wave signal Hw. It is assumed that PHw is the instantaneous value of each of the fundamental wave signals Hu, Hv and Hw obtained at arbitrary sampling timings.
  • the processing unit 22 extracts feature data such as the magnitude relationship of the instantaneous values of the point PHu, the point PHv, and the point PHw, and the positive and negative signs of each instantaneous value.
  • the section number associated with the feature data that matches the extracted feature data is identified as the current section. In the example of FIG. 18, section number 9 is identified as the current section.
  • the processing unit 22 determines the current segment number as the rotational position of the motor 100 based on the identified current section (section number) and the learning data stored in the storage unit 23 . For example, assume section number 9 is identified as the current section, as described above. Also, assume that the pole pair number is "2" when the instantaneous values of the points PHu, PHv and PHw are obtained. In this case, as shown in FIG. 17, the processing unit 22 determines the segment number "33" as the rotation position of the motor 100. In this case, as shown in FIG.
  • the position detection device of this embodiment includes three magnetic sensors that face the magnet that rotates in synchronism with the motor and that are arranged at predetermined intervals along the direction of rotation of the magnet, and three magnetic sensors. and a signal processing unit for processing output three-phase signals having a phase difference of 120 electrical degrees from each other.
  • the signal processing unit digitally converts each of the U-phase signal, the V-phase signal, and the W-phase signal included in the three-phase signals to obtain the instantaneous value Hu′ of the U-phase signal, the instantaneous value Hv′ of the V-phase signal, and the Acquisition processing for acquiring the instantaneous value Hw' of the W-phase signal, and the instantaneous value Hu' of the U-phase signal, the instantaneous value Hv' of the V-phase signal, and the instantaneous value Hw' of the W-phase signal are obtained in the first case and the second case.
  • an abnormality determination process for identifying an abnormal sensor that is an abnormal magnetic sensor among the three magnetic sensors by determining whether expression (1) is satisfied in all of the third cases, and A signal generation process for generating a remaining one-phase signal based on two-phase signals output from two magnetic sensors excluding the abnormal sensor, and a two-phase signal output from the two magnetic sensors excluding the abnormal sensor. , and position estimation processing for estimating the rotational position of the motor based on the generated signal of the remaining one phase.
  • this embodiment even if an abnormality occurs in one of the three magnetic sensors, based on the two-phase signals output from the two magnetic sensors other than the abnormal sensor, By generating the remaining one-phase signal, it is possible to continuously estimate the rotational position of the motor. Therefore, it is possible to reduce the size of the device and the cost of the parts compared to the conventional technology that prepares two circuits necessary for detecting the rotation of the motor.
  • the signal processing unit of the present embodiment includes, in the signal generation processing, first processing for obtaining the instantaneous value of the first signal and the instantaneous value of the second signal, and obtaining the second signal from the instantaneous value of the first signal.
  • a third phase signal (third fundamental wave signal) that does not include an in-phase signal is generated from two phase signals (first signal and second signal) obtained by the two magnetic sensors excluding the abnormal sensor. be able to.
  • the signal processing unit of the present embodiment calculates the argument ⁇ t+ ⁇ 2 of the composite signal based on the equation (13), and expands the calculated argument ⁇ t+ ⁇ 2 to obtain a value of ⁇ 180° or more and 180°. Get the angle of argument ⁇ within the range of less than °.
  • the argument ⁇ t+ ⁇ 2 of the combined signal can be calculated from the instantaneous value and the norm of the combined signal using a simple formula with a small processing load. Note that when calculating the argument ⁇ t+ ⁇ 2 of the synthesized signal based on Equation (13), the argument ⁇ t+ ⁇ 2 of the synthesized signal may be calculated by interpolation processing using table values.
  • the sine value of the argument ⁇ is ⁇ 1 or more and 1 or less. can take both positive and negative values within the range of , the waveform of the third fundamental signal generated by the fourth processing can be a perfect sinusoidal waveform.
  • the signal processing unit of the present embodiment calculates the instantaneous value of the first signal and At least one of the instantaneous value of the second signal is corrected, and in the fourth process, the signal processing unit converts the norm
  • the moment of the third fundamental wave signal that is orthogonal to the combined signal can be obtained from the norm and argument of the combined signal and the phase difference between the combined signal and the first fundamental wave signal using a simple formula with a small processing load. value can be calculated.
  • the signal processing unit of the present embodiment includes fifth processing for calculating an instantaneous value of the in-phase signal based on the instantaneous value of the first signal, the instantaneous value of the second signal, and the instantaneous value of the third fundamental wave signal; A sixth process of calculating an instantaneous value of the first fundamental wave signal by subtracting the instantaneous value of the in-phase signal from the instantaneous value of the first signal, and subtracting the instantaneous value of the in-phase signal from the instantaneous value of the second signal. and a seventh process of calculating the instantaneous value of the second fundamental wave signal.
  • the first fundamental wave signal having a sinusoidal waveform can be extracted from the first signal
  • the second fundamental wave signal having a sinusoidal waveform and a phase delay of 120 degrees in electrical angle with respect to the first fundamental wave signal can be extracted from the second signal.
  • a fundamental signal can be extracted.
  • the signal processing unit of this embodiment calculates the instantaneous value of the in-phase signal based on Equations (15) and (16).
  • the in-phase signal can be extracted from the first signal and the second signal using a simple formula with a small processing load.
  • the signal processing unit of this embodiment cuts off the power supply to the abnormal sensor among the three magnetic sensors. By interrupting the power supply to the abnormality sensor in this way, the internal circuit of the position detection device can be protected.
  • the signal generation processing when the magnetic sensor 13 is an abnormal sensor has been described. That is, in the above embodiment, the signal generation processing is performed when the U-phase signal Hu' output from the magnetic sensor 11 is the first signal and the V-phase signal Hv' output from the magnetic sensor 12 is the second signal. explained.
  • the V-phase signal Hv' output from the magnetic sensor 12 is used as the first signal
  • the W-phase signal Hw' output from the magnetic sensor 13 is used as the second signal.
  • a signal generation process can be performed as a signal.
  • the magnetic sensor 12 is an abnormal sensor
  • the W-phase signal Hw' output from the magnetic sensor 13 is used as the first signal
  • the U-phase signal Hu' output from the magnetic sensor 11 is used as the second signal.
  • a generation process can be performed.
  • the combination of the motor and the position detection device was exemplified, but the present invention is not limited to this form, and a combination of the sensor magnet attached to the rotating shaft and the position detection device is also possible.
  • the three magnetic sensors are arranged facing the disk-shaped sensor magnet in the axial direction of the rotating shaft, but the present invention is not limited to this configuration.
  • the magnetic flux flows in the radial direction of the ring-shaped magnet, so the three magnetic sensors face the ring-shaped magnet in the radial direction of the ring-shaped magnet.
  • the rotor magnet 120 attached to the rotor shaft 110 of the motor 100 may be used as the rotating magnet, but the rotor magnet attached to the rotor of the motor 100 may be used as the rotating magnet.
  • the rotor magnet is also a magnet that rotates in synchronization with the rotor shaft 110 .
  • the sensor magnet 120 has four magnetic pole pairs, but the number of pole pairs of the sensor magnet 120 is not limited to four. Similarly, when a rotor magnet is used as the rotating magnet, the number of pole pairs of the rotor magnet is not limited to four.
  • SYMBOLS 1 Position detection apparatus 11, 12, 13... Magnetic sensor, 20... Signal processing part, 21... Power supply circuit, 22... Processing part, 23... Storage part, 100... Motor, 110... Rotor shaft, 120... Sensor magnet ( magnet), 200... DC power supply

Abstract

One embodiment of a position detection device according to this invention comprises three magnetic sensors and a signal processing unit for processing a three-phase signal output from the three magnetic sensors. The signal processing unit executes: acquisition processing for acquiring the instantaneous value Hu' of a U-phase signal, the instantaneous value Hv' of a V-phase signal, and the instantaneous value Hw' of a W-phase signal; abnormality discernment processing for specifying an abnormal sensor that is a magnetic sensor from among the three magnetic sensors that is abnormal by determining whether the instantaneous value Hu' of the U-phase signal, the instantaneous value Hv' of the V-phase signal, and the instantaneous value Hw' of the W-phase signal satisfy formula (1) in all of a first case, second case, and third case; signal generation processing for using the two-phase signal output from the two magnetic sensors other than the abnormal sensor to generate the remaining single-phase signal; and position estimation processing for estimating the rotation position of a motor on the basis of the two-phase signal output from the two magnetic sensors other than the abnormal sensor and the generated remaining single-phase signal.

Description

位置検出装置および位置検出方法Position detection device and position detection method
 本発明は、位置検出装置および位置検出方法に関する。 The present invention relates to a position detection device and a position detection method.
 下記特許文献1には、モータの回転を検出するのに必要な回路を二系統備えることにより、回路の一部に異常が生じたとしても回転検出動作を継続して行うことのできる回転検出装置が開示されている。 The following Patent Document 1 discloses a rotation detection device that is capable of continuously detecting rotation even if an abnormality occurs in a part of the circuit by providing two circuits necessary for detecting the rotation of a motor. is disclosed.
特開2017-191093号公報JP 2017-191093 A
 上記の従来技術では、モータの回転を検出するのに必要な回路を二系統備えることに起因して、装置の大型化と部品コストの増加を招く。 In the conventional technology described above, due to the provision of two circuits necessary for detecting the rotation of the motor, the size of the device increases and the cost of parts increases.
 本発明の位置検出装置における一つの態様は、モータの回転位置を検出する位置検出装置であって、前記モータに同期して回転する磁石と対向し且つ前記磁石の回転方向に沿って所定間隔で配置される3つの磁気センサと、前記3つの磁気センサから出力される、互いに電気角で120°の位相差を有する三相の信号を処理する信号処理部と、を備える。前記信号処理部は、前記三相の信号に含まれるU相信号、V相信号およびW相信号のそれぞれをデジタル変換することより、前記U相信号の瞬時値Hu’、前記V相信号の瞬時値Hv’および前記W相信号の瞬時値Hw’を取得する取得処理と、前記U相信号の瞬時値Hu’、前記V相信号の瞬時値Hv’および前記W相信号の瞬時値Hw’が、第1ケース、第2ケースおよび第3ケースの全てにおいて下式(1)を満たすか否かを判定することにより、前記3つの磁気センサのうち異常な磁気センサである異常センサを特定する異常判別処理と、前記3つの磁気センサのうち前記異常センサを除く2つの磁気センサから出力される二相の信号に基づいて、残り一相の信号を生成する信号生成処理と、前記異常センサを除く2つの磁気センサから出力される二相の信号と、生成された前記残り一相の信号とに基づいて、前記モータの回転位置を推定する位置推定処理と、を実行する。 One aspect of the position detection device of the present invention is a position detection device that detects the rotational position of a motor, and is opposed to a magnet that rotates in synchronism with the motor and at predetermined intervals along the direction of rotation of the magnet. Three magnetic sensors are arranged, and a signal processing unit that processes three-phase signals output from the three magnetic sensors and having a phase difference of 120 degrees in electrical angle. The signal processing unit digitally converts each of the U-phase signal, the V-phase signal, and the W-phase signal included in the three-phase signals to obtain an instantaneous value Hu′ of the U-phase signal and an instantaneous value Hu′ of the V-phase signal. an acquisition process for acquiring the value Hv' and the instantaneous value Hw' of the W-phase signal; , the first case, the second case, and the third case, by determining whether or not the following expression (1) is satisfied, thereby identifying an abnormal sensor that is an abnormal magnetic sensor among the three magnetic sensors. discrimination processing; signal generation processing for generating a remaining one-phase signal based on two-phase signals output from two of the three magnetic sensors excluding the abnormal sensor; and excluding the abnormal sensor. position estimation processing for estimating the rotational position of the motor based on the two-phase signals output from the two magnetic sensors and the generated remaining one-phase signal;
 本発明の位置検出方法における一つの態様は、モータに同期して回転する磁石と対向し且つ前記磁石の回転方向に沿って所定間隔で配置される3つの磁気センサから出力される、互いに電気角で120°の位相差を有する三相の信号を用いて、前記モータの回転位置を検出する位置検出方法であって、前記三相の信号に含まれるU相信号、V相信号およびW相信号のそれぞれをデジタル変換することより、前記U相信号の瞬時値Hu’、前記V相信号の瞬時値Hv’および前記W相信号の瞬時値Hw’を取得する取得ステップと、前記U相信号の瞬時値Hu’、前記V相信号の瞬時値Hv’および前記W相信号の瞬時値Hw’が、第1ケース、第2ケースおよび第3ケースの全てにおいて下式(1)を満たすか否かを判定することにより、前記3つの磁気センサのうち異常な磁気センサである異常センサを特定する異常判別ステップと、前記3つの磁気センサのうち前記異常センサを除く2つの磁気センサから出力される二相の信号に基づいて、残り一相の信号を生成する信号生成ステップと、前記異常センサを除く2つの磁気センサから出力される二相の信号と、生成された前記残り一相の信号とに基づいて、前記モータの回転位置を推定する位置推定ステップと、を含む。 In one aspect of the position detection method of the present invention, three magnetic sensors facing a magnet rotating in synchronism with a motor and arranged at predetermined intervals along the direction of rotation of the magnet output an electrical angle to each other. A position detection method for detecting the rotational position of the motor using three-phase signals having a phase difference of 120° at , wherein the U-phase signal, the V-phase signal and the W-phase signal included in the three-phase signals an obtaining step of obtaining an instantaneous value Hu' of the U-phase signal, an instantaneous value Hv' of the V-phase signal, and an instantaneous value Hw' of the W-phase signal by digitally converting each of the above; Whether the instantaneous value Hu', the instantaneous value Hv' of the V-phase signal, and the instantaneous value Hw' of the W-phase signal satisfy the following expression (1) in all of the first case, the second case, and the third case an abnormality determination step of identifying an abnormal sensor that is an abnormal magnetic sensor among the three magnetic sensors; a signal generation step of generating a remaining one-phase signal based on the phase signal; a two-phase signal output from two magnetic sensors excluding the abnormal sensor; and the generated remaining one-phase signal. and a position estimation step of estimating the rotational position of the motor based on.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 本発明の上記態様によれば、3つの磁気センサのうち1つの磁気センサに異常が発生した場合であっても、異常センサを除く2つの磁気センサから出力される二相の信号に基づいて残り一相の信号を生成することにより、モータの回転位置の推定を継続して行うことができる位置検出装置および位置検出方法が提供される。従って、モータの回転を検出するのに必要な回路を二系統用意する従来技術と比較して、装置の小型化と部品コストの削減を実現できる。 According to the above aspect of the present invention, even if an abnormality occurs in one of the three magnetic sensors, the remaining magnetic sensor can remain based on the two-phase signals output from the two magnetic sensors excluding the abnormal sensor. A position detection device and a position detection method are provided that can continuously estimate the rotational position of a motor by generating a single-phase signal. Therefore, it is possible to reduce the size of the device and the cost of the parts compared to the conventional technology that prepares two circuits necessary for detecting the rotation of the motor.
図1は、本実施形態における位置検出装置の構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing the configuration of the position detection device according to this embodiment. 図2は、本実施形態における3つの磁気センサと電源回路と処理部との接続関係を示す図である。FIG. 2 is a diagram showing a connection relationship among three magnetic sensors, a power supply circuit, and a processing section in this embodiment. 図3は、本実施形態における位置検出装置の処理部が実行する各処理を示すフローチャートである。FIG. 3 is a flowchart showing each process executed by the processing unit of the position detection device according to this embodiment. 図4は、本実施形態における位置検出装置の処理部が実行する異常判別処理に関する説明図である。FIG. 4 is an explanatory diagram relating to abnormality determination processing executed by the processing unit of the position detection device according to the present embodiment. 図5は、本実施形態における位置検出装置の処理部が実行する信号生成処理を示すフローチャートである。FIG. 5 is a flowchart showing signal generation processing executed by the processing unit of the position detection device according to this embodiment. 図6は、第1信号Hu’及び第2信号Hv’を複素平面上において回転するベクトルで表した図である。FIG. 6 is a diagram representing the first signal Hu' and the second signal Hv' by rotating vectors on the complex plane. 図7は、複素平面上において第1信号Hu’のベクトルが1回転する間に得られる第1信号Hu’の波形データと、複素平面上において第2信号Hv’のベクトルが1回転する間に得られる第2信号Hv’の波形データとの一例を示す図である。FIG. 7 shows the waveform data of the first signal Hu' obtained during one rotation of the vector of the first signal Hu' on the complex plane, and the waveform data of the second signal Hv' obtained during one rotation of the vector of the second signal Hv' on the complex plane. It is a figure which shows an example with the waveform data of 2nd signal Hv' obtained. 図8は、第1基本波信号Huと第2基本波信号Hvとの合成信号Huvを複素平面上において回転するベクトルで表した図である。FIG. 8 is a diagram showing a combined signal Huv of the first fundamental wave signal Hu and the second fundamental wave signal Hv as a rotating vector on the complex plane. 図9は、複素平面上において第1信号Hu’及び第2信号Hv’のベクトルが1回転する間に得られる合成信号Huvの波形データの一例を示す図である。FIG. 9 is a diagram showing an example of waveform data of the composite signal Huv obtained while the vectors of the first signal Hu' and the second signal Hv' make one rotation on the complex plane. 図10は、学習処理において第1信号Hu’と第2信号Hv’との位相差φ1を算出する方法に関する説明図である。FIG. 10 is an explanatory diagram of a method for calculating the phase difference φ1 between the first signal Hu' and the second signal Hv' in the learning process. 図11は、学習処理において合成信号Huvと第1信号Hu’との位相差φ2を算出する方法に関する説明図である。FIG. 11 is an explanatory diagram relating to a method of calculating the phase difference φ2 between the combined signal Huv and the first signal Hu' in the learning process. 図12は、合成信号Huvと第1基本波信号Huとの位相差は、合成信号Huvと第1信号Hu’との位相差φ2と等しいことを示す説明図である。FIG. 12 is an explanatory diagram showing that the phase difference between the combined signal Huv and the first fundamental wave signal Hu is equal to the phase difference φ2 between the combined signal Huv and the first signal Hu'. 図13は、合成信号Huvの偏角ωt+φ2に関する説明図である。FIG. 13 is an explanatory diagram regarding the deflection angle ωt+φ2 of the composite signal Huv. 図14は、合成信号Huvと直交関係にある第3基本波信号Hwを複素平面上において回転するベクトルで表した図である。FIG. 14 is a diagram showing the third fundamental wave signal Hw, which is orthogonal to the composite signal Huv, represented by a rotating vector on the complex plane. 図15は、複素平面上において合成信号Huvのベクトルが1回転する間に得られる第3基本波信号Hwの波形データの一例を示す図である。FIG. 15 is a diagram showing an example of waveform data of the third fundamental wave signal Hw obtained during one rotation of the vector of the combined signal Huv on the complex plane. 図16は、第1基本波信号Huの波形データと、第2基本波信号Hvの波形データと、第3基本波信号Hwの波形データとの一例を示す図である。FIG. 16 is a diagram showing an example of waveform data of the first fundamental wave signal Hu, waveform data of the second fundamental wave signal Hv, and waveform data of the third fundamental wave signal Hw. 図17は、本実施形態における位置検出装置の処理部が実行する位置推定処理に関する第1説明図である。FIG. 17 is a first explanatory diagram relating to position estimation processing executed by the processing unit of the position detection device in this embodiment. 図18は、本実施形態における位置検出装置の処理部が実行する位置推定処理に関する第2説明図である。FIG. 18 is a second explanatory diagram relating to position estimation processing executed by the processing unit of the position detection device in this embodiment.
 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
 図1は、本発明の一実施形態における位置検出装置1の構成を模式的に示すブロック図である。図1に示すように、位置検出装置1は、モータ100の回転位置(回転角)を検出する装置である。本実施形態においてモータ100は、例えばインナーロータ型の三相ブラシレスDCモータである。モータ100は、ロータシャフト110と、センサマグネット120と、を有する。ロータシャフト110は、モータ100の回転軸である。モータ100の回転位置とは、ロータシャフト110の回転位置を意味する。
An embodiment of the present invention will be described in detail below with reference to the drawings.
FIG. 1 is a block diagram schematically showing the configuration of a position detection device 1 according to one embodiment of the present invention. As shown in FIG. 1 , the position detection device 1 is a device that detects the rotational position (rotational angle) of the motor 100 . In this embodiment, the motor 100 is, for example, an inner rotor type three-phase brushless DC motor. Motor 100 has a rotor shaft 110 and a sensor magnet 120 . Rotor shaft 110 is the rotating shaft of motor 100 . The rotational position of motor 100 means the rotational position of rotor shaft 110 .
 センサマグネット120は、ロータシャフト110に取り付けられる円板状の磁石である。センサマグネット120は、ロータシャフト110に同期して回転する磁石である。センサマグネット120は、P個(Pは2以上の整数)の磁極対を有する。本実施形態では、一例として、センサマグネット120は、4つの磁極対を有する。なお、磁極対とは、N極とS極とのペアを意味する。すなわち、本実施形態においてセンサマグネット120は、N極とS極とのペアを4つ有し、計8つの磁極を有する。 The sensor magnet 120 is a disc-shaped magnet attached to the rotor shaft 110 . Sensor magnet 120 is a magnet that rotates in synchronization with rotor shaft 110 . The sensor magnet 120 has P magnetic pole pairs (P is an integer equal to or greater than 2). In this embodiment, as an example, the sensor magnet 120 has four magnetic pole pairs. A magnetic pole pair means a pair of an N pole and an S pole. That is, in this embodiment, the sensor magnet 120 has four pairs of N poles and S poles, for a total of eight magnetic poles.
 位置検出装置1は、3つの磁気センサ11、12及び13と、信号処理部20と、を備える。図1では図示を省略するが、モータ100には回路基板が装着されており、3つの磁気センサ11、12及び13と、信号処理部20とは、回路基板上に配置される。センサマグネット120は、回路基板と干渉しない位置に配置される。センサマグネット120は、モータ100のハウジングの内部に配置されてもよいし、或いはハウジングの外部に配置されてもよい。 The position detection device 1 includes three magnetic sensors 11 , 12 and 13 and a signal processing section 20 . Although not shown in FIG. 1, a circuit board is attached to the motor 100, and the three magnetic sensors 11, 12 and 13 and the signal processing unit 20 are arranged on the circuit board. The sensor magnet 120 is arranged at a position that does not interfere with the circuit board. The sensor magnet 120 may be located inside the housing of the motor 100 or outside the housing.
 磁気センサ11、12及び13は、回路基板上において、センサマグネット120と対向し且つセンサマグネット120の回転方向CWに沿って所定の間隔で配置される。本実施形態において、磁気センサ11、12及び13は、センサマグネット120の回転方向CWに沿って30°間隔で配置される。例えば、磁気センサ11、12及び13は、それぞれ、例えばホール素子、或いはリニアホールICなど、磁気抵抗素子を含めたアナログ出力タイプの磁気センサである。磁気センサ11、12及び13は、それぞれ、ロータシャフト110の回転位置、すなわちセンサマグネット120の回転位置に応じて変化する磁界強度を示すアナログ信号を出力する。 The magnetic sensors 11, 12 and 13 face the sensor magnet 120 on the circuit board and are arranged at predetermined intervals along the rotation direction CW of the sensor magnet 120. In this embodiment, the magnetic sensors 11 , 12 and 13 are arranged at intervals of 30° along the rotation direction CW of the sensor magnet 120 . For example, the magnetic sensors 11, 12 and 13 are analog output type magnetic sensors including magnetoresistive elements such as Hall elements or linear Hall ICs. The magnetic sensors 11 , 12 and 13 each output an analog signal indicating the magnetic field strength that changes according to the rotational position of the rotor shaft 110 , that is, the rotational position of the sensor magnet 120 .
 磁気センサ11、12及び13から出力される各アナログ信号の電気角1周期は、機械角1周期の1/Pに相当する。本実施形態では、センサマグネット120の極対数Pが「4」なので、各アナログ信号の電気角1周期は、機械角1周期の1/4、すなわち機械角で90°に相当する。また、磁気センサ11、12及び13から出力されるアナログ信号は、互いに電気角で120°の位相差を有する。 One cycle of the electrical angle of each analog signal output from the magnetic sensors 11, 12 and 13 corresponds to 1/P of one cycle of the mechanical angle. In this embodiment, since the number of pole pairs P of the sensor magnet 120 is "4", one cycle of the electrical angle of each analog signal corresponds to 1/4 of one cycle of the mechanical angle, that is, 90° in mechanical angle. Also, the analog signals output from the magnetic sensors 11, 12 and 13 have a phase difference of 120 electrical degrees from each other.
 以下では、磁気センサ11から出力されるアナログ信号をU相信号Hu’と呼称し、磁気センサ12から出力されるアナログ信号をV相信号Hv’と呼称し、磁気センサ13から出力されるアナログ信号をW相信号Hw’と呼称する。V相信号Hv’は、U相信号Hu’ に対して電気角で120°の位相遅れを有する。W相信号Hw’は、V相信号Hv’に対して電気角で120°の位相遅れを有する。 Hereinafter, the analog signal output from the magnetic sensor 11 will be referred to as the U-phase signal Hu', the analog signal output from the magnetic sensor 12 will be referred to as the V-phase signal Hv', and the analog signal output from the magnetic sensor 13 will be referred to. is called a W-phase signal Hw'. The V-phase signal Hv' has a phase lag of 120 electrical degrees with respect to the U-phase signal Hu'. The W-phase signal Hw' has a phase lag of 120 electrical degrees with respect to the V-phase signal Hv'.
 上記のように、3つの磁気センサ11、12及び13は、互いに電気角で120°の位相差を有する三相の信号を出力する。磁気センサ11は、U相信号Hu’を信号処理部20に出力する。磁気センサ12は、V相信号Hv’を信号処理部20に出力する。磁気センサ13は、W相信号Hw’を信号処理部20に出力する。 As described above, the three magnetic sensors 11, 12 and 13 output three-phase signals having a phase difference of 120 degrees in electrical angle. The magnetic sensor 11 outputs a U-phase signal Hu′ to the signal processing section 20 . The magnetic sensor 12 outputs a V-phase signal Hv′ to the signal processing section 20 . The magnetic sensor 13 outputs a W-phase signal Hw′ to the signal processing section 20 .
 信号処理部20は、3つの磁気センサ11、12及び13から出力される、互いに電気角で120°の位相差を有する三相の信号を処理する信号処理回路である。信号処理部20は、磁気センサ11から出力されるU相信号Hu’と、磁気センサ12から出力されるV相信号Hv’と、磁気センサ13から出力されるW相信号Hw’とに基づいて、モータ100の回転位置、すなわちロータシャフト110の回転位置を推定する。信号処理部20は、電源回路21と、処理部22と、記憶部23と、を備える。 The signal processing unit 20 is a signal processing circuit that processes three-phase signals output from the three magnetic sensors 11, 12, and 13 and having a phase difference of 120 degrees in electrical angle. Based on the U-phase signal Hu' output from the magnetic sensor 11, the V-phase signal Hv' output from the magnetic sensor 12, and the W-phase signal Hw' output from the magnetic sensor 13, the signal processing unit 20 , to estimate the rotational position of the motor 100 , that is, the rotational position of the rotor shaft 110 . The signal processing unit 20 includes a power supply circuit 21 , a processing unit 22 and a storage unit 23 .
 電源回路21は、バッテリなどの直流電源200から供給される外部電源電圧を、信号処理部20の内部回路を動作させるのに必要な内部電源電圧に変換する回路である。一例として、直流電源200から供給される外部電源電圧は5Vであり、電源回路21から出力される内部電源電圧は3.3Vである。例えば、電源回路21として、ロードロップアウトレギュレータが使用されてもよい。 The power supply circuit 21 is a circuit that converts an external power supply voltage supplied from a DC power supply 200 such as a battery into an internal power supply voltage required to operate the internal circuits of the signal processing section 20 . As an example, the external power supply voltage supplied from the DC power supply 200 is 5V, and the internal power supply voltage output from the power supply circuit 21 is 3.3V. For example, a low dropout regulator may be used as the power supply circuit 21 .
 電源回路21は、電源線Vccと、グランド線GNDとを介して処理部22と電気的に接続される。電源回路21は、電源線Vccと、グランド線GNDとを介して内部電源電圧を処理部22に出力する。図1では図示を省略するが、電源回路21は、電源線Vccと、グランド線GNDとを介して記憶部23とも電気的に接続される。 The power supply circuit 21 is electrically connected to the processing section 22 via the power supply line Vcc and the ground line GND. The power supply circuit 21 outputs the internal power supply voltage to the processing section 22 via the power supply line Vcc and the ground line GND. Although not shown in FIG. 1, the power supply circuit 21 is also electrically connected to the storage unit 23 via the power supply line Vcc and the ground line GND.
 処理部22は、例えばMCU(Microcontroller Unit)などのマイクロプロセッサである。磁気センサ11から出力されるU相信号Hu’と、磁気センサ12から出力されるV相信号Hv’と、磁気センサ13から出力されるW相信号Hw’とは、それぞれ、処理部22に入力される。処理部22は、不図示の通信バスを介して記憶部23と通信可能に接続される。詳細は後述するが、処理部22は、記憶部23に予め記憶されるプログラムに従って、取得処理、異常判別処理、信号生成処理および位置推定処理を実行する。 The processing unit 22 is, for example, a microprocessor such as an MCU (Microcontroller Unit). The U-phase signal Hu' output from the magnetic sensor 11, the V-phase signal Hv' output from the magnetic sensor 12, and the W-phase signal Hw' output from the magnetic sensor 13 are each input to the processing unit 22. be done. The processing unit 22 is communicably connected to the storage unit 23 via a communication bus (not shown). Although details will be described later, the processing unit 22 executes an acquisition process, an abnormality determination process, a signal generation process, and a position estimation process according to a program stored in advance in the storage unit 23 .
 図2に示すように、処理部22は、3つの出力ポートP1、P2及びP3を有する。出力ポートP1、P2及びP3は、例えばCMOS出力ポートである。出力ポートP1は、センサ用電源線Vcc1を介して磁気センサ11と電気的に接続される。出力ポートP2は、センサ用電源線Vcc2を介して磁気センサ12と電気的に接続される。出力ポートP3は、センサ用電源線Vcc3を介して磁気センサ13と電気的に接続される。なお、図2に示すように、電源回路21は、グランド線GNDを介して磁気センサ11、12及び13のそれぞれと電気的に接続される。 As shown in FIG. 2, the processing unit 22 has three output ports P1, P2 and P3. Output ports P1, P2 and P3 are, for example, CMOS output ports. The output port P1 is electrically connected to the magnetic sensor 11 via the sensor power supply line Vcc1. The output port P2 is electrically connected to the magnetic sensor 12 via the sensor power supply line Vcc2. The output port P3 is electrically connected to the magnetic sensor 13 via the sensor power supply line Vcc3. Incidentally, as shown in FIG. 2, the power supply circuit 21 is electrically connected to each of the magnetic sensors 11, 12 and 13 via the ground line GND.
 処理部22は、センサ用電源電圧としてハイレベル電圧を出力ポートP1から磁気センサ11に出力する。処理部22は、センサ用電源電圧としてハイレベル電圧を出力ポートP2から磁気センサ12に出力する。処理部22は、センサ用電源電圧としてハイレベル電圧を出力ポートP3から磁気センサ13に出力する。例えば、電源回路21によって生成される内部電源電圧が3.3Vの場合、ハイレベル電圧は3.3Vである。 The processing unit 22 outputs a high-level voltage from the output port P1 to the magnetic sensor 11 as a sensor power supply voltage. The processing unit 22 outputs a high-level voltage to the magnetic sensor 12 from the output port P2 as a sensor power supply voltage. The processing unit 22 outputs a high-level voltage as a sensor power supply voltage from the output port P3 to the magnetic sensor 13 . For example, when the internal power supply voltage generated by the power supply circuit 21 is 3.3V, the high level voltage is 3.3V.
 磁気センサ11への電源供給を遮断する場合、処理部22は、出力ポートP1の出力電圧をローレベルに切り替える。磁気センサ12への電源供給を遮断する場合、処理部22は、出力ポートP2の出力電圧をローレベルに切り替える。磁気センサ13への電源供給を遮断する場合、処理部22は、出力ポートP3の出力電圧をローレベルに切り替える。 When cutting off the power supply to the magnetic sensor 11, the processing unit 22 switches the output voltage of the output port P1 to low level. When cutting off the power supply to the magnetic sensor 12, the processing unit 22 switches the output voltage of the output port P2 to low level. When cutting off the power supply to the magnetic sensor 13, the processing unit 22 switches the output voltage of the output port P3 to low level.
 記憶部23は、処理部22に各種処理を実行させるのに必要なプログラムおよび各種設定データなどを記憶する不揮発性メモリと、処理部22が各種処理を実行する際にデータの一時保存先として使用される揮発性メモリとを含む。不揮発性メモリは、例えばEEPROM(Electrically Erasable Programmable Read-Only Memory)又はフラッシュメモリなどである。揮発性メモリは、例えばRAM(Random Access Memory)などである。 The storage unit 23 is used as a non-volatile memory for storing programs and various setting data necessary for the processing unit 22 to execute various processes, and as a temporary storage destination for data when the processing unit 22 executes various processes. and volatile memory. The nonvolatile memory is, for example, EEPROM (Electrically Erasable Programmable Read-Only Memory) or flash memory. Volatile memory is, for example, RAM (Random Access Memory).
 次に、処理部22によって実行される、取得処理、異常判別処理、信号生成処理および位置推定処理について説明する。 Next, the acquisition process, abnormality determination process, signal generation process, and position estimation process executed by the processing unit 22 will be described.
 電源回路21が内部電源電圧を処理部22に出力すると、処理部22は起動して所定の初期化処理を行った後、出力ポートP1、P2及びP3のそれぞれからハイレベル電圧を出力する。これにより、3つの磁気センサ11、12及び13のそれぞれにセンサ用電源電圧が供給され、各磁気センサ11、12及び13は磁界強度を検出可能な状態になる。 When the power supply circuit 21 outputs the internal power supply voltage to the processing unit 22, the processing unit 22 is activated, performs a predetermined initialization process, and then outputs a high level voltage from each of the output ports P1, P2, and P3. As a result, the sensor power supply voltage is supplied to each of the three magnetic sensors 11, 12 and 13, and each of the magnetic sensors 11, 12 and 13 becomes ready to detect the magnetic field intensity.
 図3に示すように、処理部22は、各磁気センサ11、12及び13への電源供給を開始した後、3つの磁気センサ11、12及び13から出力される三相の信号に含まれるU相信号Hu’、V相信号Hv’およびW相信号Hw’のそれぞれをデジタル変換することより、U相信号Hu’の瞬時値、V相信号Hv’の瞬時値およびW相信号Hw’の瞬時値を取得する取得処理を実行する(ステップS1)。このステップS1は、取得ステップに相当する。 As shown in FIG. 3, after starting power supply to each of the magnetic sensors 11, 12 and 13, the processing unit 22 controls the U By digitally converting each of the phase signal Hu', the V-phase signal Hv', and the W-phase signal Hw', the instantaneous value of the U-phase signal Hu', the instantaneous value of the V-phase signal Hv', and the instantaneous value of the W-phase signal Hw' are obtained. Acquisition processing for acquiring a value is executed (step S1). This step S1 corresponds to an acquisition step.
 具体的には、処理部22にはA/D変換器が内蔵されており、処理部22は、A/D変換器によってU相信号Hu’、V相信号Hv’およびW相信号Hw’のそれぞれを所定のサンプリング周波数でデジタル変換することにより、U相信号Hu’の瞬時値、V相信号Hv’の瞬時値およびW相信号Hw’の瞬時値をデジタル値として取得する。 Specifically, the processing unit 22 incorporates an A/D converter, and the processing unit 22 converts the U-phase signal Hu', the V-phase signal Hv', and the W-phase signal Hw' by the A/D converter. By digitally converting each at a predetermined sampling frequency, the instantaneous value of the U-phase signal Hu', the instantaneous value of the V-phase signal Hv', and the instantaneous value of the W-phase signal Hw' are obtained as digital values.
 そして、処理部22は、U相信号Hu’の瞬時値、V相信号Hv’の瞬時値およびW相信号Hw’の瞬時値が、第1ケース、第2ケースおよび第3ケースの全てにおいて下式(1)を満たすか否かを判定することにより、3つの磁気センサ11、12及び13のうち異常な磁気センサである異常センサを特定する異常判別処理を実行する(ステップS2)。このステップS2は、異常判別ステップに相当する。 Then, the processing unit 22 determines that the instantaneous value of the U-phase signal Hu', the instantaneous value of the V-phase signal Hv', and the instantaneous value of the W-phase signal Hw' are lower in all of the first case, the second case, and the third case. By determining whether or not the expression (1) is satisfied, an abnormality determination process is executed to identify an abnormal sensor, which is an abnormal magnetic sensor, among the three magnetic sensors 11, 12 and 13 (step S2). This step S2 corresponds to an abnormality determination step.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 上式(1)において、最小閾値THmin及び最大閾値THmaxは、事前に行われる第1の学習処理によって得られる学習値であり、予め記憶部23の不揮発性メモリに記憶されている。以下では、第1の学習処理について説明する。 In the above formula (1), the minimum threshold THmin and the maximum threshold THmax are learning values obtained by the first learning process performed in advance and stored in the non-volatile memory of the storage unit 23 in advance. The first learning process will be described below.
 図4は、3つの磁気センサ11、12及び13の全てが正常の場合に得られる、U相信号Hu’の瞬時値の時系列データ(U相信号Hu’の波形データ)と、V相信号Hv’の瞬時値の時系列データ(V相信号Hv’の波形データ)と、W相信号Hw’の瞬時値の時系列データ(W相信号Hw’の波形データ)との一例を示す。図4において、横軸は時間を示し、縦軸はデジタル値を示す。 FIG. 4 shows time-series data of instantaneous values of the U-phase signal Hu' (waveform data of the U-phase signal Hu') and the V-phase signal obtained when all three magnetic sensors 11, 12 and 13 are normal. Examples of time-series data of instantaneous values of Hv' (waveform data of V-phase signal Hv') and time-series data of instantaneous values of W-phase signal Hw' (waveform data of W-phase signal Hw') are shown. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates digital values.
 第1の学習処理において、処理部22は、上記のように3つの磁気センサ11、12及び13の全てが正常の場合に得られた三相信号の波形データに基づいて、三相不平衡成分Nzpn(=Hu’+Hv’+Hw’)の最大値Nzpn1と最小値Nzpn2とを演算する。そして、処理部22は、三相不平衡成分の最大値Nzpn1に、設計上のマージンである設定値Δthを加算して得られる値を最大閾値THmax(=Nzpn1+Δth)として記憶部23の不揮発性メモリに格納する。また、処理部22は、三相不平衡成分の最小値Nzpn2から設定値Δthを減算して得られる値を最小閾値THmin(=Nzpn2-Δth)として記憶部23の不揮発性メモリに格納する。 In the first learning process, the processing unit 22 calculates the three-phase unbalance component A maximum value Nzpn1 and a minimum value Nzpn2 of Nzpn (=Hu'+Hv'+Hw') are calculated. Then, the processing unit 22 sets the value obtained by adding the set value Δth, which is the design margin, to the maximum value Nzpn1 of the three-phase unbalanced component, as the maximum threshold value THmax (=Nzpn1+Δth) in the nonvolatile memory of the storage unit 23. store in The processing unit 22 also stores a value obtained by subtracting the set value Δth from the minimum value Nzpn2 of the three-phase unbalanced component in the non-volatile memory of the storage unit 23 as the minimum threshold THmin (=Nzpn2−Δth).
 以上が第1の学習処理の説明である。ステップS2において、処理部22は、記憶部23の不揮発性メモリから最大閾値THmax及び最小閾値THminを読み出し、ステップS1で取得した三相信号の瞬時値が、第1ケース、第2ケースおよび第3ケースの全てにおいて式(1)を満たすか否かを判定することにより、3つの磁気センサ11、12及び13のなかから異常センサを特定する。 The above is the description of the first learning process. In step S2, the processing unit 22 reads the maximum threshold THmax and the minimum threshold THmin from the nonvolatile memory of the storage unit 23, and the instantaneous values of the three-phase signals obtained in step S1 are the first case, the second case, and the third case. An abnormal sensor is identified from among the three magnetic sensors 11, 12 and 13 by determining whether or not expression (1) is satisfied in all cases.
 図4に示すように、例えば磁気センサ13が天絡状態にあるとき、磁気センサ13から出力されるW相信号Hw’の瞬時値は、ハイレベル(例えば3.3V)を示すデジタル値に固定される。例えば磁気センサ13が地絡状態にあるとき、磁気センサ13から出力されるW相信号Hw’の瞬時値は、ローレベル(例えば0V)を示すデジタル値に固定される。例えば磁気センサ13が故障状態にあるとき、磁気センサ13から出力されるW相信号Hw’の波形データは、正常時の波形データと異なる異常なデジタル値を示す。 As shown in FIG. 4, for example, when the magnetic sensor 13 is in a short-to-power state, the instantaneous value of the W-phase signal Hw' output from the magnetic sensor 13 is fixed to a digital value indicating a high level (eg, 3.3 V). be done. For example, when the magnetic sensor 13 is grounded, the instantaneous value of the W-phase signal Hw' output from the magnetic sensor 13 is fixed to a digital value indicating a low level (for example, 0V). For example, when the magnetic sensor 13 is in a failure state, the waveform data of the W-phase signal Hw' output from the magnetic sensor 13 shows an abnormal digital value different from the normal waveform data.
 上記のように、例えば磁気センサ13が異常状態にあるとき、第1ケースにおいて式(1)が満たされない。処理部22は、第1ケースにおいて式(1)が満たされない場合、磁気センサ13を異常センサとして特定する。同様に、磁気センサ11が異常状態にあるとき、第2ケースにおいて式(1)が満たされない。処理部22は、第2ケースにおいて式(1)が満たされない場合、磁気センサ11を異常センサとして特定する。また、磁気センサ12が異常状態にあるとき、第3ケースにおいて式(1)が満たされない。処理部22は、第3ケースにおいて式(1)が満たされない場合、磁気センサ12を異常センサとして特定する。 As described above, for example, when the magnetic sensor 13 is in an abnormal state, Equation (1) is not satisfied in the first case. The processing unit 22 identifies the magnetic sensor 13 as an abnormal sensor when the formula (1) is not satisfied in the first case. Similarly, when the magnetic sensor 11 is in an abnormal state, Equation (1) is not satisfied in the second case. The processing unit 22 identifies the magnetic sensor 11 as an abnormal sensor when the formula (1) is not satisfied in the second case. Also, when the magnetic sensor 12 is in an abnormal state, the formula (1) is not satisfied in the third case. The processing unit 22 identifies the magnetic sensor 12 as an abnormal sensor when the formula (1) is not satisfied in the third case.
 処理部22は、ステップS2の異常判別処理によって異常センサを特定すると、3つの磁気センサ11、12及び13のうち異常センサへの電源供給を遮断する。例えば、磁気センサ11が異常センサの場合、処理部22は、出力ポートP1の出力電圧をローレベルに切り替えることにより、磁気センサ11への電源供給を遮断する。磁気センサ12が異常センサの場合、処理部22は、出力ポートP2の出力電圧をローレベルに切り替えることにより、磁気センサ12への電源供給を遮断する。磁気センサ13が異常センサの場合、処理部22は、出力ポートP3の出力電圧をローレベルに切り替えることにより、磁気センサ13への電源供給を遮断する。 When the abnormal sensor is identified by the abnormality determination process in step S2, the processing unit 22 cuts off the power supply to the abnormal sensor among the three magnetic sensors 11, 12 and 13. For example, when the magnetic sensor 11 is an abnormal sensor, the processing unit 22 cuts off the power supply to the magnetic sensor 11 by switching the output voltage of the output port P1 to low level. When the magnetic sensor 12 is an abnormal sensor, the processing unit 22 cuts off the power supply to the magnetic sensor 12 by switching the output voltage of the output port P2 to low level. When the magnetic sensor 13 is an abnormal sensor, the processing unit 22 cuts off the power supply to the magnetic sensor 13 by switching the output voltage of the output port P3 to low level.
 そして、処理部22は、3つの磁気センサ11、12及び13のうち異常センサを除く2つの磁気センサから出力される二相の信号に基づいて、残り一相の信号を生成する信号生成処理を実行する(ステップS3)。このステップS3は、信号生成ステップに相当する。以下では、異常センサを除く2つの磁気センサから出力される二相の信号のうち、一方の信号を第1信号とし、第1信号に対して電気角で120°の位相遅れを有する他方の信号を第2信号とする。例えば、磁気センサ13が異常センサの場合、磁気センサ11から出力されるU相信号Hu’が第1信号であり、磁気センサ12から出力されるV相信号Hv’が第2信号である。 Then, the processing unit 22 performs signal generation processing for generating the remaining one-phase signal based on the two-phase signals output from two of the three magnetic sensors 11, 12, and 13 excluding the abnormal sensor. Execute (step S3). This step S3 corresponds to a signal generation step. In the following description, one of the two-phase signals output from the two magnetic sensors excluding the abnormal sensor is defined as the first signal, and the other signal having a phase delay of 120° in electrical angle with respect to the first signal. is the second signal. For example, when the magnetic sensor 13 is an abnormal sensor, the U-phase signal Hu' output from the magnetic sensor 11 is the first signal, and the V-phase signal Hv' output from the magnetic sensor 12 is the second signal.
 ロータシャフト110とともにセンサマグネット120が回転すると、センサマグネット120の回転位置に応じて変化する磁界強度を示す第1信号Hu’が磁気センサ11から出力され、第1信号Hu’に対して電気角で120°の位相遅れを有する第2信号Hv’が磁気センサ12から出力される。処理部22は、A/D変換器によって第1信号Hu’及び第2信号Hv’を所定のサンプリング周波数でデジタル変換する。処理部22は、デジタル変換の実行タイミング、すなわちサンプリングタイミングが到来するたびに、図5のフローチャートで示される信号生成処理を実行する。 When the sensor magnet 120 rotates together with the rotor shaft 110, the magnetic sensor 11 outputs a first signal Hu' indicating the magnetic field intensity that changes according to the rotational position of the sensor magnet 120. A second signal Hv′ with a phase delay of 120° is output from the magnetic sensor 12 . The processing unit 22 digitally converts the first signal Hu' and the second signal Hv' at a predetermined sampling frequency using an A/D converter. The processing unit 22 executes the signal generation processing shown in the flowchart of FIG. 5 each time the execution timing of digital conversion, that is, the sampling timing arrives.
 図5に示すように、サンプリングタイミングが到来すると、処理部22は、上記のようにセンサマグネット120の回転に伴って処理部22に出力される第1信号Hu’及び第2信号Hv’をデジタル変換することにより、第1信号Hu’の瞬時値と、第2信号Hv’の瞬時値とをデジタル値として取得する(ステップS11)。このステップS11は第1ステップに相当し、ステップS11で実行される処理は第1処理に相当する。 As shown in FIG. 5, when the sampling timing arrives, the processing unit 22 digitally converts the first signal Hu' and the second signal Hv' output to the processing unit 22 as the sensor magnet 120 rotates as described above. By converting, the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' are obtained as digital values (step S11). This step S11 corresponds to the first step, and the process executed in step S11 corresponds to the first process.
 図6は、第1信号Hu’及び第2信号Hv’を複素平面上において回転するベクトルで表した図である。図6において、横軸は実数軸であり、縦軸は虚数軸である。第1信号Hu’及び第2信号Hv’は、複素平面上において矢印の方向に角速度ωで回転する。図6に示すように、第1信号Hu’は、基本波信号である第1基本波信号Huと、同相信号Nとを含む。第1信号Hu’は、第1基本波信号Huと同相信号Nとの合成ベクトルで表される。すなわち、第1信号Hu’は、下式(2)で表される。第2信号Hv’は、基本波信号である第2基本波信号Hvと、同相信号Nとを含む。第2信号Hv’は、第2基本波信号Hvと同相信号Nとの合成ベクトルで表される。すなわち、第2信号Hv’は、下式(3)で表される。同相信号Nは、直流信号および第3次高調波信号などを含むノイズ信号である。 FIG. 6 is a diagram representing the first signal Hu' and the second signal Hv' by rotating vectors on the complex plane. In FIG. 6, the horizontal axis is the real number axis and the vertical axis is the imaginary number axis. The first signal Hu' and the second signal Hv' rotate at an angular velocity ω in the direction of the arrow on the complex plane. As shown in FIG. 6, the first signal Hu' includes the first fundamental wave signal Hu, which is a fundamental wave signal, and the in-phase signal N. As shown in FIG. The first signal Hu' is represented by a combined vector of the first fundamental wave signal Hu and the in-phase signal N. As shown in FIG. That is, the first signal Hu' is represented by the following equation (2). The second signal Hv' includes the second fundamental wave signal Hv, which is a fundamental wave signal, and the in-phase signal N. The second signal Hv' is represented by a composite vector of the second fundamental wave signal Hv and the in-phase signal N. That is, the second signal Hv' is represented by the following equation (3). In-phase signal N is a noise signal including a DC signal, a third harmonic signal, and the like.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ステップS11で取得される第1信号Hu’の瞬時値は、図6においてベクトルで表される第1信号Hu’の実数部(実数軸に投影される部分)に相当する。同様に、ステップS11取得される第2信号Hv’の瞬時値は、図6においてベクトルで表される第2信号Hv’の実数部に相当する。例えば、第1信号Hu’の瞬時値は、下式(4)で表される。下式(4)において、||Hu’||は第1信号Hu’のノルムであり、kは1以上の整数である。 The instantaneous value of the first signal Hu' obtained in step S11 corresponds to the real part (the part projected onto the real axis) of the first signal Hu' represented by the vector in FIG. Similarly, the instantaneous value of the second signal Hv' obtained in step S11 corresponds to the real part of the second signal Hv' represented by the vector in FIG. For example, the instantaneous value of the first signal Hu' is represented by the following equation (4). In the following equation (4), ||Hu'|| is the norm of the first signal Hu', and k is an integer of 1 or more.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 図7は、複素平面上において第1信号Hu’のベクトルが1回転する間に得られる第1信号Hu’の瞬時値の時系列データ(第1信号Hu’の波形データ)と、複素平面上において第2信号Hv’のベクトルが1回転する間に得られる第2信号Hv’の瞬時値の時系列データ(第2信号Hv’の波形データ)との一例を示す図である。図7において、横軸は時間を示し、縦軸はデジタル値を示す。図7に示すように、同相信号Nを含む第1信号Hu’及び第2信号Hv’の波形は完全な正弦波形にならず、歪みを有する波形となる。 FIG. 7 shows time-series data (waveform data of the first signal Hu') of instantaneous values of the first signal Hu' obtained during one rotation of the vector of the first signal Hu' on the complex plane, and 10 is a diagram showing an example of time-series data (waveform data of the second signal Hv') of instantaneous values of the second signal Hv' obtained while the vector of the second signal Hv' rotates once in FIG. In FIG. 7, the horizontal axis indicates time, and the vertical axis indicates digital values. As shown in FIG. 7, the waveforms of the first signal Hu' and the second signal Hv', which include the in-phase signal N, do not become perfectly sinusoidal waveforms, but become distorted waveforms.
 図5に戻り、処理部22は、第1信号Hu’の瞬時値から第2信号Hv’の瞬時値を減算することにより、第1信号Hu’に含まれる第1基本波信号Huと第2信号Hv’に含まれる第2基本波信号Hvとの合成信号Huvの瞬時値を算出する(ステップS12)。このステップS12は第2ステップに相当し、ステップS12で実行される処理は第2処理に相当する。 Returning to FIG. 5, the processing unit 22 subtracts the instantaneous value of the second signal Hv' from the instantaneous value of the first signal Hu' to obtain the first fundamental wave signal Hu included in the first signal Hu' and the second fundamental wave signal Hu'. The instantaneous value of the combined signal Huv with the second fundamental wave signal Hv included in the signal Hv' is calculated (step S12). This step S12 corresponds to the second step, and the process executed in step S12 corresponds to the second process.
 下式(5)に示すように、第1信号Hu’の瞬時値から第2信号Hv’の瞬時値を減算することにより、両信号に含まれる同相信号Nが相殺され、第1基本波信号Huと第2基本波信号Hvとの合成信号Huvの瞬時値が得られることがわかる。図8は、第1基本波信号Huと第2基本波信号Hvとの合成信号Huvを複素平面上において回転するベクトルで表した図である。図9は、複素平面上において第1信号Hu’及び第2信号Hv’のベクトルが1回転する間に得られる合成信号Huvの瞬時値の時系列データ(合成信号Huvの波形データ)の一例を示す図である。図9に示すように、合成信号Huvの波形は、完全な正弦波形となる。 As shown in the following equation (5), by subtracting the instantaneous value of the second signal Hv' from the instantaneous value of the first signal Hu', the in-phase signal N contained in both signals is canceled, and the first fundamental wave It can be seen that the instantaneous value of the combined signal Huv of the signal Hu and the second fundamental wave signal Hv can be obtained. FIG. 8 is a diagram showing a combined signal Huv of the first fundamental wave signal Hu and the second fundamental wave signal Hv as a rotating vector on the complex plane. FIG. 9 shows an example of time-series data (waveform data of the combined signal Huv) of instantaneous values of the combined signal Huv obtained while the vectors of the first signal Hu' and the second signal Hv' make one rotation on the complex plane. FIG. 4 is a diagram showing; As shown in FIG. 9, the waveform of the combined signal Huv is a complete sinusoidal waveform.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 なお、ステップS12において、処理部22は、合成信号Huvの瞬時値を算出する前に、予め用意された振幅補正値に基づいて、第1信号Hu’の瞬時値と第2信号Hv’の瞬時値との少なくとも一方を補正する。振幅補正値とは、第1信号Hu’の振幅値と第2信号Hv’の振幅値とが等しくなる補正値である。振幅補正値は、事前に行われる第2の学習処理によって得られる学習値の一つであり、予め記憶部23の不揮発性メモリに記憶されている。すなわち、ステップS12において、処理部22は、記憶部23の不揮発性メモリから振幅補正値を読み出し、読み出した振幅補正値に基づいて、第1信号Hu’の振幅値と第2信号Hv’の振幅値とが等しくなるように第1信号Hu’の瞬時値と第2信号Hv’の瞬時値との少なくとも一方を補正する。 Note that in step S12, the processing unit 22 calculates the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' based on amplitude correction values prepared in advance before calculating the instantaneous value of the composite signal Huv. correct at least one of The amplitude correction value is a correction value that makes the amplitude value of the first signal Hu' equal to the amplitude value of the second signal Hv'. The amplitude correction value is one of learning values obtained by the second learning process performed in advance, and is stored in the non-volatile memory of the storage unit 23 in advance. That is, in step S12, the processing unit 22 reads the amplitude correction value from the nonvolatile memory of the storage unit 23, and based on the read amplitude correction value, the amplitude value of the first signal Hu' and the amplitude of the second signal Hv' At least one of the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' is corrected so that the values are equal to each other.
 図5に戻り、処理部22は、合成信号Huvの瞬時値と予め用意された合成信号Huvのノルムとに基づいて、合成信号Huvの偏角を算出する(ステップS13)。このステップS13は第3ステップに相当し、ステップS13で実行される処理は第3処理に相当する。 Returning to FIG. 5, the processing unit 22 calculates the argument of the synthesized signal Huv based on the instantaneous value of the synthesized signal Huv and the prepared norm of the synthesized signal Huv (step S13). This step S13 corresponds to the third step, and the process executed in step S13 corresponds to the third process.
 合成信号Huvのノルムは、上記の振幅補正値と同様に、事前に行われる第2の学習処理によって得られる学習値の一つであり、予め記憶部23の不揮発性メモリに記憶されている。振幅補正値および合成信号Huvのノルムの他、合成信号Huvと第1基本波信号Huとの位相差も学習値として予め記憶部23の不揮発性メモリに記憶されている。以下では、事前に行われる第2の学習処理について説明する。 The norm of the synthesized signal Huv is one of the learning values obtained by the second learning process performed in advance, similarly to the amplitude correction value described above, and is stored in the non-volatile memory of the storage unit 23 in advance. In addition to the amplitude correction value and the norm of the combined signal Huv, the phase difference between the combined signal Huv and the first fundamental wave signal Hu is also stored in advance in the non-volatile memory of the storage unit 23 as a learned value. The second learning process performed in advance will be described below.
 第2の学習処理は、ロータシャフト110とともにセンサマグネット120が回転する状態で行われる。第2の学習処理において、処理部22は、少なくとも第1信号Hu’及び第2信号Hv’の電気角1周期に相当する時間が経過するまで、つまり、少なくともセンサマグネット120が機械角で90°回転するまで、上記のステップS11及びステップS12の処理を所定のサンプリング周波数で繰り返す。言い換えれば、処理部22は、複素平面上において第1信号Hu’及び第2信号Hv’のベクトルが少なくとも1回転するまで、上記のステップS11及びステップS12の処理を所定のサンプリング周波数で繰り返す。 The second learning process is performed while the rotor shaft 110 and the sensor magnet 120 are rotating. In the second learning process, the processing unit 22 keeps the sensor magnet 120 at least until the time corresponding to one cycle of the electrical angle of the first signal Hu' and the second signal Hv' elapses, that is, at least the sensor magnet 120 is rotated by 90 degrees in mechanical angle. The above steps S11 and S12 are repeated at a predetermined sampling frequency until the rotation occurs. In other words, the processing unit 22 repeats the above steps S11 and S12 at a predetermined sampling frequency until the vectors of the first signal Hu' and the second signal Hv' rotate at least once on the complex plane.
 これにより、処理部31は、第1信号Hu’の瞬時値と、第2信号Hv’の瞬時値と、合成信号Huvの瞬時値とを逐次取得し、過去の各瞬時値の最大値と現時刻(現在のサンプリングタイミング)の各瞬時値とを比較し、現時刻の各瞬時値が過去の各瞬時値の最大値より大きい場合に、過去の各瞬時値の最大値を現時刻の各瞬時値に更新する処理を行う。また、処理部31は、第1信号Hu’の瞬時値と、第2信号Hv’の瞬時値と、合成信号Huvの瞬時値とを逐次取得し、過去の各瞬時値の最小値と現時刻の各瞬時値とを比較し、現時刻の各瞬時値が過去の各瞬時値の最小値より小さい場合に、過去の各瞬時値の最小値を現時刻の各瞬時値に更新する処理を行う。 As a result, the processing unit 31 sequentially acquires the instantaneous value of the first signal Hu′, the instantaneous value of the second signal Hv′, and the instantaneous value of the synthesized signal Huv, and obtains the maximum value of each past instantaneous value and the current value. Compare each instantaneous value with the time (current sampling timing), and if each instantaneous value at the current time is greater than the maximum value of the past instantaneous values, the maximum value of the past instantaneous values will be Perform processing to update to the value. In addition, the processing unit 31 sequentially acquires the instantaneous value of the first signal Hu', the instantaneous value of the second signal Hv', and the instantaneous value of the composite signal Huv, and calculates the minimum value of the past instantaneous values and the current time. If each instantaneous value of the current time is smaller than the minimum value of the past instantaneous values, update the minimum value of the past instantaneous values to the instantaneous value of the current time. .
 処理部22は、上記のような逐次更新処理を行うことにより各信号の最大値及び最小値を取得する。そして、処理部22は、第1信号Hu’の最大値Max(Hu’)及び最小値Min(Hu’)を下式(6)に代入することにより、第1信号Hu’の振幅値であるノルム||Hu’||を算出する。処理部22は、第2信号Hv’の最大値Max(Hv’)及び最小値Min(Hv’)を下式(7)に代入することにより、第2信号Hv’の振幅値であるノルム||Hv’||を算出する。処理部22は、合成信号Huvの最大値Max(Huv)及び最小値Min(Huv)を下式(8)に代入することにより、合成信号Huvの振幅値であるノルム||Huv||を算出する。 The processing unit 22 acquires the maximum and minimum values of each signal by performing the sequential updating process as described above. Then, the processing unit 22 substitutes the maximum value Max(Hu') and the minimum value Min(Hu') of the first signal Hu' into the following equation (6) to obtain the amplitude value of the first signal Hu' Calculate the norm ||Hu'||. The processing unit 22 substitutes the maximum value Max(Hv') and the minimum value Min(Hv') of the second signal Hv' into the following equation (7) to obtain the norm | |Hv'|| is calculated. The processing unit 22 calculates the norm ||Huv||, which is the amplitude value of the combined signal Huv, by substituting the maximum value Max(Huv) and the minimum value Min(Huv) of the combined signal Huv into the following equation (8). do.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 処理部22は、第1信号Hu’のノルム||Hu’||と、第2信号Hv’のノルム||Hv’||とが等しくなる振幅補正値を算出する。処理部22は、第1信号Hu’の波形データに含まれる全ての瞬時値と、第2信号Hv’の波形データに含まれる全ての瞬時値との少なくとも一方を、振幅補正値によって補正する。これにより、振幅値(ノルム)が等しい第1信号Hu’の波形データと第2信号Hv’の波形データとが得られる。 The processing unit 22 calculates an amplitude correction value that makes the norm ||Hu'|| of the first signal Hu' equal to the norm ||Hv'|| of the second signal Hv'. The processing unit 22 corrects at least one of all instantaneous values included in the waveform data of the first signal Hu' and all instantaneous values included in the waveform data of the second signal Hv' with the amplitude correction value. As a result, the waveform data of the first signal Hu' and the waveform data of the second signal Hv' having the same amplitude value (norm) are obtained.
 図10に示すように、処理部22は、振幅補正後の第1信号Hu’の波形データと第2信号Hv’の波形データとに基づいて、第1信号Hu’を基準として、第1信号Hu’と第2信号Hv’との位相差φ1(≒typ.-120°)を算出する。具体的には、図10に示すように、処理部22は、第1信号Hu’の最大値Max(Hu’)と第2信号Hv’の最大値Max(Hv’)との間の時間を基準エンコーダなどでカウントし、カウント結果Nmaxを下式(9)に代入することで位相差φ1を算出する。または、処理部22は、第1信号Hu’の最小値Min(Hu’)と第2信号Hv’の最小値Min(Hv’)との間の時間を基準エンコーダなどでカウントし、カウント結果Nminを下式(10)に代入することで位相差φ1を算出してもよい。式(9)及び式(10)において、Ncprは、基準エンコーダの分解能である。なお、第2の学習処理において、基準エンコーダは回転軸に予め取り付けられる。 As shown in FIG. 10, the processing unit 22 calculates the first signal Hu' based on the amplitude-corrected waveform data of the first signal Hu' and the waveform data of the second signal Hv'. A phase difference φ1 (≈typ.-120°) between Hu' and the second signal Hv' is calculated. Specifically, as shown in FIG. 10, the processing unit 22 determines the time between the maximum value Max (Hu') of the first signal Hu' and the maximum value Max (Hv') of the second signal Hv'. The phase difference φ1 is calculated by counting with a reference encoder or the like and substituting the count result Nmax into the following equation (9). Alternatively, the processing unit 22 counts the time between the minimum value Min (Hu') of the first signal Hu' and the minimum value Min (Hv') of the second signal Hv' using a reference encoder or the like, and the count result Nmin may be substituted into the following equation (10) to calculate the phase difference φ1. In equations (9) and (10), Ncpr is the resolution of the reference encoder. Note that in the second learning process, the reference encoder is attached in advance to the rotating shaft.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 図11に示すように、処理部22は、第1信号Hu’と第2信号Hv’との位相差φ1に基づいて、合成信号Huvと第1信号Hu’との位相差φ2(≒typ.+30°)を算出する。具体的には、処理部22は、第1信号Hu’と第2信号Hv’との位相差φ1を下式(11)に代入することにより、合成信号Huvと第1信号Hu’との位相差φ2を算出する。 As shown in FIG. 11, the processing unit 22 calculates the phase difference φ2 (≈typ. +30°). Specifically, the processing unit 22 substitutes the phase difference φ1 between the first signal Hu′ and the second signal Hv′ into the following equation (11) to obtain the phase difference between the combined signal Huv and the first signal Hu′. A phase difference φ2 is calculated.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 図12に示すように、合成信号Huvと第1信号Hu’との位相差φ2は、合成信号Huvと第1基本波信号Huとの位相差と等しい。従って、処理部22は、合成信号Huvと第1信号Hu’との位相差φ2を、合成信号Huvと第1基本波信号Huとの位相差として取得する。上記のような第2の学習処理によって、振幅補正値と、合成信号Huvのノルム||Huv||と、合成信号Huvと第1基本波信号Huとの位相差φ2とが学習値として得られる。処理部22は、第2の学習処理によって得られた各学習値を記憶部23の不揮発性メモリに格納する。 As shown in FIG. 12, the phase difference φ2 between the combined signal Huv and the first signal Hu' is equal to the phase difference between the combined signal Huv and the first fundamental wave signal Hu. Therefore, the processing unit 22 acquires the phase difference φ2 between the combined signal Huv and the first signal Hu' as the phase difference between the combined signal Huv and the first fundamental wave signal Hu. By the second learning process as described above, the amplitude correction value, the norm ||Huv|| of the synthesized signal Huv, and the phase difference φ2 between the synthesized signal Huv and the first fundamental wave signal Hu are obtained as learned values. . The processing unit 22 stores each learning value obtained by the second learning process in the nonvolatile memory of the storage unit 23 .
 以上が第2の学習処理の説明であり、以下では図5に戻って信号生成処理の説明を続ける。図5のステップS13において、処理部22は、ステップS12で算出された合成信号Huvの瞬時値と、第2の学習処理によって事前に得られた合成信号Huvのノルム||Huv||とに基づいて、合成信号Huvの偏角を算出する。図13に示すように、合成信号Huvの偏角をωt+φ2とすると、合成信号Huvの瞬時値は下式(12)で表される。 The above is the description of the second learning process. Returning to FIG. 5, the description of the signal generation process is continued below. In step S13 of FIG. 5, the processing unit 22 performs the calculation based on the instantaneous value of the combined signal Huv calculated in step S12 and the norm ||Huv|| of the combined signal Huv previously obtained by the second learning process. to calculate the deflection angle of the combined signal Huv. As shown in FIG. 13, the instantaneous value of the combined signal Huv is given by the following equation (12), where ωt+φ2 is the argument of the combined signal Huv.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 そこで、処理部22は、ステップS13において、下式(13)に基づいて合成信号Huvの偏角ωt+φ2を算出する。すなわち、処理部22は、記憶部23の不揮発性メモリから合成信号Huvのノルム||Huv||を読み出し、読み出した合成信号Huvのノルム||Huv||と、ステップS12で算出された合成信号Huvの瞬時値とを下式(13)に代入することにより、合成信号Huvの偏角ωt+φ2を算出する。 Therefore, in step S13, the processing unit 22 calculates the argument ωt+φ2 of the synthesized signal Huv based on the following equation (13). That is, the processing unit 22 reads the norm ||Huv|| of the combined signal Huv from the nonvolatile memory of the storage unit 23, and combines By substituting the instantaneous value of Huv into the following equation (13), the argument ωt+φ2 of the combined signal Huv is calculated.
 ただし、式(13)によって得られる合成信号Huvの偏角ωt+φ2は、0°以上且つ180°以下の値に制限される。そのため、偏角ωt+φ2のサイン値は、0以上且つ1以下の正極性の値に制限される。そこで、本実施形態において処理部22は、算出された偏角ωt+φ2を拡張処理することにより、-180°以上且つ180°未満の範囲に含まれる偏角θを取得する。これにより、偏角θのサイン値は、-1以上且つ1以下の範囲内で正極性及び負極性の両方の値を取り得る。 However, the argument ωt+φ2 of the synthesized signal Huv obtained by Equation (13) is limited to a value of 0° or more and 180° or less. Therefore, the sine value of the argument ωt+φ2 is limited to a positive value of 0 or more and 1 or less. Therefore, in the present embodiment, the processing unit 22 obtains the argument θ included in the range of −180° or more and less than 180° by expanding the calculated argument ωt+φ2. As a result, the sine value of the argument θ can take both positive and negative values within the range of −1 or more and 1 or less.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 そして、処理部22は、合成信号Huvの偏角θと、合成信号Huvのノルム||Huv||と、予め用意された合成信号Huvと第1基本波信号Huとの位相差φ2とに基づいて、合成信号Huvと直交関係にある第3基本波信号Hwの瞬時値を算出する(ステップS14)。このステップS14は第4ステップに相当し、ステップS14で実行される処理は第4処理に相当する。 Then, the processing unit 22 determines the angle θ of the combined signal Huv, the norm ||Huv|| of the combined signal Huv, and the phase difference φ2 between the combined signal Huv and the first fundamental wave signal Hu prepared in advance. Then, the instantaneous value of the third fundamental wave signal Hw, which is orthogonal to the combined signal Huv, is calculated (step S14). This step S14 corresponds to the fourth step, and the process executed in step S14 corresponds to the fourth process.
 図14は、合成信号Huvと直交関係にある第3基本波信号Hwを複素平面上において回転するベクトルで表した図である。振幅補正により、第1信号Hu’の振幅値(||Hu’||)と第2信号Hv’の振幅値(||Hv’||)とが等しいという条件が成立する場合、第1基本波信号Huの振幅値(||Hu||)と第2基本波信号Hvの振幅値(||Hv||)とが等しくなる。この場合、合成信号Huvのノルム||Huv||と、第3基本波信号Hwのノルム||Hw||との比は、1/2sin(φ2)となる。従って、合成信号Huvと直交関係にある第3基本波信号Hwの瞬時値は、下式(14)で表される。 FIG. 14 is a diagram showing the third fundamental wave signal Hw, which is in an orthogonal relationship with the composite signal Huv, represented by a rotating vector on the complex plane. When the condition that the amplitude value (||Hu'||) of the first signal Hu' and the amplitude value (||Hv'||) of the second signal Hv' are equal to each other is satisfied by the amplitude correction, the first basic The amplitude value (||Hu||) of the wave signal Hu and the amplitude value (||Hv||) of the second fundamental wave signal Hv become equal. In this case, the ratio between the norm ||Huv|| of the combined signal Huv and the norm ||Hw|| of the third fundamental wave signal Hw is ½ sin (φ2). Therefore, the instantaneous value of the third fundamental wave signal Hw, which is orthogonal to the combined signal Huv, is represented by the following equation (14).
 ステップS14において、処理部22は、記憶部23の不揮発性メモリから合成信号Huvのノルム||Huv||と位相差φ2とを読み出し、これら合成信号Huvのノルム||Huv||及び位相差φ2と、ステップS13で取得した偏角θとを下式(14)に代入することにより、第3基本波信号Hwの瞬時値を算出する。図15は、複素平面上において合成信号Huvのベクトルが1回転する間に得られる第3基本波信号Hwの瞬時値の時系列データ(第3基本波信号Hwの波形データ)の一例を示す図である。図15に示すように、第3基本波信号Hwの波形は、合成信号Huv、第1基本波信号Hu及び第2基本波信号Hvの波形と同様に、完全な正弦波形となる。 In step S14, the processing unit 22 reads out the norm ||Huv|| of the combined signal Huv and the phase difference φ2 from the non-volatile memory of the storage unit 23, and the argument θ obtained in step S13 into the following equation (14), the instantaneous value of the third fundamental wave signal Hw is calculated. FIG. 15 is a diagram showing an example of time-series data (waveform data of the third fundamental wave signal Hw) of instantaneous values of the third fundamental wave signal Hw obtained while the vector of the combined signal Huv rotates once on the complex plane. is. As shown in FIG. 15, the waveform of the third fundamental signal Hw is a complete sinusoidal waveform like the waveforms of the combined signal Huv, the first fundamental signal Hu and the second fundamental signal Hv.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 図5に戻り、処理部22は、第1信号Hu’の瞬時値と、第2信号Hv’の瞬時値と、第3基本波信号Hwの瞬時値とに基づいて、第1信号Hu’及び第2信号Hv’に含まれる同相信号Nの瞬時値を算出する(ステップS15)。このステップS15は第5ステップに相当し、ステップS15で実行される処理は第5処理に相当する。具体的には、ステップS15において、処理部22は、下式(15)及び下式(16)に基づいて同相信号Nの瞬時値を算出する。 Returning to FIG. 5, the processing unit 22 calculates the first signal Hu' and the An instantaneous value of the in-phase signal N included in the second signal Hv' is calculated (step S15). This step S15 corresponds to the fifth step, and the process executed in step S15 corresponds to the fifth process. Specifically, in step S15, the processing unit 22 calculates the instantaneous value of the in-phase signal N based on the following equations (15) and (16).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 ステップS15において、処理部22は、まず、第1信号Hu’の瞬時値と第2信号Hv’の瞬時値とを上式(15)に代入することにより、第3信号Hw’の瞬時値を算出する。第3信号Hw’は、第1信号Hu’及び第2信号Hv’とともに三相平衡式(Hu’+Hv’+Hw’=0)を満たす信号である。言い換えれば、第3信号Hw’は、第1信号Hu’に対して電気角で240°の位相遅れを有し、第2信号Hv’に対して電気角で120°の位相遅れを有する信号である。 In step S15, the processing unit 22 first substitutes the instantaneous value of the first signal Hu' and the instantaneous value of the second signal Hv' into the above equation (15) to obtain the instantaneous value of the third signal Hw'. calculate. The third signal Hw' is a signal that satisfies the three-phase balanced equation (Hu'+Hv'+Hw'=0) together with the first signal Hu' and the second signal Hv'. In other words, the third signal Hw' has a phase delay of 240 degrees in electrical angle with respect to the first signal Hu' and a phase delay of 120 degrees in electrical angle with respect to the second signal Hv'. be.
 図14に示すように、第3信号Hw’を複素平面上において回転するベクトルで表したとき、第3信号Hw’は、第3基本波信号Hwのベクトルと、同相信号Nの負の2倍のベクトルとを合成したベクトル(Hw’=Hw-2N)で表される。従って、同相信号Nは、上式(16)で表すことができる。ステップS15において、処理部22は、式(15)により算出した第3信号Hw’の瞬時値と、ステップS14で算出した第3基本波信号Hwの瞬時値とを式(16)に代入することにより、同相信号Nの瞬時値を算出する。図15に、第3信号Hw’の波形及び同相信号Nの波形の一例を示す。 As shown in FIG. 14, when the third signal Hw' is represented by a vector rotating on the complex plane, the third signal Hw' is represented by the vector of the third fundamental wave signal Hw and the negative 2 of the in-phase signal N. It is represented by a vector (Hw'=Hw-2N) obtained by synthesizing the double vector. Therefore, the in-phase signal N can be expressed by the above equation (16). In step S15, the processing unit 22 substitutes the instantaneous value of the third signal Hw' calculated by equation (15) and the instantaneous value of the third fundamental wave signal Hw calculated in step S14 into equation (16). to calculate the instantaneous value of the in-phase signal N. FIG. 15 shows an example of the waveform of the third signal Hw' and the waveform of the in-phase signal N. As shown in FIG.
 図5に戻り、処理部22は、第1信号Hu’の瞬時値から同相信号Nの瞬時値を減算することにより、第1基本波信号Huの瞬時値を算出する(ステップS16)。このステップS16は第6ステップに相当し、ステップS16で実行される処理は第6処理に相当する。式(2)を参照すれば、第1信号Hu’の瞬時値から同相信号Nの瞬時値を減算することにより、第1基本波信号Huの瞬時値を算出できることは容易に理解できるであろう。 Returning to FIG. 5, the processing unit 22 calculates the instantaneous value of the first fundamental wave signal Hu by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the first signal Hu' (step S16). This step S16 corresponds to the sixth step, and the process executed in step S16 corresponds to the sixth process. It can be easily understood that the instantaneous value of the first fundamental wave signal Hu can be calculated by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the first signal Hu' by referring to the equation (2). deaf.
 最後に、処理部22は、第2信号Hv’の瞬時値から同相信号Nの瞬時値を減算することにより、第2基本波信号Hvの瞬時値を算出する(ステップS17)。このステップS17は第7ステップに相当し、ステップS17で実行される処理は第7処理に相当する。式(3)を参照すれば、第2信号Hv’の瞬時値から同相信号Nの瞬時値を減算することにより、第2基本波信号Hvの瞬時値を算出できることは容易に理解できるであろう。 Finally, the processing unit 22 calculates the instantaneous value of the second fundamental signal Hv by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the second signal Hv' (step S17). This step S17 corresponds to the seventh step, and the process executed in step S17 corresponds to the seventh process. It can be easily understood that the instantaneous value of the second fundamental signal Hv can be calculated by subtracting the instantaneous value of the in-phase signal N from the instantaneous value of the second signal Hv' by referring to equation (3). deaf.
 上記のようなステップS11からステップS17までの処理を含む信号生成処理が、サンプリングタイミングが到来するたびに処理部22によって実行される。その結果、図16に示すように、第1基本波信号Huの瞬時値の時系列データ(第1基本波信号Huの波形データ)と、第2基本波信号Hvの瞬時値の時系列データ(第2基本波信号Hvの波形データ)と、第3基本波信号Hwの瞬時値の時系列データ(第3基本波信号Hwの波形データ)とが得られる。図16に示すように、第1基本波信号Hu、第2基本波信号Hv及び第3基本波信号Hwの波形は完全な正弦波形となる。また、第1基本波信号Hu、第2基本波信号Hv及び第3基本波信号Hwは、互いに電気角で120°の位相差を有する。 The signal generation processing including the processing from step S11 to step S17 as described above is executed by the processing unit 22 each time the sampling timing arrives. As a result, as shown in FIG. 16, time-series data of the instantaneous value of the first fundamental wave signal Hu (waveform data of the first fundamental wave signal Hu) and time-series data of the instantaneous value of the second fundamental wave signal Hv ( waveform data of the second fundamental wave signal Hv) and time-series data of instantaneous values of the third fundamental wave signal Hw (waveform data of the third fundamental wave signal Hw). As shown in FIG. 16, the waveforms of the first fundamental signal Hu, the second fundamental signal Hv and the third fundamental signal Hw are complete sinusoidal waveforms. Also, the first fundamental wave signal Hu, the second fundamental wave signal Hv, and the third fundamental wave signal Hw have a phase difference of 120 degrees in electrical angle.
 以上のような信号生成処理によって、3つの磁気センサ11、12及び13のうち異常センサを除く2つの磁気センサから出力される二相の信号に基づいて、互いに電気角で120°の位相差を有する三相の基本波信号を生成することができる。 By the above-described signal generation processing, a phase difference of 120° in electrical angle is generated based on the two-phase signals output from two of the three magnetic sensors 11, 12, and 13 excluding the abnormal sensor. can generate a three-phase fundamental wave signal with
 図3に戻り、処理部22は、異常センサを除く2つの磁気センサから出力される二相の信号と、生成された残り一相の信号とに基づいて、モータ100の回転位置を推定する位置推定処理を実行する(ステップS4)。すなわち、処理部22は、互いに電気角で120°の位相差を有する三相の基本波信号Hu、Hv及びHwに基づいて、モータ100の回転位置を推定する。このステップS4は、位置推定ステップに相当する。 Returning to FIG. 3, the processing unit 22 estimates the rotational position of the motor 100 based on the two-phase signals output from the two magnetic sensors excluding the abnormality sensor and the generated remaining one-phase signal. An estimation process is executed (step S4). That is, the processing unit 22 estimates the rotational position of the motor 100 based on the three-phase fundamental wave signals Hu, Hv, and Hw having a phase difference of 120 degrees in electrical angle. This step S4 corresponds to the position estimation step.
 モータ100の回転位置の推定に必要な学習値を取得するために第3の学習処理が事前に行われる。以下では、事前に行われる第3の学習処理について説明する。第3の学習処理は、磁気センサ11、12及び13の全てが正常な状態で行われる。 A third learning process is performed in advance in order to acquire the learning value necessary for estimating the rotational position of the motor 100 . The third learning process performed in advance will be described below. The third learning process is performed while all of the magnetic sensors 11, 12 and 13 are normal.
 第3の学習処理において、処理部22は、ロータシャフト110とともにセンサマグネット120が回転する状態で、U相信号Hu’、V相信号Hv’およびW相信号Hw’のそれぞれの波形データ(瞬時値の時系列データ)を取得する。そして、処理部22は、これら3つの波形データに基づいて、U相信号Hu’に含まれる第1基本波信号Huの波形データと、V相信号Hv’に含まれる第2基本波信号Hvの波形データと、W相信号Hw’に含まれる第3基本波信号Hwの波形データとを算出する。なお、3つの磁気センサ11、12及び13から出力される三相の信号のそれぞれから基本波信号を抽出する演算式として、例えば特許第6233532号公報に記載された式(1)、式(2)及び式(3)を使用できる。 In the third learning process, the processing unit 22 generates waveform data (instantaneous value time series data). Based on these three waveform data, the processing unit 22 determines the waveform data of the first fundamental wave signal Hu included in the U-phase signal Hu' and the waveform data of the second fundamental wave signal Hv included in the V-phase signal Hv'. Waveform data and waveform data of the third fundamental wave signal Hw included in the W-phase signal Hw' are calculated. Note that the equations (1) and (2) described in Japanese Patent No. 6233532 are examples of computational equations for extracting the fundamental wave signal from each of the three-phase signals output from the three magnetic sensors 11, 12 and 13. ) and equation (3) can be used.
 図17に示すように、処理部22は、3つの基本波信号Hu、Hv及びHwの波形データに基づいて、機械角1周期を、4つの磁極対のそれぞれの極対位置を表す極対番号に紐付けられた4つの極対領域に分割し、4つの極対領域のそれぞれをさらに複数のセクションに分割し、複数のセクションのそれぞれに、ロータシャフト110の回転位置を表すセグメント番号を紐づける。 As shown in FIG. 17, the processing unit 22 uses the waveform data of the three fundamental wave signals Hu, Hv, and Hw to convert one period of the mechanical angle into a pole pair number representing the pole pair position of each of the four magnetic pole pairs. Each of the four pole pair regions is further divided into a plurality of sections, and a segment number representing the rotational position of the rotor shaft 110 is tied to each of the plurality of sections. .
 本実施形態では、ロータシャフト110の回転位置を推定するために、センサマグネット120の4つの磁極対に対して、極対位置を表す極対番号が割り当てられる。例えば、図1に示すように、センサマグネット120の4つの磁極対には、時計回りに、「0」、「1」、「2」、「3」の順で極対番号が割り当てられる。 In this embodiment, in order to estimate the rotational position of the rotor shaft 110, the four magnetic pole pairs of the sensor magnet 120 are assigned pole pair numbers representing the pole pair positions. For example, as shown in FIG. 1, the four pole pairs of the sensor magnet 120 are assigned pole pair numbers in the clockwise order "0", "1", "2", "3".
 図17に示すように、処理部22は、機械角1周期に得られた基本波信号Hu、Hv及びHwの波形データに基づいて、機械角1周期を4つの極対領域に分割する。図17において、時刻t1から時刻t5までの期間が、機械角1周期に相当する。図17において、「No.C」は極対番号を示す。
 処理部22は、機械角1周期のうち時刻t1から時刻t2までの期間を、極対番号「0」に紐づけられた極対領域として分割する。
 処理部22は、機械角1周期のうち時刻t2から時刻t3までの期間を、極対番号「1」に紐づけられた極対領域として分割する。
 処理部22は、機械角1周期のうち時刻t3から時刻t4までの期間を、極対番号「2」に紐づけられた極対領域として分割する。
 処理部22は、機械角1周期のうち時刻t4から時刻t5までの期間を、極対番号「3」に紐づけられた極対領域として分割する。
As shown in FIG. 17, the processing unit 22 divides one cycle of the mechanical angle into four pole pair regions based on the waveform data of the fundamental wave signals Hu, Hv, and Hw obtained in one cycle of the mechanical angle. In FIG. 17, the period from time t1 to time t5 corresponds to one mechanical angle cycle. In FIG. 17, "No. C" indicates the pole pair number.
The processing unit 22 divides the period from time t1 to time t2 in one cycle of the mechanical angle as pole pair regions linked to the pole pair number "0".
The processing unit 22 divides the period from time t2 to time t3 in one cycle of the mechanical angle as pole pair regions associated with the pole pair number "1".
The processing unit 22 divides the period from the time t3 to the time t4 in one cycle of the mechanical angle as a pole pair region associated with the pole pair number "2".
The processing unit 22 divides the period from time t4 to time t5 in one cycle of the mechanical angle as a pole pair region associated with the pole pair number "3".
 図17に示すように、処理部22は、機械角1周期に得られた基本波信号Hu、Hv及びHwの波形データに基づいて、4つの極対領域のそれぞれをさらに12個のセクションに分割し、12個のセクションのそれぞれに、ロータシャフト110の回転位置を表すセグメント番号を紐づける。図17において、「No.A」はセクションに割り当てられたセクション番号を示し、「No.B」はセグメント番号を示す。 As shown in FIG. 17, the processing unit 22 further divides each of the four pole pair regions into 12 sections based on the waveform data of the fundamental wave signals Hu, Hv and Hw obtained in one cycle of the mechanical angle. , and each of the 12 sections is associated with a segment number representing the rotational position of the rotor shaft 110 . In FIG. 17, "No. A" indicates the section number assigned to the section, and "No. B" indicates the segment number.
 図17に示すように、4つの極対領域のそれぞれに含まれる12個のセクションには、「0」から「11」までのセクション番号が割り当てられる。一方、機械角1周期の全期間にわたって連続する番号がセグメント番号として各セクションに紐づけられる。具体的には、図17に示すように、極対番号「0」に紐づけられた極対領域では、セクション番号「0」から「11」までに対して、セグメント番号「0」から「11」までが紐づけられる。極対番号「1」に紐づけられた極対領域では、セクション番号「0」から「11」までに対して、セグメント番号「12」から「23」までが紐づけられる。極対番号「2」に紐づけられた極対領域では、セクション番号「0」から「11」までに対して、セグメント番号「24」から「35」までが紐づけられる。極対番号「3」に紐づけられた極対領域では、セクション番号「0」から「11」までに対して、セグメント番号「36」から「47」までが紐づけられる。 As shown in FIG. 17, section numbers "0" to "11" are assigned to the 12 sections included in each of the four pole pair regions. On the other hand, numbers that are continuous over the entire period of one cycle of the mechanical angle are linked to each section as segment numbers. Specifically, as shown in FIG. 17, in the pole pair region associated with the pole pair number “0”, segment numbers “0” to “11” are assigned to section numbers “0” to “11”. ” is linked. In the pole pair region linked to the pole pair number "1", the segment numbers "12" to "23" are linked to the section numbers "0" to "11". In the pole pair region linked to the pole pair number "2", the segment numbers "24" to "35" are linked to the section numbers "0" to "11". In the pole pair region linked to the pole pair number "3", the segment numbers "36" to "47" are linked to the section numbers "0" to "11".
 図18は、1つの極対領域に含まれる基本波信号Hu、Hv及びHwの拡大図である。以下、図18を参照しながら、極対領域を12個のセクションに分割する方法について説明する。図18において、振幅の基準値は「0」である。図18において、正値である振幅のデジタル値は、一例として、N極の磁界強度のデジタル値を表す。また、負値である振幅のデジタル値は、一例として、S極の磁界強度のデジタル値を表す。 FIG. 18 is an enlarged view of the fundamental wave signals Hu, Hv and Hw included in one pole pair region. A method of dividing the pole pair region into 12 sections will now be described with reference to FIG. In FIG. 18, the amplitude reference value is "0". In FIG. 18, the positive amplitude digital value represents, as an example, the digital value of the N-pole magnetic field strength. In addition, the negative amplitude digital value represents, for example, the digital value of the magnetic field strength of the south pole.
 処理部22は、4つの極対領域のそれぞれに含まれる3つの基本波信号Hu、Hv及びHwが基準値「0」と交差する点であるゼロクロス点を抽出する。図18に示すように、処理部22は、ゼロクロス点として、点P1、点P3、点P5、点P7、点P9、点P11、及び点P13を抽出する。 The processing unit 22 extracts zero cross points, which are points where the three fundamental wave signals Hu, Hv, and Hw included in each of the four pole pair regions cross the reference value "0". As shown in FIG. 18, the processing unit 22 extracts points P1, P3, P5, P7, P9, P11, and P13 as zero-crossing points.
 そして、処理部22は、4つの極対領域のそれぞれに含まれる3つの基本波信号Hu、Hv及びHwが互いに交差する点である交点を抽出する。図18に示すように、処理部22は、交点として、点P2、点P4、点P6、点P8、点P10、及び点P12を抽出する。そして、処理部22は、互いに隣り合うゼロクロス点と交点との間の区間をセクションとして決定する。 Then, the processing unit 22 extracts intersection points at which the three fundamental wave signals Hu, Hv, and Hw included in each of the four pole pair regions intersect each other. As shown in FIG. 18, the processing unit 22 extracts points P2, P4, P6, P8, P10, and P12 as intersections. Then, the processing unit 22 determines a section between the zero-cross points and the intersection points adjacent to each other as a section.
 図18に示すように、処理部22は、ゼロクロス点P1と交点P2との間の区間を、セクション番号「0」が割り当てられるセクションとして決定する。
 処理部22は、交点P2とゼロクロス点P3との間の区間を、セクション番号「1」が割り当てられるセクションとして決定する。
 処理部22は、ゼロクロス点P3と交点P4との間の区間を、セクション番号「2」が割り当てられるセクションとして決定する。
 処理部22は、交点P4とゼロクロス点P5との間の区間を、セクション番号「3」が割り当てられるセクションとして決定する。
 処理部22は、ゼロクロス点P5と交点P6との間の区間を、セクション番号「4」が割り当てられるセクションとして決定する。
 処理部22は、交点P6とゼロクロス点P7との間の区間を、セクション番号「5」が割り当てられるセクションとして決定する。
As shown in FIG. 18, the processing unit 22 determines the section between the zero-cross point P1 and the intersection point P2 as the section to which the section number "0" is assigned.
The processing unit 22 determines the section between the intersection point P2 and the zero crossing point P3 as the section to which the section number "1" is assigned.
The processing unit 22 determines the section between the zero-crossing point P3 and the intersection point P4 as the section to which the section number "2" is assigned.
The processing unit 22 determines the section between the intersection point P4 and the zero crossing point P5 as the section to which the section number "3" is assigned.
The processing unit 22 determines the section between the zero-crossing point P5 and the intersection point P6 as the section to which the section number "4" is assigned.
The processing unit 22 determines the section between the intersection point P6 and the zero crossing point P7 as the section to which the section number "5" is assigned.
 処理部22は、ゼロクロス点P7と交点P8との間の区間を、セクション番号「6」が割り当てられるセクションとして決定する。
 処理部22は、交点P8とゼロクロス点P9との間の区間を、セクション番号「7」が割り当てられるセクションとして決定する。
 処理部22は、ゼロクロス点P9と交点P10との間の区間を、セクション番号「8」が割り当てられるセクションとして決定する。
 処理部22は、交点P10とゼロクロス点P11との間の区間を、セクション番号「9」が割り当てられるセクションとして決定する。
 処理部22は、ゼロクロス点P11と交点P12との間の区間を、セクション番号「10」が割り当てられるセクションとして決定する。
 処理部22は、交点P12とゼロクロス点P13との間の区間を、セクション番号「11」が割り当てられるセクションとして決定する。
The processing unit 22 determines the section between the zero-crossing point P7 and the intersection point P8 as the section to which the section number "6" is assigned.
The processing unit 22 determines the section between the intersection point P8 and the zero crossing point P9 as the section to which the section number "7" is assigned.
The processing unit 22 determines the section between the zero-crossing point P9 and the intersection point P10 as the section to which the section number "8" is assigned.
The processing unit 22 determines the section between the intersection point P10 and the zero crossing point P11 as the section to which the section number "9" is assigned.
The processing unit 22 determines the section between the zero-crossing point P11 and the intersection point P12 as the section to which the section number "10" is assigned.
The processing unit 22 determines the section between the intersection point P12 and the zero crossing point P13 as the section to which the section number "11" is assigned.
 さらに、処理部22は、基本波信号Hu、Hv及びHwの瞬時値(デジタル値)の大小関係、および各瞬時値の正負の符号などの特徴データをセクションごとに抽出し、抽出した特徴データを各セクションのセクション番号に紐づける。 Furthermore, the processing unit 22 extracts feature data, such as the magnitude relationship of the instantaneous values (digital values) of the fundamental wave signals Hu, Hv, and Hw, and the sign of each instantaneous value, for each section, and extracts the extracted feature data. Link to the section number of each section.
 以上のような処理が実行されることにより、図17に示すように、機械角1周期が極対番号に紐付けられた4つの極対領域に分割され、4つの極対領域のそれぞれが12個のセクションに分割され、各セクションのセクション番号のそれぞれにセグメント番号が紐づけられる。なお、以下の説明において、例えば、セクション番号「0」が割り当てられたセクションを、「0番セクション」と呼称し、セクション番号「11」が割り当てられたセクションを、「11番セクション」と呼称する。 By executing the above processing, as shown in FIG. 17, one cycle of the mechanical angle is divided into four pole pair regions linked to the pole pair numbers, and each of the four pole pair regions has 12 It is divided into sections, and each section number is associated with a segment number. In the following description, for example, the section assigned section number "0" will be referred to as "0 section", and the section assigned section number "11" will be referred to as "11 section". .
 処理部22は、セクション番号に紐づけられた特徴データと、セクション番号に紐づけられた回転位置を表すセグメント番号と、極対位置を表す極対番号との対応関係を示すデータを学習データとして取得し、取得した学習データを記憶部23に格納する。以上が第3の学習処理の説明である。 The processing unit 22 uses, as learning data, data indicating the correspondence between the feature data associated with the section number, the segment number indicating the rotational position associated with the section number, and the pole pair number indicating the pole pair position. It acquires and stores the acquired learning data in the storage unit 23 . The above is the description of the third learning process.
 ステップS4において、処理部22は、位置推定処理を開始すると、まず、ステップS3で得られた各基本波信号Hu、Hv及びHwの瞬時値に基づいて、12個のセクションのなかから現在のセクションを特定する。例えば図18において、第1基本波信号Huの波形上に位置する点PHuと、第2基本波信号Hvの波形上に位置する点PHvと、第3基本波信号Hwの波形上に位置する点PHwとが、任意のサンプリングタイミングで得られた各基本波信号Hu、Hv及びHwの瞬時値であると仮定する。処理部22は、点PHu、点PHv及び点PHwの瞬時値の大小関係と、各瞬時値の正負の符号などの特徴データを抽出し、抽出した特徴データを記憶部23に格納された学習データと照合することにより、抽出した特徴データと一致する特徴データに紐づけられたセクション番号を現在のセクションとして特定する。図18の例では、9番セクションが現在のセクションとして特定される。 In step S4, when starting the position estimation process, the processing unit 22 first selects the current section from among 12 sections based on the instantaneous values of the fundamental wave signals Hu, Hv, and Hw obtained in step S3. identify. For example, in FIG. 18, a point PHu located on the waveform of the first fundamental wave signal Hu, a point PHv located on the waveform of the second fundamental wave signal Hv, and a point located on the waveform of the third fundamental wave signal Hw. It is assumed that PHw is the instantaneous value of each of the fundamental wave signals Hu, Hv and Hw obtained at arbitrary sampling timings. The processing unit 22 extracts feature data such as the magnitude relationship of the instantaneous values of the point PHu, the point PHv, and the point PHw, and the positive and negative signs of each instantaneous value. , the section number associated with the feature data that matches the extracted feature data is identified as the current section. In the example of FIG. 18, section number 9 is identified as the current section.
 そして、処理部22は、特定された現在のセクション(セクション番号)と、記憶部23に格納された学習データとに基づいて、現在のセグメント番号をモータ100の回転位置として決定する。例えば、上記のように、9番セクションが現在のセクションとして特定されたと仮定する。また、点PHu、点PHv及び点PHwの瞬時値が得られたときの極対番号が「2」であると仮定する。この場合、図17に示すように、処理部22は、セグメント番号「33」をモータ100の回転位置として決定する。 Then, the processing unit 22 determines the current segment number as the rotational position of the motor 100 based on the identified current section (section number) and the learning data stored in the storage unit 23 . For example, assume section number 9 is identified as the current section, as described above. Also, assume that the pole pair number is "2" when the instantaneous values of the points PHu, PHv and PHw are obtained. In this case, as shown in FIG. 17, the processing unit 22 determines the segment number "33" as the rotation position of the motor 100. In this case, as shown in FIG.
 以上のように、本実施形態の位置検出装置は、モータに同期して回転する磁石と対向し且つ磁石の回転方向に沿って所定間隔で配置される3つの磁気センサと、3つの磁気センサから出力される、互いに電気角で120°の位相差を有する三相の信号を処理する信号処理部とを備える。信号処理部は、三相の信号に含まれるU相信号、V相信号およびW相信号のそれぞれをデジタル変換することより、U相信号の瞬時値Hu’、V相信号の瞬時値Hv’およびW相信号の瞬時値Hw’を取得する取得処理と、U相信号の瞬時値Hu’、V相信号の瞬時値Hv’およびW相信号の瞬時値Hw’が、第1ケース、第2ケースおよび第3ケースの全てにおいて式(1)を満たすか否かを判定することにより、3つの磁気センサのうち異常な磁気センサである異常センサを特定する異常判別処理と、3つの磁気センサのうち異常センサを除く2つの磁気センサから出力される二相の信号に基づいて、残り一相の信号を生成する信号生成処理と、異常センサを除く2つの磁気センサから出力される二相の信号と、生成された残り一相の信号とに基づいて、モータの回転位置を推定する位置推定処理と、を実行する。
 このような本実施形態によれば、3つの磁気センサのうち1つの磁気センサに異常が発生した場合であっても、異常センサを除く2つの磁気センサから出力される二相の信号に基づいて残り一相の信号を生成することにより、モータの回転位置の推定を継続して行うことができる。従って、モータの回転を検出するのに必要な回路を二系統用意する従来技術と比較して、装置の小型化と部品コストの削減を実現できる。
As described above, the position detection device of this embodiment includes three magnetic sensors that face the magnet that rotates in synchronism with the motor and that are arranged at predetermined intervals along the direction of rotation of the magnet, and three magnetic sensors. and a signal processing unit for processing output three-phase signals having a phase difference of 120 electrical degrees from each other. The signal processing unit digitally converts each of the U-phase signal, the V-phase signal, and the W-phase signal included in the three-phase signals to obtain the instantaneous value Hu′ of the U-phase signal, the instantaneous value Hv′ of the V-phase signal, and the Acquisition processing for acquiring the instantaneous value Hw' of the W-phase signal, and the instantaneous value Hu' of the U-phase signal, the instantaneous value Hv' of the V-phase signal, and the instantaneous value Hw' of the W-phase signal are obtained in the first case and the second case. and an abnormality determination process for identifying an abnormal sensor that is an abnormal magnetic sensor among the three magnetic sensors by determining whether expression (1) is satisfied in all of the third cases, and A signal generation process for generating a remaining one-phase signal based on two-phase signals output from two magnetic sensors excluding the abnormal sensor, and a two-phase signal output from the two magnetic sensors excluding the abnormal sensor. , and position estimation processing for estimating the rotational position of the motor based on the generated signal of the remaining one phase.
According to this embodiment, even if an abnormality occurs in one of the three magnetic sensors, based on the two-phase signals output from the two magnetic sensors other than the abnormal sensor, By generating the remaining one-phase signal, it is possible to continuously estimate the rotational position of the motor. Therefore, it is possible to reduce the size of the device and the cost of the parts compared to the conventional technology that prepares two circuits necessary for detecting the rotation of the motor.
 異常センサを除く2つの磁気センサから出力される二相の信号のうち、一方の信号を第1信号とし、第1信号に対して電気角で120°の位相遅れを有する他方の信号を第2信号とする場合、本実施形態の信号処理部は、信号生成処理において、第1信号の瞬時値と第2信号の瞬時値とを取得する第1処理と、第1信号の瞬時値から第2信号の瞬時値を減算することにより、第1信号に含まれる第1基本波信号と第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2処理と、合成信号の瞬時値と予め用意された合成信号のノルムとに基づいて合成信号の偏角を算出する第3処理と、合成信号の偏角と、合成信号のノルムと、予め用意された合成信号と第1基本波信号との位相差とに基づいて、合成信号と直交関係にある第3基本波信号の瞬時値を算出する第4処理と、を実行する。
 これにより、異常センサを除く2つの磁気センサによって得られる二相の信号(第1信号及び第2信号)から、同相信号を含まない三相目の信号(第3基本波信号)を生成することができる。
Of the two-phase signals output from the two magnetic sensors excluding the abnormal sensor, one signal is defined as the first signal, and the other signal having a phase delay of 120 degrees in electrical angle with respect to the first signal is defined as the second signal. In the case of a signal, the signal processing unit of the present embodiment includes, in the signal generation processing, first processing for obtaining the instantaneous value of the first signal and the instantaneous value of the second signal, and obtaining the second signal from the instantaneous value of the first signal. second processing for calculating an instantaneous value of a composite signal of a first fundamental wave signal included in the first signal and a second fundamental wave signal included in the second signal by subtracting the instantaneous values of the signals; A third process of calculating the argument of the synthesized signal based on the instantaneous value of and the norm of the synthesized signal prepared in advance, the argument of the synthesized signal, the norm of the synthesized signal, the prepared synthesized signal and the third and a fourth process of calculating an instantaneous value of a third fundamental signal having an orthogonal relationship with the combined signal based on the phase difference from the first fundamental signal.
Thereby, a third phase signal (third fundamental wave signal) that does not include an in-phase signal is generated from two phase signals (first signal and second signal) obtained by the two magnetic sensors excluding the abnormal sensor. be able to.
 本実施形態の信号処理部は、第3処理において、式(13)に基づいて合成信号の偏角ωt+φ2を算出し、算出された偏角ωt+φ2を拡張処理することにより、-180°以上且つ180°未満の範囲に含まれる偏角θを取得する。
 これにより、処理負荷の小さい簡易な数式によって、合成信号の瞬時値及びノルムから合成信号の偏角ωt+φ2を算出できる。なお、式(13)に基づいて合成信号の偏角ωt+φ2を算出する際に、テーブル値を用いた補間処理によって合成信号の偏角ωt+φ2を算出してもよい。また、算出された偏角ωt+φ2を拡張処理して、-180°以上且つ180°未満の範囲に含まれる偏角θを取得することにより、偏角θのサイン値は、-1以上且つ1以下の範囲内で正極性及び負極性の両方の値を取ることができるため、第4処理によって生成される第3基本波信号の波形を完全な正弦波形にすることができる。
In the third process, the signal processing unit of the present embodiment calculates the argument ωt+φ2 of the composite signal based on the equation (13), and expands the calculated argument ωt+φ2 to obtain a value of −180° or more and 180°. Get the angle of argument θ within the range of less than °.
As a result, the argument ωt+φ2 of the combined signal can be calculated from the instantaneous value and the norm of the combined signal using a simple formula with a small processing load. Note that when calculating the argument ωt+φ2 of the synthesized signal based on Equation (13), the argument ωt+φ2 of the synthesized signal may be calculated by interpolation processing using table values. Further, by expanding the calculated argument ωt+φ2 to obtain the argument θ included in the range of −180° or more and less than 180°, the sine value of the argument θ is −1 or more and 1 or less. can take both positive and negative values within the range of , the waveform of the third fundamental signal generated by the fourth processing can be a perfect sinusoidal waveform.
 本実施形態の信号処理部は、第2処理において、予め用意された、第1信号の振幅値と第2信号の振幅値とが等しくなる振幅補正値に基づいて、第1信号の瞬時値と第2信号の瞬時値との少なくとも一方を補正し、信号処理部は、第4処理において、合成信号のノルム||Huv||と、位相差φ2と、偏角θとを式(14)に代入することにより、第3基本波信号の瞬時値を算出する。
 これにより、処理負荷の小さい簡易な数式によって、合成信号のノルム及び偏角と、合成信号と第1基本波信号との位相差とから、合成信号と直交関係にある第3基本波信号の瞬時値を算出できる。
In the second process, the signal processing unit of the present embodiment calculates the instantaneous value of the first signal and At least one of the instantaneous value of the second signal is corrected, and in the fourth process, the signal processing unit converts the norm ||Huv|| By substituting, the instantaneous value of the third fundamental wave signal is calculated.
As a result, the moment of the third fundamental wave signal that is orthogonal to the combined signal can be obtained from the norm and argument of the combined signal and the phase difference between the combined signal and the first fundamental wave signal using a simple formula with a small processing load. value can be calculated.
 本実施形態の信号処理部は、第1信号の瞬時値と第2信号の瞬時値と第3基本波信号の瞬時値とに基づいて同相信号の瞬時値を算出する第5処理と、第1信号の瞬時値から同相信号の瞬時値を減算することにより、第1基本波信号の瞬時値を算出する第6処理と、第2信号の瞬時値から同相信号の瞬時値を減算することにより、第2基本波信号の瞬時値を算出する第7処理と、をさらに実行する。
 これにより、第1信号から正弦波形を有する第1基本波信号を抽出でき、第2信号から正弦波形を有し且つ第1基本波信号に対して電気角で120°の位相遅れを有する第2基本波信号を抽出することができる。
The signal processing unit of the present embodiment includes fifth processing for calculating an instantaneous value of the in-phase signal based on the instantaneous value of the first signal, the instantaneous value of the second signal, and the instantaneous value of the third fundamental wave signal; A sixth process of calculating an instantaneous value of the first fundamental wave signal by subtracting the instantaneous value of the in-phase signal from the instantaneous value of the first signal, and subtracting the instantaneous value of the in-phase signal from the instantaneous value of the second signal. and a seventh process of calculating the instantaneous value of the second fundamental wave signal.
As a result, the first fundamental wave signal having a sinusoidal waveform can be extracted from the first signal, and the second fundamental wave signal having a sinusoidal waveform and a phase delay of 120 degrees in electrical angle with respect to the first fundamental wave signal can be extracted from the second signal. A fundamental signal can be extracted.
 本実施形態の信号処理部は、第5処理において、式(15)及び式(16)に基づいて同相信号の瞬時値を算出する。
 これにより、処理負荷の小さい簡易な数式によって、第1信号及び第2信号から同相信号を抽出できる。
In the fifth process, the signal processing unit of this embodiment calculates the instantaneous value of the in-phase signal based on Equations (15) and (16).
As a result, the in-phase signal can be extracted from the first signal and the second signal using a simple formula with a small processing load.
 本実施形態の信号処理部は、3つの磁気センサのうち異常センサへの電源供給を遮断する。
 このように、異常センサへの電源供給を遮断することにより、位置検出装置の内部回路を保護することができる。
The signal processing unit of this embodiment cuts off the power supply to the abnormal sensor among the three magnetic sensors.
By interrupting the power supply to the abnormality sensor in this way, the internal circuit of the position detection device can be protected.
(変形例)
 本発明は上記実施形態に限定されず、本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
(Modification)
The present invention is not limited to the above-described embodiments, and each configuration described in this specification can be appropriately combined within a mutually consistent range.
 例えば、上記実施形態では、磁気センサ13が異常センサである場合の信号生成処理について説明した。すなわち、上記実施形態では、磁気センサ11から出力されるU相信号Hu’が第1信号であり、磁気センサ12から出力されるV相信号Hv’が第2信号である場合の信号生成処理について説明した。これに対して、磁気センサ11が異常センサである場合には、磁気センサ12から出力されるV相信号Hv’を第1信号とし、磁気センサ13から出力されるW相信号Hw’を第2信号として信号生成処理を実行することができる。また、磁気センサ12が異常センサである場合には、磁気センサ13から出力されるW相信号Hw’を第1信号とし、磁気センサ11から出力されるU相信号Hu’を第2信号として信号生成処理を実行することができる。 For example, in the above embodiment, the signal generation processing when the magnetic sensor 13 is an abnormal sensor has been described. That is, in the above embodiment, the signal generation processing is performed when the U-phase signal Hu' output from the magnetic sensor 11 is the first signal and the V-phase signal Hv' output from the magnetic sensor 12 is the second signal. explained. On the other hand, when the magnetic sensor 11 is an abnormal sensor, the V-phase signal Hv' output from the magnetic sensor 12 is used as the first signal, and the W-phase signal Hw' output from the magnetic sensor 13 is used as the second signal. A signal generation process can be performed as a signal. When the magnetic sensor 12 is an abnormal sensor, the W-phase signal Hw' output from the magnetic sensor 13 is used as the first signal, and the U-phase signal Hu' output from the magnetic sensor 11 is used as the second signal. A generation process can be performed.
 上記実施形態では、処理部22が出力ポートP1の出力電圧をローレベルに切り替えることにより、磁気センサ11への電源供給を遮断する場合を例示した。これに対して、出力ポートP1と磁気センサ11との間にトランジスタを備えるバッファを設け、出力ポートP1の出力電圧によってバッファを制御することにより、磁気センサ11への電源供給を遮断する構成を採用してもよい。磁気センサ12及び13についても同様である。 In the above embodiment, the case where the power supply to the magnetic sensor 11 is cut off by the processing unit 22 switching the output voltage of the output port P1 to low level has been exemplified. In contrast, a configuration is adopted in which a buffer including a transistor is provided between the output port P1 and the magnetic sensor 11, and the power supply to the magnetic sensor 11 is cut off by controlling the buffer with the output voltage of the output port P1. You may The same is true for the magnetic sensors 12 and 13 as well.
 例えば、上記実施形態では、モータと位置検出装置との組み合わせを例示したが、本発明はこの形態に限定されず、回転軸に取り付けられたセンサマグネットと位置検出装置との組み合わせもあり得る。
 上記実施形態では、回転軸の軸方向において、3つの磁気センサが、円板状のセンサマグネットに対向する状態で配置される形態を例示したが、本発明はこの形態に限定されない。例えば、円板状のセンサマグネットの代わりにリング状磁石を用いる場合、リング状磁石の半径方向に磁束が流入するため、リング状磁石の半径方向において、3つの磁気センサが、リング状磁石と対向する状態で配置されてもよい。
 上記実施形態では、回転する磁石として、モータ100のロータシャフト110に取り付けられるセンサマグネット120を使用する場合を例示したが、モータ100のロータに取り付けられるロータマグネットを、回転する磁石として用いてもよい。ロータマグネットもロータシャフト110に同期して回転する磁石である。
For example, in the above embodiments, the combination of the motor and the position detection device was exemplified, but the present invention is not limited to this form, and a combination of the sensor magnet attached to the rotating shaft and the position detection device is also possible.
In the above-described embodiment, the three magnetic sensors are arranged facing the disk-shaped sensor magnet in the axial direction of the rotating shaft, but the present invention is not limited to this configuration. For example, when a ring-shaped magnet is used instead of a disk-shaped sensor magnet, the magnetic flux flows in the radial direction of the ring-shaped magnet, so the three magnetic sensors face the ring-shaped magnet in the radial direction of the ring-shaped magnet. It may be placed in a state where
In the above embodiment, the sensor magnet 120 attached to the rotor shaft 110 of the motor 100 is used as the rotating magnet, but the rotor magnet attached to the rotor of the motor 100 may be used as the rotating magnet. . The rotor magnet is also a magnet that rotates in synchronization with the rotor shaft 110 .
 上記実施形態では、センサマグネット120が4つの磁極対を有する場合を例示したが、センサマグネット120の極対数は4つに限定されない。回転する磁石としてロータマグネットを用いる場合も同様に、ロータマグネットの極対数は4つに限定されない。 In the above embodiment, the sensor magnet 120 has four magnetic pole pairs, but the number of pole pairs of the sensor magnet 120 is not limited to four. Similarly, when a rotor magnet is used as the rotating magnet, the number of pole pairs of the rotor magnet is not limited to four.
 1…位置検出装置、11、12、13…磁気センサ、20…信号処理部、21…電源回路、22…処理部、23…記憶部、100…モータ、110…ロータシャフト、120…センサマグネット(磁石)、200…直流電源 DESCRIPTION OF SYMBOLS 1... Position detection apparatus 11, 12, 13... Magnetic sensor, 20... Signal processing part, 21... Power supply circuit, 22... Processing part, 23... Storage part, 100... Motor, 110... Rotor shaft, 120... Sensor magnet ( magnet), 200... DC power supply

Claims (14)

  1.  モータの回転位置を検出する位置検出装置であって、
     前記モータに同期して回転する磁石と対向し且つ前記磁石の回転方向に沿って所定間隔で配置される3つの磁気センサと、
     前記3つの磁気センサから出力される、互いに電気角で120°の位相差を有する三相の信号を処理する信号処理部と、
     を備え、
     前記信号処理部は、
     前記三相の信号に含まれるU相信号、V相信号およびW相信号のそれぞれをデジタル変換することより、前記U相信号の瞬時値Hu’、前記V相信号の瞬時値Hv’および前記W相信号の瞬時値Hw’を取得する取得処理と、
     前記U相信号の瞬時値Hu’、前記V相信号の瞬時値Hv’および前記W相信号の瞬時値Hw’が、第1ケース、第2ケースおよび第3ケースの全てにおいて下式(1)を満たすか否かを判定することにより、前記3つの磁気センサのうち異常な磁気センサである異常センサを特定する異常判別処理と、
     前記3つの磁気センサのうち前記異常センサを除く2つの磁気センサから出力される二相の信号に基づいて、残り一相の信号を生成する信号生成処理と、
     前記異常センサを除く2つの磁気センサから出力される二相の信号と、生成された前記残り一相の信号とに基づいて、前記モータの回転位置を推定する位置推定処理と、を実行する、位置検出装置。
    Figure JPOXMLDOC01-appb-M000001
    A position detection device that detects the rotational position of a motor,
    three magnetic sensors facing the magnet rotating in synchronism with the motor and arranged at predetermined intervals along the direction of rotation of the magnet;
    a signal processing unit that processes three-phase signals output from the three magnetic sensors and having a phase difference of 120 degrees in electrical angle;
    with
    The signal processing unit is
    By digitally converting each of the U-phase signal, the V-phase signal, and the W-phase signal included in the three-phase signals, the instantaneous value Hu' of the U-phase signal, the instantaneous value Hv' of the V-phase signal, and the W-phase signal are obtained. Acquisition processing for acquiring the instantaneous value Hw′ of the phase signal;
    The instantaneous value Hu' of the U-phase signal, the instantaneous value Hv' of the V-phase signal, and the instantaneous value Hw' of the W-phase signal are expressed by the following equation (1) in all of the first case, the second case, and the third case. Abnormality determination processing for identifying an abnormal sensor that is an abnormal magnetic sensor among the three magnetic sensors by determining whether or not the condition is satisfied;
    A signal generation process for generating a remaining one-phase signal based on the two-phase signals output from two of the three magnetic sensors excluding the abnormal sensor;
    position estimation processing for estimating the rotational position of the motor based on the two-phase signals output from the two magnetic sensors excluding the abnormal sensor and the generated remaining one-phase signal; Position detection device.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記異常センサを除く2つの磁気センサから出力される二相の信号のうち、一方の信号を第1信号とし、前記第1信号に対して電気角で120°の位相遅れを有する他方の信号を第2信号とする場合に、
     前記信号処理部は、前記信号生成処理において、
     前記第1信号及び前記第2信号をデジタル変換することより、前記第1信号の瞬時値と前記第2信号の瞬時値とを取得する第1処理と、
     前記第1信号の瞬時値から前記第2信号の瞬時値を減算することにより、前記第1信号に含まれる第1基本波信号と前記第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2処理と、
     前記合成信号の瞬時値と予め用意された前記合成信号のノルムとに基づいて前記合成信号の偏角を算出する第3処理と、
     前記合成信号の偏角と、前記合成信号のノルムと、予め用意された前記合成信号と前記第1基本波信号との位相差とに基づいて、前記合成信号と直交関係にある第3基本波信号の瞬時値を前記残り一相の信号の瞬時値として算出する第4処理と、
     を実行する、請求項1に記載の位置検出装置。
    Of the two-phase signals output from the two magnetic sensors excluding the abnormal sensor, one signal is defined as the first signal, and the other signal having a phase delay of 120 degrees in electrical angle with respect to the first signal is defined as the first signal. In the case of the second signal,
    The signal processing unit, in the signal generation process,
    a first process of obtaining an instantaneous value of the first signal and an instantaneous value of the second signal by digitally converting the first signal and the second signal;
    A synthesized signal of a first fundamental signal contained in the first signal and a second fundamental signal contained in the second signal by subtracting the instantaneous value of the second signal from the instantaneous value of the first signal a second process of calculating an instantaneous value of
    a third process of calculating the argument of the synthesized signal based on the instantaneous value of the synthesized signal and the norm of the synthesized signal prepared in advance;
    A third fundamental wave having an orthogonal relationship with the combined signal based on the argument of the combined signal, the norm of the combined signal, and a phase difference between the combined signal and the first fundamental wave signal prepared in advance. a fourth process of calculating the instantaneous value of the signal as the instantaneous value of the signal of the remaining one phase;
    The position detection device according to claim 1, wherein:
  3.  前記合成信号の偏角をωt+φ2とし、前記合成信号の瞬時値をHuvとし、前記合成信号のノルムを||Huv||とする場合に、
     前記信号処理部は、前記第3処理において、下式(13)に基づいて前記合成信号の偏角ωt+φ2を算出し、算出された偏角ωt+φ2を拡張処理することにより、-180°以上且つ180°未満の範囲に含まれる偏角θを取得する、請求項2に記載の位置検出装置。
    Figure JPOXMLDOC01-appb-M000002
    When the argument of the synthesized signal is ωt+φ2, the instantaneous value of the synthesized signal is Huv, and the norm of the synthesized signal is ||Huv||
    In the third processing, the signal processing unit calculates the argument ωt+φ2 of the synthesized signal based on the following equation (13), and performs an expansion process on the calculated argument ωt+φ2 to obtain a value of −180° or more and 180°. 3. The position detection device according to claim 2, wherein the angle of argument θ included in a range of less than degrees is acquired.
    Figure JPOXMLDOC01-appb-M000002
  4.  前記合成信号と前記第1基本波信号との位相差をφ2とし、前記第3基本波信号の瞬時値をHwとする場合に、
     前記信号処理部は、前記第2処理において、予め用意された、前記第1信号の振幅値と前記第2信号の振幅値とが等しくなる振幅補正値に基づいて、前記第1信号の瞬時値と前記第2信号の瞬時値との少なくとも一方を補正し、
     前記信号処理部は、前記第4処理において、前記合成信号のノルム||Huv||と、前記位相差φ2と、前記偏角θとを下式(14)に代入することにより、前記第3基本波信号の瞬時値を算出する、請求項3に記載の位置検出装置。
    Figure JPOXMLDOC01-appb-M000003
    When the phase difference between the synthesized signal and the first fundamental wave signal is φ2, and the instantaneous value of the third fundamental wave signal is Hw,
    In the second processing, the signal processing unit calculates the instantaneous value of the first signal based on an amplitude correction value prepared in advance that makes the amplitude value of the first signal equal to the amplitude value of the second signal. and the instantaneous value of the second signal, and
    In the fourth processing, the signal processing unit substitutes the norm ||Huv|| of the combined signal, the phase difference φ2, and the argument θ into the following equation (14), thereby performing the third 4. The position detection device according to claim 3, which calculates an instantaneous value of the fundamental wave signal.
    Figure JPOXMLDOC01-appb-M000003
  5.  前記信号処理部は、前記信号生成処理において、
     前記第1信号の瞬時値と、前記第2信号の瞬時値と、前記第3基本波信号の瞬時値とに基づいて、前記第1信号及び前記第2信号に含まれる同相信号の瞬時値を算出する第5処理と、
     前記第1信号の瞬時値から前記同相信号の瞬時値を減算することにより、前記第1基本波信号の瞬時値を算出する第6処理と、
     前記第2信号の瞬時値から前記同相信号の瞬時値を減算することにより、前記第2基本波信号の瞬時値を算出する第7処理と、
     をさらに実行する、請求項2から請求項4のいずれか一項に記載の位置検出装置。
    The signal processing unit, in the signal generation process,
    an instantaneous value of an in-phase signal included in the first signal and the second signal based on an instantaneous value of the first signal, an instantaneous value of the second signal, and an instantaneous value of the third fundamental signal; a fifth process of calculating
    a sixth process of calculating an instantaneous value of the first fundamental signal by subtracting an instantaneous value of the in-phase signal from an instantaneous value of the first signal;
    a seventh process of calculating an instantaneous value of the second fundamental wave signal by subtracting an instantaneous value of the in-phase signal from an instantaneous value of the second signal;
    5. The position detection device according to any one of claims 2 to 4, further performing:
  6.  前記第1信号の瞬時値をHu’とし、前記第2信号の瞬時値をHv’とし、前記第3基本波信号の瞬時値をHwとし、前記同相信号の瞬時値をNとする場合に、
     前記信号処理部は、前記第5処理において、下式(15)及び下式(16)に基づいて前記同相信号の瞬時値を算出する、請求項5に記載の位置検出装置。
    Figure JPOXMLDOC01-appb-M000004
    Let Hu' be the instantaneous value of the first signal, Hv' be the instantaneous value of the second signal, Hw be the instantaneous value of the third fundamental signal, and N be the instantaneous value of the in-phase signal. ,
    6. The position detection device according to claim 5, wherein in said fifth processing, said signal processing unit calculates the instantaneous value of said in-phase signal based on the following equations (15) and (16).
    Figure JPOXMLDOC01-appb-M000004
  7.  前記信号処理部は、前記3つの磁気センサのうち前記異常センサへの電源供給を遮断する、請求項1から請求項6のいずれか一項に記載の位置検出装置。 The position detection device according to any one of claims 1 to 6, wherein the signal processing unit cuts off power supply to the abnormality sensor among the three magnetic sensors.
  8.  モータに同期して回転する磁石と対向し且つ前記磁石の回転方向に沿って所定間隔で配置される3つの磁気センサから出力される、互いに電気角で120°の位相差を有する三相の信号を用いて、前記モータの回転位置を検出する位置検出方法であって、
     前記三相の信号に含まれるU相信号、V相信号およびW相信号のそれぞれをデジタル変換することより、前記U相信号の瞬時値Hu’、前記V相信号の瞬時値Hv’および前記W相信号の瞬時値Hw’を取得する取得ステップと、
     前記U相信号の瞬時値Hu’、前記V相信号の瞬時値Hv’および前記W相信号の瞬時値Hw’が、第1ケース、第2ケースおよび第3ケースの全てにおいて下式(1)を満たすか否かを判定することにより、前記3つの磁気センサのうち異常な磁気センサである異常センサを特定する異常判別ステップと、
     前記3つの磁気センサのうち前記異常センサを除く2つの磁気センサから出力される二相の信号に基づいて、残り一相の信号を生成する信号生成ステップと、
     前記異常センサを除く2つの磁気センサから出力される二相の信号と、生成された前記残り一相の信号とに基づいて、前記モータの回転位置を推定する位置推定ステップと、を含む、位置検出方法。
    Figure JPOXMLDOC01-appb-M000005
    Three-phase signals having a phase difference of 120° in electrical angle from each other, which are output from three magnetic sensors that face a magnet that rotates in synchronism with a motor and that are arranged at predetermined intervals along the direction of rotation of the magnet. A position detection method for detecting the rotational position of the motor using
    By digitally converting each of the U-phase signal, the V-phase signal, and the W-phase signal included in the three-phase signals, the instantaneous value Hu' of the U-phase signal, the instantaneous value Hv' of the V-phase signal, and the W-phase signal are obtained. an acquisition step of acquiring an instantaneous value Hw' of the phase signal;
    The instantaneous value Hu' of the U-phase signal, the instantaneous value Hv' of the V-phase signal, and the instantaneous value Hw' of the W-phase signal are expressed by the following equation (1) in all of the first case, the second case, and the third case. an abnormality determination step of identifying an abnormal sensor, which is an abnormal magnetic sensor among the three magnetic sensors, by determining whether or not the conditions are satisfied;
    a signal generation step of generating a remaining one-phase signal based on two-phase signals output from two of the three magnetic sensors excluding the abnormal sensor;
    a position estimation step of estimating the rotational position of the motor based on the two-phase signals output from the two magnetic sensors excluding the abnormality sensor and the generated remaining one-phase signal; Detection method.
    Figure JPOXMLDOC01-appb-M000005
  9.  前記異常センサを除く2つの磁気センサから出力される二相の信号のうち、一方の信号を第1信号とし、前記第1信号に対して電気角で120°の位相遅れを有する他方の信号を第2信号とする場合に、
     前記信号生成ステップは、
     前記第1信号及び前記第2信号をデジタル変換することより、前記第1信号の瞬時値と前記第2信号の瞬時値とを取得する第1ステップと、
     前記第1信号の瞬時値から前記第2信号の瞬時値を減算することにより、前記第1信号に含まれる第1基本波信号と前記第2信号に含まれる第2基本波信号との合成信号の瞬時値を算出する第2ステップと、
     前記合成信号の瞬時値と予め用意された前記合成信号のノルムとに基づいて前記合成信号の偏角を算出する第3ステップと、
     前記合成信号の偏角と、前記合成信号のノルムと、予め用意された前記合成信号と前記第1基本波信号との位相差とに基づいて、前記合成信号と直交関係にある第3基本波信号の瞬時値を前記残り一相の信号の瞬時値として算出する第4ステップと、
     を含む、請求項8に記載の位置検出方法。
    Of the two-phase signals output from the two magnetic sensors excluding the abnormal sensor, one signal is defined as the first signal, and the other signal having a phase delay of 120 degrees in electrical angle with respect to the first signal is defined as the first signal. In the case of the second signal,
    The signal generation step includes:
    a first step of obtaining an instantaneous value of the first signal and an instantaneous value of the second signal by digitally converting the first signal and the second signal;
    A synthesized signal of a first fundamental signal contained in the first signal and a second fundamental signal contained in the second signal by subtracting the instantaneous value of the second signal from the instantaneous value of the first signal a second step of calculating the instantaneous value of
    a third step of calculating the argument of the synthesized signal based on the instantaneous value of the synthesized signal and the norm of the synthesized signal prepared in advance;
    A third fundamental wave having an orthogonal relationship with the combined signal based on the argument of the combined signal, the norm of the combined signal, and a phase difference between the combined signal and the first fundamental wave signal prepared in advance. a fourth step of calculating the instantaneous value of the signal as the instantaneous value of the remaining one-phase signal;
    The position detection method according to claim 8, comprising:
  10.  前記合成信号の偏角をωt+φ2とし、前記合成信号の瞬時値をHuvとし、前記合成信号のノルムを||Huv||とする場合に、
     前記第3ステップにおいて、下式(13)に基づいて前記合成信号の偏角ωt+φ2を算出し、算出された偏角ωt+φ2を拡張処理することにより、-180°以上且つ180°未満の範囲に含まれる偏角θを取得する、請求項9に記載の位置検出方法。
    Figure JPOXMLDOC01-appb-M000006
    When the argument of the synthesized signal is ωt+φ2, the instantaneous value of the synthesized signal is Huv, and the norm of the synthesized signal is ||Huv||
    In the third step, the argument ωt+φ2 of the synthesized signal is calculated based on the following equation (13), and the calculated argument ωt+φ2 is expanded to be included in the range of −180° or more and less than 180°. 10. The position detection method according to claim 9, wherein the argument .theta.
    Figure JPOXMLDOC01-appb-M000006
  11.  前記合成信号と前記第1基本波信号との位相差をφ2とし、前記第3基本波信号の瞬時値をHwとする場合に、
     前記第2ステップにおいて、予め用意された、前記第1信号の振幅値と前記第2信号の振幅値とが等しくなる振幅補正値に基づいて、前記第1信号の瞬時値と前記第2信号の瞬時値との少なくとも一方を補正し、
     前記第4ステップにおいて、前記合成信号のノルム||Huv||と、前記位相差φ2と、前記偏角θとを下式(14)に代入することにより、前記第3基本波信号の瞬時値を算出する、請求項10に記載の位置検出方法。
    Figure JPOXMLDOC01-appb-M000007
    When the phase difference between the synthesized signal and the first fundamental wave signal is φ2, and the instantaneous value of the third fundamental wave signal is Hw,
    In the second step, the instantaneous value of the first signal and the value of the second signal are calculated based on an amplitude correction value prepared in advance that makes the amplitude value of the first signal equal to the amplitude value of the second signal. correcting at least one of the instantaneous value and
    In the fourth step, by substituting the norm ||Huv|| of the synthesized signal, the phase difference φ2, and the argument θ into the following equation (14), the instantaneous value of the third fundamental wave signal 11. The position detection method according to claim 10, wherein calculating
    Figure JPOXMLDOC01-appb-M000007
  12.  前記信号生成ステップは、
     前記第1信号の瞬時値と、前記第2信号の瞬時値と、前記第3基本波信号の瞬時値とに基づいて、前記第1信号及び前記第2信号に含まれる同相信号の瞬時値を算出する第5ステップと、
     前記第1信号の瞬時値から前記同相信号の瞬時値を減算することにより、前記第1基本波信号の瞬時値を算出する第6ステップと、
     前記第2信号の瞬時値から前記同相信号の瞬時値を減算することにより、前記第2基本波信号の瞬時値を算出する第7ステップと、
     をさらに含む、請求項9から請求項11のいずれか一項に記載の位置検出方法。
    The signal generation step includes:
    an instantaneous value of an in-phase signal included in the first signal and the second signal based on an instantaneous value of the first signal, an instantaneous value of the second signal, and an instantaneous value of the third fundamental signal; a fifth step of calculating
    a sixth step of calculating an instantaneous value of the first fundamental signal by subtracting an instantaneous value of the in-phase signal from an instantaneous value of the first signal;
    a seventh step of calculating an instantaneous value of the second fundamental signal by subtracting an instantaneous value of the in-phase signal from an instantaneous value of the second signal;
    The position detection method according to any one of claims 9 to 11, further comprising:
  13.  前記第1信号の瞬時値をHu’とし、前記第2信号の瞬時値をHv’とし、前記第3基本波信号の瞬時値をHwとし、前記同相信号の瞬時値をNとする場合に、
     前記第5ステップにおいて、下式(15)及び下式(16)に基づいて前記同相信号の瞬時値を算出する、請求項12に記載の位置検出方法。
    Figure JPOXMLDOC01-appb-M000008
    Let Hu' be the instantaneous value of the first signal, Hv' be the instantaneous value of the second signal, Hw be the instantaneous value of the third fundamental signal, and N be the instantaneous value of the in-phase signal. ,
    13. The position detection method according to claim 12, wherein in said fifth step, the instantaneous value of said in-phase signal is calculated based on the following equations (15) and (16).
    Figure JPOXMLDOC01-appb-M000008
  14.  前記3つの磁気センサのうち前記異常センサへの電源供給を遮断するステップをさらに含む、請求項8から請求項13のいずれか一項に記載の位置検出方法。 The position detection method according to any one of claims 8 to 13, further comprising a step of cutting off power supply to said abnormality sensor among said three magnetic sensors.
PCT/JP2021/022352 2021-03-30 2021-06-11 Position detection device and position detection method WO2022208913A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023510175A JP7452757B2 (en) 2021-03-30 2021-06-11 Position detection device and position detection method
CN202180096395.8A CN117121363A (en) 2021-03-30 2021-06-11 Position detection device and position detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056376 2021-03-30
JP2021056376 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022208913A1 true WO2022208913A1 (en) 2022-10-06

Family

ID=83457576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022352 WO2022208913A1 (en) 2021-03-30 2021-06-11 Position detection device and position detection method

Country Status (3)

Country Link
JP (1) JP7452757B2 (en)
CN (1) CN117121363A (en)
WO (1) WO2022208913A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149909A (en) * 2011-01-17 2012-08-09 Jtekt Corp Rotation angle detection device
JP2014196940A (en) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Electromagnetic suspension apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149909A (en) * 2011-01-17 2012-08-09 Jtekt Corp Rotation angle detection device
JP2014196940A (en) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Electromagnetic suspension apparatus

Also Published As

Publication number Publication date
JP7452757B2 (en) 2024-03-19
CN117121363A (en) 2023-11-24
JPWO2022208913A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP6163874B2 (en) Rotation angle detection device, image processing device, and rotation angle detection method
JP2007151344A (en) Magnetic pole position estimating method, motor speed estimating method, and motor controller
JP2015132593A (en) Rotation angle detection apparatus, rotation angle detection method, and image forming apparatus
US9966884B2 (en) Method and device for determining the rotor position and speed of a rotating field machine
JP7331861B2 (en) Position estimation device and position estimation method
JP5845828B2 (en) Detection device, drive device
WO2022208913A1 (en) Position detection device and position detection method
JP6844617B2 (en) Motor modules, motor step motion control systems, and motor controls
JP5758140B2 (en) Motor control device and motor control method
JP6112832B2 (en) Angle correction device and rotation angle sensor
JP2013250084A (en) Rotation angle detection device, image processing device, and rotation angle detection method
WO2022208914A1 (en) Three-phase signal generation device and three-phase signal generation method
JP6384199B2 (en) POSITION ESTIMATION DEVICE, MOTOR DRIVE CONTROL DEVICE, POSITION ESTIMATION METHOD, AND PROGRAM
WO2023053596A1 (en) Three-phase signal generation device and three-phase signal generation method
WO2023053598A1 (en) Three-phase signal generating device, and three-phase signal generating method
JP6619382B2 (en) Motor drive control device and control method of motor drive control device
WO2023167328A1 (en) Signal generation device and signal generation method
WO2023167329A1 (en) Signal generation device and signal generation method
JP5853641B2 (en) Line current detection device and power conversion system
WO2024004448A1 (en) Signal generation device and signal generation method
CN112146688A (en) Rotation angle detecting device
WO2022254863A1 (en) Angle detection method and angle detection device
WO2022176507A1 (en) Position detection device, position detection method, unmanned carrier, and sewing device
JP7186846B1 (en) Control system for angle detector and AC rotating machine
WO2022254862A1 (en) Angle detection method and angle detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935073

Country of ref document: EP

Kind code of ref document: A1