WO2022207952A1 - Sistema de control de paso y método de cálculo de tiempo de paso mediante campo magnético - Google Patents

Sistema de control de paso y método de cálculo de tiempo de paso mediante campo magnético Download PDF

Info

Publication number
WO2022207952A1
WO2022207952A1 PCT/ES2022/070186 ES2022070186W WO2022207952A1 WO 2022207952 A1 WO2022207952 A1 WO 2022207952A1 ES 2022070186 W ES2022070186 W ES 2022070186W WO 2022207952 A1 WO2022207952 A1 WO 2022207952A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
passage
electronic device
control point
time
Prior art date
Application number
PCT/ES2022/070186
Other languages
English (en)
French (fr)
Inventor
Sergio MORANT GÁLVEZ
Diego BONILLA SALVADOR
Abraham Serra Roch
Original Assignee
Crono Chip S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES202130284A external-priority patent/ES2925317A1/es
Priority claimed from ES202130378A external-priority patent/ES2927140A1/es
Application filed by Crono Chip S.L. filed Critical Crono Chip S.L.
Publication of WO2022207952A1 publication Critical patent/WO2022207952A1/es

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C1/00Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people
    • G07C1/22Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people in connection with sports or games
    • G07C1/24Race time-recorders

Definitions

  • the present invention falls within the field of control of passage through a control point, more particularly, control of the time of passage through the use of a magnetic field and geofencing.
  • An object of the present invention is to provide a passage control system that makes use of a magnetic field and geofencing, where the system allows greater flexibility, precision in the calculation of passage time, avoids electromagnetic noise from the environment and facilitates the calculation of the passage time.
  • Another object of the present invention is to provide a method for controlling passage time by means of a magnetic field and geofencing, which makes use of a passage control device carried by a user, especially in sports or recreational applications.
  • one or more control points are placed, such as the start, the finish line and intermediate points.
  • one or more timing equipment is installed that interacts with devices to detect its passage. In this way, the passage time of each device at each point is measured.
  • the pitch time can be obtained in various ways while the objects are within the reception range of the devices.
  • the objects carried by the runners are of two types depending on whether they have their own battery or not: active and passive.
  • GPS technology or other geolocation equipment
  • these systems do not have sufficient accuracy (below the meter), especially in areas of tall buildings. Also, the use of these systems implies a high battery consumption.
  • Documents EP3035298A1, JP2007097995A and US5812049A refer to applications for determining a lap time in sports events that use electromagnetic transponders to make the detection. However, these documents focus on the detection of electromagnetic signals generated by winding with frequencies around 6.78 MHz or 125 kHz. Instead, documents EP1376273A2 and W02016174612 use magnetic fields generated with permanent magnets. In particular, document WO2016174612 makes use of a magnetometer in order to detect variations in the magnetic field generated by permanent magnets buried in snow.
  • the present invention describes an identified passage control system, which allows the control of the passage time through the use of a magnetic field and geofences.
  • the use of magnetic fields through pulses at a certain frequency offers unique advantages since there are no such pulses in nature or other elements that generate them, as happens with electromagnetic pulses, especially in free bands such as RFID. . Also, magnetic fields do not propagate, so they quickly disappear. Finally, there are few materials that are capable of blocking magnetic fields.
  • the pitch control system of the invention comprises one or more control points.
  • the pitch control system also comprises, at each of said checkpoints, one or more static timing equipment, which may be portable but is installed statically at the checkpoint during a pitch control period.
  • Static timing equipment in turn, comprises one or more magnetic field generators, comprising at least one coil, located at each control point, which can be removable.
  • the passage control system comprises one or more electronic devices, intended to be carried by the participants.
  • Electronic devices comprise one or more sensing devices, in particular magnetometers, configured to detect a pure magnetic field.
  • electronic devices comprise, among others, geolocation equipment, which may be a GPS (Global Positioning System) unit or similar unit, configured to detect an entry into a geofenced area, and one or more processors connected with the magnetometer and the geolocation equipment.
  • the processors of the electronic devices are configured to detect the entry of the electronic device into a geofencing area by means of the geolocation equipment, once inside, they activate the magnetometer, waiting to receive a magnetic signal.
  • the device When the device, within the geofenced area, approaches a magnetic field generator, it will detect it thanks to the magnetometer and will record the passage through the control point.
  • the geolocation equipment will detect the departure of the electronic device from the geofencing area and will deactivate the magnetometer of said electronic device.
  • the processors of the electronic devices can also be configured to calculate the passage time.
  • the magnetic field generators may comprise at least one coil or other element capable of generating magnetic fields and a power supply for the coil that generates the necessary current pulses.
  • use is made of pulses at very low frequencies in order to cover more meters in the emission of the magnetic field. More preferably, use is made of pulses at frequencies of 20 Hertz (Hz), instead of pulses at frequencies in the KHz range as occurs in the state of the art. Making use of pulses in the KHz range would make it impossible to cover the minimum range that is needed for the application of the invention, particularly for recreational and sporting events.
  • the coil can be arranged vertically on a zone passing through a control point, perpendicular to the path of the route, so that an electronic device passes through the inside of the coil. It can be rectangular, arch, door, porch or corridor. Another possible configuration, not being limited to these, is to arrange two Helmholtz coils vertically and parallel to each other on both sides of a zone passing through a control point. It is possible to place 3 or more helmholtz coils leaving a passage area between each two coils. The last example of placing the coil or coils, the invention not being limited to these, is based on placing a coil horizontally on the ground of a place of passage through a control point.
  • said coil of the magnetic field generator could have more than one turn.
  • the system of the invention can use multi-cables, which can be flat, so that each turn is equivalent to a number of turns equal to the number of cables that make up each multi-cable, facilitating assembly.
  • the feeder preferably generates an intermittent signal, of the same sign, square and with a duty cycle that can vary, to create the magnetic field in the coil.
  • a constant, sinusoidal or any other type of signal detectable by the magnetometer can be generated.
  • the frequency of the pulses can be modified and can be used to distinguish between different control points.
  • the system of the invention also allows information to be sent by means of the signal generated by the magnetic field, for example, by varying the frequency of pulse emission or by sending encoded binary information, for example with Manchester or biphase-L encoding.
  • the information sent can indicate the checkpoint through which each electronic device passes.
  • the system of the invention can also use ferromagnetic materials, such as ferrite or mumetal, as guide elements to direct the magnetic field towards the passage area of the electronic device.
  • ferromagnetic materials such as ferrite or mumetal
  • the one or more processors connected to the geolocation equipment are configured to detect the entry of the electronic device into a geofencing zone, for this it calculates, through the use of the geolocation equipment, if the electronic device is within a geofence zone .
  • the electronic device comprises the geolocation equipment configured to identify the position of the electronic device and calculate if it is within the set of geofenced zones.
  • Geofencing zones define a series of sections, so that one or more control points are located in each of said sections.
  • the one or more processors of the electronic device detect the entry into a section of geofencing, they activate the magnetometer, which begins the detection of a magnetic field.
  • the magnetic field generators, associated with the geofenced area can be permanently generating a magnetic field detectable by the magnetometer, when the electronic device is in the geofenced area.
  • the electronic device's processor(s) are configured to receive a detected magnetic signal and record passage through the checkpoint. Also, the processors can be configured to calculate and record the time the electronic device passes through the checkpoint.
  • Geofencing can be used to prevent excessive consumption from continuous use of the magnetometer and continuous detection of a magnetic field by magnetic field generators. In this way, geofencing allows the use of magnetic field generation and detection only when the electronic device is close to a control point, thus improving precision and efficiency in the process, since having the magnetometer permanently activated does not it would be efficient.
  • a magnetic field for passage control allows the use of an intelligent device, such as a mobile phone or a wearable or wearable device as an electronic device, which can be provided by the participant with an application running on it.
  • the electronic device already includes a magnetometer, geolocation equipment configured to detect entry into a geofence area and a processor connected to the magnetometer and geolocation equipment, so the electronic device does not have to be provided or handled of each user.
  • the electronic device may comprise an application that allows the detection of the passage through the control point and the registration of the time of passage through the control point by means of the processor of the electronic device.
  • the processor through this application, can be configured to activate the magnetometer and maintain the application in the foreground if the electronic device is inside a geofencing zone.
  • geofencing can be used to avoid excessive consumption, preventing the main Operating Systems, such as iOS or Android, from interrupting the application during the checkpoint detection process. These Operating Systems are very restrictive with the applications that consume system resources. Geofencing goes a long way to combat excessive battery, RAM, and CPU consumption.
  • the magnetometer is a sensor present in any smartphone or smart watch that carries a GPS, since it is used, among other things, to determine where the magnetic north is and help navigation and geopositioning.
  • the electronic device can use the geolocation equipment to determine the control point through which the electronic device passes.
  • the electronic device can know the control point through which it passes thanks to the information received from the magnetometer, which detects the magnetic field generated by the magnetic field generators, and the geofencing implemented through geopositioning.
  • the system of the invention allows greater flexibility, since it allows the use of any device with geolocation that has a magnetometer.
  • the processor which may be integrated into the electronic device or external to it, and may include digital frequency filtering algorithms to eliminate frequencies not used by the magnetic field generator.
  • the processor may execute peak detection algorithms to detect the moment of maximum absolute magnetic field power detected and assign this peak detection time as the step time.
  • the electronic device can also comprise a communications module to send the times and/or the hours of passage obtained by each control point.
  • the invention also refers to a method for calculating the time of passage by means of a magnetic field, comprising the steps of: providing one or more control points, each one within a geofenced area, and one or more magnetic field generators, located in each checkpoint; provide one or more electronic devices comprising one or more magnetometers (3), configured to detect a magnetic field, and one or more geolocation equipment, configured to detect entry into a geofencing zone; provide one or more processors, connected to the magnetometers, and the geolocation equipment of the electronic devices; generate at least one geofence zone for each control point; detect the entry of the electronic device into a geofenced area by means of geolocation equipment, activate the magnetometer of the electronic device, receive the magnetic field emitted by the magnetic field generators; detect and record the passage of the electronic device through the control point, based on the detection of the magnetic field; calculate step time; detect an exit of the electronic device from the geofencing zone, deactivate the magnetometer of the electronic device.
  • the magnetic field is generated by an intermittent signal, of the same sign, square and with a duty cycle.
  • the method may comprise a step of transmitting information by means of the magnetic field generated by varying the pulse emission frequency of the feeder signal or by means of Manchester or biphase-L encoding.
  • the step of obtaining the control point is carried out by means of the information transmitted through the magnetic signal or by means of the geolocation equipment (or geopositioning module).
  • a smart device In the event that a smart device is used with an application running on it, it is the application that carries out the steps of detecting and registering the passage through the checkpoint, based on the detection of the magnetic field, and calculating the time of passage through the control point, by means of the processor of the electronic device. Also, the application will be configured to stay in the foreground if the electronic device is inside a geofenced zone. Also, the step of calculating the passage time can be carried out by obtaining the time of the maximum value of magnetic field reception or by means of automatic learning algorithms, in particular, by means of neural networks, depending on whether a greater or lesser precision is required.
  • the system and method of the invention can be applied in a sports race such as athletics (or running), cycling, triathlon, duathlon, mountain biking, rollerblading... It can also be applied in a passing area to position and detect the passage of people indoors such as congresses, trade fairs or similar.
  • an advantage of the invention lies in the possibility of being able to use a device provided by the participant, as a smart device. Also, by applying non-complex machine learning algorithms, it is possible to achieve higher and more reliable accuracy than passive systems.
  • Timing by sensing magnetic fields using smart devices allows complete replacement of active and passive timing.
  • the generation of magnetic fields by means of magnetic field generators comprising at least one coil makes it possible to control the characteristics of the generated magnetic field, such as its intensity and frequency.
  • the use of magnetic fields at low frequencies (in the Hz range) will be useful in the application of the invention in order to increase the range at which the magnetic field is detectable.
  • the detection of the pure magnetic field allows to make the most of the special characteristics of this type of signals.
  • it allows the reception of a signal that propagates over a very short distance and is very constant, on the other hand, there are no such pulses in nature or other elements that generated, as it happens with electromagnetic pulses.
  • magnetic fields do not propagate, so they disappear quickly and there are few materials that are capable of blocking them. All this increases the accuracy and reliability of detection compared to traditional electromagnetic systems.
  • the use of a coarse-to-fine approximation in the determination of the location and determination of the crossing point allows to increase the precision of the detection of the passage through a control point, as well as the calculation of the control time, and also allows avoiding the consumption of resources derived from keeping the magnetometer always active, which would be unfeasible in the application of the invention.
  • Fig. 1.- shows a first example of a first embodiment of the system of the invention with the arc-shaped magnetic field generator.
  • Fig. 2.- shows a second example of a first embodiment of the system of the invention with the square-shaped magnetic field generator.
  • Fig. 3.- shows the connection between the different cables of a multi-cable in an example of the first embodiment in which a single multi-cable is used for the magnetic field generator.
  • Fig. 4.- shows a second embodiment of the system of the invention with the magnetic field generator made up of two coils located on both sides of the zone passing through the control point.
  • Fig. 5.- shows the distribution of the field lines of the magnetic field generated by the two coils of the second embodiment of the system of the invention.
  • Fig. 6.- shows a third embodiment of the system of the invention with the magnetic field generator arranged horizontally on the ground.
  • Fig. 7.- shows an example of embodiment in which the one or more electronic devices are mobile phones belonging to each of the runners in a geofenced environment.
  • Fig. 8.- shows an example of a top view of a control point.
  • Fig. 9.- shows the electronic device of an embodiment of the system of the invention, in which said electronic device is a mobile phone.
  • Figures 1 and 2 show two examples of an embodiment of the pitch control system of the invention.
  • the system corresponds to a passage control system at different points of a sporting event, in which the participants take a route passing through a series of previously provided control points (1).
  • a magnetic field generator (2) is arranged at each of the control points (1).
  • each user has an electronic device (3) configured to detect a magnetic field, in this case by means of a magnetometer housed in the electronic device (3).
  • the system also comprises a processor to calculate the passing time for each control point.
  • the electronic device (3) detects the magnetic field generated by the magnetic field generator (2) at that checkpoint (1).
  • the processor records a time stamp in which the user passes through the control point (1) identifying the moment of maximum magnetic field reception.
  • the magnetic field generator (2) comprises a coil and a feeder (4) for the coil that provides pulses or current signal necessary to generate the magnetic field in the coil.
  • the coil has an arc shape, and is arranged transversely in an area passing through the control point (1), forming an arc through which the user passes.
  • the coil has a square or rectangular shape and is also arranged in such a way that the user passes through said coil.
  • Figure 3 shows a connection diagram of an example of this embodiment in which use is made of a flat multi-cable (6) to form the coil.
  • a greater number of turns is achieved with a single multi-cable(6).
  • Wire 1 corresponds to wire 7 at the other end
  • wire 2 corresponds to number 8, wire 3 to 9, and so on up to wire 6 which corresponds to wire 12.
  • the invention proposes using a connector (5) that connects both ends, displacing one of the ends of the multi-cable (6) in such a way that cable 1 remains without connection, cable 7 connects with cable 2, cable 8 with 3 and so on. Cable 12 would remain, like cable 1, free of connection and 6 turns of cable would have been created using a single multi-cable (6).
  • the feeder (4) would be connected to cables 1 and 12 and the multi-cable (6) would be converted into a 6-turn coil.
  • the magnetic field generator (2) comprises two Helmholtz coils located on both sides of a zone passing through a control point (1).
  • Figure 5 shows the distribution of the magnetic field generated by the two coils, which allows the detection of said magnetic field by the electronic device (3) that the user carries.
  • Figure 6 shows another arrangement of the coils in the magnetic field generator (2) of the system of the invention.
  • the coils are arranged horizontally on the ground of a place of passage through a control point (1).
  • the generated magnetic field extends in the vertical direction, so that it can be detected by the electronic device (3) carried by the user. It is possible to use ferromagnetic materials to concentrate the magnetic field in the passage area.
  • the electronic device (3) in all the cases explained can consist of a smart phone or a smart watch, which includes a magnetometer to detect the generated magnetic field.
  • the generated magnetic field can originate by means of an intermittent signal, of the same sign, square and with a duty cycle that can vary, sent through the feeder (4) for the coil. It can also be a sinusoidal signal or any other type although the power consumption may be higher.
  • the determination of the time in which the user passes through the control point (1) can be done by determining the moment in which a maximum magnetic field reception value is recorded in the electronic device (3).
  • digital filtering of the signal can be used to eliminate the rest of the frequencies and peak detection algorithms to obtain the moment of maximum absolute power received.
  • the system of the invention can also be adapted to transmit certain information, such as the identifier of the control point (1) through which it has passed, varying the frequency of pulse emission or through encoded binary information, for example through Manchester encoding or biphase-L.
  • Figure 7 shows an example of an embodiment in which the invention is used in a race with control points (1) of passage, defined by geofenced areas (9), and in which the one or more electronic devices ( 3) are mobile phones belonging to each of the runners, with an application designed to control race times running on said mobile phone.
  • the static timing equipment (7) comprises, in this case, a magnetic field generator (2).
  • each participant carries an electronic device (3) that has a magnetometer (10) and geolocation equipment (11).
  • the route is divided by geofencing into geofenced zones (9). It is possible to have geofenced zones (9) throughout the route, but it is essential to create geofenced zones (9) around the control points (1). Thus, the electronic device (3) will be able to recognize when it is close to a control point (1), and activate the magnetometer (10). You can also deactivate the magnetometer when you are outside the geofenced areas (9) of the route (1).
  • the characteristics of the geofenced areas (9) (size, position of the geofences, presence of a control point (1)?) must be entered into the system for correct management.
  • All these steps are normally carried out thanks to a program or application executed on the electronic device (3).
  • This incorporates the identification and/or authentication to know which participant carries which electronic device (3).
  • the electronic device (3) can use geolocation, date and time to identify which race is being run.
  • the application monitors, through the geolocation equipment (11), when the device (3) enters a geofenced area (9) in which there is a control point (1). At that moment, the magnetometer (10) is activated. Once the electronic device (3) has passed through the control point (1), or when leaving the geofenced area (9), the magnetometer (10) is deactivated.
  • Figure 8 is an example of a top view of a checkpoint in which the runners carry an electronic device (3) comprising a magnetometer (10), configured to detect a pure magnetic field, and geolocation equipment (11). ), configured to detect entry into a geofenced area.
  • a magnetometer (10) configured to detect a pure magnetic field
  • geolocation equipment (11) configured to detect entry into a geofenced area.
  • a static timing equipment (7) which includes a magnetic field generator (2).
  • Figure 9 shows an embodiment of the system of the invention, the electronic device being a mobile phone.
  • the mobile phone (3) already comprises a magnetometer (10), configured to detect a magnetic field, and one or more geolocation equipment (11), in this case geolocation, configured to detect entry into an area of geofencing.
  • it comprises a first processor (13), connected to the magnetometer (10) and the geolocation equipment (11), so that said first processor (13): detects the entry of the mobile phone into a geofence area (9) by means of the geolocation equipment (11), activates the magnetometer ( 10), receives a magnetic field strong enough to detect it; detects and records the passage through the control point (10), and can calculate the time of passage, detects a mobile phone leaving the geofence zone (9) and deactivates the magnetometer (10).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Sistema de control de paso y método de cálculo de tiempo de paso que hacen uso de un campo magnético y de geovallado y que permiten mayor flexibilidad y precisión en el cálculo de tiempo de paso; el sistema comprende uno o más generadores de campo magnético (2), situados en cada punto de control (1) y cada punto de control situado en una zona geovaliada. El sistema también cuenta con uno o más dispositivos electrónicos (3) que comprenden: uno o más magnetómetros (10) y uno o más equipos de geolocalización (11); y uno o más procesadores (12, 13, 14), conectados con los magnetómetros (10) y los equipos de geolocalización (11), configurados para detectar, primero, la entrada en una zona geovaliada, activar el magnetómetro y, segundo, detectar y registrar el paso por el punto de control (1) y calcular el tiempo de paso.

Description

SISTEMA DE CONTROL DE PASO Y MÉTODO DE CÁLCULO DE TIEMPO DE PASO MEDIANTE CAMPO MAGNÉTICO
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La presente invención se enmarca en el campo del control de paso por un punto de control, más en particular, el control del tiempo de paso mediante el uso de un campo magnético y de geovallado (geofencing).
Un objeto de la presente invención es dar a conocer un sistema de control de paso que hace uso de un campo magnético y de geovallado, donde el sistema permite mayor flexibilidad, precisión en el cálculo de tiempo de paso, evita el ruido electromagnético del ambiente y facilita el cálculo del tiempo de paso.
Otro objeto de la presente invención es dar a conocer un método de control de tiempo de paso mediante campo magnético y geovallado, que hace uso de un dispositivo de control de paso portado por un usuario, especialmente en aplicaciones deportivas o lúdicas.
ANTECEDENTES DE LA INVENCIÓN
En el campo de los sistemas de cronometraje, se han desarrollado diversas soluciones. En la mayoría de ellas, el participante debe de adquirir un dispositivo electrónico para que le realicen el cronometraje, ya que el cronometraje se realiza por medios electrónicos y emisiones electromagnéticas.
Aunque existen algunas soluciones más antiguas basadas en códigos de barras, las soluciones actuales están basadas en RFID y son tanto pasivas como activas.
En estos casos, previo a la carrera, se colocan uno o varios puntos de control, como la salida, la meta y puntos intermedios. En cada punto se instalan uno o más equipos de cronometraje que interactúan con dispositivos, para detectar su paso. De esta forma, se mide el tiempo de paso de cada dispositivo en cada punto. El tiempo de paso se puede obtener de varias formas mientras los objetos están dentro del rango de recepción de los dispositivos. Los objetos portados por los corredores, son de dos tipos dependiendo de si poseen una batería propia o no: activos y pasivos.
Los sistemas pasivos actuales, están basados en la banda de frecuencias UHF(Ultra High Frequency), pero siguen existiendo sistemas en bandas HF(High Frequency) y LF(Low Frequency). En los sistemas UHF actuales, se utilizan etiquetas de un solo uso que son detectadas por sistemas de cronometraje compuestos, entre otras cosas, por un lector de RFID y antenas en banda UHF. Estos sistemas no son muy precisos y tiene pérdidas de lecturas conocidos, sobre todo, en los casos donde hay una gran acumulación de personas. Además, el uso de soluciones basadas en RFID requiere una manipulación previa de ciertos dispositivos que han de ser entregados al usuario pegados al dorsal, en caso de una competición, por ejemplo. En algunos casos, estas acciones previas conllevan un coste logístico, operativo y económico sustancial, como en casos en los que se requieren envíos y pasos por aduana.
En el caso de los sistemas RFID activos, los dispositivos electrónicos a detectar son más complejos y disponen de una batería o pila interna, lo que les hace más fiables y precisos. A diferencia de las etiquetas UHF de un solo uso, estos dispositivos se utilizan en innumerables ocasiones. Para obtener un cálculo preciso, en la mayoría de los casos es necesario un cálculo complejo para obtener una precisión aceptable. Estos dispositivos tienen un coste muy elevado que implica grandes inversiones si se quiere obtener el tiempo de un gran número de ellos. Además, en el cronometraje deportivo, las pérdidas de los dispositivos es un gran problema.
En estos sistemas, también se ha incorporado la tecnología GPS (u otros equipos de geolocalización), sin embargo, estos sistemas no tienen la precisión suficiente (por debajo del metro), especialmente en zonas de edificios altos. Asimismo, el uso de estos sistemas implica un alto consumo de batería.
Los documentos EP3035298A1, el JP2007097995A y el US5812049A se refieren a aplicaciones de determinación de un tiempo de paso en eventos deportivos que utilizan transpondedores electromagnéticos para hacer la detección. Sin embargo, estos documentos se centran en la detección de señales electromagnéticas generadas mediante bobinado con frecuencias en el entorno de los 6,78 MHz o los 125 kHz. En cambio, los documentos EP1376273A2 y W02016174612 utilizan campos magnéticos generados con imanes permanentes. En particular, en el documento WO2016174612 se hace uso de un magnetómetro con el fin de detectar variaciones en el campo magnético generado por imanes permanentes enterrados en la nieve.
El documento US2013231760A1 menciona el uso de transceptores de corto y largo alcance, de modo que permiten el cambio de recepción de señales entre corto y largo alcance. Así se mejora la precisión de la localización con una aproximación grueso a fino.
Por todo lo expuesto, se hace necesario un dispositivo capaz de aumentar la eficiencia en el cálculo de tiempo de paso por un punto de control, de aumentar la efectividad evitando las pérdidas de lecturas y de evitar la necesidad de proveer previamente de un dispositivo específico al usuario.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe un sistema identificado de control de paso, que permite el control del tiempo de paso a través del uso de un campo magnético y de geovallas. El uso de campos magnéticos mediante pulsos a una determinada frecuencia ofrece ventajas únicas ya que no existen pulsos de ese tipo en la naturaleza ni otros elementos que los generen, como sí que pasa con pulsos electromagnéticos, sobre todo, en bandas libres como las del RFID. Además, los campos magnéticos no se propagan, con lo que desaparecen rápidamente. Por último, hay pocos materiales que sean capaces de bloquear campos magnéticos.
Estas características en el uso de un campo magnético, proporciona ventajas únicas favoreciendo la detección del paso de dispositivos detectores por puntos de control: la precisión y fiabilidad en la detección son mucho mayores que en los sistemas electromagnéticos tradicionales.
El sistema de control de paso de la invención comprende uno o más puntos de control. El sistema de control de paso también comprende, en cada uno de dichos puntos de control, uno o más equipos de cronometraje estáticos, que pueden ser portátiles pero se instalan en el punto de control de manera estática durante un periodo de control de paso. Los equipos de cronometraje estáticos, a su vez, comprenden uno o más generadores de campo magnético, que comprenden al menos una bobina, situados en cada punto de control, que pueden ser desmontables.
El sistema de control de paso, por otro lado, comprende uno o más dispositivos electrónicos, destinados a ser portados por los participantes. Los dispositivos electrónicos comprenden uno o más dispositivos detectores, en particular magnetómetros, configurados para detectar un campo magnético puro. Además, los dispositivos electrónicos comprenden, entre otros, un equipo de geolocalización, que puede ser una unidad GPS (sistema de posicionamiento global) o una unidad similar, configurada para detectar una entrada en una zona de geovallado, y uno o más procesadores conectados con el magnetómetro y el equipo de geolocalización. Los procesadores de los dispositivos electrónicos están configurados para detectar la entrada del dispositivo electrónico en una zona de geovallado mediante el equipo de geolocalización, una vez dentro, activan el magnetómetro, a la espera de recibir una señal magnética. Cuando el dispositivo, dentro de la zona de geovallado, se aproxime a un generador de campo magnético, este lo detectará gracias al magnetómetro y registrará el paso por el punto de control. El equipo de geolocalización detectará la salida del dispositivo electrónico de la zona de geovallado y desactivará el magnetómetro de dicho dispositivo electrónico. Asimismo, los procesadores de los dispositivos electrónicos pueden estar configurados también para calcular el tiempo de paso.
Preferentemente, los generadores de campo magnético pueden comprender al menos una bobina u otro elemento capaz de generar campos magnéticos y un alimentador para la bobina que genera los pulsos de corriente necesaria. En particular, se hace uso de pulsos a frecuencias muy bajas para poder cubrir más metros en la emisión del campo magnético. Más preferentemente, se hace uso de pulsos a frecuencias de 20 Hercios (Hz), en lugar de pulsos a frecuencias del rango de los KHz como ocurre en el estado de la técnica. Hacer uso de pulsos en el rango de los KHz imposibilitaría cubrir el alcance mínimo que se necesita para la aplicación de la invención, en particular para eventos lúdicos y deportivos.
La bobina se puede disponer verticalmente sobre una zona de paso por un punto de control, perpendicular al trazado del recorrido, de modo que un dispositivo electrónico atraviesa la bobina por su interior. Puede tener forma rectangular, de arco, de puerta, de pórtico o de pasillo. Otra configuración posible, no estando limitada a estos, es disponer dos bobinas helmholtz en vertical y paralelas entre sí a ambos lados de una zona de paso por un punto de control. Es posible colocar 3 o más bobinas helmholtz dejando una zona de paso entre cada dos bobinas. El último ejemplo de colocación de la o las bobinas, no estando la invención limitada a estos, se basa en colocar una bobina horizontalmente sobre el suelo de un lugar de paso por un punto de control.
En el primer caso, en el cual la bobina está dispuesta verticalmente, y para evitar grandes consumos de corriente, dicha bobina del generador de campo magnético podría tener más de una vuelta. El sistema de la invendón puede utilizar multi-cables, que pueden ser planos, de modo que cada vuelta equivale a un número de vueltas igual al número de cables que componen cada multi-cable, facilitando el montaje.
En el sistema de la invención, el alimentador preferentemente genera una señal intermitente, del mismo signo, cuadrada y con un ciclo de trabajo que puede variar, para crear el campo magnético en la bobina. Alterativamente, se puede generar una señal constante, sinusoidal o de cualquier otro tipo detectable por el magnetómetro. La frecuencia de los pulsos puede ser modificada y se puede utilizar para distinguir entre distintos puntos de control.
El sistema de la invendón también permite enviar informadón mediante la señal que genera el campo magnético, por ejemplo, variando la frecuenda de emisión de pulsos o enviando informadón binaria codificada, por ejemplo con una codificadón Manchester o bifase-L. Entre otros, la informadón enviada puede indicar el punto de control por el que pasa cada dispositivo electrónico.
El sistema de la invención también puede utilizar materiales ferromagnéticos, como la ferrita o el mumetal, como elementos guía para dirigir el campo magnético hada la zona de paso del dispositivo electrónico.
Los uno o más procesadores conectados con el equipo de geolocalización, están configurados para detectar la entrada del dispositivo electrónico en una zona de geovallado, para ello calcula, mediante el uso del equipo de geolocalización, si el dispositivo electrónico está dentro de una zona de geovallado.
El dispositivo electrónico comprende el equipo de geolocalizadón configurado para identificar la posidón del dispositivo electrónico y calcular si se encuentra dentro del conjunto de zonas de geovallado. Las zonas de geovallado definen una serie de secciones, de forma que uno o más puntos de control se sitúan en cada una de dichas secciones.
De ese modo, cuando los uno o más procesadores del dispositivo electrónico detectan la entrada en una sección de geovallado, activan el magnetómetro, el cual comienza la detección de un campo magnético. Los generadores de campo magnético, asociados a la zona geovallada, pueden estar permanentemente generando un campo magnético detectable por el magnetómetro, cuando el dispositivo electrónico está en la zona geovallada.
Dentro de una zona de geovallado, el o los procesadores del dispositivo electrónico están configurados para recibir una señal magnética detectada y registrar el paso por el punto de control. Asimismo, los procesadores pueden estar configurados para calcular y registrar el tiempo de paso del dispositivo electrónico por el punto de control.
El geovallado se puede utilizar para evitar el consumo excesivo derivado del uso continuo del magnetómetro y de la detección continua de un campo magnético mediante los generadores de campo magnético. De este modo, el geovallado permite hacer uso de la generación y detección de campo magnético únicamente cuando el dispositivo electrónico se encuentra próximo a un punto de control, mejorando así la precisión y la eficiencia en el proceso, ya que tener el magnetómetro permanentemente activado no resultaría eficiente.
Aún más preferentemente, el uso de campo magnético para el control de paso permite hacer uso de un dispositivo inteligente, como un teléfono móvil o un dispositivo vestible o ponióle (wearable) como dispositivo electrónico, el cual, puede ser aportado por el propio participante con una aplicación corriendo en él.
En este caso, el dispositivo electrónico ya comprende un magnetómetro, equipos de geolocalización configurados para detectar la entrada en una zona de geovallado y un procesador conectado al magnetómetro y a los equipos de geolocalización, por lo que no se ha de proporcionar ni manipular el dispositivo electrónico de cada usuario.
Por el contrario, el dispositivo electrónico puede comprender una aplicación que permita la detección del paso por el punto de control y el registro del tiempo de paso por el punto de control por medio del procesador del dispositivo electrónico. El procesador, mediante esta aplicación, puede estar configurado para activar el magnetómetro y mantener la aplicación en primer plano si el dispositivo electrónico está dentro de una zona de geovallado.
Así, el geovallado se puede utilizar para evitar el consumo excesivo, evitando que los principales Sistemas Operativos, como iOS o Android, interrumpan la aplicación durante el proceso de detección de puntos de control. Dichos Sistemas Operativos son muy restrictivos con las aplicaciones que consumen recursos del sistema. El geovallado ayuda, en gran medida, a combatir el consumo excesivo de batería, RAM y CPU.
El magnetómetro es un sensor presente en cualquier teléfono o reloj inteligente que porte un GPS, ya que se utiliza, entre otras cosas, para determinar dónde está el norte magnético y ayudar a la navegación y geoposicionamiento.
En este sentido, el dispositivo electrónico puede emplear el equipo de geolocalización, para determinar el punto de control por el que pasa el dispositivo electrónico. Así, el dispositivo electrónico puede conocer el punto de control por el que pasa gracias a la información recibida desde el magnetómetro, que detecta el campo magnético generado por los generadores de campo magnético, y al geovallado implementado mediante geoposicionamiento. De ese modo, el sistema de la invención permite una mayor flexibilidad, puesto que permite el uso de cualquier dispositivo con geolocalización que disponga de un magnetómetro.
El procesador, que puede estar integrado en el dispositivo electrónico o ser extemo al mismo, y puede comprender algoritmos de filtrado digital de frecuencias para eliminar las frecuencias no usadas por el generador de campo magnético. Además, el procesador puede ejecutar algoritmos de detección de pico para detectar el momento de máxima potencia absoluta de campo magnético detectada y asignar este tiempo de detección de pico como tiempo de paso.
El dispositivo electrónico, además puede comprender un módulo de comunicaciones para enviar los tiempos y/o las horas de paso obtenidos por cada punto de control.
La invención también se refiere a un método de cálculo de tiempo de paso mediante campo magnético que comprende las etapas de: proveer uno o más puntos de control, cada uno dentro de una zona geovallada, y uno o más generadores de campo magnético, situados en cada punto de control; proveer uno o más dispositivos electrónicos que comprenden uno o más magnetómetros (3), configurados para detectar un campo magnético, y uno o más equipos de geolocalizadón, configurados para detectar la entrada en una zona de geovallado; proveer uno o más procesadores, conectados con los magnetómetros, y los equipos de geolocalizadón de los dispositivos electrónicos; generar al menos una zona de geovallado por cada punto de control; detectar la entrada del dispositivo electrónico en una zona de geovallado mediante los equipos de geolocalizadón, activar el magnetómetro del dispositivo electrónico, recibir el campo magnético emitido por los generadores de campo magnético; detectar y registrar el paso del dispositivo electrónico por el punto de control, en base a la detecdón de campo magnético; calcular el tiempo de paso; detectar una salida del dispositivo electrónico de la zona de geovallado, desactivar el magnetómetro del dispositivo electrónico.
Preferentemente, el campo magnético se genera mediante una señal intermitente, del mismo signo, cuadrada y con un ciclo de trabajo.
También, el método puede comprender una etapa de transmitir información mediante el campo magnético generado variando la frecuencia de emisión de pulsos de la señal del alimentador o mediante una codificación Manchester o bifase-L.
Preferentemente, la etapa de obtener el punto de control se realiza mediante la información transmitida a través de la señal magnética o mediante el equipo de geolocalizadón (o módulo de geoposidonamiento).
En el caso de que se haga uso de un dispositivo inteligente con una aplicación corriendo en él, es la aplicación la que lleva a cabo las etapas de detectar y registrar el paso por el punto de control, en base a la detección de campo magnético, y de calcular el tiempo de paso por el punto de control, por medio del procesador del dispositivo electrónico. Asimismo, la aplicación estará configurada para mantenerse en primer plano si el dispositivo electrónico está dentro de una zona de geovallado. También, la etapa de calcular el tiempo de paso se puede realizar obteniendo el tiempo del valor máximo de recepción de campo magnético o mediante algoritmos de aprendizaje automático, en particular, mediante redes neuronales, según se necesite una mayor o menor precisión.
Así, se aprovecha el hecho de que el campo magnético se propaga a muy poca distancia y es muy constante, con el fin de detectar de forma sencilla el punto de mayor recepción magnética, que coincide con el punto de control de tiempos.
El sistema y el método de la invención pueden ser aplicados en una carrera deportiva como carreras de atletismo (o running), ciclismo, triatlón, duatlón, bicicleta de montaña, patines... También puede aplicarse en una zona de paso para posicionar y detectar el paso de personas en interiores como congresos, ferias de muestras o similar.
De este modo, una ventaja de la invención radica en la posibilidad de poder utilizar un dispositivo aportado por el participante, como un dispositivo inteligente. Asimismo, aplicando algoritmos de aprendizaje automático no complejos, es posible conseguir una precisión mayor y más fiable que los sistemas pasivos.
Respecto a los sistemas activos, elimina la inversión inicial y todo el proceso farragoso de entrega y recogida de chips antes y después del evento, evitando las pérdidas de estos y el posterior proceso de recuperarlos.
El cronometraje mediante la detección de campos magnéticos utilizando dispositivos inteligentes permite el remplazo completo del cronometraje activo y pasivo.
Además, la generación de campos magnéticos mediante generadores de campo magnético que comprenden al menos una bobina permite controlar las características del campo magnético generado, como su intensidad y frecuencia. En particular, como se ha comentado será de utilidad en la aplicación de la invención el uso de campos magnéticos a bajas frecuencias (del rango de los Hz) con el fin de aumentar el alcance al que el campo magnético es detectable.
La detección del campo magnético puro, mediante el magnetómetro, permite aprovechar al máximo las características especiales de este tipo de señales. En particular, permite la recepción de una señal que se propaga a muy poca distancia y es muy constante, por otro lado, no existen pulsos de ese tipo en la naturaleza ni otros elementos que los generen, como sí que pasa con pulsos electromagnéticos. Además, los campos magnéticos no se propagan, con lo que desaparecen rápidamente y hay pocos materiales que sean capaces de bloquearlos. Todo ello aumenta la precisión y fiabilidad en la detección en comparación con los sistemas electromagnéticos tradicionales.
Finalmente, el uso de una aproximación grueso a fino en la determinación de la localización y determinación del punto de paso, implementada mediante el sistema de geovallado, permite aumentar la precisión de la detección del paso por un punto de control, así como del cálculo del tiempo de control, y además permite evitar el consumo de recursos derivado de mantener siempre activo el magnetómetro, lo cual resultaría inviable en la aplicación de la invención.
DESCRIPCIÓN DE LOS DIBUJOS
Fig. 1.- muestra un primer ejemplo de una primera realización del sistema de la invención con el generador de campo magnético en forma de arco.
Fig. 2.- muestra un segundo ejemplo de una primera realización del sistema de la invención con el generador de campo magnético con forma cuadrada.
Fig. 3.- muestra la conexión entre los distintos cables de un multi-cable en un ejemplo de la primera realización en el que se usa un único multicable para el generador de campo magnético.
Fig. 4.- muestra una segunda realización del sistema de la invención con el generador de campo magnético formado por dos bobinas situadas a ambos lados de la zona de paso por el punto de control.
Fig. 5.- muestra la distribución de líneas de campo del campo magnético generado por las dos bobinas de la segunda realización del sistema de la invención.
Fig. 6.- muestra una tercera realización del sistema de la invención con el generador de campo magnético dispuesto horizontalmente en el suelo.
Fig. 7.- muestra un ejemplo de realización en el que los uno o más dispositivos electrónicos son teléfonos móviles pertenecientes a cada uno de los corredores en un entorno geovallado. Fig. 8.- muestra un ejemplo de una vista superior de un punto de control.
Fig. 9.- muestra el dispositivo electrónico de una realización del sistema de la invención, en la que dicho dispositivo electrónico es un teléfono móvil.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Las ventajas de la invención se muestran en los ejemplos de realización preferente mostrados en las Figuras y descritos a continuación.
Las Figuras 1 y 2 muestran dos ejemplos de una realización del sistema de control de paso de la invención. El sistema se corresponde en este caso con un sistema de control de paso en distintos puntos de un evento deportivo, en el cual los participantes realizan un recorrido pasando por una serie de puntos de control (1) provistos previamente.
En cada uno de los puntos de control (1) se dispone un generador de campo magnético (2). Por otro lado, cada usuario cuenta con un dispositivo electrónico (3) configurado para detectar un campo magnético, en este caso mediante un magnetómetro alojado en el dispositivo electrónico (3).
El sistema también comprende un procesador para calcular el tiempo de paso por cada punto de control.
De ese modo, cuando el usuario pasa por un punto de control (1), el dispositivo electrónico (3) detecta el campo magnético generado por el generador de campo magnético (2) en ese punto de control (1). El procesador registra una marca de tiempo en el cual el usuario pasa por el punto de control (1) identificando el momento de máxima recepción de campo magnético.
En el caso de la Figura 1, el generador de campo magnético (2) comprende una bobina y un alimentador (4) para la bobina que proporciona pulsos o señal de corriente necesarios para generar el campo magnético en la bobina.
La bobina tiene una forma de arco, y se dispone transversalmente en una zona de paso por el punto de control (1), formando un arco a través del cual pasa el usuario. En el caso de la Figura 2, la bobina tiene una forma cuadrada o rectangular y se dispone igualmente, de tal modo que el usuario pasa a través de dicha bobina.
La Figura 3 muestra un esquema de conexión de un ejemplo de ésta realización en el que se hace uso de un multi-cable (6) plano para conformar la bobina. Así, se consigue un número mayor de vueltas con un único multi-cable(6). En el esquema de conexión mostrado, pueden verse los dos extremos de un mismo multi-cable(6) plano. El cable 1 se corresponde con el cable 7 en el otro extremo, el cable 2 se corresponde con el número 8, el 3 con el 9 y así sucesivamente hasta el cable 6 que se corresponde con el cable 12. Existe continuidad entre, por ejemplo, los cables 1 y 7 ya que se trata de los 2 extremos de un mismo cable.
La invención propone utilizar un conectar (5) que conecte ambos extremos, desplazando una posición uno de los extremos del multi-cable (6) de forma que el cable 1 se quede sin conexión, el cable 7 se conecte con el 2, el 8 con el 3 y así sucesivamente. El cable 12 quedaría, al igual que el 1, libre de conexión y se habrían creado 6 vueltas de cable utilizando un solo multi-cable (6). El alimentador (4) se conectaría a los cables 1 y 12 y el multi-cable (6) quedaría convertido en una bobina de 6 vueltas.
En el caso de la Figura 4, el generador de campo magnético (2) comprende dos bobinas helmholtz situadas a ambos lados de una zona de paso por un punto de control (1). La Figura 5 muestra la distribución de campo magnético que generan las dos bobinas, la cual permite la detección de dicho campo magnético por parte del dispositivo electrónico (3) que el usuario porta.
La Figura 6 muestra otra disposición de las bobinas en el generador de campo magnético (2) del sistema de la invención. En este caso, las bobinas se encuentran dispuestas horizontalmente en el suelo de un lugar de paso por un punto de control (1). El campo magnético generado se extiende en dirección vertical, de modo que puede ser detectado por el dispositivo electrónico (3) portado por el usuario. Es posible utilizar materiales ferromagnéticos para concentrar el campo magnético en la zona de paso.
El dispositivo electrónico (3) en todos los casos explicados puede consistir en un teléfono inteligente o un reloj inteligente, que comprende un magnetómetro para detectar el campo magnético generado. El campo magnético generado puede originarse mediante una señal intermitente, del mismo signo, cuadrada y con un ciclo de trabajo que puede variar, enviada mediante el alimentador (4) para la bobina. También puede ser una señal sinusoidal o de cualquier otro tipo aunque el consumo de energía puede ser mayor.
La determinación del tiempo en el cual el usuario pasa por el punto de control (1) puede realizarse determinando el momento en el que se registra en el dispositivo electrónico (3) un valor máximo de recepción de campo magnético.
También, y para una mayor precisión, se pueden utilizar filtrados digitales de la señal para eliminar el resto de frecuencias y algoritmos de detección de picos para obtener el momento de máxima potencia absoluta recibida.
El sistema de la invención también puede estar adaptado para transmitir cierta información, como el identificador del punto de control (1) por el que se ha pasado, variando la frecuencia de emisión de pulsos o mediante información binaria codificada, por ejemplo mediante una codificación Manchester o bifase-L.
La figura 7 muestra un ejemplo de realización en el que se hace uso de la invención en una carrera con puntos de control (1) de paso, definidos mediante zonas de geovallado (9), y en el que los uno o más dispositivos electrónicos (3) son teléfonos móviles pertenecientes a cada uno de los corredores, con una aplicación destinada al control de tiempos de carrera corriendo en dicho teléfono móvil. Los equipos de cronometraje estáticos (7) comprenden, en este caso, un generador de campo magnético (2).
En este ejemplo, cada participante porta un dispositivo electrónico (3) que posee un magnetómetro (10) y un equipo de geolocalización (11).
El recorrido está dividido mediante geovallado (geofencing) en zonas geovalladas (9). Es posible disponer zonas geovalladas (9) por todo el recorrido, pero es esencial crear zonas geovalladas (9) alrededor de los puntos de control (1). Así, el dispositivo electrónico (3) será capaz de reconocer cuándo se encuentra cerca de un punto de control (1), y activar el magnetómetro (10). Igualmente podrá desactivar el magnetómetro cuando se encuentra fuera de las zonas geovalladas (9) del recorrido (1). Las características de las zonas geovalladas (9) (tamaño, posición de las geovallas, presencia de punto de control (1)...) se han de introducir en el sistema para la correcta gestión.
Cuando el participante está cerca de un punto de control (1), se puede localizar o calcular su tiempo de paso mediante la potencia (RSSI) con la que la señal es recibida por el magnetómetro (10). Así, es posible medir con precisión el momento en que el participante pasa por el punto de control (1). El procesado se realiza en un procesador (12, 13, 14) situado en los dispositivos electrónicos (3).
Todos estos pasos se realizan, normalmente, gracias a un programa o aplicación ejecutada en el dispositivo electrónico (3). Ésta, incorpora la identificación y/o autenticación para saber qué participante porta qué dispositivo electrónico (3). El dispositivo electrónico (3) puede usar la geolocalización, la fecha y la hora para identificar qué carrera está siendo corrida.
La aplicación monitoriza, mediante el equipo de geolocalización (11), cuándo el dispositivo (3) entra en una zona geovallada (9) en la que hay un punto de control (1). En ese momento, se activa el magnetómetro (10). Una vez pasado el dispositivo electrónico (3) por el punto de control (1), o al salir de la zona geovallada (9) se desactiva el magnetómetro (10).
La figura 8 es un ejemplo de una vista superior de un punto de control en el que los corredores llevan un dispositivo electrónico (3) que comprende un magnetómetro (10), configurado para detectar un campo magnético puro, y un equipo de geolocalización (11), configurado para detectar la entrada en una zona geovallada.
En el punto de control hay un equipo de cronometraje estático (7), que comprende un generador de campo magnético (2).
La figura 9 muestra una realización del sistema de la invención siendo el dispositivo electrónico un teléfono móvil.
En este caso, el teléfono móvil (3) ya comprende un magnetómetro (10), configurado para detectar un campo magnético, y uno o más equipos de geolocalización (11), en este caso de geolocalización, configurados para detectar la entrada en una zona de geovallado. Asimismo, comprende un primer procesador (13), conectado con el magnetómetro (10) y los equipos de geolocalización (11), de modo que dicho primer procesador (13): detecta la entrada del teléfono móvil en una zona de geovallado (9) mediante los equipos de geolocalización (11), activa el magnetómetro (10), recibe un campo magnético suficientemente potente para detectarlo; detecta y registra el paso por el punto de control (10), y puede calcular el tiempo de paso, detecta una salida del teléfono móvil de la zona de geovallado (9) y desactiva el magnetómetro (10).

Claims

REIVINDICACIONES
1. Sistema de control de paso que hace uso de un campo magnético y comprende:
- uno o más puntos de control (1) situados en una zona geovallada;
- uno o más equipos de cronometraje estáticos (7), situados en cada punto de control (1) que comprenden cada uno: uno o más generadores de campo magnético (2);
- uno o más dispositivos electrónicos (3) que comprenden: o uno o más magnetómetros (10), configurados para detectar un campo magnético puro, y o uno o más equipos de geolocalización (11), configurados para detectar la entrada en una zona geovallada; y o uno o más procesadores (12, 13, 14), conectados con los magnetómetros (10) y los equipos de geolocalización (11) configurados para detectar la entrada y la salida de los dispositivos electrónicos (3) en una zona geovallada (9) mediante los equipos de geolocalización (11), activar los magnetómetros (10); detectar un campo magnético; calcular y registrar el paso y el tiempo de paso por el punto control (1) en base a la detección del campo magnético.
2. Sistema de acuerdo con la reivindicación 1, donde los generadores de campo magnético (2) comprenden elementos guía fabricados en material ferromagnético para dirigir el campo magnético hacia una zona de paso por el punto de control (1).
3. Sistema de acuerdo con la reivindicación 1, donde los generadores de campo magnético (2) comprenden al menos una bobina y un alimentador (4) para la bobina.
4. Sistema de acuerdo con la reivindicación 3, donde la bobina se dispone verticalmente sobre una zona de paso por un punto de control (1), perpendicular al trazado de la misma, de modo que un dispositivo electrónico (3) está destinado a atravesar la bobina por su interior.
5. Sistema de acuerdo con la reivindicación 4, donde la bobina tiene forma rectangular o cuadrada, de arco, de puerta, de pórtico o de pasillo.
6. Sistema de acuerdo con la reivindicación 4, donde la bobina tiene 1 o más vueltas.
7. Sistema de acuerdo con la reivindicación 1 , donde el al menos un generador de campo magnético (2) es desmontable.
8. Sistema de acuerdo con la reivindicación 3, donde la bobina se genera con multicables (6) de modo que cada vuelta equivale a un número de vueltas igual al número de cables que componen cada multi-cable (6).
9. Sistema de acuerdo con la reivindicación 3, donde el al menos un generador de campo magnético (2) comprende dos o más bobinas helmholtz situadas a ambos lados de una zona de paso por un punto de control (1).
10. Sistema de acuerdo con la reivindicación 3, donde la al menos una bobina está instalada horizontalmente en el suelo de un lugar de paso por un punto de control (1).
11. Sistema de acuerdo con la reivindicación 3, donde el alimentador (4) genera una señal intermitente, del mismo signo, cuadrada y con un ciclo de trabajo.
12. Sistema de acuerdo con la reivindicación 3, donde el alimentador (4) genera una señal sinusoidal o constante.
13. Sistema de acuerdo con la reivindicación 11, donde el alimentador (4) envía además información variando la frecuencia de emisión de pulsos.
14. Sistema de acuerdo con la reivindicación 11, donde el alimentador (4) envía además información binaria codificada.
15. Sistema de acuerdo con la reivindicación 14, donde la información binaria codificada usa una codificación Manchester o bifase-L.
16. Sistema de acuerdo con la reivindicación 1, donde el procesador está configurado para realizar un filtrado digital de la señal con el fin de eliminar las frecuencias no utilizadas por el generador de campo magnético.
17. Sistema de acuerdo con la reivindicación 16, donde el procesador está configurado para utilizar algoritmos de detección de picos con el fin de asignar el tiempo de la potencia máxima absoluta detectada como tiempo de paso por el punto de control.
18. Sistema de acuerdo con la reivindicación 1, donde el dispositivo electrónico (3) comprende un módulo de comunicaciones para enviar el punto de control y el tiempo de paso obtenidos.
19. Sistema de acuerdo con cualquiera de las reivindicaciones anteriores, donde los equipos de cronometraje estáticos (7) son portátiles y desmontables de los puntos de control (1).
20. Método de cálculo de tiempo de paso mediante la detección de geovallado y el empleo de campos magnéticos que comprende las etapas de: proveer uno o más puntos de control (1), y uno o más generadores de campo magnético (2), situados en cada punto de control (1); proveer uno o más dispositivos electrónicos (3) que comprenden uno o más magnetómetros, configurados para detectar un campo magnético, y uno o más equipos de geolocalización (11), configurados para detectar la entrada en una zona de geovallado (9); detectar la entrada del dispositivo electrónico (3) en una zona de geovallado (9) mediante los equipos de geolocalización (11); activar el magnetómetro del dispositivo electrónico (3); emitir un campo magnético mediante los uno o más generadores de campo magnético (2); detectar el campo magnético mediante los uno o más magnetómetros (10) del dispositivo electrónico (3); y detectar el paso por el punto de control y calcular el tiempo de paso, en función de la intensidad de campo magnético detectada; detectar una salida del dispositivo electrónico (3) de la zona de geovallado (9); desactivar el magnetómetro del dispositivo electrónico (3).
21. Método de cálculo de tiempo de paso de acuerdo con la reivindicación 20, donde existe más de un punto de control (1) y el método además comprende una etapa previa al cálculo del tiempo de paso de obtener el punto de control (1) por el que pasa cada dispositivo electrónico (3).
22. Método de cálculo de tiempo de paso de acuerdo con la reivindicación 21 , donde el campo magnético se genera mediante una señal intermitente, del mismo signo, cuadrada y con un ciclo de trabajo.
23. Método de cálculo de tiempo de paso de acuerdo con la reivindicación 22, que además comprende una etapa de transmitir información mediante el campo magnético generado variando la frecuencia de emisión de pulsos de la señal del alimentador (4) o mediante una codificación Manchester o bifase-L.
24. Método de cálculo de tiempo de paso de acuerdo con la reivindicación 21 , donde la etapa de obtener el punto de control (1) se realiza mediante la información transmitida o mediante un módulo de geoposicionamiento.
25. Método de cálculo de tiempo de paso de acuerdo con la reivindicación 21 , donde la etapa de calcular el tiempo de paso se realiza obteniendo el tiempo del valor máximo de recepción de campo magnético o mediante un filtrado inicial del resto de frecuencias y un algoritmo de detección de pico.
26. Método de acuerdo con cualquiera de las reivindicaciones anteriores, donde el dispositivo electrónico (3) es un teléfono móvil o un dispositivo ponible wearable, y el método además comprende las etapas de proveer una aplicación, para la detección de paso por el punto de control (1) y el registro del tiempo de paso, instalada en el teléfono móvil o el dispositivo ponible wearable, y de mantener la aplicación en primer plano si el dispositivo electrónico (3) está dentro de una zona de geovallado (9).
PCT/ES2022/070186 2021-03-30 2022-03-30 Sistema de control de paso y método de cálculo de tiempo de paso mediante campo magnético WO2022207952A1 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP202130284 2021-03-30
ES202130284A ES2925317A1 (es) 2021-03-30 2021-03-30 Método y equipo de cronometraje deportivo
ESP202130378 2021-04-29
ES202130378A ES2927140A1 (es) 2021-04-29 2021-04-29 Sistema de control de paso y metodo de calculo de tiempo de paso mediante campo magnetico

Publications (1)

Publication Number Publication Date
WO2022207952A1 true WO2022207952A1 (es) 2022-10-06

Family

ID=81750788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070186 WO2022207952A1 (es) 2021-03-30 2022-03-30 Sistema de control de paso y método de cálculo de tiempo de paso mediante campo magnético

Country Status (1)

Country Link
WO (1) WO2022207952A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812049A (en) 1996-10-25 1998-09-22 Micro Utility Ltd. System and method for monitoring a competitive activity
EP1376273A2 (en) 2002-06-18 2004-01-02 Kunihiro Kishida Clocking system
JP2007097995A (ja) 2005-10-07 2007-04-19 Seiko Precision Inc 計時機器、および、タイム計時方法
US20110156868A1 (en) * 2008-06-06 2011-06-30 Florian Hoeflinger System und verfahren zur automatisierten analyse eines wettkampfverlaufes
US20130231760A1 (en) 2012-03-02 2013-09-05 Qualcomm Incorporated Real-time event feedback
EP3035298A1 (en) 2014-12-19 2016-06-22 MyLaps B.V. Determining the passing time of a moving transponder
WO2016174612A1 (en) 2015-04-28 2016-11-03 Ecole Polytechnique Federale De Lausanne (Epfl) High precision trajectory and speed sensor and measuring method
US20180182240A1 (en) * 2016-01-05 2018-06-28 TollSense, LLC Systems and Methods for Monitoring Roadways Using Magnetic Signatures
US20180326285A1 (en) * 2015-11-23 2018-11-15 race result AG Position tracking at sports events

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812049A (en) 1996-10-25 1998-09-22 Micro Utility Ltd. System and method for monitoring a competitive activity
EP1376273A2 (en) 2002-06-18 2004-01-02 Kunihiro Kishida Clocking system
JP2007097995A (ja) 2005-10-07 2007-04-19 Seiko Precision Inc 計時機器、および、タイム計時方法
US20110156868A1 (en) * 2008-06-06 2011-06-30 Florian Hoeflinger System und verfahren zur automatisierten analyse eines wettkampfverlaufes
US20130231760A1 (en) 2012-03-02 2013-09-05 Qualcomm Incorporated Real-time event feedback
EP3035298A1 (en) 2014-12-19 2016-06-22 MyLaps B.V. Determining the passing time of a moving transponder
WO2016174612A1 (en) 2015-04-28 2016-11-03 Ecole Polytechnique Federale De Lausanne (Epfl) High precision trajectory and speed sensor and measuring method
US20180292429A1 (en) * 2015-04-28 2018-10-11 Ecole Polytechnique Federale De Lausanne (Epfl) High Precision Trajectory and Speed Sensor and Measuring Method
US20180326285A1 (en) * 2015-11-23 2018-11-15 race result AG Position tracking at sports events
US20180182240A1 (en) * 2016-01-05 2018-06-28 TollSense, LLC Systems and Methods for Monitoring Roadways Using Magnetic Signatures

Similar Documents

Publication Publication Date Title
ES2403177T3 (es) Sistema de detección, adaptado para la identificación y para el seguimiento de canalizaciones enterradas o de otros cuerpos enterrados en el suelo o embebidos en unas obras de ingeniería civil
US8248204B2 (en) Tag detecting system, moving object detecting method, and entrance/exit management system
US10671820B2 (en) Wearable sports timing tag assembly
ES2606629T3 (es) Sistema de localización de vehículos
ES2807876T3 (es) Seguimiento de posición en eventos deportivos
ES2284172T3 (es) Configuracion de antenas para un sistema electronico de vigilancia de articulos con distribucion del campo de interrogacion mejorada.
ES2874399T3 (es) Determinar el tiempo de paso de un transpondedor en movimiento
ES2327035T3 (es) Sistema y procedimiento para analizar la presencia de objetos.
ES2652213T3 (es) Sistema de antenas y método para determinar el paso de un objeto desplazable a través de un plano de detección
ES2564014T3 (es) Detección de paso entre un transmisor y un detector
ES2893808T3 (es) Método de control de los derechos de acceso mediante un sistema de control de acceso
CN106104294B (zh) 本地化系统
ES2551102T3 (es) Sistema para detectar la posición de un objeto
US20170102449A1 (en) Pose detection device of movable body and location-based supplemental service providing system
WO2022207952A1 (es) Sistema de control de paso y método de cálculo de tiempo de paso mediante campo magnético
SG11201804676XA (en) Railroad car position detection system
ES2276082T3 (es) Desmodulador que utiliza un circuito digital.
ES2233865T3 (es) Antenas de tipo bucle.
US7339464B2 (en) Detection-resistant transponder with “stealth packaging” for high-risk surveillance applications
EP3832520B1 (en) Apparatus for determining a passing time of a passive rfid sports timing transponder
ES2927140A1 (es) Sistema de control de paso y metodo de calculo de tiempo de paso mediante campo magnetico
TW200510753A (en) Antenna for detecting magnetic field and gate for detecting detection tag employing the antenna
JP2015032319A (ja) サービスの利用を記録するカスタマ媒体
CN106778981A (zh) 一种基于rfid的室内三维定位平台及其应用
KR101472117B1 (ko) Rfid의 태그효율을 높이는 연장포스트를 갖는 지하매설물식별장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22724801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22724801

Country of ref document: EP

Kind code of ref document: A1