WO2022206793A1 - 复合涂层、活塞、发动机和车辆 - Google Patents

复合涂层、活塞、发动机和车辆 Download PDF

Info

Publication number
WO2022206793A1
WO2022206793A1 PCT/CN2022/083897 CN2022083897W WO2022206793A1 WO 2022206793 A1 WO2022206793 A1 WO 2022206793A1 CN 2022083897 W CN2022083897 W CN 2022083897W WO 2022206793 A1 WO2022206793 A1 WO 2022206793A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
piston
composite coating
rare earth
earth metal
Prior art date
Application number
PCT/CN2022/083897
Other languages
English (en)
French (fr)
Inventor
马飞
王凝露
郭灵燕
万善宏
黄国龙
臧强真
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to US18/265,763 priority Critical patent/US20240026837A1/en
Priority to EP22778975.7A priority patent/EP4317518A1/en
Publication of WO2022206793A1 publication Critical patent/WO2022206793A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present application relates to the field of packaging, in particular to a composite coating, piston, engine and vehicle.
  • top surface of the steel piston and the surface of the combustion chamber are more prone to high-temperature oxidation corrosion and gas corrosion, which in turn leads to the surface spalling of the top of the steel piston and failure.
  • the top surface of the piston and the surface of the combustion chamber are called ablation surfaces.
  • thermal insulation coating on the ablation surface of the piston By setting a thermal insulation coating on the ablation surface of the piston, it can reduce the thermal energy loss of the cooling system and improve the anti-carbon deposition and anti-oxidation performance of the top of the steel piston.
  • Research on thermal barrier coatings for internal combustion engine piston bodies dates back 40 years, but so far there is no mature product. At present, the thermal insulation coating on the top of the piston used in domestic diesel internal combustion engines relies on imports.
  • the thermal insulation protection technology is mainly mastered by foreign internal combustion engine parts companies (such as MAHLE, Federal-Mogul, etc.). exploration phase.
  • typical aerospace thermal insulation coatings such as zirconia ceramic materials are suitable for jet engines and turbines, they are not suitable for high-power diesel internal combustion engine piston systems, which are mainly related to the long service cycle of internal combustion engine piston systems, long-term mechanical-thermal effects and chemical corrosion. , The low cost of coating materials.
  • Patent US10578050B2, WO2017087733, CA2739008 and other patents report that a metal bonding layer is firstly applied on the surface of the piston body, and then a ceramic coating is applied on the surface of the metal bonding layer to improve the service life of the piston.
  • these existing ceramic coatings usually have a porous structure. Under high temperature and high pressure, the gas can erode the subsurface layer of the ceramic coating, and even extend to the interface between the ceramic coating and the metal bonding layer, resulting in the weakening of the interface bonding strength.
  • a large difference in thermal expansion coefficient between the metal bonding layer and the ceramic coating and the ceramic material itself is brittle, it is easy to cause the ceramic coating to fall off.
  • the present application discloses a composite coating, a piston, an engine and a vehicle, which are used to solve the problem that the coating on the surface of the piston is easily peeled off, which leads to a low service life of the piston.
  • the present application provides a composite coating for a piston, the composite coating comprising a metal bonding layer, a transition layer, a ceramic layer and a sealing layer that are stacked in sequence;
  • the metal bonding layer is a rare earth metal modified bonding layer
  • the transition layer is a rare earth metal modified zirconia layer.
  • the metal bonding layer includes at least one of a rare earth metal modified NiCoCrAlY layer, a rare earth metal modified NiCrAlY layer or a rare earth metal modified NiAlY layer;
  • the rare earth metal includes at least one of Ce, Y, Re, Nd, La or Sm.
  • the addition amount of the rare earth metal is 0.5%-1%.
  • the thickness of the metal bonding layer is 50-150 ⁇ m.
  • the rare earth metal includes at least one of Ce, Y, Re, Nd, La or Sm.
  • the addition amount of the rare earth metal is 0.5%-1%.
  • the powder particle size of the raw material for forming the transition layer is 10-100 ⁇ m.
  • the thickness of the transition layer is 100-200 ⁇ m.
  • the ceramic layer includes at least one of zirconia, yttria or yttria-stabilized zirconia.
  • the ceramic layer is a yttria-stabilized zirconia layer with a hollow structure.
  • the thickness of the ceramic layer is 400-500 ⁇ m.
  • the raw material of the sealing layer includes at least one of polysilazane, water glass or polysiloxane.
  • the present application provides a piston, comprising a piston substrate and the composite coating according to the first aspect of the present application, wherein the composite coating is provided on the ablation surface of the piston substrate.
  • the present application further provides an engine comprising the piston of the second aspect of the present application.
  • the present application further provides a vehicle including the engine of the third aspect of the present application.
  • the composite coating provided by the present application includes a metal bonding layer, a transition layer, a ceramic layer and a sealing layer which are stacked in sequence.
  • the metal bonding layer is a rare earth metal modified bonding layer
  • the metal bonding layer is used for bonding with the surface of the piston base
  • the sealing layer is located on the outer layer of the composite coating.
  • the metal bonding layer is used to improve the bonding strength of the composite coating and the piston substrate, so as to prevent the oxidizing atmosphere from invading the piston substrate
  • the transition layer is used to adjust the matching degree of thermal expansion coefficient between the metal bonding layer and the ceramic layer.
  • the structural composite coating has the advantages of high bonding strength with the piston base, stable structure, and not easy to crack.
  • the piston of the present application has the composite coating of the present application, the piston of the present application can meet the urgent needs of the thermal insulation protection technology of the piston main body system of the high-power diesel engine, and the ablation surface of the piston has high thermal insulation protection, anti-carbon deposition and The advantages of good anti-oxidation performance, thereby improving the service life of the piston.
  • 1 is an electronic display mirror diagram of a ceramic layer according to an embodiment of the application
  • Fig. 2 is the structural schematic diagram of the wave type superposition structure of an embodiment
  • FIG. 3 is a test diagram of the thermal insulation effect of a piston of an embodiment of the application and a piston of a comparative example
  • FIG. 4 is a surface view of the piston of the embodiment of the present application after 3000 thermal shock tests.
  • each reaction or operation step can be carried out sequentially or in sequence.
  • the reaction methods herein are performed sequentially.
  • An embodiment of the present application provides a composite coating, the composite coating includes a metal bonding layer, a transition layer, a ceramic layer and a sealing layer that are stacked in sequence; wherein, the metal bonding layer is used for connecting with a piston base Bonding, the metal bonding layer is a rare earth metal modified bonding layer, and the transition layer is a rare earth metal modified zirconia layer.
  • the composite coating provided by the embodiments of the present application includes a metal bonding layer, a transition layer, a ceramic layer and a sealing layer that are stacked in sequence.
  • the metal bonding layer is a rare earth metal modified bonding layer
  • the metal bonding layer is used for bonding with the surface of the piston base
  • the sealing layer is located on the outer layer of the composite coating.
  • the metal bonding layer is used to improve the bonding strength of the composite coating and the piston substrate, so as to prevent the oxidizing atmosphere from invading the piston substrate
  • the transition layer is used to adjust the matching degree of thermal expansion coefficient between the metal bonding layer and the ceramic layer.
  • the structural composite coating has the advantages of high bonding strength with the piston base, stable structure, and not easy to crack.
  • the metal bonding layer includes at least one of a rare earth metal modified NiCoCrAlY layer, a rare earth metal modified NiCrAlY layer or a rare earth metal modified NiAlY layer.
  • the rare earth metal includes but is not limited to at least one of Ce, Y, Re, Nd, La or Sm. Modifying the metal bonding layer by doping rare earth metal can improve the bonding strength between the metal bonding layer and the piston base, make the distribution of the metal bonding layer more uniform, and protect the piston base more effectively.
  • the rare earth metal in the metal bonding layer, is added in an amount of 0.5%-1% in terms of mass fraction.
  • the rare earth metal may be added in an amount of, for example, 0.5%, 0.6%, 0.7%, 0.8%, 0.9% or 1.0%.
  • the thickness of the metal bonding layer is 50-150 ⁇ m.
  • the thickness of the metal bonding layer is typically but not limited to 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m or 150 ⁇ m.
  • the transition layer is a rare earth metal doped modified zirconia layer, wherein the rare earth metal includes but is not limited to at least one of Ce, Y, Re, Nd, La or Sm kind.
  • the rare earth metal is added in an amount of 0.5% to 1% in terms of mass fraction.
  • the addition amount of rare earth metal may be, for example, 0.5%, 0.6%, 0.7%, 0.8%, 0.9% or 1.0%.
  • the powder particle size of the raw material for forming the rare earth metal-doped modified zirconia layer is 10-100 ⁇ m.
  • the particle size of the raw material for forming the modified zirconia layer may be, for example, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m or 100 ⁇ m.
  • the thickness of the transition layer is 100-200 ⁇ m.
  • the thickness of the modified zirconia layer may be, for example, 100 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m.
  • the ceramic layer includes at least one of zirconia, yttria, or yttria-stabilized zirconia.
  • the ceramic layer is a yttria-stabilized zirconia layer with a hollow structure.
  • Fig. 1 is the electronic display mirror image of the ceramic layer of an embodiment of the present application, using zirconia, yttrium oxide or yttria-stabilized zirconia, especially the yttria-stabilized zirconia of hollow structure, can form a wave-type stacking structure (as shown in Fig. 1), thereby improving the toughness of the ceramic layer.
  • FIG. 2 is a schematic structural diagram of a wave-type superimposed structure according to an embodiment. As shown in FIG. 2 , the wave-like stacking structure in the embodiment of the present application can be understood as the formed ceramic particles are arranged in a curved and staggered manner, rather than a linear or isolated arrangement structure.
  • this structure can also make the thermal insulation performance of the piston with the composite coating change with the temperature of the combustion chamber, for example, when the temperature of the combustion chamber of the engine is higher, the thermal insulation performance of the piston can be increased; When the temperature of the combustion chamber of the engine is low, the thermal insulation performance of the piston can be reduced.
  • the thermal insulation performance can be understood as: when the temperature of the combustion chamber is T1, the temperature of the piston body is T2, and the thermal insulation performance is represented by the difference between T1 and T2.
  • the thermal insulation performance of the piston changes with the temperature of the combustion chamber, which can improve the combustion efficiency of the engine, reduce heat loss, and facilitate combustion.
  • the yttria-stabilized zirconia layer is yttria-stabilized zirconia with a hollow structure.
  • the thickness of the ceramic layer may be 400-500 ⁇ m.
  • the thickness of the ceramic layer may be, for example, 400 ⁇ m, 420 ⁇ m, 430 ⁇ m, 440 ⁇ m, 450 ⁇ m, 460 ⁇ m, 470 ⁇ m, 480 ⁇ m, 490 ⁇ m or 500 ⁇ m.
  • the sealing agent for forming the sealing layer includes at least one of polysilazane, water glass or polysiloxane.
  • the overall thickness of the composite coating in the embodiment of the present application can be 600-800 ⁇ m, which can greatly improve the bonding strength of the composite coating and the steel piston substrate, effectively improve the oxidation resistance of the piston top, reduce high-temperature corrosion, and prolong the service life of the piston. Reduce the amount of carbon deposition on the top of the piston and effectively alleviate the coking problem of cooling oil. Compared with the uncoated piston, the thermal insulation performance of the piston top coated with thermal insulation, anti-carbon deposition and anti-oxidation composite coating can be improved by 30-50 °C.
  • the atmospheric plasma spraying method or the high-speed flame spraying method may be used.
  • a metal bonding layer can be formed on the ablation surface of the piston base, and then a transition layer can be formed on the surface of the metal bonding layer, and then a ceramic layer can be deposited on the surface of the transition layer.
  • a temperature-resistant sealing layer is prepared on the surface of the ceramic layer by cold spraying + high temperature curing method to overcome the traditional ceramic coating on the top of the piston, which is brittle, easy to crack or peel off, serious carbon deposition on the top of the piston, and short service life of the piston. defect.
  • the process for preparing the composite coating on the ablation surface of the piston base includes the following steps:
  • Step S11 on the top surface of the piston base, that is, the ablation surface, plasma spray a layer of metal bonding layer, and the thickness of the metal bonding layer is 100 ⁇ 50 ⁇ m.
  • a rare earth metal modified zirconia layer is plasma sprayed on the surface of the metal bonding layer as a transition layer, and the thickness of the rare earth metal modified zirconia layer is 150 ⁇ 50 ⁇ m.
  • Step S13 plasma spraying yttria-stabilized zirconia with a hollow structure on the surface of the transition layer to form a ceramic layer, and the thickness of the ceramic layer is 450 ⁇ 50 ⁇ m.
  • Step S14 performing a sealing process on the surface of the ceramic layer to form a sealing layer
  • the sealing material can be selected from one or more of polysilazane, water glass or polysiloxane.
  • the preparation method before spraying the metal bonding layer on the ablation surface of the piston base, the preparation method further includes the step of pretreating the piston base.
  • the pretreatment is as follows: sandblasting and roughening the top surface of the steel piston base. Specifically, during the sandblasting and roughening, corundum powder or quartz sand can be used to sandblast the piston base.
  • the surface roughness requirements of the rear piston base Ra 2.5 ⁇ 4.5, in order to increase the bonding strength of the metal bonding layer and the piston base.
  • the metal bonding layer may be formed by spraying with a plasma spraying method.
  • a plasma spraying device can be used to spray a rare earth metal-modified zirconia layer on the surface of the metal bonding layer, specifically, ZrO 2 is used as a raw material , through centrifugal spray granulation and plasma arc spheroidization to prepare rare earth metal-modified zirconia powder for spraying, with a particle size between 10 and 100 ⁇ m; using plasma spraying method, after melting and acceleration, the powder is deposited to the Piston base surface coated with metal bond coat.
  • the thickness of the modified zirconia layer may be between 100 and 200 ⁇ m.
  • a plasma spraying device is used to spray a ceramic layer on the surface of the transition layer, specifically, yttria-stabilized ZrO 2 with a hollow structure is used as a raw material, and the particle size is between 10 and 100 ⁇ m. between; using the plasma spraying method, the powder is deposited on the surface of the modified zirconia layer after melting and acceleration.
  • the thickness of the coating can be between 400 and 500 ⁇ m.
  • step S14 the surface of the yttria-stabilized zirconia layer is sealed by troweling, spraying or painting, wherein the sealing agent can be selected from polysilazane, water glass or polysiloxane. One or more of siloxanes; wherein the thickness of the sealing layer is preferably 2-20 ⁇ m.
  • the piston after the hole sealing treatment is cured at 300 to 400°C.
  • the piston provided by the above-mentioned embodiments of the present application has thermal insulation, anti-carbon deposition and anti-oxidation capabilities, and reduces chemical erosion of high-temperature and high-pressure gas.
  • the present application also provides a piston, which includes a piston base and the composite coating described in the above embodiments of the present application, wherein the composite coating is provided on the ablation surface of the piston base.
  • the piston base may be, for example, a metal piston base
  • the surface of the piston base facing the combustion chamber of the engine is an ablation surface
  • the ablation surface may be a flat surface or a groove surface.
  • a composite coating can be provided on the ablated surface.
  • the metal bonding layer of the composite coating is in contact with the base body of the piston, and is bonded and fixed on the surface of the base body of the piston.
  • the piston of the present application has the characteristics of good heat insulation performance and long service life.
  • Comparative Example 1 The surface of the piston of this comparative example was not coated with any coating.
  • Comparative Example 2 The ablated surface of the piston of this comparative example is only covered with a metal bonding layer and a ceramic layer in sequence. Wherein, the metal bonding layer is bonded with the piston base, and the metal bonding layer does not contain rare earth metals.
  • FIG. 3 is a test diagram of the thermal insulation effect of a piston of an embodiment of the present application and a piston of Comparative Example 1, wherein, Comparative Example 1 is a piston without any coating on the surface.
  • the test process is as follows: the piston of the example and the piston of the comparative example 1 are placed at the same temperature, and the temperature of the piston body of the piston of the example and the piston of the comparative example 1 is tested. It can be seen from the test results shown in FIG. 3 that the piston coated with the composite coating of the embodiment of the present application has good thermal insulation performance and can reduce the top surface temperature of the piston body by 30-50°C.
  • the present application also compares the thermal insulation performance of the piston of the embodiment of the present application and the piston of Comparative Example 2.
  • the thermal insulation performance of the piston of the embodiment of the present application is better than that of Comparative Example 2, and the temperature difference between the thermal insulation capabilities of the two pistons is 10-15°C.
  • Fig. 4 is a surface view of the piston of the embodiment of the present application after 3000 thermal shock tests. As shown in Fig. 4 , after the piston of the embodiment of the present application has undergone 3000 thermal shock tests, there is no crack or peeling on the surface, indicating that the application is implemented. Example pistons have good thermal fatigue resistance.
  • the piston of Comparative Example 2 also undergoes 3000 thermal shock tests, and the coating on its surface is cracked.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

提供了一种复合涂层、活塞、发动机和车辆。复合涂层包括依次叠层设置的金属粘结层、过渡层、陶瓷层和封孔层;其中,金属粘结层用于与活塞基体粘结,金属粘结层为稀土金属改性粘结层,过渡层为稀土金属改性氧化锆层;用于解决活塞表面涂层易脱落从而导致活塞使用寿命低的问题。

Description

复合涂层、活塞、发动机和车辆
本申请要求于2021年03月30日提交中国专利局、申请号为202110337886.9、发明名称为“复合涂层、活塞、发动机和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及包装领域,特别涉及一种复合涂层、活塞、发动机和车辆。
背景技术
据统计发动机中活塞燃烧室燃烧产生能量有大约25%通过缸套、冷却油道散失。活塞顶部温度持续高温(>320℃),钢质活塞本身导热性好,很容易造成冷却油道与燃烧室很大的温差以及冷却机油焦化,最终钢质活塞顶部面临开裂风险;冷却机油焦化严重,容易堵塞内冷油道。除此以外,钢质活塞的顶面及燃烧室(即钢制活塞顶面的凹槽)表面更容易发生高温氧化腐蚀和燃气腐蚀,进而导致钢制活塞的顶部产生表面剥落而失效。其中,活塞的顶面及燃烧室表面称为烧蚀面。
通过在活塞烧蚀面设置隔热涂层,可减少冷却系统的热能损耗及提高钢质活塞顶部防积碳、抗氧化性能,是提升现代重型柴油机燃油效率和延长服役寿命的一种技术途径。关于内燃机活塞主体用隔热防护涂层的研究可追溯到40年前,但是迄今为止并没有成熟的产品。目前国内柴油内燃机使用的活塞顶部隔热涂层依赖于进口,隔热防护技术主要国外内燃机配件企业(如马勒、辉门等)掌握,国内大功率柴油机企业对活塞系统隔热管理技术尚处于探索阶段。尽管典型航空隔热防护涂层如氧化锆类陶瓷材料在喷气发动机、涡轮机上适用,但是不适用于大功率柴油内燃机活塞系统,主要与内燃机活塞系统服役周期长、经受长期机械-热效应及化学腐蚀、涂层材料低成本有关。
专利US10578050B2、WO2017087733、CA2739008等专利报道了先在活塞主体表面施加金属粘结层,然后在金属粘结层表面施加陶瓷涂层以提高活塞的使用寿命。但是现有的这些陶瓷涂层通常为多孔结构,高温高压下燃气可以侵蚀到陶瓷涂层的亚表层,甚至可曼延到陶瓷涂层和金属粘结层的界面结合处, 导致界面结合强度弱化。特别是在金属粘结层和陶瓷涂层间热膨胀系数相差较大的情况下,以及陶瓷材料本身较脆,易于致使陶瓷涂层脱落。
发明内容
本申请公开了一种复合涂层、活塞、发动机和车辆,用于解决活塞表面涂层易脱落从而导致活塞使用寿命低的问题。
为达到上述目的,本申请提供以下技术方案:
第一方面,本申请提供一种活塞用复合涂层,所述复合涂层包括依次叠层设置的金属粘结层、过渡层、陶瓷层和封孔层;其中,所述金属粘结层用于与活塞基体粘结,所述金属粘结层为稀土金属改性粘结层,所述过渡层为稀土金属改性氧化锆层。
进一步地,所述金属粘结层包括稀土金属改性NiCoCrAlY层、稀土金属改性NiCrAlY层或稀土金属改性NiAlY层中的至少一种;
其中,所述稀土金属包括Ce、Y、Re、Nd、La或Sm中的至少一种。
进一步地,按质量分数计,所述金属粘结层中,所述稀土金属的添加量为0.5%-1%。
进一步地,所述金属粘结层的厚度为50-150μm。
进一步地,所述改性氧化锆层中,所述稀土金属包括Ce、Y、Re、Nd、La或Sm中的至少一种。
进一步地,按质量分数计,所述过渡层中,所述稀土金属的添加量为0.5%-1%。
进一步地,形成所述过渡层的原料的粉体粒径为10-100μm。
进一步地,所述过渡层的厚度为100-200μm。
进一步地,所述陶瓷层包括氧化锆、氧化钇或氧化钇稳定氧化锆中的至少一种。
进一步地,所述陶瓷层为空心结构的氧化钇稳定氧化锆层。
进一步地,所述陶瓷层的厚度为400-500μm。
进一步地,封孔层的原料包括聚硅氮烷、水玻璃或聚硅氧烷中的至少一种。
第二方面,本申请提供一种活塞,包括活塞基体和如本申请第一方面的复 合涂层,所述复合涂层设于所述活塞基体的烧蚀面。
第三方面,本申请还提供一种发动机,包括本申请第二方面的活塞。
第四方面,本申请还提供一种车辆,包括本申请第三方面的发动机。
采用本申请的技术方案,产生的有益效果如下:
本申请提供的复合涂层,包括依次叠层设置的金属粘结层、过渡层、陶瓷层层和封孔层。其中,金属粘结层为稀土金属改性粘结层,金属粘结层用于与活塞基体的表面粘结,封孔层位于复合涂层的外层。该结构的复合涂层,利用金属粘结层提高复合涂层与活塞基体的结合强度,防止氧化气氛侵入活塞基体;利用过渡层来调整金属粘结层与陶瓷层之间的热膨胀系数的匹配度,减少内应力,并延缓氧气渗浸到金属粘结层;利用封孔层进行密封,提高活塞的光洁度,减少碳吸附,防止高温高压的燃气气氛扩散至金属粘结层影响金属粘结层与过渡层的粘结强度。由此,该结构复合涂层具有与活塞基体的粘结强度高、结构稳定、不易开裂的优点。
本申请的活塞由于具有本申请的复合涂层,从而使本申请的活塞满足大功率柴油机活塞主体系统隔热防护技术的迫切需求,该活塞的烧蚀面具有隔热防护高、防积碳和抗氧化性能好的优点,从而提高活塞的使用寿命。
附图说明
图1为本申请一种实施例的陶瓷层的电子显示镜图;
图2为一种实施例的波浪式叠加结构的结构示意图;
图3为本申请一种实施例活塞和对比例活塞的隔热效果测试图;
图4为本申请实施例的活塞经3000次热震试验后的表面图。
具体实施方式
下面将结合本申请实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是:本申请中,如果没有特别的说明,本文所提到的所有实施 方式以及优选实施方法可以相互组合形成新的技术方案。本申请中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。本申请中,如果没有特别的说明,百分数(%)或者份指的是相对于组合物的重量百分数或重量份。本申请中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。本申请中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“6~22”表示本文中已经全部列出了“6~22”之间的全部实数,“6~22”只是这些数值组合的缩略表示。本申请所公开的“范围”以下限和上限的形式,可以分别为一个或多个下限,和一个或多个上限。本申请中,除非另有说明,各个反应或操作步骤可以顺序进行,也可以按照顺序进行。优选地,本文中的反应方法是顺序进行的。
除非另有说明,本文中所用的专业与科学术语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法或材料也可应用于本申请中。
本申请实施例提供一种复合涂层,所述复合涂层包括依次叠层设置的金属粘结层、过渡层、陶瓷层和封孔层;其中,所述金属粘结层用于与活塞基体粘结,所述金属粘结层为稀土金属改性粘结层,所述过渡层为稀土金属改性氧化锆层。
本申请实施例提供的复合涂层,包括依次叠层设置的金属粘结层、过渡层、陶瓷层层和封孔层。其中,金属粘结层为稀土金属改性粘结层,金属粘结层用于与活塞基体的表面粘结,封孔层位于复合涂层的外层。该结构的复合涂层,利用金属粘结层提高复合涂层与活塞基体的结合强度,防止氧化气氛侵入活塞基体;利用过渡层来调整金属粘结层与陶瓷层之间的热膨胀系数的匹配度,减少内应力,并延缓氧气渗浸到金属粘结层;利用封孔层进行密封,提高活塞的光洁度,减少碳吸附,防止高温高压的燃气气氛扩散至金属粘结层影响金属粘结层与过渡层的粘结强度。由此,该结构复合涂层具有与活塞基体的粘结强度高、结构稳定、不易开裂的优点。
在本申请一种优选实施例中,所述金属粘结层包括稀土金属改性NiCoCrAlY层、稀土金属改性NiCrAlY层或稀土金属改性NiAlY层中的至少 一种。其中,所述稀土金属包括但不限于Ce、Y、Re、Nd、La或Sm中的至少一种。通过掺杂稀土金属对金属粘结层进行改性,可提高金属粘结层与活塞基体之间的粘结强度,使金属粘结层的分布更均匀,以更有效地保护活塞基体。
在本申请一种实施例中,按质量分数计,所述金属粘结层中,所述稀土金属的添加量为0.5%-1%。通过控制稀土金属的添加量,可更有效地保护活塞基体,提高两者之间的结合强度。金属粘结层中,稀土金属的添加量例如可以为0.5%、0.6%、0.7%、0.8%、0.9%或1.0%。
在本申请一种优选实施例中,所述金属粘结层的厚度为50-150μm。其中,金属粘结层的厚度典型但非限制性地为50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm或150μm。
在本申请一种优选实施例中,所述过渡层为稀土金属掺杂改性氧化锆层,其中,所述稀土金属包括但不限于Ce、Y、Re、Nd、La或Sm中的至少一种。按质量分数计,所述改性氧化锆层中,所述稀土金属的添加量为0.5%-1%。通过添加特定含量的稀土金属,可提高氧化锆的分布,便于氧化锆结晶,降低过渡层中的孔隙率。过渡层中,稀土金属的添加量例如可以为0.5%、0.6%、0.7%、0.8%、0.9%或1.0%。
在本申请一种优选实施例中,形成所述稀土金属掺杂改性氧化锆层的原料的粉体粒径为10-100μm。其中,形成改性氧化锆层原料的粒径例如可以为10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm。
在本申请一种优选实施例中,所述过渡层的厚度为100-200μm。其中,改性氧化锆层的厚度例如可以为100μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或200μm。
在本申请一种实施例中,所述陶瓷层包括氧化锆、氧化钇或氧化钇稳定氧化锆中的至少一种。作为优选实施例,所述陶瓷层为空心结构的氧化钇稳定氧化锆层。
图1本申请一种实施例的陶瓷层的电子显示镜图,利用氧化锆、氧化钇或氧化钇稳定氧化锆,尤其是空心结构的氧化钇稳定氧化锆,可以形成波浪式叠加结构(如图1所示),进而提升陶瓷层的韧性。其中,图2为一种实施例的波浪式叠加结构的结构示意图。如图2所示,本申请实施例中的波浪式叠加结 构可理解为形成的陶瓷颗粒弯曲交错排列,并非成直线型或孤立的排列结构。
通过形成波浪式叠加结构,可提高陶瓷层的孔隙率,同时,又不会使发动机中的高温气体渗入过渡层和金属粘结层。另外,该结构,还可使具有该复合涂层的活塞的隔热性能随着燃烧室温度的变化而变化,例如,当发动机燃烧室的温度较高时,活塞的隔热性能可升高;当发动机燃烧室的温度较低时,活塞的隔热性能可降低。其中,隔热性能可理解为:当燃烧室的温度为T1,活塞本体的温度为T2,隔热性能用T1与T2的差值进行表示。活塞的隔热性能随着燃烧室温度的变化而变化,可提高发动机的燃烧效率,减少热损失,利于燃烧。
在本申请一种优选实施例中,所述氧化钇稳定氧化锆层为空心结构的氧化钇稳定氧化锆。
在本申请一种优选实施例中,所述陶瓷层的厚度可为400-500μm。其中,陶瓷层的厚度例如可以为400μm、420μm、430μm、440μm、450μm、460μm、470μm、480μm、490μm或500μm。
在本申请的一种实施例中,形成封孔层的封孔剂包括聚硅氮烷、水玻璃或聚硅氧烷中的至少一种。
本申请实施例的复合涂层,整体厚度可为600-800μm,可以大幅提升复合涂层与钢质活塞基体的结合强度,有效提升活塞顶部抗氧化性和减少高温腐蚀,延长活塞使用寿命,显著降低活塞顶部积碳吸附量,有效缓解冷却油焦化问题。相对于未涂覆活塞来讲,涂覆有隔热、防积碳和抗氧化复合涂层的活塞顶部隔热性能可提升30~50℃。
在本申请一种实施例中,在活塞基体表面制备复合涂层时,可采用大气等离子体喷涂方法,也可采用高速火焰喷涂方法。具体地,作为示例性说明,在制备复合涂层时,可在活塞基体的烧蚀面形成金属粘结层,再在金属粘结层表面形成过渡层,再在过渡层表面沉积陶瓷层,再采用冷喷涂+高温固化方法在陶瓷层的表面制备一层耐温的封孔层,以克服活塞顶部传统陶瓷涂层脆性大、易裂纹或剥落、活塞顶部积碳严重、活塞服役寿命短等技术缺陷。
在本申请的一种实施例中,在活塞基体的烧蚀面制备复合涂层的工艺,包括如下步骤:
步骤S11、在活塞基体的顶部表面即烧蚀面,等离子体喷涂一层金属粘结层,该金属粘结层的厚度为100±50μm。
步骤S12、在金属粘结层的表面进行等离子喷涂稀土金属改性氧化锆层作为过渡层,该稀土金属改性氧化锆层的厚度150±50μm。
步骤S13、在过渡层的表面等离子喷涂具有空心结构的氧化钇稳定氧化锆形成陶瓷层,该陶瓷层的厚度450±50μm。
步骤S14、在陶瓷层的表面进行封孔处理形成封孔层,封孔材料可选择聚硅氮烷、水玻璃或聚硅氧烷其中一种或几种。
在本申请的一种实施例中,在活塞基体的烧蚀面喷涂金属粘结层前,该制备方法还包括对活塞基体进行预处理的步骤。
其中,预处理为:对钢质活塞基体的顶部表面进行喷砂粗化处理,具体地,喷砂粗化处理时,可采用刚玉粉或石英砂对活塞基体进行喷砂粗化处理,粗化后活塞基体的表面粗糙度要求:Ra 2.5~4.5,以增加金属粘结层与活塞基体的粘合强度。
在本申请一种实施例中,步骤S11中,可采用等离子体喷涂方法喷涂形成金属粘结层。
在本申请一种实施例中,步骤S12中,可制备过渡层时,可采用等离子体喷涂设备在金属粘结层的表面喷涂稀土金属改性的氧化锆层,具体地,以ZrO 2作为原料,通过离心喷雾造粒,等离子弧球化制备出用于喷涂的稀土金属改性的氧化锆粉料,粒径在10~100μm之间;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到涂覆有金属粘结层的活塞基体表面。其中改性氧化锆层的厚度可以在100~200μm之间。
本申请的一种实施例中,步骤S13中,采用等离子体喷涂设备在过渡层的表面喷涂陶瓷层,具体地,以具有空心结构的氧化钇稳定ZrO 2作为原料,粒径在10~100μm之间;采用等离子体喷涂方法,经过熔化和加速后粉末沉积到改性氧化锆层表面。其中涂层厚度可以在400~500μm之间。
在本申请一种实施例中,步骤S14中,采用抹涂、喷涂或刷漆方法对氧化钇稳定氧化锆层的表面进行封孔处理,其中密封剂可选择聚硅氮烷、水玻璃或聚硅氧烷其中一种或几种;其中封孔层的厚度优选为2~20μm。对封孔处理后 的活塞在300~400℃进行固化处理。
本申请上述实施例提供的活塞具有隔热、防积碳和抗氧化能力,减少了高温高压燃气的化学侵蚀。
基于同样的技术构思,本申请还提供一种活塞,该活塞包括活塞基体和本申请上述实施例所述的复合涂层,所述复合涂层设于所述活塞基体的烧蚀面。
其中,活塞基体例如可为金属材质的活塞基体,活塞基体的面向发动机燃烧室的表面为其烧蚀面,该烧蚀面可为平面,可为凹槽面。复合涂层可设置于该烧蚀面。其中,复合涂层的金属粘结层与活塞基体接触,并与粘结固定于活塞基体的表面。
本申请的活塞具有隔热性能好、使用寿命长的特点。
对比例1:该对比例的活塞的表面未涂覆任何涂层。
对比例2:该对比例的活塞的烧蚀面仅依次覆有金属粘结层和陶瓷层。其中,金属粘结层与活塞基体粘结,金属粘结层中不含有稀土金属。
图3为本申请一种实施例活塞和对比例1活塞的隔热效果测试图,其中,对比例1为表面不设置任何涂层的活塞。测试过程为:将实施例活塞和对比例1活塞置于同样的温度下,测试实施例活塞和对比例1活塞的活塞本体的温度。从图3所示测试结果可以看出,涂覆有本申请实施例复合涂层的活塞,其隔热性能良好,可降低活塞本体的顶面温度30~50℃。
另外,本申请还对比了本申请实施例的活塞与对比例2的活塞的隔热性能。本申请实施例的活塞的隔热性能优于对比例2,两种活塞的隔热能力的温度差为10-15℃。
图4为本申请实施例的活塞经3000次热震试验后的表面图,如图4所示,本申请实施例的活塞经3000次热震试验后,表面无裂纹或剥落,表明本申请实施例的活塞具有良好的抗热疲劳性能。
对比例2的活塞同样经过经3000次热震试验后,其表面的涂层出现开裂。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种活塞用复合涂层,其特征在于,所述复合涂层包括依次叠层设置的金属粘结层、过渡层、陶瓷层和封孔层;其中,所述金属粘结层用于与活塞基体粘结,所述金属粘结层为稀土金属改性粘结层,所述过渡层为稀土金属改性氧化锆层。
  2. 根据权利要求1所述的复合涂层,其特征在于,所述金属粘结层包括稀土金属改性NiCoCrAlY层、稀土金属改性NiCrAlY层或稀土金属改性NiAlY层中的至少一种;
    其中,所述稀土金属包括Ce、Y、Re、Nd、La或Sm中的至少一种。
  3. 根据权利要求2所述的复合涂层,其特征在于,按质量分数计,所述金属粘结层中,所述稀土金属的添加量为0.5%-1%。
  4. 根据权利要求2所述的复合涂层,其特征在于,所述金属粘结层的厚度为50-150μm。
  5. 根据权利要求1-4任一项所述的复合涂层,其特征在于,所述过渡层中,所述稀土金属包括Ce、Y、Re、Nd、La或Sm中的至少一种。
  6. 根据权利要求5所述的复合涂层,其特征在于,按质量分数计,所述过渡层中,所述稀土金属的添加量为0.5%-1%。
  7. 根据权利要求5所述的复合涂层,其特征在于,形成所述过渡层的原料的粉体粒径为10-100μm。
  8. 根据权利要求5所述的复合涂层,其特征在于,所述过渡层的厚度为100-200μm。
  9. 根据权利要求1-4任一项所述的复合涂层,其特征在于,所述陶瓷层包括氧化锆、氧化钇或氧化钇稳定氧化锆中的至少一种。
  10. 根据权利要求9所述的复合涂层,其特征在于,所述陶瓷层为空心结构的氧化钇稳定氧化锆层。
  11. 根据权利要求9所述的复合涂层,其特征在于,所述陶瓷层的厚度为400-500μm。
  12. 一种活塞,其特征在于,包括活塞基体和如权利要求1-11任一项所述 的复合涂层,所述复合涂层设于所述活塞基体的烧蚀面。
  13. 一种发动机,其特征在于,包括如权利要求12所述的活塞。
  14. 一种车辆,其特征在于,包括如权利要求13所述的发动机。
PCT/CN2022/083897 2021-03-30 2022-03-30 复合涂层、活塞、发动机和车辆 WO2022206793A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/265,763 US20240026837A1 (en) 2021-03-30 2022-03-30 Composite coating, piston, engine and vehicle
EP22778975.7A EP4317518A1 (en) 2021-03-30 2022-03-30 Composite coating, piston, engine and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110337886.9A CN113088859A (zh) 2021-03-30 2021-03-30 复合涂层、活塞、发动机和车辆
CN202110337886.9 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022206793A1 true WO2022206793A1 (zh) 2022-10-06

Family

ID=76671144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083897 WO2022206793A1 (zh) 2021-03-30 2022-03-30 复合涂层、活塞、发动机和车辆

Country Status (4)

Country Link
US (1) US20240026837A1 (zh)
EP (1) EP4317518A1 (zh)
CN (1) CN113088859A (zh)
WO (1) WO2022206793A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532555A (zh) * 2022-10-20 2022-12-30 一汽解放汽车有限公司 气门缸盖组件的涂层方法、发动机及车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088859A (zh) * 2021-03-30 2021-07-09 潍柴动力股份有限公司 复合涂层、活塞、发动机和车辆
CN115138544B (zh) * 2021-09-08 2023-07-14 武汉苏泊尔炊具有限公司 锅具的处理方法以及锅具
CN114107874A (zh) * 2022-01-27 2022-03-01 潍柴动力股份有限公司 一种隔热活塞及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131711A1 (en) * 2006-12-01 2008-06-05 Siemens Power Generation, Inc. Bond coat compositions and arrangements of same capable of self healing
US20080131608A1 (en) * 2004-12-14 2008-06-05 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
CA2739008A1 (en) 2008-09-30 2010-04-08 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase
JP2013185200A (ja) * 2012-03-07 2013-09-19 Mazda Motor Corp 断熱皮膜構造及びその製造方法
CN105603351A (zh) * 2016-02-19 2016-05-25 河南普莱姆涂层科技有限公司 等离子喷涂制备稀土改性的NiAl热障涂层粘结层的方法
WO2017087733A1 (en) 2015-11-20 2017-05-26 Federal-Mogul Corporation Thermally insulated steel piston crown and method of making using a ceramic coating
CN108441807A (zh) * 2018-04-19 2018-08-24 福州大学 一种具有梯度结构的ysz-稀土锆酸盐热障涂层及制备方法
CN108495946A (zh) * 2015-11-20 2018-09-04 费德罗-莫格尔有限责任公司 隔热的发动机部件和使用陶瓷涂层的制造方法
CN113088859A (zh) * 2021-03-30 2021-07-09 潍柴动力股份有限公司 复合涂层、活塞、发动机和车辆

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169674A (en) * 1990-10-23 1992-12-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of applying a thermal barrier coating system to a substrate
CA2110007A1 (en) * 1992-12-29 1994-06-30 Adrian M. Beltran Thermal barrier coating process
US6102656A (en) * 1995-09-26 2000-08-15 United Technologies Corporation Segmented abradable ceramic coating
US5683825A (en) * 1996-01-02 1997-11-04 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
US10876475B2 (en) * 2015-11-20 2020-12-29 Tenneco Inc. Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10578014B2 (en) * 2015-11-20 2020-03-03 Tenneco Inc. Combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10018146B2 (en) * 2016-03-16 2018-07-10 Federal-Mogul Llc Piston with advanced catalytic energy release
DE102017207589A1 (de) * 2017-05-05 2018-11-08 Federal-Mogul Nürnberg GmbH Thermisch isolierende Beschichtung für einen Aluminiumkolben
CN108754495B (zh) * 2018-06-25 2021-01-05 广东省科学院新材料研究所 一种复合热障涂层及其制备方法与应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131608A1 (en) * 2004-12-14 2008-06-05 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same
US20080131711A1 (en) * 2006-12-01 2008-06-05 Siemens Power Generation, Inc. Bond coat compositions and arrangements of same capable of self healing
CA2739008A1 (en) 2008-09-30 2010-04-08 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase
JP2013185200A (ja) * 2012-03-07 2013-09-19 Mazda Motor Corp 断熱皮膜構造及びその製造方法
WO2017087733A1 (en) 2015-11-20 2017-05-26 Federal-Mogul Corporation Thermally insulated steel piston crown and method of making using a ceramic coating
CN108495946A (zh) * 2015-11-20 2018-09-04 费德罗-莫格尔有限责任公司 隔热的发动机部件和使用陶瓷涂层的制造方法
US10578050B2 (en) 2015-11-20 2020-03-03 Tenneco Inc. Thermally insulated steel piston crown and method of making using a ceramic coating
CN105603351A (zh) * 2016-02-19 2016-05-25 河南普莱姆涂层科技有限公司 等离子喷涂制备稀土改性的NiAl热障涂层粘结层的方法
CN108441807A (zh) * 2018-04-19 2018-08-24 福州大学 一种具有梯度结构的ysz-稀土锆酸盐热障涂层及制备方法
CN113088859A (zh) * 2021-03-30 2021-07-09 潍柴动力股份有限公司 复合涂层、活塞、发动机和车辆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532555A (zh) * 2022-10-20 2022-12-30 一汽解放汽车有限公司 气门缸盖组件的涂层方法、发动机及车辆

Also Published As

Publication number Publication date
US20240026837A1 (en) 2024-01-25
CN113088859A (zh) 2021-07-09
EP4317518A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2022206793A1 (zh) 复合涂层、活塞、发动机和车辆
US5320909A (en) Ceramic thermal barrier coating for rapid thermal cycling applications
US5384200A (en) Thermal barrier coating and method of depositing the same on combustion chamber component surfaces
KR20180084064A (ko) 열 절연형 엔진 구성요소들, 및 세라믹 코팅을 이용한 그 제조 방법
JP3258599B2 (ja) 断熱バリヤコーティングシステム
JP4401576B2 (ja) 耐焼結性断熱被覆を有する装置及び製造方法
CN101698364B (zh) 一种热障涂层及其制备工艺
CN111004990B (zh) 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
CA1306146C (en) Refractory metal composite coated article
JP2007262447A (ja) 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン
CN110983233A (zh) 一种多层结构稀土硅酸盐环境屏障涂层及其制备方法
CN109930102B (zh) 一种新型热障涂层制备工艺
EP3638885B1 (fr) Pièce de turbomachine revêtue et procédé de fabrication associé
US11512379B2 (en) Post deposition heat treatment of bond coat and additional layers on ceramic or CMC substrate
CA3066848A1 (fr) Piece de turbomachine revetue et procede de fabrication associe
US20110086163A1 (en) Method for producing a crack-free abradable coating with enhanced adhesion
CN108660407B (zh) 一种具有预制微观纵向裂纹结构的热障涂层及其制备方法
CN113930710B (zh) 一种热障涂层材料、其制备方法及应用
US20110086177A1 (en) Thermal spray method for producing vertically segmented thermal barrier coatings
GB2130244A (en) Forming coatings by hot isostatic compaction
JPS63274751A (ja) セラミック溶射部材
US4503093A (en) Thermally sprayable ceramics
CN113755784B (zh) 一种基于超声振动辅助激光改性自愈合热障涂层的制备方法
JPH1161438A (ja) 遮熱コーティング部材及びその製造方法
CN114315390A (zh) 一种碳/碳复合材料表面宽温域长寿命抗氧化涂层及低温制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18265763

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022778975

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022778975

Country of ref document: EP

Effective date: 20231030