WO2022208824A1 - Wireless relay device and wireless relay method - Google Patents

Wireless relay device and wireless relay method Download PDF

Info

Publication number
WO2022208824A1
WO2022208824A1 PCT/JP2021/014072 JP2021014072W WO2022208824A1 WO 2022208824 A1 WO2022208824 A1 WO 2022208824A1 JP 2021014072 W JP2021014072 W JP 2021014072W WO 2022208824 A1 WO2022208824 A1 WO 2022208824A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio
ris
signal
connection
Prior art date
Application number
PCT/JP2021/014072
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
翔平 吉岡
慎也 熊谷
大輔 栗田
優元 ▲高▼橋
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023510096A priority Critical patent/JPWO2022208824A1/ja
Priority to PCT/JP2021/014072 priority patent/WO2022208824A1/en
Publication of WO2022208824A1 publication Critical patent/WO2022208824A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/145Passive relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. FIG. 2 is a basic configuration diagram of a network using the wireless relay device 300.
  • FIG. 3 is a functional block configuration diagram of the wireless relay device 300.
  • FIG. 4 is an explanatory diagram of a typical problem when using a high frequency band.
  • FIG. 5 is a diagram showing the relationship between the transmitting antennas (Tx) of the base station 150A and the like, the relay antennas (Sx) of the reflective radio relay apparatus 300, and the receiving antennas (Rx) of the UE 200 and the like.
  • FIG. Tx transmitting antennas
  • Sx relay antennas
  • Rx receiving antennas
  • a macro cell is generally interpreted as a communicable area with a radius of several hundred meters to several tens of kilometers covered by one radio base station. Also, a small cell is interpreted as a generic term for cells that have low transmission power and cover a smaller area than a macro cell.
  • the radio base station 150A and the UE 200 directly transmit and receive radio signals without going through the radio relay device 300 when the radio quality is good.
  • the radio relay device 300 relays radio signals transmitted and received between the radio base station 150A and the UE 200.
  • the radio relay apparatus 300 generates propagation path information between the radio wave source such as the radio base station 150A and the UE 200 and the relay antenna based on the change in received power during control of the variable section 303 such as a variable phase shifter.
  • H PT and H RP are estimated, and based on the estimated propagation path information, a variable section 303 such as a variable phase shifter is controlled to relay the radio signal to the radio wave receiving destination such as the UE 200 .
  • the radio relay apparatus 300 controls the variable section 303 such as a variable phase shifter based on the control information received from the radio base station 150A or the UE 200.
  • the radio signal may be relayed toward the radio wave reception destination such as the UE 200.
  • variable section 303 is connected to the antenna 301 and can change the phase, load, power, amplitude, noise, and the like.
  • variable section 303 may be a variable phase shifter, a phase shifter, an amplifier, or the like. For example, by changing the phase of the radio wave that reaches the relay antenna from the radio wave source, the direction and beam of the radio wave can be changed.
  • the transmitting/receiving unit 350 adjusts the propagation path between the radio wave generation source (eg, radio base station 150A, UE 200) and the relay antenna 301 based on the reception state (eg, change in received power, etc.) when the variable unit 303 is controlled.
  • Information H PT , H RP ) may be estimated.
  • Massive MIMO generally means MIMO communication using an antenna having 100 or more antenna elements, and enables faster wireless communication than before due to the effect of multiplexing multiple streams.
  • Advanced beamforming (BF) is also possible.
  • the beam width can be dynamically changed depending on the frequency band used, the state of the UE 200, or the like. Also, it is possible to increase the received signal power by beam forming (BF) gain by using a narrow beam. Furthermore, effects such as reduction of interference and effective use of radio resources can be expected.
  • the arrayed relay antennas 301 are arranged facing the same direction. Thereby, the propagation path of relay antenna 301 can be estimated based on the reception state observed when the phase condition of relay antenna 301 is changed in a plurality of ways.
  • FIG. 7 is a diagram showing a relationship between radio relay apparatus 300 and base station 100 or UE 200 and control information signaling. As shown in FIG. 7, signaling is performed between the radio relay apparatus 300 and the base station 100 or the UE 200 in order to perform beam control of the radio relay apparatus 300 such as RIS. For example, a Meta Structure for beam selection is included in the transmitted and received signals, and the reception quality of the transmitted beam is fed back.
  • FIG. 10 is a diagram showing an operation example of the wireless relay device 300 in connection between the base station and the RIS (operation examples 1 and 2). As shown in FIG. 10, operation examples 1 and 2 relate to the connection between the base station 100 and the RIS300.
  • the RIS 300 may transmit and receive the following information when connecting with the base station 100.
  • ⁇ Example of information sent by RIS when connecting> ⁇ Information identifying RIS ⁇ Request for connection with base station (request to start connection, request to resume connection, or request to reconnect) ⁇ RIS capability (e.g.
  • TA Timing Advance
  • FIG. 13 is a diagram showing the behavior of the 3-step operation example 1.
  • the RIS 300 receives a connection request signal from the base station 100, in Step 2, the RIS 300 transmits connection information based on the signal received from the base station 100, and in Step 3 Then, the RIS 300 may receive connection information from the base station 100 .
  • Step 1 Receive connection request or reconnection request signal from base station> •
  • the RIS may receive connection requests (outgoing)/reconnection requests.
  • the resource of the signal received by the RIS may be determined based on the transmitted signal when performing detection/identification.
  • the resource of the signal received by the RIS may be determined based on the signal received when performing detection/identification.
  • Sequences/resources/parameters may be defined or preset in the RIS.
  • 1-1 The signal received at this time may be the signal received when performing detection/identification.
  • 1-2 The signal received at this time may be a signal specified for RIS.
  • the RIS may behave as follows.
  • OptionA Do not make a predetermined response to the base station
  • OptionB Notify reconnection failure to the base station
  • FIG. 15 is a diagram showing the behavior of the 2-step operation example 2.
  • the RIS 300 may transmit connection-related information to the base station 100, and in Step 2, the RIS 300 may receive connection-related information from the base station 100.
  • Steps 1 and 2 may be performed multiple times.
  • the RIS may transmit a connection request signal based on the RAR transmitted from the base station.
  • the RIS may send a connection request signal based on the signal received in Step2.
  • the RIS may transmit a predetermined signal independently of the signal transmitted from the base station. Signal transmission by the RIS may always be performed at a predetermined cycle.
  • the RIS may issue a reconnection request at this time.
  • the signal control may be different from that in origination.
  • the information to be transmitted and received may be different from that at the time of origination.
  • a call or reconnection request may be made again according to a predetermined rule.
  • the call or reconnection request may be made again based on the instructions of the base station or according to a predetermined rule.
  • the RIS may receive connection information from the base station> At this time, the RIS may determine whether the connection is complete based on the signal.
  • Example 1 Receiving connection completion information from the base station
  • Example 2 Receiving connection information from the base station
  • Example 3 Not receiving connection failure information from the base station for a certain period of time, etc.
  • Step 1 may be performed again if the RIS does not receive a signal from the base station within a certain period of time.
  • the time at this time may be determined based on a predetermined rule or a signal received from the base station. For example, RAR may be received again or PRACH may be sent again after the Contention resolution timer has passed.
  • Step 1 may be performed again. For example, based on the DCI transmitted by the base station, the RIS may retransmit Msg3 (Message3). 2-3c: The RIS may report to the base station whether the connection is complete based on the signal sent by the base station.
  • FIG. 17 is a diagram showing an operation example of the wireless relay device 300 in connection between the base station and the RIS (operation examples 3 and 4). As shown in FIG. 17, operation examples 3 and 4 relate to the connection between the terminal 200 and the RIS 300. FIG. Here, the RIS 300 may transmit and receive the following information when connecting with the terminal 200.
  • ⁇ Information received by the mobile station when connecting/Information sent by the RIS when connecting> ⁇ Information that identifies the RIS ⁇ Connection request (connection start request, connection restart request, or reconnection request) ⁇ RIS capability (e.g. RIS beam information (number of beams that can be directed, number of directions, direction/angle, etc.)) ⁇ Security control information ⁇ Location information/direction of RIS ⁇ Purpose of connection (Examples of purpose of connection: location registration, incoming/outgoing calls, emergency calls, priority calls) ⁇ Information to notify that the connection has been completed, etc.
  • RIS capability e.g. RIS beam information (number of beams that can be directed, number of directions, direction/angle, etc.)
  • ⁇ Security control information ⁇ Location information/direction of RIS ⁇ Purpose of connection (Examples of purpose of connection: location registration, incoming/outgoing calls, emergency calls, priority calls)
  • FIG. 18 is a diagram showing the behavior of one-step operation example 3.
  • the RIS 300 may receive the signal from the mobile station 200 (Step 1).
  • FIG. 19 is a diagram showing the behavior of the 2-step operation example 3.
  • the mobile station 200 transmits a connection request signal to the RIS 300/RIS 300 receives the connection request signal from the mobile station 200, and in Step 2, the RIS 300 receives the signal received from the mobile station 200.
  • FIG. 20 is a diagram showing the behavior of the 3-step operation example 3.
  • Step 1 the mobile station 200 transmits a connection request signal to the RIS 300/RIS 300 receives the connection request signal from the mobile station 200, and in Step 2, the RIS 300 receives the signal from the mobile station 200. , and in Step 3, the mobile station 200 may transmit the connection information based on the signal received from the RIS 300 .
  • Steps 2 and 3 may be performed multiple times.
  • connection request (mobile station ⁇ RIS)>
  • a connection request (origination)/reconnection request may be transmitted.
  • the connection request may be made by the signal transmitted and received when detection/identification is performed, or the connection request may be made by a different signal using the same settings.
  • the mobile station may transmit a predetermined signal independently of the signal transmitted from the RIS. Signal transmission by the mobile station may always be performed at a predetermined period. Sequences/parameters may be defined or preset in the RIS.
  • ⁇ Step 2 The RIS may transmit connection information based on the signal sent from the mobile station> When a reconnection request is received, the information to be signal controlled/transmitted may differ from that at the time of transmission. 2-1: When the RIS receives the signal sent in Step 1 - Reconnection may be refused to the mobile station when the following conditions are met. ⁇ Poor radio quality (e.g. received SINR is below the threshold) ⁇ RIS does not hold mobile station information ⁇ Security control is not activated between RIS and mobile station
  • Step 2 may be performed again if the RIS does not receive a signal from the mobile station within a certain period of time. The time at this time may be determined based on a predetermined rule or a signal received from the mobile station.
  • Step 2 If it is determined that the connection has failed based on the signal transmitted from the mobile station, Step 2 may be performed again.
  • the RIS may determine whether the connection is complete based on the signal.
  • Example 1 Receive connection completion information from mobile station
  • Example 2 Receive connection information from mobile station, etc.
  • the RIS may report to the mobile station whether the connection is complete.
  • Step 3 The mobile station may send connection information based on the signal sent from the RIS> The mobile station may determine whether the connection is complete based on the signal.
  • Example 1 Receiving connection completion information from RIS
  • Example 2 Receiving connection information from RIS etc.
  • the mobile station may report to the RIS whether the connection is complete.
  • Step 1 Send again after Contention resolution timer
  • Step 1 If it is determined that the connection has failed based on the signal sent from the RIS, perform Step 1 again/You may instruct the RIS to perform Step 3.
  • FIG. 21 is a diagram showing the behavior of one-step operation example 4.
  • steps 2 and 3 can also be implemented by replacing (reading) the RIS and the mobile station in Operation Example 3, so description thereof will be omitted.
  • the radio relay device includes a control unit (control unit 330) that controls the relay state when relaying radio waves from radio base stations (radio base stations 100, 150) or terminals (UE 200) without signal interpretation, A transmitting/receiving unit (transmitting/receiving unit 350) that transmits or receives a signal related to synchronization or connection with a radio base station (radio base stations 100, 150) or a terminal (UE 200).
  • control unit 330 controls the relay state when relaying radio waves from radio base stations (radio base stations 100, 150) or terminals (UE 200) without signal interpretation
  • a transmitting/receiving unit transmitting/receiving unit 350 that transmits or receives a signal related to synchronization or connection with a radio base station (radio base stations 100, 150) or a terminal (UE 200).
  • the radio relay apparatus 300 can accurately synchronize or connect with each other by transmitting/receiving a signal for synchronizing or connecting with the base station 100, the UE 200, or the like. (RIS) or the like can be used for relay.
  • transmission/reception section 350 of radio relay apparatus 300 transmits or receives signals for connection or synchronization with radio base station 100 or terminal 200 .
  • the wireless relay device 300 can switch to an appropriate relay state according to the control information and reception state.
  • control unit 330 of the radio relay device 300 performs discovery, synchronization, and connection of a radio base station or a terminal, initial connection between the radio base station and the terminal, and communication after connection establishment. , and beam control.
  • the communication target of the wireless relay device is described as a "base station” or a "mobile station/terminal”, but the target is not limited to this and may be any communication device.
  • the direction from the radio base station to the terminal has been mainly described, but as appropriately described in the above-described embodiments, radio signals in the direction from the terminal to the radio base station (uplink) can also be used. may be controlled.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 22 is a diagram showing an example of the hardware configuration of base station 100, UE 200 and radio relay apparatus 300.
  • base station 100, UE 200 and radio relay device 300 are configured as computer devices including processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006 and bus 1007. may
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the wireless relay device 300 (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function or part of the functions in the wireless relay device 300 is performed by the processor 1001 by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 performs the calculation. It may be realized by controlling communication or controlling at least one of reading and writing of data in memory 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, Digital Signal Processor (DSP), Application Specific Int e.g. rated Circuit (ASIC), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA). part or all of each functional block may be implemented by the hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Int e.g. rated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, R
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 5G Beyond 5G
  • 6G Future Radio Access
  • NR New Radio
  • W-CDMA® GSM®
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (Registered Trademark)
  • IEEE 802.16 WiMAX (Registered Trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (Registered Trademark), or any other suitable system and any extensions based on these It may be applied to at least one of the generation systems.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may also consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • one or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: R example:), PRB pairs, RB pairs and so on.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for a UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Wireless communication system 100,150A ⁇ 150D Wireless base station 200 UE 300 Radio repeater 301 Relay antenna 303 Variable unit 330 Control unit 350 Transmitter/receiver C Cell OB Obstacle 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Abstract

This wireless relay device controls the relay state of the device when the device relays radio waves from a wireless base station or a terminal without employing signal interpretation. A signal relating to synchronization or connection is transmitted to or received from the wireless base station or the terminal by the wireless relay device.

Description

無線中継装置および無線中継方法Wireless relay device and wireless relay method
 本発明は、無線中継装置および無線中継方法に関する。 The present invention relates to a wireless relay device and a wireless relay method.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 6Gなどの将来ネットワークでは、5Gと比較して、更に高い品質が求められる。例えば、テラbps(bit per second)の超高速通信や、光通信レベルの高信頼低遅延の通信などである。 Future networks such as 6G will require even higher quality than 5G. For example, ultra-high-speed communication of tera bps (bit per second) and high-reliability low-delay communication at the level of optical communication.
 そのため、非常に高い周波数帯、例えばテラヘルツ(THz)波の利用が考えられ、超広帯域利用による高速化と、シンボル長の短さによる低遅延化が期待されるが、そのままでは、減衰率の大きさによるカバレッジの狭さや、直進性の高さによる信頼性の低さというデメリットが見込まれる。また、6G通信が必要とされる各場所について、どうやって冗長性を確保し、どうやって通信の点を増やすかという課題を検討する必要もある。 For this reason, the use of extremely high frequency bands, such as terahertz (THz) waves, is expected. Disadvantages are expected, such as narrow coverage due to low speed and low reliability due to high straightness. It is also necessary to consider how to ensure redundancy and how to increase communication points for each location where 6G communication is required.
 上述のように、高周波数帯域では、電波の強い直進性等によって、不感地帯が発生し易いなどの問題があり、現在、パッシブなリピータやアクティブ型の反射板(RIS:Reconfigurable Intelligent Surface)などを用いて、マルチパス環境下等において、通信品質を改善させる方法が試行されている(非特許文献1,pp.15-16等参照)。これにより、無線基地局や端末からは、通信の点が増えているように見える。 As mentioned above, in the high frequency band, there are problems such as the occurrence of dead zones due to the strong straightness of radio waves, so currently passive repeaters and active reflectors (RIS: Reconfigurable Intelligent Surface) are used A method for improving communication quality in a multipath environment or the like is being tried (see Non-Patent Document 1, pp.15-16, etc.). As a result, from the perspective of wireless base stations and terminals, the number of communication points seems to be increasing.
 基地局や端末(User Equipment, UE)などの電波発生源から電波受信先へ電波を反射させたり透過させたりして中継する場合には、基地局やUE等と的確に接続を確立したり同期を行ったりするなど、的確に互いに接続・同期する必要がある。 When relaying radio waves by reflecting or transmitting radio waves from radio wave sources such as base stations and terminals (User Equipment, UE) to radio wave receivers, it is necessary to establish and synchronize connections with base stations, UEs, etc. It is necessary to accurately connect and synchronize with each other, such as performing
 そこで、本発明は、このような状況に鑑みてなされたものであり、基地局やUE等との間で、的確に互いと接続または同期させることができる、無線中継装置および無線中継方法の提供を目的とする。 Therefore, the present invention has been made in view of such circumstances, and provides a radio relay apparatus and a radio relay method that can accurately connect or synchronize with each other between base stations, UEs, and the like. With the goal.
 本開示の一態様である無線中継装置(RIS300)は、無線基地局(無線基地局100,150)または端末(UE200)からの電波を信号解釈せず中継する際の中継状態を制御する制御部(制御部330)と、無線基地局(無線基地局100,150)または端末(UE200)との間で、同期または接続に係る信号を送信または受信する送受信部(送受信部350)と、を備える。 The radio relay device (RIS 300), which is one aspect of the present disclosure, is a control unit (control section 330) and a transmission/reception section (transmission/reception section 350) that transmits or receives a signal related to synchronization or connection between the radio base station (radio base stations 100 and 150) or the terminal (UE 200).
 本開示の一態様である無線中継方法は、無線基地局(無線基地局100,150)または端末(UE200)からの電波を信号解釈せず中継する際の中継状態を制御する制御ステップと、無線基地局(無線基地局100,150)または端末(UE200)との間で、同期または接続に係る信号を送信または受信する送受信ステップと、を含む。 A radio relay method, which is one aspect of the present disclosure, includes a control step for controlling a relay state when relaying radio waves from a radio base station (radio base stations 100, 150) or a terminal (UE 200) without signal interpretation; (radio base station 100, 150) or a terminal (UE 200), and a transmission/reception step of transmitting or receiving a signal related to synchronization or connection.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、無線中継装置300を用いたネットワークの基本構成図である。FIG. 2 is a basic configuration diagram of a network using the wireless relay device 300. As shown in FIG. 図3は、無線中継装置300の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of the wireless relay device 300. As shown in FIG. 図4は、高周波数帯域を用いる場合における典型的な課題の説明図である。FIG. 4 is an explanatory diagram of a typical problem when using a high frequency band. 図5は、基地局150A等の送信アンテナ(Tx)と、反射型の無線中継装置300の中継アンテナ(Sx)と、UE200等の受信アンテナ(Rx)の関係を示した図である。FIG. 5 is a diagram showing the relationship between the transmitting antennas (Tx) of the base station 150A and the like, the relay antennas (Sx) of the reflective radio relay apparatus 300, and the receiving antennas (Rx) of the UE 200 and the like. 図6は、基地局150A等の送信アンテナ(Tx)と、透過型の無線中継装置300の中継アンテナ(Sx)と、UE200等の受信アンテナ(Rx)の関係を示した図である。FIG. 6 is a diagram showing the relationship between the transmitting antennas (Tx) of the base station 150A and the like, the relay antennas (Sx) of the transparent radio relay apparatus 300, and the receiving antennas (Rx) of the UE 200 and the like. 図7は、無線中継装置300が基地局100またはUE200と制御情報のシグナリングを行う関係を示した図である。FIG. 7 is a diagram showing a relationship between radio relay apparatus 300 and base station 100 or UE 200 and control information signaling. 図8は、Meta StructureでRISが送受信するビームを選択する例を示した図である。FIG. 8 is a diagram showing an example of selecting beams transmitted and received by the RIS in the MetaStructure. 図9は、Meta StructureでRISに送受信するビームを選択する例を示した図である。FIG. 9 is a diagram showing an example of selecting beams to be transmitted to and received from the RIS by MetaStructure. 図10は、基地局とRIS間の接続(動作例1,2)における無線中継装置300の動作例を示す図である。FIG. 10 is a diagram showing an operation example of the wireless relay device 300 in connection between the base station and the RIS (operation examples 1 and 2). 図11は、1ステップの動作例1の挙動を示す図である。FIG. 11 is a diagram illustrating the behavior of one-step operation example 1. FIG. 図12は、2ステップの動作例1の挙動を示す図である。FIG. 12 is a diagram showing the behavior of the 2-step operation example 1. FIG. 図13は、3ステップの動作例1の挙動を示す図である。13A and 13B are diagrams showing the behavior of the 3-step operation example 1. FIG. 図14は、1ステップの動作例2の挙動を示す図である。14A and 14B are diagrams illustrating the behavior of one-step operation example 2. FIG. 図15は、2ステップの動作例2の挙動を示す図である。FIG. 15 is a diagram showing the behavior of the 2-step operation example 2. FIG. 図16は、4ステップの動作例2の挙動を示す図である。FIG. 16 is a diagram showing the behavior of the four-step operation example 2. FIG. 図17は、基地局とRIS間の接続(動作例3,4)における無線中継装置300の動作例を示す図である。FIG. 17 is a diagram showing an operation example of the wireless relay device 300 in connection between the base station and the RIS (operation examples 3 and 4). 図18は、1ステップの動作例3の挙動を示す図である。FIG. 18 is a diagram illustrating the behavior of one-step operation example 3. FIG. 図19は、2ステップの動作例3の挙動を示す図である。FIG. 19 is a diagram showing the behavior of the 2-step operation example 3. FIG. 図20は、3ステップの動作例3の挙動を示す図である。FIG. 20 is a diagram showing the behavior of the 3-step operation example 3. FIG. 図21は、1ステップの動作例4の挙動を示す図である。FIG. 21 is a diagram showing the behavior of one-step operation example 4. FIG. 図22は、UE200及び無線中継装置300等のハードウェア構成の一例を示す図である。FIG. 22 is a diagram showing an example of the hardware configuration of UE 200, radio relay apparatus 300, and the like.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の一例を示す全体概略構成図である。無線通信システム10は、一例として5G New Radio(NR)ないし6Gに従った無線通信システムであり、複数の無線基地局と、複数の端末とによって構成される。
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram showing an example of a radio communication system 10 according to the present embodiment. The radio communication system 10 is, for example, a radio communication system conforming to 5G New Radio (NR) or 6G, and is composed of multiple radio base stations and multiple terminals.
 具体的には、無線通信システム10は、無線基地局100、無線基地局150A~無線基地局150D、及びユーザ端末200(以下、UE200, User Equipment)を含む。 Specifically, the radio communication system 10 includes a radio base station 100, radio base stations 150A to 150D, and a user terminal 200 (UE 200, User Equipment).
 無線基地局100は、一例として5G乃至6Gに従った無線基地局であり、セルC1を形成する。なお、セルC1は、比較的サイズの大きいセルであり、マクロセルと呼ばれる。 The radio base station 100 is, for example, a radio base station according to 5G to 6G and forms a cell C1. Note that the cell C1 is a relatively large cell and is called a macrocell.
 無線基地局150A~無線基地局150Dも、5G乃至6Gに従った無線基地局であるが、比較的サイズが小さいセルC11~セルC14をそれぞれ形成する。セルC11~セルC14は、スモールセル或いはセミマクロセルなどと呼ばれてもよい。図1に示すように、セルC11~セルC14は、セルC1(マクロセル)に含まれる(オーバレイする)ように形成されてもよい。 The radio base stations 150A to 150D are also radio base stations conforming to 5G to 6G, but form relatively small cells C11 to C14, respectively. Cells C11 to C14 may be called small cells or semi-macro cells. As shown in FIG. 1, cells C11 to C14 may be formed so as to be included in (overlay with) cell C1 (macrocell).
 マクロセルは、一般的に、1つの無線基地局がカバーする半径数百メートルから数十キロメートルの通信可能エリアと解釈される。また、スモールセルは、送信電力が小さく、マクロセルに比較して小さいエリアをカバーするセルの総称と解釈される。 A macro cell is generally interpreted as a communicable area with a radius of several hundred meters to several tens of kilometers covered by one radio base station. Also, a small cell is interpreted as a generic term for cells that have low transmission power and cover a smaller area than a macro cell.
 なお、無線基地局100及び無線基地局150A~無線基地局150Dは、gNodeB(gNB)またはBS(Base Station)などと表記されてもよい。また、UE200は、MSなどと表記されてもよい。さらに、無線基地局及び端末の数や種類を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 Note that the radio base station 100 and the radio base stations 150A to 150D may be denoted as gNodeB (gNB) or BS (Base Station). Also, the UE 200 may be written as an MS or the like. Furthermore, the specific configuration of the radio communication system 10 including the numbers and types of radio base stations and terminals is not limited to the example shown in FIG.
 また、無線通信システム10は、必ずしも5G乃至6Gに従った無線通信システムに限定されない。例えば、無線通信システム10は、6Gの次世代の無線通信システム、或いはLong Term Evolution(LTE)に従った無線通信システムであってもよい。 Also, the wireless communication system 10 is not necessarily limited to a wireless communication system according to 5G or 6G. For example, the wireless communication system 10 may be a 6G next-generation wireless communication system or a wireless communication system according to Long Term Evolution (LTE).
 無線基地局100及び無線基地局150A~無線基地局150Dは、一例として、UE200と5G乃至6Gに従った無線通信を実行する。無線基地局100及び無線基地局150A~無線基地局150D及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、UEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)、および、gNBなどの無線通信ノード間の無線バックホールとUEへの無線アクセスとが統合されたInt例:rated Access and Backhaul(IAB)などに対応することができる。 As an example, the radio base station 100 and the radio base stations 150A to 150D perform radio communication with the UE 200 according to 5G or 6G. The radio base station 100 and radio base stations 150A to 150D and UE 200 control radio signals transmitted from a plurality of antenna elements to generate beams BM with higher directivity. Carrier aggregation (CA) that bundles carriers (CC), dual connectivity (DC) that simultaneously communicates between a UE and two NG-RAN nodes, and radio backhaul between radio communication nodes such as gNBs and radio access to the UE are integrated, such as rated Access and Backhaul (IAB).
 また、無線通信システム10は、3GPP Release 15において規定されている以下の周波数レンジ(FR)よりも高い高周波数帯域にも対応し得る。 In addition, the wireless communication system 10 can also support high frequency bands higher than the following frequency ranges (FR) defined in 3GPP Release 15.
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応する。ここでは、このような高周波数帯域を、便宜上「FR4」と呼ぶ。FR4は、いわゆるEHF(extremely high frequency、ミリ波とも呼ばれる)に属する。なお、FR4は仮称であり、別の名称で呼ばれても構わない。あるいは、上記周波数帯域に限定されず、いかなる周波数帯域に対応してもよい。例えば、FR1及びFR2が使用されてもよい。
・FR1: 410MHz to 7.125GHz
・FR2: 24.25 GHz to 52.6 GHz
Specifically, the wireless communication system 10 supports frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Here, such a high frequency band is referred to as "FR4" for convenience. FR4 belongs to the so-called EHF (extremely high frequency, also called millimeter waves). FR4 is a tentative name and may be called by another name. Alternatively, any frequency band may be supported without being limited to the above frequency band. For example, FR1 and FR2 may be used.
 また、無線通信システム10は、無線中継装置300を含む。本実施の形態において、一例として、無線中継装置300は、反射板(RIS)、位相制御リフレクタ、パッシブリピータ、IRS(インテリジェント反射面:Intelligent Reflecting Surface)等として説明する場合がある。反射板(RIS)の具体例として、メタマテリアル反射板、動的メタサーフェス、メタサーフェスレンズ等と呼ばれるものであってもよい(非特許文献1参照)。 The wireless communication system 10 also includes a wireless relay device 300. In this embodiment, as an example, the radio relay device 300 may be described as a reflector (RIS), a phase control reflector, a passive repeater, an IRS (Intelligent Reflecting Surface), or the like. Specific examples of reflectors (RIS) may be those called metamaterial reflectors, dynamic metasurfaces, metasurface lenses, and the like (see Non-Patent Document 1).
 本実施の形態において、無線中継装置300は、無線基地局(例えば、無線基地局150A)から送信された無線信号を、中継する(本実施の形態の説明において「反射」、「透過」、「集約」(電波を略一点に集中させること)および「回折」のうち少なくとも一つを指して「中継」と呼ぶ場合がある)。UE200は、無線中継装置300によって中継された無線信号を受信できる。反対に、無線中継装置300は、UE200から送信された無線信号を中継してもよい。無線基地局100(150を含む。以下同様)についても同じことがいえる。つまり、無線中継装置300は、無線基地局100または端末200からの無線信号を中継する。 In the present embodiment, radio relay apparatus 300 relays a radio signal transmitted from a radio base station (for example, radio base station 150A) (in the description of the present embodiment, "reflection", "transmission", " At least one of "concentration" (concentrating radio waves to approximately one point) and "diffraction" may be referred to as "relay"). The UE 200 can receive radio signals relayed by the radio relay device 300 . Conversely, the radio relay device 300 may relay the radio signal transmitted from the UE200. The same can be said for the radio base stations 100 (including 150; the same applies hereinafter). That is, radio relay apparatus 300 relays radio signals from radio base station 100 or terminal 200 .
 一例として、無線中継装置300は、無線基地局100または端末200に向けて中継する無線信号の位相を変化させることができる。このような観点から、無線中継装置300は、位相可変リフレクタと呼ばれてもよい。なお、本実施の形態において、無線中継装置300は、無線信号の位相を変化させて中継する機能を有するものとして説明する場合があるが、これに限られない。また、無線中継装置300は、リピータ、中継装置、リフレクトアレイ、IRS、或いはトランスミットアレイなどと呼ばれてもよい。 As an example, the radio relay device 300 can change the phase of the radio signal that is relayed toward the radio base station 100 or the terminal 200. From this point of view, radio relay apparatus 300 may be called a variable phase reflector. In the present embodiment, radio relay apparatus 300 may be described as having a function of changing the phase of a radio signal and relaying it, but the present invention is not limited to this. Also, the wireless relay device 300 may be called a repeater, a relay device, a reflect array, an IRS, a transmit array, or the like.
 また、本実施の形態において、RIS等の無線中継装置300は、Battery less device、メタマテリアル機能装置、Intelligent reflecting surface、Smart repeater等と呼ばれてもよい。一例として、RIS等の無線中継装置300は、以下の機能を有するものとして、以下の少なくとも一つを有するものとして定義されてもよい。
[UE機能]
・BSから送信される信号の受信機能(例: DL(downlink)信号,SSB(SS Block), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), DM-RS(DeModulation Reference Signal), PT-RS(Phase Tracking Reference Signal), CSI-RS(Channel Status Information Reference Signal), RIS専用信号)
 下記メタマテリアル機能に係る情報の受信
・BSへの信号の送信機能(例: UL(uplink)信号,PRACH(Random Access Channel Preamble), PUCCH(Physical Uplink Control Channel), PUSCH Physical Uplink Control Channel, DM-RS, PT-RS, SRS (Sounding Reference Signal), RIS専用信号)
 下記メタマテリアル機能に係る情報の送信
・BSとのフレーム同期機能
Also, in the present embodiment, the wireless relay device 300 such as RIS may be called a battery less device, a metamaterial functional device, an intelligent reflecting surface, a smart repeater, or the like. As an example, the wireless relay device 300 such as RIS may be defined as having at least one of the following functions.
[UE function]
・Reception function of signals sent from BS (e.g. DL (downlink) signal, SSB (SS Block), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), DM-RS (DeModulation Reference Signal), PT-RS (Phase Tracking Reference Signal), CSI-RS (Channel Status Information Reference Signal), RIS dedicated signal)
Reception of information related to the following metamaterial functions and transmission of signals to BS (e.g. UL (uplink) signal, PRACH (Random Access Channel Preamble), PUCCH (Physical Uplink Control Channel), PUSCH Physical Uplink Control Channel, DM- RS, PT-RS, SRS (Sounding Reference Signal), RIS dedicated signal)
Transmission of information related to the following metamaterial functions ・Frame synchronization function with BS
[メタマテリアル機能]
・BSまたはUEから送信された信号の反射機能(例: 位相変更)
 RISが有する複数の反射素子毎に位相を変更して信号の反射を行ってもよいし、複数の反射素子で共通の位相変更を行って信号の反射を行ってもよい。
 Beam制御に係る機能(例: TCI(Transmission Configuration Indication)-state, QCL(Quasi Co Location)の制御に係る機能,beamの選択適用,spatial filter/precoding weightの選択適用)
・BSまたはUEから送信された信号の電力変更機能(例: 電力増幅)
 反射素子毎に異なる電力変更を行ってもよいし、複数の反射素子で共通の電力変更を行ってもよい。
[Metamaterial function]
Ability to reflect signals sent from BS or UE (e.g. phase change)
The signal may be reflected by changing the phase for each of the plurality of reflecting elements of the RIS, or the common phase may be changed by the plurality of reflecting elements to reflect the signal.
Beam control functions (e.g. TCI (Transmission Configuration Indication)-state, QCL (Quasi Co Location) control functions, beam selection application, spatial filter/precoding weight selection application)
Ability to change the power of signals sent from the BS or UE (e.g. power amplification)
A different power change may be performed for each reflective element, or a common power change may be performed for a plurality of reflective elements.
 また、RIS等の無線中継装置300における「受信して送信」や「中継」とは、以下の所定の機能Aまで行われるが、所定の機能Bまでは行われずに送信されることを意味してもよい。
A:移相器は適用するが,B:補償回路(例:.増幅,フィルタ)は介さない。
A:移相器及び補償回路は適用するが,B:周波数変換は介さない。
In addition, "receiving and transmitting" and "relaying" in the wireless relay device 300 such as RIS mean that although the following predetermined function A is performed, transmission is performed without performing predetermined function B. may
A: A phase shifter is applied, but B: A compensation circuit (eg, amplification, filter) is not passed.
A: A phase shifter and compensation circuit are applied, but B: No frequency conversion is involved.
 なお、RIS等の無線中継装置300において、位相が変化されるとき、振幅が増幅されてもよい、および/または、ノイズ除去されてもよい。また、RIS等の無線中継装置300における「中継」とは、レイヤ2/3レベルの処理を行わずに、受信した信号をそのまま送信すること、物理層レベルで受信した信号をそのまま送信すること、あるいは、信号解釈せずに受信した信号をそのまま送信することを意味してもよい(その際、位相の変化や振幅の増幅、ノイズ除去等が行われてもよい)。 In addition, in the wireless relay device 300 such as RIS, when the phase is changed, the amplitude may be amplified and/or noise may be removed. In addition, "relay" in the wireless relay device 300 such as RIS means transmitting the received signal as it is without performing layer 2/3 level processing, transmitting the signal received at the physical layer level as it is, Alternatively, it may mean transmitting the received signal as it is without signal interpretation (at that time, phase change, amplitude amplification, noise removal, etc. may be performed).
 (2)無線中継装置300を用いたネットワークの基本構成
 次に、無線中継装置300を用いたネットワークの基本構成について説明する。図2は、無線中継装置300を用いたネットワークの基本構成図である。
(2) Basic Configuration of Network Using Wireless Relay Device 300 Next, the basic configuration of a network using the wireless relay device 300 will be described. FIG. 2 is a basic configuration diagram of a network using the wireless relay device 300. As shown in FIG.
 図2に示すように、一例として、無線中継装置300は、無線基地局150A(他の無線基地局100等でもよい)と、UE200との間に介在し、無線基地局150AとUE200との間において送受信される無線信号を中継(反射、透過、集約、回折等)する。 As shown in FIG. 2, as an example, the radio relay device 300 intervenes between the radio base station 150A (other radio base station 100 or the like) and the UE 200, and is interposed between the radio base station 150A and the UE 200. relays (reflects, transmits, aggregates, diffracts, etc.) radio signals transmitted and received in
 具体例として、無線基地局150AとUE200とは、無線品質が良好な場合には、無線中継装置300を経由せずに、直接、無線信号を送受信する。無線基地局150AとUE200との間に遮蔽物がある場合など、当該無線品質が劣化した場合、無線中継装置300は、無線基地局150AとUE200との間において送受信される無線信号を中継する。 As a specific example, the radio base station 150A and the UE 200 directly transmit and receive radio signals without going through the radio relay device 300 when the radio quality is good. When the radio quality deteriorates, such as when there is an obstacle between the radio base station 150A and the UE 200, the radio relay device 300 relays radio signals transmitted and received between the radio base station 150A and the UE 200.
 具体的には、無線中継装置300は、可変位相器などの可変部303の制御時の受信電力の変化に基づいて、無線基地局150AやUE200などの電波発生源と中継アンテナ間の伝搬路情報HPT,HRPを推定し、推定した伝搬路情報に基づいて、可変位相器などの可変部303を制御することによりUE200等の電波受信先に向けて無線信号を中継する。なお、伝搬路情報HPT,HRPを推定することに限られず、無線中継装置300は、無線基地局150AまたはUE200から受信した制御情報に基づいて、可変位相器などの可変部303を制御することによりUE200等の電波受信先に向けて無線信号を中継してもよい。 Specifically, the radio relay apparatus 300 generates propagation path information between the radio wave source such as the radio base station 150A and the UE 200 and the relay antenna based on the change in received power during control of the variable section 303 such as a variable phase shifter. H PT and H RP are estimated, and based on the estimated propagation path information, a variable section 303 such as a variable phase shifter is controlled to relay the radio signal to the radio wave receiving destination such as the UE 200 . In addition to estimating the channel information H PT and H RP , the radio relay apparatus 300 controls the variable section 303 such as a variable phase shifter based on the control information received from the radio base station 150A or the UE 200. Thus, the radio signal may be relayed toward the radio wave reception destination such as the UE 200.
 ここで、伝搬路あるいは伝搬チャネルとは、無線通信の個々の通信路であり、ここでは、各送受信アンテナ(図中のBS ant.及びMS ant.等)間の通信路である。 Here, a propagation path or a propagation channel is an individual communication path for wireless communication, and here is a communication path between each transmitting/receiving antenna (BS ant. and MS ant., etc. in the figure).
 一例として、無線中継装置300は、Massive MIMOに対応した小型多素子アンテナ301と、無線信号、実質的には、電波の位相を特定の位相に変化させる可変位相器ないしは移相器303を備え、移相器303を用いて、UE200または無線基地局150Aに中継される電波の位相を制御する。位相の具体的な制御方法について、次の文献を参照してもよい。
 Venkat Arun and Hari Balakrishnan, “RFocus: Beamforming Using Thousands of Passive Antennas”, 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’20), February 25-27, 2020, Santa Clara, CA, USA, pp.1047-1061
 Qingqing Wu, and Rui Zhang, “Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming”, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 11, NOVEMBER 2019, pp.5394-5409
As an example, the radio relay device 300 includes a small multi-element antenna 301 compatible with Massive MIMO, and a variable phase shifter or phase shifter 303 that changes the phase of a radio signal, substantially a radio wave, to a specific phase, Phase shifter 303 is used to control the phase of radio waves relayed to UE 200 or radio base station 150A. The following document may be referred to for a specific phase control method.
Venkat Arun and Hari Balakrishnan, “RFocus: Beamforming Using Thousands of Passive Antennas”, 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI '20), February 25-27, 2020, Santa Clara, CA, USA, pp.1047- 1061
Qingqing Wu, and Rui Zhang, “Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming”, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 11, NOVEMBER 2019, pp.5394-5409
 (3)無線中継装置300の機能ブロック構成
 図3は、無線中継装置300の機能ブロック構成図である。図3に示すように、無線中継装置300は、アンテナ301、可変部303、制御部330、送受信部350を備える。
(3) Functional Block Configuration of Wireless Relay Device 300 FIG. 3 is a functional block configuration diagram of the wireless relay device 300. As shown in FIG. As shown in FIG. 3 , radio relay device 300 includes antenna 301 , variable section 303 , control section 330 , and transmission/reception section 350 .
 アンテナ301は、図5および図6等を用いて後述するように、可変部303に接続された少なくとも1つのアンテナである。例えば、アンテナ301は、アレーアンテナとして配置されてもよい。本実施の形態において、アンテナ301を特に中継アンテナと呼ぶ場合がある。 Antenna 301 is at least one antenna connected to variable section 303, as will be described later with reference to FIGS. For example, antenna 301 may be arranged as an array antenna. In this embodiment, antenna 301 may be particularly called a relay antenna.
 可変部303は、アンテナ301に接続されており、位相や負荷、電力、振幅、ノイズ等を変化させることができる。例えば、可変部303は、可変位相器や、移相器、アンプ等であってもよい。例えば、電波発生源から中継アンテナに届いた電波の位相を変えることにより、電波の向きやビーム等を変化させることができる。 The variable section 303 is connected to the antenna 301 and can change the phase, load, power, amplitude, noise, and the like. For example, variable section 303 may be a variable phase shifter, a phase shifter, an amplifier, or the like. For example, by changing the phase of the radio wave that reaches the relay antenna from the radio wave source, the direction and beam of the radio wave can be changed.
 制御部330は、可変部303を制御する制御手段である。本実施の形態において、制御部330は、無線基地局100または端末200からの電波を信号解釈せず中継する際の中継状態を制御する制御部として機能する。ここで、制御部330は、無線基地局100または端末200から受信した制御情報に基づいて中継状態を変化させてもよく、無線基地局100または端末200からの電波の受信状態に基づいて、中継状態を変化させてもよい。例えば、制御部330は、SSB等の制御情報に基づいて、適切な受信ビームと送信ビーム(の向き)を選択し、そのために可変部303を制御してもよい。同様に、制御部330は、受信状態から、受信品質や受信電力が最も大きいなどの基準で、適切な受信方向と送信方向の組み合わせを選択し、そのために可変部303を制御してもよい。 The control unit 330 is control means for controlling the variable unit 303. In the present embodiment, control section 330 functions as a control section that controls the relay state when radio waves from radio base station 100 or terminal 200 are relayed without signal interpretation. Here, the control unit 330 may change the relay state based on control information received from the radio base station 100 or the terminal 200, and based on the reception state of radio waves from the radio base station 100 or the terminal 200, You can change the state. For example, the control unit 330 may select appropriate reception beams and transmission beams (directions) based on control information such as SSB, and control the variable unit 303 for this purpose. Similarly, control section 330 may select an appropriate combination of the reception direction and transmission direction based on criteria such as the highest reception quality and reception power from the reception state, and may control variable section 303 for that purpose.
 また、本実施形態において、制御部330は、例えば、UE200または無線基地局150Aと中継アンテナ301との間の伝搬路に関する情報(受信状態により推定した情報や制御情報を含む。以下同様)に基づいて、可変部303を制御することができる。例えば、制御部330は、アクティブリピータやRIS等の公知手法を用いて、無線基地局150Aから受信した電波を、送信電力を用いずに、位相を変化させることによって、電波受信先(この場合はUE200)などの特定の方向へ中継することができる。具体的には、制御部330は、推定したHPT及びHRPに基づいて、UE200または無線基地局150Aに向けて中継するために無線信号の位相を制御する。すなわち、ビームフォーミング等と同様の原理で、アレーアンテナ等の位相を変化させることで、特定の方向へ電波を中継することができる。なお、無線中継装置300は、制御部330によって無線信号(電波)の位相のみを制御して(変化させて)おり、中継される無線信号の電力の増幅などを行うことなく、無給電で中継してもよい。 Further, in the present embodiment, the control unit 330, for example, based on information (including information and control information estimated from the reception state) on the propagation path between the UE 200 or the radio base station 150A and the relay antenna 301 can control the variable unit 303. For example, the control unit 330 changes the phase of the radio wave received from the radio base station 150A by using a known method such as an active repeater or RIS, without using transmission power, thereby changing the phase of the radio wave receiving destination (in this case, UE 200) can be relayed in a specific direction. Specifically, control section 330 controls the phase of the radio signal for relaying to UE 200 or radio base station 150A based on estimated HPT and HRP. That is, it is possible to relay radio waves in a specific direction by changing the phase of an array antenna or the like based on the same principle as beam forming. Note that the wireless relay device 300 controls (changes) only the phase of the wireless signal (radio wave) by the control unit 330, and relays the wireless signal without power supply without amplifying the power of the wireless signal to be relayed. You may
 また、送受信部350は、電波や信号や各種の情報を送受信する送受信手段である。送受信部350は、本実施の形態において、無線基地局100(150を含む。以下同様)または端末200との間で、同期または接続に係る信号(上述のUE機能およびメタマテリアル機能で例示した各種の信号であってもよい。また、無線基地局や端末の発見のための信号、検出・識別のための信号と共通のものであってもよい。)を送信または受信する送受信部として機能する。具体的には、送受信部350は、無線基地局100もしくは端末200との接続/同期のために信号を送受信してもよい。例えば、UE機能およびメタマテリアル機能で上述した各種の信号を用いてもよい。なお、具体的な信号の送受信の例(シグナリング例など)については、後述する。 Also, the transmitting/receiving unit 350 is transmitting/receiving means for transmitting/receiving radio waves, signals, and various types of information. In the present embodiment, transmitting/receiving section 350 transmits/receives signals related to synchronization or connection with radio base station 100 (including 150; the same shall apply hereinafter) or terminal 200 (various signals exemplified in the above-described UE function and metamaterial function). It may also be a signal for discovering a radio base station or a terminal, or a signal for detection/identification.) . Specifically, the transmitting/receiving unit 350 may transmit/receive signals for connection/synchronization with the radio base station 100 or the terminal 200 . For example, various signals described above in the UE function and the metamaterial function may be used. A specific example of signal transmission/reception (signaling example, etc.) will be described later.
 また、送受信部350は、受信状態により情報を取得する受信部、または、無線基地局100,150AまたはUE200からの制御情報等を取得する受信部として機能してもよい。例えば、送受信部350は、無線基地局100,150AまたはUE200から送信された、SSB等の各種の信号(上述のUE機能およびメタマテリアル機能で例示した各種の信号を含む。)を制御情報等として受信してもよい。また、送受信部350は、可変部303の制御時の受信状態(例:受信電力の変化等)に基づいて、電波発生源(例:無線基地局150A,UE200)と中継アンテナ301間の伝搬路情報(HPT,HRP)を推定してもよい。 Further, the transmitting/receiving unit 350 may function as a receiving unit that acquires information according to the reception state, or as a receiving unit that acquires control information or the like from the radio base stations 100, 150A or UE200. For example, the transmitting/receiving unit 350 receives various signals such as SSB (including various signals exemplified in the above-described UE function and metamaterial function) transmitted from the radio base station 100, 150A or UE 200 as control information. You may Further, the transmitting/receiving unit 350 adjusts the propagation path between the radio wave generation source (eg, radio base station 150A, UE 200) and the relay antenna 301 based on the reception state (eg, change in received power, etc.) when the variable unit 303 is controlled. Information (H PT , H RP ) may be estimated.
 なお、HPT及びHRPは、次のように表現できる。 H PT and H RP can be expressed as follows.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 Mは端末(受信)のアンテナ数、Nは無線基地局(送信)のアンテナ数、Kは中継アンテナの数である。 M is the number of terminal (receiving) antennas, N is the number of radio base station (transmitting) antennas, and K is the number of relay antennas.
 各伝搬路に関する伝搬路情報(伝搬チャネル情報)は、具体的には、振幅や位相等の情報であり、本実施の形態において、中継アンテナ301に到来する電波の伝搬路に関して推定した情報である。一例として、送受信部350は、I/Q(In-phase/Quadrature)検波と同様の原理で、アレー状の各中継アンテナ301の可変部303の位相を直交に切り替えたときの受信電力の変化に基づいて、中継アンテナ301の伝搬路情報を推定してもよい。 The propagation path information (propagation channel information) on each propagation path is specifically information such as amplitude and phase, and in the present embodiment, it is information estimated on the propagation path of the radio waves arriving at relay antenna 301. . As an example, the transmitting/receiving unit 350 detects changes in received power when the phase of the variable unit 303 of each relay antenna 301 in the array is switched to orthogonal, based on the same principle as I/Q (In-phase/Quadrature) detection. Based on this, the propagation path information of relay antenna 301 may be estimated.
 (4)アンテナ等の構成例
 次に、中継アンテナ301を中心にした構成例について説明する。先に、高周波数帯域を用いる場合における典型的な問題点について説明し、当該問題を解消し得る無線中継装置300におけるアンテナ構成例等について説明する。
(4) Configuration Example of Antenna, etc. Next, a configuration example centering on the relay antenna 301 will be described. First, a typical problem in the case of using a high frequency band will be described, and an antenna configuration example and the like in radio relay apparatus 300 that can solve the problem will be described.
 (4.1)問題点
 Massive MIMOに対応した無線基地局は、ビームを送信できる。Massive MIMOとは、一般的に、100素子以上のアンテナ素子を有するアンテナを用いたMIMO通信を意味し、複数ストリームの多重化効果などによって、従来よりも高速な無線通信が可能となる。また、高度なビームフォーミング(BF)も可能となる。ビーム幅は、使用する周波数帯域またはUE200の状態などに応じて動的に変更し得る。また、狭いビームを用いることによるビームフォーミング(BF)利得による受信信号電力の増加を図ることができる。さらに、与干渉の低減、及び無線リソースの有効利用などの効果が見込める。
(4.1) Problem A radio base station supporting Massive MIMO can transmit beams. Massive MIMO generally means MIMO communication using an antenna having 100 or more antenna elements, and enables faster wireless communication than before due to the effect of multiplexing multiple streams. Advanced beamforming (BF) is also possible. The beam width can be dynamically changed depending on the frequency band used, the state of the UE 200, or the like. Also, it is possible to increase the received signal power by beam forming (BF) gain by using a narrow beam. Furthermore, effects such as reduction of interference and effective use of radio resources can be expected.
 図4は、高周波数帯域を用いる場合における典型的な課題の説明図である。図4に示すように、数GHz~数十GHz以上の高周波数帯域を用いる場合などにおいて、電波の強い直進性によって、不感地帯が発生し易い。無線基地局150AとUE200との間が見通せる場合、当該高周波数帯域を用いる場合でも、無線基地局150A~UE200間の無線通信に影響はない。一方、例えば、建造物または樹木など、障害物OBによって、無線基地局150AとUE200との間の見通しが遮蔽されると、無線品質が大幅に劣化する。つまり、UE200が障害物OBによって遮蔽される不感地帯に移動すると、通信が途絶えることになり得る。 FIG. 4 is an explanatory diagram of a typical problem when using a high frequency band. As shown in FIG. 4, when a high frequency band of several GHz to several tens of GHz or more is used, dead zones are likely to occur due to the strong straightness of radio waves. If the line between the radio base station 150A and the UE 200 is visible, there is no effect on radio communication between the radio base station 150A and the UE 200 even if the high frequency band is used. On the other hand, when the line of sight between the radio base station 150A and the UE 200 is blocked by an obstacle OB such as a building or tree, the radio quality is greatly degraded. In other words, when the UE 200 moves to the dead zone blocked by the obstacle OB, communication may be interrupted.
 5G乃至6Gが有する高速大容量、かつ低遅延特性を活かしたアプリケーション(遠隔操作など)の存在を考慮すると、不感地帯を解消し、無線通信システム10内での通信が途絶えることなく、無線基地局と端末とが繋がり続けていることが重要である。 Considering the existence of applications (remote control, etc.) that take advantage of the high-speed, large-capacity, and low-delay characteristics of 5G and 6G, the dead zone is eliminated, and the communication within the wireless communication system 10 is not interrupted. It is important that the device and the terminal continue to be connected.
 そこで、アクティブリピータやRISなどの電波伝搬制御装置のように、基地局150AとUE200との間の電波を中継することができる技術が開発されている。このように、基地局信号の伝搬特性を制御することで通信特性を改善させることができ、信号源不要でカバレッジ拡大や通信の冗長性確保、基地局の増設による設置・運用コストの減少を図ることができる。 Therefore, technology has been developed that can relay radio waves between the base station 150A and the UE 200, such as radio wave propagation control devices such as active repeaters and RIS. In this way, by controlling the propagation characteristics of base station signals, it is possible to improve communication characteristics, expand coverage and ensure communication redundancy without the need for signal sources, and reduce installation and operation costs by increasing the number of base stations. be able to.
 RIS(反射板)は、基地局または端末から来るビームなどの電波や信号を所定の方向に中継(反射等)し、端末または基地局に届けることができる。従来の無線中継装置では、パッシブ型とアクティブ型があるが、パッシブ型は、制御情報が不要であるというメリットがあるものの、細かいビーム制御が不可能で、移動体や環境変動等に追従不可である。これに対し、アクティブ型は、移動局の位置に応じて反射角度やビーム幅などの制御を変更する。アクティブ型は、制御情報が必要でオーバーヘッドが増加するデメリットがあるものの、制御アンテナの負荷(位相)状態を変化させるなどして、細かいビーム制御が可能で、電波の伝搬特性を可変的に制御可能であり、移動体や環境変動等にも追従することができる。 The RIS (reflector) can relay (reflect, etc.) radio waves and signals such as beams coming from a base station or terminal in a predetermined direction and deliver them to the terminal or base station. Conventional wireless repeaters are divided into passive and active types. Passive types have the advantage of not requiring control information, but they are not capable of fine beam control and cannot follow moving objects or environmental changes. be. On the other hand, the active type changes the control of the reflection angle, beam width, etc. according to the position of the mobile station. The active type has the disadvantage of requiring control information and increasing overhead, but it is possible to perform fine beam control by changing the load (phase) state of the control antenna, and to variably control the propagation characteristics of radio waves. , and can follow moving objects, environmental changes, and the like.
 アクティブ型の無線中継装置(電波伝搬制御装置等)と制御手法には、フィードバック(FB)規範と伝搬路情報規範の2つのタイプがある。FB規範では、可変型の電波伝搬制御装置が、負荷(位相)状態をランダムに変化させたときの通信状態を、UE等にフィードバックしてもらい、最適条件を探索する。一方、伝搬路情報規範では、無線基地局と電波伝搬制御装置との間の伝搬路情報に基づいて負荷状態を決定し、最適な電波伝搬制御が可能となる。本実施の形態においては、いずれのタイプであっても適用可能である。 There are two types of active wireless relay devices (radio wave propagation control devices, etc.) and control methods: feedback (FB) norms and propagation path information norms. In the FB standard, the variable type radio wave propagation control device searches for the optimum condition by having the UE etc. feed back the communication state when the load (phase) state is changed at random. On the other hand, according to the propagation path information standard, the load state is determined based on the propagation path information between the radio base station and the radio wave propagation control device, and optimum radio wave propagation control becomes possible. In this embodiment, any type can be applied.
 また、中継方法としては、反射、透過、回折、集約等のタイプがあるが、本実施の形態において、一例として、以下に、反射型と透過型の構成例について説明するが、これに限られるものではない(回折型と集約型は非特許文献1等参照)。 In addition, as a relay method, there are types such as reflection, transmission, diffraction, and consolidation. In this embodiment, as an example, the configuration examples of the reflection type and the transmission type will be described below, but it is limited to these. (See Non-Patent Document 1, etc. for the diffraction type and the condensed type).
 (4.2)反射型
 反射型の無線中継装置300のシステム構成の一例について、図5を用いて説明する。図5は、基地局150A等の送信アンテナ(Tx)と、透過型の無線中継装置300の中継アンテナ(Sx)と、UE200等の受信アンテナ(Rx)の関係を示した図である。図5に示すように、本実施の形態においては、MIMOを一例としており、Tx-Sx間の複数の伝搬路と、Sx-Rx間の複数の伝搬路が存在しており、無線中継装置300は、アンテナ301の可変位相器などの可変部303を制御して電波を中継する。
(4.2) Reflective type An example of the system configuration of the reflective wireless relay device 300 will be described with reference to FIG. FIG. 5 is a diagram showing the relationship between the transmitting antennas (Tx) of the base station 150A and the like, the relay antennas (Sx) of the transparent radio relay apparatus 300, and the receiving antennas (Rx) of the UE 200 and the like. As shown in FIG. 5, in the present embodiment, MIMO is taken as an example, and there are a plurality of propagation paths between Tx-Sx and a plurality of propagation paths between Sx-Rx. controls variable section 303 such as a variable phase shifter of antenna 301 to relay radio waves.
 図5に示すように、反射型の場合、アレー状の中継アンテナ301は、同じ方向に向けられて配置されている。これにより、中継アンテナ301の位相条件を複数変化させた際に観測される受信状態に基づいて、中継アンテナ301の伝搬路を推定することができる。 As shown in FIG. 5, in the case of the reflection type, the arrayed relay antennas 301 are arranged facing the same direction. Thereby, the propagation path of relay antenna 301 can be estimated based on the reception state observed when the phase condition of relay antenna 301 is changed in a plurality of ways.
 (4.3)透過型
 透過型の無線中継装置300のシステム構成の一例について、図6を用いて説明する。図6は、基地局150A等の送信アンテナ(Tx)と、透過型の無線中継装置300の中継アンテナ(Sx)と、UE200等の受信アンテナ(Rx)の関係を示した図である。図6に示すように、本実施の形態においては、MIMOを一例としており、Tx-Sx間の複数の伝搬路と、Sx-Rx間の複数の伝搬路が存在しており、無線中継装置300は、図示の如く、中継アンテナ301の可変位相器などの可変部303を介して、一方の側から到来した電波を他方の側へ中継する。このように、透過型の場合、基準アンテナ301Aと中継アンテナ301は、一方の側から到来した電波を他方の側へ中継することができるように、それぞれ一対で反対方向に向けられて配置されている。透過型、反射型のいずれであっても、電力検出器等により、中継アンテナ301に届いた電力を検出できるように構成して、受信状態を計測してもよい。また、中継アンテナ301の位相条件を複数変化させた際に観測される受信信号に基づいて、中継アンテナ301の伝搬路を推定することができる。
(4.3) Transmissive type An example of the system configuration of the transmissive wireless relay device 300 will be described with reference to FIG. FIG. 6 is a diagram showing the relationship between the transmitting antennas (Tx) of the base station 150A and the like, the relay antennas (Sx) of the transparent radio relay apparatus 300, and the receiving antennas (Rx) of the UE 200 and the like. As shown in FIG. 6, in the present embodiment, MIMO is taken as an example, and there are a plurality of propagation paths between Tx-Sx and a plurality of propagation paths between Sx-Rx. , relays radio waves arriving from one side to the other side via a variable section 303 such as a variable phase shifter of a relay antenna 301, as shown in the figure. In this way, in the case of the transmissive type, the reference antenna 301A and the relay antenna 301 are arranged in pairs facing opposite directions so that radio waves arriving from one side can be relayed to the other side. there is Regardless of whether it is a transmissive type or a reflective type, a power detector or the like may be configured to detect the power reaching relay antenna 301, and the reception state may be measured. Also, the propagation path of relay antenna 301 can be estimated based on the received signals observed when the phase conditions of relay antenna 301 are changed in a plurality of ways.
 ここで、無線中継装置300が基地局100またはUE200から受信した制御情報に基づいて、中継状態の制御を行う方法の例について以下に、図7~図9を用いて説明する。 Here, an example of a method for controlling the relay state based on the control information received by the radio relay device 300 from the base station 100 or the UE 200 will be described below with reference to FIGS. 7 to 9. FIG.
 この例では、制御情報として、シグナリングにおいてMeta Structureが含まれる例について説明する。図7は、無線中継装置300が基地局100またはUE200と制御情報のシグナリングを行う関係を示した図である。図7に示すように、無線中継装置300と基地局100またはUE200との間では、RIS等の無線中継装置300のビーム制御を行うために、シグナリングが行われる。例えば、送受信される信号の中に、ビーム選択用のMeta Structureが含まれており、送信したビームの受信品質等がフィードバックされる仕組みとなっている。 In this example, an example in which Meta Structure is included in signaling as control information will be explained. FIG. 7 is a diagram showing a relationship between radio relay apparatus 300 and base station 100 or UE 200 and control information signaling. As shown in FIG. 7, signaling is performed between the radio relay apparatus 300 and the base station 100 or the UE 200 in order to perform beam control of the radio relay apparatus 300 such as RIS. For example, a Meta Structure for beam selection is included in the transmitted and received signals, and the reception quality of the transmitted beam is fed back.
 基地局のビーム変更なく、Meta Structureでビーム変更を行うビーム制御例について以下に説明する。図8は、Meta StructureでRISが送受信するビームを選択する例を示した図である。図9は、Meta StructureでRISに送受信するビームを選択する例を示した図である。 An example of beam control in which the beam is changed by the Meta Structure without changing the beam of the base station is explained below. FIG. 8 is a diagram showing an example of selecting beams transmitted and received by the RIS in the MetaStructure. FIG. 9 is a diagram showing an example of selecting beams to be transmitted to and received from the RIS by MetaStructure.
 図8に示すように、Meta Structureのビーム選択により、RIS300は、自身が送信/受信するビームを適切に選択することができる。また、図9に示すように、基地局100またはUE200は、RISに送信する場合に指向するビーム、またはRISから受信するビームを、適切に選択することができる。 As shown in FIG. 8, the Meta Structure beam selection allows the RIS 300 to appropriately select the beams it transmits/receives. Also, as shown in FIG. 9, the base station 100 or the UE 200 can appropriately select a beam to direct when transmitting to the RIS or a beam to receive from the RIS.
 (5)RISの動作例
 つづいて、RIS等の無線中継装置300の動作例について、以下の3つのCaseについて説明する。
Case A: 基地局とRIS間で制御情報を通信し、制御情報を基にRISの動作を決定
Case B: 移動局とRIS間で制御情報を通信し、制御情報を基にRISの動作を決定
Case C: 基地局,移動局と制御情報の受け渡しを行わずに、RISが自律的に動作を決定
(5) Operation Example of RIS Next, the following three cases of operation examples of the wireless relay device 300 such as the RIS will be described.
Case A: Control information is communicated between the base station and the RIS, and the RIS operation is determined based on the control information.
Case B: Communicate control information between the mobile station and the RIS, and determine the operation of the RIS based on the control information
Case C: RIS autonomously determines operation without exchanging control information with base station and mobile station
 各Caseの場合において、以下の動作のうち少なくとも一つを行ってもよい。なお、本実施の形態においては、特に、基地局または移動局との同期/接続について詳細に説明する。
発見
基地局との同期/接続
移動局との同期/接続
基地局と移動局間の同期/接続
基地局からの情報に基づくビーム選択
移動局からの情報に基づくビーム選択
Meta Structure制御に伴うfeedback仕様
RISビーム制御を行うためのSignaling mechanism
RISによるビーム選択
複数の移動局が存在する場合のビーム切り替え
複数RISによる協調
基地局/移動局への通信品質報告
In each Case, at least one of the following operations may be performed. In addition, in this embodiment, synchronization/connection with a base station or a mobile station will be described in detail.
Synchronization with discovered base station / Synchronization with connected mobile station / Synchronization between connected base station and mobile station / Beam selection based on information from connected base station Beam selection based on information from mobile station
Feedback specification accompanying Meta Structure control
Signaling mechanism for RIS beam control
Beam selection by RIS Beam switching when multiple mobile stations exist Communication quality report to cooperative base station/mobile station by multiple RIS
 (5.0)基本動作
 無線基地局100(150A等を含む。以下同様)または端末200からの電波を信号解釈せず中継する際の中継状態を制御する無線中継装置の一例であるRIS300は、無線基地局100または端末200との間で、同期または接続に係る信号を送信または受信する。具体的には、一例として以下の動作例が考えられる。以下に各動作例について詳細に説明する。
<基地局とRIS間の接続>
動作例1: 基地局が基地局とRIS間の接続に係る最初の信号を送信する場合の接続
動作例2: RISが基地局とRIS間の接続に係る最初の信号を送信する場合の接続
<移動局と RIS 間の接続>
動作例3: 移動局が移動局とRIS間の接続に係る最初の信号を送信する場合の接続
動作例4: RISが移動局とRIS間の接続に係る最初の信号を送信する場合接続
(5.0) Basic Operation The RIS 300, which is an example of a wireless relay device that controls the relay state when relaying radio waves from the wireless base station 100 (including 150A, etc.) or the terminal 200 without signal interpretation, It transmits or receives a signal related to synchronization or connection with radio base station 100 or terminal 200 . Specifically, the following operation example can be considered as an example. Each operation example will be described in detail below.
<Connection between base station and RIS>
Operation example 1: Connection operation example 2 when the base station transmits the first signal related to the connection between the base station and the RIS Connection operation example 2: Connection when the RIS transmits the first signal related to the connection between the base station and the RIS < Connection between mobile station and RIS>
Operation example 3: Connection when the mobile station transmits the first signal related to the connection between the mobile station and the RIS Operation example 4: When the RIS transmits the first signal related to the connection between the mobile station and the RIS Connection
 (5.1)動作例1
 図10は、基地局とRIS間の接続(動作例1,2)における無線中継装置300の動作例を示す図である。図10に示すように、動作例1,2は、基地局100とRIS300間の接続に関する。ここで、RIS300は、基地局100との接続時に以下の情報を送受信してもよい。
 <RISが接続時に送信する情報例>
・RISを識別する情報
・基地局との接続要求 (接続開始要求もしくは接続再開要求または再接続要求)
・RIS capability(能力情報)(例:RISのビーム情報(指向可能なビーム数、方向数、方向/角度 など))
・セキュリティ制御情報
・RISの位置情報
・接続目的(接続目的の例:位置登録、発着信、緊急呼、優先呼)
・接続が完了したことを伝える情報 等
(5.1) Operation example 1
FIG. 10 is a diagram showing an operation example of the wireless relay device 300 in connection between the base station and the RIS (operation examples 1 and 2). As shown in FIG. 10, operation examples 1 and 2 relate to the connection between the base station 100 and the RIS300. Here, the RIS 300 may transmit and receive the following information when connecting with the base station 100.
<Example of information sent by RIS when connecting>
・Information identifying RIS ・Request for connection with base station (request to start connection, request to resume connection, or request to reconnect)
・RIS capability (e.g. RIS beam information (number of beams that can be directed, number of directions, direction/angle, etc.))
・Security control information ・RIS location information ・Connection purposes (examples of connection purposes: location registration, incoming/outgoing calls, emergency calls, priority calls)
・Information to notify that the connection has been completed, etc.
 <RIS が接続時に受信する情報例>
・RISの信号送信タイミングに係る情報(例: Timing Advance(TA)情報)
・RIS識別子
・RIS capability Enquiry
・接続要求 (接続開始要求もしくは接続再開要求または再接続要求)
・セキュリティ制御情報
・システム情報 (例: radioResourceConfigDedicated)
・接続目的(接続目的の例:位置登録、発着信、緊急呼、優先呼)
・beamに係る情報(QCL/TCI-state/precoder、ある同期でのBeamパターン等(SSB, periodicity等でのRISビーム挙動を表す))
・通信するUEに係る情報(UEのlocation/channel品質/beam関連/UE-ID/RNTI 等)
・接続が完了したことを伝える情報 等
<Example of information received by RIS when connected>
・Information related to RIS signal transmission timing (e.g. Timing Advance (TA) information)
・RIS identifier ・RIS capability inquiry
・Connection request (connection start request, connection restart request, or reconnection request)
・Security control information ・System information (e.g. radioResourceConfigDedicated)
・Purpose of connection (Examples of purpose of connection: location registration, incoming/outgoing calls, emergency calls, priority calls)
・Information related to beam (QCL/TCI-state/precoder, beam pattern at a certain synchronization, etc. (representing RIS beam behavior at SSB, periodicity, etc.))
・Information related to communicating UE (UE location/channel quality/beam related/UE-ID/RNTI, etc.)
・Information to notify that the connection has been completed, etc.
 ここで、図11は、1ステップの動作例1の挙動を示す図である。図11に示すように、基地局が基地局とRIS間の接続に係る最初の信号を送信する場合、RIS300は、基地局100から信号を受信してもよい(Step1)。 Here, FIG. 11 is a diagram showing the behavior of one-step operation example 1. FIG. As shown in FIG. 11, the RIS 300 may receive a signal from the base station 100 when the base station transmits the initial signal for connection between the base station and the RIS (Step 1).
 ここで、図12は、2ステップの動作例1の挙動を示す図である。図12に示すように、Step1で、RIS300は、基地局100から接続要求の信号を受信し、Step2で、RIS300は、基地局100から受信した信号を基に接続に係る情報を送信してもよい。 Here, FIG. 12 is a diagram showing the behavior of the 2-step operation example 1. FIG. As shown in FIG. 12, in Step 1, the RIS 300 receives a connection request signal from the base station 100, and in Step 2, the RIS 300 transmits connection information based on the signal received from the base station 100. good.
 ここで、図13は、3ステップの動作例1の挙動を示す図である。図13に示すように、Step1で、RIS300は、基地局100から接続要求の信号を受信し、Step2で、RIS300は、基地局100から受信した信号を基に接続に係る情報を送信し、Step3で、RIS300は、基地局100から接続に係る情報を受信してもよい。 Here, FIG. 13 is a diagram showing the behavior of the 3-step operation example 1. FIG. As shown in FIG. 13, in Step 1, the RIS 300 receives a connection request signal from the base station 100, in Step 2, the RIS 300 transmits connection information based on the signal received from the base station 100, and in Step 3 Then, the RIS 300 may receive connection information from the base station 100 .
 ここで、各ステップにおいて、以下のオプションを採用してもよい。 Here, the following options may be adopted at each step.
<Step1: 基地局から接続要求又は再接続要求の信号を受信>
・RISは接続要求(発信)/再接続要求を受信してもよい。
 RISが受信する信号のリソースは、検出/識別を行う際に送信した信号に基づいて決定されてもよい。
 RISが受信する信号のリソースは、検出/識別を行う際に受信した信号に基づいて決定されてもよい。
<Step 1: Receive connection request or reconnection request signal from base station>
• The RIS may receive connection requests (outgoing)/reconnection requests.
The resource of the signal received by the RIS may be determined based on the transmitted signal when performing detection/identification.
The resource of the signal received by the RIS may be determined based on the signal received when performing detection/identification.
 系列/リソース/パラメータは、定義されていてもよく、RISにあらかじめ設定されていてもよい。
1-1: このとき受信する信号は検出/識別を行う際に受信する信号でもよい。
1-2: このとき受信する信号はRIS向けに規定された信号でもよい。
Sequences/resources/parameters may be defined or preset in the RIS.
1-1: The signal received at this time may be the signal received when performing detection/identification.
1-2: The signal received at this time may be a signal specified for RIS.
 下記例等の条件を満たした際にRISは再接続を基地局へ断ってもよい。
・無線品質が低い (例: 受信SINRが閾値を下回る)
・RISが基地局の情報を保持していない
・RISと基地局間でセキュリティ制御が起動していない
The RIS may refuse reconnection to the base station when conditions such as the following examples are met.
・Poor radio quality (e.g. received SINR is below the threshold)
・The RIS does not retain information on the base station ・Security control is not activated between the RIS and the base station
 再接続を行わない場合にRISは以下の挙動を行ってもよい。
OptionA: 当該基地局に対して所定の応答を行わない
OpttionB: 当該基地局に対して再接続の失敗を通知
If reconnection is not performed, the RIS may behave as follows.
OptionA: Do not make a predetermined response to the base station
OptionB: Notify reconnection failure to the base station
 (5.2)動作例2
 動作例1では、基地局が基地局とRIS間の接続に係る最初の信号を送信する場合について説明したが、その逆に、RISが基地局とRIS間の接続に係る最初の信号を送信する場合について以下に動作例2を説明する。
(5.2) Operation example 2
In the operation example 1, the case where the base station transmits the first signal related to the connection between the base station and the RIS was explained, but conversely, the RIS transmits the first signal related to the connection between the base station and the RIS. Operation example 2 will be described below for the case.
 ここで、図14は、1ステップの動作例2の挙動を示す図である。図14に示すように、RISが基地局とRIS間の接続に係る最初の信号を送信する場合、RIS300から基地局100へ信号が送信される(Step1)。 Here, FIG. 14 is a diagram showing the behavior of one-step operation example 2. FIG. As shown in FIG. 14, when the RIS transmits the first signal related to connection between the base station and the RIS, the signal is transmitted from the RIS 300 to the base station 100 (Step 1).
 ここで、図15は、2ステップの動作例2の挙動を示す図である。図15に示すように、Step 1で、RIS300は基地局100へ接続に係る情報を送信し、Step2で、RIS300は基地局100から接続に係る情報を受信してもよい。なお、Step 1, 2は複数回に応じて行ってもよい。 Here, FIG. 15 is a diagram showing the behavior of the 2-step operation example 2. FIG. As shown in FIG. 15, in Step 1, the RIS 300 may transmit connection-related information to the base station 100, and in Step 2, the RIS 300 may receive connection-related information from the base station 100. FIG. Note that Steps 1 and 2 may be performed multiple times.
 ここで、図16は、4ステップの動作例2の挙動を示す図である。図16に示すように、Step 1で、RIS300は基地局100へ接続に係る情報を送信し、Step2で、RIS300は基地局100から接続に係る情報を受信し、Step 3でRIS300は基地局100へ接続に係る情報を送信し、Step4で、RIS300は基地局100から接続に係る情報を受信してもよい。このように、2ステップ(1往復)では遅延を防ぐことができるのに対し、4ステップ(2往復)では衝突を回避してリソースの無駄を省くことができる。 Here, FIG. 16 is a diagram showing the behavior of the four-step operation example 2. FIG. As shown in FIG. 16, in Step 1, the RIS 300 transmits connection-related information to the base station 100, in Step 2, the RIS 300 receives connection-related information from the base station 100, and in Step 3, the RIS 300 connects to the base station 100. , and in Step 4, the RIS 300 may receive the connection information from the base station 100 . In this way, two steps (one round trip) can prevent delays, while four steps (two round trips) can avoid collisions and save resources.
 ここで、各ステップにおいて、以下のオプションを採用してもよい。 Here, the following options may be adopted at each step.
<Step 1: RISは基地局へ接続に係る情報を送信してもよい>
 このときRISは接続要求(発信)/再接続要求を送信してもよい。
 系列/リソース/パラメータは、定義されていてもよく、RISにあらかじめ設定されていてもよい。ここで、検出/識別を行う際に送受信した信号で接続要求を行っても良いし、同じ設定を用いて異なる信号で接続要求を行ってもよい。例えば、リソース等の設定は同じで、異なる信号を用いてもよい。
1-1: RISは、基地局から受信した信号に対応する信号を、基地局に送信してもよい。
1-1a: 検出/識別を行う際に受信する信号に基いて、信号を基地局に送信してもよい。この場合、RISが送信する信号は検出/識別を行う信号でもよい。例えば、SSB受信後にPRACHを送信する場合、PRACHのリソースは、端末が基地局に接続するために送信する信号と同じであってもよく、異なっていてもよい。
<Step 1: RIS may send connection information to the base station>
At this time, the RIS may send a connection request (outgoing)/reconnection request.
Sequences/resources/parameters may be defined or preset in the RIS. Here, the connection request may be made with the signal transmitted and received when detection/identification is performed, or the connection request may be made with a different signal using the same settings. For example, settings such as resources may be the same, but different signals may be used.
1-1: The RIS may send a signal to the base station corresponding to the signal received from the base station.
1-1a: A signal may be sent to the base station based on the signal received during detection/identification. In this case, the signal transmitted by the RIS may be the detection/identification signal. For example, when PRACH is transmitted after receiving SSB, the PRACH resource may be the same as or different from the signal transmitted by the terminal to connect to the base station.
1-1b: RISは、基地局から送信されるRARに基づいて接続要求信号を送信してもよい。
1-1c: RISは、Step2で受信した信号に基いて接続要求信号を送信してもよい。
1-2: RISは、基地局から送信される信号とは独立に、所定の信号を送信してもよい。
 RISによる信号送信は、所定の周期で必ず行われるとしてもよい。
1-1b: The RIS may transmit a connection request signal based on the RAR transmitted from the base station.
1-1c: The RIS may send a connection request signal based on the signal received in Step2.
1-2: The RIS may transmit a predetermined signal independently of the signal transmitted from the base station.
Signal transmission by the RIS may always be performed at a predetermined cycle.
 また、Step1において、このときRISは再接続要求を行ってもよい。
 再接続時の場合は発信時と信号制御が異なってもよい。
 再接続時の場合は発信時と送受信する情報が異なってもよい。
Also, in Step 1, the RIS may issue a reconnection request at this time.
In the case of reconnection, the signal control may be different from that in origination.
In the case of reconnection, the information to be transmitted and received may be different from that at the time of origination.
 下記例等の条件を満たした際にRISは再接続要求を行ってもよい。
・無線品質の劣化 (例: 受信SINRが閾値を下回る)
・基地局がRISの情報を保持
・RISと基地局間でセキュリティ制御が起動している
The RIS may issue a reconnection request when conditions such as the following examples are met.
・Degradation of radio quality (e.g. received SINR falls below the threshold)
・Base station holds RIS information ・Security control is activated between RIS and base station
 下記例等の条件を満たした際に再接続が失敗したと決定してもよい。
・一定の時間が経過
 この時、所定のルールで発信または再接続要求を再度行ってもよい。
・基地局から再接続時の失敗を受信した場合
 この時、 基地局の指示に基づいて、または所定のルールで発信または再接続要求を再度行ってもよい。
It may be determined that reconnection has failed when conditions such as the following example are met.
・A certain amount of time has elapsed At this time, a call or reconnection request may be made again according to a predetermined rule.
• When a reconnection failure is received from the base station At this time, the call or reconnection request may be made again based on the instructions of the base station or according to a predetermined rule.
<Step 2: RIS は基地局から接続に係る情報を受信してもよい>
 このときRISは信号を基に接続が完了したか判断してもよい。
例1: 基地局から接続完了した情報を受信
例2: 基地局から接続情報を受信
例3: 基地局からの接続失敗の情報を一定時間受信していない 等
<Step 2: The RIS may receive connection information from the base station>
At this time, the RIS may determine whether the connection is complete based on the signal.
Example 1: Receiving connection completion information from the base station Example 2: Receiving connection information from the base station Example 3: Not receiving connection failure information from the base station for a certain period of time, etc.
2-2a: RISが基地局から一定時間内に信号を受信しなかった場合に再度Step 1を行ってもよい。このときの時間は所定のルール又は基地局から受信した信号を基に決定してもよい。例えば、Contention resolution timerを過ぎたら、RARを再度受信またはPRACHを再度送信してもよい。 2-2a: Step 1 may be performed again if the RIS does not receive a signal from the base station within a certain period of time. The time at this time may be determined based on a predetermined rule or a signal received from the base station. For example, RAR may be received again or PRACH may be sent again after the Contention resolution timer has passed.
2-2b: 基地局から送信された信号を基に接続が失敗したと判断した場合、再度Step1を行ってもよい。例えば、基地局が送信したDCIを基に、RISはMsg3(Message3)を再度送信してもよい。
2-3c: RISは基地局から送信された信号を基に接続が完了したかを基地局に報告してもよい。
例: 接続完了したかをHARQ-ACKを用いて送信
例: 接続失敗という信号を基地局に送信しない
2-2b: If it is determined that the connection has failed based on the signal transmitted from the base station, Step 1 may be performed again. For example, based on the DCI transmitted by the base station, the RIS may retransmit Msg3 (Message3).
2-3c: The RIS may report to the base station whether the connection is complete based on the signal sent by the base station.
Example: Transmit connection completion using HARQ-ACK Example: Do not send a connection failure signal to the base station
 (5.3)動作例3
 図17は、基地局とRIS間の接続(動作例3,4)における無線中継装置300の動作例を示す図である。図17に示すように、動作例3,4は、端末200とRIS300間の接続に関する。ここで、RIS300は、端末200との接続時に以下の情報を送受信してもよい。
(5.3) Operation example 3
FIG. 17 is a diagram showing an operation example of the wireless relay device 300 in connection between the base station and the RIS (operation examples 3 and 4). As shown in FIG. 17, operation examples 3 and 4 relate to the connection between the terminal 200 and the RIS 300. FIG. Here, the RIS 300 may transmit and receive the following information when connecting with the terminal 200.
<移動局が接続時に受信する情報/RISが接続時に送信する情報>
・RISを識別する情報
・接続要求 (接続開始要求もしくは接続再開要求または再接続要求)
・RIS capability(能力情報)(例:RISのビーム情報(指向可能なビーム数、方向数、方向/角度 など))
・セキュリティ制御情報
・RISの位置情報/方向
・接続目的(接続目的の例:位置登録、発着信、緊急呼、優先呼)
・接続が完了したことを伝える情報 等
<Information received by the mobile station when connecting/Information sent by the RIS when connecting>
・Information that identifies the RIS ・Connection request (connection start request, connection restart request, or reconnection request)
・RIS capability (e.g. RIS beam information (number of beams that can be directed, number of directions, direction/angle, etc.))
・Security control information ・Location information/direction of RIS ・Purpose of connection (Examples of purpose of connection: location registration, incoming/outgoing calls, emergency calls, priority calls)
・Information to notify that the connection has been completed, etc.
<移動局が接続時に送信する情報/RISが接続時に受信する情報>
・RIS の信号送受信タイミングに係る情報 例:Timing Advance(TA)情報
・移動局識別子
・接続要求 (接続開始要求もしくは接続再開要求または再接続要求)
・RIS capability Enquiry
・移動局capability
・セキュリティ制御情報
・beamに係る情報(QCL/TCI-state/precoder、ある同期でのBeamパターン等(SSB, periodicity等でのRISビーム挙動を表す))
・通信する基地局に係る情報(PLMN情報/システム情報(リソース等)/通信品質等)
・接続に必要な情報 (例: radioResourceConfigDedicated)
・接続が完了したことを伝える情報, 等
<Information sent by the mobile station when connecting/Information received by the RIS when connecting>
・Information related to RIS signal transmission/reception timing Example: Timing Advance (TA) information ・Mobile station identifier ・Connection request (connection start request, connection restart request, or reconnection request)
・RIS capability inquiry
・Mobile station capability
・Security control information ・Information related to beam (QCL/TCI-state/precoder, beam pattern at a certain synchronization, etc. (representing RIS beam behavior in SSB, periodicity, etc.))
・Information related to communicating base stations (PLMN information/system information (resources, etc.)/communication quality, etc.)
・Information required for connection (Example: radioResourceConfigDedicated)
・Information to notify that the connection has been completed, etc.
 ここで、図18は、1ステップの動作例3の挙動を示す図である。図18に示すように、移動局が移動局とRIS間の接続に係る最初の信号を送信する場合、RIS300は、移動局200から信号を受信してもよい(Step1)。 Here, FIG. 18 is a diagram showing the behavior of one-step operation example 3. FIG. As shown in FIG. 18, when the mobile station transmits the initial signal for connection between the mobile station and the RIS, the RIS 300 may receive the signal from the mobile station 200 (Step 1).
 ここで、図19は、2ステップの動作例3の挙動を示す図である。図19に示すように、Step1で、移動局200は、RIS300へ接続要求信号を送信/RIS300は移動局200から接続要求信号を受信し、Step2で、RIS300は移動局200から受信した信号を基に接続に係る情報を送信してもよい。 Here, FIG. 19 is a diagram showing the behavior of the 2-step operation example 3. FIG. As shown in FIG. 19, in Step 1, the mobile station 200 transmits a connection request signal to the RIS 300/RIS 300 receives the connection request signal from the mobile station 200, and in Step 2, the RIS 300 receives the signal received from the mobile station 200. You may send information related to connection to
 ここで、図20は、3ステップの動作例3の挙動を示す図である。図20に示すように、Step1で、移動局200は、RIS300へ接続要求信号を送信/RIS300は移動局200から接続要求信号を受信し、Step2で、RIS300は移動局200から受信した信号を基に接続に係る情報を送信し、Step3で、移動局200はRIS300から受信した信号を基に接続に係る情報を送信してもよい。なお、Step2,3は複数回に応じて行ってもよい。 Here, FIG. 20 is a diagram showing the behavior of the 3-step operation example 3. FIG. As shown in FIG. 20, in Step 1, the mobile station 200 transmits a connection request signal to the RIS 300/RIS 300 receives the connection request signal from the mobile station 200, and in Step 2, the RIS 300 receives the signal from the mobile station 200. , and in Step 3, the mobile station 200 may transmit the connection information based on the signal received from the RIS 300 . Note that Steps 2 and 3 may be performed multiple times.
 ここで、各ステップにおいて、以下のオプションを採用してもよい。 Here, the following options may be adopted in each step.
<Step 1: 移動局は接続要求又は再接続要求の信号を送信(移動局→RIS)>
 このとき接続要求(発信)/再接続要求を送信してもよい。なお、検出/識別を行う際に送受信した信号で接続要求を行ってもよいし、同じ設定を用いて異なる信号で接続要求を行ってもよい。
<Step 1: The mobile station transmits a connection request or reconnection request signal (mobile station → RIS)>
At this time, a connection request (origination)/reconnection request may be transmitted. It should be noted that the connection request may be made by the signal transmitted and received when detection/identification is performed, or the connection request may be made by a different signal using the same settings.
 系列/パラメータは、定義されていてもよく、RISにあらかじめ設定されていてもよい。
1-1: 移動局は、RISから受信した信号に対応する信号を、移動局に送信してもよい。
1-1a: 検出/識別を行う際に受信する信号に基いて、信号をRISに送信してもよい。移動局が送信する信号は検出/識別を行う信号でもよい。
1-1c: 移動局は、Step2で受信した信号に基いて接続要求信号を送信してもよい。
Sequences/parameters may be defined or preset in the RIS.
1-1: The mobile station may transmit a signal corresponding to the signal received from the RIS to the mobile station.
1-1a: A signal may be sent to the RIS based on the signal received during detection/identification. The signal transmitted by the mobile station may be a signal for detection/identification.
1-1c: The mobile station may transmit a connection request signal based on the signal received in Step2.
1-2: 移動局は、RISから送信される信号とは独立に、所定の信号を送信してもよい。移動局による信号送信は、所定の周期で必ず行われるとしてもよい。系列/パラメータは、定義されていてもよく、RISにあらかじめ設定されていてもよい。 1-2: The mobile station may transmit a predetermined signal independently of the signal transmitted from the RIS. Signal transmission by the mobile station may always be performed at a predetermined period. Sequences/parameters may be defined or preset in the RIS.
<Step 2: RISは移動局から送信された信号を基に接続に係る情報を送信してもよい>
 再接続要求を受信した場合は発信時と信号制御/送信する情報が異なってもよい。
2-1: Step 1で送信された信号をRISが受信する場合
・下記例等の条件を満たした際に再接続を移動局へ断ってもよい。
・無線品質が低い (例: 受信 SINR が閾値を下回る)
・RISが移動局の情報を保持していない
・RISと移動局間でセキュリティ制御が起動していない
<Step 2: The RIS may transmit connection information based on the signal sent from the mobile station>
When a reconnection request is received, the information to be signal controlled/transmitted may differ from that at the time of transmission.
2-1: When the RIS receives the signal sent in Step 1 - Reconnection may be refused to the mobile station when the following conditions are met.
・Poor radio quality (e.g. received SINR is below the threshold)
・RIS does not hold mobile station information ・Security control is not activated between RIS and mobile station
 再接続を行わない場合に以下の挙動を行ってもよい。
OptionA: 当該移動局に対して所定の応答を行わない
OptionB: 当該移動局に対して再接続の失敗を通知
If reconnection is not performed, the following behavior may be performed.
OptionA: Do not make a predetermined response to the mobile station
OptionB: Notify reconnection failure to the relevant mobile station
2-2: Step 3で送信された信号をRISが受信する場合
2-2a: RISが移動局から一定時間内に信号を受信しなかった場合に再度Step 2を行ってもよい。このときの時間は所定のルール又は移動局から受信した信号を基に決定してもよい。
例:Contention resolution timer を過ぎたら再度送信
2-2: When RIS receives the signal sent in Step 3
2-2a: Step 2 may be performed again if the RIS does not receive a signal from the mobile station within a certain period of time. The time at this time may be determined based on a predetermined rule or a signal received from the mobile station.
Example: Send again after Contention resolution timer
2-2b: 移動局から送信された信号を基に接続が失敗したと判断した場合、再度Step2 を行ってもよい。 2-2b: If it is determined that the connection has failed based on the signal transmitted from the mobile station, Step 2 may be performed again.
<RISの接続判断>
 RISは、信号を基に接続が完了したか判断してもよい。
例1: 移動局から接続完了した情報を受信
例2: 移動局から接続情報を受信 等
<RIS connection determination>
The RIS may determine whether the connection is complete based on the signal.
Example 1: Receive connection completion information from mobile station Example 2: Receive connection information from mobile station, etc.
 RISは、接続が完了したかを移動局に報告してもよい。
例: 接続完了したかをHARQ-ACKを用いて送信
例: 接続失敗という信号を移動局に送信しない
The RIS may report to the mobile station whether the connection is complete.
Example: Transmit connection completion using HARQ-ACK Example: Do not send a connection failure signal to the mobile station
<Step 3: 移動局はRISから送信された信号を基に接続に係る情報を送信してもよい>
 移動局は信号を基に接続が完了したか判断してもよい。
例1: RISから接続完了した情報を受信
例2: RISから接続情報を受信 等
<Step 3: The mobile station may send connection information based on the signal sent from the RIS>
The mobile station may determine whether the connection is complete based on the signal.
Example 1: Receiving connection completion information from RIS Example 2: Receiving connection information from RIS etc.
 移動局は接続が完了したかをRISに報告してもよい。
例: 接続完了したかをHARQ-ACKを用いて送信
例: 接続失敗という信号を移動局に送信しない
The mobile station may report to the RIS whether the connection is complete.
Example: Transmit connection completion using HARQ-ACK Example: Do not send a connection failure signal to the mobile station
 移動局が受信失敗した場合
2-2a: 移動局がRISから一定時間内に信号を受信しなかった場合に再度Step 1を行う/RISにStep 2を指示してもよい。このときの時間は所定のルール又はRISから受信した信号を基に決定してもよい。
例:Contention resolution timer を過ぎたら再度送信
When the mobile station fails to receive
2-2a: If the mobile station does not receive a signal from the RIS within a certain period of time, perform Step 1 again/You may instruct the RIS to perform Step 2. The time at this time may be determined based on a predetermined rule or a signal received from the RIS.
Example: Send again after Contention resolution timer
2-2b: RISから送信された信号を基に接続が失敗したと判断した場合、再度Step1を行う/RISにStep3を指示してもよい。 2-2b: If it is determined that the connection has failed based on the signal sent from the RIS, perform Step 1 again/You may instruct the RIS to perform Step 3.
 (5.4)動作例4
 動作例3では、移動局が移動局とRIS間の接続に係る最初の信号を送信する場合について説明したが、その逆に、RISが移動局とRIS間の接続に係る最初の信号を送信してもよい(動作例4)。図21は、1ステップの動作例4の挙動を示す図である。同様に、2ステップ、3ステップも、動作例3においてRISと移動局を入れ替えて(読み替えて)実施することができるので、説明を省略する。
(5.4) Operation example 4
In the operation example 3, the mobile station transmits the first signal related to the connection between the mobile station and the RIS. Conversely, the RIS transmits the first signal related to the connection between the mobile station and RIS. (operation example 4). FIG. 21 is a diagram showing the behavior of one-step operation example 4. FIG. Similarly, steps 2 and 3 can also be implemented by replacing (reading) the RIS and the mobile station in Operation Example 3, so description thereof will be omitted.
 (6)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。すなわち、無線中継装置(RIS300)は、無線基地局(無線基地局100,150)または端末(UE200)からの電波を信号解釈せず中継する際の中継状態を制御する制御部(制御部330)と、無線基地局(無線基地局100,150)または端末(UE200)との間で、同期または接続に係る信号を送信または受信する送受信部(送受信部350)と、を備える。
(6) Functions and Effects According to the above-described embodiment, the following functions and effects are obtained. That is, the radio relay device (RIS 300) includes a control unit (control unit 330) that controls the relay state when relaying radio waves from radio base stations (radio base stations 100, 150) or terminals (UE 200) without signal interpretation, A transmitting/receiving unit (transmitting/receiving unit 350) that transmits or receives a signal related to synchronization or connection with a radio base station (radio base stations 100, 150) or a terminal (UE 200).
 これにより、無線中継装置300は、基地局100やUE200等との間で、互いを同期または接続させる信号を送受信することで、的確に互いを同期ないし接続等することができ、適切に反射板(RIS)等を用いて中継することができる。 As a result, the radio relay apparatus 300 can accurately synchronize or connect with each other by transmitting/receiving a signal for synchronizing or connecting with the base station 100, the UE 200, or the like. (RIS) or the like can be used for relay.
 また、本実施の形態では、無線中継装置300の送受信部350は、無線基地局100もしくは端末200との接続または同期のために信号を送信または受信する。 Also, in the present embodiment, transmission/reception section 350 of radio relay apparatus 300 transmits or receives signals for connection or synchronization with radio base station 100 or terminal 200 .
 これにより、的確に互いを同期ないし接続することができる信号を用いて、的確な中継動作につなげることができる。 As a result, signals that can be accurately synchronized or connected to each other can be used to lead to accurate relay operations.
 また、本実施の形態においては、無線中継装置300の制御部330は、無線基地局または端末からの電波の、反射、透過、集約、回折、および、信号電力の変更、ならびに、受信または送信ビームのうち、少なくとも一つを制御する。 In addition, in the present embodiment, control unit 330 of radio relay device 300 reflects, transmits, aggregates, diffracts, and changes signal power of radio waves from radio base stations or terminals, and controls reception or transmission beams. control at least one of
 これにより、無線中継装置300は、制御情報や受信状態に応じて、適切な中継状態へ切り替えることができる。 As a result, the wireless relay device 300 can switch to an appropriate relay state according to the control information and reception state.
 また、本実施の形態において、無線中継装置300の制御部330は、無線基地局または端末の、発見、同期、および、接続、ならびに、無線基地局と端末間の初期接続、接続確立後の通信、および、ビーム制御のうち、少なくとも一つを行ってもよい。 In addition, in the present embodiment, the control unit 330 of the radio relay device 300 performs discovery, synchronization, and connection of a radio base station or a terminal, initial connection between the radio base station and the terminal, and communication after connection establishment. , and beam control.
 これにより、無線中継装置300は、単に電波を反射等させるだけでなく、通信に関する様々な動作を行うことができる。 As a result, the wireless relay device 300 can perform various operations related to communication in addition to simply reflecting radio waves.
 (9)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(9) Other Embodiments Although the contents of the present invention have been described along with the examples, it should be understood that the present invention is not limited to these descriptions and that various modifications and improvements are possible. self-evident to the trader.
 例えば、上述した実施形態では、無線中継装置の通信対象を、「基地局」または「移動局/端末」として説明したが、これに限られず、対象は、通信装置であればよい。また、上述した実施形態では、無線基地局から端末方向(下り方向)を主として説明したが、上述した実施形態の中でも適宜記載したように、端末から無線基地局方向(上り方向)の無線信号も制御されてよい。 For example, in the above-described embodiments, the communication target of the wireless relay device is described as a "base station" or a "mobile station/terminal", but the target is not limited to this and may be any communication device. Further, in the above-described embodiment, the direction from the radio base station to the terminal (downlink) has been mainly described, but as appropriately described in the above-described embodiments, radio signals in the direction from the terminal to the radio base station (uplink) can also be used. may be controlled.
 また、上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Also, the block configuration diagram (FIG. 3) used to describe the above-described embodiment shows blocks for each function. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したUE200及び無線中継装置300は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図22は、基地局100、UE200及び無線中継装置300のハードウェア構成の一例を示す図である。図22に示すように、基地局100、UE200及び無線中継装置300は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the UE 200 and the radio relay device 300 described above may function as a computer that performs processing of the radio communication method of the present disclosure. FIG. 22 is a diagram showing an example of the hardware configuration of base station 100, UE 200 and radio relay apparatus 300. As shown in FIG. As shown in FIG. 22, base station 100, UE 200 and radio relay device 300 are configured as computer devices including processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006 and bus 1007. may
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 無線中継装置300の各機能ブロック(図3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the wireless relay device 300 (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、無線中継装置300における各機能或いは一部の機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現されてもよい。 Further, each function or part of the functions in the wireless relay device 300 is performed by the processor 1001 by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 performs the calculation. It may be realized by controlling communication or controlling at least one of reading and writing of data in memory 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Further, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Int例:rated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, Digital Signal Processor (DSP), Application Specific Int e.g. rated Circuit (ASIC), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA). part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Beyond 5G、6G、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Beyond 5G, 6G, Future Radio Access (FRA), New Radio (NR), W-CDMA®, GSM®, CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (Registered Trademark)), IEEE 802.16 (WiMAX (Registered Trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (Registered Trademark), or any other suitable system and any extensions based on these It may be applied to at least one of the generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 Similarly, a mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions that the mobile station has. A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。
RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:R例:)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: R example:), PRB pairs, RB pairs and so on.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 In addition, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 100,150A~150D 無線基地局
 200 UE
 300 無線中継装置
 301 中継アンテナ
 303 可変部
 330 制御部
 350 送受信部
 C セル
 OB 障害物
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Wireless communication system 100,150A~150D Wireless base station 200 UE
300 Radio repeater 301 Relay antenna 303 Variable unit 330 Control unit 350 Transmitter/receiver C Cell OB Obstacle 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (4)

  1.  無線基地局または端末からの電波を信号解釈せず中継する際の中継状態を制御する制御部と、
     前記無線基地局または前記端末との間で、同期または接続に係る信号を送信または受信する送受信部と、
    を備える無線中継装置。
    a control unit that controls a relay state when relaying radio waves from a wireless base station or a terminal without signal interpretation;
    a transmission/reception unit that transmits or receives a signal related to synchronization or connection with the radio base station or the terminal;
    A radio repeater.
  2.  前記送受信部は、
     前記無線基地局もしくは前記端末との接続または同期のために前記信号を送信または受信する請求項1に記載の無線中継装置。
    The transmitting/receiving unit
    2. The radio relay apparatus according to claim 1, which transmits or receives said signal for connection or synchronization with said radio base station or said terminal.
  3.  前記制御部は、
     前記無線基地局または前記端末からの電波の、反射、透過、集約、回折、および、信号電力の変更、ならびに、受信または送信ビームのうち、少なくとも一つを制御することにより、前記中継状態を制御する請求項1または2に記載の無線中継装置。
    The control unit
    Controlling the relay state by controlling at least one of reflection, transmission, aggregation, diffraction, signal power change, and reception or transmission beam of radio waves from the radio base station or the terminal. 3. The radio relay device according to claim 1 or 2.
  4.  無線基地局または端末からの電波を信号解釈せず中継する際の中継状態を制御する制御ステップと、
     前記無線基地局または前記端末との間で、同期または接続に係る信号を送信または受信する送受信ステップと、
    を含む無線中継方法。
    a control step for controlling a relay state when relaying radio waves from a radio base station or a terminal without signal interpretation;
    a transmitting/receiving step of transmitting or receiving a signal related to synchronization or connection with the radio base station or the terminal;
    A radio relay method comprising:
PCT/JP2021/014072 2021-03-31 2021-03-31 Wireless relay device and wireless relay method WO2022208824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023510096A JPWO2022208824A1 (en) 2021-03-31 2021-03-31
PCT/JP2021/014072 WO2022208824A1 (en) 2021-03-31 2021-03-31 Wireless relay device and wireless relay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014072 WO2022208824A1 (en) 2021-03-31 2021-03-31 Wireless relay device and wireless relay method

Publications (1)

Publication Number Publication Date
WO2022208824A1 true WO2022208824A1 (en) 2022-10-06

Family

ID=83458270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014072 WO2022208824A1 (en) 2021-03-31 2021-03-31 Wireless relay device and wireless relay method

Country Status (2)

Country Link
JP (1) JPWO2022208824A1 (en)
WO (1) WO2022208824A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230075115A1 (en) * 2021-09-08 2023-03-09 Qualcomm Incorporated Configuring location information for transmitting packets via assisting nodes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244836A (en) * 1993-02-19 1994-09-02 Nippon Telegr & Teleph Corp <Ntt> Radio repeater
JP2000197108A (en) * 1998-12-25 2000-07-14 Kyocera Corp Synchronization setup method in wll communication and its system
JP2004007418A (en) * 1991-10-04 2004-01-08 Motorola Inc Simulcast clock synchronization and frequency equalization system and method therefor
JP2010004515A (en) * 2008-05-23 2010-01-07 Mitsubishi Electric Corp Relay sending-receiving apparatus and mobile communication system
WO2010134195A1 (en) * 2009-05-22 2010-11-25 富士通株式会社 Relay device, wireless communication system, and wireless communication method
JP2011114825A (en) * 2009-11-30 2011-06-09 Fujitsu Ltd Radio communication apparatus, radio communication system and radio communication method
JP2011181981A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Relay transmitter/receiver and communication system
JP2011211515A (en) * 2010-03-30 2011-10-20 Ntt Docomo Inc Reflection board device, radio base station, and radio communication method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007418A (en) * 1991-10-04 2004-01-08 Motorola Inc Simulcast clock synchronization and frequency equalization system and method therefor
JPH06244836A (en) * 1993-02-19 1994-09-02 Nippon Telegr & Teleph Corp <Ntt> Radio repeater
JP2000197108A (en) * 1998-12-25 2000-07-14 Kyocera Corp Synchronization setup method in wll communication and its system
JP2010004515A (en) * 2008-05-23 2010-01-07 Mitsubishi Electric Corp Relay sending-receiving apparatus and mobile communication system
WO2010134195A1 (en) * 2009-05-22 2010-11-25 富士通株式会社 Relay device, wireless communication system, and wireless communication method
JP2011114825A (en) * 2009-11-30 2011-06-09 Fujitsu Ltd Radio communication apparatus, radio communication system and radio communication method
JP2011181981A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Relay transmitter/receiver and communication system
JP2011211515A (en) * 2010-03-30 2011-10-20 Ntt Docomo Inc Reflection board device, radio base station, and radio communication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230075115A1 (en) * 2021-09-08 2023-03-09 Qualcomm Incorporated Configuring location information for transmitting packets via assisting nodes

Also Published As

Publication number Publication date
JPWO2022208824A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2021024611A1 (en) Wireless communication system, phase control reflector, and wireless communication method
WO2020065891A1 (en) User equipment
WO2022208824A1 (en) Wireless relay device and wireless relay method
WO2022195889A1 (en) Radio relay device and radio relay method
WO2022195888A1 (en) Wireless relay device and wireless relay method
WO2023105802A1 (en) Wireless relay device, base station, and wireless relay method
WO2021224968A1 (en) Terminal, wireless communication method, and base station
WO2022239079A1 (en) Wireless relay device and wireless relay method
WO2023105803A1 (en) Communication device, base station, and communication method
WO2023119534A1 (en) Radio relay device, communication device, and radio relay method
WO2023119533A1 (en) Wireless relay device, communication device, and wireless relay method
WO2023127063A1 (en) Wireless relay device, communication device, and wireless relay method
WO2023145030A1 (en) Radio relay device and communication method
WO2023145029A1 (en) Wireless relay device and communication method
WO2023145031A1 (en) Radio relay device and communication method
WO2023181378A1 (en) Radio relaying device and communication method
WO2023181377A1 (en) Radio relay device and communication method
WO2023067818A1 (en) Radio relay device and communication method
WO2023112106A1 (en) Wireless relay device and communication method
WO2023100302A1 (en) Radio relay device and communication method
WO2023119383A1 (en) Terminal and communication method
WO2023119382A1 (en) Base station and communication method
WO2023119384A1 (en) Terminal, base station, and communication method
WO2023105804A1 (en) Wireless relay device, base station, and wireless relay method
WO2023073963A1 (en) Base station and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510096

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934986

Country of ref document: EP

Kind code of ref document: A1