WO2022206896A1 - 一种高可靠性柔性钻杆 - Google Patents

一种高可靠性柔性钻杆 Download PDF

Info

Publication number
WO2022206896A1
WO2022206896A1 PCT/CN2022/084419 CN2022084419W WO2022206896A1 WO 2022206896 A1 WO2022206896 A1 WO 2022206896A1 CN 2022084419 W CN2022084419 W CN 2022084419W WO 2022206896 A1 WO2022206896 A1 WO 2022206896A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
transmission structure
sliding
sliding surface
drill collar
Prior art date
Application number
PCT/CN2022/084419
Other languages
English (en)
French (fr)
Inventor
徐梓辰
杨忠华
万晓跃
Original Assignee
万晓跃
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万晓跃 filed Critical 万晓跃
Publication of WO2022206896A1 publication Critical patent/WO2022206896A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/061Deflecting the direction of boreholes the tool shaft advancing relative to a guide, e.g. a curved tube or a whipstock
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/05Swivel joints
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/16Drill collars
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/064Deflecting the direction of boreholes specially adapted drill bits therefor

Definitions

  • the invention relates to the technical field of oil exploitation and drilling, in particular to a high-reliability flexible drill pipe.
  • the economical efficiency of traditional branch drilling or infill drilling is getting worse and worse. has become an important subject.
  • the short-radius lateral wells or extremely short-radius lateral wells implemented have many disadvantages, such as high cost, long drilling cycle and insignificant effect.
  • the ultra-short radius drilling technology with a turning radius of less than 10 meters has gradually become an effective means to improve the degree of formation contact.
  • existing flexible drill pipes and high-pressure hoses are the means by which short-radius drilling can be achieved.
  • the flexible drill pipe can transmit the weight-on-bit torque through a series of universal joints it contains, and the universal joints are mostly composed of a hinge structure and a torque transmission structure, and the torque is transmitted through a slot-key structure. Since the torque transmission structure is arranged on the contact surface of the hinged structure, when the flexible drill pipe passes through the high-curvature well section, the groove and the key of the torque transmission structure are seriously misaligned, which is easy to cause vibration and is very easy to break.
  • the process of using high-pressure hose to realize extremely short-radius drilling is limited by its structure, which cannot transmit torque and cannot transmit WOB.
  • the high-pressure hose can only drive the water jet drill bit to break the formation by jet drilling, and The diameter of the wellbore is about 1 inch, and it is difficult to obtain good production capacity.
  • the present invention provides a high-reliability flexible drill pipe, through which the WOB transmission structure and the torque transmission structure are independent of each other provided between the drill collar shell and the mandrel to realize the WOB and torque respectively.
  • Transmission compared with the prior art scheme of simultaneously transmitting WOB and torque through universal joints, the size of WOB transmission structure and torque transmission structure is reduced, and the wear of WOB transmission structure and torque transmission structure is reduced, and the drilling efficiency is improved.
  • the reliability of the pressure transmission structure and the torque transmission structure at the same time, the drill collar shell and the mandrel are protected from the erosion and damage of the drilling circulating medium through the axial flexible jumper, and at the same time, the adjacent drive can be maintained to a certain extent.
  • the coaxial nature of the drill pipe increases the reliability of the equipment and the stability of the WOB and torque transmission in the wellbore with high curvature.
  • a high-reliability flexible drill pipe includes a plurality of transmission units connected end to end, the transmission units include a drill collar shell, a mandrel, a WOB transmission structure and a torque transmission structure, and one end of the WOB transmission structure is fixed to the The drill collar shell and the other end are fixed on the mandrel; the WOB and axial tension between the drill collar shell and the mandrel are directly transmitted through the WOB transmission structure; one end of the torque transmission structure is fixed to the drill collar shell, and the other end is fixed to the mandrel; the torque between the drill collar shell and the mandrel is directly transmitted through the torque transmission structure; the core of each transmission unit
  • the shaft can be deflected axially relative to its collar housing;
  • the WOB transmission structure is provided independently of the torque transmission structure, and when the mandrel of each transmission unit is deflected axially relative to its drill collar shell, the WOB transmission structure and the torque transmission
  • the deflection centers of the structures coincide with each other; one end of the mandrel protrudes from the drill collar housing and is fixedly connected with the drill collar housing of the adjacent transmission unit or the mandrel and the drill collar housing of the adjacent transmission unit are designed as an integral structure , in order to achieve WOB and torque transmission between adjacent transmission units.
  • the distance from the torque transmission point, torque transmission line or torque transmission surface of the torque transmission structure to the deflection center is smaller than the minimum distance from the WOB transmission surface of the WOB transmission structure to the deflection center.
  • the torque transmission structure of the torque transmission structure may be a pair of torque transmission points, torque transmission lines or torque transmission surfaces.
  • the WOB transmission structure can be far away from the torque transmission.
  • the structures are arranged independently, and the specific arrangement is that the mandrel and the torque transmission structure are sleeved through the WOB transmission structure and are seated inside the drill collar shell. Since the forces act on each other, the torque input end and the torque output end of the torque transmission structure are mutually converted within the protection scope of the present invention, and the WOB input end and the WOB output end of the WOB transmission structure are also exchanged in positions. within the protection scope of the present invention.
  • the WOB transmission structure at least includes a first sliding surface group for bearing axial pressure
  • the first sliding surface group includes a first sliding surface fixed on the drill collar shell and a first sliding surface fixed on the drill collar shell
  • the second sliding surface of the mandrel, the first sliding surface and the second sliding surface are arc surfaces, the first sliding surface and the second sliding surface are attached to each other and can be used as a drill collar shell.
  • the deflection center of the mandrel is the center of relative slippage, so that when the axis of the drill collar shell and the mandrel is deflected, the direction of the axial pressure transmission can be followed by a lossless or low loss deflection.
  • the WOB transmission structure further includes a second sliding surface group for bearing axial tension, the second sliding surface group including a third sliding surface fixed on the mandrel and a third sliding surface fixed on the drill collar
  • the fourth sliding surface of the shell, the third sliding surface and the fourth sliding surface are arc surfaces, the third sliding surface and the fourth sliding surface are attached to each other and can be used with the drill collar shell and the mandrel
  • the deflection center is the center of relative slip, so that when the axis of the drill collar shell and the mandrel is deflected, the direction of the axial tension transmission can be deflected with no loss or low loss.
  • the transmission unit at least includes a front sliding disk group and a rear sliding disk group, the front sliding disk group is arranged at the front end of the torque transmission structure, and the rear sliding disk group is arranged at the the rear end of the torque transmission structure;
  • the front sliding disk group and the rear sliding disk group each include an outer fixed disk and an inner fixed disk, the outer fixed disk is fixed on the drill collar shell, the inner fixed disk
  • the fixed disk is fixed on the mandrel;
  • the first sliding surface and the second sliding surface are respectively the facing abutting surfaces of the inner fixed disk and the outer fixed disk of the rear sliding disk group;
  • the third sliding surface and the fourth sliding surface are respectively the facing abutting surfaces of the outer fixed disk and the inner fixed disk of the front sliding disk group.
  • weight-on-bit transmission structure is arranged on the front and rear sides of the torque transmission structure, and the frictional forces generated by the front slip plate group and the rear slip plate group can cancel each other, and it is not easy to cause structural dislocation. , which can greatly extend the life of the WOB transmission structure and torque transmission structure.
  • the transmission unit when the WOB transmission structure is disposed on either side of the front side or the rear side of the torque transmission structure, the transmission unit includes a first slip plate, a second slip plate and a spherical slip disc, the spherical sliding disc is fixed on the mandrel, the second sliding surface and the third sliding surface are respectively the front surface and the rear surface of the spherical sliding disc; the first sliding surface The disk is fixed on the casing of the drill collar and the first sliding surface is arranged on the rear surface of the first sliding plate, the second sliding plate is fixed on the casing of the drill collar and the fourth sliding surface is arranged on the rear surface of the first sliding plate.
  • the front surface of the second slip plate, the first slip plate, the second slip plate and the spherical slip plate all slide around the deflection center of the drill collar shell and the mandrel.
  • the torque transmission structure can be arranged away from the WOB transmission structure or arranged around each other, but no matter what the arrangement is, the deflection centers between the two always coincide, and each WOB transmission slips The distance from the face to the deflection center is always not less than the distance from the torque transmission point to the deflection center.
  • Each WOB transmission slip surface can be fixed on the drill collar shell or the mandrel, and the distances from the front slip surface and the rear slip surface to the deflection center can be equal or unequal, but Regardless of the arrangement, the lubrication clearance between each set of sliding surfaces is smaller than the play clearance of the torque transmission balls.
  • the torque transmission structure includes a constant velocity joint, and the input end of the constant velocity joint is fixed to the mandrel or the mandrel is the input end of the constant velocity joint;
  • the output end of the constant velocity joint is fixed on the drill collar shell or the drill collar shell is the output end of the constant velocity joint.
  • the torque transmission structure includes a ball cage type torque transmission structure
  • the ball cage type torque transmission structure is a ball cage type constant velocity joint, including multiple pairs of torsion balls and transmission balls moving in the ball grooves.
  • Torsion ball the length of the ball groove is greater than the diameter of the torsion ball, so that the torsion ball can generate space shaking in the ball groove, and when the axis of the mandrel and the drill collar shell occurs During deflection, within the deflection limit range, the torsion ball will not be stuck on the edge of the ball groove.
  • the distance from the center of each torsion ball to the center of the constant velocity joint is equal and less than the distance from the first pair of sliding surfaces and the second pair of sliding surfaces to the constant velocity joint distance from the center.
  • the constant velocity joint includes a cogging torque transmission structure;
  • the cogging torque transmission structure at least includes a first cogging and a second cogging, the first cogging and the second cogging
  • the slots are respectively the mandrel end torque transmission cogging slot and the shell end torque transmission cogging slot which can cooperate with each other to transmit torque, the mandrel end torque transmission cogging slot is fixedly connected with the mandrel, and the shell end torque transmission cogging slot is connected with the mandrel.
  • the drill collar housing is fixedly connected, so that torque can be transmitted between the drill collar housing and the mandrel through the teeth or the keyway.
  • the tooth slots include teeth, key slots, and tooth sockets.
  • the gap between the sliding surfaces of the first sliding surface group and/or the second sliding surface group is less than 1 mm.
  • the maximum deflection angle that can be generated by the axis of the mandrel relative to the axis of the drill collar shell does not exceed 8°.
  • the mandrel and the mandrel of the adjacent transmission unit are sealedly connected by an axial flexible crossover pipe, the axial flexible crossover pipe is arranged in the through structure, and the axial flexible crossover pipe is a high-plastic material pipe, a rubber pipe , Metal bellows.
  • the axially flexible jumper pipe penetrates the main channel and is connected in series with all the transmission units.
  • the axially flexible jumper tube is a high-plastic material tube, a rubber tube, and a metal corrugated tube.
  • a high-reliability flexible drilling system comprising the high-reliability flexible drill pipe, and an elastic seal and/or a dynamic sealing surface, the elastic seal and/or the dynamic sealing surface and the axially flexible crossover pipe
  • a sealed space is formed therebetween, and the sealed space is filled with lubricating fluid for realizing the lubricating of the transmission unit.
  • the present invention has the advantages that: the high-reliability flexible drill pipe of the present invention is realized by the drilling pressure transmission structure and the torque transmission structure which are arranged between the drill collar shell and the mandrel independently of each other.
  • the independent transmission of WOB and torque of directional drilling tools is simple in structure, safe and reliable. Since the centers of the WOB transmission structure and the torque transmission structure overlap each other, the length of the transmission unit can be shortened to the greatest extent during the design, thereby meeting the requirements for short-radius and ultra-short-radius drilling, and increasing the reliability and reliability of the equipment.
  • Build stability The drill collar shell and the mandrel are protected from the erosion and damage of the drilling circulating medium through the axial flexible jumper, and the coaxial characteristics of the adjacent transmission units can be maintained to a certain extent, which further improves the drilling stability. .
  • Embodiment 1 is a schematic cross-sectional structural diagram of Embodiment 1 of the high-reliability flexible drill pipe according to the present invention
  • FIG. 2 is a schematic cross-sectional structural diagram of Embodiment 2 of the high-reliability flexible drill pipe according to the present invention
  • Fig. 3 is the sectional structure schematic diagram of the high-reliability flexible drill pipe described in Fig. 2 when deflecting;
  • Embodiment 3 is a schematic cross-sectional structural diagram of Embodiment 3 of the high-reliability flexible drilling tool according to the present invention.
  • Embodiment 4 is a schematic cross-sectional structural diagram of Embodiment 4 of the high-reliability flexible drilling tool according to the present invention.
  • Fig. 6 is the A-A sectional view of the high-reliability flexible drilling tool described in Fig. 4;
  • FIG. 7 is a schematic view of the assembly of the ball seat and the ball groove of the high-reliability flexible drill rod according to the present invention.
  • the front and rear in the present invention are set based on the installation position of the drill bit, and the direction toward the drill bit is front, and the direction away from the drill bit is rear.
  • the fixation in the present invention includes, but is not limited to, adhesive fixation, keyway fixation, tenon-and-mortise structure fixation, welding fixation, and integrally formed structure. On the basis of satisfying the mechanical requirements of use, ease of assembly shall prevail.
  • a high-reliability flexible drill pipe as shown in Figures 1-3, includes a plurality of transmission units 1 connected end to end, each transmission unit 1 includes a drill collar shell 11, a mandrel 12, and a
  • the WOB transmission structure 13 and the torque transmission structure 14 between the collar shell 11 and the mandrel 12, the WOB transmission structure 13 and the torque transmission structure 14 are arranged independently of each other and the deflection centers overlap each other, so as to facilitate the drill collar
  • the WOB transmission structure 13 can directly transmit the axial WOB from the drill collar shell 11 to the mandrel 12 without transmitting the WOB to torque
  • the torque transmission point of the transmission structure 14 additionally increases the axial force of the torque transmission point, and after the axis of the drill collar shell 11 and the mandrel 12 is deflected, when the high-reliability flexible drill pipe rotates in the circumferential direction, all the The torque generated between the drill collar housing 11 and the mandrel 12 can be directly transmitted by the torque
  • each transmission unit 1 can be independently transmitted through the WOB transmission structure 13 and the torque transmission structure 14, respectively, and the torque force point of the torque transmission structure 14 does not bear the WOB, so periodic vibration will not occur. , and will not break due to excessive pressure.
  • One end of the mandrel 12 protrudes from the drill collar housing 11 and is fixedly connected with the drill collar housing 21 of the adjacent transmission unit 2 or the mandrel 12 and the drill collar housing 21 of the adjacent transmission unit 2 are designed as an integral structure , in order to achieve WOB and torque transmission between adjacent transmission units.
  • the torque transmission here includes the torque generated by the axis deflection between the drill collar housing 11 and the mandrel 12 and the torque generated by driving the drill bit to rotate and drill.
  • the mandrel 12 and the torque transmission structure 14 are sleeved through the WOB transmission structure 13 and are seated inside the drill collar shell 11 , and the WOB transmission structure 13 is disposed in the drill collar shell 11 .
  • the front and deflection centers of the torque transmitting structures 14 coincide with each other.
  • the axial pressure (ie WOB) and tensile force (without the torque transmission structure 14 ) between the drill collar shell 11 and the mandrel 12 are directly transmitted through the WOB transmission structure 13 , and the drill collar
  • the torque between the casing 11 and the mandrel 12 (including the torque generated by axial deflection and circumferential rotation) is directly transmitted through the torque transmission structure 14 (without the WOB transmission structure 13 ); achieving high reliability
  • the drilling pressure and torque of the flexible drill pipe are transmitted separately, and the structure is simple, safe and reliable.
  • the length of the transmission unit can be shortened to the greatest extent during design, which is beneficial to meet the requirements of short-radius and ultra-short-radius drilling.
  • the WOB transmission structure 13 at least includes a first sliding surface group 131 for bearing axial pressure
  • the first sliding surface group 131 includes a first sliding surface group 131 fixed to the drill collar shell 11
  • the first sliding surface 1311 and the second sliding surface 1312 fixed on the mandrel 12, the first sliding surface 1311 and the second sliding surface 1312 are in contact with each other and can surround the WOB transmission structure
  • the center of 13 slides relatively, so that when the axis of the drill collar shell 11 and the mandrel 12 is deflected, the direction in which the axial pressure (such as the weight on bit and the gravity of the transmission unit itself) can be transmitted without loss or loss. Low loss deflection, thereby transmitting axial forces without passing through the torque generating surface of the torque transmission structure 14 .
  • the WOB transmission structure 13 may further include a second sliding surface group 132 for bearing the axial tensile force (such as the gravity of the transmission unit and the drill bit connected in front of it), the second sliding surface group 132 132 includes a third sliding surface 1321 fixed to the mandrel 12 and a fourth sliding surface 1322 fixed to the drill collar shell 11 , the third sliding surface 1321 and the fourth sliding surface 1322 stick to each other and can relatively slide around the deflection center of the WOB transmission structure 13, so that when the axes of the drill collar shell 11 and the mandrel 12 are deflected, the direction of the axial tensile force transmission can be followed without loss. or low loss deflection.
  • the first sliding surface group 131 can also be used to bear axial pressure
  • the second sliding surface group 132 can also bear axial tensile force.
  • this embodiment specifically provides the specific structure of the WOB transmission structure 13:
  • the input end (front end) of the torque transmission structure 14 is provided with a front slip plate group 17
  • the output end (rear end) of the torque transmission structure 14 is provided with a rear slip plate group 19 , and vice versa. That is, the torque transmission structure 14 is wrapped inside the WOB transmission structure 13, and the WOB transmission structure 13 coincides with the deflection center of the torque transmission structure 14, which further shortens the length of the transmission unit 1 and achieves a higher Build slope.
  • the transmission unit at least includes a front sliding disk group 18 and a rear sliding disk group 19, the front sliding disk group 18 is provided at the input end of the torque transmission structure, the rear sliding disk group 18
  • the sliding disk group is arranged at the front end of the torque transmission structure; the front sliding disk group and the rear sliding disk group both include an outer fixed disk and an inner fixed disk, and the outer fixed disk is fixed on the drill collar
  • the inner fixed disk is fixed on the mandrel;
  • the first sliding surface 1311 and the second sliding surface 1312 are the inner fixed disk 192 and the outer fixed disk of the rear sliding disk group, respectively.
  • the facing abutting surface of the disk 191; the third sliding surface 1321 and the fourth sliding surface 1322 are the facing abutment of the outer fixed disk 182 and the inner fixed disk 181 of the front sliding disk group, respectively noodle. Its unique advantage is that the WOB transmission structure is arranged on the front and rear sides of the torque transmission structure.
  • the second sliding surface 1312 When subjected to the drilling pressure, the second sliding surface 1312 closely fits the first sliding surface 1311, and the drilling pressure is directly transmitted from the mandrel 12 to the drill collar shell 11, and then to the adjacent transmission unit in front 2 of the mandrel 22.
  • the WOB transmission structure When the high-reliability flexible drill pipe is lifted or taken out, the WOB transmission structure is subjected to a tensile force, the third sliding surface 1321 and the fourth sliding surface 1322 are closely fitted, and the core The shaft 12 drives the drill collar housing 11 backwards.
  • the second sliding surface 1312 and the first sliding surface 1311 are spherical surfaces convex forward
  • the third sliding surface 1321 and the fourth sliding surface 1322 are spherical surfaces convex backward
  • the spherical centers of the spherical surfaces are coincident with the center of the universal joint of the torque transmission structure 14 .
  • this embodiment specifically provides another specific structure of the WOB transmission structure 13:
  • FIG. 2-3 which is a preferred setting method of the WOB transmission structure 13 of the present invention
  • the direction indicated by the arrow in the figure is the front
  • the first sliding surface 1311 of the first sliding surface group 131 is set On the rear surface of the first sliding plate 15
  • the second sliding surface 1312 of the first sliding surface group 131 is disposed on the front surface of the spherical sliding plate 17
  • the third sliding surface 131 of the second sliding surface group 132 The sliding surface 1321 is arranged on the rear surface of the spherical sliding plate 17
  • the fourth sliding surface 1322 of the second sliding surface group 132 is arranged on the front surface of the second sliding plate 16 .
  • the first sliding plate 15 , the spherical sliding plate 17 and the second sliding plate 16 are arranged in order from front to back, and the first sliding plate 15 and the second sliding plate 16 are fixed to the The drill collar shell 11 and the spherical sliding plate 17 are fixed on the mandrel 12, and vice versa.
  • the second sliding surface 1312 is in close contact with the first sliding surface 1311, and the WOB is directly transmitted from the mandrel 12 to the drill collar shell 11, and then transmitted to the mandrel 22 of the adjacent transmission unit 2 in front.
  • the third sliding surface 1321 and the fourth sliding surface 1322 are in close contact, and the mandrel 12 will The drill collar housing 11 is driven backward.
  • the spherical sliding disk 17 is a protruding disk-shaped structure, so as to increase the stability of the WOB transmission.
  • the corresponding first sliding surface 1311 , the second sliding surface 1312 , the third sliding surface 1321 and the fourth sliding surface 1322 are all spherical structures that are convex forward, and their spherical centers always coincide.
  • the center of the sphere is preferably located behind the second slip disk.
  • the torque transmission structure should be arranged behind the WOB transmission structure so that its center coincides with the center of the WOB transmission structure.
  • the torque transmission structure 14 is a universal joint capable of transmitting torque, preferably a constant velocity joint.
  • the input end of the universal joint is fixed to the mandrel 12 or the mandrel 12 is the constant velocity joint.
  • the input end of the universal joint; the output end of the constant velocity universal joint is fixed on the drill collar housing 11 or the drill collar housing 11 is the output end of the constant velocity universal joint. That is, the universal joint can be arranged separately, or the outer surface of the mandrel 12 and the inner surface of the drill collar shell 11 can be integrally matched with the required universal joint structure to optimize the design, so as to shorten the transmission unit as much as possible. Axial length.
  • the universal joint may be a ball-and-groove torque transmission structure and/or a key-way torque transmission structure and/or a gear and cogging torque transmission structure.
  • the torque can be directly transmitted from the mandrel 12 to the drill collar housing 11 within the range of the maximum deflection angle (eg 8° or 5°) that can be generated between the axis of the mandrel 12 and the axis of the drill collar housing 11, The reverse is true (ie torque is transmitted from the collar housing 11 to the mandrel 12).
  • the universal joint is a ball-and-groove torque transmission structure. That is, the constant velocity joint with the ball cage.
  • the ball-and-groove torque transmission structure includes multiple pairs (eg, 3 pairs or 4 pairs) of torque transmission balls 141 and ball grooves 142 that cooperate with each other.
  • the torsion ball 141 moves in the ball groove 142, and the length of the ball groove 142 is greater than the diameter of the torsion ball, so that the torsion ball can sway in the ball groove, and when When the axis of the mandrel and the drill collar shell is deflected, within the deflection limit, the torsion ball will not be stuck at the edge of the ball groove.
  • the distance that the torsion ball 141 can move back and forth in the ball groove 142 is greater than the lubricating gap for the spherical sliding plate 17 to slide between the first sliding plate 15 and the second sliding plate 16.
  • the distances from the centers of the torsion balls 141 to the center of the universal joint are equal and smaller than the distances from the first pair of sliding surfaces 131 and the second pair of sliding surfaces 132 to the center of the universal joint. In order to generate WOB and/or axial tension, the torsion ball 141 does not bear WOB and/or axial tension.
  • the ball groove 142 shown in FIG. 1 is opened on the mandrel 12 and the ball seat 111 fixed on the drill collar housing 11 , so that the drill collar housing 11 is the input end of the universal joint, so The mandrel 12 is the output end of the universal joint, and vice versa.
  • the torsion ball 141 is isolated from the external annulus by the elastic seal 6 and the dynamic sealing surface 7, so that other drilling impurities will not enter the ball groove 142, affecting the accuracy of torque transmission, and at the same time, it can also provide the The mandrel 12 and the collar housing 11 maintain the restoring force of the coaxial trend.
  • the lubricating gap between the sliding surfaces of the first sliding surface group 131 and/or the second sliding surface group 132 is less than 1 mm, so as to further improve the stability of torque and transfer pressure transmission.
  • the maximum deflection angle that can be generated by the axis of the mandrel 12 relative to the axis of the drill collar shell 11 does not exceed 8°, that is, the limit deflection angle of the input end and the output end of the constant velocity joint does not exceed 8° .
  • the high-reliability flexible drill pipe can be connected in series with a plurality of the transmission units, and can easily transmit WOB and torque in a wellbore with a curvature of 5°-50°/m.
  • the distance that the torsion ball 141 can move back and forth in the ball groove 142 is greater than the lubricating gap between the sliding surfaces of the front sliding disk group 17 and the rear sliding disk group 18 ,
  • the distance from the center of each torsion ball 141 to the center of the universal joint is equal and smaller than the distance from the first pair of sliding surfaces 131 and the second pair of sliding surfaces 132 to the center of the universal joint.
  • the torsion ball 141 does not bear WOB and/or axial tension.
  • the ball seat 111 is connected and fixed to the drill collar shell 11 through its thread 1111 .
  • a through structure 121 of equal diameter is provided inside the mandrel 12 of the transmission unit 1, and an electrical circuit 3 is arranged inside the through structure 121;
  • the axially flexible crossover pipe 5 is an elastic pressure-bearing pipe, and the elastic pressure-bearing pipe 5 can pass through the main channel and be connected in series with all the transmission units.
  • the constant velocity joint includes a cogging torque transmission universal joint.
  • the cogging torque transmission universal joint includes a centrally symmetrically arranged mandrel end torque transmission cogging (first cogging) 1431 and a shell end torque transmission cogging (second cogging) 1432, the mandrel end torque
  • the transmission tooth slot (first tooth slot) 1431 is fixedly connected with the mandrel
  • the shell end torque transmission tooth slot (second tooth slot) 1432 is fixedly connected with the drill collar housing 11, which can make the connection between the drill collar housing and the mandrel.
  • the torque is transmitted between the joints through the cogging torque transmission universal joint.
  • the tooth slots include teeth, key slots, and tooth sockets.
  • the mandrel end torque transmission cogging (first cogging) 1431 is preferably designed directly to the outer side of the mandrel 12, that is, the mandrel 12 is preferably designed as a sprocket at the position where the cogging torque transmission universal joint is located.
  • the spline shaft has a plurality of petal-shaped key teeth, and the spindle end torque transmission tooth slot (first tooth slot) 1431 is formed by a smooth transition between adjacent petal-shaped key teeth.
  • a spline bushing 112 corresponding to the spline shaft is fixed on the drill collar housing 11 , and the shell end torque transmission tooth slot (second tooth slot) 1432 is formed inside the spline bushing 112 .
  • the housing end torque transmission tooth slot (second tooth slot) 1432 is fixed to the drill collar housing 11 through its screw connection.
  • a high-reliability flexible drilling tool and drilling system includes the above-mentioned high-reliability flexible drill pipe, and the interior of the transmission unit is lubricated by lubricating fluid.
  • lubricating fluid such as the lubrication between the first sliding surface groups, between the second sliding groups and between the torsion balls and the ball grooves.
  • the lubricating fluid in the lubricating fluid system mainly refers to lubricating oil and/or lubricating grease.
  • a plurality of transmission units constitute one of the high-reliability flexible drill rods, and electrical connection between each of the high-reliability flexible drill rods is achieved through conductive slip rings 9 .
  • the high-reliability flexible drill pipe can transmit the WOB and torque separately through the WOB transmission structure 13 and the torque transmission structure 14, respectively, the WOB and torque can be transmitted separately during the drilling process of the drilling tool, reducing the drilling tool
  • the strength requirements are improved, the service life is increased, the drilling cost is greatly reduced, and stable build-up can be achieved, with a build-up rate as high as 15°-50° per 10 meters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种高可靠性柔性钻杆,包括多个首尾相接的传动单元(1),传动单元包括钻铤外壳(11)、芯轴(12)、钻压传递结构(13)和扭矩传递结构(14),钻压传递结构和扭矩传递结构相互独立设置,分别实现定向钻井钻具的钻压和扭矩的单独传输,结构简单且大幅降低多层系油田的开发成本。钻压传递结构的偏转中心和扭矩传递结构的偏转中心相互重合,设计时,能够最大程度的缩短传动单元的长度,进而利于实现短半径和超短半径钻井的需求,实现高造斜率的旋转定向钻井的同时降低了旋转钻井过程中井斜控制的难度,增加了设备的可靠性和造斜稳定性。

Description

一种高可靠性柔性钻杆 技术领域
本发明涉及石油开采及钻探技术领域,特别是一种高可靠性柔性钻杆。
背景技术
针对老油田、多层系油田以及其他地层改造需求,采用传统分支钻井或加密钻井方式经济性越来越差,如何利用钻井手段提高井眼与地层的接触效果,改善油田开发效果,降低开发成本已成为一个重要课题。现行的石油开采行业中,其实施的短半径分支井或极短半径分支井都存在着成本高、钻井周期长、效果不明显等诸多缺点。尤其是转弯半径小于10米的极短半径钻井技术逐渐成为提升地层接触程度的有效手段。目前,现有的柔性钻杆和高压软管是可以实现短半径钻井的手段。但是现有技术中,柔性钻杆可通过其包含的万向节串列传递钻压扭矩,所述万向节大多由铰接结构和扭矩传递结构组成,通过槽-键结构传递扭矩。由于扭矩传递结构设置于铰接结构的接触面上,当柔性钻杆通过高曲率井段时扭矩传递结构的槽和键之间错位严重,容易引起震动且极容易断裂。采用高压软管实现极短半径钻井的工艺受到其结构的限制,不能实现扭矩的传递,也无法传递钻压,此外,高压软管只能驱动水射流钻头以喷射钻进的方式破碎地层,且井眼直径在1英寸左右,很难取得较好的产能。
发明内容
针对上述问题,本发明提供了一种高可靠性柔性钻杆,通过设于所述钻铤外壳和所述芯轴之间相互独立的钻压传递结构和扭矩传递结构分别实现钻压和扭矩的传输,与现有技术中通过万向节同时传递钻压和扭矩的方案相比,缩减钻压传递结构及扭矩传递结构的尺寸,且减小钻压传递结构及扭矩传递结构的磨损,提高钻压传递结构及扭矩传递结构的可靠性,同时通过轴向柔性跨接管护所述钻铤外壳和所述芯轴不受钻井循环介质的侵蚀和破坏,同时还能在一定程度上保持相邻驱动钻杆的同轴特性,增加了设备的可靠性和在高曲率井眼内传递钻压和扭矩的稳定性。
本发明技术方案如下:
一种高可靠性柔性钻杆,包括多个首尾相接的传动单元,所述传动单元包括钻铤外壳、芯轴、钻压传递结构和扭矩传递结构,所述钻压传递结构一端固定于所述钻铤外壳、另一端固定于所述芯轴;所述钻铤外壳与所述芯轴之间的钻压和轴向拉力直接通过所述钻压传递结构传递;所述扭矩传递结构的一端固定于所述钻铤外壳、另一端固定于所述芯轴;所述钻铤 外壳与所述芯轴之间的扭矩直接通过所述扭矩传递结构传递;每个所述传动单元的所述芯轴可相对其钻铤外壳发生轴向偏转;
所述钻压传递结构的独立于所述扭矩传递结构设置,且每个所述传动单元的所述芯轴相对其钻铤外壳发生轴向偏转时,所述钻压传递结构和所述扭矩传递结构的偏转中心相互重合;所述芯轴的一端伸出所述钻铤外壳并与相邻传动单元的钻铤外壳固定连接或所述芯轴与相邻传动单元的钻铤外壳为设计一体结构,以实现相邻传动单元之间钻压和扭矩的传递。
作为优选,所述扭矩传递结构的扭矩传力点、扭矩传力线或扭矩传力面至所述偏转中心的距离小于钻压传递结构的钻压传力面至所述偏转中心的最小距离。即所述扭矩传递结构的实现扭矩传递的结构可以为成对布置的扭矩传递点、扭矩传递线或扭矩传递面。
需要说明的是,为确保所述结构的扭矩传递点、扭矩传递线或扭矩传递面至偏转中心的距离小于钻压传递面至偏转中心的距离,所述钻压传递结构可远离所述扭矩传递结构单独设置,具体的设置方式为所述芯轴及所述扭矩传递结构通过所述钻压传递结构内套并坐接在所述钻铤外壳内部。由于力的作用是相互的,所述扭矩传递结构的扭矩输入端和扭矩输出端相互转换在本发明的保护范围,所述钻压传递结构的钻压输入端和钻压输出端互换位置也在本发明的保护范围。
作为优选,所述钻压传递结构至少包括用于承受轴向压力的第一滑移面组,所述第一滑移面组包括固定于所述钻铤外壳的第一滑移面和固定于所述芯轴的第二滑移面,所述第一滑移面和第二滑移面为弧面,所述第一滑移面和第二滑移面相互贴合且能够以钻铤外壳和芯轴的偏转中心为中心相对滑移,以使所述钻铤外壳和所述芯轴的轴线发生偏转时轴向压力传递的方向能够随之发生无损耗或低损耗偏转。
所述钻压传递结构还包括用于承受轴向拉力的第二滑移面组,所述第二滑移面组包括固定于所述芯轴的第三滑移面和固定于所述钻铤外壳的第四滑移面,所述第三滑移面和第四滑移面为弧面,所述第三滑移面和第四滑移面相互贴合且能够以钻铤外壳和芯轴的偏转中心为中心相对滑移,以使所述钻铤外壳和所述芯轴的轴线发生偏转时,轴向拉力传递的方向能够随之发生无损耗或低损耗偏转。
作为优选,特别的,当所述钻压传递结构设置于所述扭矩传递结构的前后两侧时,所述芯轴及所述扭矩传递结构通过所述钻压传递结构内套坐接在所述钻铤外壳内部,所述传动单元至少包括前滑移盘组和后滑移盘组,所述前滑移盘组设于所述扭矩传递结构的前端,所述后滑移盘组设于所述扭矩传递结构的后端;所述前滑移盘组和所述后滑移盘组均包括外固定盘和内固定盘,所述外固定盘固定在所述钻铤外壳上,所述内固定盘固定在所述芯轴上;所述第一滑移面和所述第二滑移面分别为所述后滑移盘组的内固定盘和外固定盘的向对贴合 面;所述第三滑移面和所述第四滑移面分别为所述前滑移盘组的外固定盘和内固定盘的向对贴合面。其独特的优势在于,钻压传递结构设置于所述扭矩传递结构的前后两侧,所述前滑移盘组和所述后滑移盘组产生的摩擦力可以相互抵消,不容易导致结构错位,可大幅度延长钻压传递结构和扭矩传递结构的寿命。
作为优选,当所述钻压传递结构设置于所述扭矩传递结构的前侧或后侧中的任意一侧时,所述传动单元包括第一滑移盘、第二滑移盘和球面滑移盘,所述球面滑移盘固定在所述芯轴上,所述第二滑移面和所述第三滑移面分别为球面滑移盘的前表面和后表面;所述第一滑移盘固定在钻铤外壳且所述第一滑移面设于所述第一滑移盘的后表面,所述第二滑移盘固定在钻铤外壳且所述第四滑移面设于所述第二滑移盘的前表面,所述第一滑移盘、第二滑移盘和球面滑移盘之间均以所述钻铤外壳和所述芯轴的偏转中心为中心滑移。
需要说明的是,所述扭矩传递结构可远离所述钻压传递结构布置也可相互包裹进行布置,但无论何种布置方式,二者之间的偏转中心始终重合,且各钻压传递滑移面距离偏转中心的距离始终不小于扭矩传递点至偏转中心的距离。所述各钻压传递滑移面均可固定在所述钻铤外壳或所述芯轴上,且钻压传递前滑移面与后滑移面距离偏转中心的距离可相等或不等,但无论何种布置方式,每组滑移面之间的润滑间隙均小于扭矩传递球的活动间隙。
作为优选,所述扭矩传递结构包括等速万向节,所述等速万向节的输入端固定于所述芯轴或所述芯轴即为所述等速万向节的输入端;所述等速万向节的输出端固定于所述钻铤外壳或所述钻铤外壳即为所述等速万向节的输出端。
作为优选,所述扭矩传递结构包括球笼式扭矩传递结构,所述球笼式扭矩传递结构为球笼式等速万向节,包括多对传扭球和在所述球槽内运动的传扭球,所述球槽的长度大于所述传扭球的直径,使得所述传扭球可以在所述球槽内产生空间晃动,并当所述芯轴与所述钻铤外壳的轴线发生偏转时,在偏转极限范围内,所述传扭球不会在所述球槽的边沿卡死。
作为优选,每个所述传扭球的球心到所述等速万向节中心的距离相等且小于所述第一对滑移面和第二对滑移面到所述等速万向节中心的距离。
作为优选,所述等速万向节包括齿槽式扭矩传递结构;所述齿槽式扭矩传递结构至少包括第一齿槽和第二齿槽,所述第一齿槽和所述第二齿槽分别为能够相互配合传递扭矩的芯轴端扭矩传递齿槽和外壳端扭矩传递齿槽,所述芯轴端扭矩传递齿槽与所述芯轴固定连接,所述外壳端扭矩传递齿槽与所述钻铤外壳固定连接,能使所述钻铤外壳和芯轴之间通过所述齿或键槽传递扭矩。所述齿槽包括齿、键槽、牙崁。
作为优选,所述第一滑移面组和/或所述第二滑移面组的滑移面之间的间隙小于1毫米。
作为优选,所述芯轴的轴线相对所述钻铤外壳的轴线能够产生的最大偏转角度不超过 8°。
作为优选,所述芯轴与相邻传动单元的芯轴存在轴向间隙,以便于使所述芯轴相对于所述钻铤外壳发生轴向偏转;且至少在存在轴向间隙的位置,所述芯轴与相邻传动单元的芯轴通过轴向柔性跨接管密封连接,所述轴向柔性跨接管设于所述贯通结构内,所述轴向柔性跨接管为高塑性材料管、橡胶管、金属波纹管。
作为优选,所述轴向柔性跨接管贯穿所述主流道,并串接所有的传动单元。所述轴向柔性跨接管为高塑性材料管、橡胶管、金属波纹管。
一种高可靠性柔性钻井系统,包括所述高可靠性柔性钻杆,还包括弹性密封件和/或动密封面,所述弹性密封件和/或动密封面与所述轴向柔性跨接管之间形成密封空间,所述密封空间内充注有实现所述传动单元润滑润滑液。
本发明相对于现有技术优势在于:本发明所述高可靠性柔性钻杆,通过设于所述钻铤外壳和所述芯轴之间相互独立设置的钻压传递结构和扭矩传递结构分别实现定向钻井钻具的钻压和扭矩的单独传输,结构简单,安全可靠。由于所述钻压传递结构的和扭矩传递结构的中心相互重合,设计时,能够最大程度的缩短传动单元的长度,进而满足实现短半径和超短半径钻井的需求,增加了设备的可靠性和造斜稳定性。并通过轴向柔性跨接管保护所述钻铤外壳和所述芯轴不受钻井循环介质的侵蚀和破坏,同时还能在一定程度上保持相邻传动单元的同轴特性,进一步提高钻井稳定性。
附图说明
图1是本发明所述高可靠性柔性钻杆实施例1的剖视结构示意图;
图2是本发明所述高可靠性柔性钻杆实施例2剖视结构示意图;
图3是图2所述高可靠性柔性钻杆造斜时的剖视结构示意图;
图4是本发明所述高可靠性柔性钻具实施例3的剖视结构示意图;
图5是本发明所述高可靠性柔性钻具实施例4的剖视结构示意图;
图6是图4所述高可靠性柔性钻具的A-A截面图;
图7是是本发明所述高可靠性柔性钻杆的球座与球槽的装配示意图。
附图标记列示如下:
1—传动单元,11—钻铤外壳,111—球座,1111—螺纹,112—花键轴套,12—芯轴,121—贯通结构,13—钻压传递结构,131—第一滑移面组,1311—第一滑移面,1312—第二滑移面,132—第二滑移面组,1321—第三滑移面,1322—第四滑移面,14—扭矩传递结构,141—传扭球,142—球槽,143—齿槽,1431—第一齿槽,1432—第二齿槽,15—第一滑移盘, 16—第二滑移盘,17—球面滑移盘,18—前滑移盘组,181—前滑移盘组的内固定盘,182—前滑移盘组的外固定盘,19—后滑移盘组,191—后滑移盘组的外固定盘,192—后滑移盘组的内固定盘,2—相邻传动单元,21—相邻传动单元的钻铤外壳,22—相邻传动单元的芯轴,3—电气线路,4—轴向间隙,5—轴向柔性跨接管,6—弹性密封件,7—动密封面,8—其他钻井单元,9—导电滑环。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。本发明所述的前和后是基于钻头安装位置而设定,朝向钻头的方向为前,背离钻头的方向为后。本发明所述固定,包括但不限于粘接固定、键槽固定、榫卯结构固定、焊接固定、一体成型结构,在满足使用的力学要求基础上,以便于装配为准。
实施例1
一种高可靠性柔性钻杆,如图1-3所示,包括多个首尾相接的传动单元1,每个传动单元1均包括钻铤外壳11、芯轴12,以及设于所述钻铤外壳11和所述芯轴12之间的钻压传递结构13和扭矩传递结构14,所述钻压传递结构13和扭矩传递结构14相互独立设置且偏转中心相互重合,以便于所述钻铤外壳11相对所述芯轴12发生偏转时,所述钻压传递结构13能够将轴向钻压直接由所述钻铤外壳11传递给所述芯轴12,而不会将钻压传递到扭矩传递结构14的扭矩传递点,额外增加扭矩传递点的轴向力,且所述钻铤外壳11与所述芯轴12的轴线发生偏转后,高可靠性柔性钻杆周向旋转时,在所述钻铤外壳11与所述芯轴12之间产生的扭矩能够直接由所述扭矩传递结构14传递,而不会将扭矩传递到所述钻压传递结构13的钻压传递面(如第一滑移面组和/或第二滑移面组)上。即每个传动单元1的钻压和扭矩均能够分别通过钻压传递结构13和扭矩传递结构14独立传递,扭矩传递结构14的扭矩受力点并不承受钻压,因而不会产生周期性振动,也不会因压力过大而断裂。所述芯轴12的一端伸出所述钻铤外壳11并与相邻传动单元2的钻铤外壳21固定连接或所述芯轴12与相邻传动单元2的钻铤外壳21设计为一体结构,以实现相邻传动单元之间钻压和扭矩的传递。
钻井过程中,由于所述传动单元1随井眼曲率的变化可相对与其相邻的传动单元2发生偏转,且所述高可靠性柔性钻杆整体也会旋转以带动钻头旋转实现钻进。故而这里的扭矩传递包括所述钻铤外壳11与所述芯轴12之间轴线偏转产生的扭矩和带动钻头旋转钻进产生的扭矩。
本实施例中,所述芯轴12及所述扭矩传递结构14通过所述钻压传递结构13内套并坐接在所述钻铤外壳11内部,所述钻压传递结构13设置于所述扭矩传递结构14前方且偏转中心 相互重合。
所述钻铤外壳11与所述芯轴12之间的轴向压力(即钻压)和拉力(不经所述扭矩传递结构14)直接通过所述钻压传递结构13传递,所述钻铤外壳11与所述芯轴12之间的扭矩(包括轴向偏转和周向旋转产生的扭矩)直接通过所述扭矩传递结构14(不经所述钻压传递结构13)传递;实现高可靠性柔性钻杆的钻压和扭矩的单独传递,结构简单安全可靠。且由于所述钻压传递结构13的和扭矩传递结构14的中心相互重合,设计时,能够最大程度的缩短传动单元的长度,进而利于实现短半径和超短半径钻井的需求。
如图1-3所示,所述钻压传递结构13至少包括用于承受轴向压力的第一滑移面组131,所述第一滑移面组131包括固定于所述钻铤外壳11的第一滑移面1311和固定于所述芯轴12的第二滑移面1312,所述第一滑移面1311和第二滑移面1312相互贴合且能够围绕所述钻压传递结构13的中心相对滑移,以使所述钻铤外壳11和所述芯轴12的轴线发生偏转时轴向压力(如钻压和传动单元本身的重力)传递的方向能够随之发生无损耗或低损耗偏转,进而将轴向力不经扭矩传递结构14的扭矩发生面传递过去。
优选地,所述钻压传递结构13还可包括用于承受轴向拉力(如其前方连接的传动单元和钻头等本身的重力)的第二滑移面组132,所述第二滑移面组132包括固定于所述芯轴12的第三滑移面1321和固定于所述钻铤外壳11的第四滑移面1322,所述第三滑移面1321和第四滑移面1322相互贴合且能够围绕所述钻压传递结构13的偏转中心相对滑移,以使所述钻铤外壳11和所述芯轴12的轴线发生偏转时,轴向拉力传递的方向能够随之发生无损耗或低损耗偏转。优选地,所述第一滑移面组131也可用于承受轴向压力,相应地所述第二滑移面组132也可承受轴向拉力。
如图1所示,本实施例具体给出了所述钻压传递结构13的具体结构:
所述扭矩传递结构14的输入端(前端)设有前滑移盘组17,所述扭矩传递结构14的输出端(后端)设有后滑移盘组19,反之亦可。即将所述扭矩传递结构14包裹在所述钻压传递结构13的内部,所述钻压传递结构13与所述扭矩传递结构14的偏转中心重合,进一步缩短传动单元1的长度,实现更高的造斜率。
即如图1所示,当所述钻压传递结构设置于所述扭矩传递结构的前后两侧时,所述芯轴12及所述扭矩传递结构通过所述钻压传递结构内套坐接在所述钻铤外壳11内部,所述传动单元至少包括前滑移盘组18和后滑移盘组19,所述前滑移盘组18设于所述扭矩传递结构的输入端,所述后滑移盘组设于所述扭矩传递结构的前端;所述前滑移盘组和所述后滑移盘组均包括外固定盘和内固定盘,所述外固定盘固定在所述钻铤外壳上,所述内固定盘固定在所述芯轴上;所述第一滑移面1311和所述第二滑移1312面分别为所述后滑移盘组的内固定盘 192和外固定盘191的向对贴合面;所述第三滑移面1321和所述第四滑移面1322分别为所述前滑移盘组的外固定盘182和内固定盘181的向对贴合面。其独特的优势再于,钻压传递结构设置于所述扭矩传递结构的前后两侧。
当承受钻压时,所述第二滑移面1312与所述第一滑移面1311紧密贴合,将钻压从芯轴12直接传递给钻铤外壳11,进而传递到前方相邻传动单元2的芯轴22。当提起或取出所述高可靠性柔性钻杆时,则所述钻压传递结构受到拉力作用,所述第三滑移面1321与所述第四滑移面1322紧密贴合,进而所述芯轴12将所述钻铤外壳11向后带动。
此时,所述第二滑移面1312与所述第一滑移面1311为前凸的球形面,所述第三滑移面1321与所述第四滑移面1322为后凸的球形面,且球形面的球心均重合且与所述扭矩传递结构14万向节的中心相重合。
实施例2
与上述实施例不同地是,本实施例具体给出了所述钻压传递结构13的另外一种具体结构:
如图2-3所示,为本发明钻压传递结构13的一种优选设置方式,图中箭头所指方向即为前方,所述第一滑移面组131的第一滑移面1311设于第一滑移盘15的后表面,所述第一滑移面组131的第二滑移面1312设于球面滑移盘17的前表面,所述第二滑移面组132的第三滑移面1321设于球面滑移盘17的后表面,所述第二滑移面组132的第四滑移面1322设于第二滑移盘16的前表面。即,所述第一滑移盘15、球面滑移盘17和第二滑移盘16从前至后依次贴合布置,所述第一滑移盘15和第二滑移盘16固定于所述钻铤外壳11,所述球面滑移盘17固定于所述芯轴12,反之亦可。当承受来自于传动单元后方的钻压时,所述第二滑移面1312与所述第一滑移面1311紧密贴合,将钻压从芯轴12直接传递给钻铤外壳11,进而传递到前方相邻传动单元2的芯轴22。当提起或取出所述高可靠性柔性钻杆时,由于重力或其他因素的影响,所述第三滑移面1321与所述第四滑移面1322紧密贴合,进而所述芯轴12将所述钻铤外壳11向后带动。
优选地,所述球面滑移盘17为前凸的盘状结构,以增加钻压传递的稳定性。对应的所述第一滑移面1311、第二滑移面1312、第三滑移面1321第四滑移面1322均为前凸的球面结构,且其球心始终重合。该球心优选位于所述第二滑移盘的后方。
此时,所述扭矩传递结构应设于所述钻压传递结构的后方,以使其中心与所述钻压传递结构的中心相重合。
所述扭矩传递结构14为能够传递扭矩的万向节,优选为等速万向节,所述万向节的输入 端固定于所述芯轴12或所述芯轴12即为所述等速万向节的输入端;所述等速万向节的输出端固定于所述钻铤外壳11或所述钻铤外壳11即为所述等速万向节的输出端。即所述万向节可单独布置,也可将所述芯轴12的外表面和钻铤外壳11的内表面整体配合所需的万向节结构进行优化设计,以尽量缩短所述传递单元的轴向长度。
所述万向节可为球槽式扭矩传递结构和/或键槽式扭矩传递结构和/或齿轮齿槽式扭矩传递结构。只要能够在芯轴12轴线与钻铤外壳11轴线能够产生的最大偏转角度(如8°或5°)范围内,将扭矩直接从所述芯轴12传递给所述钻铤外壳11即可,反之(即将扭矩从所述钻铤外壳11传递给所述芯轴12)亦然。
作为优选,所述万向节为球槽式扭矩传递结构,所述球槽式扭矩传递结构的工作原理与球笼式等速万向节的工作原理相同,或所述球槽式扭矩传递结构即为与球笼式等速万向节。
所述球槽式扭矩传递结构包括多对(如3对或4对)相互配合的传扭球141和球槽142。所述传扭球141在所述球槽142内移动,所述球槽142的长度大于所述传扭球的直径,使得所述传扭球可以在所述球槽内产生空间晃动,并当所述芯轴与所述钻铤外壳的轴线发生偏转时,在偏转极限范围内,所述传扭球不会在所述球槽的边沿而卡死。且所述传扭球141在所述球槽内142内前后可移动的距离大于球面滑移盘17在所述第一滑移盘15和第二滑移盘16之间滑动的润滑间隙,每个所述传扭球141的球心到所述万向节中心的距离相等且小于所述第一对滑移面131和第二对滑移面132到所述万向节中心的距离。以使钻压和/或轴向拉力产生时,所述传扭球141不承受钻压和/或轴向拉力。
优选地,图1所示球槽142开设于所述芯轴12和固定于所述钻铤外壳11的球座111上,使得所述钻铤外壳11为所述万向节的输入端,所述芯轴12为所述万向节的输出端,反之亦可。所述传扭球141通过弹性密封件6和动密封面7与外部环空隔离,使得其他钻井杂质不会进入球槽142,影响扭矩传递的精度,同时也能在一定程度上提供使所述芯轴12和所述钻铤外壳11保持同轴趋势的回复力。
作为优选,所述第一滑移面组131和/或所述第二滑移面组132的滑移面之间的润滑间隙小于1毫米,以进一步提高扭矩和转压传递的稳定性。
作为优选,所述芯轴12的轴线相对所述钻铤外壳11的轴线能够产生的最大偏转角度不超过8°,即所述等速万向节输入端和输出端的极限偏转角度不超过8°。以保护所述扭矩传递结构13和钻压传递结构14不会由于偏转角度过大而使一个传动单元的整体长度多长,以便于提高短半径或超短半径井的造斜率。本实施例中所述高可靠性柔性钻杆可串接多个所述传动单元,可轻易在5°-50°/米曲率的井眼中传递钻压和扭矩。
优选地,所述传扭球141在所述球槽内142内前后可移动的距离大于所述前滑移盘组17 和后滑移盘组18的各滑移面之间滑动的润滑间隙,每个所述传扭球141的球心到所述万向节中心的距离相等且小于所述第一对滑移面131和第二对滑移面132到所述万向节中心的距离。以使钻压和/或轴向拉力产生时,所述传扭球141不承受钻压和/或轴向拉力。
作为优选,如图7所示,所述球座111通过其螺纹1111连接固定到所述钻铤外壳11上。
作为优选,所述传动单元1的芯轴12内部开设有等径的贯通结构121,所述贯通结构121内部设置有电气线路3;
所述芯轴12与相邻传动单元2的芯轴22存在轴向间隙4,以便于使所述芯轴12相对于所述钻铤外壳11发生轴向偏转;且至少在存在轴向间隙4的位置,所述芯轴12与相邻传动单元的芯轴21通过轴向柔性跨接管5相连,所述轴向柔性跨接管5设于所述贯通结构内部,防止钻井循环介质(钻井液)泄露,并提供所述芯轴12相对于所述钻铤外壳11发生轴向偏转后的直线型轴向回复力。
作为优选,所述轴向柔性跨接管5为弹性承压管,所述弹性承压管5可贯穿所述主流道,并串接所有的传动单元。
实施例3
一种高可靠性柔性钻具,如图4和图6所示,所述等速万向节包括齿槽式扭矩传递万向节。所述齿槽式扭矩传递万向节包括中心对称设置的芯轴端扭矩传递齿槽(第一齿槽)1431和外壳端扭矩传递齿槽(第二齿槽)1432,所述芯轴端扭矩传递齿槽(第一齿槽)1431与芯轴固定连接,所述外壳端扭矩传递齿槽(第二齿槽)1432与钻铤外壳11固定连接,能使所述钻铤外壳和芯轴之间通过所述齿槽式扭矩传递万向节传递扭矩。所述齿槽包括齿、键槽、牙崁。具体地,所述芯轴端扭矩传递齿槽(第一齿槽)1431优选直接设计到芯轴12的外侧,即所述芯轴12在齿槽式扭矩传递万向节所在位置优选设计为花键轴,且该花键轴具有多个花瓣形键齿,相邻花瓣形键齿间通过圆弧平滑过渡形成所述芯轴端扭矩传递齿槽(第一齿槽)1431。所述钻铤外壳11上固定设有与所述花键轴相对应的花键轴套112,所述花键轴套112内部形成所述外壳端扭矩传递齿槽(第二齿槽)1432。
作为优选,所述外壳端扭矩传递齿槽(第二齿槽)1432通过其螺纹连接固定到所述钻铤外壳11上。
实施例4
一种高可靠性柔性钻具及钻井系统,如图5所示,包括上述高可靠性柔性钻杆,所述传动单元的内部采用润滑液实现润滑。如所述第一滑移面组之间、第二滑移组之间和传扭球及球槽之间的润滑。所述润滑液体系中的润滑液主要指润滑油和/或润滑脂。多个传动单元构成一只所述高可靠性柔性钻杆,各个所述高可靠性柔性钻杆之间通过导电滑环9实现电器连接。 由于所述高可靠性柔性钻杆能够将钻压和扭矩分别通过钻压传递结构13和扭矩传递结构14单独传递,故而,钻具钻井过程中钻压和扭矩能分别单独传递,降低了钻井工具的强度要求,提高使用寿命,大幅降低钻井成本,且能够实现稳定造斜,造斜率高达每10米15°-50°。
以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换等都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (14)

  1. 一种高可靠性柔性钻杆,其特征在于,包括多个首尾相接的传动单元,所述传动单元包括钻铤外壳、芯轴、钻压传递结构和扭矩传递结构,所述钻压传递结构一端固定于所述钻铤外壳、另一端固定于所述芯轴;所述钻铤外壳与所述芯轴之间的钻压和轴向拉力直接通过所述钻压传递结构传递;所述扭矩传递结构的一端固定于所述钻铤外壳、另一端固定于所述芯轴;所述钻铤外壳与所述芯轴之间的扭矩通过所述扭矩传递结构传递;所述钻压传递结构独立于所述扭矩传递结构设置,所述钻压传递结构的偏转中心和所述扭矩传递结构的偏转中心相互重合;所述芯轴的一端与相邻传动单元的钻铤外壳固定连接或所述芯轴与相邻传动单元的钻铤外壳为设计一体结构,以实现相邻传动单元之间钻压和扭矩的传递。
  2. 根据权利要求1所述的高可靠性柔性钻杆,其特征在于,所述扭矩传递结构至所述偏转中心的距离小于所述钻压传递结构至所述偏转中心的距离。
  3. 根据权利要求1所述的高可靠性柔性钻杆,其特征在于,所述钻压传递结构至少包括用于承受轴向压力的第一滑移面组,所述第一滑移面组包括固定于所述钻铤外壳的第一滑移面和固定于所述芯轴的第二滑移面,所述第一滑移面和第二滑移面相互贴合且能够围绕所述偏转中心相对滑移,以使所述钻铤外壳和所述芯轴的轴线发生偏转时轴向压力传递的方向能够随之发生无损耗或低损耗偏转;
    所述钻压传递结构还包括用于承受轴向拉力的第二滑移面组,所述第二滑移面组包括固定于所述芯轴的第三滑移面和固定于所述钻铤外壳的第四滑移面,所述第三滑移面和第四滑移面相互贴合且能够围绕所述偏转中心相对滑移,以使所述钻铤外壳和所述芯轴的轴线发生偏转时,轴向拉力传递的方向能够随之发生无损耗或低损耗偏转。
  4. 根据权利要求3所述的高可靠性柔性钻杆,其特征在于,所述传动单元至少包括前滑移盘组和后滑移盘组,所述前滑移盘组设于所述扭矩传递结构的前端,所述后滑移盘组设于所述扭矩传递结构的后端;所述前滑移盘组和后滑移盘组均包括外固定盘和内固定盘,所述外固定盘固定在所述钻铤外壳上,所述内固定盘固定在所述芯轴上;所述第一滑移面和所述第二滑移面分别为所述后滑移盘组的内固定盘和外固定盘的向对贴合面;所述第三滑移面和所述第四滑移面分别为所述前滑移盘组的外固定盘和内固定盘的相对贴合面。
  5. 根据权利要求3所述的高可靠性柔性钻杆,其特征在于,所述传动单元包括第一滑移盘、第二滑移盘和球面滑移盘,所述球面滑移盘固定在所述芯轴上,所述第二滑移面和所述第三滑移面分别为球面滑移盘的前表面和后表面;所述第一滑移盘固定在钻铤外壳且所述第一滑移面设于所述第一滑移盘的后表面,所述第二滑移盘固定在钻铤外壳且所述第四滑移面设于所述第二滑移盘的前表面,所述第一滑移盘、第二滑移盘和球面滑移盘之间均以所述钻铤外壳和所述芯轴的偏转中心为中心滑移。
  6. 根据权利要求1-5之一所述的高可靠性柔性钻杆,其特征在于,所述扭矩传递结构包括等速万向节,所述等速万向节的输入端固定于所述芯轴或所述芯轴即为所述等速万向节的输入端;所述等速万向节的输出端固定于所述钻铤外壳或所述钻铤外壳即为所述等速万向节的输出端。
  7. 根据权利要求6所述的高可靠性柔性钻杆,其特征在于,所述扭矩传递结构为球笼式等速万向节,包括多对球槽和在所述球槽内运动的传扭球,所述球槽的长度大于所述传扭球的直径,使得所述传扭球可以在所述球槽内产生空间晃动,并当所述芯轴与所述钻铤外壳的轴线发生偏转时,在偏转极限范围内,所述传扭球不会在所述球槽的边沿而卡死。
  8. 根据权利要求7所述的高可靠性柔性钻杆,其特征在于,每个所述传扭球的球心到所述等速万向节中心的距离相等且小于所述第一对滑移面和第二对滑移面到所述等速万向节中心的距离。
  9. 根据权利要求1所述的高可靠性柔性钻杆,其特征在于,所述扭矩传递结构为齿槽式扭矩传递结构;所述齿槽式扭矩传递结构至少包括第一齿槽和第二齿槽,所述第一齿槽固定于所述芯轴,所述第二齿槽固定于所述钻铤外壳,能使所述钻铤外壳和芯轴之间通过所述齿槽传递扭矩。
  10. 根据权利要求3所述的高可靠性柔性钻杆,其特征在于,所述第一滑移面组和/或所述第二滑移面组的滑移面之间的间隙小于1毫米。
  11. 根据权利要求1所述的高可靠性柔性钻杆,其特征在于,所述芯轴的轴线相对所述钻铤外壳的轴线能够产生的最大偏转角度不超过8°。
  12. 根据权利要求1所述的高可靠性柔性钻杆,其特征在于,所述芯轴与相邻传动单元的芯轴存在轴向间隙,以便于使所述芯轴相对于所述钻铤外壳发生轴向偏转;且至少在存在轴向间隙的位置,所述芯轴与相邻传动单元的芯轴通过轴向柔性跨接管相连,所述轴向柔性跨接管设于所述贯通结构内。
  13. 根据权利要求13所述的高可靠性柔性钻杆,其特征在于,所述轴向柔性跨接管为弹性承压管,所述弹性承压管贯穿所述主流道,并串接所有的传动单元。
  14. 一种高可靠性柔性钻井系统,其特征在于,包括权利要求13或14所述的高可靠性柔性钻杆,还包括弹性密封件和/或动密封面,所述弹性密封件和/或动密封面与所述轴向柔性跨接管之间形成密封空间,所述密封空间内充注有实现所述传动单元润滑润滑液。
PCT/CN2022/084419 2021-04-02 2022-03-31 一种高可靠性柔性钻杆 WO2022206896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110362324.XA CN115182682A (zh) 2021-04-02 2021-04-02 一种高可靠性柔性钻杆
CN202110362324.X 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022206896A1 true WO2022206896A1 (zh) 2022-10-06

Family

ID=83458042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084419 WO2022206896A1 (zh) 2021-04-02 2022-03-31 一种高可靠性柔性钻杆

Country Status (2)

Country Link
CN (1) CN115182682A (zh)
WO (1) WO2022206896A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060254827A1 (en) * 2003-06-23 2006-11-16 Jacques Orban Flexible drill string member
CN101832105A (zh) * 2010-04-28 2010-09-15 李孝勇 超短半径径向水平井的钻井、固井方法及其设备
CN102606073A (zh) * 2012-04-06 2012-07-25 西安石油大学 一种指向式旋转导向钻井工具的导向机构
CN103775001A (zh) * 2012-10-18 2014-05-07 中国石油化工股份有限公司 用于径向水平井钻井的柔性钻杆
CN107676040A (zh) * 2017-10-12 2018-02-09 中国石油天然气股份有限公司 外壳导向式造斜钻具
CN110617011A (zh) * 2019-06-06 2019-12-27 万晓跃 一种基于钻压转向传递结构的旋转导向钻井工具
CN112392410A (zh) * 2020-11-18 2021-02-23 万晓跃 一种柔性电连接钻柱
CN215213337U (zh) * 2021-04-02 2021-12-17 万晓跃 一种高可靠性柔性钻杆及钻井系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060254827A1 (en) * 2003-06-23 2006-11-16 Jacques Orban Flexible drill string member
CN101832105A (zh) * 2010-04-28 2010-09-15 李孝勇 超短半径径向水平井的钻井、固井方法及其设备
CN102606073A (zh) * 2012-04-06 2012-07-25 西安石油大学 一种指向式旋转导向钻井工具的导向机构
CN103775001A (zh) * 2012-10-18 2014-05-07 中国石油化工股份有限公司 用于径向水平井钻井的柔性钻杆
CN107676040A (zh) * 2017-10-12 2018-02-09 中国石油天然气股份有限公司 外壳导向式造斜钻具
CN110617011A (zh) * 2019-06-06 2019-12-27 万晓跃 一种基于钻压转向传递结构的旋转导向钻井工具
CN112392410A (zh) * 2020-11-18 2021-02-23 万晓跃 一种柔性电连接钻柱
CN215213337U (zh) * 2021-04-02 2021-12-17 万晓跃 一种高可靠性柔性钻杆及钻井系统

Also Published As

Publication number Publication date
CN115182682A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN112392410B (zh) 一种柔性电连接钻柱
WO2020244671A1 (zh) 一种易造斜混合式旋转导向钻井系统
US9038750B2 (en) Rotary joint for subterranean drilling
US5135059A (en) Borehole drilling motor with flexible shaft coupling
CN108104715B (zh) 基于涡轮与齿轮的扭力冲击器
CN107676040B (zh) 外壳导向式造斜钻具
US10288065B1 (en) Mud motor coupling system
CA2971926A1 (en) Universal joint
US5860864A (en) Joint assembly having self-biasing mechanism to bias two shafts into coaxial alignment
CA3038945A1 (en) Reciprocation-dampening drive shaft assembly
CN114135227A (zh) 一种高稳定性短半径造斜钻井工具
WO2022206896A1 (zh) 一种高可靠性柔性钻杆
CN215213337U (zh) 一种高可靠性柔性钻杆及钻井系统
CN111173452B (zh) 一种夹心筒结构的静态偏置旋转导向钻井工具
US10236667B2 (en) Wire follow-up protection structure of electric reducer
RU2112856C1 (ru) Редукторный турбобур
CN201377522Y (zh) 柔性万向轴
CN107091278A (zh) 一种挠性推力联轴器
CN107165935B (zh) 一种动态指向式旋转导向钻井工具的传力关节轴承
CA3089057C (en) Drive shaft assembly for downhole drilling and method for using same
CN107724960A (zh) 一种电动钻具可控导向短节
AU2018455574B2 (en) Drum gear
CN114673444B (zh) 柔性螺杆钻具及钻井方法
CN113846970B (zh) 一种自控式旋锤
WO2022199666A1 (zh) 一种带有自适应支撑结构的旋转导向钻井工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.02.2024)