WO2021024611A1 - Wireless communication system, phase control reflector, and wireless communication method - Google Patents

Wireless communication system, phase control reflector, and wireless communication method Download PDF

Info

Publication number
WO2021024611A1
WO2021024611A1 PCT/JP2020/022867 JP2020022867W WO2021024611A1 WO 2021024611 A1 WO2021024611 A1 WO 2021024611A1 JP 2020022867 W JP2020022867 W JP 2020022867W WO 2021024611 A1 WO2021024611 A1 WO 2021024611A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase control
control reflector
base station
phase
radio
Prior art date
Application number
PCT/JP2020/022867
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 ▲高▼橋
阿部 順一
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2021024611A1 publication Critical patent/WO2021024611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to a wireless communication system, a phase control reflector and a wireless communication method, and more particularly to a phase control of a wireless signal.
  • LTE Long Term Evolution
  • NR New Radio
  • NG Next Generation
  • 3GPP has a small cell (small cell) using a high frequency band exceeding 52.6 GHz and a large scale (massive) having a large number of antenna elements.
  • Massive MIMO Multiple-Input Multiple-Output
  • Non-Patent Document 1 a method of improving MIMO performance in a multipath environment using a passive repeater has been tried.
  • Non-Patent Document 1 When the high frequency band as described above is used and the carrier frequency is high, an increase in phase noise becomes a problem. When a passive repeater as described in Non-Patent Document 1 is used, a certain effect can be expected for eliminating dead zones.
  • phase of the radio signal received by the terminal (User Equipment, UE) via the repeater may have rotated significantly from the reference value, and may not always be optimal.
  • PTRS Phase Tracking RS is specified in order to deal with such phase noise, but appropriate processing on the terminal side is required.
  • the present invention has been made in view of such a situation, and when a high frequency band is used, a wireless communication system, a phase control reflector, and a phase control reflector that can greatly reduce phase noise while eliminating dead zones.
  • the purpose is to provide a wireless communication method.
  • a radio communication system including a phase control reflector (phase control reflector 300) that reflects a radio signal from a radio base station (for example, radio base station 150A) or a terminal (UE200).
  • the first propagation channel information acquisition unit (H PT acquisition unit 310) for acquiring the first propagation channel information (H PT ) between the radio base station and the phase control reflector, and the phase control reflector.
  • a second propagation channel information acquisition unit (H RP acquisition unit 320) for acquiring the second propagation channel information (H RP ) with the terminal, and the phase control reflector is the first propagation channel information.
  • the phase of the radio signal reflected toward the terminal or the radio base station is controlled based on (H PT ) and the second propagation channel information (H RP ).
  • phase control reflector 300 that reflects a radio signal from a radio base station (eg, radio base station 150A) or terminal (UE200), wherein the radio base station and the above. Based on the first propagation channel information ( HPT ) between the phase control reflector and the second propagation channel information (H RP ) between the phase control reflector and the terminal, the terminal or the radio base station. The phase of the radio signal reflected toward is controlled.
  • HPT first propagation channel information
  • H RP second propagation channel information
  • One aspect of the present disclosure is a step of estimating the first propagation channel information between the radio base station and the phase control reflector, and a step of estimating the second propagation channel information between the phase control reflector and the terminal. And the step of controlling the phase of the radio signal reflected by the phase control reflector toward the terminal or the radio base station based on the first propagation channel information and the second propagation channel information. The method.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a basic configuration diagram of a network using the phase control reflector 300.
  • FIG. 3 is a functional block configuration diagram of the phase control reflector 300.
  • FIG. 4A is a diagram showing an example of forming an antenna beam by a conventional radio base station.
  • FIG. 4B is a diagram showing an example of forming an antenna beam by a radio base station corresponding to Massive MIMO.
  • FIG. 5 is an explanatory diagram of a typical problem when a high frequency band is used.
  • FIG. 6 is a diagram showing a phase optimization operation flow of a radio signal using a phase control reflector.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a basic configuration diagram of a network using the phase control reflector 300.
  • FIG. 3 is a functional block configuration diagram of the phase control reflector 300.
  • FIG. 4A is a diagram showing an example of forming an antenna beam by a
  • FIG. 7 is a diagram showing an estimation example of propagation channel information (H PT , H RP ) according to the first embodiment.
  • FIG. 8 is a diagram showing an estimation example of propagation channel information ( HPT , HRP ) according to the second embodiment.
  • FIG. 9 is a diagram showing an estimation example of propagation channel information (H PT , H RP ) according to the third embodiment.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the UE 200 and the phase control reflector 300.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and is composed of a plurality of radio base stations and a plurality of terminals.
  • NR 5G New Radio
  • the wireless communication system 10 includes a wireless base station 100, a wireless base station 150A to a wireless base station 150D, and a user terminal 200 (hereinafter, UE200, User Equipment).
  • UE200 User Equipment
  • Radio base station 100 is a radio base station according to 5G and forms cell C1. Note that cell C1 is a relatively large cell and is called a macro cell.
  • Radio base stations 150A to 150D are also radio base stations according to 5G, but they form cells C11 to C14, which are relatively small in size, respectively.
  • Cell C11 to cell C14 may be referred to as a small cell, a semi-macro cell, or the like. As shown in FIG. 1, cells C11 to C14 may be formed so as to be included (overlaid) in cell C1 (macro cell).
  • a macro cell is generally interpreted as a communicable area with a radius of several hundred meters to several tens of kilometers covered by one radio base station.
  • a small cell is interpreted as a general term for cells that have a small transmission power and cover a small area as compared with a macro cell.
  • the radio base station 100 and the radio base station 150A to the radio base station 150D may be described as gNodeB (gNB) or BS.
  • gNB gNodeB
  • UE200 may be described as MS or the like.
  • the specific configuration of the wireless communication system 10 including the number of wireless base stations and terminals is not limited to the example shown in FIG.
  • the wireless communication system 10 is not necessarily limited to the wireless communication system according to 5G.
  • the wireless communication system 10 may be a 5G next-generation wireless communication system (may be called Beyond 5G or the like) or a wireless communication system according to Long Term Evolution (LTE).
  • 5G next-generation wireless communication system may be called Beyond 5G or the like
  • LTE Long Term Evolution
  • Radio base station 100 and radio base station 150A to radio base station 150D execute wireless communication according to UE200 and 5G.
  • Radio base station 100 and radio base station 150A to radio base station 150D and UE200 are Massive MIMO, multiple components that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. It can support carrier aggregation (CA), which uses carriers (CC) in a bundle, and dual connectivity (DC), which communicates simultaneously between the UE and each of the two NG-RAN Nodes.
  • CA carrier aggregation
  • CC carriers
  • DC dual connectivity
  • the wireless communication system 10 can also support a high frequency band higher than the following frequency range (FR) specified in 3GPP Release 15.
  • FR frequency range
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • FR4 belongs to the so-called EHF (extremely high frequency, also called millimeter wave).
  • EHF extreme high frequency, also called millimeter wave
  • FR4 is a tentative name and may be called by another name.
  • the wireless communication system 10 includes a phase control reflector 300.
  • the phase control reflector 300 reflects (may be called a relay or the like) a radio signal transmitted from a radio base station (for example, radio base station 150A).
  • the UE 200 can receive the radio signal reflected by the phase control reflector 300.
  • the phase control reflector 300 reflects the radio signal transmitted to the UE 200. That is, the phase control reflector 300 reflects the radio signal from the radio base station or terminal.
  • the phase control reflector 300 can change the phase of the radio signal reflected toward the UE 200. From this point of view, the phase control reflector 300 may be referred to as a phase variable reflector. As will be described later, the phase control reflector 300 has a function of changing the phase of the radio signal and relaying the signal, and the name of the reflector does not necessarily have to be used. For example, it may be called a repeater, a repeater, a reflect array, a transmit array, or the like.
  • FIG. 2 is a basic configuration diagram of a network using the phase control reflector 300.
  • the phase control reflector 300 is interposed between the radio base station 150A (may be another radio base station) and the UE 200, and the radio transmitted / received between the radio base stations 150A and the UE 200. Reflects (relays) the signal.
  • the radio base stations 150A and UE200 directly transmit and receive radio signals without going through the phase control reflector 300.
  • the UE 200 When the UE 200 detects the deterioration of the radio quality, it transmits a reference signal (RS) to the phase control reflector 300.
  • RS reference signal
  • Phase control reflector 300 based on the propagation channel information between the radio base stations 150A ⁇ phase control reflector 300 (H PT), the propagation channel information between the UE 200 ⁇ phase control reflector 300 (H RP), the radio base station 150A Controls the phase of the radio signal transmitted by and reflected towards the UE200.
  • the phase control reflector 300 based on the H PT and H RP, sent by the UE 200, and controls the phase of the radio signal reflected toward the radio base station 150A.
  • the propagation channel is an individual communication path for wireless communication, and here, it is a communication path between each transmission / reception antenna (BS ant. And MS ant. In the figure).
  • the phase control reflector 300 includes a compact multi-element antenna 301 compatible with Massive MIMO, a phase shifter 303 that changes the phase of a radio signal, substantially a radio wave, to a specific phase, and uses the phase shifter 303.
  • UE200 or radio base station 150A controls the phase of the radio waves reflected (relayed). The specific method of controlling the phase by the phase control reflector 300 will be described later.
  • FIG. 3 is a functional block configuration diagram of the phase control reflector 300.
  • the phase control reflector 300 includes an HPT acquisition unit 310, an H RP acquisition unit 320, a phase control unit 330, and a reflector unit 340.
  • the H PT acquisition unit 310 acquires the propagation channel information (H PT ) between the radio base station 150A (may be another radio base station, the same applies hereinafter) and the phase control reflector 300.
  • the HPT acquisition unit 310 constitutes a first propagation channel information acquisition unit that acquires the first propagation channel information.
  • the HPT acquisition unit 310 estimates the HPT based on the reference signal (RS) included in the radio signal transmitted from the radio base station 150A.
  • RS reference signal
  • CSI-RS Channel State Information-Reference Signal
  • other reference signals for example, Demodulation reference signal (DMRS)
  • DMRS Demodulation reference signal
  • the H PT acquisition unit 310 may directly estimate the H PT using the reference signal, or wirelessly (or or) estimate the HP PT estimated by another node (for example, the radio base station 150A) in the wireless communication system 10. It may be acquired via communication (which may be wired).
  • the H RP acquisition unit 320 acquires the propagation channel information (H RP ) between the phase control reflector 300 and the UE 200.
  • the H RP acquisition unit 320 constitutes a second propagation channel information acquisition unit that acquires the second propagation channel information.
  • the H RP acquisition unit 320 estimates the H RP based on the reference signal (RS) included in the radio signal transmitted from the UE 200.
  • RS reference signal
  • the reference signal like the H PT, or the like can be used DMRS or Sounding Reference Signal (SRS).
  • H PT and H RP can be expressed as follows.
  • M is the number of antennas of the terminal (reception)
  • N is the number of antennas of the wireless base station (transmission)
  • K is the number of reflectors.
  • the phase control unit 330 controls the phase of a radio signal (which may be called a radio wave) reflected by the reflector unit 340. Specifically, the phase control unit 330, based on the H PT and H RP, to control the phase of the radio signal reflected toward the UE200 or the radio base station 150A.
  • a radio signal which may be called a radio wave
  • the phase control unit 330 by maximizing the predetermined eigenvalue of H PT, the combination of the predetermined eigenvalue of H RP, to control the phase of the radio signal.
  • the specific phase optimization algorithm will be described later.
  • the reflector unit 340 is composed of functional parts that reflect radio signals (radio waves). Specifically, the reflector unit 340 is composed of a small multi-element antenna 301 corresponding to Massive MIMO and a plurality of phase shifters 303 (see FIG. 2).
  • the phase control reflector 300 can adopt a configuration in which the phase shifter 303 is sub-arrayed. That is, the phase control reflector 300 has a plurality of sub-arrays. Therefore, a different sub-array may be assigned to each terminal, and the phase control unit 330 may control the phase of the radio signal for each terminal by using the sub-array.
  • phase control unit 330 controls the phase for each sub-array (that is, a pseudo-sub-array for the terminal) corresponding to one propagation channel selected in MultiUser-MIMO (MU-MIMO).
  • MU-MIMO MultiUser-MIMO
  • a plurality of reflector elements constituting the phase control reflector 300 are sequentially assigned according to the communication quality with the terminals (the reflector elements may be assigned to the plurality of terminals so that the quality is equal, or assigned. By doing so, a pseudo sub-array may be constructed and controlled.
  • phase control unit 330 may convert the radio signal received from the radio base station 150A or UE200 into a baseband signal (equivalent low frequency system) and control the phase in the equivalent low frequency system.
  • the equivalent low frequency system can be expressed as a virtual system in which only the digital region represented by the phase and amplitude of the radio signal (radio wave) is extracted.
  • phase control unit 330 may control the phase of the radio signal in the radio frequency (RF) band without converting to the equivalent low frequency system.
  • RF radio frequency
  • the phase control reflector 300 controls (changes) only the phase of the radio signal (radio wave) by the phase control unit 330, and amplifies the power of the reflected (relayed) radio signal. There is no power supply.
  • FIGS. 4A and 4B show an example of forming an antenna beam by a conventional radio base station and an example of forming an antenna beam by a radio base station corresponding to Massive MIMO, respectively.
  • the conventional radio base station 100P that does not support Massive MIMO forms a beam BM11 with a wide beam width.
  • the radio base station 150A corresponding to Massive MIMO can transmit the beam BM21 or the beam BM22 having a beam width narrower than that of the beam BM11.
  • Massive MIMO generally means MIMO communication using an antenna having 100 or more antenna elements, and wireless communication at a higher speed than before is possible due to the multiplexing effect of multiple streams.
  • BF beamforming
  • the beam width can be dynamically changed depending on the frequency band used or the state of UE200, such as beam BM21 or narrower beam BM22.
  • effects such as reduction of interference and effective use of wireless resources can be expected.
  • the antenna element is proportional to the wavelength of the radio frequency used, if the number of antenna elements is the same, the antenna can be miniaturized as the frequency increases. That is, even with the same antenna size, a large number of antenna elements can be accommodated. In other words, the decrease in received signal strength due to the increase in propagation loss in the high frequency band can be recovered by the BF gain.
  • the radio signal (radio wave) transmitted by the radio base station 100P reaches a long distance even if the beam width is wide as in the beam BM11 (see FIG. 4A).
  • FIG. 5 is an explanatory diagram of typical problems in the case of using the high frequency band.
  • a dead zone is likely to occur due to the strong straightness of radio waves.
  • the radio quality will be significantly deteriorated.
  • communication may be interrupted.
  • Step 1 Estimate the propagation channel information ( HPT ) between the radio base station and the phase control reflector based on the reference signal (or assume that the positions of the radio base station and the phase control reflector are unchanged. , The phase control reflector may be acquired in advance) - (Step 2): when detecting a radio quality degradation in the terminal transmits a reference signal to the phase control reflector, estimates the propagation channel information between terminals - phase control reflector (H RP) (or H PT is Based on the reference signal (RS) included in the radio signal transmitted from UE200, assuming that the radio base station 150A is known and the propagation channel does not fluctuate, the radio base station 150A has radio base stations 150A and UE200.
  • H RP phase control reflector
  • FIG. 6 is a flow diagram showing more specifically the operation according to the above-mentioned procedures 1 to 4, in which data is transmitted and received via the above. Specifically, FIG. 6 shows a phase optimization operation flow of a radio signal using a phase control reflector.
  • the radio base station (for example, the radio base station 150A) transmits a reference signal to the phase control reflector 300 (S10).
  • the type of the reference signal (RS) is not particularly limited, and CSI-RS, DM-RS and the like can be appropriately used.
  • Phase control reflector 300 based on the reference signal from the radio base station, estimates the H PT (S20). Specifically, the phase control reflector 300 sets the propagation channel of the radio base station to the phase control reflector 300, that is, the individual communication paths of radio communication between the radio base station and the phase control reflector 300, based on the reference signal. Estimate and generate propagation channel information.
  • the UE200 transmits a reference signal to the phase control reflector 300 (S30).
  • the type of the reference signal is not particularly limited, and DM-RS, SRS, or the like can be appropriately used.
  • the timing at which the UE 200 transmits a reference signal to the phase control reflector 300 is typically when a deterioration in radio quality is detected as described above, but the timing is not necessarily limited to such timing.
  • the UE 200 may send a reference signal to the phase control reflector 300 based on explicit or implicit instructions from the network.
  • the phase control reflector 300 estimates the H RP based on the reference signal from the terminal (S40). Specifically, the phase control reflector 300 estimates and propagates the propagation channel of the terminal to the phase control reflector 300, that is, the individual communication path of the wireless communication between the terminal and the phase control reflector 300 based on the reference signal. Generate channel information.
  • Phase control reflector 300 based on the estimated H PT and H RP, reflecting derives the optimum phase combination to be applied to radio signal (relay) (S50). Specifically, the phase control reflector 300 determines the optimum phase combination based on the phase optimization algorithm described later.
  • the radio base station transmits a radio signal to the phase control reflector 300, and the radio signal is reflected by the phase control reflector 300 toward the terminal. As a result, data is transmitted from the radio base station to the terminal via the phase control reflector 300 (S60).
  • phase control reflector 300 Similarly, regarding the direction from the terminal to the wireless base station (upward direction), data is transmitted from the terminal to the wireless base station via the phase control reflector 300.
  • the phase control reflector 300 estimates HPT and H RP and derives the optimum phase combination applied to the radio signal. However, the estimation of HPT and H RP and the phase are derived. Either or both of the derivation of the combination may be performed by the radio base station or the terminal, and the result may be notified (feedback) to the phase control reflector 300.
  • FIG. 7 shows an estimation example of propagation channel information (H PT , H RP ) according to the first embodiment. This embodiment can be applied to a static environment in which the UE200 (terminal) does not move much.
  • the radio base stations 150A and UE200 transmit a reference signal for channel estimation toward the phase control reflector 300.
  • the phase control reflector 300 estimates the propagation channel information ( HPT , H RP ) and derives the optimum phase combination.
  • the UE200 When the UE200 detects deterioration of radio quality due to changes in the surrounding propagation environment, the UE200 retransmits the reference signal to the phase control reflector 300 and updates the propagation channel information.
  • FIG. 8 shows an estimation example of propagation channel information (H PT , H RP ) according to the second embodiment. This embodiment can be applied to a dynamic environment in which the UE200 (terminal) moves.
  • the propagation channel information (H RP ) between the UE 200 and the phase control reflector 300 fluctuates. Therefore, it is necessary to update the H RP according to the degree of the fluctuation.
  • the UE 200 updates the H RP held by the phase control reflector 300 by appropriately transmitting a reference signal to the phase control reflector 300 based on the radio quality (for example, shown in the figure). As such, H'RP to H " RP ).
  • the phase control reflector 300 derives the optimum phase combination based on the updated H" RP .
  • the H RP may be updated at appropriate time intervals regardless of the radio quality.
  • FIG. 9 shows an estimation example of propagation channel information (H PT , H RP ) according to the third embodiment. This embodiment can be applied to a multi-user environment.
  • phase control reflectors are installed, and one phase control reflector is assigned to each user (Fig.) To realize multi-user communication.
  • FIG. 9 shows an example of 2MU-MIMO.
  • the phase control reflector 300A is assigned for the UE 200A
  • the phase control reflector 300B is assigned for the UE 200B.
  • the phase control reflector 300A estimates (or acquires) the H 1 PT and H 1 RP for the UE 200A.
  • the phase control reflector 300B estimates (or acquires) H 2 PT and H 2 RP for UE 200B.
  • Phase Optimization Algorithm The following describes an example of the phase optimization algorithm applied to the above-mentioned phase control reflector.
  • D RP and D PT are power components, and ⁇ is a weight component.
  • W is taken into consideration and the phase combination is derived so as to increase the signal-to-noise ratio (SN ratio).
  • the number of antennas M of the terminal (reception) and the number of antennas N of the radio base station (transmission) are less than the number K of the reflectors.
  • the upper left of the matrix ( ⁇ RP1 , ⁇ PT1 ) corresponds to the first eigenvalue component.
  • (( ⁇ RP2 , ⁇ PT1 ) corresponds to the second eigenvalue component of H RP and the first eigenvalue component of H PT .
  • the first m eigenvalues of H RP (the power component maximum) maximize the combination of the first n eigenvalues of H PT If you want to, can be achieved by maximizing the coefficient of xi] mn.
  • ⁇ mn is
  • the component of ⁇ 11 may be increased.
  • the weight components contained in ⁇ mn are in-phased.
  • the phase value will be either 0 or ⁇ (or ⁇ / 2, 3 ⁇ / 2), but the weight component contained in ⁇ mn will be any of them. It will be aligned to the phase (0, ⁇ ) or ( ⁇ / 2, 3 ⁇ / 2).
  • the phase (0, ⁇ ) is used, the imaginary part is discarded and the real part is adjusted to the positive or negative direction.
  • ( ⁇ / 2, 3 ⁇ / 2) is used, the real part is discarded and the imaginary part is adjusted to the positive or negative direction.
  • phase value 4 values (2 2 ) or 8 values (2 3 ).
  • the phase control reflector 300 based on the propagation channel information (H PT and H RP), can control the phase of the radio signal reflected toward the UE200 or the radio base station 150A.
  • phase noise included in the radio signal on the receiving side can be greatly reduced.
  • a high frequency band of several GHz to several tens of GHz or more it can exert a great effect in reducing phase noise.
  • phase control reflector 300 reflects (relays) the radio signal between the radio base station and the terminal, it can contribute to the elimination of the dead zone even when a high frequency band having high straightness of radio waves is used.
  • the phase noise can be greatly reduced while eliminating the dead zone.
  • the phase control reflector 300 by controlling the phase of the radio signal reflected toward the UE200 or radio base station 150A, optimization and predetermined eigenvalues of H PT, the combination of the predetermined eigenvalue of H RP To do.
  • the phase control reflector 300 based on the phase optimization algorithm described above, the eigenvalues ingredients in the specified H PT and H RP, that is, to select the best combination of phase components. As a result, the phase noise can be significantly reduced while using the phase control reflector 300.
  • phase control reflector 300 in the phase control reflector 300, a different sub-array is assigned to each terminal, and the phase of the radio signal can be controlled by using the sub-array. Therefore, appropriate phase control for each terminal can be realized without increasing the number of phase control reflectors 300.
  • the phase control reflector 300 can convert the radio signal received from the radio base station 150A or UE200 into an equivalent low frequency system and control the phase in the equivalent low frequency system.
  • the phase control reflector 300 can control the phase of the radio signal in the radio frequency (RF) band without converting to the equivalent low frequency system.
  • RF radio frequency
  • phase control of the radio signal can be realized according to the performance or installation conditions required for the phase control reflector 300.
  • the direction from the radio base station to the terminal is mainly described, but as appropriately described in the above-described embodiment, the radio from the terminal to the radio base station direction (upward direction) is mainly described.
  • the phase of the signal may also be controlled.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices may be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
  • a functional block that makes transmission function is called a transmitting unit or a transmitter.
  • the method of realizing each is not particularly limited.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the UE 200 and the phase control reflector 300.
  • the UE 200 and the phase control reflector 300 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the phase control reflector 300 (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function or a part of the functions in the phase control reflector 300 is calculated by the processor 1001 by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and is performed by the communication device 1004. It may be realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network nodes
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executables, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the function of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • long TTIs eg, normal TTIs, subframes, etc.
  • short TTIs eg, shortened TTIs, etc.
  • TTI length the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
  • Physical RB Physical RB: PRB
  • Sub-Carrier Group: SCG sub-carrier Group: SCG
  • REG resource element group
  • PRB pair an RB pair, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) can also represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier.
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as “judgment” or “decision”.
  • judgment and “decision” mean that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include that some action is regarded as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other.”
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Wireless communication system 100 100P Wireless base station 150A-150D Wireless base station 200, 200A, 200B UE 300, 300A, 300B Phase control reflector 301 Small multi-element antenna 303 Phase shifter 310 H PT acquisition unit 320 H RP acquisition unit 330 Phase control unit 340 Reflector unit BM11, BM21, BM22 Beam C1, C11 to C14 Cell OB Obstacle 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

This phase control reflector reflects a wireless signal from a radio base station or a terminal. The phase control reflector controls the phase of a wireless signal reflected toward the terminal or radio base station, on the basis of propagation channel information HPT between the radio base station and the phase control reflector and propagation channel information HRP between the phase control reflector and the terminal.

Description

無線通信システム、位相制御リフレクタ及び無線通信方法Wireless communication system, phase control reflector and wireless communication method
 本発明は、無線通信システム、位相制御リフレクタ及び無線通信方法に関し、特に、無線信号の位相制御に関する。 The present invention relates to a wireless communication system, a phase control reflector and a wireless communication method, and more particularly to a phase control of a wireless signal.
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)、さらに、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)の仕様化も進められている。 The 3rd Generation Partnership Project (3GPP) has specified Long Term Evolution (LTE), and aims to further speed up LTE with LTE-Advanced (hereinafter referred to as LTE including LTE-Advanced), and the 5th generation mobile communication system. Specifications (also called 5G, New Radio (NR) or Next Generation (NG)) are also underway.
 特に、爆発的に増大する移動通信のトラフィック量に対応するため、3GPPでは、52.6GHzを超えるような高周波数帯域を用いた小型セル(スモールセル)、及び多数のアンテナ素子を有する大規模(massive)なアンテナを用いたMassive MIMO(Multiple-Input Multiple-Output)の適用が検討されている。 In particular, in order to cope with the explosively increasing traffic volume of mobile communication, 3GPP has a small cell (small cell) using a high frequency band exceeding 52.6 GHz and a large scale (massive) having a large number of antenna elements. ) Massive MIMO (Multiple-Input Multiple-Output) using an antenna is being studied.
 このような高周波数帯域を用いることによって広帯域化が可能となる。また、多数のアンテナ素子を用いたビームフォーミングによって、高周波数帯域において顕著となる伝搬損失の補償が可能となるとともに、Massive MIMOによって、多数のストリームの空間多重が可能となる。 By using such a high frequency band, it is possible to widen the bandwidth. In addition, beamforming using a large number of antenna elements makes it possible to compensate for propagation loss that is remarkable in a high frequency band, and Massive MIMO enables spatial multiplexing of a large number of streams.
 一方、このような高周波数帯域では、電波の強い直進性によって、不感地帯が発生し易い問題がある。そこで、パッシブなリピータを用いて、マルチパス環境下において、MIMO性能を向上させる方法が試行されている(非特許文献1参照)。 On the other hand, in such a high frequency band, there is a problem that a dead zone is likely to occur due to the strong straightness of radio waves. Therefore, a method of improving MIMO performance in a multipath environment using a passive repeater has been tried (see Non-Patent Document 1).
 上述したような高周波数帯域を用い、キャリア周波数が高い場合、位相雑音の増大が問題となる。非特許文献1に記載されているようなパッシブなリピータを用いた場合、不感地帯の解消に対して一定の効果は期待できる。 When the high frequency band as described above is used and the carrier frequency is high, an increase in phase noise becomes a problem. When a passive repeater as described in Non-Patent Document 1 is used, a certain effect can be expected for eliminating dead zones.
 しかしながら、リピータを経由して端末(User Equipment, UE)が受信する無線信号の位相は、基準値から大きく回転してしまっている場合があり、必ずしも最適でない可能性がある。3GPPではこのような位相雑音に対応するため、PTRS:Phase Tracking RSが規定されているが、端末側での相応の処理が必要となる。 However, the phase of the radio signal received by the terminal (User Equipment, UE) via the repeater may have rotated significantly from the reference value, and may not always be optimal. In 3GPP, PTRS: Phase Tracking RS is specified in order to deal with such phase noise, but appropriate processing on the terminal side is required.
 そこで、本発明は、このような状況に鑑みてなされたものであり、高周波数帯域を用いる場合において、不感地帯を解消しつつ、位相雑音を大きく低減し得る無線通信システム、位相制御リフレクタ、及び無線通信方法の提供を目的とする。 Therefore, the present invention has been made in view of such a situation, and when a high frequency band is used, a wireless communication system, a phase control reflector, and a phase control reflector that can greatly reduce phase noise while eliminating dead zones. The purpose is to provide a wireless communication method.
 本開示の一態様は、無線基地局(例えば、無線基地局150A)または端末(UE200)からの無線信号を反射する位相制御リフレクタ(位相制御リフレクタ300)を含む無線通信システム(無線通信システム10)であって、前記無線基地局と、前記位相制御リフレクタとの間の第1伝搬チャネル情報(HPT)を取得する第1伝搬チャネル情報取得部(HPT取得部310)と、前記位相制御リフレクタと、前記端末との間の第2伝搬チャネル情報(HRP)を取得する第2伝搬チャネル情報取得部(HRP取得部320)とを備え、前記位相制御リフレクタは、前記第1伝搬チャネル情報(HPT)及び前記第2伝搬チャネル情報(HRP)に基づいて、前記端末または前記無線基地局に向けて反射する前記無線信号の位相を制御する。 One aspect of the present disclosure is a radio communication system (wireless communication system 10) including a phase control reflector (phase control reflector 300) that reflects a radio signal from a radio base station (for example, radio base station 150A) or a terminal (UE200). The first propagation channel information acquisition unit (H PT acquisition unit 310) for acquiring the first propagation channel information (H PT ) between the radio base station and the phase control reflector, and the phase control reflector. And a second propagation channel information acquisition unit (H RP acquisition unit 320) for acquiring the second propagation channel information (H RP ) with the terminal, and the phase control reflector is the first propagation channel information. The phase of the radio signal reflected toward the terminal or the radio base station is controlled based on (H PT ) and the second propagation channel information (H RP ).
 本開示の一態様は、無線基地局(例えば、無線基地局150A)または端末(UE200)からの無線信号を反射する位相制御リフレクタ(位相制御リフレクタ300)であって、前記無線基地局と、前記位相制御リフレクタとの間の第1伝搬チャネル情報(HPT)、及び前記位相制御リフレクタと、前記端末との間の第2伝搬チャネル情報(HRP)に基づいて、前記端末または前記無線基地局に向けて反射する前記無線信号の位相を制御する。 One aspect of the present disclosure is a phase control reflector (phase control reflector 300) that reflects a radio signal from a radio base station (eg, radio base station 150A) or terminal (UE200), wherein the radio base station and the above. Based on the first propagation channel information ( HPT ) between the phase control reflector and the second propagation channel information (H RP ) between the phase control reflector and the terminal, the terminal or the radio base station. The phase of the radio signal reflected toward is controlled.
 本開示の一態様は、無線基地局と、位相制御リフレクタとの間の第1伝搬チャネル情報を推定するステップと、前記位相制御リフレクタと、端末との間の第2伝搬チャネル情報を推定するステップと、前記位相制御リフレクタが、前記第1伝搬チャネル情報及び前記第2伝搬チャネル情報に基づいて、前記端末または前記無線基地局に向けて反射する無線信号の位相を制御するステップとを含む無線通信方法である。 One aspect of the present disclosure is a step of estimating the first propagation channel information between the radio base station and the phase control reflector, and a step of estimating the second propagation channel information between the phase control reflector and the terminal. And the step of controlling the phase of the radio signal reflected by the phase control reflector toward the terminal or the radio base station based on the first propagation channel information and the second propagation channel information. The method.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、位相制御リフレクタ300を用いたネットワークの基本構成図である。FIG. 2 is a basic configuration diagram of a network using the phase control reflector 300. 図3は、位相制御リフレクタ300の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of the phase control reflector 300. 図4Aは、従来の無線基地局によるアンテナビームの形成例を示す図である。FIG. 4A is a diagram showing an example of forming an antenna beam by a conventional radio base station. 図4Bは、Massive MIMOに対応した無線基地局によるアンテナビームの形成例を示す図である。FIG. 4B is a diagram showing an example of forming an antenna beam by a radio base station corresponding to Massive MIMO. 図5は、高周波数帯域を用いる場合における典型的な課題の説明図である。FIG. 5 is an explanatory diagram of a typical problem when a high frequency band is used. 図6は、位相制御リフレクタを用いた無線信号の位相最適化動作フローを示す図である。FIG. 6 is a diagram showing a phase optimization operation flow of a radio signal using a phase control reflector. 図7は、実施例1に係る伝搬チャネル情報(HPT, HRP)の推定例を示す図である。FIG. 7 is a diagram showing an estimation example of propagation channel information (H PT , H RP ) according to the first embodiment. 図8は、実施例2に係る伝搬チャネル情報(HPT, HRP)の推定例を示す図である。FIG. 8 is a diagram showing an estimation example of propagation channel information ( HPT , HRP ) according to the second embodiment. 図9は、実施例3に係る伝搬チャネル情報(HPT, HRP)の推定例を示す図である。FIG. 9 is a diagram showing an estimation example of propagation channel information (H PT , H RP ) according to the third embodiment. 図10は、UE200及び位相制御リフレクタ300のハードウェア構成の一例を示す図である。FIG. 10 is a diagram showing an example of the hardware configuration of the UE 200 and the phase control reflector 300.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、複数の無線基地局と、複数の端末とによって構成される。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and is composed of a plurality of radio base stations and a plurality of terminals.
 具体的には、無線通信システム10は、無線基地局100、無線基地局150A~無線基地局150D、及びユーザ端末200(以下、UE200, User Equipment)を含む。 Specifically, the wireless communication system 10 includes a wireless base station 100, a wireless base station 150A to a wireless base station 150D, and a user terminal 200 (hereinafter, UE200, User Equipment).
 無線基地局100は、5Gに従った無線基地局であり、セルC1を形成する。なお、セルC1は、比較的サイズの大きいセルであり、マクロセルと呼ばれる。 Radio base station 100 is a radio base station according to 5G and forms cell C1. Note that cell C1 is a relatively large cell and is called a macro cell.
 無線基地局150A~無線基地局150Dも、5Gに従った無線基地局であるが、比較的サイズが小さいセルC11~セルC14をそれぞれ形成する。セルC11~セルC14は、スモールセル或いはセミマクロセルなどと呼ばれてもよい。図1に示すように、セルC11~セルC14は、セルC1(マクロセル)に含まれる(オーバレイする)ように形成されてもよい。 Radio base stations 150A to 150D are also radio base stations according to 5G, but they form cells C11 to C14, which are relatively small in size, respectively. Cell C11 to cell C14 may be referred to as a small cell, a semi-macro cell, or the like. As shown in FIG. 1, cells C11 to C14 may be formed so as to be included (overlaid) in cell C1 (macro cell).
 マクロセルは、一般的に、1つの無線基地局がカバーする半径数百メートルから数十キロメートルの通信可能エリアと解釈される。また、スモールセルは、送信電力が小さく、マクロセルに比較して小さいエリアをカバーするセルの総称と解釈される。 A macro cell is generally interpreted as a communicable area with a radius of several hundred meters to several tens of kilometers covered by one radio base station. In addition, a small cell is interpreted as a general term for cells that have a small transmission power and cover a small area as compared with a macro cell.
 なお、無線基地局100及び無線基地局150A~無線基地局150Dは、gNodeB(gNB)またはBSなどと表記されてもよい。また、UE200は、MSなどと表記されてもよい。さらに、無線基地局及び端末の数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 The radio base station 100 and the radio base station 150A to the radio base station 150D may be described as gNodeB (gNB) or BS. In addition, UE200 may be described as MS or the like. Further, the specific configuration of the wireless communication system 10 including the number of wireless base stations and terminals is not limited to the example shown in FIG.
 また、無線通信システム10は、必ずしも5Gに従った無線通信システムに限定されない。例えば、無線通信システム10は、5Gの次世代の無線通信システム(Beyond 5Gなどと呼ばれてもよい)、或いはLong Term Evolution(LTE)に従った無線通信システムであってもよい。 Further, the wireless communication system 10 is not necessarily limited to the wireless communication system according to 5G. For example, the wireless communication system 10 may be a 5G next-generation wireless communication system (may be called Beyond 5G or the like) or a wireless communication system according to Long Term Evolution (LTE).
 無線基地局100及び無線基地局150A~無線基地局150Dは、UE200と5Gに従った無線通信を実行する。無線基地局100及び無線基地局150A~無線基地局150D及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 Radio base station 100 and radio base station 150A to radio base station 150D execute wireless communication according to UE200 and 5G. Radio base station 100 and radio base station 150A to radio base station 150D and UE200 are Massive MIMO, multiple components that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. It can support carrier aggregation (CA), which uses carriers (CC) in a bundle, and dual connectivity (DC), which communicates simultaneously between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、3GPP Release 15において規定されている以下の周波数レンジ(FR)よりも高い高周波数帯域にも対応し得る。 In addition, the wireless communication system 10 can also support a high frequency band higher than the following frequency range (FR) specified in 3GPP Release 15.
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応する。ここでは、このような高周波数帯域を、便宜上「FR4」と呼ぶ。FR4は、いわゆるEHF(extremely high frequency、ミリ波とも呼ばれる)に属する。なお、FR4は仮称であり、別の名称で呼ばれても構わない。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
Specifically, the wireless communication system 10 supports a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Here, such a high frequency band is referred to as "FR4" for convenience. FR4 belongs to the so-called EHF (extremely high frequency, also called millimeter wave). FR4 is a tentative name and may be called by another name.
 また、無線通信システム10は、位相制御リフレクタ300を含む。位相制御リフレクタ300は、無線基地局(例えば、無線基地局150A)から送信された無線信号を反射(中継などと呼ばれてもよい)する。UE200は、位相制御リフレクタ300によって反射された無線信号を受信できる。また、位相制御リフレクタ300は、UE200送信された無線信号を反射する。つまり、位相制御リフレクタ300は、無線基地局または端末からの無線信号を反射する。 Further, the wireless communication system 10 includes a phase control reflector 300. The phase control reflector 300 reflects (may be called a relay or the like) a radio signal transmitted from a radio base station (for example, radio base station 150A). The UE 200 can receive the radio signal reflected by the phase control reflector 300. Further, the phase control reflector 300 reflects the radio signal transmitted to the UE 200. That is, the phase control reflector 300 reflects the radio signal from the radio base station or terminal.
 位相制御リフレクタ300は、UE200に向けて反射する無線信号の位相を変化させることができる。このような観点から、位相制御リフレクタ300は、位相可変リフレクタと呼ばれてもよい。なお、後述するように、位相制御リフレクタ300は、無線信号の位相を変化させて中継する機能を有しており、必ずしもリフレクタの呼称が用いられなくてもよい。例えば、リピータ、中継装置、リフレクトアレイ、或いはトランスミットアレイなどと呼ばれてもよい。 The phase control reflector 300 can change the phase of the radio signal reflected toward the UE 200. From this point of view, the phase control reflector 300 may be referred to as a phase variable reflector. As will be described later, the phase control reflector 300 has a function of changing the phase of the radio signal and relaying the signal, and the name of the reflector does not necessarily have to be used. For example, it may be called a repeater, a repeater, a reflect array, a transmit array, or the like.
 (2)位相制御リフレクタを用いたネットワークの基本構成
 次に、位相制御リフレクタ300を用いたネットワークの基本構成について説明する。図2は、位相制御リフレクタ300を用いたネットワークの基本構成図である。
(2) Basic Configuration of Network Using Phase Control Reflector Next, the basic configuration of the network using the phase control reflector 300 will be described. FIG. 2 is a basic configuration diagram of a network using the phase control reflector 300.
 図2に示すように、位相制御リフレクタ300は、無線基地局150A(他の無線基地局でもよい)と、UE200との間に介在し、無線基地局150AとUE200との間において送受信される無線信号を反射(中継)する。 As shown in FIG. 2, the phase control reflector 300 is interposed between the radio base station 150A (may be another radio base station) and the UE 200, and the radio transmitted / received between the radio base stations 150A and the UE 200. Reflects (relays) the signal.
 具体的には、無線基地局150AとUE200とは、無線品質が良好の場合には、位相制御リフレクタ300を経由せずに、直接、無線信号を送受信する。 Specifically, when the radio quality is good, the radio base stations 150A and UE200 directly transmit and receive radio signals without going through the phase control reflector 300.
 UE200は、当該無線品質の劣化を検出した場合、参照信号(RS)を位相制御リフレクタ300に向けて送信する。 When the UE 200 detects the deterioration of the radio quality, it transmits a reference signal (RS) to the phase control reflector 300.
 位相制御リフレクタ300は、無線基地局150A~位相制御リフレクタ300間の伝搬チャネル情報(HPT)と、UE200~位相制御リフレクタ300間の伝搬チャネル情報(HRP)とに基づいて、無線基地局150Aによって送信され、UE200に向けて反射する無線信号の位相を制御する。同様に、位相制御リフレクタ300は、HPTとHRPとに基づいて、UE200によって送信され、無線基地局150Aに向けて反射する無線信号の位相を制御する。 Phase control reflector 300, based on the propagation channel information between the radio base stations 150A ~ phase control reflector 300 (H PT), the propagation channel information between the UE 200 ~ phase control reflector 300 (H RP), the radio base station 150A Controls the phase of the radio signal transmitted by and reflected towards the UE200. Similarly, the phase control reflector 300, based on the H PT and H RP, sent by the UE 200, and controls the phase of the radio signal reflected toward the radio base station 150A.
 伝搬チャネルとは、無線通信の個々の通信路であり、ここでは、各送受信アンテナ(図中のBS ant.及びMS ant.)間の通信路である。 The propagation channel is an individual communication path for wireless communication, and here, it is a communication path between each transmission / reception antenna (BS ant. And MS ant. In the figure).
 位相制御リフレクタ300は、Massive MIMOに対応した小型多素子アンテナ301と、無線信号、実質的には、電波の位相を特定の位相に変化させる移相器303を備え、移相器303を用いて、UE200または無線基地局150Aに反射(中継)される電波の位相を制御する。なお、位相制御リフレクタ300による位相の具体的な制御方法については、さらに後述する。 The phase control reflector 300 includes a compact multi-element antenna 301 compatible with Massive MIMO, a phase shifter 303 that changes the phase of a radio signal, substantially a radio wave, to a specific phase, and uses the phase shifter 303. , UE200 or radio base station 150A controls the phase of the radio waves reflected (relayed). The specific method of controlling the phase by the phase control reflector 300 will be described later.
 (3)位相制御リフレクタの機能ブロック構成
 図3は、位相制御リフレクタ300の機能ブロック構成図である。図3に示すように、位相制御リフレクタ300は、HPT取得部310、HRP取得部320、位相制御部330及びリフレクタ部340を備える。
(3) Functional Block Configuration of Phase Control Reflector FIG. 3 is a functional block configuration diagram of the phase control reflector 300. As shown in FIG. 3, the phase control reflector 300 includes an HPT acquisition unit 310, an H RP acquisition unit 320, a phase control unit 330, and a reflector unit 340.
 HPT取得部310は、無線基地局150A(他の無線基地局でもよい、以下同)と、位相制御リフレクタ300との間の伝搬チャネル情報(HPT)を取得する。本実施形態において、HPT取得部310は、第1伝搬チャネル情報を取得する第1伝搬チャネル情報取得部を構成する。 The H PT acquisition unit 310 acquires the propagation channel information (H PT ) between the radio base station 150A (may be another radio base station, the same applies hereinafter) and the phase control reflector 300. In the present embodiment, the HPT acquisition unit 310 constitutes a first propagation channel information acquisition unit that acquires the first propagation channel information.
 具体的には、HPT取得部310は、無線基地局150Aから送信される無線信号に含まれる参照信号(RS)に基づいて、HPTを推定する。参照信号としては、例えば、Channel State Information-Reference Signal(CSI-RS)を用いることができる。但し、他の参照信号(例えば、Demodulation reference signal(DMRS)、或いは参照信号として代用できるリファレンスとなり得る信号を用いてもよい。 Specifically, the HPT acquisition unit 310 estimates the HPT based on the reference signal (RS) included in the radio signal transmitted from the radio base station 150A. As the reference signal, for example, Channel State Information-Reference Signal (CSI-RS) can be used. However, other reference signals (for example, Demodulation reference signal (DMRS)) or signals that can serve as a reference signal may be used.
 HPT取得部310は、当該参照信号を用いてHPTを直接推定してもよいし、無線通信システム10内の他のノード(例えば、無線基地局150A)が推定したHPTを無線(または有線でもよい)通信経由で取得してもよい。 The H PT acquisition unit 310 may directly estimate the H PT using the reference signal, or wirelessly (or or) estimate the HP PT estimated by another node (for example, the radio base station 150A) in the wireless communication system 10. It may be acquired via communication (which may be wired).
 HRP取得部320は、位相制御リフレクタ300、UE200との間の伝搬チャネル情報(HRP)を取得する。本実施形態において、HRP取得部320は、第2伝搬チャネル情報を取得する第2伝搬チャネル情報取得部を構成する。 The H RP acquisition unit 320 acquires the propagation channel information (H RP ) between the phase control reflector 300 and the UE 200. In the present embodiment, the H RP acquisition unit 320 constitutes a second propagation channel information acquisition unit that acquires the second propagation channel information.
 具体的には、HRP取得部320は、UE200から送信される無線信号に含まれる参照信号(RS)に基づいて、HRPを推定する。当該参照信号については、HPTと同様に、DMRS或いはSounding Reference Signal(SRS)などを用い得る。 Specifically, the H RP acquisition unit 320 estimates the H RP based on the reference signal (RS) included in the radio signal transmitted from the UE 200. For the reference signal, like the H PT, or the like can be used DMRS or Sounding Reference Signal (SRS).
 なお、HPT及びHRPは、次のように表現できる。 H PT and H RP can be expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Mは端末(受信)のアンテナ数、Nは無線基地局(送信)のアンテナ数、Kはリフレクタの数である。 M is the number of antennas of the terminal (reception), N is the number of antennas of the wireless base station (transmission), and K is the number of reflectors.
 位相制御部330は、リフレクタ部340によって反射される無線信号(電波と呼んでもよい)の位相を制御する。具体的には、位相制御部330は、HPT及びHRPに基づいて、UE200または無線基地局150Aに向けて反射する無線信号の位相を制御する。 The phase control unit 330 controls the phase of a radio signal (which may be called a radio wave) reflected by the reflector unit 340. Specifically, the phase control unit 330, based on the H PT and H RP, to control the phase of the radio signal reflected toward the UE200 or the radio base station 150A.
 本実施形態では、位相制御部330は、HPTの所定固有値と、HRPの所定固有値との組み合わせを最大化することによって、当該無線信号の位相を制御する。なお、所定固有値とは、HPT, HRPに含まれるmまたはn番目の固有値(第m固有値、第n固有値)と対応する。なお、具体的な位相最適化のアルゴリズムについては、後述する。 In the present embodiment, the phase control unit 330, by maximizing the predetermined eigenvalue of H PT, the combination of the predetermined eigenvalue of H RP, to control the phase of the radio signal. The predetermined eigenvalue, H PT, m or n-th eigenvalue included in the H RP (the m eigenvalues, the n eigenvalues) corresponding to. The specific phase optimization algorithm will be described later.
 リフレクタ部340は、無線信号(電波)を反射する機能部品によって構成される。具体的には、リフレクタ部340は、Massive MIMOに対応した小型多素子アンテナ301と、複数の移相器303(図2参照)とによって構成される。 The reflector unit 340 is composed of functional parts that reflect radio signals (radio waves). Specifically, the reflector unit 340 is composed of a small multi-element antenna 301 corresponding to Massive MIMO and a plurality of phase shifters 303 (see FIG. 2).
 本実施形態では、位相制御リフレクタ300は、移相器303がサブアレー化された構成を採りえる。つまり、位相制御リフレクタ300は、複数のサブアレーを有する。そこで、端末毎に異なるサブアレーが割り当てられてもよく、位相制御部330は、当該サブアレーを用いて、端末毎に無線信号の位相を制御してもよい。 In the present embodiment, the phase control reflector 300 can adopt a configuration in which the phase shifter 303 is sub-arrayed. That is, the phase control reflector 300 has a plurality of sub-arrays. Therefore, a different sub-array may be assigned to each terminal, and the phase control unit 330 may control the phase of the radio signal for each terminal by using the sub-array.
 なお、物理的な位相制御リフレクタ300のサブアレーでなく、デジタル的な擬似サブアレーを構成し、端末別に当該擬似サブアレーを割り当て、端末毎に無線信号の位相を制御してもよい。具体的には、位相制御部330は、Multi User-MIMO(MU-MIMO)において選択された1つの伝搬チャネルと対応するサブアレー(つまり、当該端末用擬似サブアレー)毎に位相を制御する。 Note that instead of the physical phase control reflector 300 sub-array, a digital pseudo-sub-array may be configured, the pseudo-sub-array may be assigned to each terminal, and the phase of the radio signal may be controlled for each terminal. Specifically, the phase control unit 330 controls the phase for each sub-array (that is, a pseudo-sub-array for the terminal) corresponding to one propagation channel selected in MultiUser-MIMO (MU-MIMO).
 或いは、位相制御リフレクタ300を構成する複数のリフレクタ素子を、端末との間の通信品質に応じて逐次割り当てる(複数端末に対して品質が平等になるようにリフレクタ素子を割り当てても良いし、割り当てなくても良い)ことで擬似サブアレーを構築し制御してもよい。 Alternatively, a plurality of reflector elements constituting the phase control reflector 300 are sequentially assigned according to the communication quality with the terminals (the reflector elements may be assigned to the plurality of terminals so that the quality is equal, or assigned. By doing so, a pseudo sub-array may be constructed and controlled.
 また、位相制御部330は、無線基地局150AまたはUE200から受信した無線信号をベースバンド信号(等価低域系)に変換し、等価低域系において位相を制御してもよい。等価低域系とは、無線信号(電波)の位相及び振幅によって表現されるディジタル領域だけを取り出した仮想的なシステムと表現し得る。 Further, the phase control unit 330 may convert the radio signal received from the radio base station 150A or UE200 into a baseband signal (equivalent low frequency system) and control the phase in the equivalent low frequency system. The equivalent low frequency system can be expressed as a virtual system in which only the digital region represented by the phase and amplitude of the radio signal (radio wave) is extracted.
 或いは、位相制御部330は、等価低域系に変換せず、無線周波数(RF)帯において無線信号の位相を制御してもよい。 Alternatively, the phase control unit 330 may control the phase of the radio signal in the radio frequency (RF) band without converting to the equivalent low frequency system.
 なお、本実施形態では、位相制御リフレクタ300は、位相制御部330によって無線信号(電波)の位相のみを制御して(変化させて)おり、反射(中継)される無線信号の電力の増幅などを行っておらず、無給電である。 In the present embodiment, the phase control reflector 300 controls (changes) only the phase of the radio signal (radio wave) by the phase control unit 330, and amplifies the power of the reflected (relayed) radio signal. There is no power supply.
 (4)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、Massive MIMOに対応した無線基地局の基本的な動作、及び数GHz~数十GHz以上の高周波数帯域を用いた場合における問題点について説明し、当該問題を解消し得る位相制御リフレクタを用いた無線信号の送受信動作について説明する。
(4) Operation of the wireless communication system Next, the operation of the wireless communication system 10 will be described. Specifically, the basic operation of a wireless base station that supports Massive MIMO and the problems when using a high frequency band of several GHz to several tens of GHz or more will be explained, and phase control that can solve the problems will be explained. The operation of transmitting and receiving a radio signal using a reflector will be described.
 (4.1)Massive MIMO伝送
 図4A及び図4Bは、従来の無線基地局によるアンテナビームの形成例、及びMassive MIMOに対応した無線基地局によるアンテナビームの形成例をそれぞれ示す。
(4.1) Massive MIMO Transmission FIGS. 4A and 4B show an example of forming an antenna beam by a conventional radio base station and an example of forming an antenna beam by a radio base station corresponding to Massive MIMO, respectively.
 図4Aに示すように、Massive MIMOに対応していない従来の無線基地局100Pは、ビーム幅が広いビームBM11を形成する。 As shown in FIG. 4A, the conventional radio base station 100P that does not support Massive MIMO forms a beam BM11 with a wide beam width.
 一方、図4Bに示すように、Massive MIMOに対応した無線基地局150Aは、ビームBM11よりも狭いビーム幅を有するビームBM21またはビームBM22を送信できる。 On the other hand, as shown in FIG. 4B, the radio base station 150A corresponding to Massive MIMO can transmit the beam BM21 or the beam BM22 having a beam width narrower than that of the beam BM11.
 Massive MIMOとは、一般的に、100素子以上のアンテナ素子を有するアンテナを用いたMIMO通信を意味し、複数ストリームの多重化効果などによって、従来よりも高速な無線通信が可能となる。 Massive MIMO generally means MIMO communication using an antenna having 100 or more antenna elements, and wireless communication at a higher speed than before is possible due to the multiplexing effect of multiple streams.
 また、図4Bに示すように、従来より高度なビームフォーミング(BF)が可能となる。ビーム幅は、ビームBM21、或いはより狭いビームBM22など、使用する周波数帯域またはUE200の状態などに応じて動的に変更し得る。また、狭いビームを用いることによるビームフォーミング(BF)利得による受信信号電力の増加も図り得る。さらに、与干渉の低減、及び無線リソースの有効利用などの効果が見込める。 In addition, as shown in FIG. 4B, more advanced beamforming (BF) than before is possible. The beam width can be dynamically changed depending on the frequency band used or the state of UE200, such as beam BM21 or narrower beam BM22. In addition, it is possible to increase the received signal power due to the beamforming (BF) gain by using a narrow beam. Furthermore, effects such as reduction of interference and effective use of wireless resources can be expected.
 特に、上述したような数GHz~数十GHz以上の高周波数帯域を用いる場合、低い周波数帯域と比較して広い帯域幅における無線リソース確保が可能となる。また、アンテナ素子のサイズは、使用する無線周波数の波長に比例するため、同一のアンテナ素子数であれば、周波数が高くなるに連れて、アンテナの小型化が可能となる。つまり、同一のアンテナサイズでも、多数のアンテナ素子を収容可能となる。換言すれば、高周波数帯域の伝搬損失増加による受信信号強度の低下を、BF利得によって取り戻すことができる。 In particular, when a high frequency band of several GHz to several tens of GHz or more as described above is used, it is possible to secure radio resources in a wider bandwidth than in a low frequency band. Further, since the size of the antenna element is proportional to the wavelength of the radio frequency used, if the number of antenna elements is the same, the antenna can be miniaturized as the frequency increases. That is, even with the same antenna size, a large number of antenna elements can be accommodated. In other words, the decrease in received signal strength due to the increase in propagation loss in the high frequency band can be recovered by the BF gain.
 低い周波数帯域を用いる場合、ビームBM11(図4A参照)のように、ビーム幅が広くても、無線基地局100Pが送信する無線信号(電波)は、遠方まで到達する。 When using a low frequency band, the radio signal (radio wave) transmitted by the radio base station 100P reaches a long distance even if the beam width is wide as in the beam BM11 (see FIG. 4A).
 一方、上述したような高周波数帯域を用いる場合、ビームBM21のようにビーム幅が広いと遠方まで到達しない。ビームBM22のようにビーム幅を狭くすることによって、遠方まで到達するようになる。 On the other hand, when using the high frequency band as described above, if the beam width is wide like the beam BM21, it will not reach far. By narrowing the beam width like the beam BM22, it will reach far.
 (4.2)高周波数帯域を用いる場合の課題
 図5は、高周波数帯域を用いる場合における典型的な課題の説明図である。上述したような電波の到達距離の問題に加え、数GHz~数十GHz以上の高周波数帯域を用いる場合、電波の強い直進性によって、不感地帯が発生し易い。
(4.2) Problems in Using the High Frequency Band FIG. 5 is an explanatory diagram of typical problems in the case of using the high frequency band. In addition to the problem of the reach of radio waves as described above, when a high frequency band of several GHz to several tens of GHz or more is used, a dead zone is likely to occur due to the strong straightness of radio waves.
 図5に示すように、無線基地局150AとUE200との間が見通せる場合、当該高周波数帯域を用いる場合でも、無線基地局150A~UE200間の無線通信に影響はない。 As shown in FIG. 5, when the radio base station 150A and UE200 can be seen, there is no effect on the wireless communication between the radio base stations 150A and UE200 even when the high frequency band is used.
 一報、例えば、建造物または樹木など、障害物OBによって、無線基地局150AとUE200との間の見通しが遮蔽されると、無線品質が大幅に劣化する。つまり、UE200が障害物OBによって遮蔽される不感地帯に移動すると、通信が途絶えることになり得る。 If the line of sight between the radio base station 150A and UE200 is obstructed by an obstacle OB such as a building or a tree, the radio quality will be significantly deteriorated. In other words, if the UE200 moves to a dead zone shielded by an obstacle OB, communication may be interrupted.
 5Gが有する高速大容量、かつ低遅延特性を活かしたアプリケーション(遠隔操作など)の存在を考慮すると、不感地帯を解消し、無線通信システム10内での通信が途絶えることなく、無線基地局と端末とが繋がり続けていることが重要である。 Considering the existence of applications (remote control, etc.) that take advantage of the high-speed, large-capacity and low-latency characteristics of 5G, dead zones are eliminated and communication within the wireless communication system 10 is not interrupted. It is important that and continue to be connected.
 (4.3)実施例
 次に、位相制御リフレクタを用いた無線信号の送受信動作の実施例について説明する。
(4.3) Example Next, an example of a radio signal transmission / reception operation using a phase control reflector will be described.
 (4.3.1)動作概略
 本実施例では、位相制御リフレクタ300(図1及び図2参照)を用いて無線品質を向上する手順が実行される。
(4.3.1) Outline of operation In this embodiment, a procedure for improving radio quality is executed by using the phase control reflector 300 (see FIGS. 1 and 2).
 手順の概略は、以下のとおりである。 The outline of the procedure is as follows.
  ・(手順1):無線基地局~位相制御リフレクタ間の伝搬チャネル情報(HPT)を参照信号に基づいて推定する(或いは、無線基地局及び位相制御リフレクタの位置は不変であるとの前提で、事前に位相制御リフレクタを取得しておいてもよい)
  ・(手順2):端末側で無線品質の劣化を検出した場合、位相制御リフレクタに参照信号を送信し、端末~位相制御リフレクタ間の伝搬チャネル情報(HRP)を推定する(或いはHPTが無線基地局150Aにて既知かつ伝搬チャネルに変動がないことを前提に、UE200から送信される無線信号に含まれる参照信号(RS)に基づいて、無線基地局150Aにて無線基地局150AとUE200間の伝搬チャネルHRTを取得し、HRP=HRT・HPT -1によって推定してもよく、或いは最小二乗法を用いて推定してもよい)
  ・(手順3):推定した伝搬チャネル情報(HPT, HRP)に基づいて、位相制御リフレクタにおける無線信号の位相組み合わせを決定する
  ・(手順4):無線基地局と端末は、位相制御リフレクタを介してデータを送受信する
 図6は、上述した手順1~4に従った動作をより具体的に示したフロー図である。具体的には、図6は、位相制御リフレクタを用いた無線信号の位相最適化動作フローを示す。
-(Procedure 1): Estimate the propagation channel information ( HPT ) between the radio base station and the phase control reflector based on the reference signal (or assume that the positions of the radio base station and the phase control reflector are unchanged. , The phase control reflector may be acquired in advance)
- (Step 2): when detecting a radio quality degradation in the terminal transmits a reference signal to the phase control reflector, estimates the propagation channel information between terminals - phase control reflector (H RP) (or H PT is Based on the reference signal (RS) included in the radio signal transmitted from UE200, assuming that the radio base station 150A is known and the propagation channel does not fluctuate, the radio base station 150A has radio base stations 150A and UE200. The propagation channel H RT between them may be obtained and estimated by H RP = H RT · H PT -1 or by using the least square method).
-(Procedure 3): Determine the phase combination of the radio signal in the phase control reflector based on the estimated propagation channel information ( HPT , H RP ).-(Procedure 4): The radio base station and the terminal are phase control reflectors. FIG. 6 is a flow diagram showing more specifically the operation according to the above-mentioned procedures 1 to 4, in which data is transmitted and received via the above. Specifically, FIG. 6 shows a phase optimization operation flow of a radio signal using a phase control reflector.
 図6に示すように、無線基地局(例えば、無線基地局150A)は、位相制御リフレクタ300に向けて参照信号を送信する(S10)。上述したように、参照信号(RS)の種別は、特に問われず、CSI-RS、DM-RSなどを適宜用い得る。 As shown in FIG. 6, the radio base station (for example, the radio base station 150A) transmits a reference signal to the phase control reflector 300 (S10). As described above, the type of the reference signal (RS) is not particularly limited, and CSI-RS, DM-RS and the like can be appropriately used.
 位相制御リフレクタ300は、無線基地局からの参照信号に基づいて、HPTを推定する(S20)。具体的には、位相制御リフレクタ300は、当該参照信号に基づいて、無線基地局~位相制御リフレクタ300の伝搬チャネル、つまり、無線基地局~位相制御リフレクタ300間における無線通信の個々の通信路を推定し、伝搬チャネル情報を生成する。 Phase control reflector 300, based on the reference signal from the radio base station, estimates the H PT (S20). Specifically, the phase control reflector 300 sets the propagation channel of the radio base station to the phase control reflector 300, that is, the individual communication paths of radio communication between the radio base station and the phase control reflector 300, based on the reference signal. Estimate and generate propagation channel information.
 次いで、UE200(端末)は、位相制御リフレクタ300に向けて参照信号を送信する(S30)。上述したように、参照信号(RS)の種別は、特に問われず、DM-RS、SRSなどを適宜用い得る。 Next, the UE200 (terminal) transmits a reference signal to the phase control reflector 300 (S30). As described above, the type of the reference signal (RS) is not particularly limited, and DM-RS, SRS, or the like can be appropriately used.
 なお、UE200が位相制御リフレクタ300に向けて参照信号を送信するタイミングは、典型的には、上述したように、無線品質の劣化を検出した場合であるが、必ずしもこのようなタイミングに限定されない。例えば、UE200は、ネットワークからの明示的または暗黙的な指示に基づいて、位相制御リフレクタ300に向けて参照信号を送信してもよい。 Note that the timing at which the UE 200 transmits a reference signal to the phase control reflector 300 is typically when a deterioration in radio quality is detected as described above, but the timing is not necessarily limited to such timing. For example, the UE 200 may send a reference signal to the phase control reflector 300 based on explicit or implicit instructions from the network.
 位相制御リフレクタ300は、端末からの参照信号に基づいて、HRPを推定する(S40)。具体的には、位相制御リフレクタ300は、当該参照信号に基づいて、端末~位相制御リフレクタ300の伝搬チャネル、つまり、端末~位相制御リフレクタ300間における無線通信の個々の通信路を推定し、伝搬チャネル情報を生成する。 The phase control reflector 300 estimates the H RP based on the reference signal from the terminal (S40). Specifically, the phase control reflector 300 estimates and propagates the propagation channel of the terminal to the phase control reflector 300, that is, the individual communication path of the wireless communication between the terminal and the phase control reflector 300 based on the reference signal. Generate channel information.
 位相制御リフレクタ300は、推定したHPT及びHRPに基づいて、反射(中継)する無線信号に適用される最適な位相組み合わせを導出する(S50)。具体的には、位相制御リフレクタ300は、後述する位相最適化アルゴリズムに基づいて、最適な位相組み合わせを決定する。 Phase control reflector 300, based on the estimated H PT and H RP, reflecting derives the optimum phase combination to be applied to radio signal (relay) (S50). Specifically, the phase control reflector 300 determines the optimum phase combination based on the phase optimization algorithm described later.
 無線基地局は、位相制御リフレクタ300に向けて無線信号を送信することによって、当該無線信号が位相制御リフレクタ300によって端末に向けて反射される。これにより、無線基地局から位相制御リフレクタ300を経由して端末にデータが送信される(S60)。 The radio base station transmits a radio signal to the phase control reflector 300, and the radio signal is reflected by the phase control reflector 300 toward the terminal. As a result, data is transmitted from the radio base station to the terminal via the phase control reflector 300 (S60).
 なお、端末から無線基地局の方向(上り方向)についても、同様に、端末から位相制御リフレクタ300を経由して無線基地局にデータが送信される。 Similarly, regarding the direction from the terminal to the wireless base station (upward direction), data is transmitted from the terminal to the wireless base station via the phase control reflector 300.
 また、図6に示すフローでは、位相制御リフレクタ300がHPT, HRPを推定し、無線信号に適用される最適な位相組み合わせを導出しているが、HPT, HRPの推定、及び位相組み合わせの導出の何れか一方または両方は、無線基地局または端末が実行し、その結果を位相制御リフレクタ300に通知(フィードバック)する形態でも構わない。 Further, in the flow shown in FIG. 6, the phase control reflector 300 estimates HPT and H RP and derives the optimum phase combination applied to the radio signal. However, the estimation of HPT and H RP and the phase are derived. Either or both of the derivation of the combination may be performed by the radio base station or the terminal, and the result may be notified (feedback) to the phase control reflector 300.
 (4.3.2)実施例1
 図7は、実施例1に係る伝搬チャネル情報(HPT, HRP)の推定例を示す。本実施例は、UE200(端末)があまり移動しない静的環境に適用できる。
(4.3.2) Example 1
FIG. 7 shows an estimation example of propagation channel information (H PT , H RP ) according to the first embodiment. This embodiment can be applied to a static environment in which the UE200 (terminal) does not move much.
 具体的には、無線基地局150AとUE200とから、チャネル推定用の参照信号が位相制御リフレクタ300に向けて送信される。これにより、位相制御リフレクタ300は、伝搬チャネル情報(HPT, HRP)を推定し、最適な位相組み合わせを導出する。 Specifically, the radio base stations 150A and UE200 transmit a reference signal for channel estimation toward the phase control reflector 300. As a result, the phase control reflector 300 estimates the propagation channel information ( HPT , H RP ) and derives the optimum phase combination.
 周囲の伝搬環境の変化によって、無線品質の劣化をUE200が検出すると、UE200は、参照信号を位相制御リフレクタ300に向けて再度送信し、伝搬チャネル情報を更新する。 When the UE200 detects deterioration of radio quality due to changes in the surrounding propagation environment, the UE200 retransmits the reference signal to the phase control reflector 300 and updates the propagation channel information.
 (4.3.3)実施例2
 図8は、実施例2に係る伝搬チャネル情報(HPT, HRP)の推定例を示す。本実施例は、UE200(端末)が移動する動的環境に適用できる。
(4.3.3) Example 2
FIG. 8 shows an estimation example of propagation channel information (H PT , H RP ) according to the second embodiment. This embodiment can be applied to a dynamic environment in which the UE200 (terminal) moves.
 具体的には、UE200が自動車内に置かれている場合など、UE200が一定速度以上で移動し続ける場合、UE200と位相制御リフレクタ300との伝搬チャネル情報(HRP)が変動する。
このため、当該変動の程度に応じて、HRPを更新する必要がある。
Specifically, when the UE 200 continues to move at a certain speed or higher, such as when the UE 200 is placed in an automobile, the propagation channel information (H RP ) between the UE 200 and the phase control reflector 300 fluctuates.
Therefore, it is necessary to update the H RP according to the degree of the fluctuation.
 より具体的には、UE200が、無線品質に基づいて位相制御リフレクタ300に向けて参照信号を適宜送信することによって、位相制御リフレクタ300が保持しているHRPを更新(例えば、図中に示すように、H'RPからH"RP)する。位相制御リフレクタ300は、更新されたH"RPに基づいて最適な位相組み合わせを導出する。 More specifically, the UE 200 updates the H RP held by the phase control reflector 300 by appropriately transmitting a reference signal to the phase control reflector 300 based on the radio quality (for example, shown in the figure). As such, H'RP to H " RP ). The phase control reflector 300 derives the optimum phase combination based on the updated H" RP .
 なお、UE200が一定速度以上で移動し続けることが予め想定されている場合、無線品質に関わらず、適当な時間間隔毎に、HRPが更新されてもよい。 If it is assumed in advance that the UE 200 will continue to move at a certain speed or higher, the H RP may be updated at appropriate time intervals regardless of the radio quality.
 (4.3.4)実施例3
 図9は、実施例3に係る伝搬チャネル情報(HPT, HRP)の推定例を示す。本実施例は、マルチユーザ環境に適用できる。
(4.3.4) Example 3
FIG. 9 shows an estimation example of propagation channel information (H PT , H RP ) according to the third embodiment. This embodiment can be applied to a multi-user environment.
 本実施例では、位相制御リフレクタを複数設置し、ユーザー(図)毎に1つの位相制御リフレクタを割り当てることによって、マルチユーザー通信を実現する。 In this embodiment, a plurality of phase control reflectors are installed, and one phase control reflector is assigned to each user (Fig.) To realize multi-user communication.
 具体的には、図9は、2MU-MIMOの例を示す。図9に示す例では、UE200A用に位相制御リフレクタ300Aが割り当てられ、UE200B用に位相制御リフレクタ300Bが割り当てられる。 Specifically, FIG. 9 shows an example of 2MU-MIMO. In the example shown in FIG. 9, the phase control reflector 300A is assigned for the UE 200A, and the phase control reflector 300B is assigned for the UE 200B.
 位相制御リフレクタ300Aは、UE200A用のH1 PT及びH1 RPを推定(または取得)する。また、位相制御リフレクタ300Bは、UE200B用のH2 PT及びH2 RPを推定(または取得)する。 The phase control reflector 300A estimates (or acquires) the H 1 PT and H 1 RP for the UE 200A. In addition, the phase control reflector 300B estimates (or acquires) H 2 PT and H 2 RP for UE 200B.
 (4.3.5)位相最適化アルゴリズム
 以下では、上述した位相制御リフレクタに適用される位相最適化アルゴリズムの例について説明する。
(4.3.5) Phase Optimization Algorithm The following describes an example of the phase optimization algorithm applied to the above-mentioned phase control reflector.
 上述したように、送信アンテナと位相制御リフレクタとの間の伝搬チャネルをHPT、位相制御リフレクタと受信アンテナとの間の伝搬チャネルをHRPとした場合、 As described above, if the propagation channel between the transmission antenna and the phase control reflector and H PT, the propagation channel between the phase control reflector and receiving antennas and H RP,
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
となり、位相成分を含めた全体のチャネル行例HRTは、 The entire channel row example H RT including the phase component is
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
と表せる。本実施形態では、この位相成分の最適な組み合わせを一意に決定する手法が提案される。 Can be expressed as. In the present embodiment, a method for uniquely determining the optimum combination of the phase components is proposed.
 伝搬チャネル情報HPTとHRPとを特異値分解すると、 Propagation channel information When H PT and H RP are decomposed into singular values,
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
ここで、 here,
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
とする。Wは、電力成分になる。また、URPと、V_PT^Hとは、ユニタリ行列であるため、 And. W becomes the power component. Also, since U RP and V_PT ^ H are unitary matrices,
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
となり、 Next,
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
とすると、次のように表すことができる。 Then, it can be expressed as follows.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 DRP及びDPTは、電力成分であり、χは、ウェイト成分である。本実施形態における位相最適化アルゴリズムでは、Wを考慮し、信号雑音比(SN比)を上げるように位相の組み合わせが導出される。 D RP and D PT are power components, and χ is a weight component. In the phase optimization algorithm of the present embodiment, W is taken into consideration and the phase combination is derived so as to increase the signal-to-noise ratio (SN ratio).
 ここで、端末(受信)のアンテナ数Mと無線基地局(送信)のアンテナ数Nが、リフレクタの数Kより少ないと仮定すると Here, assuming that the number of antennas M of the terminal (reception) and the number of antennas N of the radio base station (transmission) are less than the number K of the reflectors.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
となり、 Next,
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
と表すことができる。例えば、行列の左上(ψRP1, ψPT1)は、第1固有値成分に対応する。また、その下((ψRP2, ψPT1)は、HRPの第2固有値成分と、HPTの第1固有値成分に対応する。 It can be expressed as. For example, the upper left of the matrix (ψ RP1 , ψ PT1 ) corresponds to the first eigenvalue component. Below that ((ψ RP2 , ψ PT1 ) corresponds to the second eigenvalue component of H RP and the first eigenvalue component of H PT .
 つまり、HRPの第m固有値と、HPTの第n固有値の組み合わせを最大化(電力成分が最大となる)したい場合、ξmnの係数を最大化することによって実現できる。 In other words, the first m eigenvalues of H RP, (the power component maximum) maximize the combination of the first n eigenvalues of H PT If you want to, can be achieved by maximizing the coefficient of xi] mn.
 具体的には、ξmnは、 Specifically, ξ mn is
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
と表すことができる。ξmnを最大化するように、 It can be expressed as. To maximize ξ mn ,
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
の値の最適な組み合わせβoptを導出する。 Derivation of the optimal combination β opt of the values of.
 例えば、第1固有値成分を上昇させたい場合、ξ11の成分を上昇させていけばよい。本実施形態における位相最適化アルゴリズムでは、ξmnに含まれるウェイト成分を同位相化する。 For example, when it is desired to increase the first eigenvalue component, the component of ξ11 may be increased. In the phase optimization algorithm in this embodiment, the weight components contained in ξ mn are in-phased.
 例えば、単純な1ビットの移相器を想定した場合、位相値は、0、πの何れか(或いはπ/2、3π/2)になるが、ξmnに含まれるウェイト成分を何れかの位相(0, π)または(π/2, 3π/2)に揃えていくことになる。位相(0, π)を使用した場合、虚数の部分を捨て実部の正方向もしくは負方向に合わせる。一方で(π/2, 3π/2)を使用した場合、実数の部分を捨て虚部の正方向もしくは負方向に合わせる。 For example, assuming a simple 1-bit phase shifter, the phase value will be either 0 or π (or π / 2, 3π / 2), but the weight component contained in ξ mn will be any of them. It will be aligned to the phase (0, π) or (π / 2, 3π / 2). When the phase (0, π) is used, the imaginary part is discarded and the real part is adjusted to the positive or negative direction. On the other hand, when (π / 2, 3π / 2) is used, the real part is discarded and the imaginary part is adjusted to the positive or negative direction.
 なお、実際には、上述したように、4値(22)または8値(23)の位相値を有する場合が典型的である。 In practice, as described above, it is typical to have a phase value of 4 values (2 2 ) or 8 values (2 3 ).
 (5)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、位相制御リフレクタ300は、伝搬チャネル情報(HPT及びHRP)に基づいて、UE200または無線基地局150Aに向けて反射する無線信号の位相を制御できる。
(5) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, the phase control reflector 300, based on the propagation channel information (H PT and H RP), can control the phase of the radio signal reflected toward the UE200 or the radio base station 150A.
 このため、受信側における無線信号に含まれる位相雑音を大きく低減し得る。特に、数GHz~数十GHz以上の高周波数帯域を用いる場合において、位相雑音の低減に大きな効果を発揮し得る。 Therefore, the phase noise included in the radio signal on the receiving side can be greatly reduced. In particular, when a high frequency band of several GHz to several tens of GHz or more is used, it can exert a great effect in reducing phase noise.
 また、位相制御リフレクタ300は、無線基地局~端末間の無線信号を反射(中継)するため、電波の直進性が高い高周波数帯域を用いる場合でも、不感地帯の解消に貢献し得る。 Further, since the phase control reflector 300 reflects (relays) the radio signal between the radio base station and the terminal, it can contribute to the elimination of the dead zone even when a high frequency band having high straightness of radio waves is used.
 すなわち、無線通信システム10によれば、高周波数帯域を用いる場合において、不感地帯を解消しつつ、位相雑音を大きく低減し得る。 That is, according to the wireless communication system 10, when the high frequency band is used, the phase noise can be greatly reduced while eliminating the dead zone.
 本実施形態では、位相制御リフレクタ300は、UE200または無線基地局150Aに向けて反射する無線信号の位相を制御することによって、HPTの所定固有値と、HRPの所定固有値との組み合わせを最適化する。具体的には、位相制御リフレクタ300は、上述した位相最適化アルゴリズムに基づいて、特定のHPT及びHRPの固有値成分、つまり、位相成分の最適な組み合わせを選択する。これにより、位相制御リフレクタ300を用いつつ、位相雑音を大きく低減し得る。 In the present embodiment, the phase control reflector 300, by controlling the phase of the radio signal reflected toward the UE200 or radio base station 150A, optimization and predetermined eigenvalues of H PT, the combination of the predetermined eigenvalue of H RP To do. Specifically, the phase control reflector 300, based on the phase optimization algorithm described above, the eigenvalues ingredients in the specified H PT and H RP, that is, to select the best combination of phase components. As a result, the phase noise can be significantly reduced while using the phase control reflector 300.
 本実施形態では、位相制御リフレクタ300において、端末毎に異なるサブアレーを割り当て、当該サブアレーを用いて無線信号の位相を制御できる。このため、位相制御リフレクタ300の数を増やすことなく、端末毎の適切な位相制御を実現し得る。 In the present embodiment, in the phase control reflector 300, a different sub-array is assigned to each terminal, and the phase of the radio signal can be controlled by using the sub-array. Therefore, appropriate phase control for each terminal can be realized without increasing the number of phase control reflectors 300.
 本実施形態では、位相制御リフレクタ300は、無線基地局150AまたはUE200から受信した無線信号を等価低域系に変換し、等価低域系において位相を制御できる。或いは、位相制御リフレクタ300は、等価低域系に変換せず、無線周波数(RF)帯において無線信号の位相を制御できる。RF帯において位相を制御する場合、等価低域系への信号変換が生じないため、遅延なく位相の制御処理を行える。 In the present embodiment, the phase control reflector 300 can convert the radio signal received from the radio base station 150A or UE200 into an equivalent low frequency system and control the phase in the equivalent low frequency system. Alternatively, the phase control reflector 300 can control the phase of the radio signal in the radio frequency (RF) band without converting to the equivalent low frequency system. When the phase is controlled in the RF band, the signal conversion to the equivalent low frequency system does not occur, so that the phase control processing can be performed without delay.
 このため、位相制御リフレクタ300に要求される性能または設置条件などに応じて、適切な無線信号の位相制御を実現し得る。 Therefore, appropriate phase control of the radio signal can be realized according to the performance or installation conditions required for the phase control reflector 300.
 (6)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(6) Other Embodiments Although the contents of the present invention have been described above with reference to Examples, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is self-evident to the trader.
 例えば、上述した実施形態では、無線基地局から端末方向(下り方向)を主して説明したが、上述した実施形態の中でも適宜記載したように、端末から無線基地局方向(上り方向)の無線信号の位相も制御されてよい。 For example, in the above-described embodiment, the direction from the radio base station to the terminal (downward direction) is mainly described, but as appropriately described in the above-described embodiment, the radio from the terminal to the radio base station direction (upward direction) is mainly described. The phase of the signal may also be controlled.
 また、上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagram (FIG. 3) used in the description of the above-described embodiment shows a block for each functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices may be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit or a transmitter. As described above, the method of realizing each is not particularly limited.
 さらに、上述したUE200(UE200A, 200Bを含む)及び位相制御リフレクタ300(位相制御リフレクタ300A, 300Bを含む)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、UE200及び位相制御リフレクタ300のハードウェア構成の一例を示す図である。図10に示すように、UE200及び位相制御リフレクタ300は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned UE200 (including UE200A and 200B) and the phase control reflector 300 (including the phase control reflectors 300A and 300B) may function as a computer for processing the wireless communication method of the present disclosure. FIG. 10 is a diagram showing an example of the hardware configuration of the UE 200 and the phase control reflector 300. As shown in FIG. 10, the UE 200 and the phase control reflector 300 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 位相制御リフレクタ300の各機能ブロック(図3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the phase control reflector 300 (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、位相制御リフレクタ300における各機能或いは一部の機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現されてもよい。 Further, each function or a part of the functions in the phase control reflector 300 is calculated by the processor 1001 by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and is performed by the communication device 1004. It may be realized by controlling communication or controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them. It may be applied to one. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executables, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (eg PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the function of the base station. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。
時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain.
Each one or more frames in the time domain may be referred to as a subframe.
Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTIs (eg, normal TTIs, subframes, etc.) may be read as TTIs with a time length of more than 1 ms, and short TTIs (eg, shortened TTIs, etc.) are less than the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。
RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) can also represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that "resolving", "selecting", "choosing", "establishing", "comparing", etc. are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include that some action is regarded as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。
「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may mean that "A and B are different from C".
Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration only and does not have any restrictive meaning to this disclosure.
 10 無線通信システム
 100, 100P 無線基地局
 150A~150D 無線基地局
 200, 200A,200B UE
 300, 300A, 300B 位相制御リフレクタ
 301 小型多素子アンテナ
 303 移相器
 310 HPT取得部
 320 HRP取得部
 330 位相制御部
 340 リフレクタ部
 BM11, BM21, BM22 ビーム
 C1, C11~C14 セル
 OB 障害物
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Wireless communication system 100, 100P Wireless base station 150A-150D Wireless base station 200, 200A, 200B UE
300, 300A, 300B Phase control reflector 301 Small multi-element antenna 303 Phase shifter 310 H PT acquisition unit 320 H RP acquisition unit 330 Phase control unit 340 Reflector unit BM11, BM21, BM22 Beam C1, C11 to C14 Cell OB Obstacle 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (7)

  1.  無線基地局または端末からの無線信号を反射する位相制御リフレクタを含む無線通信システムであって、
     前記無線基地局と、前記位相制御リフレクタとの間の第1伝搬チャネル情報を取得する第1伝搬チャネル情報取得部と、
     前記位相制御リフレクタと、前記端末との間の第2伝搬チャネル情報を取得する第2伝搬チャネル情報取得部と
    を備え、
     前記位相制御リフレクタは、前記第1伝搬チャネル情報及び前記第2伝搬チャネル情報に基づいて、前記端末または前記無線基地局に向けて反射する前記無線信号の位相を制御する無線通信システム。
    A radio communication system that includes a phase control reflector that reflects radio signals from a radio base station or terminal.
    A first propagation channel information acquisition unit that acquires first propagation channel information between the radio base station and the phase control reflector, and a first propagation channel information acquisition unit.
    A second propagation channel information acquisition unit that acquires second propagation channel information between the phase control reflector and the terminal is provided.
    The phase control reflector is a radio communication system that controls the phase of the radio signal reflected toward the terminal or the radio base station based on the first propagation channel information and the second propagation channel information.
  2.  無線基地局または端末からの無線信号を反射する位相制御リフレクタであって、
     前記無線基地局と、前記位相制御リフレクタとの間の第1伝搬チャネル情報、及び前記位相制御リフレクタと、前記端末との間の第2伝搬チャネル情報に基づいて、前記端末または前記無線基地局に向けて反射する前記無線信号の位相を制御する位相制御リフレクタ。
    A phase control reflector that reflects radio signals from a radio base station or terminal.
    Based on the first propagation channel information between the radio base station and the phase control reflector and the second propagation channel information between the phase control reflector and the terminal, the terminal or the radio base station A phase control reflector that controls the phase of the radio signal that is directed and reflected.
  3.  前記位相制御リフレクタは、前記第1伝搬チャネル情報の所定固有値と、前記第2伝搬チャネル情報の所定固有値との組合せを最大化することによって、前記位相を制御する請求項2に記載の位相制御リフレクタ。 The phase control reflector according to claim 2, wherein the phase control reflector controls the phase by maximizing a combination of a predetermined eigenvalue of the first propagation channel information and a predetermined eigenvalue of the second propagation channel information. ..
  4.  前記位相制御リフレクタは、複数のサブアレーを有し、
     前記端末毎に異なる前記サブアレーが割り当てられ、前記サブアレーを用いて前記位相を制御する請求項2または3に記載の位相制御リフレクタ。
    The phase control reflector has a plurality of subarrays and has a plurality of subarrays.
    The phase control reflector according to claim 2 or 3, wherein a different sub-array is assigned to each terminal, and the phase is controlled by using the sub-array.
  5.  前記位相制御リフレクタは、前記無線信号を等価低域系に変換し、前記等価低域系において前記位相を制御する請求項2乃至4の何れか一項に記載の位相制御リフレクタ。 The phase control reflector according to any one of claims 2 to 4, wherein the phase control reflector converts the radio signal into an equivalent low frequency system and controls the phase in the equivalent low frequency system.
  6.  前記位相制御リフレクタは、無線周波数帯において前記無線信号の位相を制御する請求項2乃至4の何れか一項に記載の位相制御リフレクタ。 The phase control reflector according to any one of claims 2 to 4, wherein the phase control reflector controls the phase of the radio signal in a radio frequency band.
  7.  無線基地局と、位相制御リフレクタとの間の第1伝搬チャネル情報を推定するステップと、
     前記位相制御リフレクタと、端末との間の第2伝搬チャネル情報を推定するステップと、
     前記位相制御リフレクタが、前記第1伝搬チャネル情報及び前記第2伝搬チャネル情報に基づいて、前記端末または前記無線基地局に向けて反射する無線信号の位相を制御するステップと
    を含む無線通信方法。
    The step of estimating the first propagation channel information between the radio base station and the phase control reflector,
    A step of estimating the second propagation channel information between the phase control reflector and the terminal,
    A wireless communication method including a step in which the phase control reflector controls the phase of a radio signal reflected toward the terminal or the radio base station based on the first propagation channel information and the second propagation channel information.
PCT/JP2020/022867 2019-08-07 2020-06-10 Wireless communication system, phase control reflector, and wireless communication method WO2021024611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019145500 2019-08-07
JP2019-145500 2019-08-07

Publications (1)

Publication Number Publication Date
WO2021024611A1 true WO2021024611A1 (en) 2021-02-11

Family

ID=74503459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022867 WO2021024611A1 (en) 2019-08-07 2020-06-10 Wireless communication system, phase control reflector, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2021024611A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157935A1 (en) * 2021-01-22 2022-07-28 日本電信電話株式会社 Wireless relay control method, and wireless relay device
WO2022219757A1 (en) * 2021-04-14 2022-10-20 日本電信電話株式会社 System, device, method, and program
WO2022219754A1 (en) * 2021-04-14 2022-10-20 日本電信電話株式会社 Communication control system, communication control method, and program
WO2022239660A1 (en) 2021-05-13 2022-11-17 Agc株式会社 Reflector system, active reflector, and active reflector arrangement method
WO2022239079A1 (en) * 2021-05-10 2022-11-17 株式会社Nttドコモ Wireless relay device and wireless relay method
WO2022249820A1 (en) * 2021-05-27 2022-12-01 京セラ株式会社 Communication control method, wireless terminal, base station, and ris device
WO2022249821A1 (en) * 2021-05-27 2022-12-01 京セラ株式会社 Communication control method, wireless terminal, and base station
WO2023056579A1 (en) * 2021-10-06 2023-04-13 Qualcomm Incorporated Spatial diversity with controllable reflective surface
WO2023181118A1 (en) * 2022-03-22 2023-09-28 日本電気株式会社 Radio wave control system, control device, radio wave control method, and non-transitory computer readable medium

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BASAR, ERTUGRUL ET AL.: "Wireless Communications Through Reconfigurable Intelligent Surfaces", ARXIV, 19 July 2019 (2019-07-19), pages 1 - 20, XP011742786, Retrieved from the Internet <URL:https://arxiv.org/abs/1906.09490> *
CAEKENBERGHE, V. KOEN: "RF MEMS technology for radar sensors", 2009 INTERNATIONAL RADAR CONFERENCE SURVEILLANCE FOR A SAFER WORLD (RADAR 2009, 12 October 2009 (2009-10-12), pages 1 - 6, XP031653000 *
HAMMERSTROM, INGMAR ET AL.: "Power Allocation Schemes for Amplify-and-Forward MIMO-OFDM Relay Links", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 6, no. 8, 20 August 2007 (2007-08-20), pages 2798 - 2802, XP011190242, DOI: 10.1109/TWC.2007.06071 *
HOMMA, NAOKI ET AL.: "Manipulating MIMO propagation environment using tunable passive repeater", 2014 ASIA-PACIFIC MICROWAVE CONFERENCE, 4 November 2014 (2014-11-04), pages 504 - 506, XP032750321 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022157935A1 (en) * 2021-01-22 2022-07-28 日本電信電話株式会社 Wireless relay control method, and wireless relay device
WO2022219757A1 (en) * 2021-04-14 2022-10-20 日本電信電話株式会社 System, device, method, and program
WO2022219754A1 (en) * 2021-04-14 2022-10-20 日本電信電話株式会社 Communication control system, communication control method, and program
WO2022239079A1 (en) * 2021-05-10 2022-11-17 株式会社Nttドコモ Wireless relay device and wireless relay method
WO2022239660A1 (en) 2021-05-13 2022-11-17 Agc株式会社 Reflector system, active reflector, and active reflector arrangement method
WO2022249820A1 (en) * 2021-05-27 2022-12-01 京セラ株式会社 Communication control method, wireless terminal, base station, and ris device
WO2022249821A1 (en) * 2021-05-27 2022-12-01 京セラ株式会社 Communication control method, wireless terminal, and base station
WO2023056579A1 (en) * 2021-10-06 2023-04-13 Qualcomm Incorporated Spatial diversity with controllable reflective surface
WO2023181118A1 (en) * 2022-03-22 2023-09-28 日本電気株式会社 Radio wave control system, control device, radio wave control method, and non-transitory computer readable medium

Similar Documents

Publication Publication Date Title
WO2021024611A1 (en) Wireless communication system, phase control reflector, and wireless communication method
US20210329648A1 (en) User equipment and base station apparatus
US20210400508A1 (en) User device and base station device
WO2021044603A1 (en) Terminal and communication method
EP3993529A1 (en) Terminal
WO2021044602A1 (en) Terminal and communication method
JP7223026B2 (en) TERMINAL, BASE STATION, WIRELESS COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
WO2020065891A1 (en) User equipment
JP7244316B2 (en) Terminal and base station
EP3855867A1 (en) User device and base station device
WO2022195888A1 (en) Wireless relay device and wireless relay method
EP4311123A1 (en) Radio relay device and radio relay method
WO2022208824A1 (en) Wireless relay device and wireless relay method
EP3944690A1 (en) User device and base station device
JP2022106228A (en) Propagation path control device and propagation path control method
WO2021019696A1 (en) Terminal
WO2021019695A1 (en) Terminal
WO2020240869A1 (en) User equipment and communication method
CN114245967A (en) Terminal and communication method
WO2022239079A1 (en) Wireless relay device and wireless relay method
WO2021161478A1 (en) Terminal and communication method
CN114208261B (en) Terminal and communication method
EP4319357A1 (en) Transmission node and transmission method
WO2023002625A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023002629A1 (en) Terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP