WO2022206984A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2022206984A1
WO2022206984A1 PCT/CN2022/084965 CN2022084965W WO2022206984A1 WO 2022206984 A1 WO2022206984 A1 WO 2022206984A1 CN 2022084965 W CN2022084965 W CN 2022084965W WO 2022206984 A1 WO2022206984 A1 WO 2022206984A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
coreset
lowest
rbs
value
Prior art date
Application number
PCT/CN2022/084965
Other languages
English (en)
French (fr)
Inventor
乔梁
扎里非凯文
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110902625.7A external-priority patent/CN115208532A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3215717A priority Critical patent/CA3215717A1/en
Priority to EP22779164.7A priority patent/EP4300864A1/en
Publication of WO2022206984A1 publication Critical patent/WO2022206984A1/zh
Priority to US18/477,056 priority patent/US20240040392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and a communication device.
  • the synchronization signal block pattern (SS/PBCH Block/SSB) sent from the base station will be detected first, where the The SSB includes a physical broadcast channel (PBCH) carrying master information block (MIB) information, and the same parameter in the MIB information indicates different contents in the licensed frequency band and the shared frequency band.
  • PBCH physical broadcast channel
  • MIB master information block
  • the base station cannot send a designated SSB at a designated location. Therefore, a new Q value is defined (ie ), the UE can calculate multiple candidate positions for sending the same SSB index by demodulating the Q value and according to the demodulation reference signal (demodulation reference signal, DMRS) sequence.
  • DMRS demodulation reference signal
  • the base station does not need to perform LBT before sending the discovery burst (DB). It can be considered that the discovery burst transmission window (DBTW) is closed, otherwise , that DBTW is considered open. However, the UE does not know the status of the DBTW, so that it cannot quickly achieve timing synchronization with the network device.
  • DBTW discovery burst transmission window
  • the present application provides a communication method and a communication device, which can enable a terminal device to determine the state of the DBTW, so that timing synchronization with a network device can be quickly achieved.
  • a communication method is provided, the method is applied to an unlicensed frequency band, and the execution subject of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the terminal device receives the first information sent by the network device, where the first information includes a Q value or a first parameter, and the first parameter is used to indicate the state of the discovery burst set transmission window DBTW;
  • the state of the DBTW is determined according to the Q value or the first parameter.
  • the terminal device can determine the status of the DBTW according to the first information sent by the network device, so as to determine whether the network device side sends the SSB that cannot be sent due to the LBT failure on the DBTW, and further, it can be quickly realized Timing synchronization with network devices.
  • the determining the state of the DBTW according to the Q value includes:
  • the state of the DBTW is determined according to the DBTW value.
  • the determining the state of the DBTW according to the DBTW value includes:
  • DBTW value is less than or equal to the second threshold, it is determined that the DBTW is in an off state; or,
  • DBTW value is greater than the second threshold, it is determined that the DBTW is in an open state.
  • the terminal device determines the status of the DBTW according to the relationship between the Q value and the first threshold. If the status of the DBTW cannot be determined, the terminal device can further determine the status of the DBTW according to the DBTW value. Therefore, it can be determined whether the network device side sends the SSB that cannot be sent due to the LBT failure on the DBTW, and the timing synchronization with the network device can be quickly realized.
  • the second threshold is the time duration from the first symbol on the time slot where the first synchronization information block SSB is located to the last symbol on the time slot where the second SSB is located length, the index of the first SSB is 0, and the second SSB is (Q-1); or,
  • the second threshold is the time duration from the first symbol on the time slot where the third SSB is located to the last symbol on the time slot where the fourth SSB is located, the third SSB is located in the first SSB group, and the third SSB is located in the first SSB group.
  • the four SSBs are located in the second SSB group, the first SSB group is the group in which the first bit from the left is configured as "1" in the second parameter, and the second SSB group is the second parameter in the second parameter from the right groups starting with the first bit configured as "1"; or,
  • the second threshold is the time duration from the first symbol on the slot where the fifth SSB is located to the last symbol on the slot where the sixth SSB is located, and the fifth SSB is the SSB with the smallest index among the successfully sent SSBs , the sixth SSB is the SSB with the largest index among the successfully sent SSBs.
  • the second threshold is the time duration from the time slot where the first SSB is located to the time slot where the second SSB is located, and the index of the first SSB is 0,
  • the second SSB is (Q-1); or,
  • the second threshold is the time duration from the time slot where the third SSB is located to the time slot where the fourth SSB is located, the third SSB is located in the first SSB group, the fourth SSB is located in the second SSB group,
  • the first SSB group is a group in which the first bit from the left in the second parameter is configured as "1”
  • the second SSB group is a group in which the first bit from the right in the second parameter is configured as "1" ” group; or,
  • the second threshold is the time duration from the time slot where the fifth SSB is located to the time slot where the sixth SSB is located, the fifth SSB is the SSB with the smallest index among the successfully sent SSBs, and the sixth SSB is a successful SSB The SSB with the highest index among the sent SSBs.
  • the second threshold is the time duration from the first symbol index of the first SSB to the last symbol index of the second SSB, and the index of the first SSB is 0, and the second SSB is (Q-1); or,
  • the second threshold is the time duration from the first symbol index of the third SSB to the last symbol index of the fourth SSB, the third SSB is located in the first SSB group, and the fourth SSB is located in the second SSB
  • the first SSB group is the group in which the first bit from the left in the second parameter is configured as "1”
  • the second SSB group is the first bit in the second parameter configured from the right into groups of "1";
  • the second threshold is the time duration from the first symbol index of the fifth SSB to the last symbol index of the sixth SSB, the fifth SSB is the SSB with the smallest index among the successfully transmitted SSBs, and the sixth SSB It is the SSB with the largest index among the successfully transmitted SSBs.
  • the Q value is indicated by n bits, the n is a positive integer greater than 2, and the n bits include at least one bit for indicating the third parameter , the third parameter includes at least one of the following parameters:
  • the subcarrier interval in the MIB information of the main information block is common, the SSB-subcarrier offset in the MIB information, the physical downlink control channel in the MIB information-configuration system information block 1 PDCCH-configuration SIB1.
  • the Q value can be indicated by n bits, where the n bits include at least one bit used to indicate the above-mentioned third parameter.
  • the bits used to indicate the Q value can be bits corresponding to other parameters in the MIB, which can improve the performance of the system.
  • the PDCCH-configuration SIB1 includes zero search space and zero control resource set.
  • the n bits include n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter, the fourth The parameter is any parameter in the third parameter, the fifth parameter is the parameter in the third parameter except the fourth parameter, and the fifth parameter adopts m-(n-n1) Bit indication, m is an initial number indicating the fifth parameter.
  • the Q value used to determine the state of the DBTW can be indicated by n bits, where the n bits include n1 bits for indicating the fourth parameter and (n-n1) for indicating the fifth parameter bits, the fifth parameter is indicated by m-(n-n1) bits, where m is the initial number indicating the fifth parameter; in this implementation, the bits corresponding to other parameters in the MIB can be used to indicate Q value, can avoid expanding the MIB load capacity to indicate the Q value, so that the performance of the system can be improved.
  • the n bits include n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter, the fourth The parameter is any parameter in the third parameter, the fifth parameter is the parameter in the third parameter except the fourth parameter, the fifth parameter is indicated by m bits, and m is the indication The initial number of the fifth parameter, (n-n1) ⁇ m.
  • the Q value used to determine the state of the DBTW can be indicated by n bits, where the n bits include n1 bits for indicating the fourth parameter and (n-n1) for indicating the fifth parameter bits, and the fifth parameter is indicated by m bits; in this implementation, the corresponding bits of other parameters in the MIB can be used to indicate the Q value, and the use of the extended MIB load capacity to indicate the Q value can be avoided, and it will not affect the Q value. Bit indication of the fifth parameter itself, so that the performance of the system can be improved.
  • the fifth parameter is the SSB-subcarrier offset in the MIB information
  • the offset value of the SSB-subcarrier offset is based on the SSB
  • the combination of the subcarrier spacing SCS and the SCS of the common resource block CRB is determined.
  • the offset value of the SSB-subcarrier offset is determined based on a preset threshold
  • the offset value of the SSB-subcarrier offset is (n-n1) bits indicating the fifth parameter the indicated value; or,
  • the offset value of the SSB-subcarrier offset is less than or equal to (n-n1) of the fifth parameter The value indicated by the bits.
  • the (n-n1) bits are the (n-n1) bits of the highest order bit in the fifth parameter; or,
  • the (n-n1) bits are the (n-n1) bits of the lowest-order bit in the fifth parameter; or,
  • the (n-n1) bits are any (n-n1) bits in the fifth parameter.
  • the determining the state of the DBTW according to the first parameter includes:
  • the first parameter includes a parameter indicating that the DBTW is on, it is determined that the DBTW is in an on state; or,
  • the first parameter includes a parameter indicating that the DBTW is off, it is determined that the DBTW is in an on state.
  • the terminal device can determine the status of the DBTW according to the first parameter sent by the network device, so as to determine whether the network device side sends the SSB that cannot be sent due to the LBT failure on the DBTW, and further, it can quickly realize the communication with the network device. Timing synchronization between devices.
  • the first parameter is carried in the serving cell configuration common in the RRC signaling or in the serving cell configuration common SIB in the SIB1 information; or,
  • the Q value or the DBTW value is carried in the serving cell configuration common or the serving cell configuration common SIB.
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero, where the control resource set zero includes the number of resource blocks RBs occupied by the control resource set CORESET#0, The number of RBs is 96.
  • the control resource set zero includes the first The interval is any value from 0 to (96-k), and the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the multiplexed format of the SSB and the CORESET#0 is 2 or 3
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4 .
  • the number of symbols occupied by the CORESET#0 is 1 or 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • a communication method is provided, the method is applied to an unlicensed frequency band, and the execution subject of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the network device determines first information, where the first information includes a Q value or a first parameter, and the first parameter is used to indicate the state of the discovery burst set transmission window DBTW;
  • the network device sends the first information to the terminal device.
  • the network device can send the first information to the terminal device, so that the terminal device can determine the status of the DBTW, so that the terminal device can determine whether the network device side sends the SSB that cannot be sent due to LBT failure on the DBTW, and further Therefore, the terminal device can quickly realize the timing synchronization with the network device.
  • the Q value is indicated by n bits, the n is a positive integer greater than 2, and the n bits include at least one bit for indicating the third parameter , the third parameter includes at least one of the following parameters:
  • the subcarrier interval in the main information block MIB information is common, the synchronization information block SSB-subcarrier offset in the MIB information, the physical downlink control channel in the MIB information-configuration system information block 1 PDCCH-configuration SIB1.
  • the Q value can be indicated by n bits, where the n bits include at least one bit used to indicate the above-mentioned third parameter.
  • the bits used to indicate the Q value can be bits corresponding to other parameters in the MIB, which can improve the performance of the system.
  • the PDCCH-configuration SIB1 includes zero search space and zero control resource set.
  • the n bits include n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter, the fourth The parameter is any parameter in the third parameter, the fifth parameter is the parameter in the third parameter except the fourth parameter, and the fifth parameter adopts m-(n-n1) Bit indication, m is an initial number indicating the fifth parameter.
  • the Q value used to determine the state of the DBTW can be indicated by n bits, where the n bits include n1 bits for indicating the fourth parameter and (n-n1) for indicating the fifth parameter bits, the fifth parameter is indicated by m-(n-n1) bits, where m is the initial number indicating the fifth parameter; in this implementation, the bits corresponding to other parameters in the MIB can be used to indicate Q value, can avoid expanding the MIB load capacity to indicate the Q value, so that the performance of the system can be improved.
  • the n bits include n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter, the fourth The parameter is any parameter in the third parameter, the fifth parameter is the parameter in the third parameter except the fourth parameter, the fifth parameter is indicated by m bits, and m is the indication The initial number of the fifth parameter, (n-n1) ⁇ m.
  • the Q value used to determine the state of the DBTW can be indicated by n bits, where the n bits include n1 bits for indicating the fourth parameter and (n-n1) for indicating the fifth parameter bits, and the fifth parameter is indicated by m bits; in this implementation, the corresponding bits of other parameters in the MIB can be used to indicate the Q value, and the use of the extended MIB load capacity to indicate the Q value can be avoided, and it will not affect the Q value. Bit indication of the fifth parameter itself, so that the performance of the system can be improved.
  • the fifth parameter is the SSB-subcarrier offset in the MIB information
  • the offset value of the SSB-subcarrier offset is based on the SSB
  • the combination of the subcarrier spacing SCS and the SCS of the common resource block CRB is determined.
  • the offset value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the offset value of the SSB-subcarrier offset is the (n-n1) bit indication of the fifth parameter the value of ;
  • the offset value of the SSB-subcarrier offset is less than or equal to (n-n1) of the fifth parameter The value indicated by the bits.
  • the (n-n1) bits are the (n-n1) bits of the highest-order bit in the fifth parameter; or,
  • the (n-n1) bits are the (n-n1) bits of the lowest-order bit in the fifth parameter; or,
  • the (n-n1) bits are any (n-n1) bits in the fifth parameter.
  • the first parameter is carried in the serving cell configuration common in the RRC signaling or in the serving cell configuration common SIB in the SIB1 information; or,
  • the Q value or the DBTW value is carried in the serving cell configuration common or the serving cell configuration common SIB.
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero, where the control resource set zero includes the number of resource blocks RBs occupied by the control resource set CORESET#0, The number of RBs is 96.
  • the control resource set zero includes the first The interval is any value from 0 to (96-k), and the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4 .
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • a communication method is provided, and the execution body of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the terminal device receives the main information block MIB information sent by the network device, the MIB information includes physical downlink control channel-configuration system information block 1 PDCCH-configuration SIB1, the PDCCH-configuration SIB1 includes control resource set zero, and the control resource set zero Including the number of resource block RBs occupied by the control resource set CORESET#0, the number of RBs is 96;
  • the terminal device determines the type 0-physical downlink control channel type 0-the number of consecutive symbols occupied by the PDCCH according to the control resource set zero.
  • the network device sends MIB information to the terminal device.
  • the MIB includes parameter control resource set zero, and the number of RBs occupied by CORESET#0 included in the control resource set zero is 96.
  • the terminal device receives the MIB information , the number of consecutive symbols occupied by the Type 0-PDCCH can be determined according to the received control resource set zero.
  • the control resource set zero includes The first interval is any value from 0 to (96-k), and the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4.
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • a communication method is provided, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the network device determines the main information block MIB information, the MIB information includes physical downlink control channel-configuration system information block 1 PDCCH-configuration SIB1, the PDCCH-configuration SIB1 includes control resource set zero, and the control resource set zero includes control resource set
  • the number of resource block RBs occupied by CORESET#0, the number of RBs is 96;
  • the network device sends the MIB information to the terminal device.
  • the network device sends MIB information to the terminal device, the MIB includes parameter control resource set zero, and the number of RBs occupied by CORESET#0 included in the control resource set zero is 96, so that the terminal device can Control resource set zero determines the number of consecutive symbols occupied by Type 0-PDCCH.
  • the control resource set zero includes The first interval is any value from 0 to (96-k), and the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4.
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • a communication method is provided, the method is applied to a licensed frequency band, and the execution subject of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the terminal device receives MIB information sent by the network device, where the MIB information includes a common subcarrier spacing, and the common subcarrier spacing is indicated by r bits, where r is a positive integer greater than or equal to 2;
  • the terminal device performs timing synchronization according to the MIB information.
  • the network device sends MIB information to the terminal device.
  • the MIB includes a common subcarrier spacing, and the common subcarrier spacing is indicated by greater than or equal to 2 bits.
  • the terminal device After receiving the MIB information, the terminal device can The received MIB information is time-synchronized.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the sixth parameter bit, the sixth parameter includes at least one of the following parameters:
  • the PDCCH-configuration SIB1 includes zero search space and zero control resource set.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter bit, the seventh parameter is any one of the sixth parameters, the seventh parameter is indicated by (s-(r-1)) bits, and s is the initial number indicating the seventh parameter.
  • the common subcarrier spacing in the MIB information can be indicated by r bits, and the r bits include the initial 1 bit used to indicate the common subcarrier spacing and the ( r-1) bits, the seventh parameter is indicated by s-(r-1)) bits, and s is the initial number indicating the seventh parameter; in this implementation, other parameters in the MIB can be used
  • the corresponding bits indicate that the subcarrier interval is common, which can avoid the extended MIB load capacity indicating that the subcarrier interval is common, so that the performance of the system can be improved.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter bit, the seventh parameter is any one of the sixth parameters, the seventh parameter is indicated by s bits, and s is the initial number indicating the seventh parameter.
  • the common subcarrier spacing in the MIB information can be indicated by r bits, and the r bits include the initial 1 bit used to indicate the common subcarrier spacing and the ( r-1) bits, the seventh parameter is indicated by s bits; in this implementation, the corresponding bits of other parameters in the MIB can be used to indicate that the subcarrier spacing is general, and the use of the extended MIB load capacity to indicate the subcarrier can be avoided.
  • the interval is common and does not affect the bit indication of the seventh parameter itself, so that the performance of the system can be improved.
  • the seventh parameter is the SSB-subcarrier offset in the MIB information, and the value of the SSB-subcarrier offset is based on the SCS and the SSB of the SSB.
  • the combination of SCS of the CRB is determined.
  • the value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is the value indicated by (r-1) bits of the seven parameters; or,
  • the SCS of the SSB is the third frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is less than or equal to (r-1) bits of the seventh parameter the indicated value.
  • a communication method is provided, the method is applied to a licensed frequency band, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the network device determines MIB information, where the MIB information includes a first subcarrier interval common, and the first subcarrier interval common is indicated by r bits, where r is a positive integer greater than or equal to 2;
  • the network device sends the MIB information to the terminal device.
  • the network device sends MIB information to the terminal device, and the MIB includes a common subcarrier spacing, and the common subcarrier spacing is indicated by greater than or equal to 2 bits, so that the terminal device can perform timing according to the received MIB information. Synchronize.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the sixth parameter bit, the sixth parameter includes at least one of the following parameters:
  • the PDCCH-configuration SIB1 includes zero search space and zero control resource set.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter bit, the seventh parameter is any one of the sixth parameters, the seventh parameter is indicated by (s-(r-1)) bits, and s is the initial number indicating the seventh parameter.
  • the common subcarrier spacing in the MIB information can be indicated by r bits, and the r bits include the initial 1 bit used to indicate the common subcarrier spacing and the ( r-1) bits, the seventh parameter is indicated by s-(r-1)) bits, and s is the initial number indicating the seventh parameter; in this implementation, other parameters in the MIB can be used
  • the corresponding bits indicate that the subcarrier interval is common, which can avoid the extended MIB load capacity indicating that the subcarrier interval is common, so that the performance of the system can be improved.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter bit, the seventh parameter is any one of the sixth parameters, the seventh parameter is indicated by s bits, and s is the initial number indicating the seventh parameter.
  • the common subcarrier spacing in the MIB information can be indicated by r bits, and the r bits include the initial 1 bit used to indicate the common subcarrier spacing and the ( r-1) bits, the seventh parameter is indicated by s bits; in this implementation, the corresponding bits of other parameters in the MIB can be used to indicate that the subcarrier spacing is general, and the use of the extended MIB load capacity to indicate the subcarrier can be avoided.
  • the interval is common and does not affect the bit indication of the seventh parameter itself, so that the performance of the system can be improved.
  • the seventh parameter is the SSB-subcarrier offset in the MIB information, and the value of the SSB-subcarrier offset is based on the SCS and the SSB of the SSB.
  • the combination of SCS of the CRB is determined.
  • the value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is the value indicated by (r-1) bits of the seven parameters; or,
  • the SCS of the SSB is the third frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is less than or equal to (r-1) bits of the seventh parameter the indicated value.
  • a communication device is provided, and the beneficial effects can be found in the description of the first aspect, which will not be repeated here.
  • the communication device has the function of implementing the behavior in the method embodiment of the first aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a transceiver module, configured to receive first information sent by a network device, where the first information includes a Q value or a first parameter, and the first parameter is used to indicate that a sudden change is found Sending and collecting the state of the transmission window DBTW; a processing module, configured to determine the state of the DBTW according to the Q value or the first parameter.
  • a communication device has a function to implement the behavior in the method example of the second aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a processing module configured to determine first information, where the first information includes a Q value or a first parameter, and the first parameter is used to indicate a discovery burst set transmission window The state of the DBTW; a transceiver module, configured to send the first information to the terminal device.
  • a communication device is provided, and the beneficial effects can be referred to the description of the third aspect and will not be repeated here.
  • the communication device has a function to implement the behavior in the method example of the third aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a transceiver module, configured to receive MIB information of a master information block sent by a network device, where the MIB information includes physical downlink control channel-configuration system information block 1PDCCH-configuration SIB1, the PDCCH-configuration SIB1 includes control resource set zero, where control resource set zero includes the number of resource blocks RBs occupied by control resource set CORESET#0, where the number of RBs is 96; a processing module, configured to determine according to the control resource set zero Type 0 - physical downlink control channel Type 0 - the number of consecutive symbols occupied by the PDCCH.
  • These modules can perform the corresponding functions in the method examples of the third aspect. For details, please refer to the detailed descriptions in the method examples, which will not be repeated here.
  • a communication device is provided, and the beneficial effects can be referred to the description of the fourth aspect and will not be repeated here.
  • the communication device has a function to implement the behavior in the method example of the fourth aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a processing module configured to determine MIB information of the main information block, where the MIB information includes physical downlink control channel-configuration system information block 1 PDCCH-configuration SIB1, the PDCCH-configuration SIB1 It includes control resource set zero, where the control resource set zero includes the number of resource block RBs occupied by the control resource set CORESET#0, where the number of RBs is 96; a transceiver module is configured to send the MIB information to the terminal device.
  • These modules can perform the corresponding functions in the method example of the fourth aspect. For details, please refer to the detailed description in the method example, which will not be repeated here.
  • a communication device is provided, and the beneficial effects can be referred to the description of the fifth aspect and will not be repeated here.
  • the communication device has the function of implementing the behavior in the method example of the fifth aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a transceiver module, configured to receive MIB information sent by a network device, where the MIB information includes a common subcarrier spacing, and the common subcarrier spacing is indicated by r bits, and the r is a positive integer greater than or equal to 2; the processing module is configured to perform timing synchronization according to the MIB information.
  • These modules can perform the corresponding functions in the method example of the fifth aspect. For details, please refer to the detailed description in the method example, which will not be repeated here.
  • a twelfth aspect provides a communication device, and the beneficial effects can be referred to the description of the sixth aspect and will not be repeated here.
  • the communication device has the function of implementing the behavior in the method example of the sixth aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a processing module configured to determine MIB information, where the MIB information includes a first subcarrier interval common, and the first subcarrier interval common is indicated by r bits, and the r is a positive integer greater than or equal to 2; the transceiver module is used to send the MIB information to the terminal device.
  • These modules can perform the corresponding functions in the method examples of the sixth aspect. For details, please refer to the detailed descriptions in the method examples, which will not be repeated here.
  • a communication apparatus is provided, and the communication apparatus may be the terminal device in the above method embodiments, or a chip provided in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface, and when the processor executes the computer program or instructions, the communication apparatus executes the method executed by the terminal device in the above method embodiments.
  • a communication apparatus is provided, and the communication apparatus may be the network device in the above method embodiment, or a chip provided in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface, and when the processor executes the computer program or instructions, the communication apparatus executes the method performed by the network device in the above method embodiments.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method performed by the terminal device in the above aspects is executed.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method performed by the network device in the above aspects is performed.
  • the present application provides a chip system, where the chip system includes a processor for implementing the functions of the terminal device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, where the chip system includes a processor for implementing the functions of the network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method performed by the network device in the above aspects is implemented.
  • FIG. 1 is a schematic diagram of a communication-based system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the relationship between DBTW and DB in the time domain according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an SSB sending manner provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a DB sending manner provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the positions of an SSB and CORESET#0 according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the location of another SSB and CORESET#0 according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the location of another SSB and CORESET#0 according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the location of still another SSB and CORESET#0 according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another communication method provided in an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of still another communication method provided in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5th generation, 5G fifth generation mobile communication systems or new radio (new radio, NR) communication systems and future mobile communication systems.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • the wireless communication system 100 may include one or more network devices, for example, the network device 10 shown in FIG. 1 .
  • the wireless communication system 100 may also include one or more terminal devices, for example, the terminal device 20, the terminal device 30, the terminal device 40 and the like shown in FIG. 1 .
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network devices, such as core network devices, wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the mobile communication system.
  • the terminal device 20, the terminal device 30, and the terminal device 40 in the embodiments of the present application may also be referred to as terminals, terminal devices, mobile stations (mobile station, MS), and mobile terminals (mobile terminal, MT). Wait.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, and may also be applied to virtual reality (VR), augmented reality (AR) ), industrial control, self driving, remote medical, smart grid, transportation safety, smart city and smart home ) in scenarios such as wireless terminals.
  • the aforementioned terminal devices and chips applicable to the aforementioned terminal devices are collectively referred to as terminal devices. It should be understood that the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 10 in this embodiment of the present application may be a device for communicating with terminal devices, and the network device may be a base station, an evolved node B (eNB, eNB), a home base station, or wireless fidelity (WIFI)
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in the system, etc. can also be an NR system
  • the gNB in the BS or it can also be a component or part of the equipment that constitutes the base station, such as a convergence unit (central unit, CU), a distributed unit (distributed unit, DU) or a baseband unit (baseband unit, BBU) and so on.
  • the specific technology and specific device form adopted by the network device are not limited.
  • the network device may refer to the network device itself, or may be a chip applied in the network device to complete the wireless communication processing function.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • the above-mentioned terminal equipment 20-terminal equipment 40 can all communicate with the network equipment 10, the link environment includes uplink, downlink and side-link transmission, and the information transmitted in the link transmission may include actual The transmitted data information, and the control information used to indicate or schedule the actual data.
  • the terminal device 20 and the terminal device 40 may also form a communication system, and the link transmission environment thereof is the same as the above, and the specific information may be exchanged depending on the configuration of the network.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer-readable storage media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs) ), etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, stick or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • first, second and third in the embodiments of the present application are only for distinction, and should not constitute any limitation to the present application.
  • first information and second information in the embodiments of this application represent information transmitted between a network device and a terminal device.
  • pre-set may be stored in devices (for example, including terminal devices and network devices) in advance by corresponding codes, tables, or other instructions that can be used to indicate This application does not limit the specific implementation manner, such as the preset rules and preset constants in the embodiments of the present application.
  • NR divides the frequency band into two parts: frequency range 1 (FR1) and FR2.
  • FR1 mainly refers to the 450MHz to 6GHz bandwidth
  • FR2 mainly refers to the 24.25GHz to 52.6GHz bandwidth.
  • the 52.6GHz-71GHz frequency band (abbreviated as above 52.6GHz) is also included in the use range of the post-5 generation mobile communication system (beyond 5.5G system).
  • This part of frequency bands includes licensed frequency bands and unlicensed frequency bands (the unlicensed frequency bands may also be called shared frequency bands).
  • the frequency bands ranging from 59 GHz to 64 GHz are unlicensed frequency bands, and the rest are licensed frequency bands; for the United States, the frequency bands 57 GHz to 71 GHz are all unlicensed frequency bands.
  • the technologies deployed in the shared frequency band are collectively called wireless unlicensed frequency band technology (new radio unlicensed, NRU).
  • the shared frequency band may also include other access systems such as radio detection and ranging (radar), wireless fidelity (wifi), Bluetooth, and other different operators. Therefore, systems operating in shared frequency bands need to support all or some of the following key technologies, namely LBT, transmit power control (TPC) and dynamic frequency selection (DFS).
  • the LBT mechanism means that various access devices must first obtain the interference situation on the frequency band where the target channel is located before using the channel. Only when the interference level on the target frequency band channel is less than or equal to the preset threshold value, the channel can be used.
  • the TPC mechanism means that in order not to affect the normal communication of other access devices, a sending device working on a shared authorization cannot increase its own transmit power without limitation.
  • the DFS mechanism means that the system working on the shared license needs to avoid the frequency band where the high-priority system is located in time, and dynamically switch to the frequency band with lower interference to work.
  • the SSB sent from the base station will be detected first, which is mainly composed of primary synchronization signal (PSS), secondary synchronization signal (SSS) and
  • the PBCH is composed of 4 orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a two-dimensional area of 20 resource blocks (RBs) in the frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • the UE can complete cell synchronization and rough symbol-level timing synchronization by demodulating PSS and SSS; it can complete the system frame-level timing synchronization by demodulating the master information block (MIB) information carried in the PBCH, and obtain the system information block 1/ Relevant configuration information of the remaining minimum system information (system information block/remaining minimum system information, SIB1/RMSI), that is, the type 0-physical downlink control channel (type0-physical) that demodulates SIB1/RMSI through the parameter (pdcch-ConfigSIB1) downlink control channel, type0-PDCCH) and physical downlink shared channel (physical downlink shared channel, PDSCH), wherein, control resource set (control resource set, CORESET) #0 is located in type0-PDCCH.
  • SIB1/RMSI system information block/remaining minimum system information
  • the MIB information carried in the above PBCH includes the following parameters:
  • systemFrameNumber represents the lower 6 bits of the system frame
  • subcarrier spacing common (“subCarrierSpacingCommon”) represents SIB1, message 2/4 (Msg.2/4) and broadcast on-demand information (on-demaind) information, OSI) subcarriers
  • SSB-subcarrier offset (ssb-SubcarrierOffset") "represents the offset between SSB and subcarrier #0 in the common resource block (CRB)
  • IOU reference signal-type A-Position (“dmrs-TypeA-Position”) indicates the position of the first DMRS
  • PDCCH-Config SIB1 (“pdcch-ConfigSIB1”) is used to indicate CORESET and search space and parameter configuration of the associated PDCCH
  • Cell Barred (“cellBarred ”) indicates whether the terminal equipment is allowed to access the cell
  • intra-frequency band reselection (“intraFreqReselection”) is used to indicate the terminal equipment's cell selection
  • the same parameter in the above MIB information has different contents in the licensed frequency band and the shared frequency band.
  • the base station cannot send a designated SSB at a designated location. Therefore, a new Q value is defined (ie ), which can be represented by 2 bits, and the value can be ⁇ 1, 2, 4, 8 ⁇ .
  • the UE can calculate multiple candidate positions for sending the same SSB index by demodulating the Q value and according to the DMRS sequence. These candidate positions are understood by the UE as having the same quasi co-location (QCL) relationship. For example, it corresponds to the same downlink beam direction.
  • QCL quasi co-location
  • the R16NRU system For the LBT mechanism on the shared frequency band system, the R16NRU system newly defines DBTW and DB.
  • the DB contains a set of down link (DL) transmission signals, such as SS/PBCH Block and RMSI information.
  • DL down link
  • the base station can package the SS/PBCH Block and RMSI simultaneously and send them in the form of DB through a single LBT mechanism.
  • ⁇ FFS What signals/channels are included in DB other than SS/PBCH block
  • FFS how to support UEs performing initial access that do not have any prior information on DBTW.
  • ⁇ PBCH payload size is no greater than that for FR2
  • FFS What signals/channels are included in the DB in addition to the SS/PBCH block
  • FFS How to support initial access by UE without any a priori information about DBTW.
  • the terminal device does not know the status of the DBTW, so that it cannot achieve fast timing synchronization with the network device.
  • the present application provides a communication method, which can enable a terminal device to determine the status of the DBTW, so that timing synchronization with a network device can be quickly achieved.
  • a schematic flowchart of a communication method provided by an embodiment of the present application may be performed by a terminal device and a network device, or may also be performed by a chip in the terminal device and a chip in the network device.
  • the communication method 300 can be applied to an unlicensed frequency band, and the communication method 300 can include:
  • the network device determines first information, where the first information includes a Q value or a first parameter, where the first parameter is used to indicate the status of the DBTW.
  • the network device sends the first information to the terminal device.
  • the steps 310-320 may be performed by the network device 10 in FIG. 1 .
  • the terminal device receives the first information sent by the network device.
  • the terminal device determines the state of the DBTW according to the Q value or the first parameter.
  • the steps 330-340 may be performed by any device or any plurality of devices in the terminal device 20-terminal device 40 in FIG. 1 .
  • the first information in this application may be the SSB mentioned above, the SSB includes a PBCH, and the PBCH carries MIB information including the Q value.
  • the SSB sent from the network device can be detected, the SSB includes PBCH, and the terminal device can complete timing synchronization by demodulating the MIIB information carried in the PBCH.
  • the terminal device may determine the state of the DBTW based on the Q value in the MIB information, so as to quickly realize timing synchronization with the network device.
  • the terminal device can determine the status of the DBTW according to the first information sent by the network device, so as to determine whether the network device side sends the SSB that cannot be sent due to the LBT failure on the DBTW, and further, it can be quickly realized Timing synchronization with network devices.
  • the terminal device can determine the status of the DBTW according to the Q value or the first parameter, and the following first describes the terminal device determining the status of the DBTW according to the Q value.
  • the determining the state of the DBTW according to the Q value includes:
  • the state of the DBTW is determined according to the DBTW value.
  • the terminal device may determine the status of the DBTW according to the magnitude relationship between the Q value and the first threshold. For details, please refer to the following cases 1 and 2.
  • the terminal device may consider that the DBTW is in a closed state.
  • the terminal device can consider that DBTW is in the off state, that is, the network device The side does not send SSBs on DBTW that are not actually sent due to LBT failures.
  • Case 2 Q is less than 64, and the terminal device determines the DBTW status according to the DBTW value
  • the terminal device determines that the DBTW is in a closed state
  • the terminal device determines that the DBTW is in an open state.
  • the terminal device may further determine the status of the DBTW based on the DBTW value.
  • the terminal device can consider that DBTW is in the off state; if If the DBTW value configured by the network device to the terminal device is greater than 2.5ms or 2.25ms (for example, the DBTW value configured by the network device is 3.0ms), the terminal device may consider that the DBTW is in an open state.
  • the terminal device can consider that DBTW is in a closed state ; If the DBTW value configured by the network device to the terminal device is greater than 0.5ms or 0.25ms (for example, the DBTW value configured by the network device is 1.0ms), the terminal device can consider that the DBTW is in an open state.
  • the first threshold and/or the second threshold in this embodiment of the present application may be specified by a protocol or configured by a network device, which is not limited. It should be understood that the above-mentioned first threshold may be the number of candidate SSBs within the DBTW.
  • the network device may use the parameter "discovery burst set window length” (discoveryburst-windowlength) or the parameter “discovery burst set window length-r17” (discoveryburst-windowlength) in the RRC signaling -r17) to define it.
  • Tables 1 to 4 provide several possible ways to represent the Q value and the corresponding DBTW in the embodiments of the present application.
  • the Q value and the DBTW value are carried in the serving cell configuration common in the RRC signaling or in the serving cell configuration common SIB in the SIB1 information.
  • DiscoveryBurstWindowLength-r17 ⁇ ms0dot5,ms1,ms2,ms2dot25,ms2dot5,ms3,ms3dot5,ms4,ms5 ⁇ .
  • the Q value can be represented by 3 bits, but for the same index, different Q values can be corresponding, and the corresponding DBTW value thresholds can also be different.
  • the Q value corresponding to the index "0" is 8, and when the SCS of the SSB is 120 kHz, 480 kHz or 960 kHz, the corresponding DBTW value thresholds are 0.5ms, 0.125ms, and 0.075ms, respectively. .
  • the terminal device can receive the Q value on the basis of a frequency of 120 kHz, if the DBTW value configured by the network device is 0.4ms, since the 0.4ms is less than the corresponding threshold 0.5ms at 120kHz, the terminal device can consider that DBTW is in the off state; if the DBTW value configured by the network device is 0.6ms, since the 0.6ms is greater than the corresponding threshold 0.5ms at 120kHz, Then the terminal device can consider that DBTW is in an open state.
  • the terminal device can also receive the Q value based on the frequency of 480kHz. If the DBTW value configured by the network device is 0.1ms, since the 0.1ms is less than the corresponding threshold at 480kHz, 0.125ms, The terminal device can consider that DBTW is in a closed state; if the DBTW value configured by the network device is 0.2ms, since the 0.2ms is greater than the corresponding threshold value of 0.125ms at 480kHz, the terminal device can consider that DBTW is in an open state.
  • the terminal device can also receive the Q value on the basis of a frequency of 960 kHz. If the DBTW value configured by the network device is 0.05 ms, since the 0.05 ms is less than the corresponding threshold of 0.075 ms at 960 kHz, The terminal device can consider that DBTW is in a closed state; if the DBTW value configured by the network device is 0.1ms, since the 0.1ms is greater than the corresponding threshold value of 0.075ms at 960kHz, the terminal device can consider that DBTW is in an open state.
  • the Q value corresponding to the index "0" is 1, and when the SCS of the SSB is 120 kHz, 480 kHz or 960 kHz, the corresponding thresholds of the DBTW values are 0.075ms, 0.01875ms, and 0.09375ms, respectively.
  • the terminal device can receive the Q value on the basis of a frequency of 120 kHz, if the DBTW value configured by the network device is 0.05ms, since this 0.05ms is less than the corresponding threshold 0.075ms at 120kHz, the terminal device can consider that DBTW is in a closed state; if the DBTW value configured by the network device is 0.1ms, since the 0.1ms is greater than the corresponding threshold 0.075ms at 120kHz, Then the terminal device can consider that DBTW is in an open state.
  • the terminal device can also receive the Q value on the basis of a frequency of 480 kHz. If the DBTW value configured by the network device is 0.01 ms, since the 0.01 ms is less than the corresponding threshold of 0.01875 ms at 480 kHz, Then the terminal device can consider that DBTW is in a closed state; if the DBTW value configured by the network device is 0.02ms, since the 0.02ms is greater than the corresponding threshold value of 0.01875ms at 480kHz, the terminal device can consider that DBTW is in an open state.
  • the terminal device can also receive the Q value based on the frequency of 960 kHz. If the DBTW value configured by the network device is 0.05 ms, since the 0.05 ms is less than the corresponding threshold of 0.09375 ms at 960 kHz, The terminal device can consider that DBTW is in a closed state; if the DBTW value configured by the network device is 0.1ms, since the 0.1ms is greater than the corresponding threshold value of 0.09375ms at 960kHz, the terminal device can consider that DBTW is in an open state.
  • the time slot occupied by the DBTW and the configured Q value, and the value of the DBTW may also be determined according to the scaling factor. Assuming that the Q value and the number of time slots, symbols and DBTW occupied by DBTW are A, B, C and D respectively, and the values of A, B, C and D are based on the first SCS (such as 120kHz), For the second SCS, when the ratio between the second SCS and the first SCS is X, the Q value under the second SCS, the number of time slots occupied by DBTW, the number of symbols occupied by DBTW, and the value of DBTW are respectively Expressed as: A*X, B*X, C*X*14 and D/X.
  • An implementation manner is that the terminal device implicitly obtains the scale factor according to the second SCS supported in the frequency band range supported by the access serving cell, or implicitly calculates and obtains the Q value satisfying the second SCS according to the scale factor. and the number of slots occupied by DBTW, the number of symbols, and the DBTW value.
  • the scaling factor may be defined in the parameter "Serving cell configuration common" included in the RRC signaling, may also be carried in the parameter "Serving cell configuration common SIB", or may be configured in the MIB. , without restriction.
  • FIG. 4 is a schematic diagram of an SSB sending manner provided by an embodiment of the present application (when DBTW is in an open state).
  • DBTW when DBTW is in an open state.
  • Q 32
  • DBTW 5ms. Therefore, within this DBTW, the last 32 candidate SSB locations can be used to send actual SSBs that could not be sent due to LBT failure.
  • SSBs at different candidate SSB positions have a first QCL relationship
  • the first QCL relationship may indicate that SSBs at different candidate SSB positions have the same index
  • the PDCCH indicating RMSI (“RMSI for PDCCH”) represents a type0-PDCCH carrying CORESET#0, which includes related configuration information indicating RMSI (or SIB1).
  • the PDSCH channel that transmits RMSI (“RMSI for PDSCH”) refers to the PDSCH channel that transmits RMSI (or SIB1).
  • SSB, type0-PDCCH and RMSI PDSCH have a second QCL relationship, which is different from the first QCL relationship.
  • the second QCL relationship is used between SSB and type0-PDCCH and RMSI PDSCH.
  • the terminal device uses the same receive beam to receive the SSB and satisfy the first Two QCL relationships of type0-PDCCH and RMSI PDSCH.
  • Figure 5 only shows one of the coexistence modes of SSB, type0-PDCCH and RMSI for PDSCH, type0-PDCCH and SSB and RMSI for PDSCH can exist in any TDM or FDM mode, and the time domain position of type0-PDCCH can be Before or after the SSB, but generally located one or more symbols or time slots before the RMSI for PDSCH.
  • the terminal device determines the status of the DBTW according to the relationship between the Q value and the first threshold. If the status of the DBTW cannot be determined, the terminal device can further determine the status of the DBTW according to the DBTW value. Therefore, it can be determined whether the network device side sends the SSB that cannot be sent due to the LBT failure on the DBTW, and the timing synchronization with the network device can be quickly realized.
  • the terminal device may consider that the DBTW is in a closed state; if the DBTW value is greater than the second threshold, the terminal device may consider that the DBTW is in an open state.
  • the second threshold may be determined based on the following manner.
  • the second threshold is the time duration from the first symbol on the time slot where the first SSB is located to the last symbol on the time slot where the second SSB is located, the index of the first SSB is 0, and the index of the second SSB is 0.
  • SSB is (Q-1); or,
  • the second threshold is the time duration from the first symbol on the time slot where the third SSB is located to the last symbol on the time slot where the fourth SSB is located, the third SSB is located in the first SSB group, and the third SSB is located in the first SSB group.
  • the four SSBs are located in the second SSB group, the first SSB group is the group in which the first bit from the left is configured as "1" in the second parameter, and the second SSB group is the second parameter in the second parameter from the right groups starting with the first bit configured as "1"; or,
  • the second threshold is the time duration from the first symbol on the slot where the fifth SSB is located to the last symbol on the slot where the sixth SSB is located, and the fifth SSB is the SSB with the smallest index among the successfully sent SSBs , the sixth SSB is the SSB with the largest index among the successfully sent SSBs.
  • the second threshold in the embodiment of the present application may be the time from the first symbol on the time slot of the first SSB with index 0 to the last symbol on the time slot of the second SSB with index (Q-1) Duration length.
  • Q the second threshold is the time duration from the first symbol on the slot where the first SSB with index 0 is located to the last symbol on the slot where the second SSB with index 31 is located .
  • the second threshold in this embodiment of the present application may also be the time duration from the first symbol on the time slot where the third SSB is located to the last symbol on the time slot where the fourth SSB is located, and the third SSB is located in the second parameter In the first SSB group where the first bit from the left is configured as "1", the fourth SSB is located in the second SSB group where the first bit from the right is configured as "1" in the second parameter.
  • the second parameter may be the parameter "groupPresence” in "Configuring Generic SIB for Serving Cell", assuming that there are 10 SSB groups, the group whose first bit of the parameter "groupPresence” is configured as "1" from the left is:
  • the second SSB group among the 10 SSB groups that is, the third SSB is located in the second SSB group among the 10 SSB groups.
  • the group whose first bit of the parameter "groupPresence” from the right is set to "1" is: In the 7th SSB group among the 10 SSB groups, the fourth SSB is located in the 7th SSB group among the 10 SSB groups.
  • the second threshold is the time duration from the first symbol on the time slot of the third SSB located in the second SSB group to the last symbol of the time slot of the fourth SSB located in the seventh SSB group length. It should be understood that the first SSB group and the second SSB group may be the same SSB group, or may be different SSB groups.
  • the second threshold in the embodiment of the present application may also be the time slot from the first symbol on the time slot of the fifth SSB with the smallest index in the successfully sent SSB to the time slot on the time slot of the sixth SSB with the largest index in the successfully sent SSB.
  • the duration of the last symbol may also be the time slot from the first symbol on the time slot of the fifth SSB with the smallest index in the successfully sent SSB to the time slot on the time slot of the sixth SSB with the largest index in the successfully sent SSB.
  • the second threshold is the time duration from the first symbol on the time slot where the SSB with index "8" is located to the last symbol on the time slot where the SSB with index "32" is located.
  • the second threshold is the time duration from the time slot where the first SSB is located to the time slot where the second SSB is located, the index of the first SSB is 0, and the second SSB is (Q-1); or ,
  • the second threshold is the time duration from the time slot where the third SSB is located to the time slot where the fourth SSB is located, the third SSB is located in the first SSB group, the fourth SSB is located in the second SSB group,
  • the first SSB group is a group in which the first bit from the left in the second parameter is configured as "1”
  • the second SSB group is a group in which the first bit from the right in the second parameter is configured as "1" ” group; or,
  • the second threshold is the time duration from the time slot where the fifth SSB is located to the time slot where the sixth SSB is located, the fifth SSB is the SSB with the smallest index among the successfully sent SSBs, and the sixth SSB is a successful SSB The SSB with the highest index among the sent SSBs.
  • the second threshold in this embodiment of the present application may be the time duration from the time slot where the first SSB with index 0 is located to the time slot where the second SSB with index (Q-1) is located.
  • the second threshold is the time duration from the time slot where the first SSB with index 0 is located to the time slot where the second SSB with index 31 is located.
  • the second threshold in this embodiment of the present application may also be the time duration from the time slot where the third SSB is located to the time slot where the fourth SSB is located, and the third SSB is located in the second parameter, the first from the left In the first SSB group with the first bit configured as "1", the fourth SSB is located in the second SSB group with the first bit configured as "1" from the right in the second parameter.
  • the second parameter may be the parameter "groupPresence” in "Configuring Generic SIB for Serving Cell", assuming that there are 10 SSB groups, the group whose first bit of the parameter "groupPresence” is configured as "1" from the left is:
  • the second SSB group among the 10 SSB groups that is, the third SSB is located in the second SSB group among the 10 SSB groups.
  • the group whose first bit of the parameter "groupPresence” from the right is set to "1" is: In the 7th SSB group among the 10 SSB groups, the fourth SSB is located in the 7th SSB group among the 10 SSB groups.
  • the second threshold is the time duration from the time slot where the third SSB located in the second SSB group is located to the time slot where the fourth SSB located in the seventh SSB group is located. It should be understood that the first SSB group and the second SSB group may be the same SSB group, or may be different SSB groups.
  • the second threshold in this embodiment of the present application may also be the time duration from the time slot of the fifth SSB with the smallest index in the successfully sent SSBs to the time slot of the sixth SSB with the largest index in the successfully sent SSBs.
  • the SSB with the smallest index in the successfully sent SSBs is the SSB corresponding to the index "8”
  • the SSB with the largest index in the successfully sent SSBs is the SSB corresponding to the index "32”
  • the second threshold is the time duration from the time slot where the SSB with the index "8" is located to the time slot where the SSB with the index "32" is located.
  • the second threshold is the time duration from the first symbol of the first SSB to the last symbol of the second SSB, the index of the first SSB is 0, and the second SSB is (Q-1); or,
  • the second threshold is the time duration from the first symbol of the third SSB to the last symbol of the fourth SSB, the third SSB being in the first SSB group, and the fourth SSB being in the second SSB group
  • the first SSB group is a group in which the first bit from the left in the second parameter is configured as "1”
  • the second SSB group is a group in which the first bit from the right in the second parameter is configured as "1" 1” group
  • the second threshold is the time duration from the first symbol of the fifth SSB to the last symbol of the sixth SSB
  • the fifth SSB is the SSB with the smallest index among the successfully sent SSBs
  • the sixth SSB is the success The SSB with the highest index among the sent SSBs.
  • the fifth SSB and/or the sixth SSB in this embodiment of the present application may configure a joint indication of the parameter "groupPresence” and the parameter "inonegroup” in the general SIB through the serving cell.
  • DBTW is larger than(or equal to or larger than,or not smaller than)the time duration from the beginning of slot containing the candidate SSB index 0to the end of slot containing the candidate SSB index Q-1,UE assumes that DBTW is enabled.
  • DBTW the length or value
  • DBTW length or value
  • DBTW is larger than(or equal to or larger than,or not smaller than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains the SS/PBCH blocks within the SS/PBCH blocks group corresponding to the last/rightmost bit with value 1 in groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is enabled.
  • DBTW length or value
  • the duration length is , wherein the first SS/PBCH blocks and the second SS/PBCH blocks are located in the SS/PBCH blocks group, and the SS/PBCH blocks group is located in the parameter "groupPresence” in the parameter "ServingCellConfigCommonSIB"
  • the last or rightmost bit indicates a group of "1", at this time, the UE defaults DBTW off.
  • DBTW length or value
  • the duration between the start time slot containing the first SS/PBCH blocks in the field and the end time slot (in the field) containing the second SS/PBCH blocks time length wherein the first SS/PBCH blocks and the second SS/PBCH blocks are located in the SS/PBCH blocks group, and the SS/PBCH blocks group is located at the end of the parameter "groupPresence" in the parameter "ServingCellConfigCommonSIB" or The rightmost bit indicates a group of "1", at which time, the UE defaults DBTW on.
  • DBTW is larger than(or equal to or larger than,or not smaller than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains the last transmitted SS/PBCH block (SS/PBCH block with the largest index) that is indicated jointtly by inOneGroup and groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is enabled.
  • DBTW length or value
  • DBTW length or value
  • the start time slot containing the first SS/PBCH blocks to (in the field) the last time slot containing the second SS/PBCH blocks the duration of the slot, wherein the second SS/PBCH blocks have the largest index
  • the first SS/PBCH blocks and the second SS/PBCH blocks are determined by the parameter "groupPresence” and the parameter "ServingCellConfigCommonSIB" in the parameter "ServingCellConfigCommonSIB"
  • the "inOneGroup” joint indication at this time, the UE defaults DBTW to be turned on.
  • the terminal device may also determine the status of the DBTW based on the following manner.
  • DBTW equals to(or equal to or smaller than,or not larger than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains at least the last SS/PBCH blocks within the SS/PBCH blocks group corresponding to the last/rightmost bit with value 1in groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is disabled.
  • DBTW is larger than(or equal to or larger than,or not smaller than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains at least the last SS/PBCH blocks with in the SS/PBCH blocks group corresponding to the last/rightmost bit with value 1in groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is enabled.
  • DBTW length or value
  • DBTW length or value
  • the duration length is , wherein the first SS/PBCH blocks and the second SS/PBCH blocks are located in the SS/PBCH blocks group, and the SS/PBCH blocks group is located in the parameter "groupPresence” in the parameter "ServingCellConfigCommonSIB" In the group in which the last or rightmost bit is indicated as "1", at this time, the UE defaults DBTW to be turned on.
  • the network device may send the first information to the terminal device, and the first information may include a Q value, wherein, for the bit indication manner of the Q value, please refer to the following.
  • the Q value is indicated by n bits, where n is a positive integer greater than 2, and the n bits include at least one bit for indicating a third parameter, where the third parameter includes at least one of the following parameters:
  • the subcarrier spacing in the MIB information is common, the SSB-subcarrier offset in the MIB information, and the PDCCH-configuration SIB1 in the MIB information.
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero.
  • the Q value in this embodiment of the present application may be a positive integer greater than 2, where the n bits may be at least one bit used to indicate the foregoing parameters.
  • the Q value can be indicated by 3 4 bits, and the 3 bits or 4 bits can be at least one bit in the above parameters.
  • the n bits may include n bits used to indicate common subcarrier spacing; may also include n bits used to indicate common subcarrier spacing and SSB-subcarrier offset; may also include n bits used to indicate carrier spacing common, SSB-subcarrier offset, and PDCCH-configuration SIB1; not limited.
  • the Q value can be indicated by n bits, where the n bits include at least one bit used to indicate the above-mentioned third parameter.
  • the bits used to indicate the Q value can be bits corresponding to other parameters in the MIB, which can improve the performance of the system.
  • the n bits include n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter, the fourth parameter is any one of the third parameters, and the The fifth parameter is a parameter other than the fourth parameter in the third parameter, the fifth parameter is indicated by m-(n-n1) bits, and m is the initial number indicating the fifth parameter .
  • the n bits include n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter, the fourth parameter is any one of the third parameters, and the The fifth parameter is a parameter other than the fourth parameter in the third parameter, the fifth parameter is indicated by m bits, m is the initial number indicating the fifth parameter, (n-n1) ⁇ m.
  • n bits used to indicate the Q value include n1 bits used to indicate the fourth parameter and (n-n1) bits used to indicate the fifth parameter, and the fifth parameter is indicated
  • the initial number of is m, so (n-n1) ⁇ m.
  • the fourth parameter in this embodiment of the present application may be the common subcarrier spacing in the MIB information, and the fifth parameter may be the SSB-subcarrier offset in the MIB information and/or the PDCCH-configuration SIB1 in the MIB information
  • the fourth parameter can also be the SSB-subcarrier offset in the MIB information, and the fifth parameter can be the common subcarrier spacing in the MIB information and/or the PDCCH-configuration SIB1 in the MIB information;
  • the fourth parameter SIB1 may also be configured for PDCCH- in the MIB information, and the fifth parameter may be the common subcarrier spacing in the MIB information and/or the SSB-subcarrier offset in the MIB information; not limited.
  • n may be 3 bits or 4 bits, that is, 3 bits or 4 bits may be used to indicate the Q value.
  • n may be 3 bits or 4 bits, that is, 3 bits or 4 bits may be used to indicate the Q value.
  • specific indication manner please refer to the following.
  • bits indicating the initial number of the parameter "SSB-subcarrier offset” are 4. In this embodiment of the present application, it is used to indicate the parameter "SSB-subcarrier offset". 1 bit of "shift” can be used to indicate the parameter Q value, so in this case, the number of bits used to indicate the parameter "SSB-subcarrier offset" is 2 or 3.
  • the parameter "SSB-Subcarrier Offset” is indicated.
  • the number of bits of "Subcarrier Offset” is 2; if one of the 2 bits in the parameter “Subcarrier Spacing Common” in the MIB is indicated not to embezzle 1 in the parameter "SSB-Subcarrier Offset” If the number of bits is 3, the number of bits indicating the parameter "SSB-subcarrier offset” is 3.
  • the bits indicating the initial number of the parameter "SSB-subcarrier offset” are 4. In this embodiment of the present application, it is used to indicate the parameter "SSB-subcarrier offset". Offset" of which 1 bit can be borrowed to indicate the parameter Q value, although 1 bit of the parameter "SSB-subcarrier offset” is borrowed to indicate Q, the bit indicating the parameter "SSB-subcarrier offset" The number of can still be the initial 4 bits, that is, the parameter "SSB-subcarrier offset" can still be indicated by the initial 4 bits.
  • the parameter "PDCCH-configuration SIB1" since the parameter "PDCCH-configuration SIB1" is indicated by 8 bits, the parameter “PDCCH-configuration SIB1" includes the parameter “search space zero" ("searchSpaceZero", which occupies 4 bits) and the parameter "control resource set zero" ( “controlResourceSetZero", which occupies 4 bits). Therefore, the 3 bits used to indicate the Q value may include 2 bits used to indicate the parameter "subcarrier spacing common" and 1 bit used to indicate the parameter "search space zero", or may include Indicates 2 bits in the parameter "Subcarrier Spacing Common" and 1 bit in the parameter "Control Resource Set Zero".
  • the 4 bits can be 4 bits used to indicate the parameter "search space zero"
  • the bits indicating the initial number of the parameter "search space zero” are 4
  • one of the bits used to indicate the parameter "search space zero” can be diverted to indicate the parameter Q value. Therefore, in this case, the bit used to indicate the parameter "search space zero"
  • the quantity is 3. In other words, in this case, the parameter "PDCCH- Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "search space zero"
  • the bits indicating the initial number of the parameter "search space zero” are 4.
  • one of the bits used to indicate the parameter "search space zero” can be borrowed to indicate the Q value of the parameter.
  • the The number of bits of the parameter "search space zero” can still be the initial 4 bits, that is, the parameter "search space zero” can still be indicated by the initial 4 bits.
  • the parameter "PDCCH" can still be indicated using 8 bits (including 4 bits for indicating the parameter "search space zero” and 4 bits for indicating the parameter "control resource set zero") - Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "control resource set zero"
  • the initial number of parameters indicating "control resource set zero” The bit is 4.
  • one of the bits used to indicate the parameter "control resource set zero” can be used to indicate the parameter Q value. Therefore, in this case, it is used to indicate the parameter "control resource set zero".
  • the number of "zero" bits is 3.
  • the parameter "PDCCH” can still be indicated using 7 bits (including 4 bits for indicating the parameter "Search Space Zero” and 3 bits for indicating the parameter "Control Resource Set Zero”). - Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "control resource set zero", that is, the initial number of parameters indicating "control resource set zero".
  • the bit is 4.
  • one of the bits used to indicate the parameter "control resource set zero” can be borrowed to indicate the Q value of the parameter, although one bit of the parameter "control resource set zero” is borrowed to indicate the Q, but the number of bits indicating the parameter "control resource set zero” can still be the initial 4 bits, that is, the parameter "control resource set zero” can still be indicated by the initial 4 bits.
  • the parameter "PDCCH” can still be indicated using 8 bits (including 4 bits for indicating the parameter "search space zero" and 4 bits for indicating the parameter "control resource set zero”) - Configure SIB1".
  • the parameter "SSB-subcarrier offset" may be initially indicated by 4 bits, wherein 2 bits of the 4 bits may be used to indicate the Q value.
  • 2 of the bits used to indicate the parameter "SSB-subcarrier offset” can be used to indicate the parameter Q value. Therefore, in this case, it is used to indicate the parameter "SSB-subcarrier offset".
  • the number of bits of "Subcarrier Offset" is 2.
  • 2 of the bits used to indicate the parameter "SSB-subcarrier offset” can be borrowed to indicate the parameter Q value, although the 2 bits of the parameter "SSB-subcarrier offset” bits are borrowed to indicate Q, but the number of bits indicating the parameter "SSB-subcarrier offset” can still be the initial 4 bits, that is, the parameter "SSB-subcarrier offset” can still pass the initial 4 bits bit indication.
  • the parameter "PDCCH-Configuration SIB1" since the parameter "PDCCH-Configuration SIB1" is indicated by 8 bits, the parameter “PDCCH-Configuration SIB1" includes the parameter “Search Space Zero” (occupying 4 bits) and the parameter “Control Resource Set Zero” (occupying 4 bits) bits). Therefore, the 3 bits used to indicate the Q value may include 2 bits used to indicate the parameter "SSB-subcarrier offset” and 1 bit used to indicate the parameter "Search Space Zero", or may include 2 bits in the indication parameter SSB-subcarrier offset" and 1 bit in the indication parameter "Control resource set zero".
  • the 4 bits may be 4 bits used to indicate the parameter "search space zero"
  • the bits indicating the initial number of the parameter "search space zero” are 4.
  • one of the bits used to indicate the parameter "search space zero” can be borrowed to indicate the Q value of the parameter.
  • one bit of the parameter "search space zero” is borrowed to indicate Q, the The number of bits of the parameter "search space zero” can still be the initial 4 bits, that is, the parameter "search space zero" can still be indicated by the initial 4 bits.
  • the 4 bits may be 4 bits used to indicate the parameter "control resource set zero"
  • the initial number of parameters indicating "control resource set zero” The bit is 4.
  • one of the bits used to indicate the parameter "control resource set zero” can be used to indicate the parameter Q value. Therefore, in this case, it is used to indicate the parameter "control resource set zero".
  • the number of "zero" bits is 3.
  • the 4 bits may be 4 bits used to indicate the parameter "control resource set zero"
  • the initial number of parameters indicating "control resource set zero” The bit is 4.
  • one of the bits used to indicate the parameter "control resource set zero” can be borrowed to indicate the Q value of the parameter, although one bit of the parameter "control resource set zero” is borrowed to indicate the Q, but the number of bits indicating the parameter "control resource set zero” can still be the initial 4 bits, that is, the parameter "control resource set zero" can still be indicated by the initial 4 bits.
  • the parameter "SSB-subcarrier offset" may be initially indicated by 4 bits, wherein 1 bit of the 4 bits may be used to indicate the Q value.
  • one of the bits used to indicate the parameter "SSB-subcarrier offset” can be used to indicate the parameter Q value. Therefore, in this case, it is used to indicate the parameter "SSB-subcarrier offset".
  • the number of bits of "Subcarrier Offset" is 3.
  • one of the bits used to indicate the parameter "SSB-subcarrier offset” can be borrowed to indicate the parameter Q value, although 1 of the parameter "SSB-subcarrier offset” bits are borrowed to indicate Q, but the number of bits indicating the parameter "SSB-subcarrier offset” can still be the initial 4 bits, that is, the parameter "SSB-subcarrier offset” can still pass the initial 4 bits bit indication.
  • the parameter "PDCCH-Configuration SIB1" since the parameter "PDCCH-Configuration SIB1" is indicated by 8 bits, the parameter “PDCCH-Configuration SIB1" includes the parameter “Search Space Zero” (occupying 4 bits) and the parameter “Control Resource Set Zero” (occupying 4 bits) bits).
  • the 3 bits used to indicate the Q value may include 1 bit in the parameter "SSB-subcarrier offset” and 2 bits in the parameter "Search Space Zero”; alternatively, may include 1 bit used to indicate the parameter "SSB-Subcarrier Offset” and 2 bits used to indicate the parameter "Control Resource Set Zero”; alternatively, it may be included to indicate the parameter "SSB-Subcarrier Offset” 1 bit in , 1 bit in the parameter "Search Space Zero", and 1 bit in the parameter "Control Resource Set Zero”; no limitation.
  • the 4 bits can be 4 bits used to indicate the parameter "search space zero"
  • the bits indicating the initial number of the parameter "search space zero” are 4
  • 2 of the bits used to indicate the parameter "search space zero” can be diverted to indicate the parameter Q value. Therefore, in this case, the bits used to indicate the parameter "search space zero"
  • the quantity is 2. In other words, in this case, the parameter "PDCCH- Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "search space zero"
  • the bits indicating the initial number of the parameter "search space zero” are 4.
  • 2 bits used to indicate the parameter "search space zero” can be borrowed to indicate the Q value of the parameter.
  • the indicator The number of bits of the parameter "search space zero” can still be the initial 4 bits, that is, the parameter "search space zero” can still be indicated by the initial 4 bits.
  • the parameter "PDCCH" can still be indicated using 8 bits (including 4 bits for indicating the parameter "search space zero” and 4 bits for indicating the parameter "control resource set zero") - Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "control resource set zero"
  • the bit is 4.
  • 2 of the bits used to indicate the parameter "control resource set zero” can be used to indicate the parameter Q value. Therefore, in this case, it is used to indicate the parameter "control resource set zero".
  • the number of "zero" bits is 2. In other words, in this case, the parameter "PDCCH- Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "control resource set zero", that is, the initial number of parameters indicating "control resource set zero".
  • the bit is 4.
  • 2 bits used to indicate the parameter "control resource set zero” can be borrowed to indicate the Q value of the parameter, although 2 bits of the parameter "control resource set zero” are borrowed to indicate the Q, but the number of bits indicating the parameter "control resource set zero” can still be the initial 4 bits, that is, the parameter "control resource set zero” can still be indicated by the initial 4 bits.
  • the parameter "PDCCH” can still be indicated using 8 bits (including 4 bits for indicating the parameter "search space zero" and 4 bits for indicating the parameter "control resource set zero”) - Configure SIB1".
  • the 8 bits include 4 bits for indicating the parameter "search space zero” and 4 bits for indicating the parameter "control resource set zero" , that is, the bits indicating the initial number of the parameter "search space zero” are 4 and the bits indicating the initial number of the parameter ""control resource set zero” are 4.
  • the bits used to indicate the parameter "search space zero" One of the bits and one of the bits used to indicate the parameter "control resource set zero” can be diverted to indicate the parameter Q value, so in this case, the number of bits used to indicate the parameter "search space zero” is 3, and the number of bits used to indicate the parameter "control resource set zero” is 3.
  • 6 bits (including the 3 bits used to indicate the parameter "search space zero” can be used bit and 3 bits used to indicate the parameter "Control Resource Set Zero) indicates the parameter "PDCCH-Configuration SIB1".
  • the 8 bits include 4 bits for indicating the parameter "search space zero” and 4 bits for indicating the parameter "control resource set zero" , that is, the bits indicating the initial number of the parameter "search space zero” are 4 and the bits indicating the initial number of the parameter ""control resource set zero" are 4.
  • the bits used to indicate the parameter "search space zero" One of the bits and one of the bits used to indicate the parameter "control resource set zero” can be borrowed to indicate the parameter Q value, although one of the bits indicating the parameter "search space zero” and one of the bits used to indicate the parameter "control resource set zero” can be borrowed to indicate the parameter Q value.
  • n bits include 2 bits used to indicate the parameter "PDCCH-configuration SIB1"
  • these 2 bits are respectively one of the bits used to indicate "search space zero” and the parameter used to indicate the parameter One of the bits of "control resource set zero”
  • these two bits can be used to indicate the Q value, or both can be borrowed to indicate the Q value; or, one of the bits used to indicate "search space zero” is stolen
  • one of the bits used to indicate the parameter "control resource set zero” is borrowed to indicate the Q value; or, one of the bits used to indicate "search space zero” is borrowed to indicate the Q value, used to indicate One bit of the parameter "Control Resource Set Zero” is used to indicate the Q value; no limitation.
  • the Q value can be represented by 3 bits, but for the same index, it can correspond to different Q values.
  • the Q value corresponding to the index "0" is 8; in Table 6, the Q value corresponding to the index "0" is 1.
  • the 4 bits include 2 bits used to indicate the parameter "Subcarrier Spacing Common” and 2 bits used to indicate the parameter "SSB-Subcarrier Offset”
  • the 2 bits included in the 4 bits for indicating the parameter "SSB-subcarrier offset" may be diverted or borrowed. For details, please refer to the content in the above case 1, and will not be repeated.
  • the 4 bits include 2 bits used to indicate the parameter "Subcarrier Spacing Common” and 2 bits used to indicate the parameter "PDCCH-Configuration SIB1"
  • the 2 bits included in the 4 bits used to indicate the parameter "PDCCH-configuration SIB1" may be used to indicate the parameter "search space zero” included in the parameter "PDCCH-configuration SIB1".
  • 2 bits it can also be 2 bits used to indicate the parameter "Control Resource Set Zero” included in the parameter "PDCCH-Configuration SIB1", or 1 bit used to indicate the parameter "Search Space Zero” and 1 bit for indicating the parameter "Control Resource Set Zero", without limitation.
  • the 4 bits include 2 bits used to indicate the parameter "Subcarrier Spacing Common", 1 bit used to indicate the parameter "SSB-Subcarrier Offset”, and 1 bit used to indicate the parameter "PDCCH- Configure 1 bit in SIB1"
  • the 1 bit included in the 4 bits used to indicate the parameter "SSB-subcarrier offset” or the 1 bit used to indicate the parameter "PDCCH-Configuration SIB1" may be used to indicate the parameter "PDCCH-configuration SIB1".
  • the borrowed method please refer to the content in the above-mentioned situation 1 for details, and will not repeat them.
  • the 4 bits include 1 bit for indicating the parameter "Subcarrier Spacing Common", 1 bit for indicating the parameter "SSB-Subcarrier Offset”, and 1 bit for indicating the parameter "PDCCH- Configure 2 bits in SIB1"
  • the 4 bits include 1 bit for indicating the parameter "Subcarrier Spacing Common", 2 bits for indicating the parameter "SSB-Subcarrier Offset”, and 2 bits for indicating the parameter "PDCCH- Configure 1 bit in SIB1"
  • the 4 bits include 1 bit for indicating the parameter "Subcarrier spacing common” and 3 bits for indicating the parameter "PDCCH-Configuration SIB1"
  • the 3 bits included in the 4 bits for indicating the parameter "PDCCH-configuration SIB1" may be diverted or borrowed. For details, please refer to the content in the above case 1, and will not be repeated.
  • the 4 bits include 1 bit for indicating the parameter "Subcarrier Spacing Common” and 3 bits for indicating the parameter "SSB-Subcarrier Offset"
  • the 3 bits included in the 4 bits used to indicate the parameter "SSB-subcarrier offset" may be diverted or borrowed. For details, please refer to the content in Case 1 above, no longer Repeat.
  • the 4 bits include 1 bit for indicating the parameter "SSB-Subcarrier Offset” and 3 bits for indicating the parameter "PDCCH-Configuration SIB1"
  • the 4 bits include 2 bits for indicating the parameter "SSB-Subcarrier Offset” and 2 bits for indicating the parameter "PDCCH-Configuration SIB1"
  • the 4 bits include 3 bits for indicating the parameter "SSB-Subcarrier Offset” and 1 bit for indicating the parameter "PDCCH-Configuration SIB1"
  • the Q value can be represented by 4 bits, but for the same index, different Q values can be corresponding.
  • the Q value corresponding to the index "0" is 1; in Table 12, the Q value corresponding to the index "0" is 2.
  • the time slot occupied by the DBTW and the configured Q value, and the value of the DBTW may also be determined according to the scaling factor.
  • the Q value and the number of time slots occupied by DBTW, the number of symbols, and the DBTW value are respectively A, B, C and D, and the values of A, B, C and D are based on the first SCS (for example, 120 kHz).
  • the Q value under the second SCS, the number of time slots occupied by DBTW, the number of symbols occupied by DBTW, and the value of DBTW respectively represent are: A*X, B*X, C*X*14 and D/X.
  • An implementation manner is that the terminal device implicitly obtains the scale factor according to the second SCS supported in the frequency band range supported by the access serving cell, or implicitly calculates and obtains the Q value satisfying the second SCS according to the scale factor. and the number of time slots occupied by DBTW, the number of symbols and the DBTW value.
  • the scaling factor may be defined in the parameter "Serving cell configuration common" included in the RRC signaling, may also be carried in the parameter "Serving cell configuration common SIB", or may be configured in the MIB. , without restriction.
  • DiscoveryBurstWindowLength-r17 ⁇ ms0dot075,ms0dot125,ms0dot25,ms0dot5,ms1,ms2,ms2dot25,ms2dot5,ms3,ms3dot5,ms4,ms4dot5,ms5 ⁇ at 120kHz.
  • the Q value used to determine the state of the DBTW can be indicated by n bits, where the n bits include n1 bits for indicating the fourth parameter and (n-n1) for indicating the fifth parameter bits, the fifth parameter is indicated by m-(n-n1) bits, where m is the initial number indicating the fifth parameter; in this implementation, the bits corresponding to other parameters in the MIB can be used to indicate Q value, can avoid extending the MIB load capacity to indicate the Q value, thereby improving the performance of the system.
  • the Q value for determining the state of the DBTW may be indicated by n bits including n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter, so
  • the fifth parameter is indicated by m bits; in this implementation, the corresponding bits of other parameters in the MIB can be used to indicate the Q value, and the use of the extended MIB load capacity to indicate the Q value can be avoided, and the fifth parameter itself will not be affected. bit indication, which can improve the performance of the system.
  • n bits for indicating the Q value may include n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter.
  • the fifth parameter may be SSB-subcarrier offset, and in this implementation manner, the offset value of SSB-subcarrier offset may be determined in the following manner.
  • the fifth parameter is the SSB-subcarrier offset in the MIB information
  • the offset value of the SSB-subcarrier offset is based on the SCS and CRB of the SSB.
  • the combination of SCS is determined.
  • the offset value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the offset value of the SSB-subcarrier offset is the (n-n1) bit indication of the fifth parameter the value of ;
  • the offset value of the SSB-subcarrier offset is less than or equal to (n-n1) of the fifth parameter The value indicated by the bits.
  • the offset value of the SSB-subcarrier offset can be understood as the offset value between the SSB and the CRB on the subcarrier granularity, assuming the offset between the SSB and the CRB on the subcarrier granularity
  • the value is K SSB
  • the offset value is the same as the 4 bits indicating the parameter "SSB-subcarrier offset" (that is, the indicating parameter )related.
  • the first frequency, the second frequency, and the third frequency in the embodiment of the present application are 120 kHz, 480 kHz, and 960 kHz, respectively.
  • the SCS of the SSB and the SCS of the CRB are both the first frequency, that is, the SCS of the SSB and the CRB are ⁇ 120kHz, 120kHz ⁇ , assuming that the preset threshold is 12, if but otherwise, Among them, the symbol Indicates rounded down.
  • the SCS of the SSB is the second frequency and the SCS of the CRB is the first frequency, that is, the SCS of the SSB and the CRB are ⁇ 480kHz, 120kHz ⁇ , That is, the value of K SSB is a parameter The value indicated by the 4 bits of .
  • the SCS of SSB is the third frequency and the SCS of CRB is the first frequency, that is, the SCS of SSB and CRB is ⁇ 960kHz, 120kHz ⁇ , that is, the value of K SSB is less than or equal to the parameter The value indicated by the 4 bits of .
  • n bits for indicating the Q value may include n1 bits for indicating the fourth parameter and (n-n1) bits for indicating the fifth parameter.
  • the (n-n1) bits are (n-n1) bits of the highest order bit in the fifth parameter; or,
  • the (n-n1) bits are the (n-n1) bits of the lowest-order bit in the fifth parameter; or,
  • the (n-n1) bits are any (n-n1) bits in the fifth parameter.
  • the Q value is indicated by 3 bits, and the 3 bits include 2 bits used to indicate the parameter "Common Subcarrier Spacing" and 2 bits used to indicate the parameter "SSB-Subcarrier Offset” 1 bit (that is, (a) of the above case 1), it is used to indicate that 1 bit in the parameter "SSB-subcarrier offset" can be the highest order bit in the parameter "SSB-subcarrier offset” 1 bit; or, 1 bit used to indicate the parameter "SSB-subcarrier offset” may be 1 bit of the lowest order bit in the parameter "SSB-subcarrier offset”; or, used to indicate One bit in the parameter "SSB-subcarrier offset” can be any one bit in the parameter "SSB-subcarrier offset”; it is not limited.
  • the Q value is indicated by 4 bits
  • the 4 bits include 2 bits used to indicate the parameter "Common subcarrier spacing" and 2 bits used to indicate the parameter "SSB-subcarrier offset” 2 bits (that is, (a) in the above case 2)
  • 1 bit used to indicate that the parameter "SSB-subcarrier offset” can be the highest order in the parameter "SSB-subcarrier offset” 2 bits of bits
  • 1 bit used to indicate the parameter "SSB-subcarrier offset” may be the 2 bits of the lowest order bit in the parameter "SSB-subcarrier offset”; or, used for One bit in the indication parameter "SSB-subcarrier offset” can be any two bits in the parameter "SSB-subcarrier offset”; it is not limited.
  • the 2 highest-order bits in the parameter "SSB-subcarrier offset” in the embodiment of the present application can be understood as: it is assumed that the parameter "SSB-subcarrier offset" is initially indicated by 4 bits ( For example, 1011), the two highest-order bits in the parameter “SSB-subcarrier offset” are the first two bits from the left, that is, "10".
  • the 2 lowest-order bits in the parameter "SSB-subcarrier offset" in the embodiment of the present application can be understood as: it is assumed that the parameter "SSB-subcarrier offset" is initially indicated by 4 bits (for example, 1011 ), then the two lowest-order bits in the parameter "SSB-subcarrier offset" are the first two bits from the right, that is, "11".
  • the terminal device can determine the state of the DBTW according to the Q value, and the following will explain that the terminal device determines the state of the DBTW according to the first parameter.
  • the determining the state of the DBTW according to the first parameter includes:
  • the first parameter includes a parameter indicating that the DBTW is on, it is determined that the DBTW is in an on state; or,
  • the first parameter includes a parameter indicating that the DBTW is off, it is determined that the DBTW is in an on state.
  • the network device may send a first parameter to the terminal device, where the first parameter may include a state indicating the DBTW.
  • the first parameter may be "enable discovery burst set window length-r17 (enbleDiscoveryBurstWindowLength-r17)" to display the status indicating DBTW.
  • the first parameter is carried in the serving cell configuration common in the RRC signaling or in the serving cell configuration common SIB in the MIB information.
  • the first parameter may be carried (or configured) in the parameter "Serving cell configuration common" included in the RRC signaling, or may be carried in the parameter "Serving cell configuration common SIB", and the terminal device receives the After the first parameter, the DBTW status can be determined based on the first parameter in the parameter "Serving cell configuration common”, or the first parameter can be demodulated from the parameter "Serving cell configuration common SIB" to determine the DBTW status.
  • the network device may send a parameter "enable discovery burst set window length-r17" to the UE, and this parameter is used to indicate that the DBTW is in an open state. It should be noted that, before the UE obtains the parameter "Enable Discovery Burst Set Window Length-r17", the DBTW can be disabled by default.
  • the above-mentioned parameter "Discovery burst set window length -r17" may include multiple values, wherein the values displayed in bold (such as the values ) is the new value.
  • the network device may send a parameter "enable discovery burst set window length-r17" to the UE, and this parameter is used to indicate that the DBTW is in an open state. It should be noted that, before the UE obtains the parameter "Enable Discovery Burst Set Window Length-r17", DBTW can be turned on by default.
  • the above-mentioned parameter "Discovery burst set window length -r17" may include multiple values, wherein the values displayed in bold (such as the values ) is the new value.
  • the network device may send a parameter "enable discovery burst set window length -r17" to the UE, and this parameter may be used to indicate that DBTW is in an open state, or this parameter may be used to indicate that DBTW is in a closed state.
  • the above-mentioned parameter "Discovery burst set window length -r17" may include multiple values, wherein the values displayed in bold (such as the values ) is the new value.
  • the network device may send a parameter "enable discovery burst set window length-r17" to the UE, and this parameter may be used to indicate that the DBTW is in an open state.
  • the parameter "Discovery Burst Set Window Length -r17" may include multiple values, wherein the values displayed in bold (such as the values ) is the new value.
  • the network device may send a parameter "enable discovery burst set window length-r17" to the UE, and this parameter may be used to indicate that the DBTW is in a closed state.
  • the value included in the parameter "Discovery Burst Set Window Length -r17" may be empty.
  • the terminal device can determine the status of the DBTW according to the first parameter sent by the network device, so as to determine whether the network device side sends the SSB that cannot be sent due to the LBT failure on the DBTW, and further, it can quickly realize the communication with the network device. Timing synchronization between devices.
  • the first parameter configured in the serving cell configuration common and the first parameter configured in the serving cell configuration common SIB are the same.
  • the first parameter is "enable discovery burst set window length-r17”
  • the parameter "enable discovery burst set window length-r17” can be configured in the parameter "service” included in the RRC signaling It can also be configured in the parameter "Universal SIB for Serving Cell Configuration”.
  • the parameter "Enable Discovery Burst Set Window Length -r17" has the same value.
  • the number of values configured in the parameter "Serving Cell Configuration Common SIB" is less than or equal to the number of values configured in the parameter "Serving Cell Configuration Common”.
  • the number of values it includes is 11.
  • the number of values included in the parameter "Serving Cell Configuration Common SIB" may be less than 11, for example, may include 10 values, the 10 values may be the values among the above 11 values, and the 10 values may be
  • the number of values configured in the parameter "Serving cell configuration common SIB” may also be greater than the number of values configured in the parameter "Serving cell configuration common", which is not limited.
  • the parameter "PDCCH-configuration SIB1" in the MIB information may include the parameter "search space zero" and the parameter "control resource set zero".
  • the content of the parameter "control resource set zero” is shown in Table 15:
  • the 4 bits used to indicate the parameter "control resource set zero” correspond to indexes 0-15 in the table in sequence.
  • the parameter "SSB and CORESET multiplexing pattern (SS/PBCH block and CORESET multiplexing pattern)" indicates the multiplexing pattern between SSB and CORESET #0 with QCL relationship.
  • the multiplexing pattern is "1" it indicates that SSB and CORESET #0 Corresponding to CORESET#0 with QCL relationship exists in TDM mode; when the multiplexing mode is "3", it means that SSB and corresponding CORESET#0 with QCL relationship exist in FDM mode.
  • Indicates the number of RBs occupied by CORESET#0 which can be either "24" or "48".
  • the parameter Indicates the number of symbols occupied by CORESET#0, which can be "1” or "2".
  • the parameter "offset” indicates the interval between the RB with the lowest index in the SSB and the RB with the lowest index of CORESET#0, in RB units, that is, RB-level offset.
  • the parameter K SSB can be represented by the parameter "ssb-subcarrier offset" in the MIB.
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero, where the control resource set zero includes the number of resource blocks RBs occupied by the control resource set CORESET#0, the number of RBs is 96.
  • the first interval included in the control resource set zero is 0 to 0. Any value in (96-k), the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the multiplexed format of the SSB and the CORESET#0 is 2 or 3
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the CORESET#0 in the embodiment of the present application is the CORESET of the type 0-PDCCH search space set.
  • Method 1 The multiplexing format of SSB and CORESET#0 is 1
  • the SSB is located in the middle of the bandwidth occupied by the CORESET#0.
  • FIG. 6 it is a schematic diagram of the positions of an SSB and CORESET#0 according to an embodiment of the present application.
  • the channel bandwidth is 200MHz, and the number of RBs available at this time is 132.
  • the type 0-PDCCH channel including CORESET#0 occupies 96RBs, if the above k is 20, then the index in the SSB The interval between the lowest RB and the lowest RB indexed by CORESET#0 is 38 RBs.
  • the SSB is located on one side of the bandwidth occupied by the CORESET#0.
  • FIG. 7 it is a schematic diagram of the location of another SSB and CORESET#0 provided by an embodiment of the present application.
  • the number of RBs available at this time is 132.
  • the type 0-PDCCH channel including CORESET#0 occupies 96RBs, if the above k is 20, and the SSB is located in CORESET# On the side with the lowest index of the bandwidth occupied by 0, the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is 0 RB.
  • the number of available RBs at this time is 132.
  • the type 0-PDCCH channel including CORESET#0 occupies 96RBs, if the above k is 20, and the SSB is located in the CORESET On the side with the highest index of the bandwidth occupied by #0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is 76 RBs.
  • Method 2 The multiplexing format of SSB and CORESET#0 is 3
  • FIG. 8 another schematic diagram of the positions of the SSB and CORESET#0 provided by an embodiment of the present application.
  • the channel bandwidth is 200MHz, and the number of RBs available at this time is 132.
  • the type 0-PDCCH channel including CORESET#0 occupies 96RBs, if the above k is 20, then the index in the SSB
  • the interval between the lowest RB and the lowest RB indexed by CORESET #0 is related to the value of the offset between the subcarriers in the SSB and the CRB.
  • the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is -20 RB; if the SSB and the CRB are The value of the offset between the subcarriers in the SSB is greater than 0, and the interval between the lowest RB of the index in the SSB and the lowest RB of the CORESET#0 index is -21 RB.
  • the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is 20RB; If the value of the offset between the SSB and the subcarriers in the CRB is greater than 0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is 21 RBs.
  • Method 3 The multiplexing format of SSB and CORESET#0 is 2
  • FIG. 9 it is a schematic diagram of still another position of the SSB and CORESET#0 according to an embodiment of the present application.
  • the channel bandwidth is 200MHz, and the number of RBs available at this time is 132.
  • the type 0-PDCCH channel including CORESET#0 occupies 96RBs, if the above k is 20, then the index in the SSB
  • the interval between the lowest RB and the lowest RB indexed by CORESET #0 is related to the value of the offset between the subcarriers in the SSB and the CRB.
  • the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is -20 RB; if the SSB and the CRB are The value of the offset between the subcarriers in the SSB is greater than 0, and the interval between the lowest RB of the index in the SSB and the lowest RB of the CORESET#0 index is -21 RB.
  • the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is 20RB; If the value of the offset between the SSB and the subcarriers in the CRB is greater than 0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is 21 RBs.
  • the position of the SSB shown in Figure 9 is relative to the position of the SSB shown in Figure 8, and the SSB is located on the back (right) one symbol of the type0-PDCCH channel corresponding to CORESET#0 , when the subcarrier spacing of the SSB is different from the subcarrier spacing of CORESET#0, through this design method, the SSB and CORESET#0 can be aligned in the time domain.
  • the interval between the RB with the smallest index in the SSB and the RB with the smallest index of the CORESET#0 needs to be redefined.
  • the following will describe the number of symbols occupied by CORESET#0 in the above possible manner. For details, please refer to the following.
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4.
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • the number of symbols occupied by CORESET#0 is different based on the multiplexed formats of the SSB and the CORESET#0.
  • Method 1 The multiplexing format of SSB and CORESET#0 is 1
  • the number of symbols occupied by CORESET#0 can be any value from 1 to 4. Please refer to Table 16.
  • Method 2 The multiplexing format of SSB and CORESET#0 is 3
  • the number of symbols occupied by CORESET#0 can be 1 or 2. Please refer to Table 17.
  • Method 3 The multiplexing format of SSB and CORESET#0 is 2
  • the number of symbols occupied by CORESET#0 can be 1 or 2. Please refer to Table 18.
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero, where the control resource set zero includes the number of resource blocks RB occupied by the control resource set CORESET#0.
  • CORESET#0 in this embodiment of the present application is a CORESET of type 0-PDCCH search space set.
  • Method 1 The multiplexing format of SSB and CORESET#0 is 1
  • the SSB is located in the middle of the bandwidth occupied by the CORESET#0.
  • the channel bandwidth is 100MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 120kHz, at this time, the number of RBs available in the channel bandwidth is 66.
  • the type 0-PDCCH channel of CORESET#0 is included When 64 RBs are occupied, at this time, the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is any one or more of ⁇ 20, 21, 22, 23, 24 ⁇ RBs.
  • the channel bandwidth is 200MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 120kHz, at this time, the number of RBs available in the channel bandwidth is 132.
  • the type 0-PDCCH channel of CORESET#0 is included
  • the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is any one or more of ⁇ 35, 36, 37, 38, 39, 40, 41, 42 ⁇ RBs.
  • the channel bandwidth is 400MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 480kHz, at this time, the number of RBs available in the channel bandwidth is 66.
  • the type 0-PDCCH channel of CORESET#0 is included When 48 RBs are occupied, at this time, the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is any one or more of ⁇ 11, 12, 13, 14, 15, 16 ⁇ RBs.
  • the channel bandwidth is 400MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 480kHz, at this time, the number of RBs available in the channel bandwidth is 66.
  • the type 0-PDCCH channel of CORESET#0 is included When 64 RBs are occupied, at this time, the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is any one or more of ⁇ 20, 21, 22, 23, 24, 25, 26, 27, 28 ⁇ RBs indivual.
  • the SSB is located on one side of the bandwidth occupied by the CORESET#0.
  • the channel bandwidth is 100MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 120kHz, the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 64RBs, and the SSB is located in On the side with the lowest index of the bandwidth occupied by CORESET#0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 satisfies ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , 10, 11, 12 ⁇ RB any value or multiple.
  • the channel bandwidth is 200MHz.
  • the subcarrier spacing between SSB and control resource set CORESET#0 is 120kHz, the number of available RBs is 132.
  • the type 0-PDCCH channel including CORESET#0 occupies 96RBs, and the SSB is located in On the side with the lowest index of the bandwidth occupied by CORESET#0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 satisfies ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , 10, 11, 12 ⁇ RB any value or multiple.
  • the channel bandwidth is 100MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 120kHz, the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 64RBs, and the SSB is located in The side with the highest index of the bandwidth occupied by CORESET#0, at this time, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is any one or more of ⁇ 40, 41, 42, 43, 44 ⁇ RBs indivual.
  • the channel bandwidth is 200MHz.
  • the subcarrier spacing between SSB and control resource set CORESET#0 is 120kHz, the number of available RBs is 132.
  • the type 0-PDCCH channel including CORESET#0 occupies 96RBs, and the SSB is located in The side with the highest index of the bandwidth occupied by CORESET#0, at this time, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is any one or more of ⁇ 72, 73, 74, 75, 76 ⁇ RBs indivual.
  • the channel bandwidth is 400MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 480kHz
  • the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 48RBs, and the SSB is located in On the side with the lowest index of the bandwidth occupied by CORESET#0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 satisfies any one or more of ⁇ 0, 1, 2 ⁇ RBs.
  • the number of available RBs at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 48RBs, and the SSB On the side with the highest index of the bandwidth occupied by CORESET#0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 satisfies any of ⁇ 21, 22, 23, 24, 25, 26, 27, 28 ⁇ RBs. One value or more.
  • the channel bandwidth is 400MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 480kHz
  • the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 64RBs, and the SSB is located in On the side with the lowest index of the bandwidth occupied by CORESET#0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 satisfies any one or more of ⁇ 0, 1, 2 ⁇ RBs.
  • the channel bandwidth is 400MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 480kHz
  • the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 64RBs, and the SSB is located in On the side with the highest index of the bandwidth occupied by CORESET#0, the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 satisfies any one or more of ⁇ 41, 42, 43, 44 ⁇ RBs.
  • the channel bandwidth is 400MHz.
  • the subcarrier spacing between the SSB and the control resource set CORESET#0 is 480kHz
  • the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 24RBs
  • the SSB The interval between the lowest indexed RB and the lowest indexed RB of CORESET#0 satisfies any one or more of ⁇ 0, 1, 2, 3, 4 ⁇ RBs.
  • the channel bandwidth is 400MHz.
  • the subcarrier spacing between SSB and control resource set CORESET#0 is 960kHz, the number of available RBs is 32 or 33.
  • the type 0-PDCCH channel including CORESET#0 occupies 24RBs, and The SSB is located on the side with the highest index of the bandwidth occupied by CORESET#0, then the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 satisfies any value or multiple of ⁇ 0, 1, 2, 3, 4 ⁇ RBs .
  • the channel bandwidth is 400MHz, when the subcarrier spacing between the SSB and the control resource set CORESET#0 is 480kHz, in the frequency domain range between 56.8GHz and 57.2GHz, the interval between the lowest indexed RB in the SSB and the lowest indexed RB in CORESET#0 Any value or multiples of ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8 ⁇ RB are satisfied.
  • the channel bandwidth is 400MHz.
  • the spacing between the lowest RB in SSB and the lowest RB in CORESET#0 satisfies ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ RB is any value or multiple.
  • the channel bandwidth is 400MHz, when the subcarrier spacing between the SSB and the control resource set CORESET#0 is 960kHz, in the frequency domain range between 56.8GHz and 57.2GHz, the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index Any value or multiples of ⁇ 0, 1, 2, 3, 4 ⁇ RB are satisfied.
  • Method 2 The multiplexing format of SSB and CORESET#0 is 2 or 3
  • the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is related to the value of the offset between the subcarriers in the SSB and the CRB.
  • the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 64RBs, the example Generally, if the value of the offset between the SSB and the subcarriers in the CRB is equal to 0, the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is -20RB; if the SSB and the CRB in the The value of the offset between the subcarriers is greater than 0, then the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is -21RB.
  • the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is 64 RBs.
  • the parameter k1 the value of k1 is any value of ⁇ -1, 0, 1 ⁇
  • the unit is RB, which acts on the interval between the lowest index RB in SSB and the lowest index RB in CORESET#0.
  • the index in SSB is the lowest
  • the interval between the RB and the lowest RB indexed by CORESET#0 is any value of ⁇ 63, 64, 65 ⁇ RBs.
  • the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 24RBs, the example Generally, if the value of the offset between the SSB and the subcarrier in the CRB is equal to 0, the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is -20RB; The value of the offset between the subcarriers is greater than 0, then the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is -21RB.
  • the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is 24 RBs.
  • the value of k2 is any value ⁇ -1,0,1 ⁇
  • the unit is RB, which acts on the interval between the lowest index RB in SSB and the lowest index RB in CORESET#0.
  • the index in SSB is the lowest
  • the interval between the RB and the lowest RB indexed by CORESET#0 is any value among ⁇ 23, 24, 25 ⁇ RBs.
  • the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 48RBs, the example Generally, if the value of the offset between the SSB and the subcarrier in the CRB is equal to 0, the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is -20RB; The value of the offset between the subcarriers is greater than 0, then the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is -21RB.
  • the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is 48 RBs.
  • the value of k3 is any value ⁇ -1,0,1 ⁇
  • the unit is RB, which acts on the interval between the lowest index RB in the SSB and the lowest index RB in CORESET#0.
  • the index in the SSB is the lowest
  • the interval between the RB and the lowest RB indexed by CORESET#0 is any value among ⁇ 47, 48, 49 ⁇ RBs.
  • the number of RBs available at this time is 66.
  • the type 0-PDCCH channel including CORESET#0 occupies 64RBs, the example Generally, if the value of the offset between the SSB and the subcarriers in the CRB is equal to 0, the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is -20RB; if the SSB and the CRB in the The value of the offset between the subcarriers is greater than 0, then the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is -21RB.
  • the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is 64 RBs.
  • the value of k4 is any value ⁇ -1,0,1 ⁇
  • the unit is RB, which acts on the interval between the lowest index RB in SSB and the lowest index RB in CORESET#0.
  • the index in SSB is the lowest
  • the interval between the RB and the lowest RB indexed by CORESET#0 is any value of ⁇ 63, 64, 65 ⁇ RBs.
  • the number of available RBs at this time is 32 or 33.
  • the type 0-PDCCH channel including CORESET#0 occupies 24RBs, Exemplarily, if the value of the offset between the SSB and the subcarrier in the CRB is equal to 0, the interval between the lowest RB in the SSB and the lowest RB in the CORESET#0 index is -20RB; The value of the offset between subcarriers in the CRB is greater than 0, and the interval between the RB with the lowest index in the SSB and the RB with the lowest index in CORESET#0 is -21RB.
  • the interval between the lowest indexed RB in the SSB and the lowest indexed RB of CORESET#0 is 24 RBs.
  • the value of k5 is any value ⁇ -1,0,1 ⁇
  • the unit is RB, which acts on the interval between the lowest index RB in the SSB and the lowest index RB in CORESET#0.
  • the index in the SSB is the lowest
  • the interval between the RB and the lowest RB indexed by CORESET#0 is any value among ⁇ 23, 24, 25 ⁇ RBs.
  • FIG. 10 is a schematic flowchart of another communication method 1000 provided by the implementation of this application.
  • the method 1000 may be executed by a terminal device and a network device, or may also be executed by a chip in a terminal device and a chip in a network device.
  • the communication method 1000 may include:
  • the network device determines MIB information, where the MIB information includes PDCCH-configuration SIB1, the PDCCH-configuration SIB1 includes control resource set zero, and the control resource set zero includes the number of RBs occupied by CORESET#0, and the number of RBs is: 96;
  • the network device sends the MIB information to the terminal device.
  • the terminal device receives the MIB information sent by the network device,
  • the terminal device determines, according to the control resource set zero, the number of consecutive symbols occupied by the Type 0-PDCCH.
  • the network device sends MIB information to the terminal device, the MIB includes parameter control resource set zero, and the number of RBs occupied by CORESET#0 included in the control resource set zero is 96, the terminal device Resource set zero determines the number of consecutive symbols occupied by Type 0-PDCCH.
  • the control resource set zero includes the first interval. is any value from 0 to (96-k), and the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the PDCCH-configuration SIB1 may further include search space zero. If the multiplexing format of SSB and the CORESET#0 is 2, the terminal device can monitor type 0-PDCCH general according to the parameter of search space zero. Opportunities to search the space set, including the system frame, time slot, and symbol position in which the channel is being monitored.
  • the system frame for searching the channel is the same as the system frame of the SSB satisfying the second QCL relationship.
  • the time slot for searching this channel is the same as the time slot of the SSB satisfying the second QCL relationship.
  • the symbol for searching the channel is located one or more symbols before the symbol where the SSB satisfying the second QCL relationship is located.
  • the multiplexed format of the SSB and the CORESET#0 is 2 or 3
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4.
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • the multiplexing format of SSB and the CORESET#0 and the value of the offset between the SSB and the subcarriers in the CRB can refer to The relevant content in the foregoing method 300 will not be repeated here.
  • FIG. 11 is a schematic flowchart of another communication method 1100 provided by the implementation of this application.
  • the method 1100 can be executed by a terminal device and a network device, or can also be executed by a chip in the terminal device and a chip in the network device.
  • the communication method 1100 may include:
  • the network device determines MIB information, where the MIB information includes a common subcarrier spacing, and the common subcarrier spacing is indicated by r bits, where r is a positive integer greater than or equal to 2.
  • the network device sends the MIB information to the terminal device.
  • the terminal device receives the MIB information sent by the network device.
  • the terminal device performs timing synchronization according to the MIB information.
  • the network device sends MIB information to the terminal device, the MIB includes a common subcarrier interval, and the common subcarrier interval is indicated by greater than or equal to 2 bits, and the terminal device can perform timing synchronization according to the received MIB information.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the sixth parameter, the The sixth parameter includes at least one of the following parameters:
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero.
  • the r value in this embodiment of the present application may be a positive integer greater than or equal to 2, and the r bits may include 1 bit for indicating a common subcarrier spacing and (r- 1) bits; alternatively, the r bits may include 1 bit for indicating common subcarrier spacing and (r-1) bits for indicating PDCCH-configuration SIB1; or, the r bits Including may include 1 bit for indicating carrier spacing common and (r-1) bits for indicating SSB-subcarrier offset and PDCCH-configuration SIB1; no limitation.
  • the common subcarrier spacing can be indicated by r bits, and the r bits include an initial 1 bit used to indicate the common subcarrier spacing and a common subcarrier spacing. to indicate (r-1) bits in the sixth parameter.
  • the bits used to indicate the common subcarrier spacing may include bits corresponding to other parameters in the MIB, which can improve the performance of the system.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate a seventh parameter, where the seventh parameter is one of the sixth parameters. Any parameter of , the seventh parameter is indicated by (s-(r-1)) bits, and s is the initial number indicating the seventh parameter.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate a seventh parameter, where the seventh parameter is one of the sixth parameters. Any parameter of , the seventh parameter is indicated by s bits, and s is the initial number indicating the seventh parameter.
  • the seventh parameter in the embodiment of the present application may be the SSB-subcarrier offset in the MIB information, the search space zero of SIB1 may be configured for PDCCH-, and the control resource set zero of SIB1 may be configured for PDCCH-.
  • r may be 2, that is, 2 bits may be used to indicate that the subcarrier spacing is common.
  • r may be 2, that is, 2 bits may be used to indicate that the subcarrier spacing is common.
  • the 2 bits include the initial 1 bit used to indicate that the subcarrier spacing is common and 1 bit used to indicate the parameter "SSB-subcarrier offset"
  • the bits indicating the initial number of the parameter "SSB-subcarrier offset” are 4. In this embodiment of the present application, it is used to indicate the parameter "SSB-subcarrier offset".
  • One of the bits of "shift” can be used to indicate that the parameter subcarrier spacing is common. Therefore, in this case, the number of bits used to indicate the parameter "SSB-subcarrier offset" is 3.
  • the bits indicating the initial number of the parameter "SSB-subcarrier offset” are 4. In this embodiment of the present application, it is used to indicate the parameter "SSB-subcarrier offset".
  • One bit of “offset” can be borrowed to indicate that the parameter subcarrier spacing is common, although 1 bit of the parameter "SSB-subcarrier offset” is borrowed to indicate that the subcarrier spacing is common, but it indicates that the parameter "SSB-subcarrier spacing" is common.
  • the number of "offset” bits can still be the initial 4 bits, that is, the parameter "SSB-subcarrier offset" can still be indicated by the initial 4 bits.
  • the 2 bits include the initial 1 bit used to indicate that the subcarrier spacing is common and 1 bit used to indicate the parameter "PDCCH-configuration SIB1"
  • the parameter "PDCCH-configuration SIB1" since the parameter "PDCCH-configuration SIB1" is indicated by 8 bits, the parameter “PDCCH-configuration SIB1" includes the parameter “search space zero" (occupying 4 bits) and the parameter “control resource set zero” (occupying 4 bits) . Therefore, the 2 bits used to indicate that the subcarrier spacing is common may include 1 bit used to indicate the parameter "subcarrier spacing common" initial and 1 bit used to indicate the parameter "search space zero", or may include It is used to indicate the initial 1 bit of the parameter "Subcarrier Spacing Common" and the 1 bit used to indicate the parameter "Control Resource Set Zero".
  • the 4 bits can be 4 bits used to indicate the parameter "search space zero"
  • the bits indicating the initial number of the parameter "search space zero” are 4
  • one of the bits used to indicate the parameter "search space zero” can be diverted to indicate that the parameter subcarrier spacing is common. Therefore, in this case, the The number of bits is 3. In other words, in this case, the parameter "PDCCH- Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "search space zero"
  • the bits indicating the initial number of the parameter "search space zero” are 4.
  • one bit of the parameter "search space zero” can be borrowed to indicate that the parameter subcarrier spacing is common, although one bit of the parameter "search space zero” is borrowed to indicate the subcarrier.
  • the interval is common, but the number of bits indicating the parameter "search space zero” can still be the initial 4 bits, that is, the parameter "search space zero” can still be indicated by the initial 4 bits.
  • the parameter "PDCCH” can still be indicated using 8 bits (including 4 bits for indicating the parameter "search space zero” and 4 bits for indicating the parameter "control resource set zero”) - Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "control resource set zero"
  • the bit is 4.
  • one of the bits used to indicate the parameter "control resource set zero” can be used to indicate that the parameter subcarrier spacing is common. Therefore, in this case, it is used to indicate the parameter "control resource set zero".
  • the number of bits for resource set zero" is 3.
  • the parameter "PDCCH” can still be indicated using 7 bits (including 4 bits for indicating the parameter "Search Space Zero” and 3 bits for indicating the parameter "Control Resource Set Zero”). - Configure SIB1".
  • the 4 bits may be 4 bits used to indicate the parameter "control resource set zero"
  • the initial quantity of the parameter "control resource set zero” is indicated.
  • the bit is 4.
  • one of the bits used to indicate the parameter "control resource set zero” can be borrowed to indicate that the parameter subcarrier spacing is common, although 1 bit of the parameter "control resource set zero” is borrowed It is common to indicate the subcarrier spacing, but the number of bits indicating the parameter "control resource set zero" can still be the initial 4 bits, that is, the parameter "control resource set zero” can still be indicated by the initial 4 bits.
  • the parameter "PDCCH” can still be indicated using 8 bits (including 4 bits for indicating the parameter "search space zero" and 4 bits for indicating the parameter "control resource set zero”) - Configure SIB1".
  • the parameter "subCarrierSpacingCommon" in the MIB information can be:
  • the common subcarrier spacing in the MIB information can be indicated by r bits, and the r bits include the initial 1 bit used to indicate the common subcarrier spacing and the ( r-1) bits, the seventh parameter is indicated by s-(r-1)) bits, and s is the initial number indicating the seventh parameter; in this implementation, other parameters in the MIB can be used
  • the corresponding bits indicate that the subcarrier interval is common, which can avoid the extended MIB load capacity indicating that the subcarrier interval is common, so that the performance of the system can be improved.
  • the common subcarrier spacing in the MIB information can be indicated by r bits, and the r bits include an initial 1 bit used to indicate the common subcarrier spacing and (r-1) used to indicate the seventh parameter bits, the seventh parameter is indicated by s bits; in this implementation, bits corresponding to other parameters in the MIB can be used to indicate that the subcarrier spacing is common, and the use of the extended MIB load capacity to indicate that the subcarrier spacing is common can be avoided, and It also does not affect the bit indication of the seventh parameter itself, so that the performance of the system can be improved.
  • the r bits used to indicate that the subcarrier spacing is common may include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter.
  • the seventh parameter may be the SSB-subcarrier offset, and in this implementation manner, the offset value of the SSB-subcarrier offset may be determined in the following manner.
  • the seventh parameter is the SSB-subcarrier offset in the MIB information
  • the value of the SSB-subcarrier offset is based on the SCS of the SSB and the CRB.
  • the combination of SCS is determined.
  • the value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is the value indicated by (r-1) bits of the seven parameters; or,
  • the SCS of the SSB is the third frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is less than or equal to (r-1) bits of the seventh parameter the indicated value.
  • the offset value of the SSB-subcarrier offset can be understood as the offset value between the SSB and the CRB on the subcarrier granularity, assuming the offset between the SSB and the CRB on the subcarrier granularity
  • the value is K SSB
  • the offset value is the same as the 4 bits indicating the parameter "SSB-subcarrier offset" (that is, the indicating parameter )related.
  • the first frequency, the second frequency, and the third frequency in the embodiment of the present application are 120 kHz, 480 kHz, and 960 kHz, respectively.
  • the SCS of the SSB and the SCS of the CRB are both the first frequency, that is, the SCS of the SSB and the CRB are ⁇ 120kHz, 120kHz ⁇ , assuming that the preset threshold is 12, if but otherwise, Among them, the symbol Indicates rounded down.
  • the SCS of the SSB is the second frequency and the SCS of the CRB is the first frequency, that is, the SCS of the SSB and the CRB are ⁇ 480kHz, 120kHz ⁇ , That is, the value of K SSB is the indicator parameter The value indicated by the 4 bits of .
  • the SCS of SSB is the third frequency and the SCS of CRB is the first frequency, that is, the SCS of SSB and CRB is ⁇ 960kHz, 120kHz ⁇ , that is, the value of K SSB is less than or equal to the parameter The value indicated by the 4 bits of .
  • the (r-1) bits are (r-1) bits of the highest order bit in the seventh parameter; or,
  • the (r-1) bits are the (r-1) bits of the lowest order bit in the seventh parameter; or,
  • the (r-1) bits are any (r-1) bits in the seventh parameter.
  • the parameter that the subcarrier spacing is common is indicated by 2 bits, and the 2 bits include 1 bit used to indicate the initial parameter of the "subcarrier spacing common" and 1 bit used to indicate the parameter "SSB- 1 bit in "Subcarrier Offset”, then it is used to indicate that 1 bit in the parameter "SSB-Subcarrier Offset" can be the highest order bit in the parameter "SSB-Subcarrier Offset”; Alternatively, the 1 bit used to indicate the parameter "SSB-Subcarrier Offset” may be 1 bit of the lowest order bit in the parameter "SSB-Subcarrier Offset”; or, used to indicate the parameter "SSB-Subcarrier Offset" One bit in “carrier offset” can be any one bit in the parameter "SSB-subcarrier offset”; it is not limited.
  • the 1 bit of the highest order bit in the parameter "SSB-subcarrier offset” in the embodiment of the present application can be understood as: it is assumed that the parameter "SSB-subcarrier offset" is initially indicated by 4 bits ( For example, 1011), the highest-order bit in the parameter "SSB-subcarrier offset” is the leftmost first bit, that is, "1".
  • One bit of the lowest-order bit in the parameter "SSB-subcarrier offset” in the embodiment of the present application can be understood as: assuming that the parameter "SSB-subcarrier offset" is initially indicated by 4 bits (for example, 1011), then The lowest-order bit in the parameter "SSB-subcarrier offset” is the rightmost first bit, that is, "1".
  • the terminal device when the bit configured by the network device is "00", for the system working in FR1, the terminal device sends SIB1 by default, and sends message 2/4 for the initial access random access process.
  • SCS of other OSIs It is 15kHz; for the system working in FR2, the SCS used by the terminal device to send the above several information channels by default is 60kHz.
  • the SCS used for the information channel is 120 kHz.
  • the r bits may also include r bits used to indicate the parameter "SSB-subcarrier offset"; or, may include the r bits used to indicate the parameter "PDCCH-configuration SIB1" r bits in the .
  • the r bits used to indicate the parameter "common subcarrier spacing” do not include 1 bit used to indicate the initial value of the parameter "common subcarrier spacing".
  • FIG. 12 and FIG. 13 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can implement the functions of the terminal equipment or network equipment in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be any device from the terminal device 20 to the terminal device 40 shown in FIG. 1 , or may be the network device 10 shown in FIG. 1 , or may be applied to a terminal device or a module (such as a chip) of a network device.
  • FIG. 12 is a schematic structural diagram of a communication apparatus 1200 provided by an embodiment of the present application.
  • the apparatus 1200 may include a transceiver module 1210 and a processing module 1220 .
  • the transceiver module 1210 is configured to receive first information sent by the network device, where the first information includes a Q value or a first parameter , the first parameter is used to indicate the status of DBTW.
  • the processing module 1220 is configured to determine the state of the DBTW according to the Q value or the first parameter.
  • the processing module 1220 is further configured to:
  • the state of the DBTW is determined according to the DBTW value.
  • the processing module 1220 is further configured to:
  • DBTW value is less than or equal to the second threshold, it is determined that the DBTW is in an off state; or,
  • DBTW value is greater than the second threshold, it is determined that the DBTW is in an open state.
  • the second threshold is the time duration from the first symbol on the time slot where the first synchronization information block SSB is located to the last symbol on the time slot where the second SSB is located, and the The index of the first SSB is 0, and the second SSB is (Q-1); or,
  • the second threshold is the time duration from the first symbol on the time slot where the third SSB is located to the last symbol on the time slot where the fourth SSB is located, the third SSB is located in the first SSB group, and the third SSB is located in the first SSB group.
  • the four SSBs are located in the second SSB group, the first SSB group is the group in which the first bit from the left is configured as "1" in the second parameter, and the second SSB group is the second parameter in the second parameter from the right groups starting with the first bit configured as "1"; or,
  • the second threshold is the time duration from the first symbol on the slot where the fifth SSB is located to the last symbol on the slot where the sixth SSB is located, and the fifth SSB is the SSB with the smallest index among the successfully sent SSBs , the sixth SSB is the SSB with the largest index among the successfully sent SSBs.
  • the second threshold is the time duration from the time slot where the first SSB is located to the time slot where the second SSB is located, the index of the first SSB is 0, and the second SSB is 0.
  • the SSB of is (Q-1); or,
  • the second threshold is the time duration from the time slot where the third SSB is located to the time slot where the fourth SSB is located, the third SSB is located in the first SSB group, the fourth SSB is located in the second SSB group,
  • the first SSB group is a group in which the first bit from the left in the second parameter is configured as "1”
  • the second SSB group is a group in which the first bit from the right in the second parameter is configured as "1" ” group; or,
  • the second threshold is the time duration from the time slot where the fifth SSB is located to the time slot where the sixth SSB is located, the fifth SSB is the SSB with the smallest index among the successfully sent SSBs, and the sixth SSB is a successful SSB The SSB with the highest index among the sent SSBs.
  • the second threshold is the time duration from the first symbol index of the first SSB to the last symbol index of the second SSB, the index of the first SSB is 0, so The second SSB is (Q-1); or,
  • the second threshold is the time duration from the first symbol index of the third SSB to the last symbol index of the fourth SSB, the third SSB is located in the first SSB group, and the fourth SSB is located in the second SSB
  • the first SSB group is the group in which the first bit from the left in the second parameter is configured as "1”
  • the second SSB group is the first bit in the second parameter configured from the right into groups of "1";
  • the second threshold is the time duration from the first symbol index of the fifth SSB to the last symbol index of the sixth SSB, the fifth SSB is the SSB with the smallest index among the successfully transmitted SSBs, and the sixth SSB It is the SSB with the largest index among the successfully transmitted SSBs.
  • the Q value is indicated by n bits, where n is a positive integer greater than 2, and the n bits include at least one bit for indicating a third parameter, the first Three parameters include at least one of the following parameters:
  • the subcarrier interval in the MIB information of the main information block is common, the SSB-subcarrier offset in the MIB information, the physical downlink control channel in the MIB information-configuration system information block 1 PDCCH-configuration SIB1.
  • the n bits include n1 bits for indicating a fourth parameter and (n-n1) bits for indicating a fifth parameter
  • the fourth parameter is the Any parameter in the third parameter
  • the fifth parameter is a parameter in the third parameter except the fourth parameter
  • the fifth parameter is indicated by m-(n-n1) bits
  • m is the initial number indicating the fifth parameter.
  • the n bits include n1 bits for indicating a fourth parameter and (n-n1) bits for indicating a fifth parameter
  • the fourth parameter is the Any parameter in the third parameter
  • the fifth parameter is the parameter in the third parameter except the fourth parameter
  • the fifth parameter is indicated by m bits
  • m indicates the fifth parameter The initial number of parameters, (n-n1) ⁇ m.
  • the fifth parameter is the SSB-subcarrier offset in the MIB information
  • the offset value of the SSB-subcarrier offset is based on the subcarrier spacing SCS of the SSB.
  • the combination with the SCS of the common resource block CRB is determined.
  • the offset value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the offset value of the SSB-subcarrier offset is the (n-n1) bit indication of the fifth parameter the value of ;
  • the offset value of the SSB-subcarrier offset is less than or equal to (n-n1) of the fifth parameter The value indicated by the bits.
  • the (n-n1) bits are (n-n1) bits of the highest order bit in the fifth parameter; or,
  • the (n-n1) bits are the (n-n1) bits of the lowest-order bit in the fifth parameter; or,
  • the (n-n1) bits are any (n-n1) bits in the fifth parameter.
  • the processing module 1220 is further configured to:
  • the first parameter includes a parameter indicating that the DBTW is on, it is determined that the DBTW is in an on state; or,
  • the first parameter includes a parameter indicating that the DBTW is off, it is determined that the DBTW is in an on state.
  • the first parameter is carried in the serving cell configuration common in RRC signaling or in the serving cell configuration common SIB in SIB1 information; or,
  • the Q value or the DBTW value is carried in the serving cell configuration common in the RRC signaling or in the serving cell configuration common SIB in the MIB information.
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero, where the control resource set zero includes the number of resource blocks RBs occupied by the control resource set CORESET#0, the number of RBs is 96.
  • the first interval included in the control resource set zero is 0 to 0. Any value in (96-k), the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the multiplexed format of the SSB and the CORESET#0 is 2 or 3
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4.
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • the processing module 1220 is used to determine first information, where the first information includes a Q value or a first parameter, the first A parameter is used to indicate the status of the discovery burst set transmission window DBTW.
  • the transceiver module 1210 is configured to send the first information to the terminal device.
  • the Q value is indicated by n bits, where n is a positive integer greater than 2, and the n bits include at least one bit for indicating a third parameter, the first Three parameters include at least one of the following parameters:
  • the subcarrier interval in the main information block MIB information is common, the synchronization information block SSB-subcarrier offset in the MIB information, the physical downlink control channel in the MIB information-configuration system information block 1 PDCCH-configuration SIB1.
  • the n bits include n1 bits for indicating a fourth parameter and (n-n1) bits for indicating a fifth parameter
  • the fourth parameter is the Any parameter in the third parameter
  • the fifth parameter is a parameter in the third parameter except the fourth parameter
  • the fifth parameter is indicated by m-(n-n1) bits
  • m is the initial number indicating the fifth parameter.
  • the n bits include n1 bits for indicating a fourth parameter and (n-n1) bits for indicating a fifth parameter
  • the fourth parameter is the Any parameter in the third parameter
  • the fifth parameter is the parameter in the third parameter except the fourth parameter
  • the fifth parameter is indicated by m bits
  • m indicates the fifth parameter The initial number of parameters, (n-n1) ⁇ m.
  • the fifth parameter is the SSB-subcarrier offset in the MIB information
  • the offset value of the SSB-subcarrier offset is based on the subcarrier spacing SCS of the SSB.
  • the combination with the SCS of the common resource block CRB is determined.
  • the offset value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the offset value of the SSB-subcarrier offset is the (n-n1) bit value of the fifth parameter ;or
  • the offset value of the SSB-subcarrier offset is less than or equal to (n-n1) of the fifth parameter The value indicated by the bits.
  • the (n-n1) bits are (n-n1) bits of the highest order bit in the fifth parameter; or,
  • the (n-n1) bits are the (n-n1) bits of the lowest-order bit in the fifth parameter; or,
  • the (n-n1) bits are any (n-n1) bits in the fifth parameter.
  • the first parameter is carried in the serving cell configuration common in RRC signaling or in the serving cell configuration common SIB in SIB1 information; or,
  • the Q value or the DBTW value is carried in the serving cell configuration common in the RRC signaling or in the serving cell configuration common SIB in the MIB information.
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero, where the control resource set zero includes the number of resource blocks RBs occupied by the control resource set CORESET#0, the number of RBs is 96.
  • the first interval included in the control resource set zero is 0 to 0. Any value in (96-k), the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the multiplexed format of the SSB and the CORESET#0 is 2 or 3
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4.
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • the transceiver module 1210 is configured to receive the master information block MIB information sent by the network device, and the MIB information includes the physical downlink control channel- Configuration system information block 1 PDCCH-configuration SIB1, the PDCCH-configuration SIB1 includes control resource set zero, the control resource set zero includes the number of resource blocks RB occupied by control resource set CORESET#0, and the number of RBs is 96.
  • the processing module 1220 is configured to determine the number of consecutive symbols occupied by the Type 0-PDCCH according to the control resource set zero.
  • the control resource set zero includes the first interval. is any value from 0 to (96-k), and the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the multiplexed format of the SSB and the CORESET#0 is 2 or 3
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4.
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • the processing module 1220 is used to determine the MIB information of the main information block, and the MIB information includes the physical downlink control channel-configuration system information block 1 PDCCH-configuration SIB1, the PDCCH-configuration SIB1 includes a control resource set zero, and the control resource set zero includes the number of resource blocks RBs occupied by the control resource set CORESET#0, and the number of RBs is 96.
  • the transceiver module 1210 is configured to send the MIB information to the terminal device.
  • the control resource set zero includes the first interval. is any value from 0 to (96-k), and the first interval represents the interval between the RB with the smallest index in the SSB and the RB with the smallest index in the CORESET#0; or,
  • the first interval is determined based on the value of the offset between the subcarriers in the SSB and the CRB.
  • the multiplexed format of the SSB and the CORESET#0 is 2 or 3
  • the first interval is k or -k
  • the first interval is (k+1) or -(k+1).
  • the number of symbols occupied by the CORESET#0 is any value from 1 to 4.
  • the number of symbols occupied by the CORESET#0 is 2;
  • the number of symbols occupied by the CORESET#0 is 1 or 2.
  • the transceiver module 1210 is configured to receive the main information block MIB information sent by the network device, and the MIB information includes a common subcarrier interval,
  • the subcarrier spacing is generally indicated by r bits, where r is a positive integer greater than or equal to 2.
  • the processing module 1220 is configured to perform timing synchronization according to the MIB information.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the sixth parameter, the The sixth parameter includes at least one of the following parameters:
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter, the The seventh parameter is any one of the sixth parameters, the seventh parameter is indicated by (s-(r-1)) bits, and s is an initial number indicating the seventh parameter.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter, the The seventh parameter is any one of the sixth parameters, the seventh parameter is indicated by s bits, and s is an initial number indicating the seventh parameter.
  • the seventh parameter is the SSB-subcarrier offset in the MIB information
  • the value of the SSB-subcarrier offset is based on the SCS of the SSB and the CRB.
  • the combination of SCS is determined.
  • the value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is the value indicated by (r-1) bits of the seven parameters; or,
  • the SCS of the SSB is the third frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is less than or equal to (r-1) bits of the seventh parameter the indicated value.
  • the processing module 1220 is used to determine the MIB information of the main information block, where the MIB information includes the first subcarrier interval common, the The first subcarrier interval is generally indicated by r bits, where r is a positive integer greater than or equal to 2.
  • the transceiver module 1210 is configured to send the MIB information to the terminal device.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the sixth parameter, the The sixth parameter includes at least one of the following parameters:
  • the PDCCH-configuration SIB1 includes search space zero and control resource set zero.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter, the The seventh parameter is any one of the sixth parameters, the seventh parameter is indicated by (s-(r-1)) bits, and s is an initial number indicating the seventh parameter.
  • the r bits include an initial 1 bit used to indicate that the subcarrier spacing is common and (r-1) bits used to indicate the seventh parameter, the The seventh parameter is any one of the sixth parameters, the seventh parameter is indicated by s bits, and s is an initial number indicating the seventh parameter.
  • the seventh parameter is the SSB-subcarrier offset in the MIB information
  • the value of the SSB-subcarrier offset is based on the SCS of the SSB and the CRB.
  • the combination of SCS is determined.
  • the value of the SSB-subcarrier offset is determined based on a preset threshold
  • the SCS of the SSB is the second frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is the value indicated by (r-1) bits of the seven parameters; or,
  • the SCS of the SSB is the third frequency
  • the SCS of the CRB is the first frequency
  • the value of the SSB-subcarrier offset is less than or equal to (r-1) bits of the seventh parameter the indicated value.
  • transceiver module 1010 and the processing module 1020, reference may be made to the relevant descriptions in the foregoing method embodiments, which are not described herein again.
  • the communication device 1300 includes a processor 1310 and an interface circuit 1320 .
  • the processor 1310 and the interface circuit 1320 are coupled to each other.
  • the interface circuit 1320 can be a transceiver or an input-output interface.
  • the communication apparatus 1300 may further include a memory 1330 for storing instructions executed by the processor 1310 or input data required by the processor 1310 to execute the instructions or data generated after the processor 1310 executes the instructions.
  • the processor 1310 is used to execute the functions of the foregoing processing module 1220
  • the interface circuit 1320 is used to execute the functions of the foregoing transceiver module 1210 .
  • the terminal device chip When the above communication device is a chip applied to a terminal device, the terminal device chip implements the functions of the terminal device in the above method embodiments.
  • the terminal device chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device, and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules (such as a radio frequency module or an antenna) in the terminal device antenna) to send information, the information is sent by the terminal equipment to the network equipment.
  • modules such as a radio frequency module or an antenna
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as a radio frequency module or an antenna) in the network device, and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or an antenna). antenna) to send information, the information is sent by the network equipment to the terminal equipment.
  • modules such as a radio frequency module or an antenna
  • FIG. 14 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the chip 1400 shown in FIG. 14 includes a processor 1410, and the processor 1410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1400 may further include a memory 1420 .
  • the processor 1410 may call and run a computer program from the memory 1420 to execute the steps of the method 300 or the method 1000 or the method 1100 in the embodiments of the present application.
  • the memory 1420 may be a separate device independent of the processor 1410, or may be integrated in the processor 1410.
  • the chip 1400 may further include an input interface 1430 .
  • the processor 1410 may control the input interface 1430 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 1400 may further include an output interface 1440 .
  • the processor 1410 may control the output interface 1440 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable ROM) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disks, removable hard disks, CD-ROMs or known in the art in any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the access network equipment or in the terminal equipment.
  • the processor and the storage medium may also exist in the access network device or the terminal device as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program or instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer-readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server that integrates one or more available media.
  • the usable media can be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital versatile discs (DVD); and semiconductor media, such as solid state drives (solid state disks). disk, SSD).
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. Repeat.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the embodiment of the present application further provides a communication system, including the terminal device and the network device in the above-mentioned embodiments, so as to realize the mutual cooperation between the devices.
  • each functional module in each embodiment of the present application may be integrated into one physical entity, or each module may correspond to a single physical entity, or two or more modules may be integrated into one physical entity.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了通信方法和装置,所述方法应用于非授权频段,包括:接收网络设备发送的第一信息,所述第一信息包括Q值或第一参数,所述第一参数用于指示发现突发集传输窗口DBTW的状态;根据所述Q值或所述第一参数确定所述DBTW的状态。本申请提供的方案,可以使得终端设备确定DBTW的状态,从而可以快速实现与网络设备的定时同步。

Description

通信方法和通信装置
本申请要求于2021年08月06日提交国家知识产权局、申请号为202110902625.7、申请名称为“通信方法和通信装置”的中国专利申请的优先权,以及于2021年04月07日提交国家知识产权局、申请号为202110373178.0、申请名称为“通信方法和通信装置”的中国专利申请的优先权,以及于2021年04月02日提交国家知识产权局、申请号为202110363804.8、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信方法和通信装置。
背景技术
对于接入到不同类型的频段的接收设备(如用户设备(user equipment,UE)),首先会检测来自基站发送的同步信息块图样(synchronization signal block pattern,SS/PBCH Block/SSB),其中该SSB中包括携带主信息块(master information block,MIB)信息的物理广播信道(physical broadcast channel,PBCH),该MIB信息中的同一参数,在授权频段和共享频段所表示的内容不同。对于工作在共享频段上的系统,考虑到先听后说机制(listen before talk,LBT)机制的存在,基站不能在指定位置上发送指定SSB。因此,新定义一种Q值(即
Figure PCTCN2022084965-appb-000001
),UE通过解调Q值并根据解调参考信号(demodulation reference signal,DMRS)序列可以计算发送同一个SSB索引的多个侯选位置。
考虑到共享频段上存在的LBT机制,基站在发送发现突发集(discovery burst,DB)之前不需要执行LBT,可以认为发现突发集传输窗口(discovery burst transmission window,DBTW)是关闭的,否则,认为该DBTW处于打开状态。然而UE并不知道DBTW的状态,导致无法快速与网络设备实现定时同步。
发明内容
本申请提供一种通信方法和通信装置,可以使得终端设备确定DBTW的状态,从而可以快速实现与网络设备的定时同步。
第一方面,提供了一种通信方法,该方法应用于非授权频段,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。
终端设备接收网络设备发送的第一信息,所述第一信息包括Q值或第一参数,所述第一参数用于指示发现突发集传输窗口DBTW的状态;
根据所述Q值或所述第一参数确定所述DBTW的状态。
本申请实施例提供的方案,终端设备可以根据网络设备发送的第一信息确定DBTW的状态,从而可以确定网络设备侧是否在DBTW上发送因LBT失败而无法发送的SSB,进一步地,可以快速实现与网络设备之间的定时同步。
结合第一方面,在某些可能的实现方式中,所述根据所述Q值确定所述DBTW的状 态,包括:
若所述Q值大于或等于第一阈值,确定所述DBTW处于关闭状态;或者,
若所述Q值小于所述第一阈值,根据DBTW值确定所述DBTW的状态。
结合第一方面,在某些可能的实现方式中,所述根据所述DBTW值确定所述DBTW的状态,包括:
若所述DBTW值小于或等于第二阈值,确定所述DBTW处于关闭状态;或者,
若所述DBTW值大于所述第二阈值,确定所述DBTW处于打开状态。
本申请提供的方案,终端设备通过根据Q值与第一阈值的大小关系,确定DBTW的状态,若无法确定DBTW的状态时,进一步地,还可以根据DBTW值确定DBTW的状态。从而可以确定网络设备侧是否在DBTW上发送因LBT失败而无法发送的SSB,可以快速实现与网络设备之间的定时同步。
结合第一方面,在某些可能的实现方式中,所述第二阈值为第一同步信息块SSB所在时隙上的第一个符号到第二SSB所在时隙上的最后一个符号的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB所在时隙上的第一个符号到第四SSB所在时隙上的最后一个符号的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB所在时隙上的第一个符号到第六SSB所在时隙上的最后一个符号的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发送的SSB中索引最大的SSB。
结合第一方面,在某些可能的实现方式中,所述第二阈值为第一SSB所在的时隙到第二SSB所在的时隙的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB所在的时隙到第四SSB所在的时隙的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB所在的时隙到第六SSB所在的时隙上的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发送的SSB中索引最大的SSB。
结合第一方面,在某些可能的实现方式中,所述第二阈值为第一SSB的第一个符号索引到第二SSB的最后一个符号索引的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB的第一个符号索引到第四SSB的最后一个符号索引的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB的第一个符号索引到第六SSB的最后一个符号索引的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发 送的SSB中索引最大的SSB。
结合第一方面,在某些可能的实现方式中,所述Q值用n个比特指示,所述n为大于2的正整数,所述n个比特包括用于指示第三参数的至少一个比特,所述第三参数包括以下至少一个参数:
主信息块MIB信息中的子载波间隔通用、所述MIB信息中的SSB-子载波偏移、所述MIB信息中的物理下行控制信道-配置系统信息块1PDCCH-配置SIB1。
本申请提供的方案,对于工作在共享频段上的系统,Q值可以通过n个比特指示,该n个比特包括用于指示上述第三参数中的至少一个比特。换句话说,在不扩展MIB负载容量的情况下,用于指示Q值的比特可以为MIB中其它参数相应的比特,可以提高系统的性能。
结合第一方面,在某些可能的实现方式中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零。
结合第一方面,在某些可能的实现方式中,所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m-(n-n1)个比特指示,m为指示所述第五参数的初始数量。
本申请提供的方案,用于确定DBTW的状态的Q值可以通过n个比特指示,该n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第五参数采用m-(n-n1)个比特指示,m为指示所述第五参数的初始数量;在这种实现方式下,可以用MIB中其它参数相应的比特指示Q值,可以避免扩展MIB负载容量指示Q值,从而可以提高系统的性能。
结合第一方面,在某些可能的实现方式中,所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m个比特指示,m为指示所述第五参数的初始数量,(n-n1)<m。
本申请提供的方案,用于确定DBTW的状态的Q值可以通过n个比特指示,该n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第五参数采用m个比特指示;在这种实现方式下,可以用MIB中其它参数相应的比特指示Q值,可以避免采用扩展MIB负载容量指示Q值,且也不会影响第五参数自身的比特指示,从而可以提高系统的性能。
结合第一方面,在某些可能的实现方式中,所述第五参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的偏移值根据所述SSB的子载波间隔SCS和公共资源块CRB的SCS的组合确定。
结合第一方面,在某些可能的实现方式中,若所述SSB的SCS和CRB的SCS均为第一频率,所述SSB-子载波偏移的偏移值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为指示所述第五参数的(n-n1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为小于或等于所述第五参数的(n-n1)个比特指示的数值。
结合第一方面,在某些可能的实现方式中,其特征在于,所述(n-n1)个比特为所述 第五参数中最高阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中最低阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中的任意(n-n1)个比特。
结合第一方面,在某些可能的实现方式中,所述根据所述第一参数确定所述DBTW的状态,包括:
若所述第一参数包括指示所述DBTW打开的参数,确定所述DBTW处于打开状态;或者,
若所述第一参数包括指示所述DBTW关闭的参数,确定所述DBTW处于打开状态。
本申请提供的方案,终端设备可以根据网络设备发送的第一参数确定DBTW的状态,从而可以确定网络设备侧是否在DBTW上发送因LBT失败而无法发送的SSB,进一步地,可以快速实现与网络设备之间的定时同步。
结合第一方面,在某些可能的实现方式中,所述第一参数携带于无线资源控制RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中;或者,
所述Q值或所述DBTW值携带于所述服务小区配置通用中或所述服务小区配置通用SIB中。
结合第一方面,在某些可能的实现方式中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
结合第一方面,在某些可能的实现方式中,若SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
结合第一方面,在某些可能的实现方式中,若SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
结合第一方面,在某些可能的实现方式中,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
结合第一方面,在某些可能的实现方式中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数1或2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
第二方面,提供了一种通信方法,该方法应用于非授权频段,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。
网络设备确定第一信息,所述第一信息包括Q值或第一参数,所述第一参数用于指示发现突发集传输窗口DBTW的状态;
所述网络设备向终端设备发送所述第一信息。
本申请实施例提供的方案,网络设备可以向终端设备发送的第一信息,使得终端设备确定DBTW的状态,便于终端设备确定网络设备侧是否在DBTW上发送因LBT失败而无法发送的SSB,进一步地,从而可以使得终端设备快速实现与网络设备之间的定时同步。
结合第二方面,在某些可能的实现方式中,所述Q值用n个比特指示,所述n为大于2的正整数,所述n个比特包括用于指示第三参数的至少一个比特,所述第三参数包括以下至少一个参数:
主信息块MIB信息中的子载波间隔通用、所述MIB信息中的同步信息块SSB-子载波偏移、所述MIB信息中的物理下行控制信道-配置系统信息块1PDCCH-配置SIB1。
本申请提供的方案,对于工作在共享频段上的系统,Q值可以通过n个比特指示,该n个比特包括用于指示上述第三参数中的至少一个比特。换句话说,在不扩展MIB负载容量的情况下,用于指示Q值的比特可以为MIB中其它参数相应的比特,可以提高系统的性能。
结合第二方面,在某些可能的实现方式中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零。
结合第二方面,在某些可能的实现方式中,所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m-(n-n1)个比特指示,m为指示所述第五参数的初始数量。
本申请提供的方案,用于确定DBTW的状态的Q值可以通过n个比特指示,该n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第五参数采用m-(n-n1)个比特指示,m为指示所述第五参数的初始数量;在这种实现方式下,可以用MIB中其它参数相应的比特指示Q值,可以避免扩展MIB负载容量指示Q值,从而可以提高系统的性能。
结合第二方面,在某些可能的实现方式中,所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m个比特指示,m为指示所述第五参数的初始数量,(n-n1)<m。
本申请提供的方案,用于确定DBTW的状态的Q值可以通过n个比特指示,该n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第五参数采用m个比特指示;在这种实现方式下,可以用MIB中其它参数相应的比特指示Q值,可以避免采用扩展MIB负载容量指示Q值,且也不会影响第五参数自身的比特指示,从而可以提高系统的性能。
结合第二方面,在某些可能的实现方式中,所述第五参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的偏移值根据所述SSB的子载波间隔SCS和公共资源块CRB的SCS的组合确定。
结合第二方面,在某些可能的实现方式中,若所述SSB的SCS和CRB的SCS均为第一频率,所述SSB-子载波偏移的偏移值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为所述第五参数的(n-n1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为小于或等于所述第五参数的(n-n1)个比特指示的数值。
结合第二方面,在某些可能的实现方式中,所述(n-n1)个比特为所述第五参数中最高阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中最低阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中的任意(n-n1)个比特。
结合第二方面,在某些可能的实现方式中,所述第一参数携带于无线资源控制RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中;或者,
所述Q值或所述DBTW值携带于所述服务小区配置通用中或所述服务小区配置通用SIB中。
结合第二方面,在某些可能的实现方式中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
结合第二方面,在某些可能的实现方式中,若SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
结合第二方面,在某些可能的实现方式中,若所述SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
结合第二方面,在某些可能的实现方式中,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
结合第二方面,在某些可能的实现方式中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
第三方面,提供了一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。
终端设备接收网络设备发送的主信息块MIB信息,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96;
所述终端设备根据所述控制资源集零确定类型0-物理下行控制信道类型0-PDCCH占用的连续符号数。
本申请提供的方案,网络设备向终端设备发送MIB信息,该MIB包括参数控制资源集零,且该控制资源集零包括的CORESET#0占用的RB数量为96,终端设备接收到该 MIB信息后,可以根据接收到的控制资源集零确定类型0-PDCCH占用的连续符号数。
结合第三方面,在某些可能的实现方式中,若同步信息块SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
结合第三方面,在某些可能的实现方式中,若SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
结合第三方面,在某些可能的实现方式中,若SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
结合第三方面,在某些可能的实现方式中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
第四方面,提供了一种通信方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。
网络设备确定主信息块MIB信息,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96;
所述网络设备向终端设备发送所述MIB信息。
本申请提供的方案,网络设备向终端设备发送MIB信息,该MIB包括参数控制资源集零,且该控制资源集零包括的CORESET#0占用的RB数量为96,便于终端设备可以根据接收到的控制资源集零确定类型0-PDCCH占用的连续符号数。
结合第四方面,在某些可能的实现方式中,若同步信息块SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
结合第四方面,在某些可能的实现方式中,若SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
结合第四方面,在某些可能的实现方式中,若SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
结合第四方面,在某些可能的实现方式中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
第五方面,提供了一种通信方法,该方法应用于授权频段,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。
终端设备接收网络设备发送的MIB信息,所述MIB信息包括子载波间隔通用,所述子载波间隔通用通过r个比特指示,所述r为大于或等于2的正整数;
所述终端设备根据所述MIB信息进行定时同步。
本申请提供的方案,网络设备向终端设备发送MIB信息,该MIB包括子载波间隔通用,且该子载波间隔通用通过大于或等于2个比特指示,终端设备在接收到该MIB信息后,可以根据接收到的MIB信息进行定时同步。
结合第五方面,在某些可能的实现方式中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第六参数中的(r-1)个比特,所述第六参数包括以下至少一个参数:
所述MIB信息中的SSB-子载波偏移、所述MIB信息中的PDCCH-配置SIB1。
结合第五方面,在某些可能的实现方式中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零。
结合第五方面,在某些可能的实现方式中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用(s-(r-1))个比特指示,s为指示所述第七参数的初始数量。
本申请提供的方案,MIB信息中的子载波间隔通用可以通过r个比特指示,r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数采用s-(r-1))个比特指示,s为指示所述第七参数的初始数量;在这种实现方式下,可以用MIB中其它参数相应的比特指示子载波间隔通用,可以避免扩展MIB负载容量指示子载波间隔通用,从而可以提高系统的性能。
结合第五方面,在某些可能的实现方式中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用s个比特指示,s为指示所述第七参数的初始数量。
本申请提供的方案,MIB信息中的子载波间隔通用可以通过r个比特指示,r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数采用s个比特指示;在这种实现方式下,可以用MIB中其它参数相应的比特指示子载波间隔通用,可以避免采用扩展MIB负载容量指示子载波间隔通用,且也不会影响第七参数自身的比特指示,从而可以提高系统的性能。
结合第五方面,在某些可能的实现方式中,所述第七参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的数值根据所述SSB的SCS和所述CRB的SCS的组合确定。
结合第五方面,在某些可能的实现方式中,若所述SSB的SCS和所述CRB的SCS 均为第一频率,所述SSB-子载波偏移的数值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为所述七参数的(r-1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为小于或等于所述第七参数的(r-1)个比特指示的数值。
第六方面,提供了一种通信方法,该方法应用于授权频段,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。
网络设备确定MIB信息,所述MIB信息包括第一子载波间隔通用,所述第一子载波间隔通用通过r个比特指示,所述r为大于或等于2的正整数;
所述网络设备向终端设备发送所述MIB信息。
本申请提供的方案,网络设备向终端设备发送MIB信息,该MIB包括子载波间隔通用,且该子载波间隔通用通过大于或等于2个比特指示,便于终端设备可以根据接收到的MIB信息进行定时同步。
结合第六方面,在某些可能的实现方式中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第六参数中的(r-1)个比特,所述第六参数包括以下至少一个参数:
所述MIB信息中的SSB-子载波偏移、所述MIB信息中的PDCCH-配置SIB1。
结合第六方面,在某些可能的实现方式中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零。
结合第六方面,在某些可能的实现方式中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用(s-(r-1))个比特指示,s为指示所述第七参数的初始数量。
本申请提供的方案,MIB信息中的子载波间隔通用可以通过r个比特指示,r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数采用s-(r-1))个比特指示,s为指示所述第七参数的初始数量;在这种实现方式下,可以用MIB中其它参数相应的比特指示子载波间隔通用,可以避免扩展MIB负载容量指示子载波间隔通用,从而可以提高系统的性能。
结合第六方面,在某些可能的实现方式中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用s个比特指示,s为指示所述第七参数的初始数量。
本申请提供的方案,MIB信息中的子载波间隔通用可以通过r个比特指示,r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数采用s个比特指示;在这种实现方式下,可以用MIB中其它参数相应的比特指示子载波间隔通用,可以避免采用扩展MIB负载容量指示子载波间隔通用,且也不会影响第七参数自身的比特指示,从而可以提高系统的性能。
结合第六方面,在某些可能的实现方式中,所述第七参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的数值根据所述SSB的SCS和所述CRB的SCS的组合确定。
结合第六方面,在某些可能的实现方式中,若所述SSB的SCS和所述CRB的SCS均为第一频率,所述SSB-子载波偏移的数值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为所述七参数的(r-1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为小于或等于所述第七参数的(r-1)个比特指示的数值。
第七方面,提供一种通信装置,有益效果可以参见第一方面的描述,在此不再赘述。所述通信装置具有实现上述第一方面的方法实施例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于接收网络设备发送的第一信息,所述第一信息包括Q值或第一参数,所述第一参数用于指示发现突发集传输窗口DBTW的状态;处理模块,用于根据所述Q值或所述第一参数确定所述DBTW的状态。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第八方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于确定第一信息,所述第一信息包括Q值或第一参数,所述第一参数用于指示发现突发集传输窗口DBTW的状态;收发模块,用于向终端设备发送所述第一信息。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第九方面,提供一种通信装置,有益效果可以参见第三方面的描述此处不再赘述。所述通信装置具有实现上述第三方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于接收网络设备发送的主信息块MIB信息,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96;处理模块,用于根据所述控制资源集零确定类型0-物理下行控制信道类型0-PDCCH占用的连续符号数。这些模块可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十方面,提供一种通信装置,有益效果可以参见第四方面的描述此处不再赘述。所述通信装置具有实现上述第四方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于确定主信息块MIB信息,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96;收发模块,用于向终端设备发送所述MIB信息。这些模块可以执行上述第四方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十一方面,提供一种通信装置,有益效果可以参见第五方面的描述此处不再赘述。所述通信装置具有实现上述第五方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发模块,用于接收网络设备发送的MIB信息,所述MIB信息包括子载波间隔通用,所述子载波间隔通用通过r个比特指示,所述r为大于或等于2的正整数;处理模块,用于根据所述MIB信息进行定时同步。这些模块可以执行上述第五方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十二方面,提供一种通信装置,有益效果可以参见第六方面的描述此处不再赘述。所述通信装置具有实现上述第六方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于确定MIB信息,所述MIB信息包括第一子载波间隔通用,所述第一子载波间隔通用通过r个比特指示,所述r为大于或等于2的正整数;收发模块,用于向终端设备发送所述MIB信息。这些模块可以执行上述第六方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十三方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第十四方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第十六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第十七方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十九方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第二十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法。
附图说明
图1为本申请实施例提供的一种基于通信系统的示意图。
图2为本申请实施例提供的DBTW和DB在时域上的关系的示意图。
图3为本申请实施例中提供的一种通信方法的流程示意图。
图4为本申请实施例提供的一种SSB发送方式的示意图。
图5为本申请实施例提供的一种DB发送方式的示意图。
图6为本申请实施例提供的一种SSB与CORESET#0的位置的示意图。
图7为本申请实施例提供的另一种SSB与CORESET#0的位置的示意图。
图8为本申请实施例提供的又一种SSB与CORESET#0的位置的示意图。
图9为本申请实施例提供的再一种SSB与CORESET#0的位置的示意图。
图10为本申请实施例中提供的另一种通信方法的流程示意图。
图11为本申请实施例中提供的又一种通信方法的流程示意图。
图12为为本申请实施例提供的一种通信装置的示意性结构图。
图13为本申请实施例提供的另一种通信装置的示意性结构图。
图14为本申请实施例提供的芯片的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)通信系统以及未来的移动通信系统等。
图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示,该无线通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备10。该无线通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备20、终端设备30、终端设备40等。
应理解,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括核心网设备、无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
在移动通信系统100中,本申请实施例中的终端设备20、终端设备30、终端设备40也可以称为终端、终端设备、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑,还可以是应用于虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)以及智慧家庭(smart home)等场景中的无线终端。本申请中将前述终端设备及可应用于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终 端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中的网络设备10可以是用于与终端设备通信的设备,该网络设备可以是基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
应理解,在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
还应理解,上述终端设备20-终端设备40均可以与网络设备10进行通信,其链路环境包括了上行、下行以及边路传输(side-link),链路传输中传输的信息可以包括实际传输的数据信息,以及用于指示或调度实际数据的控制信息。此外,示例性地,终端设备20和终端设备40也可以组成一个通信系统,其链路传输环境与前述一致,具体的信息可以交互依托于网络的配置方式。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,本申请实施例中的“第一”、“第二”以及“第三”仅为了区分,不应对本申请构成任何限定。例如,本申请实施例中的“第一信息”和“第二信息”,表示网络设备和终端设备之间传输的信息。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还需要说明的是,本申请实施例中,“预先设定”、“预先定义”等可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定,例如本申请实施例中预设的规则、预设的常数等。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
如上所述,本申请的技术方案可以应用于NR通信系统,随着技术的演进,可使用的频段不断提高。NR对频段的划分,主要分成频段1(frequency range 1,FR1)和FR2两部分,其中,FR1主要指450MHz~6GHz带宽,FR2主要指24.25GHz~52.6GHz带宽。
除此之外,52.6GHz~71GHz频段(简称above 52.6GHz)也被纳入后5代移动通信系统(beyond 5.5G系统)的使用范围中。这部分频段包括授权频段和非授权频段(该非授权频段也可以称为共享频段)。
在中国,频段范围在59GHz~64GHz的频段为非授权频段,其余则为授权频段;对于美国来说,频段57GHz~71GHz皆为非授权频段。
在第五代移动通信技术背景框架下,将部署在共享频段的技术统一叫做无线非授权频段技术(new radio unlicensed,NRU)。共享频段上除了NR系统外,还可以包括其它诸如无线电探测与定位(radio detection and ranging,radar)、无线保真(wireless fidelity,wifi)、蓝牙以及其它异运营商的接入系统。因此,工作在共享频段上的系统需要支持如下所有或者部分关键技术,即LBT、发送功率控制(transmit power control,TPC)和动态频谱选择(dynamic frequency selection,DFS)。
LBT机制是指各种接入设备在使用信道之前都要先去获取目标信道所在频段上的干扰情况,只有当目标频段信道上的干扰水平小于等于预设门限值,才能使用该信道。
TPC机制是指为了不影响其它接入设备的正常通信情况,工作在共享授权上的发送设备不能无限制的提升自身的发射功率。
DFS机制是指工作在共享授权上系统需要及时的避开高优先级系统所在的频段,动态的切换到干扰较低的频段上工作。
对于接入到不同类型的频段的接收设备(如UE),首先会检测来自基站发送的SSB,其主要由主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS)以及PBCH组成,由时域上4个正交频分复用符号(orthogonal frequency division multiplexing,OFDM)以及频域上20个资源块(resource block,RB)的二维区域构成。UE通过解调PSS和SSS可以完成小区同步和粗略的符号级定时同步;通过解调PBCH中携带的主信息块(master information block,MIB)信息可以完成系统帧级别的定时同步,获取系统信息块1/剩余最小系统信息(system information block/remaining minimum system information,SIB1/RMSI)的相关配置信息,即通过参数(pdcch-ConfigSIB1)解调SIB1/RMSI的类型0-物理下行控制信道(type0-physical downlink control channel,type0-PDCCH)和物理下行共享信道(physical downlink shared channel,PDSCH),其中, 控制资源集(control resource set,CORESET)#0位于type0-PDCCH中。
上述PBCH中携带的MIB信息包含以下参数:
Figure PCTCN2022084965-appb-000002
其中,系统帧符号(“systemFrameNumber”)表示系统帧的低6位;子载波间隔通用(“subCarrierSpacingCommon”)表示SIB1,消息2/4(Msg.2/4)和广播按需信息(on-demaind information,OSI)的子载波;SSB-子载波偏移(ssb-SubcarrierOffset”)“表示SSB与公共资源块(common resource block,CRB)中子载波#0之间的偏移;借条参考信号-类型A-位置(“dmrs-TypeA-Position”)表示第一个DMRS的位置;PDCCH-配置SIB1(“pdcch-ConfigSIB1”)用于指示CORESET和搜索空间以及相关PDCCH的参数配置;小区禁止(“cellBarred”)表示是否允许终端设备接入该小区,频段内重选(“intraFreqReselection”)用于指示终端设备在频段内的小区选择或重选,遗留(“spare”)为暂时不用的遗留比特。
上述MIB信息中的同一参数,在授权频段和共享频段所表示的内容不同。对于工作在共享频段上的系统,考虑到LBT机制的存在,基站不能在指定位置上发送指定SSB。因此,新定义一种Q值(即
Figure PCTCN2022084965-appb-000003
),可以通过2个比特表示,取值可以为{1,2,4,8}。UE通过解调Q值并根据DMRS序列可以计算发送同一个SSB索引的多个侯选位置,这些候选位置对于UE来说理解成是具有相同的准共址(quasi co-location,QCL)关系,比如对应同一个下行波束方向。
针对共享频段系统上的LBT机制,R16NRU系统新定义了DBTW和DB,该DB包含了一组下行(down link,DL)传输信号,如SS/PBCH Block和RMSI信息。通过这种设计,基站可以通过单一的LBT机制以DB的方式将SS/PBCH Block和RMSI打包同时发送出来。
其中,DBTW和DB在时域上的关系如图2所示。参考图2,可以看出,基站发送的DB可以在DBTW内的不同位置上出现。
针对DB和DBTW的讨论,RAN1 104e会议上讨论结果如下:
For an unlicensed band that requires LBT,further study whether/how to support discovery burst(DB)and discovery burst transmission window(DBTW)at least for 120kHz SSB SCS
·If DB supported
ο FFS:What signals/channels are included in DB other than SS/PBCH block
·If DBTW is supported
ο Support mechanism to indicate or inform that DBTW is enabled/disabled for both  IDLE and CONNECTED mode UEs
FFS:how to support UEs performing initial access that do not have any prior information on DBTW.
ο PBCH payload size is no greater than that for FR2
·The following points are additionally FFS:
ο How to indicate candidate SSB indices and QCL relation without exceeding limit on PBCH payload size
ο Details of the mechanism for enabling/disabling DBTW considering LBT exempt operation and overlapping licensed/unlicensed bands
对于需要LBT的非授权频段,请进一步研究是否/如何至少在120kHz SSB SCS上支持DB和DBTW。
·如果支持DB
FFS:除SS/PBCH块外,DB中还包含哪些信号/通道
·如果支持DBTW
ο指示或通知IDTW和CONNECTED模式UE启用/禁用DBTW的支持机制
FFS:如何支持不具有关于DBTW的任何先验信息的UE进行初始访问。
ο PBCH有效载荷大小不大于FR2的大小
·以下几点是FFS:
ο如何在不超过PBCH有效负载大小限制的情况下指示候选SSB索引和QCL关系
ο考虑到LBT豁免操作和许可/未许可频段重叠的启用/禁用DBTW的机制的详细信息。
考虑到共享频段上存在的LBT机制,当网络设备在发送DB之前不需要执行LBT,可以认为DBTW是关闭的,否则,认为该DBTW处于打开状态。然而终端设备并不知道DBTW的状态,导致无法与网络设备实现快速定时同步。
因此,本申请提供一种通信方法,可以使得终端设备确定DBTW的状态,从而可以快速实现与网络设备的定时同步。
如图3所示,本申请实施例提供的一种通信方法的流程示意图,该方法可以由终端设备和网络设备执行,或者也可以由终端设备中的芯片和网络设备中的芯片执行。该通信方法300可以应用于非授权频段,该通信方法300可以包括:
310,网络设备确定第一信息,所述第一信息包括Q值或第一参数,所述第一参数用于指示DBTW的状态。
320,所述网络设备向终端设备发送所述第一信息。
其中,该步骤310-320可以由图1中的网络设备10执行。
330,终端设备接收网络设备发送的第一信息。
340,所述终端设备根据所述Q值或所述第一参数确定所述DBTW的状态。
其中,该步骤330-340可以由图1中的终端设备20-终端设备40中的任一设备或任意多个设备执行。
可选地,在一些实施例中,本申请中的第一信息可以为上文中的SSB,所述SSB包括PBCH,所述PBCH携带包括所述Q值的MIB信息。
如上所述,对于接入到不同类型的频段的终端设备,可以检测来自网络设备发送的 SSB,该SSB中包括PBCH,终端设备通过解调该PBCH中携带的MIIB信息可以完成定时同步。本申请实施例中,终端设备可以基于该MIB信息中的Q值确定DBTW的状态,以快速实现与网络设备之间的定时同步。
本申请实施例提供的方案,终端设备可以根据网络设备发送的第一信息确定DBTW的状态,从而可以确定网络设备侧是否在DBTW上发送因LBT失败而无法发送的SSB,进一步地,可以快速实现与网络设备之间的定时同步。
上文指出,终端设备可以根据Q值或第一参数确定DBTW的状态,下文首先介绍终端设备根据Q值确定DBTW的状态。
可选地,在一些实施例中,所述根据所述Q值确定所述DBTW的状态,包括:
若所述Q值大于或等于第一阈值,确定所述DBTW处于关闭状态;或者,
若所述Q值小于所述第一阈值,根据DBTW值确定所述DBTW的状态。
本申请实施例中,终端设备可以根据Q值与第一阈值的大小关系确定DBTW的状态,具体请参见下文中的情况一和情况二。
情况一:Q大于或等于第一阈值,终端设备确定DBTW处于关闭状态
示例性地,假设第一阈值为64,若网络设备向终端设备发送的Q为128,即该数值大于第一阈值,则终端设备可以认为DBTW处于关闭状态。
需要说明的是,在该情况一下,不管SSB的SCS处于何种频率下(如120kHz,480kHz,960kHz等),只要Q大于或等于第一阈值,终端设备可以认为DBTW处于关闭状态,即网络设备侧并未在DBTW上发送因LBT失败而实际没有发送的SSB。
情况二:Q小于64,终端设备确定根据DBTW值确定DBTW的状态
(1)若DBTW值小于或等于第二阈值,终端设备确定所述DBTW处于关闭状态;
(2)若DBTW值大于所述第二阈值,终端设备确定所述DBTW处于打开状态。
示例性地,若网络设备向终端设备发送的Q为32,即网络设备向终端设备发送的Q小于第一阈值,则终端设备可以进一步基于DBTW值确定所述DBTW的状态。
①若SSB的SCS为120kHz,且网络设备向终端设备配置的DBTW值小于或等于2.5ms或2.25ms(如网络设备配置的DBTW值为2.0ms),则终端设备可以认为DBTW处于关闭状态;若网络设备向终端设备配置的DBTW值大于2.5ms或2.25ms(如网络设备配置的DBTW值为3.0ms),则终端设备可以认为DBTW处于打开状态。
②若SSB的SCS为480kHz或960kHz,且网络设备向终端设备配置的DBTW值小于或等于0.5ms或0.25ms(如网络设备配置的DBTW值为0.2ms),则终端设备可以认为DBTW处于关闭状态;若网络设备向终端设备配置的DBTW值大于0.5ms或0.25ms(如网络设备配置的DBTW值为1.0ms),则终端设备可以认为DBTW处于打开状态。
需要说明的是,本申请实施例中的第一阈值和/或第二阈值可以是协议规定的,也可以是网络设备配置的,不予限制。应理解,上述第一阈值可以是DBTW内候选SSB的数量。
换句话说,如果Q大于或等于DBTW内的候选SSB数量,则UE认为DBTW被禁用;如果Q小于DBTW中的候选SSB数量,则UE可以认为已启用DBTW。其相关英文可以表述为;
·If Q is larger than or equals to the number of candidate SSB within a DBTW,UE assumes that DBTW is disabled.
·If Q is smaller than the number of candidate SSB within a DBTW,UE assumes that DBTW is enabled.
若第二阈值是网络设备配置的,则网络设备可以通过RRC信令中的参数“发现突发集窗口长度”(discoveryburst-windowlength)或参数“发现突发集窗口长度-r17”(discoveryburst-windowlength-r17)对其进行定义。
如下表1-表4为本申请实施例提供的几种表示Q值以及对应DBTW的可能的方式。
表1
Figure PCTCN2022084965-appb-000004
表2
Figure PCTCN2022084965-appb-000005
表3
Figure PCTCN2022084965-appb-000006
Figure PCTCN2022084965-appb-000007
表4
Figure PCTCN2022084965-appb-000008
Figure PCTCN2022084965-appb-000009
可选地,在一些实施例中,所述Q值和所述DBTW值携带于RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中。这种情况下,DiscoveryBurstWindowLength-r17={ms0dot5,ms1,ms2,ms2dot25,ms2dot5,ms3,ms3dot5,ms4,ms5}。
在上述表1-表4中,Q值可以用3个比特表示,但是对于同一索引,可以对应的不同的Q值,且所对应的DBTW值的阈值也可以不同。
具体地,在表1中,索引为“0”对应的Q值为8,且在SSB的SCS为120kHz或480kHz或960kHz时所分别对应的DBTW值的阈值分别为0.5ms、0.125ms、0.075ms。换句话说,若网络设备向终端设备发送的Q值为8,在一种可能的实现方式中,终端设备在可以在频率为120kHz的基础上接收该Q值,若网络设备配置的DBTW值为0.4ms,由于该0.4ms小于120kHz下对应的阈值0.5ms,则终端设备可以认为DBTW处于关闭状态;若网络设备配置的DBTW值为0.6ms,由于该0.6ms大于120kHz下对应的阈值0.5ms,则终端设备可以认为DBTW处于打开状态。
在另一种可能的实现方式中,终端设备也可以在频率为480kHz的基础上接收该Q值,若网络设备配置的DBTW值为0.1ms,由于该0.1ms小于480kHz下对应的阈值0.125ms,则终端设备可以认为DBTW处于关闭状态;若网络设备配置的DBTW值为0.2ms,由于该0.2ms大于480kHz下对应的阈值0.125ms,则终端设备可以认为DBTW处于打开状态。
在另一种可能的实现方式中,终端设备也可以在频率为960kHz的基础上接收该Q值,若网络设备配置的DBTW值为0.05ms,由于该0.05ms小于960kHz下对应的阈值0.075ms,则终端设备可以认为DBTW处于关闭状态;若网络设备配置的DBTW值为0.1ms,由于该0.1ms大于960kHz下对应的阈值0.075ms,则终端设备可以认为DBTW处于打开状态。
在表2中,索引为“0”对应的Q值为1,且在SSB的SCS为120kHz或480kHz或960kHz时所分别对应的DBTW值的阈值分别为0.075ms、0.01875ms、0.09375ms。换句话说,若网络设备向终端设备发送的Q值为1,在一种可能的实现方式中,终端设备在可以在频率为120kHz的基础上接收该Q值,若网络设备配置的DBTW值为0.05ms,由于该0.05ms小于120kHz下对应的阈值0.075ms,则终端设备可以认为DBTW处于关闭状态;若网络设备配置的DBTW值为0.1ms,由于该0.1ms大于120kHz下对应的阈值0.075ms,则终端设备可以认为DBTW处于打开状态。
在另一种可能的实现方式中,终端设备也可以在频率为480kHz的基础上接收该Q值,若网络设备配置的DBTW值为0.01ms,由于该0.01ms小于480kHz下对应的阈值0.01875ms,则终端设备可以认为DBTW处于关闭状态;若网络设备配置的DBTW值为0.02ms,由于该0.02ms大于480kHz下对应的阈值0.01875ms,则终端设备可以认为DBTW处于打开状态。
在另一种可能的实现方式中,终端设备也可以在频率为960kHz的基础上接收该Q值,若网络设备配置的DBTW值为0.05ms,由于该0.05ms小于960kHz下对应的阈值0.09375ms,则终端设备可以认为DBTW处于关闭状态;若网络设备配置的DBTW值为0.1ms,由于该0.1ms大于960kHz下对应的阈值0.09375ms,则终端设备可以认为DBTW处于打开状态。
类似地,对于表3和表4的内容,与上述类似,为了简洁,不再赘述。
需要说明的是,上述表1-表4所示出的几种表示方式仅为举例说明,还可以为其它可能的表示方式,不予限制。
在一些实施例中,也可以根据比例因子确定DBTW占用的时隙和所配置的Q值,以及DBTW的值。假设所述Q值和DBTW占用的时隙个数、符号个数和DBTW值分别为A,B,C和D,且A,B,C和D的取值基于第一SCS(比如120kHz),对于第二SCS,当所述第二SCS与第一SCS之间的比例为X时,第二SCS下的Q值,DBTW占用的时隙个数、DBTW占用的符号个数以及DBTW的值分别表示为:A*X,B*X、C*X*14和D/X。
示例性地,当第一SCS为120kHz,第二SCS为480kHz时,所述比例因子X=4,当第一SCS为120kHz,第二SCS为960kHz时,所述比例因子X=8;或者当第一SCS为480kHz,第二SCS为960kHz时,所述比例因子X=2;当第一SCS为480kHz,第二SCS为120kHz时,所述比例因子X=1/4;当第一SCS为960kHz,第二SCS为120kHz时,所述比例因子X=1/8;当第一SCS为960kHz,第二SCS为480kHz时,所述比例因子X=1/2。
示例性地,如上述表4所示,当第一SCS为120kHz时,DBTW占用的时隙个数为4,所配置的Q为8,DBTW值为0.5ms,DBTW所占用的符号为0.5*16=8;当第二SCS为480kHz时,则上述比例因子为X=4,在固定DBTW值的情况下,DBTW占用的时隙个数为4*4=16,和所配置的Q值为8*X=32,DBTW所占用的符号为8*4*14=448。
一种实现方式为,终端设备根据接入服务小区所支持的频段范围内支持的第二SCS隐含获取所述比例因子,或者根据所述比例因子隐含计算获取满足第二SCS下的Q值和DBTW占用的slot个数、符号个数和DBTW值。
可选地,在一些实施例中,该比例因子可以定义在RRC信令所包括的参数“服务小区配置通用”中,也可以携带于参数“服务小区配置通用SIB”中,也可配置在MIB中,不予限制。
应理解,上述提到的“大于或等于”也可以通过“不小于”,或者,“大于,或者,等于”表述,上述提到的“小于或等于”也可以通过“不大于”或者,“小于,或者,等于”表述,不予限制。
图4为本申请实施例提供的一种SSB发送方式的示意图(当DBTW处于打开状态时)。参考图4,假设Q=32,DBTW=5ms。因此,在该DBTW内,后32个候选SSB位置可以用来发送因LBT失败而无法发送出来的实际SSB。
不同候选SSB位置上的SSB具有第一QCL关系,该第一QCL关系可以表示不同候选SSB位置上的SSB具有相同的索引。
当SSB和对应的具有第二QCL关系的RMSI,其循环放置的方式如下图5所示。
在图5中,指示RMSI的PDCCH(“RMSI for PDCCH”)表示携带CORESET#0 的type0-PDCCH,其包含了指示RMSI(或者SIB1)的相关配置信息。传输RMSI的PDSCH信道(“RMSI for PDSCH”)表示传输RMSI(或者SIB1)的PDSCH信道。SSB和type0-PDCCH以及RMSI PDSCH具有第二QCL关系,不同于第一QCL关系,第二QCL关系用于SSB和type0-PDCCH以及RMSI PDSCH之间,终端设备使用相同的接收波束接收SSB以及满足第二QCL关系的type0-PDCCH和RMSI PDSCH。
图5仅示出了SSB、type0-PDCCH和RMSI for PDSCH的其中一种共存方式,type0-PDCCH与SSB以及RMSI for PDSCH可以是任意TDM或者FDM的方式存在,type0-PDCCH的时域位置可以为SSB的前面或者后面,但一般位于RMSI for PDSCH的前面1个或者多个符号或者时隙上。
本申请提供的方案,终端设备通过根据Q值与第一阈值的大小关系,确定DBTW的状态,若无法确定DBTW的状态时,进一步地,还可以根据DBTW值确定DBTW的状态。从而可以确定网络设备侧是否在DBTW上发送因LBT失败而无法发送的SSB,可以快速实现与网络设备之间的定时同步。
如上所述,若DBTW值小于或等于第二阈值,终端设备可以认为DBTW处于关闭状态;若DBTW值大于第二阈值,终端设备可以认为DBTW处于打开状态。其中,所述第二阈值可以基于以下方式确定。
方式一:
所述第二阈值为第一SSB所在时隙上的第一个符号到第二SSB所在时隙上的最后一个符号的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB所在时隙上的第一个符号到第四SSB所在时隙上的最后一个符号的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB所在时隙上的第一个符号到第六SSB所在时隙上的最后一个符号的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发送的SSB中索引最大的SSB。
①本申请实施例中的第二阈值可以为索引为0的第一SSB所在时隙上的第一个符号到索引为(Q-1)的第二SSB所在时隙上的最后一个符号的时间持续长度。示例性地,假设Q=32,则第二阈值为索引为0的第一SSB所在时隙上的第一个符号到索引为31的第二SSB所在时隙上的最后一个符号的时间持续长度。
②本申请实施例中的第二阈值也可以为第三SSB所在时隙上的第一个符号到第四SSB所在时隙上的最后一个符号的时间持续长度,且第三SSB位于第二参数中从左起第一个比特配置成“1”的第一SSB组中,第四SSB位于第二参数中从右起第一个比特配置成“1”的第二SSB组中。示例性地,该第二参数可以为“服务小区配置通用SIB”中的参数“groupPresence”,假设有10个SSB组,参数“groupPresence”从左起第一个比特配置成“1”的组为这10个SSB组中的第2个SSB组,即第三SSB位于这10个SSB组中的第2个SSB组,参数“groupPresence”从右起第一个比特配置成“1”的组为这10个SSB组中的第7个SSB组,则第四SSB位于这10个SSB组中的第7个SSB组。此时,第二阈值为位于第2个SSB组上的第三SSB所在时隙上的第一个符号到位于第7个SSB组上的第四SSB所 在时隙上的最后一个符号的时间持续长度。应理解,该第一SSB组和第二SSB组可以为相同SSB组,也可以为不同的SSB组。
③本申请实施例中的第二阈值还可以为成功发送的SSB中索引最小的第五SSB所在时隙上的第一个符号到成功发送的SSB中索引最大的第六SSB所在时隙上的最后一个符号的时间持续长度。示例性地,假设有64个SSB,成功发送的SSB中索引最小的SSB为索引为“8”所对应的SSB,成功发送的SSB中索引最大的SSB为索引为“32”所对应的SSB,则第二阈值为该索引为“8”的SSB所在时隙上的第一个符号到索引为“32”的SSB所在时隙上的最后一个符号的时间持续长度。
方式二:
所述第二阈值为第一SSB所在的时隙到第二SSB所在的时隙的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB所在的时隙到第四SSB所在的时隙的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB所在的时隙到第六SSB所在的时隙上的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发送的SSB中索引最大的SSB。
①本申请实施例中的第二阈值可以为索引为0的第一SSB所在的时隙到索引为(Q-1)的第二SSB所在的时隙的时间持续长度。示例性地,假设Q=32,则第二阈值为索引为0的第一SSB所在的时隙到索引为31的第二SSB所在的时隙上的时间持续长度。
②本申请实施例中的第二阈值也可以为第三SSB所在的时隙上到第四SSB所在的时隙上的的时间持续长度,且第三SSB位于第二参数中从左起第一个比特配置成“1”的第一SSB组中,第四SSB位于第二参数中从右起第一个比特配置成“1”的第二SSB组中。示例性地,该第二参数可以为“服务小区配置通用SIB”中的参数“groupPresence”,假设有10个SSB组,参数“groupPresence”从左起第一个比特配置成“1”的组为这10个SSB组中的第2个SSB组,即第三SSB位于这10个SSB组中的第2个SSB组,参数“groupPresence”从右起第一个比特配置成“1”的组为这10个SSB组中的第7个SSB组,则第四SSB位于这10个SSB组中的第7个SSB组。此时,第二阈值为位于第2个SSB组上的第三SSB所在的时隙到位于第7个SSB组上的第四SSB所在的时隙的时间持续长度。应理解,该第一SSB组和第二SSB组可以为相同SSB组,也可以为不同SSB组。
③本申请实施例中的第二阈值还可以为成功发送的SSB中索引最小的第五SSB所在的时隙到成功发送的SSB中索引最大的第六SSB所在的时隙的时间持续长度。示例性地,假设有64个SSB,成功发送的SSB中索引最小的SSB为索引为“8”所对应的SSB,成功发送的SSB中索引最大的SSB为索引为“32”所对应的SSB,则第二阈值为该索引为“8”的SSB所在的时隙到索引为“32”的SSB所在的时隙的时间持续长度。
方式三:
所述第二阈值为第一SSB的第一个符号到第二SSB的最后一个符号的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB的第一个符号到第四SSB的最后一个符号的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB的第一个符号到第六SSB的最后一个符号的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发送的SSB中索引最大的SSB。
需要说明的是,本申请实施例中的第五SSB和/或第六SSB可以通过服务小区配置通用SIB中的参数“groupPresence”和参数“inonegroup”联合指示。
上述三种方式,其相关的英文可以表述为:
(1)If DBTW equals to(or equal to or smaller than,not larger than to)the time duration from the beginning of slot containing the candidate SSB index 0to the end of slot containing the candidate SSB index Q-1,UE assumes that DBTW is disabled.
If DBTW is larger than(or equal to or larger than,or not smaller than)the time duration from the beginning of slot containing the candidate SSB index 0to the end of slot containing the candidate SSB index Q-1,UE assumes that DBTW is enabled.
即:如果DBTW(的长度或者值)等于或者小于等于或者不大于(半帧中)包含第一候选SSB索引0所在的起始时隙到(该半帧中)包含第二候选SSB索引Q-1所在的最后时隙的时间持续长度时,UE默认DBTW关闭;
如果DBTW(的长度或者值)大于或者大于等于或者不小于(半帧中)包含第一候选SSB索引0所在的起始时隙到(该半帧中)包含第二候选SSB索引Q-1所在的最后时隙的时间持续长度时,UE默认DBTW打开。
(2)If DBTW equals to(or equal to or smaller than,or not larger than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains the SS/PBCH blocks within the SS/PBCH blocks group corresponding to the last/rightmost bit with value 1 in groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is disabled.
If DBTW is larger than(or equal to or larger than,or not smaller than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains the SS/PBCH blocks within the SS/PBCH blocks group corresponding to the last/rightmost bit with value 1 in groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is enabled.
即:如果DBTW(的长度或者值)等于或者小于等于或者不大于半帧中包含第一SS/PBCH blocks起始时隙到(该半帧中)包含第二SS/PBCH blocks结束时隙之间的持续时间长度时,其中,所述第一SS/PBCH blocks和所述第二SS/PBCH blocks位于SS/PBCH blocks组中,该SS/PBCH blocks组位于参数“ServingCellConfigCommonSIB”中参数“groupPresence”中最后或者最右侧比特指示为“1”的组,此时,UE默认DBTW关闭。
如果DBTW(的长度或者值)大于或者大于等于或者不小于半帧中包含第一SS/PBCH  blocks起始时隙到(该半帧中)包含第二SS/PBCH blocks结束时隙之间的持续时间长度时,其中,所述第一SS/PBCH blocks和所述第二SS/PBCH blocks位于SS/PBCH blocks组中,该SS/PBCH blocks组位于参数“ServingCellConfigCommonSIB”中参数“groupPresence”中最后或者最右侧比特指示为“1”的组,此时,UE默认DBTW打开。
(3)If DBTW equals to(or equal to or smaller than,or not larger than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains the last transmitted SS/PBCH block(SS/PBCH block with the largest index)that is indicated jointly by inOneGroup and groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is disabled.
If DBTW is larger than(or equal to or larger than,or not smaller than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains the last transmitted SS/PBCH block(SS/PBCH block with the largest index)that is indicated jointly by inOneGroup and groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is enabled.
即:如果DBTW(的长度或者值)等于或者小于等于或者不大于(半帧中)包含第一SS/PBCH blocks所在的起始时隙到(该半帧中)包含第二SS/PBCH blocks所在最后时隙的时间持续长度时,其中,所述第二SS/PBCH blocks具有最大索引,所述第一SS/PBCH blocks和所述第二SS/PBCH blocks通过参数“ServingCellConfigCommonSIB”中参数“groupPresence”和参数“inOneGroup”联合指示,此时,UE默认DBTW关闭;
如果DBTW(的长度或者值)大于或者大于等于或者不小于(半帧中)包含第一SS/PBCH blocks所在的起始时隙到(该半帧中)包含第二SS/PBCH blocks所在最后时隙的时间持续长度时,其中,所述第二SS/PBCH blocks具有最大索引,所述第一SS/PBCH blocks和所述第二SS/PBCH blocks通过参数“ServingCellConfigCommonSIB”中参数“groupPresence”和参数“inOneGroup”联合指示,此时,UE默认DBTW打开。
此外,在一些实施例中,终端设备也可以基于以下方式确定DBTW的状态。
If DBTW equals to(or equal to or smaller than,or not larger than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains at least the last SS/PBCH blocks within the SS/PBCH blocks group corresponding to the last/rightmost bit with value 1in groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is disabled.
If DBTW is larger than(or equal to or larger than,or not smaller than)the time duration from the beginning of the half frame that contains the SS/PBCH blocks to the end of the slot that contains at least the last SS/PBCH blocks within the SS/PBCH blocks group corresponding to the last/rightmost bit with value 1in groupPresence in ServingCellConfigCommonSIB,UE assumes that DBTW is enabled.
即:如果DBTW(的长度或者值)等于或者小于等于或者不大于半帧中包含第一SS/PBCH blocks起始时隙到(该半帧中)包含至少第二SS/PBCH blocks结束时隙之间的持续时间长度时,其中,所述第一SS/PBCH blocks和所述第二SS/PBCH blocks位于SS/PBCH blocks组中,该SS/PBCH blocks组位于参数“ServingCellConfigCommonSIB”中参数“groupPresence”中最后或者最右侧比特指示为“1”的组中,此时,UE默认DBTW 关闭;
如果DBTW(的长度或者值)大于或者大于等于或者不小于半帧中包含第一SS/PBCH blocks起始时隙到(该半帧中)包含至少到第二SS/PBCH blocks结束时隙之间的持续时间长度时,其中,所述第一SS/PBCH blocks和所述第二SS/PBCH blocks位于SS/PBCH blocks组中,该SS/PBCH blocks组位于参数“ServingCellConfigCommonSIB”中参数“groupPresence”中最后或者最右侧比特指示为“1”的组中,此时,UE默认DBTW打开。
上文指出,网络设备可以向终端设备发送第一信息,该第一信息中可以包括Q值,其中,关于该Q值的比特指示方式请参考下文。
所述Q值用n个比特指示,所述n为大于2的正整数,所述n个比特包括用于指示第三参数的至少一个比特,所述第三参数包括以下至少一个参数:
MIB信息中的子载波间隔通用、所述MIB信息中的SSB-子载波偏移、所述MIB信息中的PDCCH-配置SIB1。
可选地,在一些实施例中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零。
本申请实施例中的Q值可以为大于2的正整数,其中,这n个比特可以为用于指示上述参数中的至少一个比特。示例性地,如可以用3个4个比特指示Q值,该3个比特或4个比特可以为上述参数中的至少一个比特。
本申请实施例中,所述n个比特可以包括用于指示子载波间隔通用的n个比特;也可以包括用于指示子载波间隔通用和SSB-子载波偏移的n个比特;还可以包括用于指示载波间隔通用、SSB-子载波偏移以及PDCCH-配置SIB1的n个比特;不予限制。
至于其它可能的情况,与上述情况类似,在此不再赘述。
本申请提供的方案,对于工作在共享频段上的系统,Q值可以通过n个比特指示,该n个比特包括用于指示上述第三参数中的至少一个比特。换句话说,在不扩展MIB负载容量的情况下,用于指示Q值的比特可以为MIB中其它参数相应的比特,可以提高系统的性能。
下文将具体介绍Q值的比特指示方式。
方式一:
所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m-(n-n1)个比特指示,m为指示所述第五参数的初始数量。
方式二:
所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m个比特指示,m为指示所述第五参数的初始数量,(n-n1)<m。
本申请实施例中,由于用于指示Q值的n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,且指示所述第五参数的初始数量为m,因此,(n-n1)<m。
本申请实施例中的第四参数可以为MIB信息中的子载波间隔通用,第五参数可以为 所述MIB信息中的SSB-子载波偏移和/或所述MIB信息中的PDCCH-配置SIB1;第四参数也可以为所述MIB信息中的SSB-子载波偏移,第五参数可以为MIB信息中的子载波间隔通用和/或所述MIB信息中的PDCCH-配置SIB1;第四参数还可以为所述MIB信息中的PDCCH-配置SIB1,第五参数可以为MIB信息中的子载波间隔通用和/或所述MIB信息中的SSB-子载波偏移;不予限制。
示例性地,如上所述,n可以为3个或4个比特,即可以用3个比特或4个比特指示Q值,具体指示方式请参见下文。
情况一:Q值用3个比特指示(即n=3)
(a)所述3个比特包括用于指示参数“子载波间隔通用”中的2个比特和用于指示参数“SSB-子载波偏移”中的1个比特(即n1=2,n-n1=1)
①在一种可能的实现方式中,若m=4,即指示参数“SSB-子载波偏移”初始数量的比特为4,本申请实施例中,用于指示该参数“SSB-子载波偏移”的其中1个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“SSB-子载波偏移”的比特的数量为2个或3个。
具体地,若指示MIB中的参数“子载波间隔通用”中的2个比特中的其中1个比特是挪用参数“SSB-子载波偏移”中的1个比特的,则指示参数“SSB-子载波偏移”的比特的数量为2个;若指示MIB中的参数“子载波间隔通用”中的2个比特中的其中1个比特不是挪用参数“SSB-子载波偏移”中的1个比特的,则指示参数“SSB-子载波偏移”的比特的数量为3个。
②在另一种可能的实现方式中,若m=4,即指示参数“SSB-子载波偏移”初始数量的比特为4,本申请实施例中,用于指示该参数“SSB-子载波偏移”的其中1个比特可以借用至指示参数Q值,虽然该参数“SSB-子载波偏移”的1个比特借用至指示Q,但是指示该参数“SSB-子载波偏移”的比特的数量仍然可以为初始的4个比特,即该参数“SSB-子载波偏移”仍然可以通过初始的4个比特指示。
(b)所述3个比特包括用于指示参数“子载波间隔通用”中的2个比特和用于指示参数“PDCCH-配置SIB1”中的1个比特(即n1=2,n-n1=1)
由于该参数“PDCCH-配置SIB1”通过8个比特指示,该参数“PDCCH-配置SIB1”包括参数“搜索空间零”(“searchSpaceZero”,其占用4个比特)和参数“控制资源集零”(“controlResourceSetZero”,其占用4个比特)。因此,用于指示Q值的3个比特可以包括用于指示参数“子载波间隔通用”中的2个比特和用于指示参数“搜索空间零”中的1个比特,或者,可以包括用于指示参数“子载波间隔通用”中的2个比特和用于指示参数“控制资源集零”中的1个比特。
①在一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“搜索空间零”的4个比特),即指示参数“搜索空间零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中1个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“搜索空间零”的比特的数量为3个。换句话说,在该情况下,可以使用7个比特(包括用于指示参数“搜索空间零”的3个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
②在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“搜索空间零”的4个比特),即指示参数“搜索空间零”初始数量的比特为4,本申请实施例 中,用于指示该参数“搜索空间零”的其中1个比特可以借用至指示参数Q值,虽然该参数“搜索空间零”的1个比特借用至指示Q,但是指示该参数“搜索空间零”的比特的数量仍然可以为初始的4个比特,即该参数“搜索空间零”仍然可以通过初始的4个比特指示。换句话说,在该情况下,仍然可以使用8个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
③在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“控制资源集零”的4个比特),即指示参数“控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“控制资源集零”的其中1个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“控制资源集零”的比特的数量为3个。换句话说,在该情况下,仍然可以使用7个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的3个比特)指示参数“PDCCH-配置SIB1”。
④在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“控制资源集零”的4个比特),即指示参数“控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“控制资源集零”的其中1个比特可以借用至指示参数Q值,虽然该参数“控制资源集零”的1个比特借用至指示Q,但是指示该参数“控制资源集零”的比特的数量仍然可以为初始的4个比特,即该参数“控制资源集零”仍然可以通过初始的4个比特指示。换句话说,在该情况下,仍然可以使用8个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
(c)所述3个比特包括用于指示参数“SSB-子载波偏移”中的2个比特和用于指示参数“PDCCH-配置SIB1”中的1个比特(即n1=2,n-n1=1)
本申请实施例中,参数“SSB-子载波偏移”初始可以通过4个比特指示,其中,这4个比特中的2个比特可以用于指示Q值。
①在一种可能的实现方式中,用于指示该参数“SSB-子载波偏移”的其中2个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“SSB-子载波偏移”的比特的数量为2个。
②在另一种可能的实现方式中,用于指示该参数“SSB-子载波偏移”的其中2个比特可以借用至指示参数Q值,虽然该参数“SSB-子载波偏移”的2个比特借用至指示Q,但是指示该参数“SSB-子载波偏移”的比特的数量仍然可以为初始的4个比特,即该参数“SSB-子载波偏移”仍然可以通过初始的4个比特指示。
类似地,由于该参数“PDCCH-配置SIB1”通过8个比特指示,该参数“PDCCH-配置SIB1”包括参数“搜索空间零”(占用4个比特)和参数“控制资源集零”(占用4个比特)。因此,用于指示Q值的3个比特可以包括用于指示参数SSB-子载波偏移”中的2个比特和用于指示参数“搜索空间零”中的1个比特,或者,可以包括用于指示参数SSB-子载波偏移”中的2个比特和用于指示参数“控制资源集零”中的1个比特。
①在一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“搜索空间零”的4个比特),即指示参数“搜索空间零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中1个比特可以挪用于指示参数Q值,因此, 在这种情况下,用于指示参数“搜索空间零”的比特的数量为3个。
②在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“搜索空间零”的4个比特),即指示参数“搜索空间零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中1个比特可以借用至指示参数Q值,虽然该参数“搜索空间零”的1个比特借用至指示Q,但是指示该参数“搜索空间零”的比特的数量仍然可以为初始的4个比特,即该参数“搜索空间零”仍然可以通过初始的4个比特指示。
③在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“控制资源集零”的4个比特),即指示参数“控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“控制资源集零”的其中1个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“控制资源集零”的比特的数量为3个。
④在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“控制资源集零”的4个比特),即指示参数“控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“控制资源集零”的其中1个比特可以借用至指示参数Q值,虽然该参数“控制资源集零”的1个比特借用至指示Q,但是指示该参数“控制资源集零”的比特的数量仍然可以为初始的4个比特,即该参数“控制资源集零”仍然可以通过初始的4个比特指示。
(d)所述3个比特包括用于指示参数“SSB-子载波偏移”中的1个比特和用于指示参数“PDCCH-配置SIB1”中的2个比特(即n1=1,n-n1=2)
本申请实施例中,参数“SSB-子载波偏移”初始可以通过4个比特指示,其中,这4个比特中的1个比特可以用于指示Q值。
①在一种可能的实现方式中,用于指示该参数“SSB-子载波偏移”的其中1个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“SSB-子载波偏移”的比特的数量为3个。
②在另一种可能的实现方式中,用于指示该参数“SSB-子载波偏移”的其中1个比特可以借用至指示参数Q值,虽然该参数“SSB-子载波偏移”的1个比特借用至指示Q,但是指示该参数“SSB-子载波偏移”的比特的数量仍然可以为初始的4个比特,即该参数“SSB-子载波偏移”仍然可以通过初始的4个比特指示。
类似地,由于该参数“PDCCH-配置SIB1”通过8个比特指示,该参数“PDCCH-配置SIB1”包括参数“搜索空间零”(占用4个比特)和参数“控制资源集零”(占用4个比特)。因此,用于指示Q值的3个比特可以包括用于指示参数“SSB-子载波偏移”中的1个比特和用于指示参数“搜索空间零”中的2个比特;或者,可以包括用于指示参数“SSB-子载波偏移”中的1个比特和用于指示参数“控制资源集零”中的2个比特;或者,可以包括用于指示参数“SSB-子载波偏移”中的1个比特、用于指示参数“搜索空间零”中的1个比特以及用于指示参数“控制资源集零”中的1个比特;不予限制。
①在一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“搜索空间零”的4个比特),即指示参数“搜索空间零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中2个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“搜索空间零”的比特的数量为2个。换句话说,在 该情况下,可以使用6个比特(包括用于指示参数“搜索空间零”的2个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
②在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“搜索空间零”的4个比特),即指示参数“搜索空间零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中2个比特可以借用至指示参数Q值,虽然该参数“搜索空间零”的2个比特借用至指示Q,但是指示该参数“搜索空间零”的比特的数量仍然可以为初始的4个比特,即该参数“搜索空间零”仍然可以通过初始的4个比特指示。换句话说,在该情况下,仍然可以使用8个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
③在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“控制资源集零”的4个比特),即指示参数“控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“控制资源集零”的其中2个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“控制资源集零”的比特的数量为2个。换句话说,在该情况下,可以使用6个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的2个比特)指示参数“PDCCH-配置SIB1”。
④在另一种可能的实现方式中,若m=4(该4个比特可以为用于指示参数“控制资源集零”的4个比特),即指示参数“控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“控制资源集零”的其中2个比特可以借用至指示参数Q值,虽然该参数“控制资源集零”的2个比特借用至指示Q,但是指示该参数“控制资源集零”的比特的数量仍然可以为初始的4个比特,即该参数“控制资源集零”仍然可以通过初始的4个比特指示。换句话说,在该情况下,仍然可以使用8个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
⑤在另一种可能的实现方式中,若m=8(该8个比特包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特),即指示参数“搜索空间零”的初始数量的比特为4和指示参数““控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中1个比特和用于指示参数“控制资源集零”的其中1个比特可以挪用于指示参数Q值,因此,在这种情况下,用于指示参数“搜索空间零”的比特的数量为3个,以及用于指示参数“控制资源集零”的比特的数量为3个。换句话说,在该情况下,可以使用6个比特(包括用于指示参数“搜索空间零”的3个比特和用于指示参数“控制资源集零”的3个比特)指示参数“PDCCH-配置SIB1”。
⑥在另一种可能的实现方式中,若m=8(该8个比特包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特),即指示参数“搜索空间零”的初始数量的比特为4和指示参数““控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中1个比特和用于指示参数“控制资源集零”的其中1个比特可以借用至指示参数Q值,虽然指示该参数“搜索空间零”的其中1个比特和用于指示参数“控制资源集零”的1个 比特借用至指示Q,但是指示该参数“搜索空间零”和参数“控制资源集零”的比特的数量分别仍然可以为初始的4个比特,即该参数“搜索空间零”和参数“控制资源集零”分别仍然可以通过初始的4个比特指示。换句话说,在该情况下,仍然可以使用8个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
应理解,在n个比特包括用于指示参数“PDCCH-配置SIB1”中的2个比特时,若这2个比特分别为用于指示“搜索空间零”的其中1个比特和用于指示参数“控制资源集零”的其中1个比特,则这2个比特可以均挪用于指示Q值,也可以均借用至指示Q值;或者,用于指示“搜索空间零”的其中1个比特挪用于指示Q值,用于指示参数“控制资源集零”的其中1个比特借用至指示Q值;或者,用于指示“搜索空间零”的其中1个比特借用至指示Q值,用于指示参数“控制资源集零”的其中1个比特挪用于指示Q值;不予限制。
综上,通过3个比特指示Q的方式可以如下述表5-表10所示:
表5
比特/索引 Q值
000/0 8
001/1 16
010/2 32
011/3 64
100/4 >64(如128或256)
101/5 被预留(reserved)
110/6 被预留(reserved)
111/7 被预留(reserved)
表6
比特/索引 Q值
000/0 1
001/1 2
010/2 4
011/3 8
100/4 16
101/5 32
110/6 64
111/7 >64(如128或256)
表7
比特/索引 Q值
000/0 8
001/1 16
010/2 24
011/3 32
100/4 48
101/5 52
110/6 64
111/7 被预留(reserved)
表8
比特/索引 Q值
000/0 8
001/1 16
010/2 24
011/3 32
100/4 48
101/5 52
110/6 60
111/7 64
表9
比特/索引 DBTW值(ms) DBTW length(slots) Q
000/0 0.5 4 8
001/1 1 8 16
010/2 2 16 28
011/3 2.25/2.5 18/20 32
100/4 3 24 40
101/5 4 32 52
110/6 5 40 64
111/7 >5 -- >64
表10
比特/索引 DBTW值(ms) DBTW length(slots) Q
000/0 0.5 4 8
001/1 1 8 16
010/2 2 16 28
011/3 2.25/2.5 18/20 32
100/4 3 24 40
101/5 3.5 28 48
110/6 4 32 52
111/7 5 40 64
在上述表5-表10中,Q值可以用3个比特表示,但是对于同一索引,可以对应的不同的Q值。
具体地,在表5中,索引为“0”对应的Q值为8;在表6中,索引“0”对应的Q值为1。
应理解,上述所示出的四种表示方式仅为举例说明,还可以为其它可能的表示方式, 不予限制。
需要说明的是,上述Q的取值可以不限于表格中所示出的数字,Q的取值可以扩展至1~128之间的任意数字,对此不作限定。
情况二:Q值用4个比特指示(即n=4)
(a)所述4个比特包括用于指示参数“子载波间隔通用”中的2个比特和用于指示参数“SSB-子载波偏移”中的2个比特
其中,关于4个比特中包括的用于指示参数“SSB-子载波偏移”中的2个比特可以是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(b)所述4个比特包括用于指示参数“子载波间隔通用”中的2个比特和用于指示参数“PDCCH-配置SIB1”中的2个比特
可以理解的是,所述4个比特中包括的用于指示参数“PDCCH-配置SIB1”中的2个比特可以是用于指示参数“PDCCH-配置SIB1”所包括的参数“搜索空间零”中的2个比特,也可以是用于指示参数“PDCCH-配置SIB1”所包括的参数“控制资源集零”中的2个比特,还可以是用于指示参数“搜索空间零”的1个比特和用于指示参数“控制资源集零”的1个比特,不予限制。
其中,关于所述4个比特中包括的用于指示参数“搜索空间零”中的2个比特,还是参数“控制资源集零”中2个比特,还是参数“搜索空间零”中的1个比特和参数“控制资源集零”中1个比特,均通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(c)所述4个比特包括用于指示参数“子载波间隔通用”中的2个比特、用于指示参数“SSB-子载波偏移”中的1个比特以及用于指示参数“PDCCH-配置SIB1”中的1个比特
其中,关于所述4个比特中包括的用于指示参数“SSB-子载波偏移”中的1个比特或用于指示参数“PDCCH-配置SIB1”中的1个比特均可以是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(d)所述4个比特包括用于指示参数“子载波间隔通用”中的1个比特、用于指示参数“SSB-子载波偏移”中的1个比特以及用于指示参数“PDCCH-配置SIB1”中的2个比特
其中,关于所述4个比特中包括的用于指示参数“SSB-子载波偏移”中的1个比特或用于指示参数“PDCCH-配置SIB1”中的2个比特均可以是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(e)所述4个比特包括用于指示参数“子载波间隔通用”中的1个比特、用于指示参数“SSB-子载波偏移”中的2个比特以及用于指示参数“PDCCH-配置SIB1”中的1个比特
其中,关于所述4个比特中包括的用于指示参数“SSB-子载波偏移”中的2个比特或用于指示参数“PDCCH-配置SIB1”中的1个比特均可以是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(f)所述4个比特包括用于指示参数“子载波间隔通用”中的1个比特和用于指示参数“PDCCH-配置SIB1”中的3个比特
其中,关于所述4个比特中包括的用于指示参数“PDCCH-配置SIB1”中的3个比特可以是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(g)所述4个比特包括用于指示参数“子载波间隔通用”中的1个比特和用于指示参数“SSB-子载波偏移”中的3个比特
其中,关于所述4个比特中包括的用于指示参数“SSB-子载波偏移”中的3个比特可以 是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(h)所述4个比特包括用于指示参数“SSB-子载波偏移”中的1个比特以及用于指示参数“PDCCH-配置SIB1”中的3个比特
其中,关于所述4个比特中包括的用于指示参数“SSB-子载波偏移”中的1个比特或用于指示参数“PDCCH-配置SIB1”中的3个比特均可以是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(i)所述4个比特包括用于指示参数“SSB-子载波偏移”中的2个比特以及用于指示参数“PDCCH-配置SIB1”中的2个比特
其中,关于所述4个比特中包括的用于指示参数“SSB-子载波偏移”中的2个比特或用于指示参数“PDCCH-配置SIB1”中的2个比特均可以是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
(j)所述4个比特包括用于指示参数“SSB-子载波偏移”中的3个比特以及用于指示参数“PDCCH-配置SIB1”中的1个比特
其中,关于所述4个比特中包括的用于指示参数“SSB-子载波偏移”中的3个比特或用于指示参数“PDCCH-配置SIB1”中的1个比特均可以是通过挪用或借用的方式,详细内容请参考上述情况一中的内容,不再赘述。
综上所述,通过4个比特指示Q的方式可以如下表11-表14所示:
表11
比特/索引 Q值
0000/0 1
0001/1 2
0010/2 4
0011/3 8
0100/4 12
0101/5 16
0110/6 24
0111/7 32
1000/8 36
1001/9 40
1010/10 44
1011/11 48
1100/12 52
1101/13 56
1110/14 60
1111/15 64
表12
比特/索引 Q值
0000/0 2
0001/1 4
0010/2 8
0011/3 12
0100/4 16
0101/5 20
0110/6 24
0111/7 32
1000/8 36
1001/9 40
1010/10 44
1011/11 48
1100/12 52
1101/13 56
1110/14 60
1111/15 64
表13
比特/索引 Q值
0000/0 1
0001/1 2
0010/2 4
0011/3 8
0100/4 16
0101/5 24
0110/6 32
0111/7 36
1000/8 48
1001/9 52
1010/10 56
1011/11 64
1100/12 >64
1101/13 被预留(reserved)
1110/14 被预留(reserved)
1111/15 被预留(reserved)
表14
Figure PCTCN2022084965-appb-000010
Figure PCTCN2022084965-appb-000011
Figure PCTCN2022084965-appb-000012
在上述表11-表14中,Q值可以用4个比特表示,但是对于同一索引,可以对应的不同的Q值。
具体地,在表11中,索引为“0”对应的Q值为1;在表12中,索引“0”对应的Q值为2。
应理解,上述所示出的几种表示方式仅为举例说明,还可以为其它可能的表示方式,不予限制。
需要说明的是,上述Q的取值可以不限于表格中所示出的数字,Q的取值可以扩展至1~128之间的任意数字,对此不作限定。
在一些实施例中,也可以根据比例因子确定DBTW占用的时隙和所配置的Q值,以及DBTW的值。所述Q值和DBTW占用的时隙个数、符号个数和DBTW值分别为A,B,C和D,且A,B,C和D的取值基于第一SCS(比如120kHz),对于第二SCS,当所述第二SCS与第一SCS之间的比例为X时,第二SCS下的Q值,DBTW占用的时隙个数、DBTW占用的符号个数以及DBTW的值分别表示为:A*X,B*X、C*X*14和D/X。
示例性地,当第一SCS为120kHz,第二SCS为480kHz时,所述比例因子X=4,当第一SCS为120kHz,第二SCS为960kHz时,所述比例因子X=8;或者当第一SCS为480kHz,第二SCS为960kHz时,所述比例因子X=2;当第一SCS为480kHz,第二SCS为120kHz时,所述比例因子X=1/4;当第一SCS为960kHz,第二SCS为120kHz时,所述比例因子X=1/8;当第一SCS为960kHz,第二SCS为480kHz时,所述比例因子X=1/2。
示例性地,如上述表14所示,当第一SCS为120kHz时,DBTW占用的时隙个数为0.5,所配置的Q为1,DBTW值为0.075ms,DBTW所占用的符号为0.075*16=1.2;当第二SCS为480kHz时,则上述比例因子为X=4,在固定DBTW值的情况下,DBTW占用的时隙个数为0.5*4=2,和所配置的Q值为1*4=4,DBTW所占用的符号为1.2*4*14=67.2。
一种实现方式为,终端设备根据接入服务小区所支持的频段范围内支持的第二SCS隐含获取所述比例因子,或者根据所述比例因子隐含计算获取满足第二SCS下的Q值和DBTW占用的时隙个数、符号个数和DBTW值。
可选地,在一些实施例中,该比例因子可以定义在RRC信令所包括的参数“服务小区配置通用”中,也可以携带于参数“服务小区配置通用SIB”中,也可配置在MIB中,不予限制。
其中,对应于120kHz下的DiscoveryBurstWindowLength-r17={ms0dot075,ms0dot125,ms0dot25,ms0dot5,ms1,ms2,ms2dot25,ms2dot5,ms3,ms3dot5,ms4,ms4dot5,ms5}。
本申请提供的方案,用于确定DBTW的状态的Q值可以通过n个比特指示,该n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第五参数采用m-(n-n1)个比特指示,m为指示所述第五参数的初始数量;在这种实现方式下,可以用MIB中其它参数相应的比特指示Q值,可以避免扩展MIB负载容量指示Q值, 从而可以提高系统的性能。此外,用于确定DBTW的状态的Q值可以通过n个比特指示,该n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第五参数采用m个比特指示;在这种实现方式下,可以用MIB中其它参数相应的比特指示Q值,可以避免采用扩展MIB负载容量指示Q值,且也不会影响第五参数自身的比特指示,从而可以提高系统的性能。
上文指出,用于指示Q值的n个比特可以包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特。在一种可能的实现方式中,第五参数可能为SSB-子载波偏移,在这种实现方式中,SSB-子载波偏移的偏移值可以通过以下方式确定。
可选地,在一些实施例中,所述第五参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的偏移值根据所述SSB的SCS和CRB的SCS的组合确定。
可选地,在一些实施例中,若所述SSB的SCS和CRB的SCS均为第一频率,所述SSB-子载波偏移的偏移值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为所述第五参数的(n-n1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为小于或等于所述第五参数的(n-n1)个比特指示的数值。
本申请实施例中,所述SSB-子载波偏移的偏移值可以理解为SSB和CRB之间在子载波粒度上的偏移值,假设SSB和CRB之间在子载波粒度上的偏移值为K SSB,该偏移值与指示参数“SSB-子载波偏移”的4个比特(即指示参数
Figure PCTCN2022084965-appb-000013
)有关。
示例性地,假设本申请实施例中的第一频率、第二频率以及第三频率分别为120kHz、480kHz以及960kHz。
若SSB的SCS和CRB的SCS均为第一频率,即SSB和CRB的SCS为{120kHz,120kHz},假设预设阈值为12,如果
Figure PCTCN2022084965-appb-000014
Figure PCTCN2022084965-appb-000015
否则,
Figure PCTCN2022084965-appb-000016
其中,符号
Figure PCTCN2022084965-appb-000017
表示向下取整。
示例性地,若
Figure PCTCN2022084965-appb-000018
则K SSB=14;若
Figure PCTCN2022084965-appb-000019
则K SSB=10,若
Figure PCTCN2022084965-appb-000020
则K SSB=8。
若SSB的SCS为第二频率,CRB的SCS为第一频率,即SSB和CRB的SCS为{480kHz,120kHz},
Figure PCTCN2022084965-appb-000021
即K SSB的取值为参数
Figure PCTCN2022084965-appb-000022
的4个比特指示的数值。
示例性地,若
Figure PCTCN2022084965-appb-000023
则K SSB=14。
若SSB的SCS为第三频率,CRB的SCS为第一频率,即SSB和CRB的SCS为{960kHz,120kHz},即K SSB的取值为小于或等于参数
Figure PCTCN2022084965-appb-000024
的4个比特指示的数值。
示例性地,若
Figure PCTCN2022084965-appb-000025
则K SSB=12,或者,K SSB=10等。
此外,上述用于指示Q值的n个比特可以包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特。可选地,在一些实施例中,所述(n-n1)个比特为所述第五参数中最高阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中最低阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中的任意(n-n1)个比特。
本申请实施例中,假设Q值用3个比特指示,且所述3个比特包括用于指示参数“子载波间隔通用”中的2个比特和用于指示参数“SSB-子载波偏移”中的1个比特(即上述情况一的(a)),则用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载 波偏移”中最高阶位的1个比特;或者,用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载波偏移”中最低阶位的1个比特;或者,用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载波偏移”中任意1个比特;不予限制。
类似地,对于用3个比特指示Q值的其它可能的实现方式,与上述方式类似,不再赘述。
本申请实施例中,假设Q值用4个比特指示,且所述4个比特包括用于指示参数“子载波间隔通用”中的2个比特和用于指示参数“SSB-子载波偏移”中的2个比特(即上述情况二中的(a)),则用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载波偏移”中最高阶位的2个比特;或者,用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载波偏移”中最低阶位的2个比特;或者,用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载波偏移”中任意2个比特;不予限制。
需要说明的是,本申请实施例中的参数“SSB-子载波偏移”中最高阶位的2个比特可以理解为:假设该参数“SSB-子载波偏移”初始用4个比特指示(如1011),则该参数“SSB-子载波偏移”中最高阶位的2个比特即为左起的前2个比特,即“10”。
类似地,本申请实施例中的参数“SSB-子载波偏移”中最低阶位的2个比特可以理解为:假设该参数“SSB-子载波偏移”初始用4个比特指示(如1011),则该参数“SSB-子载波偏移”中最低阶位的2个比特即为右起的前2个比特,即“11”。
对于用4个比特指示Q值的其它可能的实现方式,与上述方式类似,不再赘述。
基于此,上文说明了终端设备可以根据Q值确定DBTW的状态,下文将说明终端设备根据第一参数确定DBTW的状态。
可选地,在一些实施例中,所述根据所述第一参数确定所述DBTW的状态,包括:
若所述第一参数包括指示所述DBTW打开的参数,确定所述DBTW处于打开状态;或者,
若所述第一参数包括指示所述DBTW关闭的参数,确定所述DBTW处于打开状态。
本申请实施例中,网络设备可以向终端设备发送第一参数,该第一参数可以包括指示DBTW的状态。示例性地,该第一参数可以为“使能发现突发集窗口长度-r17(enbleDiscoveryBurstWindowLength-r17)”,以显示指示DBTW的状态。
可选地,在一些实施例中,该第一参数携带于RRC信令中的服务小区配置通用中或MIB信息中的服务小区配置通用SIB中。
本申请实施例中,第一参数可以携带(或者配置)于RRC信令所包括的参数“服务小区配置通用”中,也可以携带于参数“服务小区配置通用SIB”中,终端设备接收到该第一参数后,可以基于参数“服务小区配置通用”中的第一参数确定DBTW的状态,或者,从参数“服务小区配置通用SIB”中解调出第一参数以确定DBTW的状态。
其中,该第一参数可能的方式:
方式一:
Figure PCTCN2022084965-appb-000026
本申请实施例中,网络设备可以向UE发送参数“使能发现突发集窗口长度-r17”,该 参数用于指示DBTW处于打开状态。需要说明的是,UE在获取该参数“使能发现突发集窗口长度-r17”之前,可以默认DBTW处于关闭状态。
此外,上述参数“发现突发集窗口长度-r17”中可以包括多个数值,其中,以加粗方式显示的数值(如数值
Figure PCTCN2022084965-appb-000027
Figure PCTCN2022084965-appb-000028
)为新增数值。
方式二:
Figure PCTCN2022084965-appb-000029
本申请实施例中,网络设备可以向UE发送参数“使能发现突发集窗口长度-r17”,该参数用于指示DBTW处于打开状态。需要说明的是,UE在获取该参数“使能发现突发集窗口长度-r17”之前,可以默认DBTW处于打开状态。
此外,上述参数“发现突发集窗口长度-r17”中可以包括多个数值,其中,以加粗方式显示的数值(如数值
Figure PCTCN2022084965-appb-000030
Figure PCTCN2022084965-appb-000031
)为新增数值。
方式三:
Figure PCTCN2022084965-appb-000032
本申请实施例中,网络设备可以向UE发送参数“使能发现突发集窗口长度-r17”,该参数可以用于指示DBTW处于打开状态,或者,该参数可以用于指示DBTW处于关闭状态。
此外,上述参数“发现突发集窗口长度-r17”中可以包括多个数值,其中,以加粗方式显示的数值(如数值
Figure PCTCN2022084965-appb-000033
Figure PCTCN2022084965-appb-000034
)为新增数值。
方式四:
Figure PCTCN2022084965-appb-000035
本申请实施例中,网络设备可以向UE发送参数“使能发现突发集窗口长度-r17”,该参数可以用于指示DBTW处于打开状态。在这种情况下,该参数“发现突发集窗口长度-r17”中可以包括多个数值,其中,以加粗方式显示的数值(如数值
Figure PCTCN2022084965-appb-000036
Figure PCTCN2022084965-appb-000037
)为新增数值。
本申请实施例中,网络设备可以向UE发送参数“使能发现突发集窗口长度-r17”,该 参数可以用于指示DBTW处于关闭状态。在这种情况下,该参数“发现突发集窗口长度-r17”中包括的数值可以为空。
本申请提供的方案,终端设备可以根据网络设备发送的第一参数确定DBTW的状态,从而可以确定网络设备侧是否在DBTW上发送因LBT失败而无法发送的SSB,进一步地,可以快速实现与网络设备之间的定时同步。
可选地,在一些实施例中,配置于所述服务小区配置通用中和配置于所述服务小区配置通用SIB中的所述第一参数相同。
本申请实施例中,假设第一参数为“使能发现突发集窗口长度-r17”,该参数“使能发现突发集窗口长度-r17”可以配置于RRC信令所包括的参数“服务小区配置通用”中,也可以配置于参数“服务小区配置通用SIB”中,这两种配置方式下,参数“使能发现突发集窗口长度-r17”配置的数值相同。
示例性地,若参数“使能发现突发集窗口长度-r17”可以配置于RRC信令所包括的参数“服务小区配置通用”中,其包括的数值为
Figure PCTCN2022084965-appb-000038
Figure PCTCN2022084965-appb-000039
Figure PCTCN2022084965-appb-000040
则配置于参数“服务小区配置通用SIB”中所包括的数值也可以为
Figure PCTCN2022084965-appb-000041
Figure PCTCN2022084965-appb-000042
在一些实施例中,配置于参数“服务小区配置通用SIB”中的数值的数量小于或等于配置于参数“服务小区配置通用”中的数值的数量。
示例性地,若参数“使能发现突发集窗口长度-r17”可以配置于RRC信令所包括的参数“服务小区配置通用”中,其包括的数值的数量为11个,如可以包括
Figure PCTCN2022084965-appb-000043
Figure PCTCN2022084965-appb-000044
Figure PCTCN2022084965-appb-000045
则配置于参数“服务小区配置通用SIB”中所包括的数值的数量可以小于11,例如可以包括10个数值,该10个数值可以为上述11个数值中的数值,该10个数值可以为
Figure PCTCN2022084965-appb-000046
Figure PCTCN2022084965-appb-000047
在一些实施例中,配置于参数“服务小区配置通用SIB”中的数值的数量也可以大于配置于参数“服务小区配置通用”中的数值的数量,不予限制。
如上所述,MIB信息中的参数“PDCCH-配置SIB1”可以包括参数“搜索空间零”和参数“控制资源集零”。其中,参数“控制资源集零”包含的内容如表15所示:
表15
Figure PCTCN2022084965-appb-000048
Figure PCTCN2022084965-appb-000049
其中,上述表格中,用于指示参数“控制资源集零”的4比特依次对应表格中的索引0-15。参数“SSB与CORESET的复用方式(SS/PBCH block and CORESET multiplexing pattern)”表示SSB与对应具有QCL关系的CORESET#0的复用方式,当该复用方式为“1”时,表示SSB与对应具有QCL关系的CORESET#0以TDM的方式存在;当该复用方式为“3”时,表示SSB与对应具有QCL关系的CORESET#0以FDM的方式存在。
Figure PCTCN2022084965-appb-000050
表示CORESET#0占用的RB个数,可取“24”和“48”两种。参数
Figure PCTCN2022084965-appb-000051
表示CORESET#0占用的符号个数,可取“1”或者“2”。参数“偏移(offset)”表示SSB中索引最低的RB与CORESET#0索引最低的RB之间的间隔,以RB为单位,即RB-level offset。其中,参数K SSB即可通过MIB中的参数“ssb-子载波偏移”表示。
可选地,在一些实施例中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
需要说明的是,本申请实施例中的CORESET#0是类型0-PDCCH搜索空间集合的CORESET。
方式一:SSB和CORESET#0复用的格式为1
在一种可能的实现方式中,SSB位于所述CORESET#0所占带宽的中间。如图6所示,为本申请实施例提供的一种SSB与CORESET#0的位置的示意图。
参考图6,在该图例中,假设信道带宽为200MHz,此时可用的RB数为132个,当包含CORESET#0的类型0-PDCCH信道占用96RB时,若上述k为20,则SSB中索引最 低RB与CORESET#0索引最低RB之间的间隔为38RB。
在另一种可能的实现方式中,SSB位于所述CORESET#0所占带宽的一边。如图7所示,为本申请实施例提供的另一种SSB与CORESET#0的位置的示意图。
参考图7中(a),假设信道带宽为200MHz,此时可用的RB数为132个,当包含CORESET#0的类型0-PDCCH信道占用96RB时,若上述k为20,且SSB位于CORESET#0所占带宽的索引最低的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为0RB。
参考图7中的(b),假设信道带宽为200MHz,此时可用的RB数为132个,当包含CORESET#0的类型0-PDCCH信道占用96RB时,若上述k为20,且SSB位于CORESET#0所占带宽的索引最高的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为76RB。
方式二:SSB和CORESET#0复用的格式为3
如图8所示,为本申请实施例提供的又一种SSB与CORESET#0的位置的示意图。
参考图8,在该图例中,假设信道带宽为200MHz,此时可用的RB数为132个,当包含CORESET#0的类型0-PDCCH信道占用96RB时,若上述k为20,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔与SSB与CRB中的子载波之间偏移的数值有关。
示例性地,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
需要说明的是,在一些实施例中,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为21RB。
方式三:SSB和CORESET#0复用的格式为2
如图9所示,为本申请实施例提供的再一种SSB与CORESET#0的位置的示意图。
参考图9,在该图例中,假设信道带宽为200MHz,此时可用的RB数为132个,当包含CORESET#0的类型0-PDCCH信道占用96RB时,若上述k为20,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔与SSB与CRB中的子载波之间偏移的数值有关。
示例性地,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
需要说明的是,在一些实施例中,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为21RB。
参考上述图8和图9,可以看出,图9所示的SSB的位置相对于图8所示的SSB的 位置,SSB位于CORESET#0对应type0-PDCCH信道的后边(右边)1个符号上,当SSB的子载波间隔与CORESET#0的子载波间隔不同时,通过这种设计方式,可以使得SSB和CORESET#0在时域上对齐。
当RB的数量为96时,根据SSB和所述CORESET#0的不同复用格式,需要重新定义SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔。下文将说明在上述可能的方式下,CORESET#0占用的符号个数,具体请参见下文。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
本申请实施例中,CORESET#0占用的符号个数基于所述SSB和所述CORESET#0复用的格式不同而不同。
方式一:SSB和CORESET#0复用的格式为1
若SSB和CORESET#0复用的格式为1,则CORESET#0占用的符号个数可以为1至4中的任一数值。请参考表16。
表16
Figure PCTCN2022084965-appb-000052
需要说明的是,上述表16中仅列出了几种可能的方式,其中,CORESET#0占用的符号个数可以为1至4中的任一数值,偏移可以为0~76中任一数值,为了简洁,表格中不 再一一示出。
方式二:SSB和CORESET#0复用的格式为3
若SSB和CORESET#0复用的格式为3,则CORESET#0占用的符号个数可以为1或2。请参考表17。
表17
Figure PCTCN2022084965-appb-000053
方式三:SSB和CORESET#0复用的格式为2
若SSB和CORESET#0复用的格式为2,则CORESET#0占用的符号个数可以为1或2。请参考表18。
表18
Figure PCTCN2022084965-appb-000054
可选地,在一些实施例中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量。本申请实施例中的CORESET#0是类型0-PDCCH搜索空间集合的CORESET。
方式一:SSB和CORESET#0复用的格式为1
在一种可能的实现方式中,SSB位于所述CORESET#0所占带宽的中间。
信道带宽为100MHz,当SSB与控制资源集CORESET#0的子载波间隔为120kHz时,此时,在所述信道带宽内可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用64RB时,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{20,21,22,23,24}RB中的任一或者多个。
信道带宽为200MHz,当SSB与控制资源集CORESET#0的子载波间隔为120kHz时,此时,在所述信道带宽内可用的RB数为132个,当包含CORESET#0的类型0-PDCCH信道占用96RB时,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{35,36,37,38,39,40,41,42}RB中的任一或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时,在所述信道带宽内可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用48RB时,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{11,12,13,14,15,16}RB中的任一或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时,在所述信道带宽内可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用64RB时,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{20,21,22,23,24,25,26,27,28}RB中的任一或者多个。
在另一种可能的实现方式中,SSB位于所述CORESET#0所占带宽的一边。
信道带宽为100MHz,当SSB与控制资源集CORESET#0的子载波间隔为120kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用64RB时,且SSB位于CORESET#0所占带宽的索引最低的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2,3,4,5,6,7,8,9,10,11,12}RB任一数值或者多个。
信道带宽为200MHz,当SSB与控制资源集CORESET#0的子载波间隔为120kHz时,此时可用的RB数为132个,当包含CORESET#0的类型0-PDCCH信道占用96RB时,且SSB位于CORESET#0所占带宽的索引最低的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2,3,4,5,6,7,8,9,10,11,12}RB任一数值或者多个。
信道带宽为100MHz,当SSB与控制资源集CORESET#0的子载波间隔为120kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用64RB时,且SSB位于CORESET#0所占带宽的索引最高的一边,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{40,41,42,43,44}RB中的任一或者多个。
信道带宽为200MHz,当SSB与控制资源集CORESET#0的子载波间隔为120kHz时,此时可用的RB数为132个,当包含CORESET#0的类型0-PDCCH信道占用96RB时,且SSB位于CORESET#0所占带宽的索引最高的一边,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{72,73,74,75,76}RB中的任一或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用48RB时,且SSB位于CORESET#0所占带宽的索引最低的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2}RB任一数值或者多个。
假设信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用48RB时,且SSB位于CORESET#0所占带宽的索引最高的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{21,22,23,24,25,26,27,28}RB任一数值或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用64RB时,且SSB位于CORESET#0所占带宽的索引最低的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2}RB任一数值或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用64RB时,且SSB位于CORESET#0所占带宽的索引最高的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{41,42,43,44}RB任一数值或者多个。
可选的,一种可能的实现方式。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用24RB时,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2,3,4}RB任一数值或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为960kHz时,此时可用的RB数为32或者33个,当包含CORESET#0的类型0-PDCCH信道占用24RB时,且SSB位于CORESET#0所占带宽的索引最高的一边,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2,3,4}RB任一数值或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,在频域范围56.8GHz~57.2GHz之间,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2,3,4,5,6,7,8}RB任一数值或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,在频域范围70.8GHz~71GHz之间,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2,3,4,5,6,7,8,9}RB任一数值或者多个。
信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为960kHz时,在频域范围56.8GHz~57.2GHz之间,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔满足{0,1,2,3,4}RB任一数值或者多个。
方式二:SSB和CORESET#0复用的格式为2或者3
SSB中索引最低RB与CORESET#0索引最低RB之间的间隔与SSB与CRB中的子载波之间偏移的数值有关。
假设信道带宽为100MHz,当SSB与控制资源集CORESET#0的子载波间隔为120kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用64RB时,则示例性地,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。或者,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为64RB。定义参数k1,k1取值{-1,0,1}任一数值,单位为RB,作用于SSB中索引最低RB与CORESET#0索引最低RB之间的间隔上,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{63,64,65}RB中的任一数值。
假设信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用24RB时,则示例性地,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。或者,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB。定 义参数k2,k2取值{-1,0,1}任一数值,单位为RB,作用于SSB中索引最低RB与CORESET#0索引最低RB之间的间隔上,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{23,24,25}RB中的任一数值。
假设信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用48RB时,则示例性地,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。或者,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为48RB。定义参数k3,k3取值{-1,0,1}任一数值,单位为RB,作用于SSB中索引最低RB与CORESET#0索引最低RB之间的间隔上,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{47,48,49}RB中的任一数值。
假设信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为480kHz时,此时可用的RB数为66个,当包含CORESET#0的类型0-PDCCH信道占用64RB时,则示例性地,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。或者,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为64RB。定义参数k4,k4取值{-1,0,1}任一数值,单位为RB,作用于SSB中索引最低RB与CORESET#0索引最低RB之间的间隔上,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{63,64,65}RB中的任一数值。
假设信道带宽为400MHz,当SSB与控制资源集CORESET#0的子载波间隔为960kHz时,此时可用的RB数为32或者33个,当包含CORESET#0的类型0-PDCCH信道占用24RB时,则示例性地,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。或者,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB。定义参数k5,k5取值{-1,0,1}任一数值,单位为RB,作用于SSB中索引最低RB与CORESET#0索引最低RB之间的间隔上,此时,SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为{23,24,25}RB中的任一数值。
图10为本申请实施提供的另一种通信方法1000的流程示意图,该方法1000可以由终端设备和网络设备执行,或者也可以由终端设备中的芯片和网络设备中的芯片执行。该通信方法1000可以包括:
1010,网络设备确定MIB信息,所述MIB信息包括PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括CORESET#0占用的RB数量,所述RB数量为96;
1020,所述网络设备向终端设备发送所述MIB信息。
1030,终端设备接收网络设备发送的MIB信息,
1040,所述终端设备根据所述控制资源集零确定类型0-PDCCH占用的连续符号数。
本申请提供的方案,网络设备向终端设备发送MIB信息,该MIB包括参数控制资源集零,且该控制资源集零包括的CORESET#0占用的RB数量为96,终端设备可以根据接收到的控制资源集零确定类型0-PDCCH占用的连续符号数。
可选地,在一些实施例中,若同步信息块SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
本申请实施例中,所述PDCCH-配置SIB1还可以包括搜索空间零,若SSB和所述CORESET#0复用的格式为2,终端设备可以根据搜索空间零这一参数监听类型0-PDCCH通用搜索空间集合的时机,该时机包括监听该信道的系统帧,时隙以及符号位置。其中,搜索该信道的系统帧与满足第二QCL关系的SSB的系统帧相同。搜索该信道的时隙与满足第二QCL关系的SSB的时隙相同。搜索该信道的符号位于满足第二QCL关系的SSB所在符号的前面一个或多个符号上。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
本申请实施例中,在CORESET#0占用的RB数量为96的情况下,SSB和所述CORESET#0复用的格式,以及SSB与所述CRB中的子载波之间偏移的数值可以参考上述方法300中的相关内容,在此不再赘述。
图11为本申请实施提供的另一种通信方法1100的流程示意图,该方法1100可以由终端设备和网络设备执行,或者也可以由终端设备中的芯片和网络设备中的芯片执行。该通信方法1100可以包括:
1110,网络设备确定MIB信息,所述MIB信息包括子载波间隔通用,所述子载波间隔通用通过r个比特指示,所述r为大于或等于2的正整数。
1120,所述网络设备向终端设备发送所述MIB信息。
1130,终端设备接收网络设备发送的MIB信息。
1140,所述终端设备根据所述MIB信息进行定时同步。
本申请提供的方案,网络设备向终端设备发送MIB信息,该MIB包括子载波间隔通用,且该子载波间隔通用通过大于或等于2个比特指示,终端设备可以根据接收到的MIB信息进行定时同步。
可选地,在一些实施例中,所述r个比特包括用于指示所述子载波间隔通用的初始的 1个比特和用于指示第六参数中的(r-1)个比特,所述第六参数包括以下至少一个参数:
所述MIB信息中的SSB-子载波偏移、所述MIB信息中的PDCCH-配置SIB1。
可选地,在一些实施例中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零。
本申请实施例中的r值可以为大于或等于2的正整数,所述r个比特可以包括用于指示子载波间隔通用的1个比特和用于指示SSB-子载波偏移的(r-1)个比特;或者,所述r个比特包括可以包括用于指示子载波间隔通用的1个比特和用于指示PDCCH-配置SIB1的(r-1)个比特;或者,所述r个比特包括可以包括用于指示载波间隔通用的1个比特和用于指示SSB-子载波偏移和PDCCH-配置SIB1的(r-1)个比特;不予限制。
本申请提供的方案,对于工作在授权频段上的系统,子载波间隔通用可以通过r个比特指示,该r个比特包括用于用于指示所述子载波间隔通用的初始的1个比特和用于指示第六参数中的(r-1)个比特。换句话说,在不扩展MIB负载容量的情况下,用于指示子载波间隔通用的比特可以包括MIB中其它参数相应的比特,可以提高系统的性能。
下文将具体描述子载波间隔通用的比特指示方式。
方式一:
所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用(s-(r-1))个比特指示,s为指示所述第七参数的初始数量。
方式二:
所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用s个比特指示,s为指示所述第七参数的初始数量。
本申请实施例中的第七参数可以为MIB信息中的SSB-子载波偏移,也可以为PDCCH-配置SIB1的搜索空间零,还可以为PDCCH-配置SIB1的控制资源集零。
示例性地,r可以为2,即可以用2个比特指示子载波间隔通用,具体指示方式请参见下文。
(a)所述2个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示参数“SSB-子载波偏移”中的1个比特
①在一种可能的实现方式中,若s=4,即指示参数“SSB-子载波偏移”初始数量的比特为4,本申请实施例中,用于指示该参数“SSB-子载波偏移”的其中1个比特可以挪用于指示参数子载波间隔通用,因此,在这种情况下,用于指示参数“SSB-子载波偏移”的比特的数量为3个。
②在另一种可能的实现方式中,若s=4,即指示参数“SSB-子载波偏移”初始数量的比特为4,本申请实施例中,用于指示该参数“SSB-子载波偏移”的其中1个比特可以借用至指示参数子载波间隔通用,虽然该参数“SSB-子载波偏移”的1个比特借用至指示子载波间隔通用,但是指示该参数“SSB-子载波偏移”的比特的数量仍然可以为初始的4个比特,即该参数“SSB-子载波偏移”仍然可以通过初始的4个比特指示。
(b)所述2个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示参数“PDCCH-配置SIB1”中的1个比特
由于该参数“PDCCH-配置SIB1”通过8个比特指示,该参数“PDCCH-配置SIB1”包括 参数“搜索空间零”(占用4个比特)和参数“控制资源集零”(占用4个比特)。因此,用于指示子载波间隔通用的2个比特可以包括用于指示参数“子载波间隔通用”初始的1个比特和用于指示参数“搜索空间零”中的1个比特,或者,可以包括用于指示参数“子载波间隔通用”初始的1个比特和用于指示参数“控制资源集零”中的1个比特。
①在一种可能的实现方式中,若s=4(该4个比特可以为用于指示参数“搜索空间零”的4个比特),即指示参数“搜索空间零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中1个比特可以挪用于指示参数子载波间隔通用,因此,在这种情况下,用于指示参数“搜索空间零”的比特的数量为3个。换句话说,在该情况下,可以使用7个比特(包括用于指示参数“搜索空间零”的3个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
②在另一种可能的实现方式中,若s=4(该4个比特可以为用于指示参数“搜索空间零”的4个比特),即指示参数“搜索空间零”初始数量的比特为4,本申请实施例中,用于指示该参数“搜索空间零”的其中1个比特可以借用至指示参数子载波间隔通用,虽然该参数“搜索空间零”的1个比特借用至指示子载波间隔通用,但是指示该参数“搜索空间零”的比特的数量仍然可以为初始的4个比特,即该参数“搜索空间零”仍然可以通过初始的4个比特指示。换句话说,在该情况下,仍然可以使用8个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
③在另一种可能的实现方式中,若s=4(该4个比特可以为用于指示参数“控制资源集零”的4个比特),即指示参数“控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“控制资源集零”的其中1个比特可以挪用于指示参数子载波间隔通用,因此,在这种情况下,用于指示参数“控制资源集零”的比特的数量为3个。换句话说,在该情况下,仍然可以使用7个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的3个比特)指示参数“PDCCH-配置SIB1”。
④在另一种可能的实现方式中,若s=4(该4个比特可以为用于指示参数“控制资源集零”的4个比特),即指示参数“控制资源集零”初始数量的比特为4,本申请实施例中,用于指示该参数“控制资源集零”的其中1个比特可以借用至指示参数子载波间隔通用,虽然该参数“控制资源集零”的1个比特借用至指示子载波间隔通用,但是指示该参数“控制资源集零”的比特的数量仍然可以为初始的4个比特,即该参数“控制资源集零”仍然可以通过初始的4个比特指示。换句话说,在该情况下,仍然可以使用8个比特(包括用于指示参数“搜索空间零”的4个比特和用于指示参数“控制资源集零”的4个比特)指示参数“PDCCH-配置SIB1”。
需要说明的是,不管是采用方式一或方式二指示参数子载波间隔通用,此时,MIB信息中的参数“subCarrierSpacingCommon”可以为:
subCarrierSpacingCommon    {scs15or60or120,scs30or120or480,960}
还需要说明的是,当网络设备和终端设备工作的频段低于52.6GHz时,可以只使用指示子载波间隔通用初始的1个比特指示该参数子载波间隔通用,终端设备可以默认该参数 “子载波间隔通用”占用1个比特;当网络设备和终端设备工作的频段高于52.6GHz时,可以使用指示子载波间隔通用初始的1个比特和用于指示其它参数的1个比特指示该参数子载波间隔通用,终端设备可以默认该参数“子载波间隔通用”占用2个比特。
本申请提供的方案,MIB信息中的子载波间隔通用可以通过r个比特指示,r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数采用s-(r-1))个比特指示,s为指示所述第七参数的初始数量;在这种实现方式下,可以用MIB中其它参数相应的比特指示子载波间隔通用,可以避免扩展MIB负载容量指示子载波间隔通用,从而可以提高系统的性能。此外,MIB信息中的子载波间隔通用可以通过r个比特指示,r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数采用s个比特指示;在这种实现方式下,可以用MIB中其它参数相应的比特指示子载波间隔通用,可以避免采用扩展MIB负载容量指示子载波间隔通用,且也不会影响第七参数自身的比特指示,从而可以提高系统的性能。
上文指出,用于指示子载波间隔通用的r个比特可以包括用于指示子载波间隔通用的初始的1个比特和用于指示第七参数的(r-1)个比特。在一种可能的实现方式中,第七参数可能为SSB-子载波偏移,在这种实现方式中,SSB-子载波偏移的偏移值可以通过以下方式确定。
可选地,在一些实施例中,所述第七参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的数值根据所述SSB的SCS和所述CRB的SCS的组合确定。
可选地,在一些实施例中,若所述SSB的SCS和所述CRB的SCS均为第一频率,所述SSB-子载波偏移的数值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为所述七参数的(r-1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为小于或等于所述第七参数的(r-1)个比特指示的数值。
本申请实施例中,所述SSB-子载波偏移的偏移值可以理解为SSB和CRB之间在子载波粒度上的偏移值,假设SSB和CRB之间在子载波粒度上的偏移值为K SSB,该偏移值与指示参数“SSB-子载波偏移”的4个比特(即指示参数
Figure PCTCN2022084965-appb-000055
)有关。
示例性地,假设本申请实施例中的第一频率、第二频率以及第三频率分别为120kHz、480kHz以及960kHz。
若SSB的SCS和CRB的SCS均为第一频率,即SSB和CRB的SCS为{120kHz,120kHz},假设预设阈值为12,如果
Figure PCTCN2022084965-appb-000056
Figure PCTCN2022084965-appb-000057
否则,
Figure PCTCN2022084965-appb-000058
其中,符号
Figure PCTCN2022084965-appb-000059
表示向下取整。
例性地,若
Figure PCTCN2022084965-appb-000060
则K SSB=14;若
Figure PCTCN2022084965-appb-000061
则K SSB=10,若
Figure PCTCN2022084965-appb-000062
则K SSB=8。
若SSB的SCS为第二频率,CRB的SCS为第一频率,即SSB和CRB的SCS为{480kHz,120kHz},
Figure PCTCN2022084965-appb-000063
即K SSB的取值为指示参数
Figure PCTCN2022084965-appb-000064
的4个比特指示的数值。
示例性地,若
Figure PCTCN2022084965-appb-000065
则K SSB=14。
若SSB的SCS为第三频率,CRB的SCS为第一频率,即SSB和CRB的SCS为{960kHz,120kHz},即K SSB的取值为小于或等于参数
Figure PCTCN2022084965-appb-000066
的4个比特指示的数值。
示例性地,若
Figure PCTCN2022084965-appb-000067
则K SSB=12,或者,K SSB=10等。
可选地,在一些实施例中,所述(r-1)个比特为所述第七参数中最高阶位的(r-1)个比特;或者,
所述(r-1)个比特为所述第七参数中最低阶位的(r-1)个比特;或者,
所述(r-1)个比特为所述第七参数中的任意(r-1)个比特。
本申请实施例中,假设子载波间隔通用这一参数用2个比特指示,且所述2个比特包括用于指示参数“子载波间隔通用”初始的1个比特和用于指示参数“SSB-子载波偏移”中的1个比特,则用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载波偏移”中最高阶位的1个比特;或者,用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载波偏移”中最低阶位的1个比特;或者,用于指示参数“SSB-子载波偏移”中的1个比特可以为该参数“SSB-子载波偏移”中任意1个比特;不予限制。
需要说明的是,本申请实施例中的参数“SSB-子载波偏移”中最高阶位的1个比特可以理解为:假设该参数“SSB-子载波偏移”初始用4个比特指示(如1011),则该参数“SSB-子载波偏移”中最高阶位的1个比特即为最左边的第1个比特,即“1”。
本申请实施例中的参数“SSB-子载波偏移”中最低阶位的1个比特可以理解为:假设该参数“SSB-子载波偏移”初始用4个比特指示(如1011),则该参数“SSB-子载波偏移”中最低阶位的1个比特即为最右边的第1个比特,即“1”。
综上所述,通过2个比特指示参数“子载波间隔通用”的方式可以如下表19所示:
表19
比特/频率 FR1 FR2 Above 52.6GHz
00 15kHz 60kHz 120kHz
01 30kHz 120kHz 480kHz
10 -- -- 960kHz
11 -- -- --
参考上述表19,当网络设备配置的比特为“00”时,对于工作在FR1的系统,终端设备默认发送SIB1、用于初始接入随机接入过程中发送消息2/4、其它OSI的SCS为15kHz;对于工作在FR2的系统,终端设备默认发送上述几个信息的信道所使用的SCS为60kHz,对于工作在52.6GHz以上的系统(比如52.6GHz~71GHz),终端设备默认发送上述几个信息的信道所使用的SCS为120kHz。
上述示出了r为2的情况下,用于指示参数“子载波间隔通用”的几种可能的方式,可以理解的是,用于指示参数“子载波间隔通用”的比特的数量还可以为3或4等,不予限制。具体内容可以参考上述Q值的比特指示方式,不再赘述。
需要说明的是,在一些实施例中,所述r个比特也可以包括用于指示参数“SSB-子载波偏移”的r个比特;或者,可以包括用于指示参数“PDCCH-配置SIB1”中的r个比特;或者,可以包括用于指示参数“SSB-子载波偏移”的r1个比特和用于指示参数“PDCCH-配置SIB1”中的(r-r1)个比特;不予限制。换句话说,在该指示方式下,用于指示参数“子载波间隔通用”的r个比特不包括用于指示参数“子载波间隔通用”初始的1个比特。
可以理解的是,上文中所示出的数值仅为举例说明,还可以为其它数值,不应对本申请造成特别限定。
图12和图13为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置 可以实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端设备20-终端设备40中的任意设备,也可以是如图1所示的网络设备10,还可以是应用于终端设备或网络设备的模块(如芯片)。
图12是本申请实施例提供的一种通信装置1200的示意性结构图,该装置1200可以包括收发模块1210和处理模块1220。
当通信装置1200用于实现图3所述方法实施例中终端设备的功能时,所述收发模块1210,用于接收网络设备发送的第一信息,所述第一信息包括Q值或第一参数,所述第一参数用于指示DBTW的状态。所述处理模块1220用于根据所述Q值或所述第一参数确定所述DBTW的状态。
可选地,在一些实施例中,所述处理模块1220进一步用于:
若所述Q值大于或等于第一阈值,确定所述DBTW处于关闭状态;或者,
若所述Q值小于所述第一阈值,根据DBTW值确定所述DBTW的状态。
可选地,在一些实施例中,所述处理模块1220进一步用于:
若所述DBTW值小于或等于第二阈值,确定所述DBTW处于关闭状态;或者,
若所述DBTW值大于所述第二阈值,确定所述DBTW处于打开状态。
可选地,在一些实施例中,所述第二阈值为第一同步信息块SSB所在时隙上的第一个符号到第二SSB所在时隙上的最后一个符号的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB所在时隙上的第一个符号到第四SSB所在时隙上的最后一个符号的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB所在时隙上的第一个符号到第六SSB所在时隙上的最后一个符号的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发送的SSB中索引最大的SSB。
可选地,在一些实施例中,所述第二阈值为第一SSB所在的时隙到第二SSB所在的时隙的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB所在的时隙到第四SSB所在的时隙的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB所在的时隙到第六SSB所在的时隙上的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发送的SSB中索引最大的SSB。
可选地,在一些实施例中,所述第二阈值为第一SSB的第一个符号索引到第二SSB的最后一个符号索引的时间持续长度,所述第一SSB的索引为0,所述第二的SSB为(Q-1);或者,
所述第二阈值为第三SSB的第一个符号索引到第四SSB的最后一个符号索引的时间持续长度,所述第三SSB位于第一SSB组中,所述第四SSB位于第二SSB组中,所述第 一SSB组为第二参数中从左起第一个比特配置成“1”的组,所述第二SSB组为所述第二参数中从右起第一个比特配置成“1”的组;或者,
所述第二阈值为第五SSB的第一个符号索引到第六SSB的最后一个符号索引的时间持续长度,所述第五SSB为成功发送的SSB中索引最小的SSB,所述第六SSB为成功发送的SSB中索引最大的SSB。
可选地,在一些实施例中,所述Q值用n个比特指示,所述n为大于2的正整数,所述n个比特包括用于指示第三参数的至少一个比特,所述第三参数包括以下至少一个参数:
主信息块MIB信息中的子载波间隔通用、所述MIB信息中的SSB-子载波偏移、所述MIB信息中的物理下行控制信道-配置系统信息块1PDCCH-配置SIB1。
可选地,在一些实施例中,所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m-(n-n1)个比特指示,m为指示所述第五参数的初始数量。
可选地,在一些实施例中,所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m个比特指示,m为指示所述第五参数的初始数量,(n-n1)<m。
可选地,在一些实施例中,所述第五参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的偏移值根据所述SSB的子载波间隔SCS和公共资源块CRB的SCS的组合确定。
可选地,在一些实施例中,若所述SSB的SCS和CRB的SCS均为第一频率,所述SSB-子载波偏移的偏移值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为所述第五参数的(n-n1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为小于或等于所述第五参数的(n-n1)个比特指示的数值。
可选地,在一些实施例中,所述(n-n1)个比特为所述第五参数中最高阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中最低阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中的任意(n-n1)个比特。
可选地,在一些实施例中,所述处理模块1220进一步用于:
若所述第一参数包括指示所述DBTW打开的参数,确定所述DBTW处于打开状态;或者,
若所述第一参数包括指示所述DBTW关闭的参数,确定所述DBTW处于打开状态。
可选地,在一些实施例中,所述第一参数携带于无线资源控制RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中;或者,
所述Q值或所述DBTW值携带于RRC信令中的服务小区配置通用中或MIB信息中的服务小区配置通用SIB中。
可选地,在一些实施例中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零, 所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
当通信装置1200用于实现图3所述方法实施例中网络设备的功能时,所述处理模块1220,用于确定第一信息,所述第一信息包括Q值或第一参数,所述第一参数用于指示发现突发集传输窗口DBTW的状态。所述收发模块1210,用于向终端设备发送所述第一信息。
可选地,在一些实施例中,所述Q值用n个比特指示,所述n为大于2的正整数,所述n个比特包括用于指示第三参数的至少一个比特,所述第三参数包括以下至少一个参数:
主信息块MIB信息中的子载波间隔通用、所述MIB信息中的同步信息块SSB-子载波偏移、所述MIB信息中的物理下行控制信道-配置系统信息块1PDCCH-配置SIB1。
可选地,在一些实施例中,所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m-(n-n1)个比特指示,m为指示所述第五参数的初始数量。
可选地,在一些实施例中,所述n个比特包括用于指示第四参数的n1个比特和用于指示第五参数的(n-n1)个比特,所述第四参数为所述第三参数中的任一参数,所述第五参数为所述第三参数中除所述第四参数之外的参数,所述第五参数采用m个比特指示,m为指示所述第五参数的初始数量,(n-n1)<m。
可选地,在一些实施例中,所述第五参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的偏移值根据所述SSB的子载波间隔SCS和公共资源块CRB的SCS的组合确定。
可选地,在一些实施例中,若所述SSB的SCS和CRB的SCS均为第一频率,所述SSB-子载波偏移的偏移值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为所述第五参数的(n-n1)个比特数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的偏移值为小于或等于所述第五参数的(n-n1)个比特指示的数值。
可选地,在一些实施例中,所述(n-n1)个比特为所述第五参数中最高阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中最低阶位的(n-n1)个比特;或者,
所述(n-n1)个比特为所述第五参数中的任意(n-n1)个比特。
可选地,在一些实施例中,所述第一参数携带于无线资源控制RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中;或者,
所述Q值或所述DBTW值携带于RRC信令中的服务小区配置通用中或MIB信息中的服务小区配置通用SIB中。
可选地,在一些实施例中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
当通信装置1200用于实现图10所述方法实施例中终端设备的功能时,所述收发模块1210,用于接收网络设备发送的主信息块MIB信息,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。所述处理模块1220,用于根据所述控制资源集零确定类型0-PDCCH占用的连续符号数。
可选地,在一些实施例中,若同步信息块SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
当通信装置1200用于实现图10所述方法实施例中网络设备的功能时,所述处理模块1220,用于确定主信息块MIB信息,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。所述收发模块1210,用于向终端设备发送所述MIB信息。
可选地,在一些实施例中,若同步信息块SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
若SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述SSB与CRB中的子载波之间偏移的数值确定。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为2或3,
若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;
若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
可选地,在一些实施例中,若SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
可选地,在一些实施例中,若所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;
若所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
当通信装置1200用于实现图11所述方法实施例中终端设备的功能时,所述收发模块1210,用于接收网络设备发送的主信息块MIB信息,所述MIB信息包括子载波间隔通用,所述子载波间隔通用通过r个比特指示,所述r为大于或等于2的正整数。所述处理模块1220,用于根据所述MIB信息进行定时同步。
可选地,在一些实施例中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第六参数中的(r-1)个比特,所述第六参数包括以下至少一个参数:
所述MIB信息中的SSB-子载波偏移、所述MIB信息中的PDCCH-配置SIB1。
可选地,在一些实施例中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零。
可选地,在一些实施例中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用(s-(r-1))个比特指示,s为指示所述第七参数的初始数量。
可选地,在一些实施例中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用s个比特指示,s为指示所述第七参数的初始数量。
可选地,在一些实施例中,所述第七参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的数值根据所述SSB的SCS和所述CRB的SCS的组合确定。
可选地,在一些实施例中,若所述SSB的SCS和所述CRB的SCS均为第一频率,所述SSB-子载波偏移的数值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为所述七参数的(r-1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为小于或等于所述第七参数的(r-1)个比特指示的数值。
当通信装置1200用于实现图11所述方法实施例中网络设备的功能时,所述处理模块1220,用于确定主信息块MIB信息,所述MIB信息包括第一子载波间隔通用,所述第一子载波间隔通用通过r个比特指示,所述r为大于或等于2的正整数。所述收发模块1210,用于向终端设备发送所述MIB信息。
可选地,在一些实施例中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第六参数中的(r-1)个比特,所述第六参数包括以下至少一个参数:
所述MIB信息中的SSB-子载波偏移、所述MIB信息中的PDCCH-配置SIB1。
可选地,在一些实施例中,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零。
可选地,在一些实施例中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用(s-(r-1))个比特指示,s为指示所述第七参数的初始数量。
可选地,在一些实施例中,所述r个比特包括用于指示所述子载波间隔通用的初始的1个比特和用于指示第七参数中的(r-1)个比特,所述第七参数为所述第六参数中的任一参数,所述第七参数采用s个比特指示,s为指示所述第七参数的初始数量。
可选地,在一些实施例中,所述第七参数为所述MIB信息中的SSB-子载波偏移,所述SSB-子载波偏移的数值根据所述SSB的SCS和所述CRB的SCS的组合确定。
可选地,在一些实施例中,若所述SSB的SCS和所述CRB的SCS均为第一频率,所述SSB-子载波偏移的数值基于预设阈值确定;或者,
若所述SSB的SCS为第二频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为所述七参数的(r-1)个比特指示的数值;或者,
若所述SSB的SCS为第三频率,所述CRB的SCS为所述第一频率,所述SSB-子载波偏移的数值为小于或等于所述第七参数的(r-1)个比特指示的数值。
关于上述收发模块1010和处理模块1020更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
如图13所示,通信装置1300包括处理器1310和接口电路1320。处理器1310和接 口电路1320之间相互耦合。可以理解的是,接口电路1320可以为收发器或输入输出接口。可选的,通信装置1300还可以包括存储器1330,用于存储处理器1310执行的指令或存储处理器1310运行指令所需要的输入数据或存储处理器1310运行指令后产生的数据。
当通信装置1300用于实现上述方法实施例中的方法时,处理器1310用于执行上述处理模块1220的功能,接口电路1320用于执行上述收发模块1210的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
图14是本申请实施例提供的芯片的示意性结构图。图14所示的芯片1400包括处理器1410,所述处理器1410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,芯片1400还可以包括存储器1420。其中,所述处理器1410可以从存储器1420中调用并运行计算机程序,以执行本申请实施例中的方法300或方法1000或方法1100的步骤。
其中,存储器1420可以是独立于所述处理器1410的一个单独的器件,也可以集成在所述处理器1410中。
可选地,该芯片1400还可以包括输入接口1430。其中,所述处理器1410可以控制该输入接口1430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1400还可以包括输出接口1440。其中,所述处理器1410可以控制该输出接口1440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存 取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字多功能光盘(digital versatile disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信系统,包括上述实施例中的终端设备和网络设备,实现设备间的相互协作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合的方式来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不加赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合。另一点,所显示或讨论的相互之间的耦合或通信连接可以是通过一些接口、装置或模块的间接耦合或通信连接。
另外,在本申请各个实施例中的各功能模块可以集成在一个物理实体中,也可以是各个模块单独对应一个物理实体,也可以两个或两个以上模块集成在一个物理实体中。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (92)

  1. 一种通信方法,其特征在于,所述方法应用于非授权频段,包括:
    接收网络设备发送的第一信息,所述第一信息包括Q值;
    根据所述Q值确定是否在发现突发集传输窗口DBTW内接收由于先听后说LBT失败而未发送的同步信号块SSB,其中,所述DBTW内包括多个候选SSB位置,所述多个候选SSB位置包括用于发送所述由于LBT失败而未发送的SSB的位置,所述由于LBT失败而未发送的SSB与DBTW内的其他候选SSB位置上发送的SSB具有准共址QCL关系。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述Q值确定是否在发现突发集传输窗口DBTW内接收由于先听后说LBT失败而未发送的同步信号块SSB包括:
    根据所述Q值确定所述DBTW的状态;
    根据所述DBTW的状态确定是否在所述DBTW内接收由于LBT失败而未发送的SSB。
  3. 根据权利要求1或2所述的方法,其特征在于,
    若所述Q值小于DBTW内候选SSB位置的数量,在所述DBTW内接收由于LBT失败而未发送的SSB。
  4. 根据权利要求3所述的方法,其特征在于,所述DBTW为打开状态。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述DBTW的窗长为0.125ms或0.25ms。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述Q值携带于无线资源控制RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中;或者,所述Q值携带于终端设备已检测到的SSB中的主信息块MIB中。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述Q值包括32或64。
  8. 根据权利要求6所述的方法,其特征在于,所述SSB中包含PDCCH-配置SIB1,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
  9. 根据权利要求8所述的方法,其特征在于,
    若所述SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
    若所述SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述第一SSB与公共资源块CRB中的子载波之间偏移的数值确定。
  10. 根据权利要求8或9所述的方法,其特征在于,若所述SSB和所述CORESET#0复用的格式为2或3,
    若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;或者,
    若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
  11. 根据权利要求8或9所述的方法,其特征在于,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
  12. 根据权利要求8-10任一项所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;或,
    所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
  13. 根据权利要求8或9所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为1,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或者38RB或者76RB。
  14. 根据权利要求8或9所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为3,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,
    所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-20RB;或者,
    所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-21RB。
  15. 根据权利要求8或9所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为1,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或14RB或28RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在 所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB。
  16. 根据权利要求8或9任一项所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB或48RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  17. 根据权利要求8或9所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB,或者,
    当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为48RB。
  18. 根据权利要求8或9所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB,或者,若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  19. 根据权利要求8或9所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB。
  20. 一种通信方法,其特征在于,所述方法应用于非授权频段,包括:
    确定第一信息,所述第一信息包括Q值,所述Q值用于指示是否在发现突发集传输窗口DBTW内发送由于先听后说LBT失败而未发送的同步信号块SSB,其中,所述DBTW内包括多个候选SSB位置,所述多个候选SSB位置包括用于发送所述由于LBT失败而未发送的SSB的位置,所述由于LBT失败而未发送的SSB与DBTW内的其他候选SSB位置上发送的SSB具有准共址QCL关系;
    向终端设备发送所述第一信息。
  21. 根据权利要求20所述的方法,其特征在于,所述Q值用于指示是否在DBTW内发送由于LBT失败而未发送的SSB包括:
    所述Q值用于指示所述DBTW的状态,所述DBTW的状态用于指示是否在所述DBTW内发送由于LBT失败而未发送的SSB。
  22. 根据权利要求20或21所述的方法,其特征在于,
    若所述Q值小于DBTW内候选SSB位置的数量,在所述DBTW内发送由于LBT失败而未发送的SSB;或
    若所述Q值等于DBTW内候选SSB位置的数量,不在所述DBTW内发送由于LBT失败而未发送的SSB。
  23. 根据权利要求22所述的方法,其特征在于,
    所述Q值小于DBTW内候选SSB位置的数量,所述DBTW为打开状态;
    所述Q值等于DBTW内候选SSB位置的数量,所述DBTW为关闭状态。
  24. 根据权利要求20-23任一项所述的方法,其特征在于,所述DBTW的窗长为0.125ms或0.25ms。
  25. 根据权利要求20-24任一项所述的方法,其特征在于,所述Q值携带于无线资源控制RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中;或者,所述Q值携带于网络设备成功发送的SSB中的主信息块MIB中。
  26. 根据权利要求20-25任一项所述的方法,其特征在于,所述Q值包括32或64。
  27. 根据权利要求25所述的方法,其特征在于,所述网络设备成功发送的SSB中包含PDCCH-配置SIB1,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
  28. 根据权利要求25或27所述的方法,其特征在于,若所述网络设备成功发送的SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
    若所述SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述第一SSB与公共资源块CRB中的子载波之间偏移的数值确定。
  29. 根据权利要求27或28任一项所述的方法,其特征在于,若所述SSB和所述CORESET#0复用的格式为2或3,
    若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k; 或,
    若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
  30. 根据权利要求27或28所述的方法,其特征在于,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
  31. 根据权利要求27-29任一项所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;或,
    所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
  32. 根据权利要求27或28所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为1,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或者38RB或者76RB。
  33. 根据权利要求27或28所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为3,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,
    所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-20RB;或者,
    所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-21RB。
  34. 根据权利要求27或28所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为1,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或14RB或28RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB。
  35. 根据权利要求27或28所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB或48RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  36. 根据权利要求27或28所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB,或者,
    当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为48RB。
  37. 根据权利要求27或28所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB,或者,若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  38. 根据权利要求27或28所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB。
  39. 一种通信装置,其特征在于,包括:
    收发模块,用于接收网络设备发送的第一信息,所述第一信息包括Q值;
    处理模块,用于根据所述Q值确定是否在发现突发集传输窗口DBTW内接收由于先听后说LBT失败而未发送的同步信号块SSB,其中,所述DBTW内包括多个候选SSB位置,所述多个候选SSB位置包括用于发送所述由于LBT失败而未发送的SSB的位置,所述由于LBT失败而未发送的SSB与DBTW内的其他候选SSB位置上发送的SSB具有准共址QCL关系。
  40. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一信息,所述第一信息包括Q值,所述Q值用于指示是否在 发现突发集传输窗口DBTW内发送由于先听后说LBT失败而未发送的同步信号块SSB,其中,所述DBTW内包括多个候选SSB位置,所述多个候选SSB位置包括用于发送所述由于LBT失败而未发送的SSB的位置,所述由于LBT失败而未发送的SSB与DBTW内的其他候选SSB位置上发送的SSB具有准共址QCL关系;
    收发模块,用于向终端设备发送所述第一信息。
  41. 根据权利要求39所述的装置,其特征在于,所述处理模块根据所述Q值确定是否在发现突发集传输窗口DBTW内接收由于先听后说LBT失败而未发送的同步信号块SSB包括:
    根据所述Q值确定所述DBTW的状态;
    根据所述DBTW的状态确定是否在所述DBTW内接收由于LBT失败而未发送的SSB。
  42. 根据权利要求40所述的装置,其特征在于,所述Q值用于指示是否在DBTW内发送由于LBT失败而未发送的SSB包括:
    所述Q值用于指示所述DBTW的状态,所述DBTW的状态用于指示是否在所述DBTW内发送由于LBT失败而未发送的SSB。
  43. 根据权利要求39或41所述的装置,其特征在于,
    若所述Q值小于DBTW内候选SSB位置的数量,所述收发模块在所述DBTW内接收由于LBT失败而未发送的SSB。
  44. 根据权利要求40或42所述的装置,其特征在于,
    若所述Q值小于DBTW内候选SSB位置的数量,所述收发模块在所述DBTW内发送由于LBT失败而未发送的SSB;或
    若所述Q值等于DBTW内候选SSB位置的数量,所述收发模块不在所述DBTW内发送由于LBT失败而未发送的SSB。
  45. 根据权利要求43所述的装置,其特征在于,所述DBTW为打开状态。
  46. 根据权利要求44所述的装置,其特征在于,
    所述Q值小于DBTW内候选SSB位置的数量,所述DBTW为打开状态;
    所述Q值等于DBTW内候选SSB位置的数量,所述DBTW为关闭状态。
  47. 根据权利要求39-44任一项所述的装置,其特征在于,所述DBTW的窗长为0.125ms或0.25ms。
  48. 根据权利要求39或41或43或45所述的装置,其特征在于,所述Q值携带于无线资源控制RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中,或者,所述Q值携带于所述装置已检测到的SSB中的主信息块MIB中。
  49. 根据权利要求40或42或44或45所述的装置,其特征在于,所述Q值携带于无 线资源控制RRC信令中的服务小区配置通用中或SIB1信息中的服务小区配置通用SIB中;或者,所述Q值携带于所述装置成功发送的SSB中的主信息块MIB中。
  50. 根据权利要求46或47所述的装置,其特征在于,所述SSB中包含PDCCH-配置SIB1,所述PDCCH-配置SIB1包括搜索空间零和控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
  51. 根据权利要求48所述的装置,其特征在于,若所述SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
    若所述SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述第一SSB与公共资源块CRB中的子载波之间偏移的数值确定。
  52. 根据权利要求48或49所述的装置,其特征在于,若所述SSB和所述CORESET#0复用的格式为2或3,
    若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;或,
    若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
  53. 根据权利要求48或49所述的装置,其特征在于,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
  54. 根据权利要求48-50任一项所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;或,
    所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
  55. 根据权利要求48或49所述的装置,其特征在于,所述SSB和所述CORESET#0复用的格式为1,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或者38RB或者76RB。
  56. 根据权利要求48或49所述的装置,其特征在于,所述SSB和所述CORESET#0复用的格式为3,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,
    所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-20RB;或者,
    所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-21RB。
  57. 根据权利要求48或49所述的装置,其特征在于,所述SSB和所述CORESET#0复用的格式为1,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或14RB或28RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB。
  58. 根据权利要求48或49任一项所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB或48RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  59. 根据权利要求48或49所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB,或者,
    当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为48RB。
  60. 根据权利要求48或49所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB,或者,若SSB与所述CRB中的子载波之间偏移的数值大于0,则 SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  61. 根据权利要求48或49所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB。
  62. 一种通信方法,其特征在于,包括
    接收网络设备发送的主信息块MIB信息,所述MIB信息携带于同步信息号块SSB中,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96;
    根据所述CORESET#0确定类型0-物理下行控制信道类型0-PDCCH占用的连续符号数。
  63. 一种通信方法,其特征在于,包括
    发送的主信息块MIB信息,所述MIB信息携带于同步信息号块SSB中,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
  64. 根据权利要求60或61所述的方法,其特征在于,若所述SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
    若所述SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述第一SSB与公共资源块CRB中的子载波之间偏移的数值确定。
  65. 根据权利要求60-62任一项所述的方法,其特征在于,若所述SSB和所述CORESET#0复用的格式为2或3,
    若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;或者,
    若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
  66. 根据权利要求60-62任一项所述的方法,其特征在于,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
  67. 根据权利要求60-63任一项所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2; 或,
    所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
  68. 根据权利要求60-62任一项所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为1,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或者38RB或者76RB。
  69. 根据权利要求60-62任一项所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为3,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,
    所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-20RB;或者,
    所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-21RB。
  70. 根据权利要求60-62任一项所述的方法,其特征在于,所述SSB和所述CORESET#0复用的格式为1,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或14RB或28RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB。
  71. 根据权利要求60-62任一项所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB或48RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  72. 根据权利要求60-62任一项所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB,或者,
    当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为48RB。
  73. 根据权利要求60-62任一项所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB,或者,若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  74. 根据权利要求60-62任一项所述的方法,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB。
  75. 一种通信装置,其特征在于,包括
    收发模块,用于接收网络设备发送的主信息块MIB信息,所述MIB信息携带于同步信息号块SSB中,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96;
    处理模块,用于根据所述CORESET#0确定类型0-物理下行控制信道类型0-PDCCH占用的连续符号数。
  76. 一种通信装置,其特征在于,包括
    收发模块,用于发送的主信息块MIB信息,所述MIB信息携带于同步信息号块SSB中,所述MIB信息包括物理下行控制信道-配置系统信息块1PDCCH-配置SIB1,所述PDCCH-配置SIB1包括控制资源集零,所述控制资源集零包括控制资源集CORESET#0占用的资源块RB数量,所述RB数量为96。
  77. 根据权利要求73或74所述的装置,其特征在于,若所述SSB和所述CORESET#0复用的格式为1,且所述SSB占用的RB数量为k,所述控制资源集零包括的第一间隔为0至(96-k)中的任一数值,所述第一间隔表示所述SSB中索引最小的RB与所述CORESET#0索引最小的RB之间的间隔;或者,
    若所述SSB和所述CORESET#0复用的格式为2或3,所述第一间隔基于所述第一 SSB与公共资源块CRB中的子载波之间偏移的数值确定。
  78. 根据权利要求73-75任一项所述的装置,其特征在于,若所述SSB和所述CORESET#0复用的格式为2或3,
    若所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述第一间隔为k或-k;或者,
    若所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述第一间隔为(k+1)或-(k+1)。
  79. 根据权利要求73-75任一项所述的装置,其特征在于,若所述SSB和所述CORESET#0复用的格式为1,所述CORESET#0占用的符号个数为1至4中的任一数值。
  80. 根据权利要求73-76任一项所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为3,所述CORESET#0占用的符号个数2;或,
    所述SSB和所述CORESET#0复用的格式为2,所述CORESET#0占用的符号个数为1或2。
  81. 根据权利要求73-75任一项所述的装置,其特征在于,所述SSB和所述CORESET#0复用的格式为1,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或者38RB或者76RB。
  82. 根据权利要求73-75任一项所述的装置,其特征在于,所述SSB和所述CORESET#0复用的格式为3,信道带宽为200MHz,可用的RB数为132个,当包含所述CORESET#0的类型0-PDCCH信道占用96RB时,所述k为20,
    所述SSB与所述CRB中的子载波之间偏移的数值等于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-20RB;或者,
    所述SSB与所述CRB中的子载波之间偏移的数值大于0,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为-21RB。
  83. 根据权利要求73-75任一项所述的装置,其特征在于,所述SSB和所述CORESET#0复用的格式为1,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或14RB或28RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB 或4RB;或者,
    信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与所述CORESET#0索引最低RB之间的间隔为0RB或4RB。
  84. 根据权利要求73-75任一项所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB或48RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB;若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  85. 根据权利要求73-75任一项所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为480kHz时,在所述信道带宽内可用的RB数为66个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB,或者,
    当包含所述CORESET#0的类型0-PDCCH信道占用48RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为48RB。
  86. 根据权利要求73-75任一项所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,若SSB与所述CRB中的子载波之间偏移的数值等于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-20RB,或者,若SSB与所述CRB中的子载波之间偏移的数值大于0,则SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为-21RB。
  87. 根据权利要求73-75任一项所述的装置,其特征在于,
    所述SSB和所述CORESET#0复用的格式为2或3,信道带宽为400MHz,所述SSB与所述CORESET#0的子载波间隔为960kHz时,在所述信道带宽内可用的RB数为32或33个,当包含所述CORESET#0的类型0-PDCCH信道占用24RB时,所述SSB中索引最低RB与CORESET#0索引最低RB之间的间隔为24RB。
  88. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器用于保存程序指令和/或数据,所述处理器用于实现如权利要求1至19,或者,20至38,或者60-72中任一项所述的方法。
  89. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至19,或者,20至38,或者60-72中任一项所述的方法。
  90. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至19,或者,20至38,或者60-72中任一项所述的方法。
  91. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得如权利要求1至19,或者,20至38,或者60-72中任一项所述的方法被执行。
  92. 一种通信系统,其特征在于,包括终端设备和网络设备,所述终端设备用于执行如权利要求1至19,或者60,62-72中任一项所述的方法,所述网络设备用于执行如权利要求20至38,或者61-72中任一项所述的方法。
PCT/CN2022/084965 2021-04-02 2022-04-02 通信方法和通信装置 WO2022206984A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3215717A CA3215717A1 (en) 2021-04-02 2022-04-02 Communication method and apparatus
EP22779164.7A EP4300864A1 (en) 2021-04-02 2022-04-02 Communication method and communication apparatus
US18/477,056 US20240040392A1 (en) 2021-04-02 2023-09-28 Communication method and apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110363804 2021-04-02
CN202110363804.8 2021-04-02
CN202110373178 2021-04-07
CN202110373178.0 2021-04-07
CN202110902625.7 2021-08-06
CN202110902625.7A CN115208532A (zh) 2021-04-02 2021-08-06 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/477,056 Continuation US20240040392A1 (en) 2021-04-02 2023-09-28 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022206984A1 true WO2022206984A1 (zh) 2022-10-06

Family

ID=83458099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084965 WO2022206984A1 (zh) 2021-04-02 2022-04-02 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20240040392A1 (zh)
EP (1) EP4300864A1 (zh)
CA (1) CA3215717A1 (zh)
WO (1) WO2022206984A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756449A (zh) * 2017-11-02 2019-05-14 维沃移动通信有限公司 系统信息块的传输方法、基站和用户终端
WO2020075618A1 (ja) * 2018-10-10 2020-04-16 株式会社Nttドコモ 端末及び無線通信方法
WO2020087524A1 (zh) * 2018-11-02 2020-05-07 Oppo广东移动通信有限公司 非授权频段上ssb的传输方法和设备
WO2020103160A1 (zh) * 2018-11-23 2020-05-28 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756449A (zh) * 2017-11-02 2019-05-14 维沃移动通信有限公司 系统信息块的传输方法、基站和用户终端
WO2020075618A1 (ja) * 2018-10-10 2020-04-16 株式会社Nttドコモ 端末及び無線通信方法
WO2020087524A1 (zh) * 2018-11-02 2020-05-07 Oppo广东移动通信有限公司 非授权频段上ssb的传输方法和设备
WO2020103160A1 (zh) * 2018-11-23 2020-05-28 Oppo广东移动通信有限公司 无线通信方法、网络设备和终端设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on serving cell without CORESET#0", 3GPP DRAFT; R2-1813651 DISCUSSION ON SERVING CELL WITHOUT CORESET#0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051523146 *
MODERATOR (INTEL CORPORATION): "Summary #4 of email discussion on initial access aspect of NR extension up to 71 GHz", 3GPP DRAFT; R1-2101971, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200125 - 20200205, 8 February 2021 (2021-02-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051977641 *
MODERATOR (QUALCOMM INCORPORATED): "Moderator’s summary of initial access signals and channels for NR-U", 3GPP DRAFT; R1-2002734, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online Meeting ;20200420 - 20200430, 20 April 2020 (2020-04-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051876750 *

Also Published As

Publication number Publication date
EP4300864A1 (en) 2024-01-03
CA3215717A1 (en) 2022-10-06
US20240040392A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
KR102321890B1 (ko) 시간-주파수 자원의 송신 방향을 구성하는 방법, 및 장치
WO2022022688A1 (zh) 一种同步信号块的传输方法和通信装置
EP3879737B1 (en) Method and device for processing synchronization signal block information and communication device
KR20200012943A (ko) 업 링크 자원 승인 방법, 장치 및 시스템
CN109150463B (zh) 信息发送、接收方法及装置
WO2019149088A1 (zh) 一种随机接入方法及装置
WO2022028191A1 (zh) 一种监测控制信道、确定传输配置指示的方法及终端
JP6818885B2 (ja) 制御チャネルリソース構成方法、基地局、および端末デバイス
US20220303961A1 (en) Physical channel monitoring method and terminal device
WO2018141247A1 (zh) 控制信息的发送和接收方法、接入网设备和终端设备
WO2022206984A1 (zh) 通信方法和通信装置
CN117460007A (zh) 一种小区状态切换方法及装置
WO2020030127A1 (zh) 一种资源分配方法、相关设备及装置
WO2023051336A1 (zh) 一种通信方法、通信装置及计算机可读存储介质
EP4301076A1 (en) Communication method and apparatus
TW202318902A (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
CN112586066A (zh) 一种通信方法及装置
WO2022141276A1 (zh) 信息确定方法、信息传输方法、装置、设备及存储介质
CN114826537A (zh) 一种通信方法及装置
CN115208532A (zh) 通信方法和通信装置
WO2022178881A1 (zh) 通信方法及装置
WO2022077509A1 (zh) 控制信道的传输方法、终端设备和网络设备
WO2023011372A1 (zh) 数据传输方法及装置
WO2021134572A1 (zh) 通信方法和通信设备
WO2023207837A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3215717

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022779164

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779164

Country of ref document: EP

Effective date: 20230929

NENP Non-entry into the national phase

Ref country code: DE